

Python Documentation

Release 2.4 November 29, 2004

What's New in Python

. Tutorial ' :
(start here) (changes since the last major
release)
. Global Module Index
(for quick access to all
documentation) . Language Reference

Library Reference (for language lawyers)
(keep this under your pillow) Extending and Embedding
Macintosh Module (tutorial for C/C++ programmers)
Python/C API
(reference for C/C++
programmers)

Documenting Python
(information for documentation

Distributing Python authors)
Modules
(for developers and packagers)

Reference
(this too, if you use a Macintosh)

Installing Python Modules

(for administrators)

Documentation Central Python How-To Guides
(for everyone) (special topics)

See About the Python Documentation for information on suggesting changes.

http://www.python.org/doc/
http://www.python.org/doc/howto/

N Global Module Index
Up: Python Documentation Index

Global Module Index

Some module names are followed by an annotation indicating what platform

they are available on.

builtin

future

main
winred (Windows)
aepack (Mac)
aetools (Mac)
aetypes (Mac)
aifc
AL (IRIX)
al (IRIX)
anydbm
applesingle (Mac)
array
asynchat
asyncore
atexit
audioop
autoGIL (Mac)
base64
BaseHTTPServer
Bastion
binascii
binhex
bisect
bsddb (Unix, Windows)
buildtools (Mac)
bz2
calendar
Carbon.AE (Mac)
Carbon.AH (Mac)
Carbon.App (Mac)

distutils.

dep util

distutils.

dir util

distutils.

dist

distutils.

emxccompile

distutils.

errors

distutils.

extension

distutils.

fancy getog

distutils.

file util

distutils.

filelist

distutils.

log

distutils.

msvccompile

distutils.

mwerkscompi

distutils.

spawn

distutils.

sysconfig

distutils.

text file

distutils.

unixccompil

distutils.

util

distutils.

version

dl (Unix)
doctest

DocXMLRPCServer

dumbdbm

dummy thread

dummy threading

EasyDialogs_ (Mac)

email

email.Charset

email.Encoders

email.Errors

emall.Generator

email .Header

Carbon.CaronEvt (Mac)

Carbon.CF (Mac)
Carbon.CG (Mac)
Carbon.Cm (Mac)
Carbon.Ctl (Mac)
Carbon.Dl1g (Mac)
Carbon.Evt (Mac)
Carbon.Fm (Mac)

Carbon.Folder (Mac)

Carbon.Help (Mac)
Carbon.lList (Mac)
Carbon.Menu (Mac)
Carbon.Mlte (Mac)
Carbon.Qd (Mac)

Carbon.Qdoffs (Mac)

Carbon.Qt (Mac)
Carbon.Res (Mac)

Carbon.Scrap (Mac)

Carbon.Snd (Mac)
Carbon.TE (Mac)
Carbon.Win (Mac)
cd_(IRIX)
cfmfile (Mac)
cgi
CGIHTTPServer
cgithb

chunk

cmath

cmd

code

codecs

codeop
collections
ColorPicker (Mac)
colorsys
commands_(Unix)
compileall
compiler

email.Iterators
email.Message
email.Parser
email.Utils
encodings.idna
errno
exceptions
fcntl (Unix)
filecmp
fileinput
findertools (Mac)
EL_(IRIX)
f1 (RIX)
flp (IRIX)
fm_(IRIX)
fnmatch
formatter
fpectl (Unix)
fpformat
FramewWork (Mac)
ftplib
gc
gdbm (Unix)
gensuitemodule (Mac)
getopt
getpass
gettext
GL_(IRIX)
91 (IRIX)
glob
gopherlib
grp (Unix)

i
heapq
hmac
hotshot
hotshot.stats
htmlentitydefs

compiler.ast

compiler.visitor

ConfigParser

Cookie
cookielib
copy

co re
cPickle

crypt (Unix)

cStringIO
CSV

curses

curses.ascii

curses.panel

curses.textpad

curses.wrapper

datetime

dbhash (Unix, Windows)

dbm_(Unix)
decimal

DEVICE (IRIX)

difflib
dircache
dis
distutils

distutils.

archive

util

distutils.

bcppcompiler

distutils.

ccompiler

distutils.

cmd

distutils.

command

distutils.

command.

bdist

distutils.

command.

bdist

dumb

distutils.

command.

bdist

packager

distutils.

command.

bdist

rpm

distutils.

command.

bdist

wininst

distutils.

command.

build

distutils.

command.

build

clib

distutils.

command.

build

ext

htmllib
HTMLParser
httplib
ic (Mac)
icopen (Mac)

imageop
imaplib
imgfile (IRIX)
imghdr

imp
inspect
itertools
Jpeg (IRIX)
keyword
linecache

locale

logging

mac _(Mac)
macerrors (Mac)
macfs_(Mac)

MacO0S (Mac)
macostools (Mac)
macpath
macresource (Mac)
mailbox

mailcap

marshal

math

md5

mhlib

mimetools
mimetypes
MimeWriter
mimify
MiniAEFrame (Mac)
mkcwproject (Mac)
mma

msvcrt (Windows)

distutils.command.build py multifile
distutils.command.build scripts mutex
distutils.command.clean Nav_(Mac)
distutils.command.config netrc
distutils.command.install new
distutils.command.install data nis (UNIX)
distutils.command.install headersnntplib
distutils.command.install 1ib nsremote (Mac)
distutils.command.install scriptspperator
distutils.command.register optparse
distutils.command.sdist 0s
distutils.core 0s.path
distutils.cygwinccompiler

distutils.debug parser

ossaudiodevV (Linux, FreeB

T

Global Module Index
Up: Python Documentation Index

See About this document... for information on suggesting changes.

Previous: Contents up: What's New in Python Next: 2 PEP 237: Unifying

1 PEP 218: Built-In Set Objects

Python 2.3 introduced the sets module. C implementations of set data types
have now been added to the Python core as two new built-in types,

set (iterable) and frozenset (iterable). They provide high speed
operations for membership testing, for eliminating duplicates from sequences,
and for mathematical operations like unions, intersections, differences, and
symmetric differences.

>>> a = set('abracadabra') # form a set from a string
>>> 'z' in a # fast membership testing
False

>>> a # unique letters in a
Set(['a', |r|, 'b', 'C', 'd'])

>>> '' join(a) # convert back into a string
'arbcd'

>>> b = set('alacazam') # form a second set

>>>a - b # letters in a but not in b
Set(['r', 'd', 'b'])

>>>a | b # letters in either a or b
Set(['a', 'C', |r|, 'd', 'b', |m|, 'Z', 'l'])

>>>a &b # letters in both a and b
set(['a', 'c'])

>>> a N b # letters in a or b but not
Set(['r', 'd', 'b', |m|, 'Z', 'l'])

>>> a.add('z') # add a new element

>>> a.update('wxy') # add multiple new elements
>>> a

Set(['a', |C|, 'b', 'd', 'r', 'W', 'y', |X|, lzl])

>>> a.remove('x"') # take one element out

>>> a

Set(['a', |C|, 'b', 'd', 'r', 'W', 'y', lzl])

The frozenset type is an immutable version of set. Since it is immutable
and hashable, it may be used as a dictionary key or as a member of another set.

The sets module remains in the standard library, and may be useful if you wish
to subclass the Set or ImmutableSet classes. There are currently no plans to
deprecate the module.

See Also:

PEP 218, Adding a Built-In Set Object Type
Originally proposed by Greg Wilson and ultimately implemented by
Raymond Hettinger.

= 'r = What's New in Python 2.4 toc

CONTENTS

Previous: Contents up: What's New in Python Next: 2 PEP 237: Unifying

Release 1.01.
See About this document... for information on suggesting changes.

http://www.python.org/peps/pep-0218.html

Previous: 1 PEP 218: Built-In Up: What's New in Python Next: 3 PEP 289:
Generator

2 PEP 237: Unifying Long Integers
and Integers

The lengthy transition process for this PEP, begun in Python 2.2, takes another
step forward in Python 2.4. In 2.3, certain integer operations that would behave
differently after int/long unification triggered FutureWarning warnings and
returned values limited to 32 or 64 bits (depending on your platform). In 2.4,
these expressions no longer produce a warning and instead produce a different
result that's usually a long integer.

The problematic expressions are primarily left shifts and lengthy hexadecimal
and octal constants. For example, 2 << 32 results in a warning in 2.3,
evaluating to 0 on 32-bit platforms. In Python 2.4, this expression now returns
the correct answer, 8589934592.

See Also:

PEP 237, Unifying Long Integers and Integers
Original PEP written by Moshe Zadka and GvR. The changes for 2.4

were implemented by Kalle Svensson.

T = What's New in Python 2.4 toc

CONTENTS

Previous: 1 PEP 218: Built-In Up: What's New in Python Next: 3 PEP 289:
Generator

Release 1.01.
See About this document... for information on suggesting changes.

http://www.python.org/peps/pep-0237.html

Previous: 2 PEP 237: Unifying up: What's New in Python Next: 4 PEP 292:

Simpler

3 PEP 289: Generator Expressions

The iterator feature introduced in Python 2.2 and the 1tertools module make
it easier to write programs that loop through large data sets without having the
entire data set in memory at one time. List comprehensions don't fit into this
picture very well because they produce a Python list object containing all of the
items. This unavoidably pulls all of the objects into memory, which can be a
problem if your data set is very large. When trying to write a functionally-styled
program, it would be natural to write something like:

links = [link for link in get_all_links() if not link.followed]
for link in links:

instead of

for link in get_all_links():
if link.followed:
continue

The first form is more concise and perhaps more readable, but if you're dealing
with a large number of link objects you'd have to write the second form to avoid
having all link objects in memory at the same time.

Generator expressions work similarly to list comprehensions but don't
materialize the entire list; instead they create a generator that will return
elements one by one. The above example could be written as:

links = (link for link in get_all_links() if not link.followed)
for link in links:

Generator expressions always have to be written inside parentheses, as in the
above example. The parentheses signalling a function call also count, so if you
want to create a iterator that will be immediately passed to a function you could
write:

print sum(obj.count for obj in list_all objects())

Generator expressions differ from list comprehensions in various small ways.

Most notably, the loop variable (obj in the above example) is not accessible
outside of the generator expression. List comprehensions leave the variable
assigned to its last value; future versions of Python will change this, making list
comprehensions match generator expressions in this respect.

See Also:

PEP 289, Generator Expressions
Proposed by Raymond Hettinger and implemented by Jiwon Seo with
early efforts steered by Hye-Shik Chang.

CONTENTS

Previous: 2 PEP 237: Unifying up: What's New in Python Next: 4 PEP 292:
Simpler

= 'r = What's New in Python 2.4 toc

Release 1.01.
See About this document... for information on suggesting changes.

http://www.python.org/peps/pep-0289.html

Previous: 3 PEP 289: Generator up: What's New in Python Next: 5 PEP 318:
Decorators

4 PEP 292: Simpler String
Substitutions

Some new classes in the standard library provide an alternative mechanism for
substituting variables into strings; this style of substitution may be better for
applications where untrained users need to edit templates.

The usual way of substituting variables by name is the % operator:

>>> '%(page)i: %(title)s' % {'page':2, 'title': 'The Best of Times'}
'2: The Best of Times'

When writing the template string, it can be easy to forget the "1" or "'s" after the
closing parenthesis. This isn't a big problem if the template is in a Python
module, because you run the code, get an ~"Unsupported format character”
ValueError, and fix the problem. However, consider an application such as
Mailman where template strings or translations are being edited by users who
aren't aware of the Python language. The format string's syntax is complicated to
explain to such users, and if they make a mistake, it's difficult to provide helpful
feedback to them.

PEP 292 adds a Template class to the string module that uses "$" to
indicate a substitution. Template is a subclass of the built-in Unicode type, so
the result is always a Unicode string:

>>> import string

>>> t = string.Template('$page: $title')

>>> t.substitute({'page':2, 'title': 'The Best of Times'})
u'2: The Best of Times'

If a key is missing from the dictionary, the substitute method will raise a
KeyError. There's also a safe_substitute method that ignores missing
keys:

>>> t = string.SafeTemplate('$page: $title')

>>> t.safe_substitute({'page':3})
u'3: $title'

See Also:

PEP 292, Simpler String Substitutions
Written and implemented by Barry Warsaw.

= 'r = What's New in Python 2.4 toc

CONTENTS

Previous: 3 PEP 289: Generator up: What's New in Python Next:: 5 PEP 318:
Decorators

Release 1.01.
See About this document... for information on suggesting changes.

http://www.python.org/peps/pep-0292.html

Previous: 4 PEP 292: Simpler up: What's New in Python Next: 6 PEP 322:
Reverse

5 PEP 318: Decorators for Functions
and Methods

Python 2.2 extended Python's object model by adding static methods and class
methods, but it didn't extend Python's syntax to provide any new way of defining
static or class methods. Instead, you had to write a def statement in the usual
way, and pass the resulting method to a staticmethod() or
classmethod() function that would wrap up the function as a method of the
new type. Your code would look like this:

class C:
def meth (cls):

meth = classmethod(meth) # Rebind name to wrapped-up class meth

If the method was very long, it would be easy to miss or forget the
classmethod () invocation after the function body.

The intention was always to add some syntax to make such definitions more
readable, but at the time of 2.2's release a good syntax was not obvious. Today a
good syntax still isn't obvious but users are asking for easier access to the
feature; a new syntactic feature has been added to meet this need.

The new feature is called " “function decorators". The name comes from the idea
that classmethod, staticmethod, and friends are storing additional
information on a function object; they're decorating functions with more details.

The notation borrows from Java and uses the "@" character as an indicator. Using
the new syntax, the example above would be written:

class C:

@classmethod
def meth (cls):

The @classmethod is shorthand for the meth=classmethod(meth)
assignment. More generally, if you have the following:

@A @B @C
def £ ():

It's equivalent to the following pre-decorator code:

def f(): ...
f = A(B(C(f)))

Decorators must come on the line before a function definition, and can't be on
the same line, meaning that @A def f(): ... isillegal. You can only
decorate function definitions, either at the module level or inside a class; you
can't decorate class definitions.

A decorator is just a function that takes the function to be decorated as an
argument and returns either the same function or some new callable thing. It's
easy to write your own decorators. The following simple example just sets an
attribute on the function object:

>>> def deco(func):
func.attr = 'decorated'
return func
>>> @deco
. def f(): pass
S>> f
<function f at 0x402ef0d4>

>>> f,attr

'decorated’
>>>

As a slightly more realistic example, the following decorator checks that the
supplied argument is an integer:

def require_int (func):
def wrapper (arg):
assert isinstance(arg, int)
return func(arg)

return wrapper
@require_int
def p1 (arg):

print arg

@require_int

def p2(arg):
print arg*2

An example in PEP 318 contains a fancier version of this idea that lets you both
specify the required type and check the returned type.

Decorator functions can take arguments. If arguments are supplied, your
decorator function is called with only those arguments and must return a new
decorator function; this function must take a single function and return a
function, as previously described. In other words, @A @B @C(args) becomes:

def f():
_deco = C(args)
f = A(B(_deco(f)))

Getting this right can be slightly brain-bending, but it's not too difficult.

A small related change makes the func_name attribute of functions writable.
This attribute is used to display function names in tracebacks, so decorators
should change the name of any new function that's constructed and returned.

See Also:

PEP 318, Decorators for Functions, Methods and Classes
Written by Kevin D. Smith, Jim Jewett, and Skip Montanaro. Several
people wrote patches implementing function decorators, but the one
that was actually checked in was patch #979728, written by Mark
Russell.

= T = What's New in Python 2.4 toc

CONTENTS

Previous: 4 PEP 292: Simpler up: What's New in Python Next: 6 PEP 322:
Reverse

Release 1.01.
See About this document... for information on suggesting changes.

http://www.python.org/peps/pep-0318.html
http://www.python.org/peps/pep-0318.html

Previous: 5 PEP 318: Decorators up: What's New in Python Next: 7 PEP 324:
New

6 PEP 322: Reverse lteration

A new built-in function, reversed(seq), takes a sequence and returns an
iterator that loops over the elements of the sequence in reverse order.

>>> for 1 in reversed(xrange(1,4)):
print i

3
2
1

Compared to extended slicing, such as range(1,4)[::-1], reversed()
is easier to read, runs faster, and uses substantially less memory.

Note that reversed () only accepts sequences, not arbitrary iterators. If you
want to reverse an iterator, first convert it to a list with 1ist ().

>>> input = open('/etc/passwd', 'r')
>>> for line in reversed(list(input)):
print line

root:*:0:0:System Administrator:/var/root:/bin/tcsh

See Also:

PEP 322, Reverse Iteration
Written and implemented by Raymond Hettinger.

CONTENTS

Previous: 5 PEP 318: Decorators up: What's New in Python Next: 7 PEP 324:

= T = What's New in Python 2.4 toc

New

Release 1.01.
See About this document... for information on suggesting changes.

http://www.python.org/peps/pep-0322.html

Previous: 6 PEP 322: Reverse up: What's New in Python Next: 8 PEP 327:
Decimal

7 PEP 324: New subprocess Module

The standard library provides a number of ways to execute a subprocess,
offering different features and different levels of complexity.
0S.system(command) is easy to use, but slow (it runs a shell process which
executes the command) and dangerous (you have to be careful about escaping
the shell's metacharacters). The popen2 module offers classes that can capture
standard output and standard error from the subprocess, but the naming is
confusing. The subprocess module cleans this up, providing a unified
interface that offers all the features you might need.

Instead of popen2's collection of classes, Subprocess contains a single class
called Popen whose constructor supports a number of different keyword
arguments.

class Popen(args, bufsize=0, executable=None,
stdin=None, stdout=None, stderr=None,
preexec_fn=None, close_fds=False, shell=False,
cwd=None, env=None, universal_newlines=False,
startupinfo=None, creationflags=0):

args is commonly a sequence of strings that will be the arguments to the
program executed as the subprocess. (If the shell argument is true, args can be a
string which will then be passed on to the shell for interpretation, just as
0s.system() does.)

stdin, stdout, and stderr specify what the subprocess's input, output, and error
streams will be. You can provide a file object or a file descriptor, or you can use
the constant subprocess.PIPE to create a pipe between the subprocess and
the parent.

The constructor has a number of handy options:

e close_{fds requests that all file descriptors be closed before running the
subprocess.

e cwd specifies the working directory in which the subprocess will be
executed (defaulting to whatever the parent's working directory is).

e env is a dictionary specifying environment variables.
e preexec_fn is a function that gets called before the child is started.

e universal_newlines opens the child's input and output using Python's
universal newline feature.

Once you've created the Popen instance, you can call its wait () method to
pause until the subprocess has exited, poll() to check if it's exited without
pausing, or communicate (data) to send the string data to the subprocess's
standard input. communicate (data) then reads any data that the subprocess
has sent to its standard output or standard error, returning a tuple (stdout_data,
stderr_data).

call() is a shortcut that passes its arguments along to the Popen constructor,
waits for the command to complete, and returns the status code of the
subprocess. It can serve as a safer analog to 0s.system():

sts = subprocess.call(['dpkg', '-i', '/tmp/new-package.deb'])
if sts == 0:
Success

else:
dpkg returned an error

The command is invoked without use of the shell. If you really do want to use
the shell, you can add shell=True as a keyword argument and provide a
string instead of a sequence:

sts = subprocess.call('dpkg -i /tmp/new-package.deb', shell=True)

The PEP takes various examples of shell and Python code and shows how they'd
be translated into Python code that uses subprocess. Reading this section of
the PEP is highly recommended.

See Also:

PEP 324, subprocess - New process module
Written and implemented by Peter Astrand, with assistance from

http://www.python.org/peps/pep-0324.html

‘ Fredrik Lundh and others.

= T = What's New in Python 2.4 toc

CONTENTS

Previous: 6 PEP 322: Reverse up: What's New in Python Next: 8 PEP 327:

Decimal

Release 1.01.
See About this document... for information on suggesting changes.

Previous: / PEP 324: New up: What's New in Python Next: 9 PEP 328: Multi-
line

Subsections

e 8.1 Why is Decimal needed?
e 8.2 The Decimal type
e 8.3 The Context type

8 PEP 327: Decimal Data Type

Python has always supported floating-point (FP) numbers, based on the
underlying C double type, as a data type. However, while most programming
languages provide a floating-point type, many people (even programmers) are
unaware that floating-point numbers don't represent certain decimal fractions
accurately. The new Decimal type can represent these fractions accurately, up
to a user-specified precision limit.

8.1 Why is Decimal needed?

The limitations arise from the representation used for floating-point numbers. FP
numbers are made up of three components:

e The sign, which is positive or negative.

e The mantissa, which is a single-digit binary number followed by a
fractional part. For example, 1. 01 in base-2 notationis 1 + 0/2 +
1/4, or 1.25 in decimal notation.

e The exponent, which tells where the decimal point is located in the number
represented.

For example, the number 1.25 has positive sign, a mantissa value of 1.01 (in
binary), and an exponent of 0 (the decimal point doesn't need to be shifted). The
number 5 has the same sign and mantissa, but the exponent is 2 because the
mantissa is multiplied by 4 (2 to the power of the exponent 2); 1.25 * 4 equals 5.

Modern systems usually provide floating-point support that conforms to a
standard called IEEE 754. C's double type is usually implemented as a 64-bit
IEEE 754 number, which uses 52 bits of space for the mantissa. This means that
numbers can only be specified to 52 bits of precision. If you're trying to
represent numbers whose expansion repeats endlessly, the expansion is cut off
after 52 bits. Unfortunately, most software needs to produce output in base 10,
and common fractions in base 10 are often repeating decimals in binary. For
example, 1.1 decimal is binary 1.00011001166011 ...;.1=1/16+1/32 +
1/256 plus an infinite number of additional terms. IEEE 754 has to chop off that
infinitely repeated decimal after 52 digits, so the representation is slightly
inaccurate.

Sometimes you can see this inaccuracy when the number is printed:

>>> 1.1
1.1000000000000001

The inaccuracy isn't always visible when you print the number because the FP-
to-decimal-string conversion is provided by the C library, and most C libraries
try to produce sensible output. Even if it's not displayed, however, the inaccuracy
is still there and subsequent operations can magnify the error.

For many applications this doesn't matter. If I'm plotting points and displaying
them on my monitor, the difference between 1.1 and 1.1000000000000001 is too
small to be visible. Reports often limit output to a certain number of decimal
places, and if you round the number to two or three or even eight decimal places,
the error is never apparent. However, for applications where it does matter, it's a
lot of work to implement your own custom arithmetic routines.

Hence, the Decimal type was created.

8.2 The Decimal type

A new module, decimal, was added to Python's standard library. It contains
two classes, Decimal and Context. Decimal instances represent numbers,
and Context instances are used to wrap up various settings such as the
precision and default rounding mode.

Decimal instances are immutable, like regular Python integers and FP
numbers; once it's been created, you can't change the value an instance
represents. Decimal instances can be created from integers or strings:

>>> import decimal

>>> decimal.Decimal(1972)
Decimal("1972")

>>> decimal.Decimal("1.1")
Decimal("1.1")

You can also provide tuples containing the sign, the mantissa represented as a
tuple of decimal digits, and the exponent:

>>> decimal.Decimal((1, (1, 4, 7, 5), -2))
Decimal("-14.75")

Cautionary note: the sign bit is a Boolean value, so 0 is positive and 1 is
negative.

Converting from floating-point numbers poses a bit of a problem: should the FP
number representing 1.1 turn into the decimal number for exactly 1.1, or for 1.1
plus whatever inaccuracies are introduced? The decision was to dodge the issue
and leave such a conversion out of the API. Instead, you should convert the
floating-point number into a string using the desired precision and pass the string
to the Decimal constructor:

>>> f = 1.1

>>> decimal.Decimal(str(f))
Decimal("1.1")

>>> decimal.Decimal('%.12f"' % f)
Decimal("1.100000000000")

Once you have Decimal instances, you can perform the usual mathematical
operations on them. One limitation: exponentiation requires an integer exponent:

>>> a = decimal.Decimal('35.72")
>>> b = decimal.Decimal('1.73")
>>> a+b

Decimal("37.45")

>>> a-b

Decimal("33.99")

>>> a*b

Decimal("61.7956")

>>> a/b
Decimal('"20.64739884393063583815028902")
>>> g ** 2

Decimal("1275.9184")
>>> a**p

Traceback (most recent call last):

decimal.InvalidOperation: x ** (non-integer)

You can combine Decimal instances with integers, but not with floating-point
numbers:

>>> g + 4

Decimal("39.72")

>>> g + 4.5

Traceback (most recent call last):

TypeError: You can interact Decimal only with int, long or Decimal d
>>>

Decimal numbers can be used with the math and cmath modules, but note
that they'll be immediately converted to floating-point numbers before the
operation is performed, resulting in a possible loss of precision and accuracy.
You'll also get back a regular floating-point number and not a Decimal.

>>> import math, cmath

>>> d = decimal.Decimal('123456789012.345")
>>> math.sqrt(d)

351364.18288201344

>>> cmath.sqrt(-d)

351364.18288201344]

Decimal instances have a sqrt () method that returns a Decimal, but if you
need other things such as trigonometric functions you'll have to implement them.

>>> d.sqrt()
Decimal("351364.1828820134592177245001")

8.3 The Context type

Instances of the Context class encapsulate several settings for decimal
operations:

e prec is the precision, the number of decimal places.

e rounding specifies the rounding mode. The decimal module has
constants for the various possibilities: ROUND_DOWN, ROUND_CEILING,
ROUND_HALF_EVEN, and various others.

e traps is adictionary specifying what happens on encountering certain
error conditions: either an exception is raised or a value is returned. Some
examples of error conditions are division by zero, loss of precision, and
overflow.

There's a thread-local default context available by calling getcontext (); you
can change the properties of this context to alter the default precision, rounding,
or trap handling. The following example shows the effect of changing the
precision of the default context:

>>> decimal.getcontext().prec

28

>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.1428571428571428571428571429")
>>> decimal.getcontext().prec = 9

>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("®.142857143")

The default action for error conditions is selectable; the module can either return
a special value such as infinity or not-a-number, or exceptions can be raised:

>>> decimal.Decimal(1) / decimal.Decimal(0)
Traceback (most recent call last):

decimal.DivisionByZero: x / ©

>>> decimal.getcontext().traps[decimal.DivisionByZero] = False
>>> decimal.Decimal(1) / decimal.Decimal(0)
Decimal("Infinity")

>>>

The Context instance also has various methods for formatting numbers such
as to_eng_string() and to_sci_string().

For more information, see the documentation for the decimal module, which
includes a quick-start tutorial and a reference.

See Also:

PEP 327, Decimal Data Type
Written by Facundo Batista and implemented by Facundo Batista, Eric
Price, Raymond Hettinger, Aahz, and Tim Peters.

http://research.microsoft.com/~hollasch/cgindex/coding/ieeefloat.html
A more detailed overview of the IEEE-754 representation.

http://www.lahey.com/float.htm
The article uses Fortran code to illustrate many of the problems that
floating-point inaccuracy can cause.

http://www?2.hursley.ibm.com/decimal/
A description of a decimal-based representation. This representation is
being proposed as a standard, and underlies the new Python decimal
type. Much of this material was written by Mike Cowlishaw, designer
of the Rexx language.

= 'r = What's New in Python 2.4 toc

CONTENTS

Previous: 7 PEP 324: New up: What's New in Python Next: 9 PEP 328: Multi-
line

Release 1.01.
See About this document... for information on suggesting changes.

http://www.python.org/peps/pep-0327.html
http://research.microsoft.com/~hollasch/cgindex/coding/ieeefloat.html
http://www.lahey.com/float.htm
http://www2.hursley.ibm.com/decimal/

Previous: 8 PEP 327: Decimal up: What's New in Python Next: 10 PEP 331
Locale-Independent

9 PEP 328: Multi-line Imports

One language change is a small syntactic tweak aimed at making it easier to
import many names from a module. In a from module import names
statement, names is a sequence of names separated by commas. If the sequence
is very long, you can either write multiple imports from the same module, or you
can use backslashes to escape the line endings like this:

from SimpleXMLRPCServer import SimpleXMLRPCServer,\
SimpleXMLRPCRequestHandler, \
CGIXMLRPCRequestHandler, \
resolve_dotted_attribute

The syntactic change in Python 2.4 simply allows putting the names within
parentheses. Python ignores newlines within a parenthesized expression, so the
backslashes are no longer needed:

from SimpleXMLRPCServer import (SimpleXMLRPCServer,
SimpleXMLRPCRequestHandler,
CGIXMLRPCRequestHandler,
resolve_dotted_attribute)

The PEP also proposes that all import statements be absolute imports, with a
leading "." character to indicate a relative import. This part of the PEP is not yet
implemented, and will have to wait for Python 2.5 or some other future version.

See Also:

PEP 328, Imports: Multi-Line and Absolute/Relative
Written by Aahz. Multi-line imports were implemented by Dima
Dorfman.

= T = What's New in Python 2.4 toc

CONTENTS

Previous: 8 PEP 327: Decimal up: What's New in Python Next: 10 PEP 331:

Locale-Independent

http://www.python.org/peps/pep-0328.html

Release 1.01.
See About this document... for information on suggesting changes.

Previous: 9 PEP 328: Multi-line up: What's New in Python Next: 11 Other
Language Changes

10 PEP 331: Locale-Independent
Float/String Conversions

The 1locale modules lets Python software select various conversions and
display conventions that are localized to a particular country or language.
However, the module was careful to not change the numeric locale because
various functions in Python's implementation required that the numeric locale
remain set to the ' C' locale. Often this was because the code was using the C
library's atof () function.

Not setting the numeric locale caused trouble for extensions that used third-party
C libraries, however, because they wouldn't have the correct locale set. The
motivating example was GTK+, whose user interface widgets weren't displaying
numbers in the current locale.

The solution described in the PEP is to add three new functions to the Python
API that perform ASCII-only conversions, ignoring the locale setting:

e PyOS_ascii_strtod(str, ptr) and PyOS_ascii_atof(str, ptr)
both convert a string to a C double.

e Py0S_ascii_formatd(buffer, buf_len, format, d) convertsa
double to an ASCII string.

The code for these functions came from the GLib library
(http://developer.gnome.org/arch/gtk/glib.html), whose developers kindly
relicensed the relevant functions and donated them to the Python Software
Foundation. The 1ocale module can now change the numeric locale, letting
extensions such as GTK+ produce the correct results.

See Also:

PEP 331, Locale-Independent Float/String Conversions
Written by Christian R. Reis, and implemented by Gustavo Carneiro.

http://developer.gnome.org/arch/gtk/glib.html
http://www.python.org/peps/pep-0331.html

CONTENTS

Previous: 9 PEP 328: Multi-line up: What's New in Python Next: 11 Other
Language Changes

= T = What's New in Python 2.4 toc

Release 1.01.
See About this document... for information on suggesting changes.

Previous: 10 PEP 331: Locale-Independent up: What's New in Python Next:
12 New, Improved, and

Subsections

e 11.1 Optimizations

11 Other Language Changes

Here are all of the changes that Python 2.4 makes to the core Python language.

Decorators for functions and methods were added (PEP 318).

Built-in set and frozenset types were added (PEP_218). Other new
built-ins include the reversed(seq) function (PEP 322).

Generator expressions were added (PEP 289).

Certain numeric expressions no longer return values restricted to 32 or 64
bits (PEP 237).

You can now put parentheses around the list of names in a from module
import names statement (PEP 328).

The dict.update() method now accepts the same argument forms as
the dict constructor. This includes any mapping, any iterable of key/value
pairs, and keyword arguments. (Contributed by Raymond Hettinger.)

The string methods 1just (), rjust(), and center () now take an
optional argument for specifying a fill character other than a space.
(Contributed by Raymond Hettinger.)

Strings also gained an rsplit () method that works like the split ()
method but splits from the end of the string.

>>> 'www.python.org'.split('.', 1)
['www', 'python.org']
"'www.python.org'.rsplit('."', 1)

['www.python', 'org']

Three keyword parameters, cmp, key, and reverse, were added to the
sort () method of lists. These parameters make some common usages of
sort () simpler. All of these parameters are optional.

For the cmp parameter, the value should be a comparison function that takes
two parameters and returns -1, 0, or +1 depending on how the parameters

http://www.python.org/peps/pep-0318.html
http://www.python.org/peps/pep-0218.html
http://www.python.org/peps/pep-0322.html
http://www.python.org/peps/pep-0289.html
http://www.python.org/peps/pep-0237.html
http://www.python.org/peps/pep-0328.html

compare. This function will then be used to sort the list. Previously this was
the only parameter that could be provided to sort ().

key should be a single-parameter function that takes a list element and

returns a comparison key for the element. The list is then sorted using the

comparison keys. The following example sorts a list case-insensitively:
>>S> L= [|A|, |b|, |C|, |D|]

>>> L.sort() # Case-sensitive sort
>>> L

[lAlI 'D', 'b', lcl]

>>> # Using 'key' parameter to sort list
>>> L.sort(key=lambda x: x.lower())

>>> L

[lAlI 'b', |C|, lDl]
>>> # 0ld-fashioned way

>>> L.sort(cmp=lambda x,y: cmp(x.lower(), y.lower()))
>>> L

[lAlI 'b', |C|, lDl]

The last example, which uses the cmp parameter, is the old way to perform
a case-insensitive sort. It works but is slower than using a key parameter.
Using key calls 1ower () method once for each element in the list while
using cmp will call it twice for each comparison, so using key saves on
invocations of the 1ower () method.

For simple key functions and comparison functions, it is often possible to
avoid a 1ambda expression by using an unbound method instead. For
example, the above case-insensitive sort is best written as:

>>> L.sort(key=str.lower)
>>> L

[lAlI 'b', |C|, lDl]

Finally, the reverse parameter takes a Boolean value. If the value is true, the
list will be sorted into reverse order. Instead of L.sort () ;
L.reverse(), you can now write L.sort(reverse=True).

The results of sorting are now guaranteed to be stable. This means that two
entries with equal keys will be returned in the same order as they were
input. For example, you can sort a list of people by name, and then sort the
list by age, resulting in a list sorted by age where people with the same age
are in name-sorted order.

(All changes to sort () contributed by Raymond Hettinger.)

e There is a new built-in function sorted (iterable) that works like the in-
place 1ist.sort () method but can be used in expressions. The
differences are:

o the input may be any iterable;
o anewly formed copy is sorted, leaving the original intact; and
o the expression returns the new sorted copy

>> L = [9,7,8,3,2,4,1,6,5]

>>> [10+1 for 1 in sorted(L)] # usable in a list comprehel
[11, 12, 13, 14, 15, 16, 17, 18, 19]

>>> L # original is left unchanges
[9,7,8,3,2,4,1,6,5]

>>> sorted('Monty Python') # any iterable may be an in

[l lI 'M', 'P', 'h', 'n', 'n', 'O', 'O', 't', 't', 'y', lyl]

>>> # List the contents of a dict sorted by key values
>>> colormap = dict(red=1, blue=2, green=3, black=4, yellow=5)
>>> for k, v in sorted(colormap.iteritems()):
print k, v
black 4
blue 2
green 3

red 1
yellow 5

(Contributed by Raymond Hettinger.)

o Integer operations will no longer trigger an OverflowWarning. The
OverflowWarning warning will disappear in Python 2.5.

e The interpreter gained a new switch, -m, that takes a name, searches for the
corresponding module on sys. path, and runs the module as a script. For
example, you can now run the Python profiler with python -m
profile. (Contributed by Nick Coghlan.)

e The eval(expr, globals, locals) and execfile(filename, globals,
locals) functions and the exec statement now accept any mapping type for
the locals parameter. Previously this had to be a regular Python dictionary.
(Contributed by Raymond Hettinger.)

e The zip() built-in function and itertools.izip() now return an

empty list if called with no arguments. Previously they raised a
TypeError exception. This makes them more suitable for use with
variable length argument lists:

>>> def transpose(array):
return zip(*array)

S>> transpose([(1,2,3), (4,5,6)])

[(1, 4), (2, 5), (3, 6)]
>>> transpose([])

[]
(Contributed by Raymond Hettinger.)

Encountering a failure while importing a module no longer leaves a
partially-initialized module object in Sys.modules. The incomplete
module object left behind would fool further imports of the same module
into succeeding, leading to confusing errors. (Fixed by Tim Peters.)

None is now a constant; code that binds a new value to the name "None" is
now a syntax error. (Contributed by Raymond Hettinger.)

11.1 Optimizations

The inner loops for list and tuple slicing were optimized and now run about
one-third faster. The inner loops for dictionaries were also optimized ,
resulting in performance boosts for keys(), values(), items(),
iterkeys(), itervalues(), and iteritems(). (Contributed by
Raymond Hettinger.)

The machinery for growing and shrinking lists was optimized for speed and
for space efficiency. Appending and popping from lists now runs faster due
to more efficient code paths and less frequent use of the underlying system
realloc(). List comprehensions also benefit. 11st.extend() was
also optimized and no longer converts its argument into a temporary list
before extending the base list. (Contributed by Raymond Hettinger.)

list(), tuple(),map(), filter(), and zip() now run several
times faster with non-sequence arguments that supplya __len__ ()
method. (Contributed by Raymond Hettinger.)

The methods 1ist.__getitem__(),dict.__getitem__ (), and
dict.__contains__ () are are now implemented as
method_descriptor objects rather than wrapper_descriptor
objects. This form of access doubles their performance and makes them
more suitable for use as arguments to functionals:
"map(mydict.__getitem__, keylist)". (Contributed by
Raymond Hettinger.)

Added a new opcode, LIST_APPEND, that simplifies the generated
bytecode for list comprehensions and speeds them up by about a third.
(Contributed by Raymond Hettinger.)

The peephole bytecode optimizer has been improved to produce shorter,
faster bytecode; remarkably, the resulting bytecode is more readable.
(Enhanced by Raymond Hettinger.)

String concatenations in statements of the forms = s + "abc" and s
+= "abc" are now performed more efficiently in certain circumstances.

This optimization won't be present in other Python implementations such as
Jython, so you shouldn't rely on it; using the join() method of strings is
still recommended when you want to efficiently glue a large number of
strings together. (Contributed by Armin Rigo.)

The net result of the 2.4 optimizations is that Python 2.4 runs the pystone
benchmark around 5% faster than Python 2.3 and 35% faster than Python 2.2.
(pystone is not a particularly good benchmark, but it's the most commonly used
measurement of Python's performance. Your own applications may show greater
or smaller benefits from Python 2.4.)

= 'r = What's New in Python 2.4 toc

COMTENTS
Previous: 10 PEP 331: Locale-Independent up: What's New in Python Next:
12 New, Improved, and

Release 1.01.
See About this document... for information on suggesting changes.

previous: 11 Other Language Changes up: What's New in Python Next: 13
Build and C

Subsections

e 12.1 cookielib
e 12.2 doctest

12 New, Improved, and Deprecated
Modules

As usual, Python's standard library received a number of enhancements and bug
fixes. Here's a partial list of the most notable changes, sorted alphabetically by
module name. Consult the Misc/NEWS file in the source tree for a more
complete list of changes, or look through the CVS logs for all the details.

e The asyncore module's 1oop () function now has a count parameter
that lets you perform a limited number of passes through the polling loop.
The default is still to loop forever.

e The base64 module now has more complete RFC 3548 support for
Base64, Base32, and Base16 encoding and decoding, including optional
case folding and optional alternative alphabets. (Contributed by Barry
Warsaw.)

e The bisect module now has an underlying C implementation for
improved performance. (Contributed by Dmitry Vasiliev.)

e The CJKCodecs collections of East Asian codecs, maintained by Hye-Shik
Chang, was integrated into 2.4. The new encodings are:

o Chinese (PRC): gh2312, gbk, gb18030, big5hkscs, hz

o Chinese (ROC): big5, cp950

o Japanese: cp932, euc-jis-2004, euc-jp, euc-jisx0213, iso-2022-jp, iso-
2022-jp-1, is0-2022-jp-2, is0-2022-jp-3, is0-2022-jp-ext, is0-2022-jp-
2004, shift-jis, shift-jisx0213, shift-jis-2004

o Korean: cp949, euc-kr, johab, iso-2022-kr

e Some other new encodings were added: HP Roman8, ISO_8859-11,
ISO_8859-16, PCTP-154, and TIS-620.

e The UTF-8 and UTF-16 codecs now cope better with receiving partial
input. Previously the St reamReader class would try to read more data,
making it impossible to resume decoding from the stream. The read ()

method will now return as much data as it can and future calls will resume
decoding where previous ones left off. (Implemented by Walter Dérwald.)

There is a new collections module for various specialized collection
datatypes. Currently it contains just one type, deque, a double-ended
queue that supports efficiently adding and removing elements from either
end:

>>> from collections import deque

>>> d = deque('ghi'") # make a new deque with three items
>>> d.append('j"') # add a new entry to the right side
>>> d.appendleft('f') # add a new entry to the left side
>>> d # show the representation of the de«
deque(['f', 'g', 'h', 'i', 'j'])

>>> d.pop() # return and remove the rightmost i
ljl

>>> d.popleft() # return and remove the leftmost it
lfl

>>> list(d) # list the contents of the deque
['g', 'h', lil]

>>> 'h' in d # search the deque

True

Several modules, such as the Queue and threading modules, now take
advantage of collections.deque for improved performance.
(Contributed by Raymond Hettinger.)

The ConfigParser classes have been enhanced slightly. The read ()
method now returns a list of the files that were successfully parsed, and the
set () method raises TypeError if passed a value argument that isn't a
string. (Contributed by John Belmonte and David Goodger.)

The cur ses module now supports the ncurses extension
use_default_colors(). On platforms where the terminal supports
transparency, this makes it possible to use a transparent background.
(Contributed by Jorg Lehmann.)

