
Python	Documentation

Python	Documentation
Release	2.4	November	29,	2004

Tutorial	
(start	here)

What's	New	in	Python	
(changes	since	the	last	major

release)

	

Global	Module	Index	
(for	quick	access	to	all

documentation)
Library	Reference	

(keep	this	under	your	pillow)
Macintosh	Module

Reference	
(this	too,	if	you	use	a	Macintosh)
Installing	Python	Modules	

(for	administrators)
Distributing	Python

Modules	
(for	developers	and	packagers)

	

Language	Reference	
(for	language	lawyers)

Extending	and	Embedding	
(tutorial	for	C/C++	programmers)

Python/C	API	
(reference	for	C/C++

programmers)
Documenting	Python	

(information	for	documentation
authors)

	

Documentation	Central	
(for	everyone)

	

Python	How-To	Guides	
(special	topics)

See	About	the	Python	Documentation	for	information	on	suggesting	changes.

http://www.python.org/doc/
http://www.python.org/doc/howto/

Global	Module	Index
Up:	Python	Documentation	Index

Global	Module	Index
Some	module	names	are	followed	by	an	annotation	indicating	what	platform
they	are	available	on.

__builtin__

__future__

__main__

_winreg	(Windows)
aepack	(Mac)
aetools	(Mac)
aetypes	(Mac)
aifc

AL	(IRIX)
al	(IRIX)
anydbm

applesingle	(Mac)
array

asynchat

asyncore

atexit

audioop

autoGIL	(Mac)
base64

BaseHTTPServer

Bastion

binascii

binhex

bisect

bsddb	(Unix,	Windows)
buildtools	(Mac)
bz2

calendar

Carbon.AE	(Mac)
Carbon.AH	(Mac)
Carbon.App	(Mac)

distutils.dep_util

distutils.dir_util

distutils.dist

distutils.emxccompiler

distutils.errors

distutils.extension

distutils.fancy_getopt

distutils.file_util

distutils.filelist

distutils.log

distutils.msvccompiler

distutils.mwerkscompiler

distutils.spawn

distutils.sysconfig

distutils.text_file

distutils.unixccompiler

distutils.util

distutils.version

dl	(Unix)
doctest

DocXMLRPCServer

dumbdbm

dummy_thread

dummy_threading

EasyDialogs	(Mac)
email

email.Charset

email.Encoders

email.Errors

email.Generator

email.Header

Carbon.CaronEvt	(Mac)
Carbon.CF	(Mac)
Carbon.CG	(Mac)
Carbon.Cm	(Mac)
Carbon.Ctl	(Mac)
Carbon.Dlg	(Mac)
Carbon.Evt	(Mac)
Carbon.Fm	(Mac)
Carbon.Folder	(Mac)
Carbon.Help	(Mac)
Carbon.List	(Mac)
Carbon.Menu	(Mac)
Carbon.Mlte	(Mac)
Carbon.Qd	(Mac)
Carbon.Qdoffs	(Mac)
Carbon.Qt	(Mac)
Carbon.Res	(Mac)
Carbon.Scrap	(Mac)
Carbon.Snd	(Mac)
Carbon.TE	(Mac)
Carbon.Win	(Mac)
cd	(IRIX)
cfmfile	(Mac)
cgi