The difflib module now includes an Htm1D1iff class that creates an

HTML table showing a side by side comparison of two versions of a text.
(Contributed by Dan Gass.)

The email package was updated to version 3.0, which dropped various
deprecated APIs and removes support for Python versions earlier than 2.3.

The 3.0 version of the package uses a new incremental parser for MIME
messages, available in the email . FeedParser module. The new parser
doesn't require reading the entire message into memory, and doesn't throw
exceptions if a message is malformed; instead it records any problems in
the defect attribute of the message. (Developed by Anthony Baxter,
Barry Warsaw, Thomas Wouters, and others.)

The heapq module has been converted to C. The resulting tenfold
improvement in speed makes the module suitable for handling high
volumes of data. In addition, the module has two new functions
nlargest() and nsmallest () that use heaps to find the N largest or
smallest values in a dataset without the expense of a full sort. (Contributed
by Raymond Hettinger.)

The httplib module now contains constants for HTTP status codes
defined in various HTTP-related RFC documents. Constants have names
such as OK, CREATED, CONTINUE, and MOVED_PERMANENTLY; use
pydoc to get a full list. (Contributed by Andrew Eland.)

The imaplib module now supports IMAP's THREAD command
(contributed by Yves Dionne) and new deleteacl() and myrights()
methods (contributed by Arnaud Mazin).

The itertools module gained a groupby (iterable[, func])

function. iterable is something that can be iterated over to return a stream of
elements, and the optional func parameter is a function that takes an
element and returns a key value; if omitted, the key is simply the element
itself. groupby () then groups the elements into subsequences which have
matching values of the key, and returns a series of 2-tuples containing the
key value and an iterator over the subsequence.

Here's an example to make this clearer. The key function simply returns
whether a number is even or odd, so the result of groupby (') is to return
consecutive runs of odd or even numbers.

>>> import itertools

>> L = [2, 4, 6, 7, 8, 9, 11, 12, 14]

>>> for key_val, it in itertools.groupby(L, lambda x: x % 2):
print key_val, list(it)

0 [2, 4, 6]
1 [7]

0 [8]

1 [9, 11]
0 [12, 14]
>>>

groupby () is typically used with sorted input. The logic for
groupby () is similar to the Unix uniq filter which makes it handy for
eliminating, counting, or identifying duplicate elements:

>>> word = 'abracadabra'
>>> letters = sorted(word) # Turn string into a sorted list o
>>> letters
[Iall |a|, |a|, |a|, |a|, 'b', 'b', 'C', 'd', |r|, |r|]
>>> for k, g in itertools.groupby(letters):
print k, list(g)

a ['a', 'a', 'a', 'a', Ial]
b ['b', Ibl]

c ['c']

d ['d']

r ['r', Irl]

>>> # List unique letters

>>> [k for k, g in groupby(letters)]

['a', 'b', ICII 'd', Irl]

>>> # Count letter occurrences

>>> [(k, len(list(g))) for k, g in groupby(letters)]

[('a', 5), ('b", 2), ('c', 1), ('d', 1), ('r', 2)]
(Contributed by Hye-Shik Chang.)

e itertools also gained a function named tee (iterator, N) that returns

N independent iterators that replicate iterator. If N is omitted, the default is
2.

>>> L = [1,2,3]
>>> i1, 12 = itertools.tee(L)

>>> i1,1i2
(<itertools.tee object at 0x402c2080>, <itertools.tee object at
>>> list(il) # Run the first iterator to exhausti
[1, 2, 3]
>>> 1list(i2) # Run the second iterator to exhaust:
[1, 2, 3]

>

Note that tee() has to keep copies of the values returned by the iterator;
in the worst case, it may need to keep all of them. This should therefore be

used carefully if the leading iterator can run far ahead of the trailing iterator
in a long stream of inputs. If the separation is large, then you might as well
use 1ist () instead. When the iterators track closely with one another,
tee() is ideal. Possible applications include bookmarking, windowing, or
lookahead iterators. (Contributed by Raymond Hettinger.)

A number of functions were added to the 1ocale module, such as
bind_textdomain_codeset () to specify a particular encoding and a
family of 1*gettext () functions that return messages in the chosen
encoding. (Contributed by Gustavo Niemeyer.)

Some keyword arguments were added to the 10gging package's
basicConfig function to simplify log configuration. The default
behavior is to log messages to standard error, but various keyword
arguments can be specified to log to a particular file, change the logging
format, or set the logging level. For example:

import logging

logging.basicConfig(filename="'/var/log/application.log’,
level=0, # Log all messages
format="'%(levelname):%(process):%(thread):%(message)')

Other additions to the 1ogging package include a 1og(level, msg)
convenience method, as well as a TimedRotatingFileHandler class
that rotates its log files at a timed interval. The module already had
RotatingFileHandler, which rotated logs once the file exceeded a
certain size. Both classes derive from a new BaseRotatingHandler
class that can be used to implement other rotating handlers.

(Changes implemented by Vinay Sajip.)

The mar shal module now shares interned strings on unpacking a data
structure. This may shrink the size of certain pickle strings, but the primary
effect is to make .pyc files significantly smaller. (Contributed by Martin
von Loewis.)

The nntplib module's NNTP class gained description() and
descriptions() methods to retrieve newsgroup descriptions for a
single group or for a range of groups. (Contributed by Jiirgen A. Erhard.)

Two new functions were added to the operator module,
attrgetter(attr) and itemgetter (index). Both functions return
callables that take a single argument and return the corresponding attribute
or item; these callables make excellent data extractors when used with
map () or sorted(). For example:

>>> L = [('c", 2), ('d', 1), ('a', 4), ('b', 3)]

>>> map(operator.itemgetter(0), L)

['C'I 'd', |a|, |b|]

>>> map(operator.itemgetter(1), L)

[2, 1, 4, 3]

>>> sorted(L, key=operator.itemgetter(1)) # Sort list by second
(¢d', 1), ('c¢', 2), ('b', 3), ('a', 4)]

(Contributed by Raymond Hettinger.)

The optparse module was updated in various ways. The module now
passes its messages through gettext.gettext (), making it possible to
internationalize Optik's help and error messages. Help messages for options
can now include the string '%default', which will be replaced by the
option's default value. (Contributed by Greg Ward.)

The long-term plan is to deprecate the r fc822 module in some future
Python release in favor of the email package. To this end, the
email.Utils.formatdate() function has been changed to make it
usable as a replacement for rfc822.formatdate(). You may want to
write new e-mail processing code with this in mind. (Change implemented
by Anthony Baxter.)

A new urandom(n) function was added to the 0S module, returning a
string containing n bytes of random data. This function provides access to
platform-specific sources of randomness such as /dev/urandom on Linux
or the Windows CryptoAPI. (Contributed by Trevor Perrin.)

Another new function: 0s.path.lexists(path) returns true if the file
specified by path exists, whether or not it's a symbolic link. This differs
from the existing 0s.path.exists(path) function, which returns false
if path is a symlink that points to a destination that doesn't exist.
(Contributed by Beni Cherniavsky.)

Anew getsid() function was added to the posix module that underlies

the 0S module. (Contributed by J. Raynor.)

The poplib module now supports POP over SSL. (Contributed by Hector
Urtubia.)

The profile module can now profile C extension functions. (Contributed
by Nick Bastin.)

The random module has a new method called getrandbits(N) that
returns a long integer N bits in length. The existing randrange () method
now uses getrandbits () where appropriate, making generation of
arbitrarily large random numbers more efficient. (Contributed by Raymond
Hettinger.)

The regular expression language accepted by the re module was extended
with simple conditional expressions, written as (? (group)A|B). group is
either a numeric group ID or a group name defined with (?
P<group>...) earlier in the expression. If the specified group matched,
the regular expression pattern A will be tested against the string; if the
group didn't match, the pattern B will be used instead. (Contributed by
Gustavo Niemeyer.)

The re module is also no longer recursive, thanks to a massive amount of
work by Gustavo Niemeyer. In a recursive regular expression engine,
certain patterns result in a large amount of C stack space being consumed,
and it was possible to overflow the stack. For example, if you matched a
30000-byte string of "a" characters against the expression (a|b)+, one
stack frame was consumed per character. Python 2.3 tried to check for stack
overflow and raise a RuntimeError exception, but certain patterns could
sidestep the checking and if you were unlucky Python could segfault.
Python 2.4's regular expression engine can match this pattern without
problems.

Anew socketpair () function, returning a pair of connected sockets,
was added to the socket module. (Contributed by Dave Cole.)

The sys.exitfunc() function has been deprecated. Code should be
using the existing atexit module, which correctly handles calling
multiple exit functions. Eventually sys.exitfunc() will become a

purely internal interface, accessed only by atexit.

The tarfile module now generates GNU-format tar files by default.
(Contributed by Lars Gustaebel.)

The threading module now has an elegantly simple way to support
thread-local data. The module contains a 1ocal class whose attribute
values are local to different threads.

import threading

data = threading.local()
data.number = 42
data.url = ('www.python.org', 80)

Other threads can assign and retrieve their own values for the number and
ur 1l attributes. You can subclass 1ocal to initialize attributes or to add
methods. (Contributed by Jim Fulton.)

The timeit module now automatically disables periodic garbarge
collection during the timing loop. This change makes consecutive timings
more comparable. (Contributed by Raymond Hettinger.)

The weakref module now supports a wider variety of objects including
Python functions, class instances, sets, frozensets, deques, arrays, files,
sockets, and regular expression pattern objects. (Contributed by Raymond
Hettinger.)

The xmlrpclib module now supports a multi-call extension for
transmitting multiple XML-RPC calls in a single HTTP operation.
(Contributed by Brian Quinlan.)

The mpz, rotor, and Xxreadlines modules have been removed.

12.1 cookielib

The cookielib library supports client-side handling for HTTP cookies,
mirroring the Cookie module's server-side cookie support. Cookies are stored
in cookie jars; the library transparently stores cookies offered by the web server
in the cookie jar, and fetches the cookie from the jar when connecting to the
server. As in web browsers, policy objects control whether cookies are accepted
or not.

In order to store cookies across sessions, two implementations of cookie jars are
provided: one that stores cookies in the Netscape format so applications can use
the Mozilla or Lynx cookie files, and one that stores cookies in the same format
as the Perl libwww libary.

urllib2 has been changed to interact with cookielib:
HTTPCookieProcessor manages a cookie jar that is used when accessing
URLs.

This module was contributed by John J. Lee.

12.2 doctest

The doctest module underwent considerable refactoring thanks to Edward
Loper and Tim Peters. Testing can still be as simple as running
doctest.testmod(), but the refactorings allow customizing the module's
operation in various ways

The new DocTestFinder class extracts the tests from a given object's
docstrings:

def f (x, y):
||I|I|>>> f(2,2)

4

>>> £(3,2)

6

return x*y
finder = doctest.DocTestFinder()

Get list of DocTest instances
tests = finder.find(f)

The new DocTestRunner class then runs individual tests and can produce a
summary of the results:

runner = doctest.DocTestRunner ()
for t in tests:
tried, failed = runner.run(t)

runner.summarize(verbose=1)

The above example produces the following output:

1 items passed all tests:
2 tests in f

2 tests in 1 items.

2 passed and 0 failed.

Test passed.

DocTestRunner uses an instance of the OutputChecker class to compare
the expected output with the actual output. This class takes a number of different
flags that customize its behaviour; ambitious users can also write a completely
new subclass of OutputChecker.

The default output checker provides a number of handy features. For example,
with the doctest .ELLIPSIS option flag, an ellipsis (". . .") in the expected
output matches any substring, making it easier to accommodate outputs that vary
in minor ways:

def o (n):

||I|I|>>> 0(1)
<_main__.C instance at 0x...>
>>>

Another special string, "<BLANKLINE>", matches a blank line:

def p (n):
||I|I|>>> p(l)

<BLANKLINE>

>>>

Another new capability is producing a diff-style display of the output by
specifying the doctest .REPORT_UDIFF (unified diffs),
doctest.REPORT_CDIFF (context diffs), or doctest .REPORT_NDIFF

(delta-style) option flags. For example:

def g (n):
||I|I|>>> g(4)
here
is
a
lengthy
>>>I| mnn
L = 'here is a rather lengthy list of words'.split()
for word in L[:n]:
print word

Running the above function's tests with doctest .REPORT_UDIFF specified,
you get the following output:

R S I S S S O O S S R R R O O O R S O S R S O

File "~ "t.py'', line 15, in g
Failed example:
9(4)
Differences (unified diff with -expected +actual):
ee -2,3 +2,3 @@
is
a
-lengthy

+rather
R S S S S S S R R S S S S S S S S S S Sk S S S S S S S S S S S S b S S S S S S S S S S S b S S I b

= T = What's New in Python 2.4 toc

COMTENTS
previous: 11 Other Language Changes up: What's New in Python Next: 13
Build and C

Release 1.01.
See About this document... for information on suggesting changes.

Previous: 12 New, Improved, and up: What's New in Python Next: 14 Porting
to Python

Subsections

e 13.1 Port-Specific Changes

13 Build and C API Changes

Some of the changes to Python's build process and to the C API are:

Three new convenience macros were added for common return values from
extension functions: Py_ RETURN_NONE, Py_ RETURN_TRUE, and
Py_RETURN_FALSE. (Contributed by Brett Cannon.)

Another new macro, Py_ CLEAR(obj), decreases the reference count of obj
and sets obj to the null pointer. (Contributed by Jim Fulton.)

A new function, PyTuple_Pack(N, objl, obj2, ..., objN),
constructs tuples from a variable length argument list of Python objects.
(Contributed by Raymond Hettinger.)

A new function, PyDict_Contains(d, k), implements fast dictionary
lookups without masking exceptions raised during the look-up process.
(Contributed by Raymond Hettinger.)

The Py_IS_NAN(X) macro returns 1 if its float or double argument X is a
NaN. (Contributed by Tim Peters.)

C code can avoid unnecessary locking by using the new
PyEval_ThreadsInitialized() function to tell if any thread
operations have been performed. If this function returns false, no lock
operations are needed. (Contributed by Nick Coghlan.)

A new function, PyArg_VaParseTupleAndKeywords(), is the same
as PyArg_ParseTupleAndKeywords() but takesa va_list
instead of a number of arguments. (Contributed by Greg Chapman.)

A new method flag, METH_COEXISTS, allows a function defined in slots
to co-exist with a PyCFunction having the same name. This can halve
the access time for a method such as set.__contains__ ().
(Contributed by Raymond Hettinger.)

Python can now be built with additional profiling for the interpreter itself,

intended as an aid to people developing the Python core. Providing ---
enable-profiling to the configure script will let you profile the interpreter
with gprof, and providing the ---with-tsc switch enables profiling using the
Pentium's Time-Stamp-Counter register. Note that the ---with-tsc switch is
slightly misnamed, because the profiling feature also works on the
PowerPC platform, though that processor architecture doesn't call that
register ~ the TSC register". (Contributed by Jeremy Hylton.)

The tracebackobject type has been renamed to
PyTracebackObject.

13.1 Port-Specific Changes

e The Windows port now builds under MSVC++ 7.1 as well as version 6.
(Contributed by Martin von Loewis.)

= 'r = What's New in Python 2.4 toc

CONTENTS

Previous: 12 New, Improved, and up: What's New in Python Next: 14 Porting
to Python

Release 1.01.
See About this document... for information on suggesting changes.

Previous: 13 Build and C Up: What's New in Python Next: 15
Acknowledgements

14 Porting to Python 2.4

This section lists previously described changes that may require changes to your
code:

Left shifts and hexadecimal/octal constants that are too large no longer
trigger a FutureWarning and return a value limited to 32 or 64 bits;
instead they return a long integer.

Integer operations will no longer trigger an Over flowwWarning. The
OverflowWarning warning will disappear in Python 2.5.

The zip() built-in function and itertools.izip() now return an
empty list instead of raising a TypeError exception if called with no
arguments.

dircache.listdir () now passes exceptions to the caller instead of
returning empty lists.

LexicalHandler.startDTD() used to receive the public and system
IDs in the wrong order. This has been corrected; applications relying on the
wrong order need to be fixed.

fcntl. ioctl now warns if the mutate argument is omitted and relevant.
The tarfile module now generates GNU-format tar files by default.

Encountering a failure while importing a module no longer leaves a
partially-initialized module object in Sys.modules.

None is now a constant; code that binds a new value to the name "None" is
NOw a syntax error.

T = What's New in Python 2.4 toc

CONTENTS

Previous: 13 Build and C Up: What's New in Python Next: E

Acknowledgements

Release 1.01.
See About this document... for information on suggesting changes.

N Acknowledgements
Up: Python Documentation Index

Acknowledgements

These people have contributed in some way to the Python documentation. This
list is probably not complete -- if you feel that you or anyone else should be on

this list, please let us know (send email to docs@python.org), and we will be
glad to correct the problem.

It is only with the input and contributions of the Python community that Python
has such wonderful documentation -- Thank You!

Aahz Ben Gertzfield Detlef Lannert Donald Wallace
Rouse II
Michael Abbott Nadim Ghaznavi Piers Lauder Nick Russo
Steve Alexander Jonathan Giddy Glyph Lefkowitz Chris Ryland
Jim Ahlstrom Shelley Gooch Marc-Andre Constantina S.
Lemburg
Fred Allen Nathaniel Gray Ulf A. Lindgren Hugh Sasse
A. Amoroso Grant Griffin Everett Lipman Bob Savage
Pehr Anderson =~ Thomas Guettler Mirko Liss Scott Schram
Oliver Andrich Anders . Martin von Lowis Neil Schemenauer
Hammarquist
Jesus Cea Avion Mark Hammond Fredrik Lundh Barry Scott
Daniel Barclay Haralcc)llls-ilnche— Jeff MacDonald Joakim Sernbrant
Chris Barker Manus Hand John Machin Justin Sheehy
Don Bashford Gerhard Haéring Andrew Michael Simcich
Maclntyre
Travis B. Vladimir -
Anthony Baxter Hartwell Marangozov Ionel Simionescu
Bennett Benson Janko Hauser = Vincent Marchetti Roy Smith
Jonathan Black Bernhard Herzog Laura Matson Clay Spence
. s Magnus L. . . .
Robin Boerdijk Hetland Daniel May Nicholas Spies

Michal Bozon Konrad Hinsen = Doug Mennella Tage Stabell-Kulo

mailto:docs@python.org

Aaron Brancotti

Keith Briggs
Lee Busby

Lorenzo M. Catucci

Mauro Cicognini

Gilles Civario
Mike Clarkson
Steve Clift
Dave Cole
Matthew Cowles

Jeremy Craven

Andrew Dalke
Ben Darnell
L. Peter Deutsch
Robert Donohue

Fred L. Drake, Jr.

Jeff Epler
Michael Ernst

Blame Andy
Eskilsson

Carey Evans
Martijn Faassen
Carl Feynman

Hernan Martinez
Foffani

Stefan Franke
Jim Fulton

Peter Funk

Lele Gaifax

Stefan
Hoffmeister

Albert Hofkamp

Gregor Hoffleit
Steve Holden

Thomas
Holenstein

Gerrit Holl
Rob Hooft
Brian Hooper
Randall Hopper
Michael Hudson

Eric Huss

Jeremy Hylton
Roger Irwin
Jack Jansen

Philip H. Jensen

Pedro Diaz
Jimenez

Lucas de Jonge
Andreas Jung

Robert Kern

Jim Kerr
Jan Kim

Paolo Milani

Skip Montanaro
Paul Moore
Ross Moore

Frank Stajano

Anthony Starks
Greg Stein
Peter Stoehr

Sjoerd Mullender Mark Summerfield

Dale Nagata
Ng Pheng Siong
Koray Oner
Tomas Oppelstrup
Denis S. Otkidach

Zooko
O'"Whielacronx

William Park
Joonas Paalasmaa
Harri Pasanen
Tim Peters

Christopher
Petrilli

Justin D. Pettit
Chris Phoenix

Francois Pinard

Paul Prescod
Eric S. Raymond

Greg Kochanski Edward K. Ream

Guido Kollerie

Peter A. Koren
Daniel Kozan

Andrew M.
Kuchling

Dave Kuhlman

Sean
Reifschneider

Bernhard Reiter
Armin Rigo

Wes Rishel

Jim Roskind

Reuben Sumner
Kalle Svensson
Jim Tittsler
Ville Vainio
Martijn Vries

Charles G. Waldman

Greg Ward
Barry Warsaw
Corran Webster
Glyn Webster

Bob Weiner

Eddy Welbourne
Mats Wichmann

Gerry Wiener

Timothy Wild
Blake Winton
Dan Wolfe

Steven Work

Thomas Wouters
Ka-Ping Yee

Moshe Zadka

Milan Zamazal

Matthew Gallagher Erno Kuusela Guido van Cheng Zhang
Rossum

N Acknowledgements
Up: Python Documentation Index

See About this document... for information on suggesting changes.

'r About the Python Documentation
Up: Python Documentation Index

About the Python Documentation

The Python documentation was originally written by Guido van Rossum, but has
increasingly become a community effort over the past several years. This
growing collection of documents is available in several formats, including
typeset versions in PDF and PostScript for printing, from the Python Web site.

A list of contributors is available.

http://www.python.org/

Comments and Questions

General comments and questions regarding this document should be sent by
email to docs@python.org. If you find specific errors in this document, please
report the bug at the Python Bug Tracker at SourceForge. If you are able to
provide suggested text, either to replace existing incorrect or unclear material, or
additional text to supplement what's already available, we'd appreciate the
contribution. There's no need to worry about text markup; our documentation
team will gladly take care of that.

Questions regarding how to use the information in this document should be sent

to the Python news group, comp.lang.python, or the Python mailing list (which
is gated to the newsgroup and carries the same content).

For any of these channels, please be sure not to send HTML email. Thanks.

mailto:docs@python.org
http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/
news:comp.lang.python
http://www.python.org/mailman/listinfo/python-list

up: Python Documentation Index Next: Front Matter

Python Tutorial

Guido van Rossum
Fred L. Drake, Jr., editor

Python Software Foundation
Email: docs@python.org

Release 2.4
29 November 2004

Front Matter
Contents

1. Whetting Your Appetite
2. Using the Python Interpreter
o 2.1 Invoking the Interpreter
m 2.1.1 Argument Passing
= 2.1.2 Interactive Mode
o 2.2 The Interpreter and Its Environment
m 2.2.1 Error Handling

m 2.2.2 Executable Python Scripts
m 2.2.3 Source Code Encoding

m 2.2.4 The Interactive Startup File
e 3. An Informal Introduction to Python
o 3.1 Using Python as a Calculator
= 3.1.1 Numbers
= 3.1.2 Strings
m 3.1.3 Unicode Strings
m 3.1.4 Lists
o 3.2 First Steps Towards Programming
e 4. More Control Flow Tools
o 4.1 if Statements
o 4.2 for Statements

4.3 The range () Function
4.4 break and continue Statements, and e1se_Clauses on L.oops
4.5 pass Statements

4.6 Defining Functions

4.7 More on Defining Functions
4.7.1 Default Argument Values

4.7.2 Keyword Arguments
4.7.3 Arbitrary Argument Lists
4.7.4 Unpacking Argument Lists
4.7.5 Lambda Forms
4.7.6 Documentation Strings
e 5. Data Structures

o 5.1 More on Lists

m 5.1.1 Using Lists as Stacks

m 5.1.2 Using Lists as Queues
m 5.1.3 Functional Programming Tools

m 5.1.4 List Comprehensions
5.2 The del statement
5.3 Tuples and Sequences
5.4 Sets
5.5 Dictionaries

5.6 Looping Techniques
5.7 More on Conditions

5.8 Comparing Sequences and Other Types
e 6. Modules
o 6.1 More on Modules
m 6.1.1 The Module Search Path
m 6.1.2 "Compiled" Python files
o 6.2 Standard Modules
o 6.3 The dir () Function
o 6.4 Packages
m 6.4.1 Importing * From a Package
= 6.4.2 Intra-package References

m 6.4.3 Packages in Multiple Directories

e 7. Input and Output
o 7.1 Fancier Output Formatting

o 7.2 Reading and Writing Files
m 7.2.1 Methods of File Objects

O O O O O

O O O O O O O

m 7.2.2 The pickle Module
e 8. Errors and Exceptions
8.1 Syntax Errors

8.2 Exceptions

8.3 Handling Exceptions
8.4 Raising Exceptions

8.5 User-defined Exceptions

8.6 Defining Clean-up Actions
e 9. Classes

o 9.1 A Word About Terminology
o 9.2 Python Scopes and Name Spaces
o 9.3 A First Look at Classes

m 9.3.1 Class Definition Syntax

m 9.3.2 Class Objects
m 9.3.3 Instance Objects

m 9.3.4 Method Objects
9.4 Random Remarks
9.5 Inheritance
= 9.5.1 Multiple Inheritance
9.6 Private Variables
9.7 Odds and Ends
9.8 Exceptions Are Classes Too
9.9 Iterators
9.10 Generators
9.11 Generator Expressions
e 10. Brief Tour of the Standard Library

10.1 Operating System Interface
10.2 File Wildcards

10.3 Command Line Arguments
10.4 Error Output Redirection and Program Termination

10.5 String Pattern Matching

10.6 Mathematics

10.7 Internet Access

10.8 Dates and Times

10.9 Data Compression

10.10 Performance Measurement

10.11 Quality Control

10.12 Batteries Included

e 11. Brief Tour of the Standard Library - Part IT

o

O O O O O

(¢]

(¢]

0O O O O O o

O 0O O O 0O o 0O o o o o o

11.1 Output Formatting

11.2 Templating
11.3 Working with Binary Data Record Layouts
11.4 Multi-threading
11.5 Logging
11.6 Weak References
11.7 Tools for Working with Lists
11.8 Decimal Floating Point Arithmetic
12. What Now?
A. Interactive Input Editing and History Substitution
o A.l1 Line Editing
o A.2 History Substitution
o A.3 Key Bindings
o A.4 Commentary
B. Floating Point Arithmetic: Issues and Limitations
o B.1 Representation Error
C. History and License
o C.1 History of the software
o (.2 Terms and conditions for accessing or otherwise using Python
o C.3 Licenses and Acknowledgements for Incorporated Software
C.3.1 Mersenne Twister
C.3.2 Sockets
C.3.3 Floating point exception control
C.3.4 MD5 message digest algorithm
C.3.5 Asynchronous socket services

C.3.6 Cookie management

C.3.7 Profiling
C.3.8 Execution tracing

C.3.9 UUencode and UUdecode functions
C.3.10 XML Remote Procedure Calls

e D. Glossary

e Index

e About this document ...

O O o o 0O o o o

«1T-> Python Tutorial toc i
up: Python Documentation Index Next: Front Matter

Release 2.4, documentation updated on 29 November 2004.

See About this document... for information on suggesting changes.

Previous: Python Tutorial up: Python Tutorial Next: Contents

Front Matter

Copyright © 2001-2004 Python Software Foundation. All rights reserved.
Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights
reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract:

Python is an easy to learn, powerful programming language. It has efficient
high-level data structures and a simple but effective approach to object-oriented
programming. Python's elegant syntax and dynamic typing, together with its
interpreted nature, make it an ideal language for scripting and rapid application
development in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available in
source or binary form for all major platforms from the Python Web site,
http://www.python.org/, and can be freely distributed. The same site also
contains distributions of and pointers to many free third party Python modules,
programs and tools, and additional documentation.

The Python interpreter is easily extended with new functions and data types
implemented in C or C++ (or other languages callable from C). Python is also
suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features
of the Python language and system. It helps to have a Python interpreter handy
for hands-on experience, but all examples are self-contained, so the tutorial can
be read off-line as well.

For a description of standard objects and modules, see the Python Library

http://www.python.org/

Reference document. The Python Reference Manual gives a more formal
definition of the language. To write extensions in C or C++, read Extending and
Embedding the Python Interpreter and Python/C API Reference. There are also
several books covering Python in depth.

This tutorial does not attempt to be comprehensive and cover every single
feature, or even every commonly used feature. Instead, it introduces many of
Python's most noteworthy features, and will give you a good idea of the
language's flavor and style. After reading it, you will be able to read and write
Python modules and programs, and you will be ready to learn more about the
various Python library modules described in the Python Library Reference.

«1T-> Python Tutorial toc i
Previous: Python Tutorial up: Python Tutorial Next: Contents

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: Contents up: Python Tutorial Next: 2. Using the Python

1. Whetting Your Appetite

If you ever wrote a large shell script, you probably know this feeling: you'd love
to add yet another feature, but it's already so slow, and so big, and so
complicated; or the feature involves a system call or other function that is only
accessible from C ...Usually the problem at hand isn't serious enough to warrant
rewriting the script in C; perhaps the problem requires variable-length strings or
other data types (like sorted lists of file names) that are easy in the shell but lots
of work to implement in C, or perhaps you're not sufficiently familiar with C.

Another situation: perhaps you have to work with several C libraries, and the
usual C write/compile/test/re-compile cycle is too slow. You need to develop
software more quickly. Possibly perhaps you've written a program that could use
an extension language, and you don't want to design a language, write and debug
an interpreter for it, then tie it into your application.

In such cases, Python may be just the language for you. Python is simple to use,
but it is a real programming language, offering much more structure and support
for large programs than the shell has. On the other hand, it also offers much
more error checking than C, and, being a very-high-level language, it has high-
level data types built in, such as flexible arrays and dictionaries that would cost
you days to implement efficiently in C. Because of its more general data types
Python is applicable to a much larger problem domain than Awk or even Perl, yet
many things are at least as easy in Python as in those languages.

Python allows you to split up your program in modules that can be reused in
other Python programs. It comes with a large collection of standard modules that
you can use as the basis of your programs -- or as examples to start learning to
program in Python. There are also built-in modules that provide things like file
I/0, system calls, sockets, and even interfaces to graphical user interface toolkits
like Tk.

Python is an interpreted language, which can save you considerable time during
program development because no compilation and linking is necessary. The
interpreter can be used interactively, which makes it easy to experiment with
features of the language, to write throw-away programs, or to test functions
during bottom-up program development. It is also a handy desk calculator.

Python allows writing very compact and readable programs. Programs written in
Python are typically much shorter than equivalent C or C++ programs, for
several reasons:

¢ the high-level data types allow you to express complex operations in a
single statement;

e statement grouping is done by indentation instead of beginning and ending
brackets;

e no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add a new
built-in function or module to the interpreter, either to perform critical operations
at maximum speed, or to link Python programs to libraries that may only be
available in binary form (such as a vendor-specific graphics library). Once you
are really hooked, you can link the Python interpreter into an application written
in C and use it as an extension or command language for that application.

By the way, the language is named after the BBC show ""Monty Python's Flying
Circus" and has nothing to do with nasty reptiles. Making references to Monty
Python skits in documentation is not only allowed, it is encouraged!

Now that you are all excited about Python, you'll want to examine it in some
more detail. Since the best way to learn a language is using it, you are invited
here to do so.

In the next chapter, the mechanics of using the interpreter are explained. This is
rather mundane information, but essential for trying out the examples shown
later.

The rest of the tutorial introduces various features of the Python language and
system through examples, beginning with simple expressions, statements and
data types, through functions and modules, and finally touching upon advanced
concepts like exceptions and user-defined classes.

«1T-> Python Tutorial toc i
Previous: Contents up: Python Tutorial Next: 2. Using the Python

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 1. Whetting Your Appetite up: Python Tutorial Next: 3. An Informal
Introduction

Subsections

e 2.1 Invoking the Interpreter

o 2.1.1 Argument Passing

o 2.1.2 Interactive Mode
e 2.2 The Interpreter and Its Environment
2.2.1 Error Handling

2.2.2 Executable Python Scripts
2.2.3 Source Code Encoding

2.2.4 The Interactive Startup File

O O O O

2. Using the Python Interpreter

2.1 Invoking the Interpreter

The Python interpreter is usually installed as /usr/local/bin/python on those
machines where it is available; putting /usr/local/bin in your Unix shell's search
path makes it possible to start it by typing the command

python

to the shell. Since the choice of the directory where the interpreter lives is an
installation option, other places are possible; check with your local Python guru
or system administrator. (E.g., /usr/local/python is a popular alternative
location.)

Typing an end-of-file character (Control-D on UNIX, Control-Z on Windows) at
the primary prompt causes the interpreter to exit with a zero exit status. If that
doesn't work, you can exit the interpreter by typing the following commands:
"import sys; sys.exit()".

The interpreter's line-editing features usually aren't very sophisticated. On Unix,
whoever installed the interpreter may have enabled support for the GNU readline
library, which adds more elaborate interactive editing and history features.
Perhaps the quickest check to see whether command line editing is supported is
typing Control-P to the first Python prompt you get. If it beeps, you have
command line editing; see Appendix A for an introduction to the keys. If nothing
appears to happen, or if P is echoed, command line editing isn't available; you'll
only be able to use backspace to remove characters from the current line.

The interpreter operates somewhat like the Unix shell: when called with standard
input connected to a tty device, it reads and executes commands interactively;
when called with a file name argument or with a file as standard input, it reads
and executes a script from that file.

A second way of starting the interpreter is "python -c¢ command [arg]

. . . ", which executes the statement(s) in command, analogous to the shell's -c
option. Since Python statements often contain spaces or other characters that are
special to the shell, it is best to quote command in its entirety with double
quotes.

Some Python modules are also useful as scripts. These can be invoked using
"python -m module [arg] ...", which executes the source file for
module as if you had spelled out its full name on the command line.

Note that there is a difference between "python file" and "python
<file". In the latter case, input requests from the program, such as calls to
input() and raw_input (), are satisfied from file. Since this file has
already been read until the end by the parser before the program starts executing,
the program will encounter end-of-file immediately. In the former case (which is
usually what you want) they are satisfied from whatever file or device is
connected to standard input of the Python interpreter.

When a script file is used, it is sometimes useful to be able to run the script and
enter interactive mode afterwards. This can be done by passing -i before the
script. (This does not work if the script is read from standard input, for the same
reason as explained in the previous paragraph.)

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments
thereafter are passed to the script in the variable sys.argv, which is a list of
strings. Its length is at least one; when no script and no arguments are given,
sys.argv|[0] is an empty string. When the script name is given as ' - '
(meaning standard input), Sys.argv[0] issetto '-"'. When -c command is
used, sys.argv[0] issetto ' -c'. When -m module is used, sys.argv[0]
is set to the full name of the located module. Options found after -c command or
-m module are not consumed by the Python interpreter's option processing but

left in sys.argv for the command or module to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to be in interactive
mode. In this mode it prompts for the next command with the primary prompt,
usually three greater-than signs (">>> "); for continuation lines it prompts with
the secondary prompt, by default three dots (". . . "). The interpreter prints a
welcome message stating its version number and a copyright notice before
printing the first prompt:

python

Python 1.5.2b2 (#1, Feb 28 1999, 00:02:06) [GCC 2.8.1] on sunos5
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

>>>

Continuation lines are needed when entering a multi-line construct. As an
example, take a look at this 1f statement:

>>> the _world_is flat = 1
>>> if the_world_is_flat:
print "Be careful not to fall off!"

éé.careful not to fall off!

2.2 The Interpreter and Its
Environment

2.2.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace.
In interactive mode, it then returns to the primary prompt; when input came from
a file, it exits with a nonzero exit status after printing the stack trace. (Exceptions
handled by an except clause in a try statement are not errors in this context.)
Some errors are unconditionally fatal and cause an exit with a nonzero exit; this
applies to internal inconsistencies and some cases of running out of memory. All
error messages are written to the standard error stream; normal output from the
executed commands is written to standard output.

Typing the interrupt character (usually Control-C or DEL) to the primary or
secondary prompt cancels the input and returns to the primary prompt.2Typing
an interrupt while a command is executing raises the KeyboardInterrupt
exception, which may be handled by a try statement.

2.2.2 Executable Python Scripts

On BSD'ish Unix systems, Python scripts can be made directly executable, like
shell scripts, by putting the line

#! /usr/bin/env python

(assuming that the interpreter is on the user's PATH) at the beginning of the
script and giving the file an executable mode. The "#!" must be the first two
characters of the file. On some platforms, this first line must end with a Unix-
style line ending ("\n"), not a Mac OS ("\r") or Windows ("\r\n") line
ending. Note that the hash, or pound, character, "#", is used to start a comment
in Python.

The script can be given a executable mode, or permission, using the chmod
command:

$ chmod +x myscript.py

2.2.3 Source Code Encoding

It is possible to use encodings different than ASCII in Python source files. The
best way to do it is to put one more special comment line right after the #! line
to define the source file encoding:

-*- coding: encoding -*-

With that declaration, all characters in the source file will be treated as having
the encoding encoding, and it will be possible to directly write Unicode string
literals in the selected encoding. The list of possible encodings can be found in
the Python Library Reference, in the section on codecs.

For example, to write Unicode literals including the Euro currency symbol, the
ISO-8859-15 encoding can be used, with the Euro symbol having the ordinal
value 164. This script will print the value 8364 (the Unicode codepoint
corresponding to the Euro symbol) and then exit:

-*- coding: is0-8859-15 -*-

currency = u"€"
print ord(currency)

If your editor supports saving files as UTF - 8 with a UTF-8 byte order mark (aka
BOM), you can use that instead of an encoding declaration. IDLE supports this
capability if Options/General/Default Source Encoding/UTF-8
is set. Notice that this signature is not understood in older Python releases (2.2
and earlier), and also not understood by the operating system for script files with
#! lines (only used on UNix systems).

By using UTF-8 (either through the signature or an encoding declaration),
characters of most languages in the world can be used simultaneously in string
literals and comments. Using non-ASCII characters in identifiers is not
supported. To display all these characters properly, your editor must recognize
that the file is UTF-8, and it must use a font that supports all the characters in the
file.

2.2.4 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard
commands executed every time the interpreter is started. You can do this by
setting an environment variable named PYTHONSTARTUP to the name of a file
containing your start-up commands. This is similar to the .profile feature of the
Unix shells.

This file is only read in interactive sessions, not when Python reads commands
from a script, and not when /dev/tty is given as the explicit source of commands
(which otherwise behaves like an interactive session). It is executed in the same
namespace where interactive commands are executed, so that objects that it
defines or imports can be used without qualification in the interactive session.
You can also change the prompts Sys.ps1 and Sys.psZ2 in this file.

If you want to read an additional start-up file from the current directory, you can
program this in the global start-up file using code like "1if
os.path.isfile('.pythonrc.py'):
execfile('.pythonrc.py')". If you want to use the startup file in a
script, you must do this explicitly in the script:

import os

filename = os.environ.get('PYTHONSTARTUP')

if filename and os.path.isfile(filename):
execfile(filename)

Footnhotes

... prompt.21
A problem with the GNU Readline package may prevent this.

«1T-> Python Tutorial toc i

COMTENTS IHDEX
Previous: 1. Whetting Your Appetite up: Python Tutorial Next: 3. An Informal
Introduction

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 2. USing the Python up: Python Tutorial Next: 4. More Control Flow

Subsections

e 3.1 Using Python as a Calculator
o 3.1.1 Numbers
o 3.1.2 Strings
o 3.1.3 Unicode Strings
o 3.1.4 Lists
e 3.2 First Steps Towards Programming

3. An Informal Introduction to
Python

In the following examples, input and output are distinguished by the presence or
absence of prompts (">>> "and"... "):torepeat the example, you must type
everything after the prompt, when the prompt appears; lines that do not begin
with a prompt are output from the interpreter. Note that a secondary prompt on a
line by itself in an example means you must type a blank line; this is used to end
a multi-line command.

Many of the examples in this manual, even those entered at the interactive
prompt, include comments. Comments in Python start with the hash character,
"#", and extend to the end of the physical line. A comment may appear at the
start of a line or following whitespace or code, but not within a string literal. A
hash character within a string literal is just a hash character.

Some examples:

this is the first comment

SPAM = 1 # and this is the second comment
... and now a third!

STRING = "# This is not a comment."

3.1 Using Python as a Calculator

Let's try some simple Python commands. Start the interpreter and wait for the
primary prompt, ">>> ", (It shouldn't take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it
will write the value. Expression syntax is straightforward: the operators +, -, *
and / work just like in most other languages (for example, Pascal or C);
parentheses can be used for grouping. For example:

>>> 242

4

>>> # This is a comment

L. 242

4

>>> 2+2 # and a comment on the same line as code
4

>>> (50-5*6)/4

5

>>> # Integer division returns the floor:
... 7/3

2

>>> 7/-3

-3

The equal sign ("=") is used to assign a value to a variable. Afterwards, no result
is displayed before the next interactive prompt:

>>> width = 20

>>> height = 5*9
>>> width * height
900

A value can be assigned to several variables simultaneously:

>>> x =y =2z =0 # Zero X, y and z
>>> X

0
>>> y

0
>>> 7

0

There is full support for floating point; operators with mixed type operands
convert the integer operand to floating point:

>> 3 * 3,75 / 1.5
7.5

>>> 7.0 / 2
3.5

Complex numbers are also supported; imaginary numbers are written with a
suffix of "j" or "J". Complex numbers with a nonzero real component are
written as " (real+imagj)", or can be created with the "complex(real,
imag)" function.

>>> 17 * 13

(-1+073)

>>> 17 * complex(0,1)
(-1+073)

>>> 3+1j*3

(3+33)

>>> (3+1j)*3

(9+33)

>>> (1+23)/(1+13)
(1.5+0.5j)

Complex numbers are always represented as two floating point numbers, the real
and imaginary part. To extract these parts from a complex number z, use
z.realandz.imag.

>>> a=1.5+0.5j
>>> a.real
1.5

>>> a.imag

0.5

The conversion functions to floating point and integer (float (), int() and
long()) don't work for complex numbers -- there is no one correct way to
convert a complex number to a real number. Use abs(z) to get its magnitude
(as a float) or z. real to get its real part.

>>> a=3.0+4.0j
>>> float(a)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: can't convert complex to float; use abs(z)
>>> a.real
3.0
>>> a.imag
4.0
>>> abs(a) # sqrt(a.real**2 + a.imag**2)
5.0
>>>

In interactive mode, the last printed expression is assigned to the variable _. This
means that when you are using Python as a desk calculator, it is somewhat easier
to continue calculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625

>>> price + _
113.0625

>>> round(_, 2)
113.06

>>>

This variable should be treated as read-only by the user. Don't explicitly assign a
value to it -- you would create an independent local variable with the same name
masking the built-in variable with its magic behavior.

3.1.2 Strings

Besides numbers, Python can also manipulate strings, which can be expressed in
several ways. They can be enclosed in single quotes or double quotes:

>>> 'spam eggs'

'spam eggs'

>>> 'doesn\'t'
"doesn't"

>>> "doesn't"

"doesn't"

>>> '"Yes," he said.'
'"Yes," he said.'

>>> "\"Yes,\" he said."
'"Yes," he said.'

>>> '"Isn\'t," she said.'
""Isn\'t," she said.'

String literals can span multiple lines in several ways. Continuation lines can be
used, with a backslash as the last character on the line indicating that the next
line is a logical continuation of the line:

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\

Note that whitespace at the beginning of the line is\
significant."

print hello

Note that newlines would still need to be embedded in the string using \n; the
newline following the trailing backslash is discarded. This example would print
the following:

This is a rather long string containing
several lines of text just as you would do in C.
Note that whitespace at the beginning of the line is significant

If we make the string literal a “"raw" string, however, the \n sequences are not
converted to newlines, but the backslash at the end of the line, and the newline
character in the source, are both included in the string as data. Thus, the
example:

hello = r"This is a rather long string containing\n\
several lines of text much as you would do in C."

print hello

would print:

This is a rather long string containing\n\
several lines of text much as you would do in C.

Or, strings can be surrounded in a pair of matching triple-quotes: or
End of lines do not need to be escaped when using triple-quotes, but they Wﬂl be
included in the string.

prlnt mmn

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

produces the following output:

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

The interpreter prints the result of string operations in the same way as they are
typed for input: inside quotes, and with quotes and other funny characters
escaped by backslashes, to show the precise value. The string is enclosed in
double quotes if the string contains a single quote and no double quotes, else it's
enclosed in single quotes. (The print statement, described later, can be used to
write strings without quotes or escapes.)

Strings can be concatenated (glued together) with the + operator, and repeated
with *:

>>> word = 'Help' + 'A'

>>> word

'"HelpA'

>>> '<' 4+ word*5 + '>!

'<HelpAHelpAHelpAHelpAHelpA>'

Two string literals next to each other are automatically concatenated; the first
line above could also have been written "word = 'Help' 'A'"; this only
works with two literals, not with arbitrary string expressions:

>>> 'str' 'ing' # <- This is ok

'string'

>>> 'str'.strip() + 'ing' # <- This is ok
'string'
>>> 'str'.strip() 'ing' # <- This is invalid

File "<stdin>", line 1, in ?
'str'.strip() 'ing'
N
SyntaxError: invalid syntax

Strings can be subscripted (indexed); like in C, the first character of a string has
subscript (index) 0. There is no separate character type; a character is simply a
string of size one. Like in Icon, substrings can be specified with the slice
notation: two indices separated by a colon.

>>> word[4]
lAl

>>> word[0:2]
lHel

>>> word[2:4]
llpl

Slice indices have useful defaults; an omitted first index defaults to zero, an
omitted second index defaults to the size of the string being sliced.

>>> word[:2] # The first two characters

lHel

>>> word[2:] # Everything except the first two characters
llpAl

Unlike a C string, Python strings cannot be changed. Assigning to an indexed
position in the string results in an error:

>>> word[0] = 'x'
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object doesn't support item assignment
>>> word[:1] = 'Splat'
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object doesn't support slice assignment

However, creating a new string with the combined content is easy and efficient:

>>> 'x' + word[1:]
'xelpA'

>>> 'Splat' + word[4]
'SplatA’

Here's a useful invariant of slice operations: s[:1] + s[i1:] equals s.

>>> word[:2] + word[2:]
'"HelpA'
>>> word[:3] + word[3:]
'"HelpA'

Degenerate slice indices are handled gracefully: an index that is too large is
replaced by the string size, an upper bound smaller than the lower bound returns
an empty string.

>>> word[1:100]

'elpA'

>>> word[10:]

>>> word[2:1]

Indices may be negative numbers, to start counting from the right. For example:

T>T word[-1] # The last character

TQT word[-2] # The last-but-one character

TE>'word[-2:] # The last two characters

>Eé1word[:-2] # Everything except the last two characters
"Hel'

But note that -0 is really the same as 0, so it does not count from the right!

>>> word[-0] # (since -0 equals 0)
lHl

Out-of-range negative slice indices are truncated, but don't try this for single-
element (non-slice) indices:

>>> word[-100:]

'"HelpA'

>>> word[-10] # error

Traceback (most recent call last):
File "<stdin>", line 1, in ?

IndexError: string index out of range

The best way to remember how slices work is to think of the indices as pointing
between characters, with the left edge of the first character numbered 0. Then the
right edge of the last character of a string of n characters has index n, for

example:

e S
| Hl el l]p]|A]
S
e 1 2 3 4 5
-5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0...5 in the string; the
second row gives the corresponding negative indices. The slice from i to j
consists of all characters between the edges labeled i and j, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if
both are within bounds. For example, the length of word[1:3] is 2.

The built-in function 1en() returns the length of a string:

>>> s = 'supercalifragilisticexpialidocious'
>>> len(s)
34

See Also:

Sequence Types
Strings, and the Unicode strings described in the next section, are

examples of sequence types, and support the common operations
supported by such types.

String Methods
Both strings and Unicode strings support a large number of methods
for basic transformations and searching.

String Formatting Operations
The formatting operations invoked when strings and Unicode strings
are the left operand of the % operator are described in more detail here.

3.1.3 Unicode Strings

Starting with Python 2.0 a new data type for storing text data is available to the
programmer: the Unicode object. It can be used to store and manipulate Unicode
data (see http://www.unicode.org/) and integrates well with the existing string
objects providing auto-conversions where necessary.

Unicode has the advantage of providing one ordinal for every character in every
script used in modern and ancient texts. Previously, there were only 256 possible
ordinals for script characters and texts were typically bound to a code page
which mapped the ordinals to script characters. This lead to very much
confusion especially with respect to internationalization (usually written as
"118n" -- "1" + 18 characters + "n") of software. Unicode solves these
problems by defining one code page for all scripts.

Creating Unicode strings in Python is just as simple as creating normal strings:

>>> u'Hello World !'
u'Hello world !'

The small "u" in front of the quote indicates that an Unicode string is supposed
to be created. If you want to include special characters in the string, you can do
so by using the Python Unicode-Escape encoding. The following example shows
how:

>>> y'Hello\u6O®260World !'
u'Hello world !'

The escape sequence \u@020 indicates to insert the Unicode character with the
ordinal value 0x0020 (the space character) at the given position.

Other characters are interpreted by using their respective ordinal values directly
as Unicode ordinals. If you have literal strings in the standard Latin-1 encoding
that is used in many Western countries, you will find it convenient that the lower
256 characters of Unicode are the same as the 256 characters of Latin-1.

For experts, there is also a raw mode just like the one for normal strings. You
have to prefix the opening quote with 'ur' to have Python use the Raw-Unicode-
Escape encoding. It will only apply the above \UXXXX conversion if there is an

http://www.unicode.org/

uneven number of backslashes in front of the small 'u'.

>>> ur'Hello\u@O20World !'
u'Hello World !'

>>> ur 'Hello\\u0020World !'
u'Hello\\\\u0O26World !’

The raw mode is most useful when you have to enter lots of backslashes, as can
be necessary in regular expressions.

Apart from these standard encodings, Python provides a whole set of other ways
of creating Unicode strings on the basis of a known encoding.

The built-in function unicode () provides access to all registered Unicode
codecs (COders and DECoders). Some of the more well known encodings which
these codecs can convert are Latin-1, ASCII, UTF-8, and UTF-16. The latter two
are variable-length encodings that store each Unicode character in one or more
bytes. The default encoding is normally set to ASCII, which passes through
characters in the range 0 to 127 and rejects any other characters with an error.
When a Unicode string is printed, written to a file, or converted with str (),
conversion takes place using this default encoding.

>>S> U"abC"
u'abc'
>>> str(u"abc")
'abc'
>>S> ullé('jull
u'\xed\xfe6\xfc'
>>> str(u"aoa")
Traceback (most recent call last):
File "<stdin>", line 1, in ?
UnicodeEncodeError: 'ascii' codec can't encode characters in positic

To convert a Unicode string into an 8-bit string using a specific encoding,
Unicode objects provide an encode () method that takes one argument, the
name of the encoding. Lowercase names for encodings are preferred.

>>> u"aol" .encode('utf-8")
"\xc3\xa4\xc3\xb6\xc3\xbc'

If you have data in a specific encoding and want to produce a corresponding
Unicode string from it, you can use the unicode () function with the encoding
name as the second argument.

>>> unicode('\xc3\xa4\xc3\xb6\xc3\xbc', 'utf-8')
u'\xed\xf6\xfc'

3.1.4 Lists

Python knows a number of compound data types, used to group together other
values. The most versatile is the list, which can be written as a list of comma-
separated values (items) between square brackets. List items need not all have
the same type.

>>> a = ['spam', 'eggs', 100, 1234]
>>> a
['spam', 'eggs', 100, 1234]

Like string indices, list indices start at 0, and lists can be sliced, concatenated
and so on:

>>> a[0]

'spam'

>>> a[3]

1234

>>> a[-2]

100

>>> af[1:-1]

['eggs', 100]

>>> a[:2] + ['bacon', 2*2]
['spam', 'eggs', 'bacon', 4]
>>> 3*a[:3] + ['Boe!']
['spam', 'eggs', 100, 'spam', 'eggs', 100, 'spam', 'eggs', 100, 'Boe

Unlike strings, which are immutable, it is possible to change individual elements
of a list:

>>> a

['spam', 'eggs', 100, 1234]
>>> a[2] = a[2] + 23

>>> a

['spam', 'eggs', 123, 1234]

Assignment to slices is also possible, and this can even change the size of the
list:

>>> # Replace some items:

... a[e:2] = [1, 12]

>>> a

[1, 12, 123, 1234]

>>> # Remove some:
.ale:2] =[]

>>> a
[123, 1234]
>>> # Insert some:
. a[1:1] = ['bletch', 'xyzzy']

>>> a

[123, 'bletch', 'xyzzy',6 1234]

>>> a[:0] = a # Insert (a copy of) itself at the beginning
>>> a

[123, 'bletch', 'xyzzy', 1234, 123, 'bletch',6 'xyzzy',6 1234]

The built-in function 1en () also applies to lists:

>>> len(a)
8

It is possible to nest lists (create lists containing other lists), for example:

>>> q = [2, 3]

>>>p = [1, q, 4]

>>> len(p)

3

>>> p[1]

[2, 3]

>>> p[1][0]

2

>>> p[1].append('xtra') # See section 5.1
>>> p

(1, [2, 3, 'xtra'], 4]
>>> q

[2, 3, 'xtra']

Note that in the last example, p[1] and q really refer to the same object! We'll
come back to object semantics later.

3.2 First Steps Towards
Programming

Of course, we can use Python for more complicated tasks than adding two and
two together. For instance, we can write an initial sub-sequence of the Fibonacci
series as follows:

>>> # Fibonaccil series:
. # the sum of two elements defines the next

. a, b=o0, 1
>>> while b < 10:
print b

a, b =0b, atb

CUWNRRE- - -

This example introduces several new features.

e The first line contains a multiple assignment: the variables a and b
simultaneously get the new values 0 and 1. On the last line this is used
again, demonstrating that the expressions on the right-hand side are all
evaluated first before any of the assignments take place. The right-hand side
expressions are evaluated from the left to the right.

e The while loop executes as long as the condition (here: b < 10) remains
true. In Python, like in C, any non-zero integer value is true; zero is false.
The condition may also be a string or list value, in fact any sequence;
anything with a non-zero length is true, empty sequences are false. The test
used in the example is a simple comparison. The standard comparison
operators are written the same as in C: < (less than), > (greater than), ==
(equal to), <= (less than or equal to), >= (greater than or equal to) and ! =
(not equal to).

e The body of the loop is indented: indentation is Python's way of grouping
statements. Python does not (yet!) provide an intelligent input line editing

facility, so you have to type a tab or space(s) for each indented line. In
practice you will prepare more complicated input for Python with a text
editor; most text editors have an auto-indent facility. When a compound
statement is entered interactively, it must be followed by a blank line to
indicate completion (since the parser cannot guess when you have typed the
last line). Note that each line within a basic block must be indented by the
same amount.

e The print statement writes the value of the expression(s) it is given. It
differs from just writing the expression you want to write (as we did earlier
in the calculator examples) in the way it handles multiple expressions and
strings. Strings are printed without quotes, and a space is inserted between
items, so you can format things nicely, like this:

>>> i = 256*256
>>> print 'The value of i is', i
The value of i is 65536

A trailing comma avoids the newline after the output:

>>>a, b=0, 1

>>> while b < 1000:
print b,
a, b =0b, atb

112358 13 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if
the last line was not completed.

«1T-> Python Tutorial toc i
Previous: 2. Using the Python up: Python Tutorial Next: 4. More Control Flow

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 3. An Informal Introduction up: Python Tutorial Next: 5. Data
Structures

Subsections

4.1 1f Statements

4.2 for Statements

4.3 The range (1) Function

4.4 break and continue Statements, and e1se_Clauses on L.oops
4.5 pass Statements

4.6 Defining Functions

4.7 More on Defining Functions
o 4.7.1 Default Argument Values

4.7.2 Keyword Arguments

4.7.3 Arbitrary Argument Lists
4.7.4 Unpacking Argument Lists
4.7.5 Lambda Forms

4.7.6 Documentation Strings

O O O O O

4. More Control Flow Tools

Besides the while statement just introduced, Python knows the usual control
flow statements known from other languages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type is the 1T statement. For example:

>>> x = int(raw_input("Please enter an integer: "))
>>> if x < 0:
X =0

.. print 'Negative changed to zero'

. elif x == 0:

.. print 'Zero'

.elif x == 1:
.. print 'Single'

. else:

print 'More'

There can be zero or more e11if parts, and the else part is optional. The
keyword "elif"is short for “else if', and is useful to avoid excessive
indentation. An 1f ... elif ... elif ... sequence is a substitute for the switch
or case statements found in other languages.

4.2 for Statements

The for statement in Python differs a bit from what you may be used to in C or
Pascal. Rather than always iterating over an arithmetic progression of numbers
(like in Pascal), or giving the user the ability to define both the iteration step and
halting condition (as C), Python's for statement iterates over the items of any
sequence (a list or a string), in the order that they appear in the sequence. For
example (no pun intended):

>>> # Measure some strings:
... a=['cat', 'window', 'defenestrate']
>>> for x in a:
print x, len(x)
cat 3
window 6
defenestrate 12

It is not safe to modify the sequence being iterated over in the loop (this can only
happen for mutable sequence types, such as lists). If you need to modify the list
you are iterating over (for example, to duplicate selected items) you must iterate
over a copy. The slice notation makes this particularly convenient:

>>> for x in a[:]: # make a slice copy of the entire list
if len(x) > 6: a.insert(0, x)

>>> a

['defenestrate', 'cat', 'window', 'defenestrate']

4.3 The range () Function

If you do need to iterate over a sequence of numbers, the built-in function
range () comes in handy. It generates lists containing arithmetic progressions:

>>> range(10)
(6, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The given end point is never part of the generated list; range (10) generates a
list of 10 values, exactly the legal indices for items of a sequence of length 10. It
is possible to let the range start at another number, or to specify a different
increment (even negative; sometimes this is called the “step’):

>>> range(5, 10)

[5, 6, 7, 8, 9]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(-10, -100, -30)
[-10, -40, -70]

To iterate over the indices of a sequence, combine range() and len() as
follows:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for 1 in range(len(a)):

print i, a[i]

Mary

had

a

little
lamb

ArOWONPRLRO- -

4.4 break and continue
Statements, and else Clauses on
Loops

The break statement, like in C, breaks out of the smallest enclosing for or
while loop.

The continue statement, also borrowed from C, continues with the next
iteration of the loop.

Loop statements may have an else clause; it is executed when the loop
terminates through exhaustion of the list (with for) or when the condition
becomes false (with while), but not when the loop is terminated by a break
statement. This is exemplified by the following loop, which searches for prime
numbers:

>>> for n in range(2, 10):
for x in range(2, n):
if n % x == 0O:
print n, 'equals', x, '*', n/Xx
break
else:
loop fell through without finding a factor
print n, 'is a prime number'

is a prime number
is a prime number
equals 2 * 2
is a prime number
equals 2 * 3
is a prime number
equals 2 * 4
equals 3 * 3

©CONODUBRWN:- = = = = = = =

4.5 pass Statements

The pass statement does nothing. It can be used when a statement is required
syntactically but the program requires no action. For example:

>>> while True:
pass # Busy-wait for keyboard interrupt

4.6 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary
boundary:

>>> def fib(n): # write Fibonacci series up to n
.. """Print a Fibonacci series up to n."""
a, b=o0, 1
while b < n:
print b,

a, b =0b, atb

>>> # Now call the function we just defined:
. fib(2000)
112 358 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function definition. It must be followed by the
function name and the parenthesized list of formal parameters. The statements
that form the body of the function start at the next line, and must be indented.
The first statement of the function body can optionally be a string literal; this
string literal is the function's documentation string, or docstring.

There are tools which use docstrings to automatically produce online or printed
documentation, or to let the user interactively browse through code; it's good
practice to include docstrings in code that you write, so try to make a habit of it.

The execution of a function introduces a new symbol table used for the local
variables of the function. More precisely, all variable assignments in a function
store the value in the local symbol table; whereas variable references first look in
the local symbol table, then in the global symbol table, and then in the table of
built-in names. Thus, global variables cannot be directly assigned a value within
a function (unless named in a global statement), although they may be
referenced.

The actual parameters (arguments) to a function call are introduced in the local
symbol table of the called function when it is called; thus, arguments are passed
using call by value (where the value is always an object reference, not the value
of the object).2! When a function calls another function, a new local symbol
table is created for that call.

A function definition introduces the function name in the current symbol table.
The value of the function name has a type that is recognized by the interpreter as
a user-defined function. This value can be assigned to another name which can
then also be used as a function. This serves as a general renaming mechanism:

>>> fib

<function fib at 10042ed06>
>>> f = fib

>>> f(100)
112358 13 21 34 55 89

You might object that Tib is not a function but a procedure. In Python, like in C,
procedures are just functions that don't return a value. In fact, technically
speaking, procedures do return a value, albeit a rather boring one. This value is
called None (it's a built-in name). Writing the value None is normally
suppressed by the interpreter if it would be the only value written. You can see it
if you really want to:

>>> print fib(0)
None

It is simple to write a function that returns a list of the numbers of the Fibonacci
series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n
. """Return a list containing the Fibonacci series up to n."""

result = []
a, b=o0, 1
while b < n:

result.append(b) # see below
a, b =0b, atb
return result

>>> 100 = fib2(100) # call it

>>> 100 # write the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

e The return statement returns with a value from a function. return
without an expression argument returns None. Falling off the end of a
procedure also returns None.

e The statement result.append(b) calls a method of the list object

result. A method is a function that “belongs' to an object and is named
obj.methodname, where 0bj is some object (this may be an
expression), and methodname is the name of a method that is defined by
the object's type. Different types define different methods. Methods of
different types may have the same name without causing ambiguity. (It is
possible to define your own object types and methods, using classes, as
discussed later in this tutorial.) The method append() shown in the
example, is defined for list objects; it adds a new element at the end of the
list. In this example it is equivalent to "result = result + [b]", but

more efficient.

4.7 More on Defining Functions

It is also possible to define functions with a variable number of arguments. There
are three forms, which can be combined.

4.7.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments.
This creates a function that can be called with fewer arguments than it is defined
to allow. For example:

def ask_ok(prompt, retries=4, complaint='Yes or no, please!'):
while True:
ok = raw_input(prompt)
if ok in ('y', 'ye', 'yes'): return True
if ok in ('n', 'no', 'nop', 'nope'): return False
retries = retries - 1
if retries < 0: raise IOError, 'refusenik user'
print complaint

This function can be called either like this: ask_ok('Do you really
want to quit?') orlike this: ask_ok('OK to overwrite the
file?', 2).

This example also introduces the 1n keyword. This tests whether or not a
sequence contains a certain value.

The default values are evaluated at the point of function definition in the
defining scope, so that

i=25

def f(arg=i):
print arg

will print 5.

Important warning: The default value is evaluated only once. This makes a
difference when the default is a mutable object such as a list, dictionary, or
instances of most classes. For example, the following function accumulates the
arguments passed to it on subsequent calls:

def f(a, L=[]):
L.append(a)
return L

print f(1)
print f(2)
print f(3)

This will print

[1]
[1, 2]
[1, 2, 3]

If you don't want the default to be shared between subsequent calls, you can
write the function like this instead:

def f(a, L=None):
if L is None:
L =11
L.append(a)
return L

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the form "keyword =
value". For instance, the following function:

def parrot(voltage, state='a stiff', action='voom', type='Norwegian

print "-- This parrot wouldn't", action,

print "if you put", voltage, "Volts through it."
print "-- Lovely plumage, the", type

print "-- It's", state, "!"

could be called in any of the following ways:

parrot(1000)
parrot(action = 'VOOOOOM', voltage = 1000000)
parrot('a thousand', state = 'pushing up the daisies')

parrot('a million', 'bereft of life', 'jump')

but the following calls would all be invalid:

parrot() # required argument missing
parrot(voltage=5.0, 'dead') # non-keyword argument following keywor
parrot (110, voltage=220) # duplicate value for argument

parrot(actor='John Cleese') # unknown keyword

In general, an argument list must have any positional arguments followed by any
keyword arguments, where the keywords must be chosen from the formal
parameter names. It's not important whether a formal parameter has a default
value or not. No argument may receive a value more than once -- formal
parameter names corresponding to positional arguments cannot be used as
keywords in the same calls. Here's an example that fails due to this restriction:

>>> def function(a):
pass

>>> function(0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: function() got multiple values for keyword argument 'a'

When a final formal parameter of the form * *name is present, it receives a
dictionary containing all keyword arguments whose keyword doesn't correspond
to a formal parameter. This may be combined with a formal parameter of the

form *name (described in the next subsection) which receives a tuple containing
the positional arguments beyond the formal parameter list. (*name must occur
before * *name.) For example, if we define a function like this:

def cheeseshop(kind, *arguments, **keywords):
print "-- Do you have any", kind, '?'
print "-- I'm sorry, we're all out of", kind
for arg in arguments: print arg
print '-'*40
keys = keywords.keys()
keys.sort()
for kw in keys: print kw, ':', keywords[kw]

It could be called like this:

cheeseshop('Limburger', "It's very runny, sir.",
"It's really very, VERY runny, sir.",
client="'John Cleese',
shopkeeper='Michael Palin',
sketch="'Cheese Shop Sketch')

and of course it would print:

-- Do you have any Limburger ?

-- I'm sorry, we're all out of Limburger
It's very runny, sir.

It's really very, VERY runny, sir.
client : John Cleese

shopkeeper : Michael Palin

sketch : Cheese Shop Sketch

Note that the sort () method of the list of keyword argument names is called
before printing the contents of the keywords dictionary; if this is not done, the
order in which the arguments are printed is undefined.

4.7.3 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called
with an arbitrary number of arguments. These arguments will be wrapped up in a
tuple. Before the variable number of arguments, zero or more normal arguments
may occur.

def fprintf(file, format, *args):
file.write(format % args)

4.7.4 Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but
need to be unpacked for a function call requiring separate positional arguments.
For instance, the built-in range () function expects separate start and stop
arguments. If they are not available separately, write the function call with the *-
operator to unpack the arguments out of a list or tuple:

>>> range(3, 6) # normal call with separate arguments
[3, 4, 5]

>>> args = [3, 6]

>>> range(*args) # call with arguments unpacked from a 1i

[3, 4, 5]

4.7.5 Lambda Forms

By popular demand, a few features commonly found in functional programming
languages and Lisp have been added to Python. With the 1ambda keyword,
small anonymous functions can be created. Here's a function that returns the sum
of its two arguments: "lambda a, b: a+b". Lambda forms can be used
wherever function objects are required. They are syntactically restricted to a
single expression. Semantically, they are just syntactic sugar for a normal
function definition. Like nested function definitions, lambda forms can reference
variables from the containing scope:

>>> def make_incrementor(n):
return lambda x: X + n

>>> f = make_incrementor(42)
>>> f(0)

4.7.6 Documentation Strings

There are emerging conventions about the content and formatting of
documentation strings.

The first line should always be a short, concise summary of the object's purpose.
For brevity, it should not explicitly state the object's name or type, since these
are available by other means (except if the name happens to be a verb describing
a function's operation). This line should begin with a capital letter and end with a
period.

If there are more lines in the documentation string, the second line should be
blank, visually separating the summary from the rest of the description. The
following lines should be one or more paragraphs describing the object's calling
conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in
Python, so tools that process documentation have to strip indentation if desired.
This is done using the following convention. The first non-blank line after the
first line of the string determines the amount of indentation for the entire
documentation string. (We can't use the first line since it is generally adjacent to
the string's opening quotes so its indentation is not apparent in the string literal.)
Whitespace "equivalent” to this indentation is then stripped from the start of all
lines of the string. Lines that are indented less should not occur, but if they occur
all their leading whitespace should be stripped. Equivalence of whitespace
should be tested after expansion of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> def my_function():
"""Do nothing, but document it.

No, really, it doesn't do anything.

pass

>>> print my_function.__doc__
Do nothing, but document it.

No, really, it doesn't do anything.

Foothotes

... object).1

Actually, call by object reference would be a better description, since if a
mutable object is passed, the caller will see any changes the callee makes to
it (items inserted into a list).

COMTENTS INDEK
Previous: 3. An Informal Introduction up: Python Tutorial Next: 5. Data
Structures

«1T-> Python Tutorial toc i

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 4. More Control Flow up: Python Tutorial Next: 6. Modules

Subsections

e 5.1 More on Lists

o 5.1.1 Using Lists as Stacks

o 5.1.2 Using Lists as Queues
o 5.1.3 Functional Programming Tools

o 5.1.4 List Comprehensions
5.2 The del statement
5.3 Tuples and Sequences
5.4 Sets
5.5 Dictionaries

5.6 Looping Techniques

5.7 More on Conditions

5.8 Comparing Sequences and Other Types

5. Data Structures

This chapter describes some things you've learned about already in more detail,
and adds some new things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list
objects:

append(x)
Add an item to the end of the list; equivalentto a[len(a):] = [x].

extend(L)

Extend the list by appending all the items in the given list; equivalent to
a[len(a):] = L.

insert(i, x)
Insert an item at a given position. The first argument is the index of the
element before which to insert, so a.insert (0, x) inserts at the front
of the list,and a.insert(len(a), x) isequivalent to
a.append(x).

remove(x)

Remove the first item from the list whose value is x. It is an error if there is
no such item.

pop([i])
Remove the item at the given position in the list, and return it. If no index is
specified, a.pop() returns the last item in the list. The item is also
removed from the list. (The square brackets around the i in the method
signature denote that the parameter is optional, not that you should type
square brackets at that position. You will see this notation frequently in the
Python Library Reference.)

index(x)
Return the index in the list of the first item whose value is x. It is an error if
there is no such item.

count(x)

Return the number of times x appears in the list.

sort()
Sort the items of the list, in place.

reverse()
Reverse the elements of the list, in place.

An example that uses most of the list methods:

>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.25), a.count('x")
210

>>> a.insert(2, -1)

>>> a.append(333)

>>> a

[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)

1

>>> a.remove(333)

>>> a

[66.25, -1, 333, 1, 1234.5, 333]

>>> a.reverse()

>>> a

[333, 1234.5, 1, 333, -1, 66.25]

>>> a.sort()

>>> a

[-1, 1, 66.25, 333, 333, 1234.5]

5.1.1 Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last element
added is the first element retrieved (" last-in, first-out™"). To add an item to the top
of the stack, use append (). To retrieve an item from the top of the stack, use
pop () without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack

[3, 4, 5, 6, 7]
>>> stack.pop()

.

>>> stack

[3, 4, 5, 6]

>>> stack.pop()

6

>>> stack.pop()

5

>>> stack

[3, 4]

5.1.2 Using Lists as Queues

You can also use a list conveniently as a queue, where the first element added is
the first element retrieved (" first-in, first-out"). To add an item to the back of the
queue, use append(). To retrieve an item from the front of the queue, use
pop () with @ as the index. For example:

>>> queue = ["Eric", "John", "Michael"]

>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.pop(0)

'"Eric'

>>> queue.pop(0)

"John'

>>> queue

['Michael', 'Terry', 'Graham']

5.1.3 Functional Programming Tools

There are three built-in functions that are very useful when used with lists:
filter (), map(), and reduce().

"filter (function, sequence)" returns a sequence (of the same type, if
possible) consisting of those items from the sequence for which function (item)
is true. For example, to compute some primes:

>>> def f(x): return x % 2 '= 0 and x % 3 !'= 0

>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

"map (function, sequence)" calls function(item) for each of the sequence's
items and returns a list of the return values. For example, to compute some
cubes:

>>> def cube(x): return Xx*x*x

>>> map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many
arguments as there are sequences and is called with the corresponding item from
each sequence (or None if some sequence is shorter than another). For example:

>>> seq = range(8)
>>> def add(x, y): return x+y

>>> map(add, seq, seq)
[6, 2, 4, 6, 8, 10, 12, 14]

"reduce (func, sequence)" returns a single value constructed by calling the
binary function func on the first two items of the sequence, then on the result and
the next item, and so on. For example, to compute the sum of the numbers 1
through 10:

>>> def add(x,y): return x+y

S>> reduce(add, range(1, 11))
55

If there's only one item in the sequence, its value is returned; if the sequence is
empty, an exception is raised.

A third argument can be passed to indicate the starting value. In this case the
starting value is returned for an empty sequence, and the function is first applied
to the starting value and the first sequence item, then to the result and the next
item, and so on. For example,

>>> def sum(seq):
def add(x,y): return x+y
return reduce(add, seq, 0)

>>> sum(range(1, 11))
55

>>> sum([])

0]

Don't use this example's definition of sum(): since summing numbers is such a
common need, a built-in function sum(sequence) is already provided, and
works exactly like this. New in version 2.3.

5.1.4 List Comprehensions

List comprehensions provide a concise way to create lists without resorting to
use of map(), filter () and/or lambda. The resulting list definition tends
often to be clearer than lists built using those constructs. Each list
comprehension consists of an expression followed by a for clause, then zero or
more Tor or 1T clauses. The result will be a list resulting from evaluating the
expression in the context of the for and if clauses which follow it. If the
expression would evaluate to a tuple, it must be parenthesized.

>>> freshfruit = [' banana', ' 1loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
[]
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
>>> [x, x**2 for x in vec] # error - parens required for tuples

File "<stdin>", line 1, in ?

[x, x**2 for x in vec]
N

SyntaxError: invalid syntax

>>> [(x, x**2) for x in vec]

[(2, 4), (4, 16), (6, 36)]

>>> vecl = [2, 4, 6]

>>> vec2 = [4, 3, -9]

>>> [x*y for x in vecl for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vecl for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]

>>> [vecl[i]*vec2[i] for i in range(len(vecl))]
[8, 12, -54]

List comprehensions are much more flexible than map () and can be applied to
functions with more than one argument and to nested functions:

>>> [str(round(355/113.0, i)) for i in range(1,6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']

5.2 The del statement

There is a way to remove an item from a list given its index instead of its value:
the del statement. This can also be used to remove slices from a list (which we
did earlier by assignment of an empty list to the slice). For example:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]

>>> a

[1, 66.25, 333, 333, 1234.5]

>>> del a[2:4]

>>> a

[1, 66.25, 1234.5]

del can also be used to delete entire variables:

>>> del a

Referencing the name a hereafter is an error (at least until another value is
assigned to it). We'll find other uses for del later.

5.3 Tuples and Sequences

We saw that lists and strings have many common properties, such as indexing
and slicing operations. They are two examples of sequence data types. Since
Python is an evolving language, other sequence data types may be added. There
is also another standard sequence data type: the tuple.

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
.u=1¢t, (1, 2, 3, 4, 5)
>>> U
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))

As you see, on output tuples are alway enclosed in parentheses, so that nested
tuples are interpreted correctly; they may be input with or without surrounding
parentheses, although often parentheses are necessary anyway (if the tuple is part
of a larger expression).

Tuples have many uses. For example: (X, y) coordinate pairs, employee records
from a database, etc. Tuples, like strings, are immutable: it is not possible to
assign to the individual items of a tuple (you can simulate much of the same
effect with slicing and concatenation, though). It is also possible to create tuples
which contain mutable objects, such as lists.

A special problem is the construction of tuples containing 0 or 1 items: the
syntax has some extra quirks to accommodate these. Empty tuples are
constructed by an empty pair of parentheses; a tuple with one item is constructed
by following a value with a comma (it is not sufficient to enclose a single value
in parentheses). Ugly, but effective. For example:

>>> empty = ()

>>> singleton = 'hello', # <-- note trailing comma
>>> len(empty)

0]

>>> len(singleton)

1
>>> singleton
('hello',)

The statement t = 12345, 54321, 'hello!' isan example of tuple
packing: the values 12345, 54321 and 'hello! "' are packed together in a
tuple. The reverse operation is also possible:

>>> X, Yy, z =t

This is called, appropriately enough, sequence unpacking. Sequence unpacking
requires that the list of variables on the left have the same number of elements as
the length of the sequence. Note that multiple assignment is really just a
combination of tuple packing and sequence unpacking!

There is a small bit of asymmetry here: packing multiple values always creates a
tuple, and unpacking works for any sequence.

5.4 Sets

Python also includes a data type for sets. A set is an unordered collection with no
duplicate elements. Basic uses include membership testing and eliminating
duplicate entries. Set objects also support mathematical operations like union,
intersection, difference, and symmetric difference.

Here is a brief demonstration:

>>> basket
>>> fruits
>>> fruits
set(['orange', 'pear', 'apple', 'banana'])

['apple', 'orange', 'apple', 'pear', 'orange', 'banana'
set(basket) # create a set without duplic

>>> 'ogrange' in fruits # fast membership testing
True

>>> 'crabgrass' in fruits

False

>>> # Demonstrate set operations on unique letters from two words

>>> a set('abracadabra')
>>> b set('alacazam')
>>> a # unique letters in a

Set(['a', 'r', 'b', ICII Idl])

>>> a - b # letters in a but not in b
set(['r', 'd', 'b'l)

>>> a | b # letters in either a or b
Set(['a', ICII 'r', 'd', 'b', 'm', IZII Ill])

>>> a3 & b # letters in both a and b
set(['a', 'c'])

>>> g N b # letters in a or b but not b
Set(['r', 'd', 'b', 'm', IZII Ill])

5.5 Dictionaries

Another useful data type built into Python is the dictionary. Dictionaries are
sometimes found in other languages as ""associative memories" or " associative
arrays". Unlike sequences, which are indexed by a range of numbers,
dictionaries are indexed by keys, which can be any immutable type; strings and
numbers can always be keys. Tuples can be used as keys if they contain only
strings, numbers, or tuples; if a tuple contains any mutable object either directly
or indirectly, it cannot be used as a key. You can't use lists as keys, since lists can
be modified in place using their append() and extend() methods, as well
as slice and indexed assignments.

It is best to think of a dictionary as an unordered set of key: value pairs, with the
requirement that the keys are unique (within one dictionary). A pair of braces
creates an empty dictionary: {}. Placing a comma-separated list of key:value
pairs within the braces adds initial key:value pairs to the dictionary; this is also
the way dictionaries are written on output.

The main operations on a dictionary are storing a value with some key and
extracting the value given the key. It is also possible to delete a key:value pair
with del. If you store using a key that is already in use, the old value associated
with that key is forgotten. It is an error to extract a value using a non-existent
key.

The keys () method of a dictionary object returns a list of all the keys used in
the dictionary, in arbitrary order (if you want it sorted, just apply the sort ()
method to the list of keys). To check whether a single key is in the dictionary,
use the has_key () method of the dictionary.

Here is a small example using a dictionary:

>>> tel = {'jack': 4098, 'sape': 4139}

>>> tel['guido'] = 4127

>>> tel

{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']

4098

>>> del tel['sape']

>>> tel['irv'] = 4127

>>> tel

{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()

['guido', 'irv', 'jack']

>>> tel.has_key('guido')

True

The dict () constructor builds dictionaries directly from lists of key-value
pairs stored as tuples. When the pairs form a pattern, list comprehensions can
compactly specify the key-value list.

>>> dict([('sape', 4139), ('guido', 4127), ('jack',6 4098)])
{'sape': 4139, 'jack': 4098, 'guido': 4127}

>>> dict([(x, x**2) for x in vec]) # use a list comprehension
{2: 4, 4: 16, 6: 36}

5.6 Looping Techniques

When looping through dictionaries, the key and corresponding value can be
retrieved at the same time using the iteritems() method.

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.iteritems():
print k, v

gallahad the pure
robin the brave

When looping through a sequence, the position index and corresponding value
can be retrieved at the same time using the enumerate() function.

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
print i, v

0 tic
1 tac
2 toe

To loop over two or more sequences at the same time, the entries can be paired
with the zip () function.

>>> questions = ['name', 'quest',6 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for g, a in zip(questions, answers):

print 'What is your %s? It is %s.' % (q, a)

What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

To loop over a sequence in reverse, first specify the sequence in a forward
direction and then call the reversed () function.

>>> for i in reversed(xrange(1,10,2)):
print i

W ol © -

1

To loop over a sequence in sorted order, use the sorted() function which
returns a new sorted list while leaving the source unaltered.

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana'
>>> for f in sorted(set(basket)):
print f
apple
banana

orange
pear

5.7 More on Conditions

The conditions used in while and if statements can contain any operators, not
just comparisons.

The comparison operators 1n and not in check whether a value occurs (does
not occur) in a sequence. The operators 1s and 1S not compare whether two
objects are really the same object; this only matters for mutable objects like lists.
All comparison operators have the same priority, which is lower than that of all
numerical operators.

Comparisons can be chained. For example, a < b == c tests whether a is
less than b and moreover b equals c.

Comparisons may be combined by the Boolean operators and and or, and the
outcome of a comparison (or of any other Boolean expression) may be negated
with not. These have lower priorities than comparison operators; between them,
not has the highest priority and or the lowest, so that A and not B or C
is equivalent to (A and (not B)) or C. Asalways, parentheses can be
used to express the desired composition.

The Boolean operators and and or are so-called short-circuit operators: their
arguments are evaluated from left to right, and evaluation stops as soon as the
outcome is determined. For example, if A and C are true but B is false, A and
B and C does not evaluate the expression C. In general, the return value of a
short-circuit operator, when used as a general value and not as a Boolean, is the
last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression to
a variable. For example,

>>> stringl, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = stringl or string2 or string3

>>> non_null

'"Trondheim'

Note that in Python, unlike C, assignment cannot occur inside expressions. C
programmers may grumble about this, but it avoids a common class of problems

encountered in C programs: typing = in an expression when == was intended.

5.8 Comparing Sequences and Other
Types

Sequence objects may be compared to other objects with the same sequence
type. The comparison uses lexicographical ordering: first the first two items are
compared, and if they differ this determines the outcome of the comparison; if
they are equal, the next two items are compared, and so on, until either sequence
is exhausted. If two items to be compared are themselves sequences of the same
type, the lexicographical comparison is carried out recursively. If all items of
two sequences compare equal, the sequences are considered equal. If one
sequence is an initial sub-sequence of the other, the shorter sequence is the
smaller (lesser) one. Lexicographical ordering for strings uses the ASCII
ordering for individual characters. Some examples of comparisons between
sequences with the same types:

(1, 2, 3) < (1, 2, 4)

[1, 2, 3] < [1, 2, 4]

'"ABC' < 'C' < 'Pascal' < 'python'

(1, 2, 3, 4) < (1, 2, 4)

(11 2) < (11 2/ '1)

(1, 2, 3) == (1.0, 2.0, 3.0)

(1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)

Note that comparing objects of different types is legal. The outcome is
deterministic but arbitrary: the types are ordered by their name. Thus, a list is
always smaller than a string, a string is always smaller than a tuple, etc. 21
Mixed numeric types are compared according to their numeric value, so 0 equals
0.0, etc.

Footnhotes

.. etc.21

The rules for comparing objects of different types should not be relied
upon; they may change in a future version of the language.

«1T-> Python Tutorial toc i

CONTENTS INDEX

Previous: 4. More Control Flow up: Python Tutorial Next: 6. Modules

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 5. Data Structures up: Python Tutorial Next: 7. Input and Output

Subsections

6.1 More on Modules
o 6.1.1 The Module Search Path
o 6.1.2 "Compiled" Python files
6.2 Standard Modules
6.3 The dir () Function
6.4 Packages
o 6.4.1 Importing * From a Package
o 6.4.2 Intra-package References
o 6.4.3 Packages in Multiple Directories

6. Modules

If you quit from the Python interpreter and enter it again, the definitions you
have made (functions and variables) are lost. Therefore, if you want to write a
somewhat longer program, you are better off using a text editor to prepare the
input for the interpreter and running it with that file as input instead. This is
known as creating a script. As your program gets longer, you may want to split it
into several files for easier maintenance. You may also want to use a handy
function that you've written in several programs without copying its definition
into each program.