CGIHTTPServer

cgitb

chunk

cmath

cmd

code

codecs

codeop

collections

ColorPicker	(Mac)
colorsys

commands	(Unix)
compileall

compiler

email.Iterators

email.Message

email.Parser

email.Utils

encodings.idna

errno

exceptions

fcntl	(Unix)
filecmp

fileinput

findertools	(Mac)
FL	(IRIX)
fl	(IRIX)
flp	(IRIX)
fm	(IRIX)
fnmatch

formatter

fpectl	(Unix)
fpformat

FrameWork	(Mac)
ftplib

gc

gdbm	(Unix)
gensuitemodule	(Mac)
getopt

getpass

gettext

GL	(IRIX)
gl	(IRIX)
glob

gopherlib

grp	(Unix)
gzip

heapq

hmac

hotshot

hotshot.stats

htmlentitydefs

compiler.ast

compiler.visitor

ConfigParser

Cookie

cookielib

copy

copy_reg

cPickle

crypt	(Unix)
cStringIO

csv

curses

curses.ascii

curses.panel

curses.textpad

curses.wrapper

datetime

dbhash	(Unix,	Windows)
dbm	(Unix)
decimal

DEVICE	(IRIX)
difflib

dircache

dis

distutils

distutils.archive_util

distutils.bcppcompiler

distutils.ccompiler

distutils.cmd

distutils.command

distutils.command.bdist

distutils.command.bdist_dumb

distutils.command.bdist_packager

distutils.command.bdist_rpm

distutils.command.bdist_wininst

distutils.command.build

distutils.command.build_clib

distutils.command.build_ext

htmllib

HTMLParser

httplib

ic	(Mac)
icopen	(Mac)
imageop

imaplib

imgfile	(IRIX)
imghdr

imp

inspect

itertools

jpeg	(IRIX)
keyword

linecache

locale

logging

mac	(Mac)
macerrors	(Mac)
macfs	(Mac)
MacOS	(Mac)
macostools	(Mac)
macpath

macresource	(Mac)
mailbox

mailcap

marshal

math

md5

mhlib

mimetools

mimetypes

MimeWriter

mimify

MiniAEFrame	(Mac)
mkcwproject	(Mac)
mmap

msvcrt	(Windows)

distutils.command.build_py

distutils.command.build_scripts

distutils.command.clean

distutils.command.config

distutils.command.install

distutils.command.install_data

distutils.command.install_headers

distutils.command.install_lib

distutils.command.install_scripts

distutils.command.register

distutils.command.sdist

distutils.core

distutils.cygwinccompiler

distutils.debug

multifile

mutex

Nav	(Mac)
netrc

new

nis	(UNIX)
nntplib

nsremote	(Mac)
operator

optparse

os

os.path

ossaudiodev	(Linux,	FreeBSD
parser

Global	Module	Index
Up:	Python	Documentation	Index	
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Contents	Up:	What's	New	in	Python	Next:	2	PEP	237:	Unifying

1	PEP	218:	Built-In	Set	Objects
Python	2.3	introduced	the	sets	module.	C	implementations	of	set	data	types
have	now	been	added	to	the	Python	core	as	two	new	built-in	types,
set(iterable)	and	frozenset(iterable).	They	provide	high	speed
operations	for	membership	testing,	for	eliminating	duplicates	from	sequences,
and	for	mathematical	operations	like	unions,	intersections,	differences,	and
symmetric	differences.

>>>	a	=	set('abracadabra')														#	form	a	set	from	a	string

>>>	'z'	in	a																												#	fast	membership	testing

False

>>>	a																																			#	unique	letters	in	a

set(['a',	'r',	'b',	'c',	'd'])

>>>	''.join(a)																										#	convert	back	into	a	string

'arbcd'

>>>	b	=	set('alacazam')																	#	form	a	second	set

>>>	a	-	b																															#	letters	in	a	but	not	in	b

set(['r',	'd',	'b'])

>>>	a	|	b																															#	letters	in	either	a	or	b

set(['a',	'c',	'r',	'd',	'b',	'm',	'z',	'l'])

>>>	a	&	b																															#	letters	in	both	a	and	b

set(['a',	'c'])

>>>	a	^	b																															#	letters	in	a	or	b	but	not	both

set(['r',	'd',	'b',	'm',	'z',	'l'])

>>>	a.add('z')																										#	add	a	new	element

>>>	a.update('wxy')																					#	add	multiple	new	elements

>>>	a

set(['a',	'c',	'b',	'd',	'r',	'w',	'y',	'x',	'z'])							

>>>	a.remove('x')																							#	take	one	element	out

>>>	a

set(['a',	'c',	'b',	'd',	'r',	'w',	'y',	'z'])

The	frozenset	type	is	an	immutable	version	of	set.	Since	it	is	immutable
and	hashable,	it	may	be	used	as	a	dictionary	key	or	as	a	member	of	another	set.

The	sets	module	remains	in	the	standard	library,	and	may	be	useful	if	you	wish
to	subclass	the	Set	or	ImmutableSet	classes.	There	are	currently	no	plans	to
deprecate	the	module.

See	Also:

PEP	218,	Adding	a	Built-In	Set	Object	Type
Originally	proposed	by	Greg	Wilson	and	ultimately	implemented	by
Raymond	Hettinger.

What's	New	in	Python	2.4
Previous:	Contents	Up:	What's	New	in	Python	Next:	2	PEP	237:	Unifying

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/peps/pep-0218.html

Previous:	1	PEP	218:	Built-In	Up:	What's	New	in	Python	Next:	3	PEP	289:
Generator

2	PEP	237:	Unifying	Long	Integers
and	Integers
The	lengthy	transition	process	for	this	PEP,	begun	in	Python	2.2,	takes	another
step	forward	in	Python	2.4.	In	2.3,	certain	integer	operations	that	would	behave
differently	after	int/long	unification	triggered	FutureWarning	warnings	and
returned	values	limited	to	32	or	64	bits	(depending	on	your	platform).	In	2.4,
these	expressions	no	longer	produce	a	warning	and	instead	produce	a	different
result	that's	usually	a	long	integer.