To support this, Python has a way to put definitions in a file and use them in a
script or in an interactive instance of the interpreter. Such a file is called a
module; definitions from a module can be imported into other modules or into
the main module (the collection of variables that you have access to in a script
executed at the top level and in calculator mode).

A module is a file containing Python definitions and statements. The file name is
the module name with the suffix .py appended. Within a module, the module's
name (as a string) is available as the value of the global variable __name__.
For instance, use your favorite text editor to create a file called fibo.py in the
current directory with the following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b=o0, 1
while b < n:
print b,
a, b =0Db, atb

def fib2(n): # return Fibonacci series up to n

result = []
a, b=o0, 1
while b < n:

result.append(b)
a, b =0b, atb
return result

Now enter the Python interpreter and import this module with the following
command:

>>> import fibo

This does not enter the names of the functions defined in fibo directly in the
current symbol table; it only enters the module name fibo there. Using the
module name you can access the functions:

>>> fibo.fib(1000)

112 358 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo._name_

'fibo'

If you intend to use a function often you can assign it to a local name:
>>> fib = fibo.fib

>>> fib(500)
112358 13 21 34 55 89 144 233 377

6.1 More on Modules

A module can contain executable statements as well as function definitions.
These statements are intended to initialize the module. They are executed only

the first time the module is imported somewhere 21

Each module has its own private symbol table, which is used as the global
symbol table by all functions defined in the module. Thus, the author of a
module can use global variables in the module without worrying about
accidental clashes with a user's global variables. On the other hand, if you know
what you are doing you can touch a module's global variables with the same
notation used to refer to its functions, modname . 1itemname.

Modules can import other modules. It is customary but not required to place all
import statements at the beginning of a module (or script, for that matter). The
imported module names are placed in the importing module's global symbol
table.

There is a variant of the impor t statement that imports names from a module
directly into the importing module's symbol table. For example:

>>> from fibo import fib, fib2

>>> fib(500)
112358 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in
the local symbol table (so in the example, Tibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib(500)
112358 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_).

6.1.1 The Module Search Path

When a module named spam is imported, the interpreter searches for a file
named Spam.py in the current directory, and then in the list of directories
specified by the environment variable PYTHONPATH. This has the same syntax
as the shell variable PATH, that is, a list of directory names. When
PYTHONPATH is not set, or when the file is not found there, the search
continues in an installation-dependent default path; on Unix, this is usually
../usr/local/lib/python.

Actually, modules are searched in the list of directories given by the variable
sys. path which is initialized from the directory containing the input script (or
the current directory), PYTHONPATH and the installation-dependent default.
This allows Python programs that know what they're doing to modify or replace
the module search path. Note that because the directory containing the script
being run is on the search path, it is important that the script not have the same
name as a standard module, or Python will attempt to load the script as a module
when that module is imported. This will generally be an error. See section 6.2,
““Standard Modules," for more information.

6.1.2 "Compiled" Python files

As an important speed-up of the start-up time for short programs that use a lot of
standard modules, if a file called spam.pyc exists in the directory where
spam.py is found, this is assumed to contain an already-""byte-compiled"
version of the module spam. The modification time of the version of spam.py
used to create Spam.pyc is recorded in Spam.pyc, and the .pyc file is ignored if
these don't match.

Normally, you don't need to do anything to create the spam.pyc file. Whenever
spam.py is successfully compiled, an attempt is made to write the compiled
version to Spam.pyc. It is not an error if this attempt fails; if for any reason the
file is not written completely, the resulting spam.pyc file will be recognized as
invalid and thus ignored later. The contents of the sSpam.pyc file are platform
independent, so a Python module directory can be shared by machines of
different architectures.

Some tips for experts:

e When the Python interpreter is invoked with the -O flag, optimized code is
generated and stored in .pyo files. The optimizer currently doesn't help
much; it only removes asser t statements. When -O is used, all bytecode
is optimized; . pyc files are ignored and . py files are compiled to
optimized bytecode.

e Passing two -O flags to the Python interpreter (-OO) will cause the
bytecode compiler to perform optimizations that could in some rare cases
result in malfunctioning programs. Currently only __doc___ strings are
removed from the bytecode, resulting in more compact .pyo files. Since
some programs may rely on having these available, you should only use
this option if you know what you're doing.

¢ A program doesn't run any faster when it is read from a .pyc or .pyo file
than when it is read from a .py file; the only thing that's faster about .pyc or
.pyo files is the speed with which they are loaded.

e When a script is run by giving its name on the command line, the bytecode
for the script is never written to a .pyc or .pyo file. Thus, the startup time of

a script may be reduced by moving most of its code to a module and having
a small bootstrap script that imports that module. It is also possible to name
a .pyc or .pyo file directly on the command line.

It is possible to have a file called spam.pyc (or spam.pyo when -0 is
used) without a file spam.py for the same module. This can be used to
distribute a library of Python code in a form that is moderately hard to

reverse engineer.

The module compileall can create .pyc files (or .pyo files when -O is
used) for all modules in a directory.

6.2 Standard Modules

Python comes with a library of standard modules, described in a separate
document, the Python Library Reference (" Library Reference" hereafter). Some
modules are built into the interpreter; these provide access to operations that are
not part of the core of the language but are nevertheless built in, either for
efficiency or to provide access to operating system primitives such as system
calls. The set of such modules is a configuration option which also depends on
the underlying platform For example, the amoeba module is only provided on
systems that somehow support Amoeba primitives. One particular module
deserves some attention: SYS, which is built into every Python interpreter. The
variables sys.ps1 and sys . ps2 define the strings used as primary and
secondary prompts:

>>> import sys
>>> gys.psl
'>>> !

>>> sys.ps2

>>> sys.psl = 'C> '

C> print 'Yuck!'
Yuck!
c>

These two variables are only defined if the interpreter is in interactive mode.

The variable sys . path is a list of strings that determine the interpreter's search
path for modules. It is initialized to a default path taken from the environment
variable PYTHONPATH, or from a built-in default if PYTHONPATH is not set.
You can modify it using standard list operations:

>>> import sys
>>> sys.path.append('/ufs/guido/1ib/python"')

6.3 The dir () Function

The built-in function dir () is used to find out which names a module defines.
It returns a sorted list of strings:

>>> import fibo, sys

>>> dir(fibo)

['_name__', 'fib', 'fib2']

>>> dir(sys)

['__displayhook__"', '__doc__', '__excepthook__', '__name__', '__ stde
'__stdin__', '__stdout__', '_getframe', 'api_version', ‘'argv',
'"builtin_module_names', 'byteorder',6 'callstats', 'copyright',
'displayhook', 'exc_clear', 'exc_info', 'exc_type', ‘'excepthook',
'exec_prefix', 'executable',6 'exit', 'getdefaultencoding', 'getdlop
'getrecursionlimit', 'getrefcount', 'hexversion', 'maxint', 'maxuni
'meta_path', 'modules', 'path', 'path_hooks', 'path_importer_cache'
'platform', 'prefix', 'psi', 'ps2', 'setcheckinterval', 'setdlopenf
'setprofile', 'setrecursionlimit', 'settrace', 'stderr', 'stdin', '
'version', 'version_info', 'warnoptions']

Without arguments, dir () lists the names you have defined currently:

>>>a = [1, 2, 3, 4, 5]

>>> import fibo, sys

>>> fib = fibo.fib

>>> dir()

['_name__', 'a', 'fib', 'fibo', 'sys']

Note that it lists all types of names: variables, modules, functions, etc.

dir () does not list the names of built-in functions and variables. If you want a
list of those, they are defined in the standard module __builtin__:

>>> import _ _builtin_

>>> dir(__builtin_)

['ArithmeticError', 'AssertionkError', 'AttributeError',
'DeprecationWarning', 'EOFError', 'Ellipsis', 'EnvironmentError',
'Exception', 'False', 'FloatingPointError', 'IOError', 'ImportError
'IndentationError', 'IndexError', 'KeyError', 'KeyboardInterrupt',
'"LookupError', 'MemoryError', 'NameError', 'None', 'NotImplemented'
"NotImplementedError', 'OSError', 'OverflowError',6 'OverflowWarning
'PendingDeprecationwWarning', 'ReferenceError',

'RuntimeError', 'RuntimeWarning', 'StandardError', 'StopIteration',
'SyntaxError', 'SyntaxWarning', 'SystemError', 'SystemExit', 'TabEr
'True', 'TypeError', 'UnboundLocalError', 'UnicodeError', 'UserWarn

'ValueError', 'Warning', 'ZeroDivisionError', '__debug__', '__doc__
'__dimport__', '__name__', 'abs', 'apply', 'bool', 'buffer',
'callable', 'chr', 'classmethod', 'cmp', 'coerce',K 'compile', 'comp
'copyright', 'credits', ‘'delattr', 'dict', 'dir', 'divmod',
'enumerate', 'eval', 'execfile', 'exit', 'file', 'filter', 'float’',
'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex', 'id',
"input', 'int', 'intern', ‘'isinstance', 'issubclass', 'iter',

'len', 'license', 'list', 'locals', 'long', 'map', 'max', 'min',
'object', 'oct', 'open', 'ord', 'pow', 'property',K 'quit',

'range', 'raw_input', 'reduce', 'reload', 'repr', 'round',
'setattr', 'slice', 'staticmethod', 'str', 'string', 'sum', 'super'
"tuple', 'type', 'unichr', 'unicode', 'vars', 'xrange', 'zip']

6.4 Packages

Packages are a way of structuring Python's module namespace by using " dotted
module names". For example, the module name A. B designates a submodule
named "B" in a package named "A". Just like the use of modules saves the
authors of different modules from having to worry about each other's global
variable names, the use of dotted module names saves the authors of multi-
module packages like NumPy or the Python Imaging Library from having to
worry about each other's module names.

Suppose you want to design a collection of modules (a ““package") for the
uniform handling of sound files and sound data. There are many different sound
file formats (usually recognized by their extension, for example: .wav, .aiff,
.au), so you may need to create and maintain a growing collection of modules
for the conversion between the various file formats. There are also many
different operations you might want to perform on sound data (such as mixing,
adding echo, applying an equalizer function, creating an artificial stereo effect),
so in addition you will be writing a never-ending stream of modules to perform
these operations. Here's a possible structure for your package (expressed in terms
of a hierarchical filesystem):

Sound/ Top-level package
__init__.py Initialize the sound package
Formats/ Subpackage for file format conversic
__init__.py

wavread. py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py

Effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py

Filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder . py

karaoke.py

When importing the package, Python searches through the directories on
sys. path looking for the package subdirectory.

The __init__.py files are required to make Python treat the directories as
containing packages; this is done to prevent directories with a common name,
such as "string", from unintentionally hiding valid modules that occur later
on the module search path. In the simplest case, __init__.py can just be an
empty file, but it can also execute initialization code for the package or set the
all wvariable, described later.

Users of the package can import individual modules from the package, for
example:

import Sound.Effects.echo

This loads the submodule Sound.Effects.echo. It must be referenced with
its full name.

Sound.Effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

from Sound.Effects import echo

This also loads the submodule echo, and makes it available without its package
prefix, so it can be used as follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from Sound.Effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function
echofilter () directly available:

echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a

submodule (or subpackage) of the package, or some other name defined in the
package, like a function, class or variable. The import statement first tests
whether the item is defined in the package; if not, it assumes it is a module and
attempts to load it. If it fails to find it, an ImportError exception is raised.

Contrarily, when using syntax like import item.subitem.subsubitem, each item
except for the last must be a package; the last item can be a module or a package
but can't be a class or function or variable defined in the previous item.

6.4.1 Importing * From a Package

Now what happens when the user writes from Sound.Effects import
*? Ideally, one would hope that this somehow goes out to the filesystem, finds
which submodules are present in the package, and imports them all.
Unfortunately, this operation does not work very well on Mac and Windows
platforms, where the filesystem does not always have accurate information about
the case of a filename! On these platforms, there is no guaranteed way to know
whether a file ECHO.PY should be imported as a module echo, Echo or
ECHO. (For example, Windows 95 has the annoying practice of showing all file
names with a capitalized first letter.) The DOS 8+3 filename restriction adds
another interesting problem for long module names.

The only solution is for the package author to provide an explicit index of the
package. The import statement uses the following convention: if a package's
__init__.py code defines a list named __all__, it is taken to be the list of
module names that should be imported when from package import *is
encountered. It is up to the package author to keep this list up-to-date when a
new version of the package is released. Package authors may also decide not to
support it, if they don't see a use for importing * from their package. For
example, the file Sounds/Effects/ _init__.py could contain the following code:

_all = ["echo", "surround", "reverse"]

This would mean that from Sound.Effects import * would import the
three named submodules of the Sound package.

If __all__ isnot defined, the statement from Sound.Effects import
* does not import all submodules from the package Sound.Effects into the
current namespace; it only ensures that the package Sound.Effects has been
imported (possibly running its initialization code, __init__.py) and then imports
whatever names are defined in the package. This includes any names defined
(and submodules explicitly loaded) by __init__.py. It also includes any
submodules of the package that were explicitly loaded by previous import
statements. Consider this code:

import Sound.Effects.echo
import Sound.Effects.surround

from Sound.Effects import *

In this example, the echo and surround modules are imported in the current
namespace because they are defined in the Sound .Effects package when the
from...import statement is executed. (This also works when __all__is
defined.)

Note that in general the practice of importing * from a module or package is
frowned upon, since it often causes poorly readable code. However, it is okay to
use it to save typing in interactive sessions, and certain modules are designed to
export only names that follow certain patterns.

Remember, there is nothing wrong with using from Package import
specific_submodule! In fact, this is the recommended notation unless the
importing module needs to use submodules with the same name from different
packages.

6.4.2 Intra-package References

The submodules often need to refer to each other. For example, the surround
module might use the echo module. In fact, such references are so common that
the import statement first looks in the containing package before looking in
the standard module search path. Thus, the surround module can simply use
import echoor from echo import echofilter. If the imported
module is not found in the current package (the package of which the current
module is a submodule), the impor t statement looks for a top-level module
with the given name.

When packages are structured into subpackages (as with the Sound package in
the example), there's no shortcut to refer to submodules of sibling packages - the
full name of the subpackage must be used. For example, if the module
Sound.Filters.vocoder needs to use the echo module in the
Sound.Effects package, it can use from Sound.Effects import
echo.

6.4.3 Packages in Multiple Directories

Packages support one more special attribute, ___path__. This is initialized to
be a list containing the name of the directory holding the package's __init__.py
before the code in that file is executed. This variable can be modified; doing so
affects future searches for modules and subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of modules
found in a package.

Foothotes

... somewhere .81

In fact function definitions are also “statements' that are “executed'; the
execution enters the function name in the module's global symbol table.

«1T-> Python Tutorial toc i
Previous: 5. Data Structures up: Python Tutorial Next: 7. Input and Output

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 6. Modules up: Python Tutorial Next: 8. Errors and Exceptions

Subsections

e 7.1 Fancier Output Formatting

e 7.2 Reading and Writing Files
o 7.2.1 Methods of File Objects
o 7.2.2 The pickle Module

7. Input and Output

There are several ways to present the output of a program; data can be printed in
a human-readable form, or written to a file for future use. This chapter will
discuss some of the possibilities.

7.1 Fancier Output Formatting

So far we've encountered two ways of writing values: expression statements and
the print statement. (A third way is using the write() method of file
objects; the standard output file can be referenced as sys.stdout. See the
Library Reference for more information on this.)

Often you'll want more control over the formatting of your output than simply
printing space-separated values. There are two ways to format your output; the
first way is to do all the string handling yourself; using string slicing and
concatenation operations you can create any lay-out you can imagine. The
standard module string contains some useful operations for padding strings to
a given column width; these will be discussed shortly. The second way is to use
the % operator with a string as the left argument. The % operator interprets the
left argument much like a sprintf ()-style format string to be applied to the
right argument, and returns the string resulting from this formatting operation.

One question remains, of course: how do you convert values to strings? Luckily,
Python has ways to convert any value to a string: pass it to the repr () or

str () functions. Reverse quotes (" ") are equivalent to repr (), but their use
is discouraged.

The str () function is meant to return representations of values which are fairly
human-readable, while repr () is meant to generate representations which can
be read by the interpreter (or will force a SyntaxError if there is not
equivalent syntax). For objects which don't have a particular representation for
human consumption, str () will return the same value as repr (). Many
values, such as numbers or structures like lists and dictionaries, have the same
representation using either function. Strings and floating point numbers, in
particular, have two distinct representations.

Some examples:

>>> s = 'Hello, world.'
>>> str(s)

'Hello, world.'

>>> repr(s)

"'Hello, world.'"

>>> str(0.1)

'0.1'

>>> repr(0.1)
'0.10000000000000001"

>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) + '

>>> print s

The value of x is 32.5, and y is 40000...

>>> # The repr() of a string adds string quotes and backslashes:

... hello = 'hello, world\n'

>>> hellos = repr(hello)

>>> print hellos

'hello, world\n'

>>> # The argument to repr() may be any Python object:
repr((x, y, ('spam', 'eggs')))

"(32.5, 40000, ('spam', 'eggs'))"

>>> # reverse quotes are convenient in interactive sessions:

.o X, Y, ('spam', ‘'eggs')’

"(32.5, 40000, ('spam', 'eggs'))"

Here are two ways to write a table of squares and cubes:

>>> for x in range(1, 11):
print repr(x).rjust(2), repr(x*x).rjust(3),
Note trailing comma on previous line
print repr(x*x*x).rjust(4)

[N

1
8
9 27
16 64
25 125
36 216
49 343
64 512
81 729
10 1600 1000
>>> for x in range(1,11):
print '%2d %3d %4d' % (X, X*X, X*X*X)

N

O©CO~NOOT,WNE-

[N

1
8

9 27
16 64
25 125
36 216
49 343
64 512
81 729
100 1600

i

QOO ~NOUA,WNE -

1

(Note that one space between each column was added by the way print works:
it always adds spaces between its arguments.)

This example demonstrates the r just () method of string objects, which right-
justifies a string in a field of a given width by padding it with spaces on the left.
There are similar methods 1just () and center (). These methods do not
write anything, they just return a new string. If the input string is too long, they
don't truncate it, but return it unchanged; this will mess up your column lay-out
but that's usually better than the alternative, which would be lying about a value.
(If you really want truncation you can always add a slice operation, as in
"X.1ljust(n)[:n]")

There is another method, zfil1 (), which pads a numeric string on the left
with zeros. It understands about plus and minus signs:

>>> '12'.zfill(5)

'00012'

>>> '-3.14'.zfill(7)
'-003.14'

>>> '3.14159265359'.zfill(5)
'3.14159265359"'

Using the % operator looks like this:

>>> import math
>>> print 'The value of PI is approximately %5.3f.' % math.pi
The value of PI is approximately 3.142.

If there is more than one format in the string, you need to pass a tuple as right
operand, as in this example:

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items():
print '%-10s ==> %10d' % (name, phone)

Jack ==> 4098

Dcab ==> 7678
Sjoerd ==> 4127

Most formats work exactly as in C and require that you pass the proper type;
however, if you don't you get an exception, not a core dump. The %S format is
more relaxed: if the corresponding argument is not a string object, it is converted
to string using the str () built-in function. Using * to pass the width or

precision in as a separate (integer) argument is supported. The C formats %n and
% are not supported.

If you have a really long format string that you don't want to split up, it would be
nice if you could reference the variables to be formatted by name instead of by
position. This can be done by using form %(name) format, as shown here:

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print 'Jack: %(Jack)d; Sjoerd: %(Sjoerd)d; Dcab: %(Dcab)d' % tab
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the new built-in vars ()
function, which returns a dictionary containing all local variables.

7.2 Reading and Writing Files

open() returns a file object, and is most commonly used with two arguments:
"open(filename, mode)".

>>> f=open('/tmp/workfile', 'w')
>>> print f
<open file '/tmp/workfile', mode 'w' at 80a0960>

The first argument is a string containing the filename. The second argument is
another string containing a few characters describing the way in which the file
will be used. mode can be ' r' when the file will only be read, 'w' for only
writing (an existing file with the same name will be erased), and 'a' opens the
file for appending; any data written to the file is automatically added to the end.
'r+' opens the file for both reading and writing. The mode argument is
optional; 'r' will be assumed if it's omitted.

On Windows and the Macintosh, 'b' appended to the mode opens the file in
binary mode, so there are also modes like 'rb"', 'wb',and 'r+b'. Windows
makes a distinction between text and binary files; the end-of-line characters in
text files are automatically altered slightly when data is read or written. This
behind-the-scenes modification to file data is fine for ASCII text files, but it'll
corrupt binary data like that in JPEGs or .EXE files. Be very careful to use
binary mode when reading and writing such files. (Note that the precise
semantics of text mode on the Macintosh depends on the underlying C library
being used.)

7.2.1 Methods of File Objects

The rest of the examples in this section will assume that a file object called f has
already been created.

To read a file's contents, call T.read (size), which reads some quantity of data
and returns it as a string. size is an optional numeric argument. When size is
omitted or negative, the entire contents of the file will be read and returned; it's
your problem if the file is twice as large as your machine's memory. Otherwise,
at most size bytes are read and returned. If the end of the file has been reached,
f.read() will return an empty string ("' ").

>>> f.read()
'This is the entire file.\n'
>>> f.read()

f.readline() reads a single line from the file; a newline character (\n) is
left at the end of the string, and is only omitted on the last line of the file if the
file doesn't end in a newline. This makes the return value unambiguous; if
f.readline() returns an empty string, the end of the file has been reached,
while a blank line is represented by ' \n', a string containing only a single
newline.

>>> f.readline()

'This is the first line of the file.\n'
>>> f.readline()

'Second line of the file\n'

>>> f.readline()

f.readlines() returns a list containing all the lines of data in the file. If
given an optional parameter sizehint, it reads that many bytes from the file and
enough more to complete a line, and returns the lines from that. This is often
used to allow efficient reading of a large file by lines, but without having to load
the entire file in memory. Only complete lines will be returned.

>>> f.readlines()
['This is the first line of the file.\n', 'Second line of the file\n

f.write(string) writes the contents of string to the file, returning None.

>>> f,write('This is a test\n')

To write something other than a string, it needs to be converted to a string first:

>>> value = ('the answer', 42)
>>> s = str(value)
>>> f.write(s)

f.tell() returns an integer giving the file object's current position in the file,
measured in bytes from the beginning of the file. To change the file object's
position, use "f . seek (offset, from_what)". The position is computed from
adding offset to a reference point; the reference point is selected by the
from_what argument. A from_what value of 0 measures from the beginning of
the file, 1 uses the current file position, and 2 uses the end of the file as the
reference point. from_what can be omitted and defaults to 0, using the beginning
of the file as the reference point.

>>> f = open('/tmp/workfile', 'r+')

>>> f.write('0123456789abcdef')

>>> f.seek(5) # Go to the 6th byte in the file
>>> f.read(1)

|5|

>>> f.seek(-3, 2) # Go to the 3rd byte before the end
>>> f.read(1)

ldl

When you're done with a file, call f.close() to close it and free up any
system resources taken up by the open file. After calling f.close(), attempts
to use the file object will automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: I/0 operation on closed file

File objects have some additional methods, such as isatty () and
truncate() which are less frequently used; consult the Library Reference for
a complete guide to file objects.

7.2.2 The pickle Module

Strings can easily be written to and read from a file. Numbers take a bit more
effort, since the read () method only returns strings, which will have to be
passed to a function like int (), which takes a string like '123" and returns its
numeric value 123. However, when you want to save more complex data types
like lists, dictionaries, or class instances, things get a lot more complicated.

Rather than have users be constantly writing and debugging code to save
complicated data types, Python provides a standard module called pickle.
This is an amazing module that can take almost any Python object (even some
forms of Python code!), and convert it to a string representation; this process is
called pickling. Reconstructing the object from the string representation is called
unpickling. Between pickling and unpickling, the string representing the object
may have been stored in a file or data, or sent over a network connection to some
distant machine.

If you have an object X, and a file object f that's been opened for writing, the
simplest way to pickle the object takes only one line of code:

pickle.dump(x, f)

To unpickle the object again, if f is a file object which has been opened for
reading:

X = pickle.load(f)
(There are other variants of this, used when pickling many objects or when you

don't want to write the pickled data to a file; consult the complete documentation
for pickle in the Python Library Reference.)

pickle is the standard way to make Python objects which can be stored and
reused by other programs or by a future invocation of the same program; the
technical term for this is a persistent object. Because pickle is so widely used,
many authors who write Python extensions take care to ensure that new data
types such as matrices can be properly pickled and unpickled.

«1T-> Python Tutorial toc i

CONTENTS INDEX

Previous: 6. Modules up: Python Tutorial Next: 8. Errors and Exceptions

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 7. Input and Output up: Python Tutorial Next: 9. Classes

Subsections

8.1 Syntax Errors

8.2 Exceptions

8.3 Handling Exceptions
8.4 Raising Exceptions

8.5 User-defined Exceptions

8.6 Defining Clean-up Actions

8. Errors and Exceptions

Until now error messages haven't been more than mentioned, but if you have
tried out the examples you have probably seen some. There are (at least) two
distinguishable kinds of errors: syntax errors and exceptions.

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind
of complaint you get while you are still learning Python:

>>> while True print 'Hello world'
File "<stdin>", line 1, in ?
while True print 'Hello world'
N

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little "arrow' pointing at the
earliest point in the line where the error was detected. The error is caused by (or
at least detected at) the token preceding the arrow: in the example, the error is
detected at the keyword print, since a colon (":") is missing before it. File
name and line number are printed so you know where to look in case the input

came from a script.

8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error
when an attempt is made to execute it. Errors detected during execution are
called exceptions and are not unconditionally fatal: you will soon learn how to
handle them in Python programs. Most exceptions are not handled by programs,
however, and result in error messages as shown here:

>>> 10 * (1/0)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):
File "<stdin>", line 1, in ?
NameError: name 'spam' is not defined
>>> '2' + 2
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: cannot concatenate 'str' and 'int' objects

The last line of the error message indicates what happened. Exceptions come in
different types, and the type is printed as part of the message: the types in the
example are ZeroDivisionError, NameError and TypeError. The
string printed as the exception type is the name of the built-in exception that
occurred. This is true for all built-in exceptions, but need not be true for user-
defined exceptions (although it is a useful convention). Standard exception
names are built-in identifiers (not reserved keywords).

The rest of the line is a detail whose interpretation depends on the exception
type; its meaning is dependent on the exception type.

The preceding part of the error message shows the context where the exception
happened, in the form of a stack backtrace. In general it contains a stack
backtrace listing source lines; however, it will not display lines read from
standard input.

The Python Library Reference lists the built-in exceptions and their meanings.

8.3 Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the
following example, which asks the user for input until a valid integer has been
entered, but allows the user to interrupt the program (using Control-C or
whatever the operating system supports); note that a user-generated interruption
is signalled by raising the KeyboardInterrupt exception.

>>> while True:
try:
X = int(raw_input("Please enter a number: "))
break
except ValueError:
print "Oops! That was no valid number. Try again..."

The try statement works as follows.

e First, the try clause (the statement(s) between the try and except
keywords) is executed.

¢ If no exception occurs, the except clause is skipped and execution of the
try statement is finished.

e If an exception occurs during execution of the try clause, the rest of the
clause is skipped. Then if its type matches the exception named after the
except keyword, the rest of the try clause is skipped, the except clause is
executed, and then execution continues after the try statement.

e If an exception occurs which does not match the exception named in the
except clause, it is passed on to outer try statements; if no handler is
found, it is an unhandled exception and execution stops with a message as
shown above.

A try statement may have more than one except clause, to specify handlers for
different exceptions. At most one handler will be executed. Handlers only handle
exceptions that occur in the corresponding try clause, not in other handlers of the
same try statement. An except clause may name multiple exceptions as a
parenthesized list, for example:

. except (RuntimeError, TypeError, NameError):
pass

The last except clause may omit the exception name(s), to serve as a wildcard.
Use this with extreme caution, since it is easy to mask a real programming error
in this way! It can also be used to print an error message and then re-raise the
exception (allowing a caller to handle the exception as well):

import sys

try:
f = open('myfile.txt")
s = f.readline()
i = int(s.strip())

except IOError, (errno, strerror):

print "I/0 error(%s): %s" % (errno, strerror)
except ValueError:

print "Could not convert data to an integer."
except:

print "Unexpected error:", sys.exc_info()[0]

raise

The try ... except statement has an optional else clause, which, when present,
must follow all except clauses. It is useful for code that must be executed if the
try clause does not raise an exception. For example:

for arg in sys.argv[1l:]:

try:
f = open(arg, 'r')

except IOError:
print 'cannot open', arg

else:
print arg, 'has', len(f.readlines()), 'lines'
f.close()

The use of the else clause is better than adding additional code to the try
clause because it avoids accidentally catching an exception that wasn't raised by
the code being protected by the try ... except statement.

When an exception occurs, it may have an associated value, also known as the
exception's argument. The presence and type of the argument depend on the
exception type.

The except clause may specify a variable after the exception name (or list). The
variable is bound to an exception instance with the arguments stored in

instance.args. For convenience, the exception instance defines
__getitem__and __str___ so the arguments can be accessed or printed
directly without having to reference .args.

>>> try:
raise Exception('spam', 'eggs')
. except Exception, inst:

print type(inst) # the exception instance

print inst.args # arguments stored in .args

print inst # __str__ allows args to printed directl
X, Yy = inst # __getitem__ allows args to be unpacked
print 'x ='

; X
print 'y ="', y

<type 'instance'>
('spam', ‘'eggs')
('spam', ‘'eggs')
X = spam

y = €eggs

If an exception has an argument, it is printed as the last part ("detail’) of the
message for unhandled exceptions.

Exception handlers don't just handle exceptions if they occur immediately in the
try clause, but also if they occur inside functions that are called (even indirectly)
in the try clause. For example:

>>> def this_fails():
X = 1/0

>>> try:
this_fails()

. except ZeroDivisionError, detail:
print 'Handling run-time error:', detail

Handling run-time error: integer division or modulo

8.4 Raising Exceptions

The raise statement allows the programmer to force a specified exception to
occur. For example:

>>> raise NameError, 'HiThere'
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: HiThere

The first argument to raise names the exception to be raised. The optional
second argument specifies the exception's argument.

If you need to determine whether an exception was raised but don't intend to
handle it, a simpler form of the raise statement allows you to re-raise the
exception:

>>> try:
raise NameError, 'HiThere'
. except NameError:
print 'An exception flew by!'
raise

An exception flew by!

Traceback (most recent call last):
File "<stdin>", line 2, in ?

NameError: HiThere

8.5 User-defined Exceptions

Programs may name their own exceptions by creating a new exception class.
Exceptions should typically be derived from the Exception class, either
directly or indirectly. For example:

>>> class MyError(Exception):
def __init__ (self, value):
self.value = value
def __str__ (self):
return repr(self.value)
>>> try:
raise MyError(2*2)
. except MyError, e:
print 'My exception occurred, value:',6 e.value

My exception occurred, value: 4
>>> raise MyError, 'oops!'
Traceback (most recent call last):
File "<stdin>", line 1, in ?
__main__.MyError: 'oops!'

Exception classes can be defined which do anything any other class can do, but
are usually kept simple, often only offering a number of attributes that allow
information about the error to be extracted by handlers for the exception. When
creating a module which can raise several distinct errors, a common practice is
to create a base class for exceptions defined by that module, and subclass that to
create specific exception classes for different error conditions:

class Error(Exception):
"""Base class for exceptions in this module."""
pass

class InputError(Error):
"""Exception raised for errors in the input.

Attributes:
expression -- input expression in which the error occurred
message -- explanation of the error

def __init__ (self, expression, message):
self.expression = expression
self.message = message

class TransitionError(Error):
"""Raised when an operation attempts a state transition that's n

allowed.
Attributes:
previous -- state at beginning of transition
next -- attempted new state
message -- explanation of why the specific transition is not

def __init__ (self, previous, next, message):
self.previous = previous
self.next = next
self.message = message

Most exceptions are defined with names that end in ~"Error," similar to the
naming of the standard exceptions.

Many standard modules define their own exceptions to report errors that may
occur in functions they define. More information on classes is presented in
chapter 9, “"Classes."

8.6 Defining Clean-up Actions

The try statement has another optional clause which is intended to define
clean-up actions that must be executed under all circumstances. For example:

>>> try:
.. raise KeyboardInterrupt
. finally:
print 'Goodbye, world!'

Goodbye, world!

Traceback (most recent call last):
File "<stdin>", line 2, in ?

KeyboardInterrupt

A finally clause is executed whether or not an exception has occurred in the try
clause. When an exception has occurred, it is re-raised after the finally clause is
executed. The finally clause is also executed "“on the way out" when the try
statement is left via a break or return statement.

The code in the finally clause is useful for releasing external resources (such as
files or network connections), regardless of whether or not the use of the
resource was successful.

A try statement must either have one or more except clauses or one finally
clause, but not both.

«1T-> Python Tutorial toc i
Previous: /. Input and Output up: Python Tutorial Next: 9. Classes

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 8. Errors and Exceptions up: Python Tutorial Next: 10. Brief Tour of

Subsections

9.1 A Word About Terminology
9.2 Python Scopes and Name Spaces
9.3 A First I.ook at Classes

o 9.3.1 Class Definition Syntax

o 9.3.2 Class Objects
o 9.3.3 Instance Obijects

o 9.3.4 Method Objects
9.4 Random Remarks
9.5 Inheritance
o 9.5.1 Multiple Inheritance
9.6 Private Variables
9.7 Odds and Ends
9.8 Exceptions Are Classes Too
9.9 Iterators
9.10 Generators
9.11 Generator Expressions

9. Classes

Python's class mechanism adds classes to the language with a minimum of new
syntax and semantics. It is a mixture of the class mechanisms found in C++ and
Modula-3. As is true for modules, classes in Python do not put an absolute
barrier between definition and user, but rather rely on the politeness of the user
not to ~"break into the definition." The most important features of classes are
retained with full power, however: the class inheritance mechanism allows
multiple base classes, a derived class can override any methods of its base class
or classes, a method can call the method of a base class with the same name.
Objects can contain an arbitrary amount of private data.

In C++ terminology, all class members (including the data members) are public,
and all member functions are virtual. There are no special constructors or
destructors. As in Modula-3, there are no shorthands for referencing the object's
members from its methods: the method function is declared with an explicit first
argument representing the object, which is provided implicitly by the call. As in
Smalltalk, classes themselves are objects, albeit in the wider sense of the word:
in Python, all data types are objects. This provides semantics for importing and
renaming. Unlike C++ and Modula-3, built-in types can be used as base classes
for extension by the user. Also, like in C++ but unlike in Modula-3, most built-in
operators with special syntax (arithmetic operators, subscripting etc.) can be
redefined for class instances.

9.1 A Word About Terminology

Lacking universally accepted terminology to talk about classes, I will make
occasional use of Smalltalk and C++ terms. (I would use Modula-3 terms, since
its object-oriented semantics are closer to those of Python than C++, but I expect
that few readers have heard of it.)

Objects have individuality, and multiple names (in multiple scopes) can be
bound to the same object. This is known as aliasing in other languages. This is
usually not appreciated on a first glance at Python, and can be safely ignored
when dealing with immutable basic types (numbers, strings, tuples). However,
aliasing has an (intended!) effect on the semantics of Python code involving
mutable objects such as lists, dictionaries, and most types representing entities
outside the program (files, windows, etc.). This is usually used to the benefit of
the program, since aliases behave like pointers in some respects. For example,
passing an object is cheap since only a pointer is passed by the implementation;
and if a function modifies an object passed as an argument, the caller will see the
change -- this eliminates the need for two different argument passing
mechanisms as in Pascal.

9.2 Python Scopes and Name
Spaces

Before introducing classes, I first have to tell you something about Python's
scope rules. Class definitions play some neat tricks with namespaces, and you
need to know how scopes and namespaces work to fully understand what's going
on. Incidentally, knowledge about this subject is useful for any advanced Python
programmer.

Let's begin with some definitions.

A namespace is a mapping from names to objects. Most namespaces are
currently implemented as Python dictionaries, but that's normally not noticeable
in any way (except for performance), and it may change in the future. Examples
of namespaces are: the set of built-in names (functions such as abs(), and
built-in exception names); the global names in a module; and the local names in
a function invocation. In a sense the set of attributes of an object also form a
namespace. The important thing to know about namespaces is that there is
absolutely no relation between names in different namespaces; for instance, two
different modules may both define a function " “maximize" without confusion --
users of the modules must prefix it with the module name.

By the way, I use the word attribute for any name following a dot -- for example,
in the expression z . real, real is an attribute of the object z. Strictly
speaking, references to names in modules are attribute references: in the
expression modname . funcname, modname is a module object and
funcname is an attribute of it. In this case there happens to be a straightforward
mapping between the module's attributes and the global names defined in the
module: they share the same namespace! 21

Attributes may be read-only or writable. In the latter case, assignment to
attributes is possible. Module attributes are writable: you can write
"modname.the_answer = 42". Writable attributes may also be deleted
with the del statement. For example, "del modname.the_answer" will
remove the attribute the_answer from the object named by modname.

Name spaces are created at different moments and have different lifetimes. The
namespace containing the built-in names is created when the Python interpreter
starts up, and is never deleted. The global namespace for a module is created
when the module definition is read in; normally, module namespaces also last
until the interpreter quits. The statements executed by the top-level invocation of
the interpreter, either read from a script file or interactively, are considered part
of a module called __main__, so they have their own global namespace. (The
built-in names actually also live in a module; this is called __builtin__.)

The local namespace for a function is created when the function is called, and
deleted when the function returns or raises an exception that is not handled
within the function. (Actually, forgetting would be a better way to describe what
actually happens.) Of course, recursive invocations each have their own local
namespace.

A scope is a textual region of a Python program where a namespace is directly
accessible. “"Directly accessible" here means that an unqualified reference to a
name attempts to find the name in the namespace.

Although scopes are determined statically, they are used dynamically. At any
time during execution, there are at least three nested scopes whose namespaces
are directly accessible: the innermost scope, which is searched first, contains the
local names; the namespaces of any enclosing functions, which are searched
starting with the nearest enclosing scope; the middle scope, searched next,
contains the current module's global names; and the outermost scope (searched
last) is the namespace containing built-in names.

If a name is declared global, then all references and assignments go directly to
the middle scope containing the module's global names. Otherwise, all variables
found outside of the innermost scope are read-only.

Usually, the local scope references the local names of the (textually) current
function. Outside of functions, the local scope references the same namespace as
the global scope: the module's namespace. Class definitions place yet another
namespace in the local scope.

It is important to realize that scopes are determined textually: the global scope of
a function defined in a module is that module's namespace, no matter from
where or by what alias the function is called. On the other hand, the actual

search for names is done dynamically, at run time -- however, the language
definition is evolving towards static name resolution, at =" compile"” time, so don't
rely on dynamic name resolution! (In fact, local variables are already determined
statically.)

A special quirk of Python is that assignments always go into the innermost
scope. Assignments do not copy data -- they just bind names to objects. The
same is true for deletions: the statement "del X" removes the binding of X from
the namespace referenced by the local scope. In fact, all operations that
introduce new names use the local scope: in particular, import statements and
function definitions bind the module or function name in the local scope. (The
global statement can be used to indicate that particular variables live in the
global scope.)

9.3 A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some
new semantics.

9.3.1 Class Definition Syntax

The simplest form of class definition looks like this:

class ClassName:
<statement-1>

<statement-N>

Class definitions, like function definitions (def statements) must be executed
before they have any effect. (You could conceivably place a class definition in a
branch of an 1f statement, or inside a function.)

In practice, the statements inside a class definition will usually be function
definitions, but other statements are allowed, and sometimes useful -- we'll come
back to this later. The function definitions inside a class normally have a peculiar
form of argument list, dictated by the calling conventions for methods -- again,
this is explained later.

When a class definition is entered, a new namespace is created, and used as the
local scope -- thus, all assignments to local variables go into this new
namespace. In particular, function definitions bind the name of the new function
here.

When a class definition is left normally (via the end), a class object is created.
This is basically a wrapper around the contents of the namespace created by the
class definition; we'll learn more about class objects in the next section. The
original local scope (the one in effect just before the class definitions was
entered) is reinstated, and the class object is bound here to the class name given
in the class definition header (ClassName in the example).

9.3.2 Class Objects

Class objects support two kinds of operations: attribute references and
instantiation.

Attribute references use the standard syntax used for all attribute references in
Python: obj . name. Valid attribute names are all the names that were in the

class's namespace when the class object was created. So, if the class definition
looked like this:

class MyClass:
"A simple example class"
i = 12345
def f(self):
return 'hello world'

then MyClass.i and MyClass. f are valid attribute references, returning an
integer and a method object, respectively. Class attributes can also be assigned
to, so you can change the value of MyClass. 1 by assignment. __doc___is
also a valid attribute, returning the docstring belonging to the class: "A
simple example class".

Class instantiation uses function notation. Just pretend that the class object is a
parameterless function that returns a new instance of the class. For example
(assuming the above class):

X = MyClass()
creates a new instance of the class and assigns this object to the local variable X.

The instantiation operation (" calling" a class object) creates an empty object.
Many classes like to create objects in a known initial state. Therefore a class
may define a special method named __init__ (), like this:

def __init__ (self):
self.data = []

When a class defines an __init__ () method, class instantiation automatically
invokes __init__ () for the newly-created class instance. So in this example,
a new, initialized instance can be obtained by:

X = MyClass()

Of course, the __init__ () method may have arguments for greater flexibility.

In that case, arguments given to the class instantiation operator are passed on to
__init__ (). For example,

>>> class Complex:
def __init__ (self, realpart, imagpart):
self.r = realpart
self.i = imagpart
>>> x = Complex(3.0, -4.5)
>>> x.r, X.1
(3.0, -4.5)

9.3.3 Instance Objects

Now what can we do with instance objects? The only operations understood by
instance objects are attribute references. There are two kinds of valid attribute
names.

The first I'll call data attributes. These correspond to " instance variables" in
Smalltalk, and to ~“data members" in C++. Data attributes need not be declared;
like local variables, they spring into existence when they are first assigned to.
For example, if X is the instance of MyClass created above, the following piece
of code will print the value 16, without leaving a trace:

X.counter = 1

while x.counter < 10:
X.counter = Xx.counter * 2

print x.counter

del x.counter

The second kind of attribute references understood by instance objects are
methods. A method is a function that "~ “belongs to" an object. (In Python, the
term method is not unique to class instances: other object types can have
methods as well. For example, list objects have methods called append, insert,
remove, sort, and so on. However, below, we'll use the term method exclusively
to mean methods of class instance objects, unless explicitly stated otherwise.)

Valid method names of an instance object depend on its class. By definition, all
attributes of a class that are (user-defined) function objects define corresponding
methods of its instances. So in our example, X . T is a valid method reference,
since MyClass. f is a function, but X. 1 is not, since MyClass. i is not. But
X . T is not the same thing as MyClass. f -- it is a method object, not a function
object.

9.3.4 Method Objects

Usually, a method is called immediately:

x.F()

In our example, this will return the string 'hello world'. However, it is not
necessary to call a method right away: X . is a method object, and can be stored
away and called at a later time. For example:

xf = x.f
while True:
print xf()

will continue to print "hello world" until the end of time.

What exactly happens when a method is called? You may have noticed that

X . T () was called without an argument above, even though the function
definition for f specified an argument. What happened to the argument? Surely
Python raises an exception when a function that requires an argument is called
without any -- even if the argument isn't actually used...

Actually, you may have guessed the answer: the special thing about methods is
that the object is passed as the first argument of the function. In our example, the
call x. () is exactly equivalent to MyClass. f(X). In general, calling a
method with a list of n arguments is equivalent to calling the corresponding
function with an argument list that is created by inserting the method's object
before the first argument.

If you still don't understand how methods work, a look at the implementation can
perhaps clarify matters. When an instance attribute is referenced that isn't a data
attribute, its class is searched. If the name denotes a valid class attribute that is a
function object, a method object is created by packing (pointers to) the instance
object and the function object just found together in an abstract object: this is the
method object. When the method object is called with an argument list, it is
unpacked again, a new argument list is constructed from the instance object and
the original argument list, and the function object is called with this new
argument list.

9.4 Random Remarks

Data attributes override method attributes with the same name; to avoid
accidental name conflicts, which may cause hard-to-find bugs in large programs,
it is wise to use some kind of convention that minimizes the chance of conflicts.
Possible conventions include capitalizing method names, prefixing data attribute
names with a small unique string (perhaps just an underscore), or using verbs for
methods and nouns for data attributes.

Data attributes may be referenced by methods as well as by ordinary users

(" “clients") of an object. In other words, classes are not usable to implement pure
abstract data types. In fact, nothing in Python makes it possible to enforce data
hiding -- it is all based upon convention. (On the other hand, the Python
implementation, written in C, can completely hide implementation details and
control access to an object if necessary; this can be used by extensions to Python
written in C.)

Clients should use data attributes with care -- clients may mess up invariants
maintained by the methods by stamping on their data attributes. Note that clients
may add data attributes of their own to an instance object without affecting the
validity of the methods, as long as name conflicts are avoided -- again, a naming
convention can save a lot of headaches here.

There is no shorthand for referencing data attributes (or other methods!) from
within methods. I find that this actually increases the readability of methods:
there is no chance of confusing local variables and instance variables when
glancing through a method.

Conventionally, the first argument of methods is often called self. This is
nothing more than a convention: the name self has absolutely no special
meaning to Python. (Note, however, that by not following the convention your
code may be less readable by other Python programmers, and it is also
conceivable that a class browser program be written which relies upon such a
convention.)

Any function object that is a class attribute defines a method for instances of that
class. It is not necessary that the function definition is textually enclosed in the

class definition: assigning a function object to a local variable in the class is also
ok. For example:

Function defined outside the class
def fi(self, x, y):
return min(x, x+y)

class C:
f =f1
def g(self):
return 'hello world'
h =g

Now f, g and h are all attributes of class C that refer to function objects, and
consequently they are all methods of instances of C -- h being exactly equivalent
to g. Note that this practice usually only serves to confuse the reader of a
program.

Methods may call other methods by using method attributes of the sel1f
argument:

class Bag:

def __init__ (self):
self.data = []

def add(self, x):
self.data.append(x)

def addtwice(self, x):
self.add(x)
self.add(x)

Methods may reference global names in the same way as ordinary functions. The
global scope associated with a method is the module containing the class
definition. (The class itself is never used as a global scope!) While one rarely
encounters a good reason for using global data in a method, there are many
legitimate uses of the global scope: for one thing, functions and modules
imported into the global scope can be used by methods, as well as functions and
classes defined in it. Usually, the class containing the method is itself defined in
this global scope, and in the next section we'll find some good reasons why a
method would want to reference its own class!

9.5 Inheritance

Of course, a language feature would not be worthy of the name ""class" without
supporting inheritance. The syntax for a derived class definition looks as
follows:

class DerivedClassName(BaseClassName):
<statement-1>

<statement-N>

The name BaseClassName must be defined in a scope containing the derived
class definition. Instead of a base class name, an expression is also allowed. This
is useful when the base class is defined in another module,

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition proceeds the same as for a base class.
When the class object is constructed, the base class is remembered. This is used
for resolving attribute references: if a requested attribute is not found in the
class, it is searched in the base class. This rule is applied recursively if the base
class itself is derived from some other class.

There's nothing special about instantiation of derived classes:
DerivedClassName() creates a new instance of the class. Method
references are resolved as follows: the corresponding class attribute is searched,
descending down the chain of base classes if necessary, and the method
reference is valid if this yields a function object.

Derived classes may override methods of their base classes. Because methods
have no special privileges when calling other methods of the same object, a
method of a base class that calls another method defined in the same base class,
may in fact end up calling a method of a derived class that overrides it. (For C++
programmers: all methods in Python are effectively virtual.)

An overriding method in a derived class may in fact want to extend rather than
simply replace the base class method of the same name. There is a simple way to

call the base class method directly: just call
"BaseClassName.methodname(self, arguments)". Thisis
occasionally useful to clients as well. (Note that this only works if the base class
is defined or imported directly in the global scope.)

9.5.1 Multiple Inheritance

Python supports a limited form of multiple inheritance as well. A class definition
with multiple base classes looks as follows:

class DerivedClassName(Basel, Base2, Base3):
<statement-1>

<statement-N>

The only rule necessary to explain the semantics is the resolution rule used for
class attribute references. This is depth-first, left-to-right. Thus, if an attribute is
not found in DerivedClassName, it is searched in Basel, then (recursively)
in the base classes of Basel, and only if it is not found there, it is searched in
Base?2, and so on.

(To some people breadth first -- searching Base2 and Base3 before the base
classes of Basel -- looks more natural. However, this would require you to
know whether a particular attribute of Base1l is actually defined in Basel or in
one of its base classes before you can figure out the consequences of a name
conflict with an attribute of Base2. The depth-first rule makes no differences
between direct and inherited attributes of Base1l.)

It is clear that indiscriminate use of multiple inheritance is a maintenance
nightmare, given the reliance in Python on conventions to avoid accidental name
conflicts. A well-known problem with multiple inheritance is a class derived
from two classes that happen to have a common base class. While it is easy
enough to figure out what happens in this case (the instance will have a single
copy of “instance variables" or data attributes used by the common base class),
it is not clear that these semantics are in any way useful.

9.6 Private Variables

There is limited support for class-private identifiers. Any identifier of the form
___Spam (at least two leading underscores, at most one trailing underscore) is
textually replaced with _classname__ spam, where classname is the
current class name with leading underscore(s) stripped. This mangling is done
without regard of the syntactic position of the identifier, so it can be used to
define class-private instance and class variables, methods, as well as globals, and
even to store instance variables private to this class on instances of other classes.
Truncation may occur when the mangled name would be longer than 255
characters. Outside classes, or when the class name consists of only underscores,
no mangling occurs.

Name mangling is intended to give classes an easy way to define ~ private"
instance variables and methods, without having to worry about instance
variables defined by derived classes, or mucking with instance variables by code
outside the class. Note that the mangling rules are designed mostly to avoid
accidents; it still is possible for a determined soul to access or modify a variable
that is considered private. This can even be useful in special circumstances, such
as in the debugger, and that's one reason why this loophole is not closed.
(Buglet: derivation of a class with the same name as the base class makes use of
private variables of the base class possible.)

Notice that code passed to exec, eval() orevalfile() does not consider
the classname of the invoking class to be the current class; this is similar to the
effect of the global statement, the effect of which is likewise restricted to code
that is byte-compiled together. The same restriction applies to getattr (),
setattr() and delattr (), as well as when referencing __dict___
directly.

9.7 Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal "record" or C
“struct”, bundling together a couple of named data items. An empty class
definition will do nicely:

class Employee:
pass

john = Employee() # Create an empty employee record

Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab'
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be
passed a class that emulates the methods of that data type instead. For instance,
if you have a function that formats some data from a file object, you can define a
class with methods read() and readline() that gets the data from a string
buffer instead, and pass it as an argument.

Instance method objects have attributes, too: m.im_self is the object of which
the method is an instance, and m. im_func is the function object corresponding
to the method.

9.8 Exceptions Are Classes Too

User-defined exceptions are identified by classes as well. Using this mechanism
it is possible to create extensible hierarchies of exceptions.

There are two new valid (semantic) forms for the raise statement:

raise Class, instance

raise instance

In the first form, instance must be an instance of Class or of a class derived
from it. The second form is a shorthand for:

raise instance.__class_ , instance

A class in an except clause is compatible with an exception if it is the same class
or a base class thereof (but not the other way around -- an except clause listing a
derived class is not compatible with a base class). For example, the following
code will print B, C, D in that order:

class B:
pass
class C(B):
pass
class D(C):
pass

for ¢ in [B, C, D]:

try:
raise c()
except D:
print "D"
except C:
print "C"
except B:
print "B"

Note that if the except clauses were reversed (with "except B" first), it would
have printed B, B, B -- the first matching except clause is triggered.

When an error message is printed for an unhandled exception which is a class,
the class name is printed, then a colon and a space, and finally the instance

converted to a string using the built-in function str ().

9.9 Iterators

By now, you've probably noticed that most container objects can be looped over
using a for statement:

for element in [1, 2, 3]:
print element

for element in (1, 2, 3):
print element

for key in {'one':1, 'two':2}:
print key

for char in "123":
print char

for line in open("myfile.txt"):
print line

This style of access is clear, concise, and convenient. The use of iterators
pervades and unifies Python. Behind the scenes, the for statement calls

iter () on the container object. The function returns an iterator object that
defines the method next (') which accesses elements in the container one at a
time. When there are no more elements, next () raises a StopIteration
exception which tells the for loop to terminate. This example shows how it all
works:

>>> s = 'abc'
>>> it = iter(s)
>>> it

<iterator object at Ox00A1DB50>
>>> it.next()

lal

>>> it.next()

lbl

>>> jit.next()

|C|

>>> it.next()

Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-
it.next()
StopIteration

Having seen the mechanics behind the iterator protocol, it is easy to add iterator
behavior to your classes. Definea __iter___ () method which returns an
object with a next () method. If the class defines next (), then

__iter__ () canjustreturn self:

class Reverse:

"Iterator for looping over a sequence backwards"

def __init__ (self, data):
self.data = data
self.index = len(data)

def __iter_ (self):
return self

def next(self):
if self.index ==

raise StopIteration

self.index = self.index - 1
return self.data[self.index]

>>> for char in Reverse('spam'):
print char

woT o 3 -

9.10 Generators

Generators are a simple and powerful tool for creating iterators. They are written
like regular functions but use the yield statement whenever they want to return
data. Each time next () is called, the generator resumes where it left-off (it
remembers all the data values and which statement was last executed). An
example shows that generators can be trivially easy to create:

def reverse(data):
for index in range(len(data)-1, -1, -1):
yield data[index]

>>> for char in reverse('golf'):
print char

QO —h- -

Anything that can be done with generators can also be done with class based
iterators as described in the previous section. What makes generators so compact
isthat the __iter__ () and next () methods are created automatically.

Another key feature is that the local variables and execution state are
automatically saved between calls. This made the function easier to write and
much more clear than an approach using class variables like self.index and
self.data.

In addition to automatic method creation and saving program state, when
generators terminate, they automatically raise StopIteration. In
combination, these features make it easy to create iterators with no more effort
than writing a regular function.

9.11 Generator Expressions

Some simple generators can be coded succinctly as expressions using a syntax
similar to list comprehensions but with parentheses instead of brackets. These
expressions are designed for situations where the generator is used right away by
an enclosing function. Generator expressions are more compact but less versatile
than full generator definitions and tend to be more memory friendly than
equivalent list comprehensions.

Examples:

>>> sum(i*i for i in range(10)) # sum of squares
285

>>> xvec = [10, 20, 30]

>>> yvec = [7, 5, 3]

>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product
260

>>> from math import pi, sin
>>> sine_table = dict((x, sin(x*pi/180)) for x in range(0, 91))

>>> unique_words = set(word for line in page for word in line.spli
>>> valedictorian = max((student.gpa, student.name) for student in g
>>> data = 'golf'

>>> list(data[i] for i in range(len(data)-1,-1,-1))
[lfll 'l', '0', lgl]

Foothotes

... namespace!21

Except for one thing. Module objects have a secret read-only attribute
called __dict__ which returns the dictionary used to implement the
module's namespace; the name __dict__is an attribute but not a global
name. Obviously, using this violates the abstraction of namespace
implementation, and should be restricted to things like post-mortem

debuggers.

«1T-> Python Tutorial toc i

CONTENTS INDEX

Previous: 8. Errors and Exceptions up: Python Tutorial Next: 10. Brief Tour of

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 9. Classes up: Python Tutorial Next: 11. Brief Tour of

Subsections

10.1 Operating System Interface
10.2 File Wildcards

10.3 Command Line Arguments
10.4 Error Output Redirection and Program Termination

10.5 String Pattern Matching
10.6 Mathematics

10.7 Internet Access

10.8 Dates and Times

10.9 Data Compression

10.10 Performance Measurement
10.11 Quality Control

10.12 Batteries Included

10. Brief Tour of the Standard
Library

10.1 Operating System Interface

The 0S module provides dozens of functions for interacting with the operating
system:

>>> import os

>>> os.system('time 0:02"')

0]

>>> o0s.getcwd() # Return the current working directory
'"C:\\Python24"'

>>> o0s.chdir('/server/accesslogs')

Be sure to use the "import o0s" style instead of "from os import *".
This will keep 0s.open() from shadowing the builtin open() function
which operates much differently.

The builtin dir () and help () functions are useful as interactive aids for
working with large modules like 0sS:

>>> import os

>>> dir(os)

<returns a list of all module functions>

>>> help(os)

<returns an extensive manual page created from the module's docstrin

For daily file and directory management tasks, the shutil module provides a
higher level interface that is easier to use:

>>> import shutil
>>> shutil.copyfile('data.db', 'archive.db')
>>> shutil.move('/build/executables', 'installdir')

10.2 File Wildcards

The g1lob module provides a function for making file lists from directory
wildcard searches:

>>> import glob
>>> glob.glob('*.py")
['primes.py', 'random.py', 'quote.py']

10.3 Command Line Arguments

Common utility scripts often invoke processing command line arguments. These
arguments are stored in the SyS module's argv attribute as a list. For instance the
following output results from running "python demo.py one two
three" at the command line:

>>> import sys
>>> print sys.argv
['demo.py', 'one', 'two', 'three']

The getopt module processes sys.argv using the conventions of the Unix
getopt () function. More powerful and flexible command line processing is

provided by the optparse module.

10.4 Error Output Redirection and
Program Termination

The Sy s module also has attributes for stdin, stdout, and stderr. The latter is
useful for emitting warnings and error messages to make them visible even when

stdout has been redirected:

>>> gys.stderr.write('Warning, log file not found starting a new one
wWarning, log file not found starting a new one

The most direct way to terminate a script is to use "sys.exit()".

10.5 String Pattern Matching

The re module provides regular expression tools for advanced string processing.
For complex matching and manipulation, regular expressions offer succinct,
optimized solutions:

>>> import re

>>> re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest')
['foot', 'fell', 'fastest']

>>> re.sub(r'(\b[a-z]+) \1', r'\1', 'cat in the the hat')

'cat in the hat'

When only simple capabilities are needed, string methods are preferred because
they are easier to read and debug:

>>> 'tea for too'.replace('too', 'two')
'tea for two'

10.6 Mathematics

The math module gives access to the underlying C library functions for floating
point math:

>>> import math

>>> math.cos(math.pi / 4.0)
0.70710678118654757

>>> math.log(1024, 2)

10.0

The random module provides tools for making random selections:

>>> import random

>>> random.choice(['apple', 'pear', 'banana'])

'apple'

>>> random.sample(xrange(100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]

>>> random.random() # random float
0.17970987693706186
>>> random.randrange(6) # random integer chosen from range(6)

4

10.7 Internet Access

There are a number of modules for accessing the internet and processing internet
protocols. Two of the simplest are ur113ib2 for retrieving data from urls and

smtplib for sending mail:

>>> import urllib2
>>> for line in urllib2.urlopen('http://tycho.usno.navy.mil/cgi-bin/
if 'EST' in line: # look for Eastern Standard Time
print line

Nov. 25, 09:43:32 PM EST

>>> import smtplib

>>> server = smtplib.SMTP('localhost')

>>> server.sendmail('soothsayer@example.org', 'jceasar@example.org',
"""To: jceasar@example.org

From: soothsayer@example.org

Beware the Ides of March.
Illlll)

>>> server.quit()

10.8 Dates and Times

The datetime module supplies classes for manipulating dates and times in
both simple and complex ways. While date and time arithmetic is supported, the
focus of the implementation is on efficient member extraction for output
formatting and manipulation. The module also supports objects that are time
zone aware.

dates are easily constructed and formatted

>>> from datetime import date

>>> now = date.today()

>>> now

datetime.date(2003, 12, 2)

>>> now.strftime("%m-%d-%y or %d%b %Y is a %A on the %d day of %B")
'12-02-03 or 02Dec 2003 is a Tuesday on the 02 day of December'

dates support calendar arithmetic
>>> birthday = date(1964, 7, 31)
>>> age = now - birthday

>>> age.days

14368

10.9 Data Compression

Common data archiving and compression formats are directly supported by
modules including: z1ib, gzip, bz2, zipfile, and tarfile.

>>> import zlib

>>> s = 'witch which has which witches wrist watch'
>>> len(s)
41

>>> t = zlib.compress(s)

>>> len(t)

37

>>> z1ib.decompress(t)

'witch which has which witches wrist watch'
>>> z1ib.crc32(t)

-1438085031

10.10 Performance Measurement

Some Python users develop a deep interest in knowing the relative performance
between different approaches to the same problem. Python provides a
measurement tool that answers those questions immediately.

For example, it may be tempting to use the tuple packing and unpacking feature
instead of the traditional approach to swapping arguments. The timeit module
quickly demonstrates a modest performance advantage:

>>> from timeit import Timer

>>> Timer('t=a; a=b; b=t', 'a=1; b=2').timeit()
0.57535828626024577

>>> Timer('a,b = b,a', 'a=1l; b=2"').timeit()
0.54962537085770791

In contrast to timeit's fine level of granularity, the profile and pstats
modules provide tools for identifying time critical sections in larger blocks of
code.

10.11 Quality Control

One approach for developing high quality software is to write tests for each
function as it is developed and to run those tests frequently during the
development process.

The doctest module provides a tool for scanning a module and validating
tests embedded in a program's docstrings. Test construction is as simple as
cutting-and-pasting a typical call along with its results into the docstring. This
improves the documentation by providing the user with an example and it allows
the doctest module to make sure the code remains true to the documentation:

def average(values):
"""Computes the arithmetic mean of a list of numbers.

>>> print average([20, 30, 70])
40.0

return sum(values, 0.0) / len(values)

import doctest
doctest.testmod() # automatically validate the embedded tests

The unittest module is not as effortless as the doctest module, but it
allows a more comprehensive set of tests to be maintained in a separate file:

import unittest
class TestStatisticalFunctions(unittest.TestCase):

def test_average(self):
self.assertEqual(average([20, 30, 70]), 40.0)
self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
self.assertRaises(ZeroDivisionError, average, [])
self.assertRaises(TypeError, average, 20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

10.12 Batteries Included

Python has a "batteries included" philosophy. This is best seen through the
sophisticated and robust capabilities of its larger packages. For example:

o The xmlrpclib and SimpleXMLRPCServer modules make
implementing remote procedure calls into an almost trivial task. Despite the
names, no direct knowledge or handling of XML is needed.

e The email package is a library for managing email messages, including
MIME and other RFC 2822-based message documents. Unlike smptlib
and poplib which actually send and receive messages, the email package
has a complete toolset for building or decoding complex message structures
(including attachments) and for implementing internet encoding and header
protocols.

e The xml.dom and xml . sax packages provide robust support for parsing
this popular data interchange format. Likewise, the €SV module supports
direct reads and writes in a common database format. Together, these
modules and packages greatly simplify data interchange between python
applications and other tools.

e Internationalization is supported by a number of modules including
gettext, locale, and the codecs package.

«1T-> Python Tutorial toc i

COMTENTS INDEK
Previous: 9. Classes up: Python Tutorial Next: 11. Brief Tour of

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 10. Brief Tour of up: Python Tutorial Next: 12. What Now?

Subsections
e 11.1 Output Formatting
e 11.2 Templating
e 11.3 Working with Binary Data Record Layouts
e 11.4 Multi-threading
e 11.5 Logging
o 11.6 Weak References
e 11.7 Tools for Working with Lists
e 11.8 Decimal Floating Point Arithmetic

11. Brief Tour of the Standard
Library - Part li

This second tour covers more advanced modules that support professional
programming needs. These modules rarely occur in small scripts.

11.1 Output Formatting

The repr module provides an version of repr () for abbreviated displays of
large or deeply nested containers:

>>> import repr
>>> repr.repr(set('supercalifragilisticexpialidocious'))
"Set(['a', |C|, 'd', 'e', lfll 'g', ...])Il

The pprint module offers more sophisticated control over printing both built-
in and user defined objects in a way that is readable by the interpreter. When the
result is longer than one line, the "“pretty printer" adds line breaks and
indentation to more clearly reveal data structure:

>>> import pprint
>>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['mag
'yvellow'], 'blue']]]

>>> pprint.pprint(t, width=30)
[[[['black', 'cyan'],
'white',
['green', 'red']],
[['magenta', 'yellow'],
"blue']]]

The textwrap module formats paragraphs of text to fit a given screen width:

>>> import textwrap

>>> doc = """The wrap() method is just like fill() except that i
. a list of strings instead of one big string with newlines tao
. the wrapped lines."""

>>> print textwrap.fill(doc, width=40)
The wrap() method is just like fill()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.

The 1locale module accesses a database of culture specific data formats. The
grouping attribute of locale's format function provides a direct way of formatting
numbers with group separators:

>>> import locale
>>> locale.setlocale(locale.LC_ALL, 'English_United States.1252'

'English_United States.1252'

>>> conv = locale.localeconv()

>>> X = 1234567.8

>>> locale.format("%d", X, grouping=True)

'1,234,567"

>>> locale.format("%s%.*f", (conv['currency_symbol'],
conv['int_frac_digits'], x), grouping=True)

'$1,234,567.80"

get a mapping of conve

11.2 Templating

The string module includes a versatile Template class with a simplified
syntax suitable for editing by end-users. This allows users to customize their
applications without having to alter the application.

The format uses placeholder names formed by "$" with valid Python identifiers
(alphanumeric characters and underscores). Surrounding the placeholder with
braces allows it to be followed by more alphanumeric letters with no intervening
spaces. Writing "$$" creates a single escaped "$":

>>> from string import Template

>>> t = Template('${village}folk send $$10 to S$cause.')

>>> t.substitute(village="'Nottingham', cause='the ditch fund')
"Nottinghamfolk send $10 to the ditch fund.'

The substitute method raises a KeyError when a placeholder is not
supplied in a dictionary or a keyword argument. For mail-merge style
applications, user supplied data may be incomplete and the
safe_substitute method may be more appropriate -- it will leave
placeholders unchanged if data is missing:

>>> t Template('Return the $item to $owner.')
>>> d dict(item='unladen swallow')

>>> t.substitute(d)

Traceback (most recent call last):

KeyError: 'owner'
>>> t.safe_substitute(d)
'Return the unladen swallow to $owner.'

Template subclasses can specify a custom delimiter. For example, a batch
renaming utility for a photo browser may elect to use percent signs for
placeholders such as the current date, image sequence number, or file format:

>>> import time, os.path

>>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
>>> class BatchRename(Template):

.. delimiter = '%'

>>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format
Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f

>>> t = BatchRename(fmt)

>>> date = time.strftime('%d%b%y ')

>>> for i, filename in enumerate(photofiles):
base, ext = os.path.splitext(filename)
newname = t.substitute(d=date, n=i, f=ext)
print '%s --> %s' % (filename, newname)

img_1074.jpg --> Ashley_0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg

Another application for templating is separating program logic from the details
of multiple output formats. The makes it possible to substitute custom templates
for XML files, plain text reports, and HMTL web reports.

11.3 Working with Binary Data
Record Layouts

The struct module provides pack() and unpack () functions for working
with variable length binary record formats. The following example shows how to
loop through header information in a ZIP file (with pack codes "H" and "L"
representing two and four byte unsigned numbers respectively):

import struct

data = open('myfile.zip', 'rb').read()

start = 0

for i in range(3): # show the first 3 file
start += 14
fields = struct.unpack('LLLHH', data[start:start+16])
crc32, comp_size, uncomp_size, filenamesize, extra_size = f
start += 16

filename = data[start:start+filenamesize]

start += filenamesize

extra = data[start:start+extra_size]

print filename, hex(crc32), comp_size, uncomp_size

start += extra_size + comp_size # skip to the next heade

11.4 Multi-threading

Threading is a technique for decoupling tasks which are not sequentially
dependent. Threads can be used to improve the responsiveness of applications
that accept user input while other tasks run in the background. A related use case
is running I/O in parallel with computations in another thread.

The following code shows how the high level threading module can run
tasks in background while the main program continues to run:

import threading, zipfile

class AsyncZip(threading.Thread):

def __init_ (self, infile, outfile):
threading.Thread.__init__ (self)
self.infile = infile
self.outfile = outfile

def run(self):
f = zipfile.zipFile(self.outfile, 'w', zipfile.ZIP_DEFLA
f.write(self.infile)
f.close()
print 'Finished background zip of: ', self.infile

background = AsynczZip('mydata.txt', 'myarchive.zip')
background.start()
print 'The main program continues to run in foreground.'

background.join() # Wait for the background task to finish
print 'Main program waited until background was done.'

The principal challenge of multi-threaded applications is coordinating threads
that share data or other resources. To that end, the threading module provides a
number of synchronization primitives including locks, events, condition
variables, and semaphores.

While those tools are powerful, minor design errors can result in problems that
are difficult to reproduce. So, the preferred approach to task coordination is to
concentrate all access to a resource in a single thread and then using the Queue
module to feed that thread with requests from other threads. Applications using
Queue objects for inter-thread communication and coordination are easier to
design, more readable, and more reliable.

11.5 Logging

The 1ogging module offers a full featured and flexible logging system. At its
simplest, log messages are sent to a file or to sys.stderr:

import logging

logging.debug('Debugging information')
logging.info('Informational message')
logging.warning('Warning:config file %s not found', 'server.conf
logging.error('Error occurred')

logging.critical('Critical error -- shutting down')

This produces the following output:

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

By default, informational and debugging messages are suppressed and the output
is sent to standard error. Other output options include routing messages through
email, datagrams, sockets, or to an HTTP Server. New filters can select different
routing based on message priority: DEBUG, INFO, WARNING, ERROR, and
CRITICAL.

The logging system can be configured directly from Python or can be loaded
from a user editable configuration file for customized logging without altering
the application.

11.6 Weak References

Python does automatic memory management (reference counting for most
objects and garbage collection to eliminate cycles). The memory is freed shortly
after the last reference to it has been eliminated.

This approach works fine for most applications but occasionally there is a need
to track objects only as long as they are being used by something else.
Unfortunately, just tracking them creates a reference that makes them permanent.
The weakref module provides tools for tracking objects without creating a
reference. When the object is no longer needed, it is automatically removed from
a weakref table and a callback is triggered for weakref objects. Typical
applications include caching objects that are expensive to create:

>>>
>>>

>>>
>>>
>>>
>>>
10
>>>
>>>
0
>>>

Traceback (most recent call last):

import weakref, gc
class A:

def __init__ (self, value):
self.value = value

def __repr__(self):

return str(self.value)

create a reference

does not create a reference
fetch the object if it is stil

remove the one reference
run garbage collection right a

a = A(10) #
d = weakref.WeakValueDictionary()
d['primary'] = a #
d['primary'] #
del a #
gc.collect() #
d['primary'] #

entry was automatically remove

File "<pyshell#108>", line 1, in -toplevel-

d['primary"'] #

entry was automatically remove

File "C:/PY24/l1lib/weakref.py", line 46, in __getitem__

o = self.data[key]()

KeyError: 'primary'

11.7 Tools for Working with Lists

Many data structure needs can be met with the built-in list type. However,
sometimes there is a need for alternative implementations with different
performance trade-offs.

The array module provides an array () object that is like a list that stores
only homogenous data but stores it more compactly. The following example
shows an array of numbers stored as two byte unsigned binary numbers
(typecode "H'") rather than the usual 16 bytes per entry for regular lists of
python int objects:

>>> from array import array

>>> a = array('H', [4000, 10, 700, 22222])
>>> sum(a)

26932

>>> a[1:3]

array('H', [10, 700])

The collections module provides a deque () object that is like a list with
faster appends and pops from the left side but slower lookups in the middle.
These objects are well suited for implementing queues and breadth first tree
searches:

>>> from collections import deque

>>> d = deque(["task1", "task2", "task3"])
>>> d.append("task4")

>>> print "Handling", d.popleft()

Handling taskl

unsearched = deque([starting_node])
def breadth_first_search(unsearched):
node = unsearched.popleft()
for m in gen_moves(node):
if is_goal(m):
return m
unsearched.append(m)

In addition to alternative list implementations, the library also offers other tools
such as the bisect module with functions for manipulating sorted lists:

>>> import bisect
>>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500,

>>> pisect.insort(scores, (300, 'ruby'))
>>> scores
[(160, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500,

The heapg module provides functions for implementing heaps based on regular
lists. The lowest valued entry is always kept at position zero. This is useful for
applications which repeatedly access the smallest element but do not want to run
a full list sort:

>>> from heapq import heapify, heappop, heappush

>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]

>>> heapify(data) # rearrange the list intc
>>> heappush(data, -5) # add a new entry

>>> [heappop(data) for i in range(3)] # fetch the three smalles
['5/ 0, 1]

11.8 Decimal Floating Point
Arithmetic

The decimal module offers a Decimal datatype for decimal floating point
arithmetic. Compared to the built-in float implementation of binary floating
point, the new class is especially helpful for financial applications and other uses
which require exact decimal representation, control over precision, control over
rounding to meet legal or regulatory requirements, tracking of significant
decimal places, or for applications where the user expects the results to match
calculations done by hand.

For example, calculating a 5% tax on a 70 cent phone charge gives different
results in decimal floating point and binary floating point. The difference
becomes significant if the results are rounded to the nearest cent:

>>> from decimal import *

>>> Decimal('0.70') * Decimal('1.05")
Decimal("0.7350")

>>> 70 * 1.05

0.73499999999999999

The Decimal result keeps a trailing zero, automatically inferring four place
significance from the two digit multiplicands. Decimal reproduces mathematics
as done by hand and avoids issues that can arise when binary floating point
cannot exactly represent decimal quantities.

Exact representation enables the Decimal class to perform modulo calculations
and equality tests that are unsuitable for binary floating point:

>>> Decimal('1.00') % Decimal('.10')
Decimal("0.00")

>>> 1.00 % 0.10

0.09999999999999995

>>> sum([Decimal('0.1')]*10) == Decimal('1.0")
True

>>> sum([0.1]*10) == 1.0

False

The decimal module provides arithmetic with as much precision as needed:

>>> getcontext().prec = 36
>>> Decimal(1) / Decimal(7)
Decimal("0.142857142857142857142857142857142857")

“«1T-> Python Tutorial toc
Previous: 10. Brief Tour of up: Python Tutorial Next: 12. What Now?

INDEX

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 11. Brief Tour of up: Python Tutorial Next: A. Interactive Input
Editing

12. What Now?

Reading this tutorial has probably reinforced your interest in using Python -- you
should be eager to apply Python to solve your real-world problems. Now what
should you do?

You should read, or at least page through, the Python Library Reference, which
gives complete (though terse) reference material about types, functions, and
modules that can save you a lot of time when writing Python programs. The
standard Python distribution includes a lot of code in both C and Python; there
are modules to read Unix mailboxes, retrieve documents via HTTP, generate
random numbers, parse command-line options, write CGI programs, compress
data, and a lot more; skimming through the Library Reference will give you an
idea of what's available.

The major Python Web site is http://www.python.org/; it contains code,
documentation, and pointers to Python-related pages around the Web. This Web
site is mirrored in various places around the world, such as Europe, Japan, and
Australia; a mirror may be faster than the main site, depending on your
geographical location. A more informal site is http://starship.python.net/,
which contains a bunch of Python-related personal home pages; many people
have downloadable software there. Many more user-created Python modules can
be found in the Python Package Index (PyPI).

For Python-related questions and problem reports, you can post to the
newsgroup comp.lang.python, or send them to the mailing list at python-
list@python.org. The newsgroup and mailing list are gatewayed, so messages
posted to one will automatically be forwarded to the other. There are around 120
postings a day (with peaks up to several hundred), asking (and answering)
questions, suggesting new features, and announcing new modules. Before
posting, be sure to check the list of Frequently Asked Questions (also called the
FAQ), or look for it in the Misc/ directory of the Python source distribution.
Mailing list archives are available at http://www.python.org/pipermail/. The
FAQ answers many of the questions that come up again and again, and may
already contain the solution for your problem.

http://www.python.org/
http://starship.python.net/
http://www.python.org/pypi
news:comp.lang.python
http://www.python.org/doc/faq/
http://www.python.org/pipermail/

«1T-> Python Tutorial toc i

CONTENTS INDEX

Previous: 11. Brief Tour of up: Python Tutorial Next: A. Interactive Input
Editing

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 12. WWhat Now? up: Python Tutorial Next: B. Floating Point
Arithmetic:

Subsections

A.1 Line Editing
A.2 History Substitution
A.3 Key Bindings

A.4 Commentary

A. Interactive Input Editing and
History Substitution

Some versions of the Python interpreter support editing of the current input line
and history substitution, similar to facilities found in the Korn shell and the GNU
Bash shell. This is implemented using the GNU Readline library, which supports
Emacs-style and vi-style editing. This library has its own documentation which I
won't duplicate here; however, the basics are easily explained. The interactive
editing and history described here are optionally available in the Unix and
CygWin versions of the interpreter.

This chapter does not document the editing facilities of Mark Hammond's
PythonWin package or the Tk-based environment, IDLE, distributed with
Python. The command line history recall which operates within DOS boxes on
NT and some other DOS and Windows flavors is yet another beast.

A.1 Line Editing

If supported, input line editing is active whenever the interpreter prints a primary
or secondary prompt. The current line can be edited using the conventional
Emacs control characters. The most important of these are: c-A (Control-A)
moves the cursor to the beginning of the line, c-E to the end, C-B moves it one
position to the left, c-F to the right. Backspace erases the character to the left of
the cursor, C-D the character to its right. c-K Kkills (erases) the rest of the line to
the right of the cursor, c-Y yanks back the last killed string. C-underscore
undoes the last change you made; it can be repeated for cumulative effect.

A.2 History Substitution

History substitution works as follows. All non-empty input lines issued are saved
in a history buffer, and when a new prompt is given you are positioned on a new
line at the bottom of this buffer. c-P moves one line up (back) in the history
buffer, C-N moves one down. Any line in the history buffer can be edited; an
asterisk appears in front of the prompt to mark a line as modified. Pressing the
Return key passes the current line to the interpreter. C-R starts an incremental
reverse search; c-S starts a forward search.

A.3 Key Bindings

The key bindings and some other parameters of the Readline library can be
customized by placing commands in an initialization file called ~/.inputrc. Key
bindings have the form

key-name: function-name

or

"string": function-name

and options can be set with

set option-name value

For example:

I prefer vi-style editing:
set editing-mode vi

Edit using a single line:
set horizontal-scroll-mode On

Rebind some keys:

Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file

Note that the default binding for Tab in Python is to insert a Tab character instead
of Readline's default filename completion function. If you insist, you can
override this by putting

Tab: complete

in your ~/.inputrc. (Of course, this makes it harder to type indented continuation
lines if you're accustomed to using Tab for that purpose.)

Automatic completion of variable and module names is optionally available. To
enable it in the interpreter's interactive mode, add the following to your startup
file:Al

import rlcompleter, readline
readline.parse_and_bind('tab: complete')

This binds the Tab key to the completion function, so hitting the Tab key twice
suggests completions; it looks at Python statement names, the current local
variables, and the available module names. For dotted expressions such as
string. a, it will evaluate the expression up to the final "." and then suggest
completions from the attributes of the resulting object. Note that this may
execute application-defined code if an object witha __getattr__ () method
is part of the expression.

A more capable startup file might look like this example. Note that this deletes
the names it creates once they are no longer needed; this is done since the startup
file is executed in the same namespace as the interactive commands, and
removing the names avoids creating side effects in the interactive environments.
You may find it convenient to keep some of the imported modules, such as 0S,
which turn out to be needed in most sessions with the interpreter.

Add auto-completion and a stored history file of commands to your
interactive interpreter. Requires Python 2.0+, readline. Autocompl
bound to the Esc key by default (you can change it - see readline

Store the file in ~/.pystartup, and set an environment variable to
to it: "export PYTHONSTARTUP=/max/home/itamar/.pystartup" in bash

Note that PYTHONSTARTUP does *not* expand "~", so you have to put
full path to your home directory.

H o HHHHHH

import atexit
import os

import readline
import rlcompleter

historyPath = os.path.expanduser("~/.pyhistory")
def save_history(historyPath=historyPath):
import readline

readline.write_history_file(historyPath)

if os.path.exists(historyPath):
readline.read_history_file(historyPath)

atexit.register(save_history)
del os, atexit, readline, rlcompleter, save_history, historyPath

A.4 Commentary

This facility is an enormous step forward compared to earlier versions of the
interpreter; however, some wishes are left: It would be nice if the proper
indentation were suggested on continuation lines (the parser knows if an indent
token is required next). The completion mechanism might use the interpreter's
symbol table. A command to check (or even suggest) matching parentheses,
quotes, etc., would also be useful.

Foothotes

... file:Ad
Python will execute the contents of a file identified by the
PYTHONSTARTUP environment variable when you start an interactive
interpreter.

«1T-> Python Tutorial toc i

COMTENTS INDEK
Previous: 12. WWhat Now? up: Python Tutorial Next: B. Floating Point
Arithmetic:

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: A. Interactive Input Editing up: Python Tutorial Next: C. History and
License

Subsections

e B.1 Representation Error

B. Floating Point Arithmetic: Issues
and Limitations

Floating-point numbers are represented in computer hardware as base 2 (binary)
fractions. For example, the decimal fraction

0.125

has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction

0.001

has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the only real
difference being that the first is written in base 10 fractional notation, and the
second in base 2.

Unfortunately, most decimal fractions cannot be represented exactly as binary
fractions. A consequence is that, in general, the decimal floating-point numbers
you enter are only approximated by the binary floating-point numbers actually
stored in the machine.

The problem is easier to understand at first in base 10. Consider the fraction 1/3.
You can approximate that as a base 10 fraction:

0.3

or, better,

0.33

or, better,

0.333

and so on. No matter how many digits you're willing to write down, the result
will never be exactly 1/3, but will be an increasingly better approximation to 1/3.

In the same way, no matter how many base 2 digits you're willing to use, the
decimal value 0.1 cannot be represented exactly as a base 2 fraction. In base 2,

1/10 is the infinitely repeating fraction

0.0001100116060110601100116601106011601106116001160611600611. ..

Stop at any finite number of bits, and you get an approximation. This is why you
see things like:

>>> 0.1
0.10000000000000001

On most machines today, that is what you'll see if you enter 0.1 at a Python
prompt. You may not, though, because the number of bits used by the hardware
to store floating-point values can vary across machines, and Python only prints a
decimal approximation to the true decimal value of the binary approximation
stored by the machine. On most machines, if Python were to print the true
decimal value of the binary approximation stored for 0.1, it would have to
display

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

instead! The Python prompt (implicitly) uses the builtin repr () function to
obtain a string version of everything it displays. For floats, repr (float) rounds
the true decimal value to 17 significant digits, giving

0.100000006000000001

repr (float) produces 17 significant digits because it turns out that's enough
(on most machines) so that eval(repr(x)) == x exactly for all finite floats
x, but rounding to 16 digits is not enough to make that true.

Note that this is in the very nature of binary floating-point: this is not a bug in
Python, it is not a bug in your code either, and you'll see the same kind of thing
in all languages that support your hardware's floating-point arithmetic (although
some languages may not display the difference by default, or in all output
modes).