The	problematic	expressions	are	primarily	left	shifts	and	lengthy	hexadecimal
and	octal	constants.	For	example,	2	<<	32	results	in	a	warning	in	2.3,
evaluating	to	0	on	32-bit	platforms.	In	Python	2.4,	this	expression	now	returns
the	correct	answer,	8589934592.

See	Also:

PEP	237,	Unifying	Long	Integers	and	Integers
Original	PEP	written	by	Moshe	Zadka	and	GvR.	The	changes	for	2.4
were	implemented	by	Kalle	Svensson.

What's	New	in	Python	2.4
Previous:	1	PEP	218:	Built-In	Up:	What's	New	in	Python	Next:	3	PEP	289:
Generator

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/peps/pep-0237.html

Previous:	2	PEP	237:	Unifying	Up:	What's	New	in	Python	Next:	4	PEP	292:
Simpler

3	PEP	289:	Generator	Expressions
The	iterator	feature	introduced	in	Python	2.2	and	the	itertools	module	make
it	easier	to	write	programs	that	loop	through	large	data	sets	without	having	the
entire	data	set	in	memory	at	one	time.	List	comprehensions	don't	fit	into	this
picture	very	well	because	they	produce	a	Python	list	object	containing	all	of	the
items.	This	unavoidably	pulls	all	of	the	objects	into	memory,	which	can	be	a
problem	if	your	data	set	is	very	large.	When	trying	to	write	a	functionally-styled
program,	it	would	be	natural	to	write	something	like:

links	=	[link	for	link	in	get_all_links()	if	not	link.followed]

for	link	in	links:

				...

instead	of

for	link	in	get_all_links():

				if	link.followed:

								continue

				...

The	first	form	is	more	concise	and	perhaps	more	readable,	but	if	you're	dealing
with	a	large	number	of	link	objects	you'd	have	to	write	the	second	form	to	avoid
having	all	link	objects	in	memory	at	the	same	time.

Generator	expressions	work	similarly	to	list	comprehensions	but	don't
materialize	the	entire	list;	instead	they	create	a	generator	that	will	return
elements	one	by	one.	The	above	example	could	be	written	as:

links	=	(link	for	link	in	get_all_links()	if	not	link.followed)

for	link	in	links:

				...

Generator	expressions	always	have	to	be	written	inside	parentheses,	as	in	the
above	example.	The	parentheses	signalling	a	function	call	also	count,	so	if	you
want	to	create	a	iterator	that	will	be	immediately	passed	to	a	function	you	could
write:

print	sum(obj.count	for	obj	in	list_all_objects())

Generator	expressions	differ	from	list	comprehensions	in	various	small	ways.

Most	notably,	the	loop	variable	(obj	in	the	above	example)	is	not	accessible
outside	of	the	generator	expression.	List	comprehensions	leave	the	variable
assigned	to	its	last	value;	future	versions	of	Python	will	change	this,	making	list
comprehensions	match	generator	expressions	in	this	respect.

See	Also:

PEP	289,	Generator	Expressions
Proposed	by	Raymond	Hettinger	and	implemented	by	Jiwon	Seo	with
early	efforts	steered	by	Hye-Shik	Chang.

What's	New	in	Python	2.4
Previous:	2	PEP	237:	Unifying	Up:	What's	New	in	Python	Next:	4	PEP	292:
Simpler

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/peps/pep-0289.html

Previous:	3	PEP	289:	Generator	Up:	What's	New	in	Python	Next:	5	PEP	318:
Decorators

4	PEP	292:	Simpler	String
Substitutions
Some	new	classes	in	the	standard	library	provide	an	alternative	mechanism	for
substituting	variables	into	strings;	this	style	of	substitution	may	be	better	for
applications	where	untrained	users	need	to	edit	templates.

The	usual	way	of	substituting	variables	by	name	is	the	%	operator:

>>>	'%(page)i:	%(title)s'	%	{'page':2,	'title':	'The	Best	of	Times'}

'2:	The	Best	of	Times'

When	writing	the	template	string,	it	can	be	easy	to	forget	the	"i"	or	"s"	after	the
closing	parenthesis.	This	isn't	a	big	problem	if	the	template	is	in	a	Python
module,	because	you	run	the	code,	get	an	``Unsupported	format	character''
ValueError,	and	fix	the	problem.	However,	consider	an	application	such	as
Mailman	where	template	strings	or	translations	are	being	edited	by	users	who
aren't	aware	of	the	Python	language.	The	format	string's	syntax	is	complicated	to
explain	to	such	users,	and	if	they	make	a	mistake,	it's	difficult	to	provide	helpful
feedback	to	them.