Python's builtin str () function produces only 12 significant digits, and you
may wish to use that instead. It's unusual for eval(str(x)) to reproduce x,
but the output may be more pleasant to look at:

>>> print str(0.1)

0.1

It's important to realize that this is, in a real sense, an illusion: the value in the
machine is not exactly 1/10, you're simply rounding the display of the true
machine value.

Other surprises follow from this one. For example, after seeing

>>> 0.1
0.100000006000000001

you may be tempted to use the round() function to chop it back to the single
digit you expect. But that makes no difference:

>>> round(0.1, 1)
0.10000000000000001

The problem is that the binary floating-point value stored for "0.1" was already
the best possible binary approximation to 1/10, so trying to round it again can't
make it better: it was already as good as it gets.

Another consequence is that since 0.1 is not exactly 1/10, adding 0.1 to itself 10
times may not yield exactly 1.0, either:

>>> sum = 0.0
>>> for 1 in range(10):
sum += 0.1

>>> sum

0.99999999999999989
Binary floating-point arithmetic holds many surprises like this. The problem
with "0.1" is explained in precise detail below, in the "Representation Error"
section. See The Perils of Floating Point for a more complete account of other
Ccommon surprises.

As that says near the end, "there are no easy answers." Still, don't be unduly
wary of floating-point! The errors in Python float operations are inherited from
the floating-point hardware, and on most machines are on the order of no more
than 1 part in 2**53 per operation. That's more than adequate for most tasks, but
you do need to keep in mind that it's not decimal arithmetic, and that every float
operation can suffer a new rounding error.

http://www.lahey.com/float.htm

While pathological cases do exist, for most casual use of floating-point
arithmetic you'll see the result you expect in the end if you simply round the
display of your final results to the number of decimal digits you expect. str ()
usually suffices, and for finer control see the discussion of Python's % format
operator: the %g, %f and %e format codes supply flexible and easy ways to
round float results for display.

B.1 Representation Error

This section explains the ~"0.1" example in detail, and shows how you can
perform an exact analysis of cases like this yourself. Basic familiarity with
binary floating-point representation is assumed.

Representation error refers to that some (most, actually) decimal fractions
cannot be represented exactly as binary (base 2) fractions. This is the chief
reason why Python (or Perl, C, C++, Java, Fortran, and many others) often won't
display the exact decimal number you expect:

>>> 0.1
0.10000000000000001

Why is that? 1/10 is not exactly representable as a binary fraction. Almost all
machines today (November 2000) use IEEE-754 floating point arithmetic, and
almost all platforms map Python floats to IEEE-754 "double precision". 754
doubles contain 53 bits of precision, so on input the computer strives to convert
0.1 to the closest fraction it can of the form J/2**N where J is an integer
containing exactly 53 bits. Rewriting

1/ 10 ~= J / (2**N)

ds

J ~= 2**N / 10

and recalling that J has exactly 53 bits (is >= 2**52 but < 2**53), the best
value for N is 56:

>>> 2L**52
4503599627370496L
>>> 2L**53
9007199254740992L
>>> 2L**56/10
7205759403792793L

That is, 56 is the only value for N that leaves J with exactly 53 bits. The best
possible value for J is then that quotient rounded:

>>> (g, r = divmod(2L**56, 10)

>>> r
6L

Since the remainder is more than half of 10, the best approximation is obtained
by rounding up:

>>> (+1
7205759403792794L

Therefore the best possible approximation to 1/10 in 754 double precision is that
over 2**56, or

7205759403792794 / 72057594037927936

Note that since we rounded up, this is actually a little bit larger than 1/10; if we
had not rounded up, the quotient would have been a little bit smaller than 1/10.
But in no case can it be exactly 1/10!

So the computer never "“sees" 1/10: what it sees is the exact fraction given
above, the best 754 double approximation it can get:

>>> 1 * 2L.**56
7205759403792794.0

If we multiply that fraction by 10**30, we can see the (truncated) value of its 30
most significant decimal digits:

>>> 7205759403792794L * 10L**30 / 2L**56
100000000000000005551115123125L

meaning that the exact number stored in the computer is approximately equal to
the decimal value 0.100000000000000005551115123125. Rounding that to 17
significant digits gives the 0.10000000000000001 that Python displays (well,
will display on any 754-conforming platform that does best-possible input and
output conversions in its C library -- yours may not!).

«1T-> Python Tutorial toc i
Previous: A. Interactive Input Editing up: Python Tutorial Next: C. History and
License

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: B. Floating Point Arithmetic: up: Python Tutorial Next: D. Glossary

Subsections

e C.1 History of the software

e (.2 Terms and conditions for accessing or otherwise using Python
e C.3 Licenses and Acknowledgements for Incorporated Software
C.3.1 Mersenne Twister

C.3.2 Sockets

C.3.3 Floating point exception control

C.3.4 MD5 message digest algorithm

C.3.5 Asynchronous socket services

C.3.6 Cookie management

C.3.7 Profiling
C.3.8 Execution tracing

C.3.9 UUencode and UUdecode functions
C.3.10 XML Remote Procedure Calls

o

0O O 0O O 0O 0O 0O o o

C. History and License

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting
Mathematisch Centrum (CWI, see http://www.cwi.nl/) in the Netherlands as a
successor of a language called ABC. Guido remains Python's principal author,
although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National
Research Initiatives (CNRI, see http://www.cnri.reston.va.us/) in Reston,
Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to
BeOpen.com to form the BeOpen PythonLabs team. In October of the same
year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see
http://www.python.org/pst/) was formed, a non-profit organization created
specifically to own Python-related Intellectual Property. Zope Corporation is a
sponsoring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the
Open Source Definition). Historically, most, but not all, Python releases have
also been GPL-compatible; the table below summarizes the various releases.

Release Derived Year Owner GPL
from compatible?

0.9.0 thru n/a 1991- CWI yes
1.2 1995

1.3 thru 1.2 1995- CNRI yes
1.5.2 1999

1.6 1.5.2 2000 CNRI no

2.0 1.6 2000 BeOpen.com no

1.6.1 1.6 2001 CNRI no

2.1 2.0+1.6.1 2001 PSF no

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002- PSF yes
2003
2.3 2.2.2 2002- PSF yes
2003
2.3.1 2.3 2002- PSF yes
2003
2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes

Note: GPL-compatible doesn't mean that we're distributing Python under the
GPL. All Python licenses, unlike the GPL, let you distribute a modified version
without making your changes open source. The GPL-compatible licenses make
it possible to combine Python with other software that is released under the
GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido's direction
to make these releases possible.

C.2 Terms and conditions for
accessing or otherwise using
Python

PSF LICENSE AGREEMENT FOR PYTHON 2.4

1. This LICENSE AGREEMENT is between the Python Software Foundation
(""PSF"), and the Individual or Organization (" Licensee") accessing and
otherwise using Python 2.4 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to
reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 2.4 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice
of copyright, i.e., ""Copyright © 2001-2004 Python Software Foundation;
All Rights Reserved" are retained in Python 2.4 alone or in any derivative
version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.4 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes
made to Python 2.4.

4. PSF is making Python 2.4 available to Licensee on an "~ AS IS" basis. PSF
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF
MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.4 WILL
NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS

OF PYTHON 2.4 FOR ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.4,
OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE
POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between PSF and
Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.4, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION
1

1. This LICENSE AGREEMENT is between BeOpen.com (" 'BeOpen"),
having an office at 160 Saratoga Avenue, Santa Clara, CA 95051, and the
Individual or Organization (" Licensee") accessing and otherwise using this
software in source or binary form and its associated documentation (" the
Software").

2. Subject to the terms and conditions of this BeOpen Python License
Agreement, BeOpen hereby grants Licensee a non-exclusive, royalty-free,
world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the
Software alone or in any derivative version, provided, however, that the
BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "~AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES,
EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT

LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR
FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY
RIGHTS.

. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER

USERS OF THE SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY
DERIVATIVE THEREOEF, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF.

. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.

. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and
Licensee. This License Agreement does not grant permission to use
BeOpen trademarks or trade names in a trademark sense to endorse or
promote products or services of Licensee, or any third party. As an
exception, the “"BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the
permissions granted on that web page.

. By copying, installing or otherwise using the software, Licensee agrees to
be bound by the terms and conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

. This LICENSE AGREEMENT is between the Corporation for National
Research Initiatives, having an office at 1895 Preston White Drive, Reston,
VA 20191 (" CNRI"), and the Individual or Organization (" Licensee")
accessing and otherwise using Python 1.6.1 software in source or binary
form and its associated documentation.

. Subject to the terms and conditions of this License Agreement, CNRI
hereby grants Licensee a nonexclusive, royalty-free, world-wide license to

reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative
version, provided, however, that CNRI's License Agreement and CNRI's
notice of copyright, i.e., "Copyright © 1995-2001 Corporation for National
Research Initiatives; All Rights Reserved" are retained in Python 1.6.1
alone or in any derivative version prepared by Licensee. Alternately, in lieu
of CNRI's License Agreement, Licensee may substitute the following text
(omitting the quotes): ~"Python 1.6.1 is made available subject to the terms
and conditions in CNRI's License Agreement. This Agreement together
with Python 1.6.1 may be located on the Internet using the following
unique, persistent identifier (known as a handle): 1895.22/1013. This
Agreement may also be obtained from a proxy server on the Internet using
the following URL: http://hdl.handle.net/1895.22/1013."

. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes
made to Python 1.6.1.

. CNRI is making Python 1.6.1 available to Licensee on an " AS IS" basis.
CNRI MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS
OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI
MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL
NOT INFRINGE ANY THIRD PARTY RIGHTS.

. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER

USERS OF PYTHON 1.6.1 FOR ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON
1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE
POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.

. This License Agreement shall be governed by the federal intellectual

http://hdl.handle.net/1895.22/1013

property law of the United States, including without limitation the federal
copyright law, and, to the extent such U.S. federal law does not apply, by
the law of the Commonwealth of Virginia, excluding Virginia's conflict of
law provisions. Notwithstanding the foregoing, with regard to derivative
works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL),
the law of the Commonwealth of Virginia shall govern this License
Agreement only as to issues arising under or with respect to Paragraphs 4,
5, and 7 of this License Agreement. Nothing in this License Agreement
shall be deemed to create any relationship of agency, partnership, or joint
venture between CNRI and Licensee. This License Agreement does not
grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third

party.

8. By clicking on the ""ACCEPT" button where indicated, or by copying,
installing or otherwise using Python 1.6.1, Licensee agrees to be bound by
the terms and conditions of this License Agreement.

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising
or publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR

ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and
Acknowledgements for Incorporated
Software

This section is an incomplete, but growing list of licenses and
acknowledgements for third-party software incorporated in the Python
distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from
http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html. The
following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyrigh
notice, this list of conditions and the following disclaimer in
documentation and/or other materials provided with the distribut

3. The names of its contributors may not be used to endorse or pron
products derived from this software without specific prior writt
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FC
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGH
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html

C.3.2 Sockets

The socket module uses the functions, getaddrinfo, and getnameinfo,
which are coded in separate source files from the WIDE Project,
http://www.wide.ad.jp/about/index.html.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in t
documentation and/or other materials provided with the distributi

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this soft
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS''

GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TG
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR P
ARE DISCLAIMED. 1IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LI
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GO
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRA
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GA
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
SUCH DAMAGE.

http://www.wide.ad.jp/about/index.html

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

Copyright (c) 1996.
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software
any purpose without fee is hereby granted, provided that this
tire notice is included in all copies of any software which i
includes a copy or modification of this software and in
copies of the supporting documentation for such software.

This work was produced at the University of California, Lawr
Livermore National Laboratory under contract no. W-7405-EN
between the U.S. Department of Energy and The Regents of
University of California for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored b
agency of the United States Government. Neither the United St
Government nor the University of California nor any of their
ployees, makes any warranty, express or implied, or assumes
liability or responsibility for the accuracy, completeness
usefulness of any information, apparatus, product, or pro
disclosed, or represents that its wuse would not infr
privately-owned rights. Reference herein to any specific cor
cial products, process, or service by trade name, traden
manufacturer, or otherwise, does not necessarily constitute
imply its endorsement, recommendation, or favoring by the Un
States Government or the University of California. The views
opinions of authors expressed herein do not necessarily stat
reflect those of the United States Government or the Univer
of California, and shall not be used for advertising or pro
endorsement purposes.

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm" in all material mentioning or referencing this software
or this function.

License is also granted to make and use derivative works provided
that such works are identified as "derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm" in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.

C.3.5 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of San
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy 0'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy 0'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, writte
prior permission.

Timothy 0'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Profiling

The profile and pstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python softwar
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby grante
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear i
supporting documentation, and that the name of InfoSeek not be used
advertising or publicity pertaining to distribution of the software
without specific, written prior permission. This permission is
explicitly restricted to the copying and modification of the softwa
to remain in Python, compiled Python, or other languages (such as C
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVE
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION C
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.8 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rig
err... reserved and offered to the public under the terms of the
Python 2.2 license.

Author: Zooko 0'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights res

Permission to use, copy, modify, and distribute this Python softwar
its associated documentation for any purpose without fee is hereby

granted, provided that the above copyright notice appears in all co
and that both that copyright notice and this permission notice appe
supporting documentation, and that the name of neither Automatrix,

Bioreason or Mojam Media be used in advertising or publicity pertai
distribution of the software without specific, written prior permis

C.3.9 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and i
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and t
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OuU
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. Th
version is still 5 times faster, though.

- Arguments more compliant with python standard

C.3.10 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicit
pertaining to distribution of the software without specific, writte
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT -
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHGC
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

«1T-> Python Tutorial toc i

CONTENTS INDEX

Previous: B. Floating Point Arithmetic: up: Python Tutorial Next: D. Glossary

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: C. History and License up: Python Tutorial Next: Index

D. Glossary

>>>

The typical Python prompt of the interactive shell. Often seen for code
examples that can be tried right away in the interpreter.

The typical Python prompt of the interactive shell when entering code for
an indented code block.

BDFL
Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python's creator.

byte code
The internal representation of a Python program in the interpreter. The byte
code is also cached in the . pyc and . pyo files so that executing the same
file is faster the second time (compilation from source to byte code can be
saved). This intermediate language" is said to run on a " virtual machine"
that calls the subroutines corresponding to each bytecode.

classic class
Any class which does not inherit from object. See new-style class.

coercion

The implicit conversion of an instance of one type to another during an
operation which involves two arguments of the same type. For example,
int(3.15) converts the floating point number to the integer, 3, but in
3+4.5, each argument is of a different type (one int, one float), and both
must be converted to the same type before they can be added or it will raise
a TypeError. Coercion between two operands can be performed with the
coerce builtin function; thus, 3+4.5 is equivalent to calling
operator.add(*coerce(3, 4.5)) andresults in
operator.add(3.0, 4.5). Without coercion, all arguments of even
compatible types would have to be normalized to the same value by the
programmer, e.g., fTloat (3)+4.5 rather than just 3+4.5.

http://www.python.org/~guido/

complex number

An extension of the familiar real number system in which all numbers are
expressed as a sum of a real part and an imaginary part. Imaginary numbers
are real multiples of the imaginary unit (the square root of -1), often
written 1 in mathematics or j in engineering. Python has builtin support for
complex numbers, which are written with this latter notation; the imaginary
part is written with a j suffix, e.g., 3+17. To get access to complex
equivalents of the math module, use cmath. Use of complex numbers is a
fairly advanced mathematical feature. If you're not aware of a need for
them, it's almost certain you can safely ignore them.

descriptor
Any new-style object that defines the methods __get__ (),__set__(),
or __delete__ (). When a class attribute is a descriptor, its special
binding behavior is triggered upon attribute lookup. Normally, writing a.b
looks up the object b in the class dictionary for a, but if b is a descriptor, the
defined method gets called. Understanding descriptors is a key to a deep
understanding of Python because they are the basis for many features
including functions, methods, properties, class methods, static methods, and
reference to super classes.

dictionary
An associative array, where arbitrary keys are mapped to values. The use of
dict much resembles that for 1ist, but the keys can be any object with a
__hash__ (/) function, not just integers starting from zero. Called a hash
in Perl.

EAFP
Easier to ask for forgiveness than permission. This common Python coding
style assumes the existence of valid keys or attributes and catches
exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many try and except statements. The
technique contrasts with the LBYL style that is common in many other
languages such as C.

__future__
A pseudo module which programmers can use to enable new language
features which are not compatible with the current interpreter. For example,

the expression 11/4 currently evaluates to 2. If the module in which it is
executed had enabled true division by executing:

from __ _future__ import division

the expression 11/4 would evaluate to 2 . 75. By actually importing the

future module and evaluating its variables, you can see when a
new feature was first added to the language and when it will become the
default:

>>> import _ future__
>>> _ future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

generator
A function that returns an iterator. It looks like a normal function except
that values are returned to the caller using a yield statement instead of a
return statement. Generator functions often contain one or more for or
while loops that yield elements back to the caller. The function
execution is stopped at the yield keyword (returning the result) and is
resumed there when the next element is requested by calling the next ()
method of the returned iterator.

generator expression
An expression that returns a generator. It looks like a normal expression
followed by a for expression defining a loop variable, range, and an
optional 1f expression. The combined expression generates values for an
enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, :
285

GIL
See global interpreter lock.

global interpreter lock
The lock used by Python threads to assure that only one thread can be run at
a time. This simplifies Python by assuring that no two processes can access
the same memory at the same time. Locking the entire interpreter makes it
easier for the interpreter to be multi-threaded, at the expense of some
parallelism on multi-processor machines. Efforts have been made in the

past to create a = free-threaded" interpreter (one which locks shared data at a
much finer granularity), but performance suffered in the common single-
processor case.

IDLE
An Integrated Development Environment for Python. IDLE is a basic editor
and interpreter environment that ships with the standard distribution of
Python. Good for beginners, it also serves as clear example code for those
wanting to implement a moderately sophisticated, multi-platform GUI
application.

immutable
An object with fixed value. Immutable objects are numbers, strings or
tuples (and more). Such an object cannot be altered. A new object has to be
created if a different value has to be stored. They play an important role in
places where a constant hash value is needed. For example as a key in a
dictionary.

integer division
Mathematical division discarding any remainder. For example, the
expression 11/4 currently evaluates to 2 in contrast to the 2. 75 returned
by float division. Also called floor division. When dividing two integers the
outcome will always be another integer (having the floor function applied
to it). However, if one of the operands is another numeric type (such as a
float), the result will be coerced (see coercion) to a common type. For
example, an integer divided by a float will result in a float value, possibly
with a decimal fraction. Integer division can be forced by using the //
operator instead of the / operator. See also __future__.

interactive
Python has an interactive interpreter which means that you can try out
things and directly see its result. Just launch python with no arguments
(possibly by selecting it from your computer's main menu). It is a very
powerful way to test out new ideas or inspect modules and packages
(remember help(Xx)).

interpreted
Python is an interpreted language, as opposed to a compiled one. This
means that the source files can be run directly without first creating an

executable which is then run. Interpreted languages typically have a shorter
development/debug cycle than compiled ones, though their programs
generally also run more slowly. See also interactive.

iterable
A container object capable of returning its members one at a time.
Examples of iterables include all sequence types (such as 1ist, str, and
tuple) and some non-sequence types like dict and file and objects of
any classes you define withan __iter__ () or__getitem__()
method. Iterables can be used in a for loop and in many other places
where a sequence is needed (zip (), map(), ...). When an iterable object
is passed as an argument to the builtin function iter (), it returns an
iterator for the object. This iterator is good for one pass over the set of
values. When using iterables, it is usually not necessary to call iter () or
deal with iterator objects yourself. The for statement does that
automatically for you, creating a temporary unnamed variable to hold the
iterator for the duration of the loop. See also iterator, sequence, and
generator.

iterator
An object representing a stream of data. Repeated calls to the iterator's
next () method return successive items in the stream. When no more data
is available a StopIteration exception is raised instead. At this point,
the iterator object is exhausted and any further calls to its next (') method
just raise StopIteration again. Iterators are required to have an
__iter__ () method that returns the iterator object itself so every iterator
is also iterable and may be used in most places where other iterables are
accepted. One notable exception is code that attempts multiple iteration
passes. A container object (such as a 11st) produces a fresh new iterator
each time you pass it to the iter () function or use it in a for loop.
Attempting this with an iterator will just return the same exhausted iterator
object from the second iteration pass, making it appear like an empty
container.

list comprehension
A compact way to process all or a subset of elements in a sequence and
return a list with the results. result = ["Ox%02x" % x for X in
range(256) if x % 2 == 0] generates a list of strings containing

hex numbers (0x..) that are even and in the range from 0 to 255. The if
clause is optional. If omitted, all elements in range (256) are processed
in that case.

mapping
A container object (such as dict) that supports arbitrary key lookups using
the special method __getitem__ ().

metaclass
The class of a class. Class definitions create a class name, a class dictionary,
and a list of base classes. The metaclass is responsible for taking those three
arguments and creating the class. Most object oriented programming
languages provide a default implementation. What makes Python special is
that it is possible to create custom metaclasses. Most users never need this
tool, but when the need arises, metaclasses can provide powerful, elegant
solutions. They have been used for logging attribute access, adding thread-
safety, tracking object creation, implementing singletons, and many other
tasks.

LBYL
Look before you leap. This coding style explicitly tests for pre-conditions
before making calls or lookups. This style contrasts with the EAFP
approach and is characterized the presence of many 1f statements.

mutable
Mutable objects can change their value but keep their 1d (). See also
immutable.

namespace
The place where a variable is stored. Namespaces are implemented as
dictionary. There is the local, global and builtins namespace and the nested
namespaces in objects (in methods). Namespaces support modularity by
preventing naming conflicts. For instance, the functions
__builtin__.open() and 0s.open() are distinguished by their
namespaces. Namespaces also aid readability and maintainability by
making it clear which modules implement a function. For instance, writing
random.seed() or itertools.izip() makes it clear that those
functions are implemented by the random and itertools modules
respectively.

nested scope
The ability to refer to a variable in an enclosing definition. For instance, a
function defined inside another function can refer to variables in the outer
function. Note that nested scopes work only for reference and not for
assignment which will always write to the innermost scope. In contrast,
local variables both read and write in the innermost scope. Likewise, global
variables read and write to the global namespace.

new-style class
Any class that inherits from object. This includes all built-in types like
list and dict. Only new-style classes can use Python's newer, versatile
features like __slots__, descriptors, properties,
__getattribute__ (), class methods, and static methods.

Python3000
A mythical python release, allowed not to be backward compatible, with
telepathic interface.

slots
A declaration inside a new-style class that saves memory by pre-declaring
space for instance attributes and eliminating instance dictionaries. Though
popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory
critical application.

sequence
An iterable which supports efficient element access using integer indices
viathe __getitem__ () and __len__ () special methods. Some built-
in sequence types are 1ist, str, tuple, and unicode. Note that dict
also supports __getitem__ () and __len__ (), butis considered a
mapping rather than a sequence because the lookups use arbitrary
immutable keys rather than integers.

Zen of Python
Listing of Python design principles and philosophies that are helpful in
understanding and using the language. The listing can be found by typing
“import this" atthe interactive prompt.

«1T-> Python Tutorial toc i
Previous: C. History and License up: Python Tutorial Next: Index

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: D. Glossary up: Python Tutorial Next: About this document ...

Index

Symbeols | _

Symbols

>>>

_ (underscore)

all future

builtin___ (built-in module) slots

A

append() (list method)

byte code

C

classic class
; complex number
coercion

' count() (list method)
compileall (standard module count() (list method

D

descriptor docstrings, [Link]
dictionary documentation strings, [Link]

EAFP
environment variables environment variables (continued)
PATH, [Link] PYTHONSTARTUP, [Link]

PYTHONPATH, [Link], [Link], extend() (list method)
[Link], [Link]

file object for statement, [Link]

G

generator GIL
generator expression global interpreter lock

H

help() (built-in function)

IDLE . .
= interactive
immutable interpreted
index() (list method) ;
) 5 iterable
insert() (list method) ;

iterator

integer division

LBYL

list comprehension

M

mappin module
metaclass search path

method object mutable

N

namespdce

new-style class
nested scope

o

object

file open() (built-in function)

method

P

path Python3000

module search PYTHONPATH (environment
PATH (environment variable), [Link] wvariable), [Link], [Link], [Link], [Link]
pickle (standard module) PYTHONSTARTUP (environment

pop() (list method) variable), [Link]

R

readline (built-in module) reverse() (list method)
remove() (list method) rlcompleter (standard module)

S

search
path, modul :
” ueri[e odule string (standard module)
e strings, documentation, [Link]
sort() (list method)
sys (standard module)
statement

for, [Link]

U

unicode() (built-in function)

y4

Zen of Python

«1T-> Python Tutorial toc
Previous: D. Glossary up: Python Tutorial Next: About this document ...

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: Index up: Python Tutorial

About this document ...

Python Tutorial, 29 November 2004, Release 2.4

This document was generated using the LaTeX2HTML translator.

LaTeX2HTML is Copyright © 1993, 1994, 1995, 1996, 1997, Nikos Drakos,
Computer Based Learning Unit, University of Leeds, and Copyright © 1997,
1998, Ross Moore, Mathematics Department, Macquarie University, Sydney.

The application of LaTeX2HTML to the Python documentation has been heavily
tailored by Fred L. Drake, Jr. Original navigation icons were contributed by
Christopher Petrilli.

http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://cbl.leeds.ac.uk/nikos/personal.html
http://www.maths.mq.edu.au/~ross/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/

Comments and Questions

General comments and questions regarding this document should be sent by
email to docs@python.org. If you find specific errors in this document, either in
the content or the presentation, please report the bug at the Python Bug Tracker
at SourceForge. If you are able to provide suggested text, either to replace
existing incorrect or unclear material, or additional text to supplement what's
already available, we'd appreciate the contribution. There's no need to worry
about text markup; our documentation team will gladly take care of that.

Questions regarding how to use the information in this document should be sent

to the Python news group, comp.lang.python, or the Python mailing list (which
is gated to the newsgroup and carries the same content).

For any of these channels, please be sure not to send HTML email. Thanks.

«1T-> Python Tutorial toc i

CONTENTS INCEX
Previous: |IndeX Up: Python Tutorial

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

mailto:docs@python.org
http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/
news:comp.lang.python
http://www.python.org/mailman/listinfo/python-list

up: Python Documentation Index Next: Front Matter

Python Library Reference

Guido van Rossum
Fred L. Drake, Jr., editor

Python Software Foundation
Email: docs@python.org

Release 2.4
29 November 2004

Front Matter
Contents
1. Introduction
2. Built-In Objects

o 2.1 Built-in Functions

o 2.2 Non-essential Built-in Functions

o 2.3 Built-in Types

m 2.3.1 Truth Value Testing
2.3.2 Boolean Operations
2.3.3 Comparisons
2.3.4 Numeric Types
2.3.5 Iterator Types
2.3.6 Sequence Types
2.3.7 Set Types
2.3.8 Mapping Types
2.3.9 File Objects
2.3.10 Other Built-in Types
2.3.11 Special Attributes
o 2.4 Built-in Exceptions
o 2.5 Built-in Constants

e 3. Python Runtime Services
o 3.1 sys -- System-specific parameters and functions

(¢]

o

o

(¢] (¢]

o

O O O

(¢]

(¢]

o

o

o O

o

(¢]

3.2 gc -- Garbage Collector interface
3.3 weakref -- Weak references

m 3.3.1 Weak Reference Objects

= 3.3.2 Example

» 3.3.3 Weak References in Extension Types
3.4 fpectl -- Floating point exception control

= 3.4.1 Example
m 3.4.2 Limitations and other considerations

3.5 atexit -- Exit handlers
m 3.5.1 atexit Example
3.6 types -- Names for built-in types
3.7 UserDict -- Class wrapper for dictionary objects
3.8 UserlList -- Class wrapper for list objects
3.9 UserString -- Class wrapper for string objects
3.10 operator -- Standard operators as functions.
= 3.10.1 Mapping Operators to Functions
3.11 inspect -- Inspect live objects
m 3.11.1 Types and members
m 3.11.2 Retrieving source code
m 3.11.3 Classes and functions
m 3.11.4 The interpreter stack
3.12 traceback -- Print or retrieve a stack traceback

m 3.12.1 Traceback Example
3.13 1inecache -- Random access to text lines

3.14 pickle -- Python object serialization
= 3.14.1 Relationship to other Python modules
3.14.2 Data stream format
3.14.3 Usage
3.14.4 What can be pickled and unpickled?
3.14.5 The pickle protocol
3.14.6 Subclassing Unpicklers
= 3.14.7 Example
3.15 cPickle -- A faster pickle
3.16 copy reg -- Register pickle support functions
3.17 shelve -- Python object persistence
m 3.17.1 Restrictions
m 3.17.2 Example
3.18 copy -- Shallow and deep copy operations

(¢]

3.19 marshal -- Internal Python object serialization
3.20 warnings_-- Warning control

m 3.20.1 Warning Categories
m 3.20.2 The Warnings Filter
= 3.20.3 Available Functions
3.21 imp -- Access the import internals
m 3.21.1 Examples
3.22 pkgutil -- Package extension utility
3.23 code -- Interpreter base classes
m 3.23.1 Interactive Interpreter Objects
m 3.23.2 Interactive Console Objects
3.24 codeop -- Compile Python code
3.25 pprint -- Data pretty printer
m 3.25.1 PrettyPrinter Objects
3.26 repr -- Alternate repr () implementation

m 3.26.1 Repr Objects
m 3.26.2 Subclassing Repr Objects

o

o

(¢]

o

(¢]

o

(¢]

o 3.27 new -- Creation of runtime internal objects

o 3.28 site -- Site-specific configuration hook

o 3.29 user -- User-specific configuration hook

o 3.30__ _builtin -- Built-in functions

o 3.31 main -- Top-level script environment

o 3.32 future -- Future statement definitions

e 4. String Services

o 4.1 string -- Common string operations
m 4.1.1 String constants
m 4.1.2 Template strings

m 4.1.3 String functions

m 4.1.4 Deprecated string functions
o 4.2 re -- Regular expression operations
4.2.1 Regular Expression Syntax
4.2.2 Matching vs Searching
4.2.3 Module Contents

4.2.4 Regular Expression Objects
4.2.5 Match Objects

4.2.6 Examples
o 4.3 struct -- Interpret strings as packed binary data

o 4.4difflib -- Helpers for computing deltas

4.4.1 SequenceMatcher Objects
4.4.2 SequenceMatcher Examples
4.4.3 Differ Objects
4.4.4 Differ Example
4.5 fpformat -- Floating point conversions
4.6 StringI0 -- Read and write strings as files
4.7 cStringIO0 -- Faster version of StringIO
4.8 textwrap -- Text wrapping and filling
4.9 codecs -- Codec registry and base classes
m 4.9.1 Codec Base Classes
m 4.9.2 Standard Encodings
m 4.9.3 encodings.idna -- Internationalized Domain Names in
Applications
o 4.10 unicodedata -- Unicode Database
o 4.11 stringprep -- Internet String Preparation
e 5. Miscellaneous Services
o 5.1 pydoc -- Documentation generator and online help system

o 5.2 doctest -- Test interactive Python examples
5.2.1 Simple Usage: Checking Examples in Docstrings

5.2.2 Simple Usage: Checking Examples in a Text File
5.2.3 How It Works

5.2.4 Basic API
5.2.5 Unittest API
5.2.6 Advanced API

5.2.7 Debugging

5.2.8 Soapbox

o 5.3unittest -- Unit testing framework
5.3.1 Basic example

5.3.2 Organizing test code
5.3.3 Re-using old test code

5.3.4 Classes and functions
5.3.5 TestCase Objects
5.3.6 TestSuite Objects
5.3.7 TestResult Objects
5.3.8 Testl.oader Objects

o 5.4 test -- Regression tests package for Python
m 5.4.1 Writing Unit Tests for the test package

m 5.4.2 Running tests using test.regrtest

O O O o o

(¢]

o

O O O O o

o

5.5 test.test support -- Utility functions for tests

5.6 decimal -- Decimal floating point arithmetic
5.6.1 Quick-start Tutorial

5.6.2 Decimal objects
5.6.3 Context objects

5.6.4 Signals
5.6.5 Floating Point Notes
5.6.6 Working with threads
m 5.6.7 Recipes
5.7 math -- Mathematical functions
5.8 cmath -- Mathematical functions for complex numbers
5.9 random -- Generate pseudo-random numbers
5.10 whrandom_-- Pseudo-random number generator
5.11 bisect -- Array bisection algorithm

m 5.11.1 Examples
5.12 collections -- High-performance container datatypes
m 5.12.1 Recipes

5.13 heapg -- Heap queue algorithm
m 5.13.1 Theory

5.14 array -- Efficient arrays of numeric values
5.15 sets -- Unordered collections of unique elements
m 5.15.1 Set Objects
= 5.15.2 Example
m 5.15.3 Protocol for automatic conversion to immutable
5.16 itertools -- Functions creating iterators for efficient looping
m 5.16.1 Itertool functions
m 5.16.2 Examples
m 5.16.3 Recipes
5.17 ConfigParser -- Configuration file parser
m 5.17.1 RawConfigParser Objects
m 5.17.2 ConfigParser Objects
m 5.17.3 SafeConfigParser Objects

5.18 fileinput -- Iterate over lines from multiple input streams
5.19 calendar -- General calendar-related functions

5.20 cmd -- Support for line-oriented command interpreters
m 5.20.1 Cmd Objects

5.21 shlex -- Simple lexical analysis
m 5.21.1 shlex Objects

m 5.21.2 Parsing Rules

e 6. Generic Operating System Services

o

o O O O o o

(¢]

o

(¢] o

o

6.1 0S -- Miscellaneous operating system interfaces
6.1.1 Process Parameters
6.1.2 File Object Creation
6.1.3 File Descriptor Operations
6.1.4 Files and Directories
6.1.5 Process Management
6.1.6 Miscellaneous System Information
6.1.7 Miscellaneous Functions
6.2 0s.path -- Common pathname manipulations
6.3 dircache -- Cached directory listings
6.4 stat -- Interpreting stat () results
6.5 statcache -- An optimization of 0s.stat ()
6.6 statvfs -- Constants used with 0s.statvfs()
6.7 filecmp -- File and Directory Comparisons
m 6.7.1 The dircmp class
6.8 subprocess -- Subprocess management
m 6.8.1 Using the subprocess Module
= 6.8.2 Popen Objects
= 6.8.3 Replacing Older Functions with the subprocess Module
6.9 popen2 -- Subprocesses with accessible I/0 streams
= 6.9.1 Popen3 and Popen4 Objects
= 6.9.2 Flow Control Issues
6.10 datetime -- Basic date and time types
6.10.1 Available Types
6.10.2 timedelta Objects
6.10.3 date Objects
6.10.4 datetime Objects
6.10.5 time Objects
6.10.6 tzinfo Objects
6.10.7 strftime() Behavior
6.11 time -- Time access and conversions
6.12 sched -- Event scheduler
m 6.12.1 Scheduler Objects
6.13 mutex -- Mutual exclusion support
= 6.13.1 Mutex Objects
6.14 getpass -- Portable password input

(¢]

(@)

o

O O O O o

6.15 curses -- Terminal handling for character-cell displays
m 6.15.1 Functions

= 6.15.2 Window Objects
m 6.15.3 Constants
6.16 curses. textpad -- Text input widget for curses programs
= 6.16.1 Textbox objects
6.17 curses.wrapper -- Terminal handler for curses programs
6.18 curses.ascii -- Utilities for ASCII characters
6.19 curses.panel -- A panel stack extension for curses.
® 6.19.1 Functions
= 6.19.2 Panel Objects

6.20 getopt -- Parser for command line options
6.21 optparse -- More powerful command line option parser

m 6.21.1 Background
m 6.21.2 Tutorial

m 6.21.3 Reference Guide
m 6.21.4 Option Callbacks
6.22 tempfile -- Generate temporary files and directories
6.23 errno -- Standard errno system symbols
6.24 glob -- Unix style pathname pattern expansion
6.25 fnmatch -- Unix filename pattern matching
6.26 shutil -- High-level file operations

= 6.26.1 Example
6.27 1ocale -- Internationalization services

= 6.27.1 Background, details, hints, tips and caveats
m 6.27.2 For extension writers and programs that embed Python
m 6.27.3 Access to message catalogs
6.28 gettext -- Multilingual internationalization services
m 6.28.1 GNU gettext API
m 6.28.2 Class-based API
m 6.28.3 Internationalizing your programs and modules
= 6.28.4 Acknowledgements
6.29 10gging -- Logging facility for Python

6.29.1 Logger Objects
6.29.2 Basic example

6.29.3 Logging to multiple destinations
6.29.4 Sending and receiving logging events across a network

6.29.5 Handler Objects

6.29.6 Formatter Objects
6.29.7 Filter Objects
6.29.8 LogRecord Objects
6.29.9 Thread Safety
6.29.10 Configuration

o 6.30 platform-- Access to underlying platform's identifying data.
6.30.1 Cross Platform
6.30.2 Java Platform
6.30.3 Windows Platform
6.30.4 Mac OS Platform
6.30.5 Unix_Platforms

e 7. Optional Operating System Services
o 7.1 signal -- Set handlers for asynchronous events

m 7.1.1 Example
o 7.2 socket -- L.ow-level networking interface

m 7.2.1 Socket Objects
m 7.2.2 SSL Objects

m 7.2.3 Example
o 7.3 select -- Waiting for I/O completion

= 7.3.1 Polling Objects
o 7.4 thread -- Multiple threads of control
o 7.5 threading -- Higher-level threading interface
7.5.1 Lock Objects
7.5.2 RLock Objects
7.5.3 Condition Objects

7.5.4 Semaphore Objects
7.5.5 Event Objects

m 7.5.6 Thread Objects
m 7.5.7 Timer Objects
o 7.6 dummy thread -- Drop-in replacement for the thread module
o 7.7 dummy threading -- Drop-in replacement for the
threading module
o 7.8 Queue -- A synchronized queue class
m 7.8.1 Queue Objects
o 7.9 mmap -- Memory-mapped file support
7.10 anydbm -- Generic access to DBM-style databases
7.11 dbhash -- DBM-style interface to the BSD database library
m 7.11.1 Database Objects

o

o

(¢]

7.12 whichdb -- Guess which DBM module created a database
7.13 bsddb -- Interface to Berkeley DB library
= 7.13.1 Hash, BTree and Record Objects
7.14 dumbdbm -- Portable DBM implementation
m 7.14.1 Dumbdbm Objects
7.15 z11ib -- Compression compatible with gzip
7.16 gzip -- Support for gzip files
7.17 bz2 -- Compression compatible with bzip2
m 7.17.1 (De)compression of files
m 7.17.2 Sequential (de)compression
m 7.17.3 One-shot (de)compression
7.18 zipfile -- Work with ZIP archives
= 7.18.1 ZipFile Objects
m 7.18.2 PyZipFile Objects

m 7.18.3 Ziplnfo Objects
7.19 tarfile -- Read and write tar archive files

m 7.19.1 TarFile Objects
m 7.19.2 TarInfo Objects
m 7.19.3 Examples
7.20 readline -- GNU readline interface

= 7.20.1 Example

7.21 rlcompleter -- Completion function for GNU readline
m 7.21.1 Completer Objects

o

(¢]

o

o

(¢]

o

(¢]

(¢]

o

. Unix Specific Services

o 8.1 posix -- The most common POSIX system calls

m 8.1.1 Large File Support
= 8.1.2 Module Contents

8.2 pwd -- The password database
8.3 grp_-- The group database
8.4 crypt -- Function to check Unix passwords
8.5 d1 -- Call C functions in shared objects
= 8.5.1 DI Objects
o 8.6 dbm_-- Simple "“database" interface
o 8.7 gdbm -- GNU's reinterpretation of dbm
o 8.8 termios -- POSIX style tty control
= 8.8.1 Example
o 8.9 tty -- Terminal control functions
o 8.10 pty -- Pseudo-terminal utilities

O O O O

(¢]

o

(¢]

(@)

o

(¢]

e}

8.11 fcntl -- The fcntl () and joctl () system calls
8.12 pipes -- Interface to shell pipelines

= 8.12.1 Template Objects
8.13 posixfile -- File-like objects with locking support
8.14 resource -- Resource usage information

m 8.14.1 Resource Limits

= 8.14.2 Resource Usage
8.15 nis -- Interface to Sun's NIS (Yellow Pages)
8.16 syslog -- Unix syslog library routines

8.17 commands -- Utilities for running commands

e 9. The Python Debugger

o

o

9.1 Debugger Commands
9.2 How It Works

e 10. The Python Profiler

O O O O O

O O O O

10.1 Introduction to the profiler
10.2 How Is This Profiler Different From The Old Profiler?
10.3 Instant Users Manual
10.4 What Is Deterministic Profiling?
10.5 Reference Manual
m 10.5.1 The Stats Class
10.6 Limitations
10.7 Calibration
10.8 Extensions -- Deriving Better Profilers

10.9 hotshot -- High performance logging profiler
= 10.9.1 Profile Objects

m 10.9.2 Using hotshot data
= 10.9.3 Example Usage

10.10 timeit -- Measure execution time of small code snippets
= 10.10.1 Command Line Interface

= 10.10.2 Examples

e 11. Internet Protocols and Support

e}

o

11.1 webbrowser -- Convenient Web-browser controller
= 11.1.1 Browser Controller Objects

11.2 cgi -- Common Gateway Interface support.

11.2.1 Introduction

11.2.2 Using the cgi module

11.2.3 Higher Level Interface

11.2.4 Old classes

11.2.5 Functions

11.2.6 Caring about security

11.2.7 Installing your CGI script on a UNix _system
11.2.8 Testing your CGI script

11.2.9 Debugging CGI scripts

11.2.10 Common problems and solutions

o 11.3 cgitb -- Traceback manager for CGI scripts
o 11.4urllib -- Open arbitrary resources by URL

= 11.4.1 URLopener Objects

= 11.4.2 Examples
o 11.5urllib2 -- extensible library for opening URLs
11.5.1 Request Objects
11.5.2 OpenerDirector Objects
11.5.3 BaseHandler Objects
11.5.4 HTTPRedirectHandler Objects
11.5.5 HTTPCookieProcessor Objects
11.5.6 ProxyHandler Objects
11.5.7 HTTPPasswordMgr Objects
11.5.8 AbstractBasicAuthHandler Objects
11.5.9 HTTPBasicAuthHandler Objects
11.5.10 ProxyBasicAuthHandler Objects
11.5.11 AbstractDigestAuthHandler Objects
11.5.12 HTTPDigestAuthHandler Objects
11.5.13 ProxyDigestAuthHandler Objects
11.5.14 HTTPHandler Objects
11.5.15 HTTPSHandler Objects
11.5.16 FileHandler Objects
11.5.17 FTPHandler Objects
11.5.18 CacheFTPHandler Objects
11.5.19 GopherHandler Objects
11.5.20 UnknownHandler Objects
11.5.21 HTTPErrorProcessor Objects

= 11.5.22 Examples
o 11.6 httplib -- HTTP protocol client

m 11.6.1 HTTPConnection Objects

m 11.6.2 HTTPResponse Objects

= 11.6.3 Examples
o 11.7 ftplib -- FTP protocol client

o

O O O

= 11.7.1 FTP Objects
11.8 gopherlib -- Gopher protocol client
11.9 poplib -- POP3 protocol client
= 11.9.1 POP3 Objects
= 11.9.2 POP3 Example
11.10 imaplib -- IMAP4 protocol client
= 11.10.1 IMAP4 Objects
= 11.10.2 IMAP4 Example
11.11 nntplib -- NNTP protocol client
= 11.11.1 NNTP Objects
11.12 smtplib -- SMTP protocol client
m 11.12.1 SMTP Objects
m 11.12.2 SMTP Example
11.13 smtpd -- SMTP Server
m 11.13.1 SMTPServer Objects

= 11.13.2 DebuggingServer Objects
m 11.13.3 PureProxy Objects

m 11.13.4 MailmanProxy Objects
11.14 telnetl1ib -- Telnet client

m 11.14.1 Telnet Objects

m 11.14.2 Telnet Example
11.15 urlparse -- Parse URLs into components
11.16 SocketServer -- A framework for network servers
11.17 BaseHTTPServer -- Basic HTTP server
11.18 SimpleHTTPServer -- Simple HTTP request handler
11.19 CGIHTTPServer -- CGI-capable HTTP request handler
11.20 cookielib -- Cookie handling for HTTP clients

m 11.20.1 CookieJar and FileCookieJar Objects

m 11.20.2 FileCookieJar subclasses and co-operation with web
browsers
11.20.3 CookiePolicy Objects
11.20.4 DefaultCookiePolicy Objects
11.20.5 Cookie Objects

11.20.6 Examples

11.21 Cookie -- HTTP state management
m 11.21.1 Cookie Objects

= 11.21.2 Morsel Objects
= 11.21.3 Example

o 11.22 xmlrpclib -- XML-RPC client access

11.22.1 ServerProxy Objects

11.22.2 Boolean Objects

11.22.3 DateTime Objects

11.22.4 Binary Objects

11.22.5 Fault Objects

11.22.6 ProtocolError Objects

11.22.7 MultiCall Objects

11.22.8 Convenience Functions

11.22.9 Example of Client Usage

o 11.23 SimpleXMLRPCServer -- Basic XML-RPC server
m 11.23.1 SimpleXMLRPCServer Objects
m 11.23.2 CGIXMLRPCRequestHandler

o 11.24 DocXMLRPCServer -- Self-documenting XML-RPC server
m 11.24.1 DocXMLRPCServer Objects
= 11.24.2 DocCGIXMLRPCRequestHandler

o 11.25 asyncore -- Asynchronous socket handler
m 11.25.1 asyncore Example basic HTTP client

o 11.26 asynchat -- Asynchronous socket command/response handler
m 11.26.1 asynchat - Auxiliary Classes and Functions
= 11.26.2 asynchat Example

e 12. Internet Data Handling
o 12.1 formatter -- Generic output formatting

12.1.1 The Formatter Interface
12.1.2 Formatter Implementations
12.1.3 The Writer Interface

12.1.4 Writer Implementations

o 12.2 email -- An email and MIME handling package
12.2.1 Representing an email message

12.2.2 Parsing email messages
12.2.3 Generating MIME documents

12.2.4 Creating email and MIME objects from scratch
12.2.5 Internationalized headers

12.2.6 Representing character sets

12.2.7 Encoders

12.2.8 Exception and Defect classes

12.2.9 Miscellaneous utilities

12.2.10 Iterators

m 12.2.11 Package History
m 12.2.12 Differences from mimelib
m 12.2.13 Examples
12.3 mailcap -- Mailcap file handling.
12.4 mailbox -- Read various mailbox formats
m 12.4.1 Mailbox Objects
12.5mh1ib -- Access to MH mailboxes
m 12.5.1 MH Objects
m 12.5.2 Folder Objects
m 12.5.3 Message Objects
12.6 mimetools -- Tools for parsing MIME messages
m 12.6.1 Additional Methods of Message Objects
12.7 mimetypes -- Map filenames to MIME types

m 12.7.1 MimeTypes Objects
12.8 MimeWriter -- Generic MIME file writer

m 12.8.1 MimeWriter Objects
12.9 mimify -- MIME processing of mail messages

12.10 multifile -- Support for files containing distinct parts
m 12.10.1 MultiFile Objects
m 12.10.2 MultiFile Example

12.11 rfc822 -- Parse RFC 2822 mail headers
m 12.11.1 Message Objects

m 12.11.2 AddressList Objects
12.12 base64 -- RFC 3548: Basel6, Base32, Base64 Data Encodings

12.13 binascii -- Convert between binary and ASCII
12.14 binhex -- Encode and decode binhex4 files
m 12.14.1 Notes
12.15 quopri -- Encode and decode MIME quoted-printable data
12.16 uu -- Encode and decode uuencode files
12.17 xdr1ib -- Encode and decode XDR data
m 12.17.1 Packer Objects
m 12.17.2 Unpacker Objects
m 12.17.3 Exceptions
12.18 netrc -- netrc file processing
m 12.18.1 netrc Objects
12.19 robotparser -- Parser for robots.txt
12.20 csv -- CSV File Reading and Writing
= 12.20.1 Module Contents

12.20.2 Dialects and Formatting Parameters
12.20.3 Reader Objects
12.20.4 Writer Objects

12.20.5 Examples

e 13. Structured Markup Processing Tools

e}

13.1 HTMLParser -- Simple HTML and XHTML parser

= 13.1.1 Example HTML Parser Application
13.2 sgmllib -- Simple SGML parser
13.3 htmllib -- A parser for HTML documents

m 13.3.1 HTMLParser Objects
134 htmlentitydefs -- Definitions of HTML general entities
13.5 xml.parsers.expat -- Fast XML parsing using Expat
13.5.1 XML Parser Objects

13.5.2 ExpatError Exceptions

13.5.3 Example
13.5.4 Content Model Descriptions

13.5.5 Expat error constants
13.6 xml . dom -- The Document Object Model API
= 13.6.1 Module Contents
= 13.6.2 Objects in the DOM
= 13.6.3 Conformance
13.7 xml.dom.minidom -- Lightweight DOM implementation
= 13.7.1 DOM Objects
= 13.7.2 DOM Example
m 13.7.3 minidom and the DOM standard
13.8 xml.dom.pulldom-- Support for building partial DOM trees
= 13.8.1 DOMEventStream Objects
13.9 xml . sax -- Support for SAX2 parsers
= 13.9.1 SAXException Objects
13.10 xml .sax.handler -- Base classes for SAX handlers
= 13.10.1 ContentHandler Objects
= 13.10.2 DTDHandler Objects
= 13.10.3 EntityResolver Objects
= 13.10.4 ErrorHandler Objects
13.11 xml .sax.saxutils -- SAX Utilities
13.12 xml .sax.xmlreader -- Interface for XML parsers
m 13.12.1 XMLReader Objects
= 13.12.2 IncrementalParser Objects

o

13.12.3 Locator Objects

13.12.4 InputSource Objects

13.12.5 The Attributes Interface

13.12.6 The AttributesNS Interface

13.13 xm11ib -- A parser for XML documents
m 13.13.1 XML Namespaces

e 14. Multimedia Services

O O O o

O O O O O O

14.1 audioop -- Manipulate raw audio data
14.2 imageop -- Manipulate raw image data
14.3 aifc -- Read and write AIFF and AIFC files
14.4 sunau -- Read and write Sun AU files

m 14.4.1 AU_read Objects

m 14.4.2 AU_write Objects
14.5 wave -- Read and write WAV files

m 14.5.1 Wave_read Objects

m 14.5.2 Wave_write Objects
14.6 chunk -- Read IFF chunked data
14.7 colorsys -- Conversions between color systems
14.8 rgbimg -- Read and write ~"SGI RGB" files

14.9 imghdr _-- Determine the type of an image

14.10 sndhdr _-- Determine type of sound file
14.11 ossaudiodeV_-- Access to OSS-compatible audio devices

m 14.11.1 Audio Device Objects
= 14.11.2 Mixer Device Objects

e 15. Cryptographic Services

o

e}

(@)

15.1 hmac -- Keyed-Hashing for Message Authentication
15.2 md5_-- MD5 message digest algorithm

15.3 sha -- SHA-1 message digest algorithm

e 16. Graphical User Interfaces with Tk

e}

e}

16.1 Tkinter -- Python interface to Tcl/Tk
16.1.1 Tkinter Modules

16.1.2 Tkinter Life Preserver

16.1.3 A (Very) Quick Look at Tcl/Tk
16.1.4 Mapping Basic Tk into Tkinter
16.1.5 How Tk and Tkinter are Related
16.1.6 Handy Reference

16.2 Tix -- Extension widgets for Tk

m 16.2.1 Using Tix

m 16.2.2 Tix Widgets
m 16.2.3 Tix Commands
o 16.3 ScrolledText -- Scrolled Text Widget
o 16.4 turtle -- Turtle graphics for Tk
= 16.4.1 Pen and RawPen Objects
o 16.5 Idle
m 16.5.1 Menus
m 16.5.2 Basic editing and navigation
m 16.5.3 Syntax colors
o 16.6 Other Graphical User Interface Packages
e 17. Restricted Execution
o 17.1 rexec -- Restricted execution framework
= 17.1.1 RExec Objects
m 17.1.2 Defining restricted environments
m 17.1.3 An example
o 17.2 Bastion -- Restricting access to objects
e 18. Python Language Services
o 18.1 parser -- Access Python parse trees
18.1.1 Creating AST Objects
18.1.2 Converting AST Objects
18.1.3 Queries on AST Objects

18.1.4 Exceptions and Error Handling
18.1.5 AST Objects

18.1.6 Examples
18.2 symbol -- Constants used with Python parse trees

18.3 token -- Constants used with Python parse trees
18.4 keyword -- Testing for Python keywords
18.5 tokenize -- Tokenizer for Python source
18.6 tabnanny -- Detection of ambiguous indentation
18.7 pyclbr -- Python class browser support

m 18.7.1 Class Descriptor Objects

= 18.7.2 Function Descriptor Objects
o 18.8 py compile -- Compile Python source files
o 18.9 compileall -- Byte-compile Python libraries
o 18.10 dis -- Disassembler for Python byte code

= 18.10.1 Python Byte Code Instructions

o 18.11 pickletools -- Tools for pickle developers.
o 18.12 distutils -- Building and installing Python modules

O O O O O O

e 19. Python compiler package

o

o

(@)

(e}

(e}

19.1 The basic interface
19.2 Limitations
19.3 Python Abstract Syntax
m 19.3.1 AST Nodes
m 19.3.2 Assignment nodes
= 19.3.3 Examples
19.4 Using Visitors to Walk ASTs
19.5 Bytecode Generation

e 20. SGI IRIX Specific Services

(e}

o

o O O O O o o

20.1 al -- Audio functions on the SGI
= 20.1.1 Configuration Objects
= 20.1.2 Port Objects
20.2 AL -- Constants used with the al module
20.3 cd -- CD-ROM access on SGI systems
= 20.3.1 Player Objects
m 20.3.2 Parser Objects
20.4 f1 -- FORMS library for graphical user interfaces
m 20.4.1 Functions Defined in Module f1
= 20.4.2 Form Objects
= 20.4.3 FORMS Objects
20.5 FL -- Constants used with the f1 module
20.6 f1p -- Functions for loading stored FORMS designs
20.7 fm_-- Font Manager interface
20.8 g1 -- Graphics Library interface
20.9 DEVICE -- Constants used with the g1 module
20.10 GL -- Constants used with the g1 module
20.11 imgfile -- Support for SGI imglib files
20.12 jpeg -- Read and write JPEG files

e 21. SunOS Specific Services

(@)

(@)

21.1 sunaudiodevV -- Access to Sun audio hardware
= 21.1.1 Audio Device Objects
21.2 SUNAUDIODEYV -- Constants used with sunaudiodev

e 22. MS Windows Specific Services

e}

22.1 msvcrt - Useful routines from the MS VC++ runtime
m 22.1.1 File Operations
m 22.1.2 Console I/O
m 22.1.3 Other Functions

o 22.2 winreg .- Windows registry access
m 22.2.1 Registry Handle Objects
o 22.3 winsound -- Sound-playing interface for Windows
¢ A. Undocumented Modules
A.1 Frameworks
A.2 Miscellaneous useful utilities
A.3 Platform specific modules
A.4 Multimedia
A.5 Obsolete
A.6 SGI-specific Extension modules
e B. Reporting Bugs
e C. History and License
o C.1 History of the software
o (.2 Terms and conditions for accessing or otherwise using Python
o C.3 Licenses and Acknowledgements for Incorporated Software
C.3.1 Mersenne Twister
C.3.2 Sockets
C.3.3 Floating point exception control
C.3.4 MD5 message digest algorithm
C.3.5 Asynchronous socket services

C.3.6 Cookie management

C.3.7 Profiling
C.3.8 Execution tracing

C.3.9 UUencode and UUdecode functions
C.3.10 XML Remote Procedure Calls

e Module Index

e Index

e About this document ...

O O O O o o

«1T-> Python Library Reference toc m 1
up: Python Documentation Index Next: Front Matter

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: Python Library Reference up: Python Library Reference Next:
Contents

Front Matter

Copyright © 2001-2004 Python Software Foundation. All rights reserved.
Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights
reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract:

Python is an extensible, interpreted, object-oriented programming language. It
supports a wide range of applications, from simple text processing scripts to
interactive Web browsers.

While the Python Reference Manual describes the exact syntax and semantics of
the language, it does not describe the standard library that is distributed with the
language, and which greatly enhances its immediate usability. This library
contains built-in modules (written in C) that provide access to system
functionality such as file I/O that would otherwise be inaccessible to Python
programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these
modules are explicitly designed to encourage and enhance the portability of
Python programs.

This library reference manual documents Python's standard library, as well as
many optional library modules (which may or may not be available, depending
on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the
language and its built-in functions and exceptions, many of which are not or
incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an

informal introduction to Python, see the Python Tutorial; the Python Reference
Manual remains the highest authority on syntactic and semantic questions.
Finally, the manual entitled Extending and Embedding the Python Interpreter
describes how to add new extensions to Python and how to embed it in other
applications.

<« 'r = Python Library Reference toc m i

COMTENTS HODULES INDEX
Previous: Python Library Reference up: Python Library Reference Next:
Contents

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: Contents up: Python Library Reference Next: 2. Bulilt-In Objects

1. Introduction

The “"Python library" contains several different kinds of components.

It contains data types that would normally be considered part of the ~“core" of a
language, such as numbers and lists. For these types, the Python language core

defines the form of literals and places some constraints on their semantics, but

does not fully define the semantics. (On the other hand, the language core does
define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions -- objects that can be
used by all Python code without the need of an import statement. Some of
these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are
many ways to dissect this collection. Some modules are written in C and built in
to the Python interpreter; others are written in Python and imported in source
form. Some modules provide interfaces that are highly specific to Python, like
printing a stack trace; some provide interfaces that are specific to particular
operating systems, such as access to specific hardware; others provide interfaces
that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only
available when the underlying system supports or requires them; yet others are
available only when a particular configuration option was chosen at the time
when Python was compiled and installed.

This manual is organized " from the inside out:" it first describes the built-in data
types, then the built-in functions and exceptions, and finally the modules,
grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to
least important.

This means that if you start reading this manual from the start, and skip to the
next chapter when you get bored, you will get a reasonable overview of the
available modules and application areas that are supported by the Python library.
Of course, you don't have to read it like a novel -- you can also browse the table

of contents (in front of the manual), or look for a specific function, module or
term in the index (in the back). And finally, if you enjoy learning about random
subjects, you choose a random page number (see module random) and read a
section or two. Regardless of the order in which you read the sections of this
manual, it helps to start with chapter 2, “"Built-in Types, Exceptions and
Functions," as the remainder of the manual assumes familiarity with this
material.

Let the show begin!

<« 'r = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: Contents up: Python Library Reference Next: 2. Built-In Objects

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 1. Introduction up: Python Library Reference Next: 2.1 Built-in
Functions

2. Built-In Objects

Names for built-in exceptions and functions and a number of constants are found
in a separate symbol table. This table is searched last when the interpreter looks
up the meaning of a name, so local and global user-defined names can override

built-in names. Built-in types are described together here for easy reference.%!

The tables in this chapter document the priorities of operators by listing them in

order of ascending priority (within a table) and grouping operators that have the

same priority in the same box. Binary operators of the same priority group from

left to right. (Unary operators group from right to left, but there you have no real
choice.) See chapter 5 of the Python Reference Manual for the complete picture

on operator priorities.

Footnhotes

... reference. 21

Most descriptions sorely lack explanations of the exceptions that may be
raised -- this will be fixed in a future version of this manual.

Subsections

e 2.1 Built-in Functions
e 2.2 Non-essential Built-in Functions
e 2.3 Built-in Types
2.3.1 Truth Value Testing
2.3.2 Boolean Operations
2.3.3 Comparisons
2.3.4 Numeric Types
m 2.3.4.1 Bit-string Operations on Integer Types
2.3.5 Iterator Types

2.3.6 Sequence Types
m 2.3.6.1 String Methods

o

O O O

o

o

m 2.3.6.2 String Formatting Operations
m 2.3.6.3 XRange Type

= 2.3.6.4 Mutable Sequence Types
2.3.7 Set Types
2.3.8 Mapping Types
2.3.9 File Objects
2.3.10 Other Built-in Types
2.3.10.1 Modules
2.3.10.2 Classes and Class Instances
2.3.10.3 Functions
2.3.10.4 Methods
2.3.10.5 Code Objects

2.3.10.6 Type Objects
2.3.10.7 The Null Object

2.3.10.8 The Ellipsis Object
2.3.10.9 Boolean Values
2.3.10.10 Internal Objects

o 2.3.11 Special Attributes
e 2.4 Built-in Exceptions
e 2.5 Built-in Constants

O O O O

<« 'r = Python Library Reference toc m i

COMTENTS MODULES IMDEX
Previous: 1. Introduction up: Python Library Reference Next: 2.1 Built-in
Functions

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 2. Built-In Objects up: 2. Built-In Objects Next: 2.2 Non-essential
Built-in Functions

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always
available. They are listed here in alphabetical order.

__dmport__(name[, globals[, locals[, fromlist]]])

This function is invoked by the impor t statement. It mainly exists so that
you can replace it with another function that has a compatible interface, in
order to change the semantics of the import statement. For examples of
why and how you would do this, see the standard library modules 1hooks
and rexec. See also the built-in module imp, which defines some useful
operations out of which you can build your own __import__ () function.

For example, the statement "import spam" results in the following call:
__import__('spam', globals(), locals(), []);the
statement "from spam.ham import eggs" resultsin
"__import__('spam.ham', globals(), locals(),

['eggs'])". Note that even though 1ocals() and ['eggs"'] are
passed in as arguments, the __import__ () function does not set the
local variable named eggs; this is done by subsequent code that is
generated for the import statement. (In fact, the standard implementation
does not use its locals argument at all, and uses its globals only to
determine the package context of the import statement.)

When the name variable is of the form package .module, normally, the
top-level package (the name up till the first dot) is returned, not the module
named by name. However, when a non-empty fromlist argument is given,
the module named by name is returned. This is done for compatibility with
the bytecode generated for the different kinds of import statement; when
using "import spam.ham.eggs", the top-level package spam must be
placed in the importing namespace, but when using "from spam.ham
import eggs", the spam.ham subpackage must be used to find the
eggs variable. As a workaround for this behavior, use getattr () to
extract the desired components. For example, you could define the
following helper:

def my_import(name):
mod = __import__(name)
components = name.split('."')
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs(x)
Return the absolute value of a number. The argument may be a plain or long

integer or a floating point number. If the argument is a complex number, its
magnitude is returned.

basestring()

This abstract type is the superclass for str and unicode. It cannot be
called or instantiated, but it can be used to test whether an object is an
instance of str or unicode. isinstance(obj, basestring) is
equivalent to isinstance(obj, (str, unicode)).New in
version 2.3.

bool([x])

Convert a value to a Boolean, using the standard truth testing procedure. If
x is false or omitted, this returns False; otherwise it returns True. bool
is also a class, which is a subclass of int. Class bool cannot be
subclassed further. Its only instances are False and True.

New in version 2.2.1. Changed in version 2.3: If no argument is given, this
function returns False.

callable(object)

Return true if the object argument appears callable, false if not. If this
returns true, it is still possible that a call fails, but if it is false, calling object
will never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havea __call__ ()
method.

chr(i)
Return a string of one character whose ASCII code is the integer i. For
example, chr (97) returns the string 'a'. This is the inverse of ord().
The argument must be in the range [0..255], inclusive; ValueError will

be raised if i is outside that range.

classmethod(function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an
instance method receives the instance. To declare a class method, use this

idiom:
class C:
@classmethod
def f(cls, argil, arg2, ...):

The @classmethod form is a function decorator - see the description of
function definitions in chapter 7 of the Python Reference Manual for
details.

It can be called either on the class (such as C. f()) or on an instance (such
as C().f()). The instance is ignored except for its class. If a class method
is called for a derived class, the derived class object is passed as the implied
first argument.

Class methods are different than C++ or Java static methods. If you want
those, see staticmethod() in this section. New in version 2.2.
Changed in version 2.4: Function decorator syntax added.

cmp(x, y)
Compare the two objects x and y and return an integer according to the
outcome. The return value is negative if x < y, zero if x == y and strictly

positive if x > y.

compile(string, filename, kind|[, flags[, dont_inherit]])
Compile the string into a code object. Code objects can be executed by an
exec statement or evaluated by a call to eval(). The filename argument
should give the file from which the code was read; pass some recognizable
value if it wasn't read from a file (' <string>"' is commonly used). The
kind argument specifies what kind of code must be compiled; it can be
"exec' if string consists of a sequence of statements, 'eval' if it
consists of a single expression, or ' single' if it consists of a single

interactive statement (in the latter case, expression statements that evaluate
to something else than None will be printed).

When compiling multi-line statements, two caveats apply: line endings
must be represented by a single newline character (' \n'), and the input
must be terminated by at least one newline character. If line endings are
represented by '\r\n', use the string replace() method to change
them into '\n".

The optional arguments flags and dont_inherit (which are new in Python
2.2) control which future statements (see PEP 236) affect the compilation of
string. If neither is present (or both are zero) the code is compiled with
those future statements that are in effect in the code that is calling compile.
If the flags argument is given and dont_inherit is not (or is zero) then the
future statements specified by the flags argument are used in addition to
those that would be used anyway. If dont_inherit is a non-zero integer then
the flags argument is it - the future statements in effect around the call to
compile are ignored.

Future statemants are specified by bits which can be bitwise or-ed together
to specify multiple statements. The bitfield required to specify a given
feature can be found as the compiler_flag attribute on the _Feature
instance in the __future__ module.

complex([reall, imag]])
Create a complex number with the value real + imag*j or convert a string
or number to a complex number. If the first parameter is a string, it will be
interpreted as a complex number and the function must be called without a
second parameter. The second parameter can never be a string. Each
argument may be any numeric type (including complex). If imag is omitted,
it defaults to zero and the function serves as a numeric conversion function
like int (), long() and float (). If both arguments are omitted,
returns 07.

delattr(object, name)

This is a relative of setattr (). The arguments are an object and a string.
The string must be the name of one of the object's attributes. The function
deletes the named attribute, provided the object allows it. For example,

http://www.python.org/peps/pep-0236.html

delattr(x, 'foobar') isequivalentto del x.foobar.

dict([mapping-or-sequence])
Return a new dictionary initialized from an optional positional argument or
from a set of keyword arguments. If no arguments are given, return a new
empty dictionary. If the positional argument is a mapping object, return a
dictionary mapping the same keys to the same values as does the mapping
object. Otherwise the positional argument must be a sequence, a container
that supports iteration, or an iterator object. The elements of the argument
must each also be of one of those kinds, and each must in turn contain
exactly two objects. The first is used as a key in the new dictionary, and the
second as the key's value. If a given key is seen more than once, the last
value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their
associated values are added as items to the dictionary. If a key is specified
both in the positional argument and as a keyword argument, the value
associated with the keyword is retained in the dictionary. For example,
these all return a dictionary equal to {"one": 2, "two": 3}:

e dict({'one': 2, 'two': 3})

e dict({'one': 2, 'two': 3}.items())
dict({'one': 2, '"two': 3}.iteritems())
dict(zip(('one', 'two'), (2, 3)))
dict([['two', 3], ['one', 2]])

dict(one=2, two=3)

dict([(['one', '"two'][1-2], i) for 1 in (2,
3)1)

New in version 2.2. Changed in version 2.3: Support for building a
dictionary from keyword arguments added.

dir([object])
Without arguments, return the list of names in the current local symbol
table. With an argument, attempts to return a list of valid attributes for that
object. This information is gleaned from the object's __dict___ attribute,
if defined, and from the class or type object. The list is not necessarily
complete. If the object is a module object, the list contains the names of the

module's attributes. If the object is a type or class object, the list contains
the names of its attributes, and recursively of the attributes of its bases.
Otherwise, the list contains the object's attributes' names, the names of its
class's attributes, and recursively of the attributes of its class's base classes.
The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir()

['__builtins__', '__doc__', '_name__', 'struct']

>>> dir(struct)

['_doc__', '_name__', 'calcsize', 'error', 'pack', 'unpack']

Note: Because dir () is supplied primarily as a convenience for use at an
interactive prompt, it tries to supply an interesting set of names more than it
tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases.

divmod(a, b)
Take two (non complex) numbers as arguments and return a pair of
numbers consisting of their quotient and remainder when using long
division. With mixed operand types, the rules for binary arithmetic
operators apply. For plain and long integers, the result is the same as (a /
b, a % b). For floating point numbers the resultis (q, a % b), where
g is usually math.floor (a / b) but may be 1 less than that. In any
caseq * b + a % bisveryclosetoa,ifa % b isnon-zero it has the
same sign as b,and © <= abs(a % b) < abs(b).

Changed in version 2.3: Using divmod () with complex numbers is
deprecated.

enumerate(iterable)

Return an enumerate object. iterable must be a sequence, an iterator, or
some other object which supports iteration. The next () method of the
iterator returned by enumerate() returns a tuple containing a count
(from zero) and the corresponding value obtained from iterating over
iterable. enumerate () is useful for obtaining an indexed series: (0,
seq[0]), (1, seq[1]), (2, seq[2]),.... New in version 2.3.

eval(expression[, globals[, locals]])

The arguments are a string and optional globals and locals. If provided,
globals must be a dictionary. If provided, locals can be any mapping object.
Changed in version 2.4: formerly locals was required to be a dictionary.

The expression argument is parsed and evaluated as a Python expression
(technically speaking, a condition list) using the globals and locals
dictionaries as global and local name space. If the globals dictionary is
present and lacks '__builtins__', the current globals are copied into globals
before expression is parsed. This means that expression normally has full
access to the standard __builtin module and restricted environments
are propagated. If the locals dictionary is omitted it defaults to the globals
dictionary. If both dictionaries are omitted, the expression is executed in the
environment where eval is called. The return value is the result of the
evaluated expression. Syntax errors are reported as exceptions. Example:

>>> X = 1
>>> print eval('x+1'")
2

This function can also be used to execute arbitrary code objects (such as
those created by compile()). In this case pass a code object instead of a
string. The code object must have been compiled passing 'eval' as the
kind argument.

Hints: dynamic execution of statements is supported by the exec
statement. Execution of statements from a file is supported by the
execfile() function. The globals() and locals() functions
returns the current global and local dictionary, respectively, which may be
useful to pass around for use by eval() or execfile().

execfile(filenamel, globals|, locals]])
This function is similar to the exec statement, but parses a file instead of a
string. It is different from the import statement in that it does not use the
module administration -- it reads the file unconditionally and does not
create a new module.22

The arguments are a file name and two optional dictionaries. The file is
parsed and evaluated as a sequence of Python statements (similarly to a
module) using the globals and locals dictionaries as global and local

namespace. If provided, locals can be any mapping object. Changed in
version 2.4: formerly locals was required to be a dictionary. If the locals
dictionary is omitted it defaults to the globals dictionary. If both
dictionaries are omitted, the expression is executed in the environment
where execfile() is called. The return value is None.

Warning: The default locals act as described for function 1ocals()
below: modifications to the default locals dictionary should not be
attempted. Pass an explicit locals dictionary if you need to see effects of the
code on locals after function execfile() returns. execfile() cannot
be used reliably to modify a function's locals.

file(filename[, model, bufsize]])
Return a new file object (described in section 2.3.9, " File Objects"). The
first two arguments are the same as for stdio's fopen(): filename is the
file name to be opened, mode indicates how the file is to be opened: 'r '
for reading, 'w' for writing (truncating an existing file), and 'a' opens it
for appending (which on some Unix systems means that all writes append
to the end of the file, regardless of the current seek position).

Modes 'r+', 'w+' and 'a+' open the file for updating (note that 'w+"
truncates the file). Append 'b"' to the mode to open the file in binary
mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opened, IOError is raised.

In addition to the standard fopen() values mode may be 'U' or 'rU'.If
Python is built with universal newline support (the default) the file is
opened as a text file, but lines may be terminated by any of ' \n', the Unix
end-of-line convention, ' \r ', the Macintosh convention or ' \r\n', the
Windows convention. All of these external representations are seen as

'"\n"' by the Python program. If Python is built without universal newline
support mode 'U' is the same as normal text mode. Note that file objects
so opened also have an attribute called newlines which has a value of
None (if no newlines have yet been seen), '\n"', "\r', '\r\n', ora
tuple containing all the newline types seen.

If mode is omitted, it defaults to ' r '. When opening a binary file, you
should append 'b"' to the mode value for improved portability. (It's useful

even on systems which don't treat binary and text files differently, where it
serves as documentation.) The optional bufsize argument specifies the file's
desired buffer size: 0 means unbuffered, 1 means line buffered, any other
positive value means use a buffer of (approximately) that size. A negative
bufsize means to use the system default, which is usually line buffered for
tty devices and fully buffered for other files. If omitted, the system default

is used.23

The file () constructor is new in Python 2.2. The previous spelling,
open(), is retained for compatibility, and is an alias for file().

filter(function, list)
Construct a list from those elements of list for which function returns true.
list may be either a sequence, a container which supports iteration, or an
iterator, If list is a string or a tuple, the result also has that type; otherwise it
is always a list. If function is None, the identity function is assumed, that is,
all elements of list that are false (zero or empty) are removed.

Note that filter (function, Ilist) is equivalentto [item for
item in list if function(item)] if function is not None and
[item for item in list if item] if function is None.

float([x])

Convert a string or a number to floating point. If the argument is a string, it
must contain a possibly signed decimal or floating point number, possibly
embedded in whitespace. Otherwise, the argument may be a plain or long
integer or a floating point number, and a floating point number with the
same value (within Python's floating point precision) is returned. If no
argument is given, returns 0. 0.

Note: When passing in a string, values for NalN and Infinity may be
returned, depending on the underlying C library. The specific set of strings
accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

frozenset([iterable])

Return a frozenset object whose elements are taken from iterable.
Frozensets are sets that have no update methods but can be hashed and used

as members of other sets or as dictionary keys. The elements of a frozenset
must be immutable themselves. To represent sets of sets, the inner sets
should also be frozenset objects. If iterable is not specified, returns a
new empty set, frozenset([]). New in version 2.4.

getattr(object, namel, default])
Return the value of the named attributed of object. name must be a string. If
the string is the name of one of the object's attributes, the result is the value
of that attribute. For example, getattr(x, 'foobar') isequivalent
to X . foobar. If the named attribute does not exist, default is returned if
provided, otherwise AttributeError is raised.

globals()

Return a dictionary representing the current global symbol table. This is
always the dictionary of the current module (inside a function or method,
this is the module where it is defined, not the module from which it is
called).

hasattr(object, name)

The arguments are an object and a string. The result is True if the string is
the name of one of the object's attributes, False if not. (This is
implemented by calling getattr (object, name) and seeing whether it
raises an exception or not.)

hash(object)
Return the hash value of the object (if it has one). Hash values are integers.
They are used to quickly compare dictionary keys during a dictionary
lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

help([object])

Invoke the built-in help system. (This function is intended for interactive
use.) If no argument is given, the interactive help system starts on the
interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or
documentation topic, and a help page is printed on the console. If the
argument is any other kind of object, a help page on the object is generated.

New in version 2.2.

hex(x)
Convert an integer number (of any size) to a hexadecimal string. The result
is a valid Python expression. Changed in version 2.4: Formerly only
returned an unsigned literal..

id(object)
Return the "identity"” of an object. This is an integer (or long integer) which
is guaranteed to be unique and constant for this object during its lifetime.
Two objects with non-overlapping lifetimes may have the same id ()
value. (Implementation note: this is the address of the object.)

input([prompt])
Equivalent to eval(raw_input (prompt)). Warning: This function is
not safe from user errors! It expects a valid Python expression as input; if
the input is not syntactically valid, a SyntaxError will be raised. Other
exceptions may be raised if there is an error during evaluation. (On the
other hand, sometimes this is exactly what you need when writing a quick
script for expert use.)

If the readline module was loaded, then input () will use it to provide
elaborate line editing and history features.

Consider using the raw_input () function for general input from users.

int([x[, radix]])
Convert a string or number to a plain integer. If the argument is a string, it
must contain a possibly signed decimal number representable as a Python
integer, possibly embedded in whitespace. The radix parameter gives the
base for the conversion and may be any integer in the range [2, 36], or zero.
If radix is zero, the proper radix is guessed based on the contents of string;
the interpretation is the same as for integer literals. If radix is specified and
X is not a string, TypeError is raised. Otherwise, the argument may be a
plain or long integer or a floating point number. Conversion of floating
point numbers to integers truncates (towards zero). If the argument is
outside the integer range a long object will be returned instead. If no
arguments are given, returns 0.

isinstance(object, classinfo)
Return true if the object argument is an instance of the classinfo argument,
or of a (direct or indirect) subclass thereof. Also return true if classinfo is a
type object and object is an object of that type. If object is not a class
instance or an object of the given type, the function always returns false. If
classinfo is neither a class object nor a type object, it may be a tuple of class
or type objects, or may recursively contain other such tuples (other
sequence types are not accepted). If classinfo is not a class, type, or tuple of
classes, types, and such tuples, a TypeError exception is raised. Changed
in version 2.2: Support for a tuple of type information was added.

issubclass(class, classinfo)
Return true if class is a subclass (direct or indirect) of classinfo. A class is
considered a subclass of itself. classinfo may be a tuple of class objects, in
which case every entry in classinfo will be checked. In any other case, a
TypeError exception is raised. Changed in version 2.3: Support for a
tuple of type information was added.

iter(ol, sentinel])
Return an iterator object. The first argument is interpreted very differently
depending on the presence of the second argument. Without a second
argument, o must be a collection object which supports the iteration
protocol (the __iter__ () method), or it must support the sequence
protocol (the __getitem__ () method with integer arguments starting at
0). If it does not support either of those protocols, TypeError is raised. If
the second argument, sentinel, is given, then o must be a callable object.
The iterator created in this case will call o with no arguments for each call
to its next () method; if the value returned is equal to sentinel,
StopIteration will be raised, otherwise the value will be returned.
New in version 2.2.

len(s)
Return the length (the number of items) of an object. The argument may be
a sequence (string, tuple or list) or a mapping (dictionary).

1list([sequence])
Return a list whose items are the same and in the same order as sequence's

items. sequence may be either a sequence, a container that supports
iteration, or an iterator object. If sequence is already a list, a copy is made
and returned, similar to sequence]| :]. For instance, 11st('abc')
returns ['a', 'b', 'c']andlist((1, 2, 3)) returns [1,
2, 3].If no argument is given, returns a new empty list, [].

locals()

Update and return a dictionary representing the current local symbol table.
Warning: The contents of this dictionary should not be modified; changes
may not affect the values of local variables used by the interpreter.

long([x[, radix]])
Convert a string or number to a long integer. If the argument is a string, it
must contain a possibly signed number of arbitrary size, possibly embedded
in whitespace. The radix argument is interpreted in the same way as for
int(), and may only be given when x is a string. Otherwise, the argument
may be a plain or long integer or a floating point number, and a long integer
with the same value is returned. Conversion of floating point numbers to
integers truncates (towards zero). If no arguments are given, returns OL.

map(function, list, ...)
Apply function to every item of list and return a list of the results. If
additional list arguments are passed, function must take that many
arguments and is applied to the items of all lists in parallel; if a list is
shorter than another it is assumed to be extended with None items. If
function is None, the identity function is assumed; if there are multiple list
arguments, map () returns a list consisting of tuples containing the
corresponding items from all lists (a kind of transpose operation). The list
arguments may be any kind of sequence; the result is always a list.

max(s[, args...])

With a single argument s, return the largest item of a non-empty sequence
(such as a string, tuple or list). With more than one argument, return the
largest of the arguments.

min(s[, args...])
With a single argument s, return the smallest item of a non-empty sequence

(such as a string, tuple or list). With more than one argument, return the
smallest of the arguments.

object()
Return a new featureless object. object () is a base for all new style

classes. It has the methods that are common to all instances of new style
classes. New in version 2.2.

Changed in version 2.3: This function does not accept any arguments.
Formerly, it accepted arguments but ignored them.

oct(x)
Convert an integer number (of any size) to an octal string. The result is a
valid Python expression. Changed in version 2.4: Formerly only returned an
unsigned literal..

open(filename[, model[, bufsize]])
An alias for the file() function above.

ord(c)
Return the ASCII value of a string of one character or a Unicode character.
E.g.,ord('a') returns the integer 97, ord(u'\u2020"') returns
8224. This is the inverse of chr () for strings and of unichr () for
Unicode characters.

pow(x, y[, z])
Return x to the power y; if z is present, return x to the power y, modulo z
(computed more efficiently than pow(x, y) % z). The arguments must
have numeric types. With mixed operand types, the coercion rules for
binary arithmetic operators apply. For int and long int operands, the result
has the same type as the operands (after coercion) unless the second
argument is negative; in that case, all arguments are converted to float and a
float result is delivered. For example, 10* * 2 returns 100, but 10** -2
returns 0 . O1. (This last feature was added in Python 2.2. In Python 2.1 and
before, if both arguments were of integer types and the second argument
was negative, an exception was raised.) If the second argument is negative,
the third argument must be omitted. If z is present, x and y must be of

integer types, and y must be non-negative. (This restriction was added in
Python 2.2. In Python 2.1 and before, floating 3-argument pow () returned
platform-dependent results depending on floating-point rounding
accidents.)

property([fgetl, fset[, fdel[, doc]]]])

Return a property attribute for new-style classes (classes that derive from
object).

fget is a function for getting an attribute value, likewise fset is a function for
setting, and fdel a function for del'ing, an attribute. Typical use is to define a
managed attribute x:

class C(object):
def getx(self): return self._ X
def setx(self, value): self._ x = value
def delx(self): del self._ x
X = property(getx, setx, delx, "I'm the 'x' property.")

New in version 2.2.

range([start,] stopl, step])

This is a versatile function to create lists containing arithmetic progressions.
It is most often used in for loops. The arguments must be plain integers. If
the step argument is omitted, it defaults to 1. If the start argument is
omitted, it defaults to ©. The full form returns a list of plain integers

[start, start + step, start + 2 * step, ...].If step is positive, the
last element is the largest start + i * step less than stop; if step is
negative, the last element is the largest start + i * step greater than stop.
step must not be zero (or else ValueError is raised). Example:

>>> range(10)

(6, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[@I '11 '21 '31 '41 '51 '61 '71 '81 '9]
>>> range(0)

[]

>>> range(1, 0)

[]

raw_input([prompt])
If the prompt argument is present, it is written to standard output without a
trailing newline. The function then reads a line from input, converts it to a
string (stripping a trailing newline), and returns that. When EOF is read,
EOFError is raised. Example:

>>> s = raw_input('--> ")

--> Monty Python's Flying Circus
>>> S

"Monty Python's Flying Circus"

If the readline module was loaded, then raw_input () will use it to
provide elaborate line editing and history features.

reduce(function, sequencel, initializer])

Apply function of two arguments cumulatively to the items of sequence,
from left to right, so as to reduce the sequence to a single value. For
example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculates ((((1+2)+3)+4)+5). The left argument, x, is the
accumulated value and the right argument, y, is the update value from the
sequence. If the optional initializer is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the
sequence is empty. If initializer is not given and sequence contains only one
item, the first item is returned.

reload(module)

Reload a previously imported module. The argument must be a module
object, so it must have been successfully imported before. This is useful if
you have edited the module source file using an external editor and want to
try out the new version without leaving the Python interpreter. The return
value is the module object (the same as the module argument).

When reload(module) is executed:

e Python modules' code is recompiled and the module-level code
reexecuted, defining a new set of objects which are bound to names in
the module's dictionary. The 1nit function of extension modules is

not called a second time.

e As with all other objects in Python the old objects are only reclaimed
after their reference counts drop to zero.

e The names in the module namespace are updated to point to any new
or changed objects.

e Other references to the old objects (such as names external to the
module) are not rebound to refer to the new objects and must be
updated in each namespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the first
import statement for it does not bind its name locally, but does store a
(partially initialized) module object in sys.modules. To reload the
module you must first impor t it again (this will bind the name to the
partially initialized module object) before you can reload() it.

When a module is reloaded, its dictionary (containing the module's global
variables) is retained. Redefinitions of names will override the old
definitions, so this is generally not a problem. If the new version of a
module does not define a name that was defined by the old version, the old
definition remains. This feature can be used to the module's advantage if it
maintains a global table or cache of objects -- with a try statement it can
test for the table's presence and skip its initialization if desired:

try:
cache

except NameError:
cache = {}

It is legal though generally not very useful to reload built-in or dynamically
loaded modules, except for sys, __main and__builtin .In
many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import
..., calling reload() for the other module does not redefine the objects

imported from it -- one way around this is to re-execute the from
statement, another is to use import and qualified names (module.name)
instead.

If a module instantiates instances of a class, reloading the module that
defines the class does not affect the method definitions of the instances --
they continue to use the old class definition. The same is true for derived
classes.

repr(object)

Return a string containing a printable representation of an object. This is the
same value yielded by conversions (reverse quotes). It is sometimes useful
to be able to access this operation as an ordinary function. For many types,
this function makes an attempt to return a string that would yield an object
with the same value when passed to eval().

reversed(seq)

Return a reverse iterator. seq must be an object which supports the sequence
protocol (the _ len__ () method and the __getitem__ () method with
integer arguments starting at ©). New in version 2.4.

round(x[, n])

Return the floating point value x rounded to n digits after the decimal point.
If n is omitted, it defaults to zero. The result is a floating point number.
Values are rounded to the closest multiple of 10 to the power minus n; if
two multiples are equally close, rounding is done away from 0 (so. for
example, round(0.5) is1.0and round(-0.5) is -1.0).

set([iterable])

Return a set whose elements are taken from iterable. The elements must be
immutable. To represent sets of sets, the inner sets should be frozenset
objects. If iterable is not specified, returns a new empty set, set([]).
New in version 2.4.

setattr(object, name, value)

This is the counterpart of getattr (). The arguments are an object, a
string and an arbitrary value. The string may name an existing attribute or a

new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr(x, 'foobar', 123)is
equivalent to x. foobar = 123.

slice([start,] stop[, step])
Return a slice object representing the set of indices specified by
range(start, stop, step).The start and step arguments default to
None. Slice objects have read-only data attributes start, stop and
step which merely return the argument values (or their default). They
have no other explicit functionality; however they are used by Numerical
Python and other third party extensions. Slice objects are also generated
when extended indexing syntax is used. For example:
"a[start:stop:step]"or"a[start:stop, 1i]".

sorted(iterable[, cmpl, key[, reversel]])

Return a new sorted list from the items in iterable. The optional arguments
cmp, key, and reverse have the same meaning as those for the
list.sort() method. New in version 2.4.

staticmethod(function)
Return a static method for function.

A static method does not receive an implicit first argument. To declare a
static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator - see the description of
function definitions in chapter 7 of the Python Reference Manual for
details.

It can be called either on the class (such as C. f()) or on an instance (such
as C() .T()). The instance is ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a
more advanced concept, see classmethod() in this section. New in
version 2.2. Changed in version 2.4: Function decorator syntax added.

str([object])
Return a string containing a nicely printable representation of an object. For
strings, this returns the string itself. The difference with repr (object) is
that str (object) does not always attempt to return a string that is
acceptable to eval(); its goal is to return a printable string. If no
argument is given, returns the empty string, ' '.

sum(sequencel, start])
Sums start and the items of a sequence, from left to right, and returns the
total. start defaults to 0. The sequence's items are normally numbers, and
are not allowed to be strings. The fast, correct way to concatenate sequence
of strings is by calling ' ' . join(sequence). Note that sum(range(n),
m) is equivalent to reduce(operator.add, range(n), m) New
in version 2.3.

super(type[, object-or-type])
Return the superclass of type. If the second argument is omitted the super
object returned is unbound. If the second argument is an object,
isinstance(obj, type) must be true. If the second argument is a type,
issubclass(type2, type) must be true. super () only works for
new-style classes.

A typical use for calling a cooperative superclass method is:

class C(B):
def meth(self, arg):
super(C, self).meth(arg)

Note that super is implemented as part of the binding process for explicit
dotted attribute lookups such as "super (C,
self).__getitem__(name)". Accordingly, super is undefined for
implicit lookups using statements or operators such as "super (C,
self)[name]". New in version 2.2.

tuple([sequence])

Return a tuple whose items are the same and in the same order as
sequence's items. sequence may be a sequence, a container that supports
iteration, or an iterator object. If sequence is already a tuple, it is returned

unchanged. For instance, tuple('abc') returns ('a', 'b', 'c')
and tuple([1, 2, 3]) returns (1, 2, 3).If no argument is given,
returns a new empty tuple, ().

type(object)
Return the type of an object. The return value is a type object. The standard
module types defines names for all built-in types that don't already have
built-in names. For instance:

>>> import types

>>> x = 'abc'

>>> if type(x) is str: print "It's a string"
It's a string

>>> def f(): pass

>>> if type(f) is types.FunctionType: print "It's a function"

It's a function

The isinstance() built-in function is recommended for testing the type
of an object.

unichr(i)
Return the Unicode string of one character whose Unicode code is the
integer i. For example, unichr (97) returns the string u'a"'. This is the
inverse of ord () for Unicode strings. The argument must be in the range
[0..65535], inclusive. ValueError is raised otherwise. New in version
2.0.

unicode([object|, encoding [, errors]]])

Return the Unicode string version of object using one of the following
modes:

If encoding and/or errors are given, unicode () will decode the object
which can either be an 8-bit string or a character buffer using the codec for
encoding. The encoding parameter is a string giving the name of an
encoding; if the encoding is not known, LOOKUpPError is raised. Error
handling is done according to errors; this specifies the treatment of
characters which are invalid in the input encoding. If errorsis 'strict'

(the default), a ValueError is raised on errors, while a value of
"ignore' causes errors to be silently ignored, and a value of

'replace’' causes the official Unicode replacement character, U+FFFD,
to be used to replace input characters which cannot be decoded. See also the
codecs module.

If no optional parameters are given, unicode() will mimic the behaviour
of str () except that it returns Unicode strings instead of 8-bit strings.
More precisely, if object is a Unicode string or subclass it will return that
Unicode string without any additional decoding applied.

For objects which provide a___unicode__ () method, it will call this
method without arguments to create a Unicode string. For all other objects,
the 8-bit string version or representation is requested and then converted to
a Unicode string using the codec for the default encoding in 'strict'
mode.

New in version 2.0. Changed in version 2.2: Support for
__unicode__ () added.

vars([object])
Without arguments, return a dictionary corresponding to the current local
symbol table. With a module, class or class instance object as argument (or
anything else that has a ___dict___ attribute), returns a dictionary
corresponding to the object's symbol table. The returned dictionary should
not be modified: the effects on the corresponding symbol table are
undefined.24

xrange([start,] stop[, step])

This function is very similar to range (), but returns an ““xrange object"
instead of a list. This is an opaque sequence type which yields the same
values as the corresponding list, without actually storing them all
simultaneously. The advantage of xrange () over range() is minimal
(since xrange () still has to create the values when asked for them)
except when a very large range is used on a memory-starved machine or
when all of the range's elements are never used (such as when the loop is
usually terminated with break).

Note: xrange() is intended to be simple and fast. Implementations may
impose restrictions to achieve this. The C implementation of Python
restricts all arguments to native C longs ("short" Python integers), and also
requires that the number of elements fit in a native C long.

zip([seql,...])
This function returns a list of tuples, where the i-th tuple contains the i-th
element from each of the argument sequences. The returned list is truncated
in length to the length of the shortest argument sequence. When there are
multiple argument sequences which are all of the same length, zip() is
similar to map (') with an initial argument of None. With a single sequence
argument, it returns a list of 1-tuples. With no arguments, it returns an
empty list. New in version 2.0.

Changed in version 2.4: Formerly, zip() required at least one argument
and zip() raised a TypeError instead of returning an empty list..

Foothotes

... module.22
It is used relatively rarely so does not warrant being made into a statement.

... used.23
Specifying a buffer size currently has no effect on systems that don't have
setvbuf (). The interface to specify the buffer size is not done using a
method that calls setvbuf (), because that may dump core when called
after any I/O has been performed, and there's no reliable way to determine
whether this is the case.

... undefined.24
In the current implementation, local variable bindings cannot normally be
affected this way, but variables retrieved from other scopes (such as
modules) can be. This may change.

<« T = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 2. Bulilt-In Objects up: 2. Built-In Objects Next: 2.2 Non-essential
Built-in Functions

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 2.1 Built-in Functions up: 2. Built-In Objects Next: 2.3 Built-in Types

2.2 Non-essential Built-in Functions

There are several built-in functions that are no longer essential to learn, know or
use in modern Python programming. They have been kept here to maintain
backwards compatability with programs written for older versions of Python.

Python programmers, trainers, students and bookwriters should feel free to
bypass these functions without concerns about missing something important.

apply(function, args[, keywords])
The function argument must be a callable object (a user-defined or built-in
function or method, or a class object) and the args argument must be a
sequence. The function is called with args as the argument list; the number
of arguments is the length of the tuple. If the optional keywords argument is
present, it must be a dictionary whose keys are strings. It specifies keyword
arguments to be added to the end of the argument list. Calling apply () is
different from just calling function(args), since in that case there is always
exactly one argument. The use of apply () is equivalent to
function(*args, **keywords). Use of apply() is not necessary since
the “extended call syntax," as used in the last example, is completely
equivalent.

Deprecated since release 2.3. Use the extended call syntax instead, as
described above.

buffer(object], offset], size]])

The object argument must be an object that supports the buffer call interface
(such as strings, arrays, and buffers). A new buffer object will be created
which references the object argument. The buffer object will be a slice from
the beginning of object (or from the specified offset). The slice will extend
to the end of object (or will have a length given by the size argument).

coerce(x,y)
Return a tuple consisting of the two numeric arguments converted to a
common type, using the same rules as used by arithmetic operations. If
coercion is not possible, raise TypeError.

intern(string)

Enter string in the table of "“interned" strings and return the interned string -
which is string itself or a copy. Interning strings is useful to gain a little
performance on dictionary lookup - if the keys in a dictionary are interned,
and the lookup key is interned, the key comparisons (after hashing) can be
done by a pointer compare instead of a string compare. Normally, the
names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned
keys. Changed in version 2.3: Interned strings are not immortal (like they
used to be in Python 2.2 and before); you must keep a reference to the
return value of intern() around to benefit from it.

<« 'r = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 2.1 Built-in Functions up: 2. Built-In Objects Next: 2.3 Built-in Types

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 2.2 Non-essential Built-in Functions up: 2. Built-In Objects Next:
2.3.1 Truth Value Testing

2.3 Built-in Types

The following sections describe the standard types that are built into the
interpreter. Historically, Python's built-in types have differed from user-defined
types because it was not possible to use the built-in types as the basis for object-
oriented inheritance. With the 2.2 release this situation has started to change,
although the intended unification of user-defined and built-in types is as yet far
from complete.

The principal built-in types are numerics, sequences, mappings, files classes,
instances and exceptions.

Some operations are supported by several object types; in particular, practically
all objects can be compared, tested for truth value, and converted to a string
(withthe © ... notation, the equivalent repr () function, or the slightly
different str () function). The latter function is implicitly used when an object
is written by the print statement. (Information on print statement and other
language statements can be found in the Python Reference Manual and the
Python Tutorial.)

Subsections

2.3.1 Truth Value Testing
2.3.2 Boolean Operations
2.3.3 Comparisons
2.3.4 Numeric Types
o 2.3.4.1 Bit-string Operations on Integer Types
2.3.5 Iterator Types
2.3.6 Sequence Types
o 2.3.6.1 String Methods
o 2.3.6.2 String Formatting Operations
o 2.3.6.3 XRange Type
o 2.3.6.4 Mutable Sequence Types
2.3.7 Set Types

e 2.3.8 Mapping Types
e 2.3.9 File Objects

e 2.3.10 Other Built-in Types
o 2.3.10.1 Modules
2.3.10.2 Classes and Class Instances
2.3.10.3 Functions
2.3.10.4 Methods
2.3.10.5 Code Objects

2.3.10.6 Type Objects
2.3.10.7 The Null Object

2.3.10.8 The Ellipsis Object
2.3.10.9 Boolean Values

2.3.10.10 Internal Objects
e 2.3.11 Special Attributes

o

O O O O O O O o

<« 'r = Python Library Reference toc m i

COMTENTS HODULES INDEX
Previous: 2.2 Non-essential Built-in Functions up: 2. Built-In Objects Next:
2.3.1 Truth Value Testing

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 2.3 Built-in Types up: 2.3 Built-in Types Next: 2.3.2 Boolean
Operations

2.3.1 Truth Value Testing

Any object can be tested for truth value, for use in an 1f or while condition or
as operand of the Boolean operations below. The following values are
considered false:

e None

e False

¢ zero of any numeric type, for example, 0, OL, 0.0, 0].
e any empty sequence, for example, ' ', (), [].

e any empty mapping, for example, {}.

e instances of user-defined classes, if the class defines a __nonzero__ ()
or __len__ () method, when that method returns the integer zero or

bool value False.22
All other values are considered true -- so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return © or
False for false and 1 or True for true, unless otherwise stated. (Important
exception: the Boolean operations "or" and "and" always return one of their
operands.)

Footnhotes

...False.2:2
Additional information on these special methods may be found in the
Python Reference Manual.

= 1* - Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 2.3 Built-in Types up: 2.3 Built-in Types Next: 2.3.2 Boolean
Operations

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 2.3.1 Truth Value Testing up: 2.3 Built-in Types Next: 2.3.3
Comparisons

2.3.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

| Operation | Result Notes
x or y |if xis false, then y, else x (1)
x and y |if xis false, then x, else y (1)
not x |if xis false, then True, else False | (2)

Notes:

1)

These only evaluate their second argument if needed for their outcome.

(2)
"not" has a lower priority than non-Boolean operators, so not a ==
interpreted as not (a == b),anda == not b is a syntax error.

b is

«1T-> Python Library Reference toc m

COMTENTS HODULES
Previous: 2.3.1 Truth Value Testing up: 2.3 Built-in Types Next: 2.3.3
Comparisons

INDEX

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 2.3.2 Boolean Operations up: 2.3 Built-in Types Next: 2.3.4 Numeric
Types

2.3.3 Comparisons

Comparison operations are supported by all objects. They all have the same
priority (which is higher than that of the Boolean operations). Comparisons can
be chained arbitrarily; for example, x < y <= zisequivalenttox < y and

y <= gz, except that y is evaluated only once (but in both cases z is not evaluated
at all when x < y is found to be false).

This table summarizes the comparison operations:

| Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
= not equal (1)
<> not equal (1)
is object identity

1s not | negated object identity

Notes:

1)
<> and ! = are alternate spellings for the same operator. ! = is the preferred
spelling; <> is obsolescent.

Objects of different types, except different numeric types and different string
types, never compare equal; such objects are ordered consistently but arbitrarily
(so that sorting a heterogeneous array yields a consistent result). Furthermore,
some types (for example, file objects) support only a degenerate notion of
comparison where any two objects of that type are unequal. Again, such objects
are ordered arbitrarily but consistently. The <, <=, > and >= operators will raise
a TypeError exception when any operand is a complex number.

Instances of a class normally compare as non-equal unless the class defines the

__cmp___() method. Refer to the Python Reference Manual for information on
the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by
their type names; objects of the same types that don't support proper comparison
are ordered by their address.

Two more operations with the same syntactic priority, "in" and "not in", are
supported only by sequence types (below).

<« 'r = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 2.3.2 Boolean Operations up: 2.3 Built-in Types Next: 2.3.4 Numeric
Types

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 2.3.3 Comparisons up: 2.3 Built-in Types Next: 2.3.4.1 Bit-string
Operations on

2.3.4 Numeric Types

There are four distinct numeric types: plain integers, long integers, floating
point numbers, and complex numbers. In addition, Booleans are a subtype of
plain integers. Plain integers (also just called integers) are implemented using
long in C, which gives them at least 32 bits of precision. Long integers have
unlimited precision. Floating point numbers are implemented using double in
C. All bets on their precision are off unless you happen to know the machine you
are working with.

Complex numbers have a real and imaginary part, which are each implemented
using double in C. To extract these parts from a complex number z, use
z.realandz.imag.

Numbers are created by numeric literals or as the result of built-in functions and
operators. Unadorned integer literals (including hex and octal numbers) yield
plain integers unless the value they denote is too large to be represented as a
plain integer, in which case they yield a long integer. Integer literals with an "L"
or "1" suffix yield long integers ("L" is preferred because "11" looks too much
like eleven!). Numeric literals containing a decimal point or an exponent sign
yield floating point numbers. Appending "j" or "J" to a numeric literal yields a
complex number with a zero real part. A complex numeric literal is the sum of a
real and an imaginary part.

Python fully supports mixed arithmetic: when a binary arithmetic operator has
operands of different numeric types, the operand with the ~"narrower" type is
widened to that of the other, where plain integer is narrower than long integer is
narrower than floating point is narrower than complex. Comparisons between
numbers of mixed type use the same rule.28 The constructors int (), long(),
float (), and complex() can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by
ascending priority (operations in the same box have the same priority; all
numeric operations have a higher priority than comparison operations):

| Operation | Result Notes
x +y sum of x and y

X -y difference of x and y
x ¥y product of x and y
x/y quotient of x and y (1)
X%y remainder of x / y (4)
-X x negated
+x x unchanged
abs(x) absolute value or magnitude of x
int(x) x converted to integer (2)
long(x) x converted to long integer (2)
float(x) x converted to floating point
complex(re,im) | a complex number with real part re, imaginary
part im. im defaults to zero.
c.conjugate() | conjugate of the complex number ¢
divmod(x, y) |thepair(x / y, x % y) (3)(4)

pow(x, y)

x to the power y

X**y

x to the power y

Notes:

1)

For (plain or long) integer division, the result is an integer. The result is
always rounded towards minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1,
and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a
long integer, regardless of the numeric value.

(2)

Conversion from floating point to (long or plain) integer may round or
truncate as in C; see functions f1loor () and ceil() in the math module
for well-defined conversions.

3)

See section 2.1,

4

Complex floor division operator, modulo operator, and divmod().

“"Built-in Functions," for a full description.

Deprecated since release 2.3. Instead convert to float using abs () if

appropriate.

Footnhotes

.. rule 28
As a consequence, the list [1, 2] is considered equalto [1.0, 2.0],
and similarly for tuples.

Subsections

e 2.3.4.1 Bit-string Operations on Integer Types

<« 'r = Python Library Reference toc m i

COMTENTS MODULES IMDEX
Previous: 2.3.3 Comparisons up: 2.3 Built-in Types Next: 2.3.4.1 Bit-string
Operations on

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 2.3.4.1 Bit-string Operations on up: 2.3 Built-in Types Next: 2.3.6
Sequence Types

2.3.5 Iterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented
using two distinct methods; these are used to allow user-defined classes to
support iteration. Sequences, described below in more detail, always support the
iteration methods.

One method needs to be defined for container objects to provide iteration
support:

dter ()
Return an iterator object. The object is required to support the iterator
protocol described below. If a container supports different types of iteration,
additional methods can be provided to specifically request iterators for
those iteration types. (An example of an object supporting multiple forms of
iteration would be a tree structure which supports both breadth-first and
depth-first traversal.) This method corresponds to the tp_iter slot of the
type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two
methods, which together form the iterator protocol:

dter ()
Return the iterator object itself. This is required to allow both containers
and iterators to be used with the for and in statements. This method
corresponds to the tp_1iter slot of the type structure for Python objects in
the Python/C API.

next()
Return the next item from the container. If there are no further items, raise
the StopIteration exception. This method corresponds to the
tp_iternext slot of the type structure for Python objects in the
Python/C APL.

Python defines several iterator objects to support iteration over general and

specific sequence types, dictionaries, and other more specialized forms. The
specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iterator's next () method raises
StopIteration, it will continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken. (This
constraint was added in Python 2.3; in Python 2.2, various iterators are broken
according to this rule.)

Python's generators provide a convenient way to implement the iterator protocol.
If a container object's __iter__ () method is implemented as a generator, it
will automatically return an iterator object (technically, a generator object)
supplying the __iter__ () and next () methods.

<« 'r = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 2.3.4.1 Bit-string Operations on up: 2.3 Built-in Types Next: 2.3.6
Sequence Types

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 2.3.5 Iterator Types up: 2.3 Built-in Types Next: 2.3.6.1 String
Methods

2.3.6 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and
xrange objects.

String literals are written in single or double quotes: 'xyzzy', "frobozz".
See chapter 2 of the Python Reference Manual for more about string literals.
Unicode strings are much like strings, but are specified in the syntax using a
preceeding "u" character: u'abc', u"def". Lists are constructed with square
brackets, separating items with commas: [a, b, c]. Tuples are constructed
by the comma operator (not within square brackets), with or without enclosing
parentheses, but an empty tuple must have the enclosing parentheses, such as a,
b, cor (). Asingle item tuple must have a trailing comma, such as (d,).

Buffer objects are not directly supported by Python syntax, but can be created by
calling the builtin function buffer (). They don't support concatenation or
repetition.

Xrange objects are similar to buffers in that there is no specific syntax to create
them, but they are created using the xrange (') function. They don't support
slicing, concatenation or repetition, and using 1n, not in,min() or max()
on them is inefficient.

Most sequence types support the following operations. The "in" and "not in"
operations have the same priorities as the comparison operations. The "+" and

"*!" operations have the same priority as the corresponding numeric

operations.%Z

This table lists the sequence operations sorted in ascending priority (operations
in the same box have the same priority). In the table, s and t are sequences of the
same type; n, i and j are integers:

| Operation | Result Notes
x in s True if an item of s is equal to x, else False | (1)
x not in s | False if anitem of sis equal to x, else True | (1)
s +t the concatenation of s and t (6)
s * n , n * s|nshallow copies of s concatenated (2

s[i] i'th item of s, origin 0 3)
s[i:j] slice of s from i to j 3), (4)
s[i:jik] slice of s from i to j with step k 3), (5)
len(s) length of s
min(s) smallest item of s
max(s) largest item of s
Notes:
1)

(2)

3)

When s is a string or Unicode string object the 1n and not in operations
act like a substring test. In Python versions before 2.3, x had to be a string
of length 1. In Python 2.3 and beyond, x may be a string of any length.

Values of n less than O are treated as @ (which yields an empty sequence of
the same type as s). Note also that the copies are shallow; nested structures
are not copied. This often haunts new Python programmers; consider:

>>> lists = [[]] * 3
>>>]lists

(L1, [1, [1]
>>> 1lists[0].append(3)
>>>]lists

(031, [31, [3]]

What has happened is that [[]] is a one-element list containing an empty
list, so all three elements of [[]] * 3 are (pointers to) this single empty
list. Modifying any of the elements of 11sts modifies this single list. You
can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> lists

(031, [51, [7]]

If i or j is negative, the index is relative to the end of the string: 1len(s) +
iorlen(s) + jissubstituted. But note that -0 is still O.

4
The slice of s from i to j is defined as the sequence of items with index k
such thati <= k < j.Ifiorjis greater than 1len(s), use len(s).Ifiis
omitted, use 0. If j is omitted, use 1len(s). If i is greater than or equal to j,
the slice is empty.

(5)

The slice of s from i to j with step k is defined as the sequence of items with
0<n< i o

indexx = i + n*ksuch that . In other words, the indices are
i, i+k, i+2*k, 1+3*k and so on, stopping when j is reached (but never
including j). If i or j is greater than 1en(s), use len(s).If i orj are
omitted then they become "“end" values (which end depends on the sign of
k). Note, k cannot be zero.

(6)
If s and t are both strings, some Python implementations such as CPython
can usually perform an in-place optimization for assignments of the form
s=s+t or s+=t. When applicable, this optimization makes quadratic run-time
much less likely. This optimization is both version and implementation
dependent. For performance sensitive code, it is preferrable to use the
str.join() method which assures consistent linear concatenation
performance across versions and implementations. Changed in version 2.4:
Formerly, string concatenation never occurred in-place.

Footnhotes

... operations.2Z

They must have since the parser can't tell the type of the operands.

Subsections

e 2.3.6.1 String Methods

e 2.3.6.2 String Formatting Operations
e 2.3.6.3 XRange Type

e 2.3.6.4 Mutable Sequence Types

<« 'r = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 2.3.5 Iterator Types up: 2.3 Built-in Types Next: 2.3.6.1 String

Methods

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 2.3.6.4 Mutable Sequence Types up: 2.3 Built-in Types Next: 2.3.8
Mapping Types

2.3.7 Set Types

A set object is an unordered collection of immutable values. Common uses
include membership testing, removing duplicates from a sequence, and
computing mathematical operations such as intersection, union, difference, and
symmetric difference. New in version 2.4.

Like other collections, sets support x in set, len(set), and for x in set.
Being an unordered collection, sets do not record element position or order of
insertion. Accordingly, sets do not support indexing, slicing, or other sequence-
like behavior.

There are currently two builtin set types, set and frozenset. The set type
is mutable -- the contents can be changed using methods like add() and
remove (). Since it is mutable, it has no hash value and cannot be used as
either a dictionary key or as an element of another set. The frozenset type is
immutable and hashable -- its contents cannot be altered after is created;
however, it can be used as a dictionary key or as an element of another set.

Instances of set and frozenset provide the following operations:

Operation Equivalent | Result
len(s) cardinality of set s
x in s test x for membership in s
x not 1in s test x for non-
membership in s
s.issubset(t) s <= t | test whether every
element in s is in ¢
s.issuperset(t) s >= t | test whether every
elementintisins
s.union(t) S|t new set with elements
from both s and ¢
s.intersection(t) s&t new set with elements
common to s and ¢
s.difference(t) S-t new set with elements in
s but not in ¢

s.symmetric_difference(t) SNt new set with elements in
either s or t but not both
s.copy() new set with a shallow
copy of s

Note, the non-operator versions of union(), intersection(),
difference(), and symmetric_difference(), issubset(), and
issuperset () methods will accept any iterable as an argument. In contrast,
their operator based counterparts require their arguments to be sets. This
precludes error-prone constructions like set('abc') & 'cbs' infavor of
the more readable set('abc').intersection('cbs"').

Both set and frozenset support set to set comparisons. Two sets are equal if
and only if every element of each set is contained in the other (each is a subset of
the other). A set is less than another set if and only if the first set is a proper
subset of the second set (is a subset, but is not equal). A set is greater than
another set if and only if the first set is a proper superset of the second set (is a
superset, but is not equal).

Instanceas of set are compared to instances of frozenset based on their
members. For example, "set('abc') == frozenset('abc')" returns
True.

The subset and equality comparisons do not generalize to a complete ordering
function. For example, any two disjoint sets are not equal and are not subsets of
each other, so all of the following return False: a<b, a==b, or a>b.
Accordingly, sets do not implement the ___cmp___ method.

Since sets only define partial ordering (subset relationships), the output of the
list.sort() method is undefined for lists of sets.

Binary operations that mix set instances with frozenset return the type of
the first operand. For example: "frozenset('ab') | set('bc')"
returns an instance of frozenset.

The following table lists operations available for set that do not apply to
immutable instances of frozenset:

Operation Equivalent | Result

s.update(t) s|=t return set s
with elements
added from t

s.intersection_update(t) s&=t return set s
keeping only
elements also
found in ¢

s.difference_update(t) s-=t return set s

after removing
elements found
int

s.symmetric_difference_update(t) SA=t return set s
with elements
from s or t but
not both

s.add(x) add element x
to set s

s.remove(x) remove x from
set s; raises
KeyError if not
present

s.discard(x) removes x
from set s if
present

s.pop() remove and
return an
arbitrary
element from
S; raises
KeyError if
empty

s.clear() remove all
elements from
set s

Note, the non-operator versions of the update(),
intersection_update(), difference_update(), and
symmetric_difference_update () methods will accept any iterable as
an argument.

<« 'r = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 2.3.6.4 Mutable Sequence Types up: 2.3 Built-in Types Next: 2.3.8
Mapping Types

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 2.3.7 Set Types up: 2.3 Built-in Types Next: 2.3.9 File Objects

2.3.8 Mapping Types

A mapping object maps immutable values to arbitrary objects. Mappings are
mutable objects. There is currently only one standard mapping type, the
dictionary. A dictionary's keys are almost arbitrary values. Only values
containing lists, dictionaries or other mutable types (that are compared by value
rather than by object identity) may not be used as keys. Numeric types used for
keys obey the normal rules for numeric comparison: if two numbers compare
equal (such as 1 and 1. 0) then they can be used interchangeably to index the
same dictionary entry.

Dictionaries are created by placing a comma-separated list of key: value pairs
within braces, for example: {' jack': 4098, 'sjoerd': 4127} or
{4098: 'jack',6 4127: 'sjoerd'}.

The following operations are defined on mappings (where a and b are mappings,
k is a key, and v and x are arbitrary objects):

| Operation Result Notes
len(a) the number of items in a
alk] the item of a with key k (1)
alk] = v seta[k] tov
del alk] remove a[k] from a (1)
a.clear() remove all items from a
a.copy() a (shallow) copy of a
a.has_key (k) True if a has a key k, else False
k ina Equivalent to a.has_key(k) (2)
k not in a Equivalent to not a.has_key(k) (2)
a.items() a copy of a's list of (key, value) pairs 3)
a.keys() a copy of a's list of keys 3)
a.update([b]) | updates (and overwrites) key/value pairs 9)
from b
a.fromkeys(seq[, | Createsanew dictionary with keys from (7)
value]) seq and values set to value
a.values() a copy of a's list of values 3)

a.get(k[, x]) a[k] ifk in aq,else x 4)
a.setdefault (k[, |a[k] ifk in a, else x (also setting it) (5)
x])
a.pop(k[, x]) |a[k]ifk in a, else x (and remove k) (8)
a.popitem() remove and return an arbitrary (key, value) (6)
pair

a.iteritems() return an iterator over (key, value) pairs (2),
(3)
a.iterkeys() return an iterator over the mapping's keys (2),
(3)
a.itervalues() |return an iterator over the mapping's values (2),
(3)

Notes:

(1)

(2)

3)

4

Raises a KeyError exception if k is not in the map.

New in version 2.2.

Keys and values are listed in an arbitrary order which is non-random, varies
across Python implementations, and depends on the dictionary's history of
insertions and deletions. If items(), keys (), values(),
iteritems(), iterkeys(),and itervalues() are called with no
intervening modifications to the dictionary, the lists will directly
correspond. This allows the creation of (value, key) pairs using zip():
"palrs = zip(a.values(), a.keys())". The same relationship
holds for the iterkeys() and itervalues() methods: "pairs =
zip(a.itervalues(), a.iterkeys())" provides the same value
for pairs. Another way to create the same list is "pairs = [(v, k)
for (k, v) 1in a.iteritems()]".

Never raises an exception if k is not in the map, instead it returns x. x is
optional; when x is not provided and k is not in the map, None is returned.

(5)

(6)

(7)

(8)

9)

setdefault () islike get (), except that if k is missing, x is both
returned and inserted into the dictionary as the value of k. x defaults to
None.

popitem() is useful to destructively iterate over a dictionary, as often
used in set algorithms.

fromkeys () is a class method that returns a new dictionary. value
defaults to None. New in version 2.3.

pop () raises a KeyError when no default value is given and the key is
not found. New in version 2.3.

update () accepts either another mapping object or an iterable of
key/value pairs (as a tuple or other iterable of length two). If keyword
arguments are specified, the mapping is then is updated with those
key/value pairs: "d.update(red=1, blue=2)". Changed in version
2.4: Allowed the argument to be an iterable of key/value pairs and allowed
keyword arguments.

<« 'r = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 2.3.7 Set Types up: 2.3 Built-in Types Next: 2.3.9 File Objects

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 2.3.8 Mapping Types up: 2.3 Built-in Types Next: 2.3.10 Other Built-
in Types

2.3.9 File Objects

File objects are implemented using C's stdio package and can be created with
the built-in constructor file () described in section 2.1, “*Built-in

Functions."%1? File objects are also returned by some other built-in functions and
methods, such as 0s.popen() and os.fdopen() and the makefile()
method of socket objects.

When a file operation fails for an I/O-related reason, the exception IOError is
raised. This includes situations where the operation is not defined for some
reason, like seek () on a tty device or writing a file opened for reading.

Files have the following methods:

close()

Close the file. A closed file cannot be read or written any more. Any
operation which requires that the file be open will raise a ValueError
after the file has been closed. Calling close () more than once is allowed.

flush()
Flush the internal buffer, like stdio's fflush (). This may be a no-op on
some file-like objects.

fileno()
Return the integer "file descriptor" that is used by the underlying
implementation to request I/O operations from the operating system. This
can be useful for other, lower level interfaces that use file descriptors, such
as the fcntl module or 0s.read() and friends. Note: File-like objects
which do not have a real file descriptor should not provide this method!

isatty()

Return True if the file is connected to a tty(-like) device, else False.
Note: If a file-like object is not associated with a real file, this method
should not be implemented.

next()

A file object is its own iterator, for example iter (f) returns f (unless fis
closed). When a file is used as an iterator, typically in a for loop (for
example, for line in f: print line), the next () method is
called repeatedly. This method returns the next input line, or raises
StopIteration when EOF is hit. In order to make a for loop the most
efficient way of looping over the lines of a file (a very common operation),
the next () method uses a hidden read-ahead buffer. As a consequence of
using a read-ahead buffer, combining next () with other file methods (like
readline()) does not work right. However, using seek () to reposition
the file to an absolute position will flush the read-ahead buffer. New in
version 2.3.

read([size])

Read at most size bytes from the file (less if the read hits EOF before
obtaining size bytes). If the size argument is negative or omitted, read all
data until EOF is reached. The bytes are returned as a string object. An
empty string is returned when EOF is encountered immediately. (For certain
files, like ttys, it makes sense to continue reading after an EOF is hit.) Note
that this method may call the underlying C function fread () more than
once in an effort to acquire as close to size bytes as possible. Also note that
when in non-blocking mode, less data than what was requested may be
returned, even if no size parameter was given.

readline([size])

Read one entire line from the file. A trailing newline character is kept in the
string (but may be absent when a file ends with an incomplete line).2L If
the size argument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An
empty string is returned only when EOF is encountered immediately. Note:
Unlike stdio's fgets(), the returned string contains null characters
('\0") if they occurred in the input.

readlines([sizehint])

Read until EOF using readline() and return a list containing the lines
thus read. If the optional sizehint argument is present, instead of reading up
to EOF, whole lines totalling approximately sizehint bytes (possibly after
rounding up to an internal buffer size) are read. Objects implementing a

file-like interface may choose to ignore sizehint if it cannot be
implemented, or cannot be implemented efficiently.

xreadlines()

This method returns the same thing as iter (). New in version 2.1.
Deprecated since release 2.3. Use "for line in file" instead.

seeK(offset[, whence])

Set the file's current position, like stdio's fseek(). The whence
argument is optional and defaults to © (absolute file positioning); other
values are 1 (seek relative to the current position) and 2 (seek relative to
the file's end). There is no return value. Note that if the file is opened for
appending (mode 'a' or 'a+"'), any seek () operations will be undone at
the next write. If the file is only opened for writing in append mode (mode
"a'), this method is essentially a no-op, but it remains useful for files
opened in append mode with reading enabled (mode 'a+"). If the file is
opened in text mode (mode 't '), only offsets returned by tell() are
legal. Use of other offsets causes undefined behavior.

Note that not all file objects are seekable.

tell()
Return the file's current position, like stdio's ftell().

truncate([size])

Truncate the file's size. If the optional size argument is present, the file is
truncated to (at most) that size. The size defaults to the current position.
The current file position is not changed. Note that if a specified size
exceeds the file's current size, the result is platform-dependent: possibilities
include that file may remain unchanged, increase to the specified size as if
zero-filled, or increase to the specified size with undefined new content.
Availability: Windows, many Unix variants.

write(str)
Write a string to the file. There is no return value. Due to buffering, the
string may not actually show up in the file until the flush() or close()
method is called.

writelines(sequence)
Write a sequence of strings to the file. The sequence can be any iterable
object producing strings, typically a list of strings. There is no return value.
(The name is intended to match readlines(); writelines() does
not add line separators.)

Files support the iterator protocol. Each iteration returns the same result as
file.readline(), and iteration ends when the readline() method returns
an empty string.

File objects also offer a number of other interesting attributes. These are not
required for file-like objects, but should be implemented if they make sense for
the particular object.

closed
bool indicating the current state of the file object. This is a read-only
attribute; the close() method changes the value. It may not be available
on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file,
they will be converted to byte strings using this encoding. In addition, when
the file is connected to a terminal, the attribute gives the encoding that the
terminal is likely to use (that information might be incorrect if the user has
misconfigured the terminal). The attribute is read-only and may not be
present on all file-like objects. It may also be None, in which case the file
uses the system default encoding for converting Unicode strings.

New in version 2.3.

mode
The I/0O mode for the file. If the file was created using the open () built-in
function, this will be the value of the mode parameter. This is a read-only
attribute and may not be present on all file-like objects.

name
If the file object was created using open(), the name of the file.
Otherwise, some string that indicates the source of the file object, of the
form "<...>". This is a read-only attribute and may not be present on all

file-like objects.

newlines
If Python was built with the --with-universal-newlines option to configure
(the default) this read-only attribute exists, and for files opened in universal
newline read mode it keeps track of the types of newlines encountered
while reading the file. The values it can take are '\r', '\n"', '\r\n',
None (unknown, no newlines read yet) or a tuple containing all the newline
types seen, to indicate that multiple newline conventions were encountered.
For files not opened in universal newline read mode the value of this
attribute will be None.

softspace
Boolean that indicates whether a space character needs to be printed before
another value when using the print statement. Classes that are trying to
simulate a file object should also have a writable soft space attribute,
which should be initialized to zero. This will be automatic for most classes
implemented in Python (care may be needed for objects that override
attribute access); types implemented in C will have to provide a writable
softspace attribute. Note: This attribute is not used to control the
print statement, but to allow the implementation of print to keep track
of its internal state.

Foothotes

... Functions."210

file() is new in Python 2.2. The older built-in open() is an alias for
file().

... line).211
The advantage of leaving the newline on is that returning an empty string is
then an unambiguous EOF indication. It is also possible (in cases where it
might matter, for example, if you want to make an exact copy of a file while
scanning its lines) to tell whether the last line of a file ended in a newline or
not (yes this happens!).

<« 'r = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 2.3.8 Mapping Types up: 2.3 Built-in Types Next: 2.3.10 Other Built-

in Types

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 2.3.9 File ObjECtS Up: 2.3 Built-in Types Next: 2.3.10.1 Modules

2.3.10 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support
only one or two operations.

Subsections

e 2.3.10.1 Modules

2.3.10.2 Classes and Class Instances
2.3.10.3 Functions

2.3.10.4 Methods

2.3.10.5 Code Objects

2.3.10.6 Type Objects
2.3.10.7 The Null Object

2.3.10.8 The Ellipsis Object
2.3.10.9 Boolean Values

2.3.10.10 Internal Objects

<« 'r = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 2.3.9 File Objects up: 2.3 Built-in Types Next: 2.3.10.1 Modules

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 2.3.10.10 Internal Objects up: 2.3 Built-in Types Next: 2.4 Bulilt-in
Exceptions

2.3.11 Special Attributes

The implementation adds a few special read-only attributes to several object
types, where they are relevant. Some of these are not reported by the dir ()
built-in function.

__dict__
A dictionary or other mapping object used to store an object's (writable)
attributes.

__methods__
Deprecated since release 2.2. Use the built-in function dir () to get a list
of an object's attributes. This attribute is no longer available.

__members___
Deprecated since release 2.2. Use the built-in function dir () to get a list
of an object's attributes. This attribute is no longer available.

__class___
The class to which a class instance belongs.

__bases___
The tuple of base classes of a class object. If there are no base classes, this
will be an empty tuple.

___hame___
The name of the class or type.

<« 'r = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 2.3.10.10 Internal Objects up: 2.3 Built-in Types Next: 2.4 Built-in
Exceptions

Release 2.4, documentation updated on 29 November 2004.
See About this document... for information on suggesting changes.

Previous: 2.3.11 Special Attributes up: 2. Built-In Objects Next: 2.5 Built-in
Constants

2.4 Built-in Exceptions

Exceptions should be class objects. The exceptions are defined in the module
exceptions. This module never needs to be imported explicitly: the
exceptions are provided in the built-in namespace as well as the exceptions
module.

Note: In past versions of Python string exceptions were
supported. In Pyth