PEP	292	adds	a	Template	class	to	the	string	module	that	uses	"$"	to
indicate	a	substitution.	Template	is	a	subclass	of	the	built-in	Unicode	type,	so
the	result	is	always	a	Unicode	string:

>>>	import	string

>>>	t	=	string.Template('$page:	$title')

>>>	t.substitute({'page':2,	'title':	'The	Best	of	Times'})

u'2:	The	Best	of	Times'

If	a	key	is	missing	from	the	dictionary,	the	substitute	method	will	raise	a
KeyError.	There's	also	a	safe_substitute	method	that	ignores	missing
keys:

>>>	t	=	string.SafeTemplate('$page:	$title')

>>>	t.safe_substitute({'page':3})

u'3:	$title'

See	Also:

PEP	292,	Simpler	String	Substitutions
Written	and	implemented	by	Barry	Warsaw.

What's	New	in	Python	2.4
Previous:	3	PEP	289:	Generator	Up:	What's	New	in	Python	Next:	5	PEP	318:
Decorators

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/peps/pep-0292.html

Previous:	4	PEP	292:	Simpler	Up:	What's	New	in	Python	Next:	6	PEP	322:
Reverse

5	PEP	318:	Decorators	for	Functions
and	Methods
Python	2.2	extended	Python's	object	model	by	adding	static	methods	and	class
methods,	but	it	didn't	extend	Python's	syntax	to	provide	any	new	way	of	defining
static	or	class	methods.	Instead,	you	had	to	write	a	def	statement	in	the	usual
way,	and	pass	the	resulting	method	to	a	staticmethod()	or
classmethod()	function	that	would	wrap	up	the	function	as	a	method	of	the
new	type.	Your	code	would	look	like	this:

class	C:

			def	meth	(cls):

							...

			

			meth	=	classmethod(meth)			#	Rebind	name	to	wrapped-up	class	method

If	the	method	was	very	long,	it	would	be	easy	to	miss	or	forget	the
classmethod()	invocation	after	the	function	body.

The	intention	was	always	to	add	some	syntax	to	make	such	definitions	more
readable,	but	at	the	time	of	2.2's	release	a	good	syntax	was	not	obvious.	Today	a
good	syntax	still	isn't	obvious	but	users	are	asking	for	easier	access	to	the
feature;	a	new	syntactic	feature	has	been	added	to	meet	this	need.

The	new	feature	is	called	``function	decorators''.	The	name	comes	from	the	idea
that	classmethod,	staticmethod,	and	friends	are	storing	additional
information	on	a	function	object;	they're	decorating	functions	with	more	details.

The	notation	borrows	from	Java	and	uses	the	"@"	character	as	an	indicator.	Using
the	new	syntax,	the	example	above	would	be	written:

class	C:

			@classmethod

			def	meth	(cls):

							...

The	@classmethod	is	shorthand	for	the	meth=classmethod(meth)
assignment.	More	generally,	if	you	have	the	following:

@A	@B	@C

def	f	():

				...

It's	equivalent	to	the	following	pre-decorator	code:

def	f():	...

f	=	A(B(C(f)))

Decorators	must	come	on	the	line	before	a	function	definition,	and	can't	be	on
the	same	line,	meaning	that	@A	def	f():	...	is	illegal.	You	can	only
decorate	function	definitions,	either	at	the	module	level	or	inside	a	class;	you
can't	decorate	class	definitions.

A	decorator	is	just	a	function	that	takes	the	function	to	be	decorated	as	an
argument	and	returns	either	the	same	function	or	some	new	callable	thing.	It's
easy	to	write	your	own	decorators.	The	following	simple	example	just	sets	an
attribute	on	the	function	object:

>>>	def	deco(func):

...				func.attr	=	'decorated'

...				return	func

...

>>>	@deco

...	def	f():	pass

...

>>>	f

<function	f	at	0x402ef0d4>

>>>	f.attr

'decorated'

>>>

As	a	slightly	more	realistic	example,	the	following	decorator	checks	that	the
supplied	argument	is	an	integer:

def	require_int	(func):

				def	wrapper	(arg):

								assert	isinstance(arg,	int)

								return	func(arg)

				return	wrapper

@require_int

def	p1	(arg):

				print	arg

@require_int

def	p2(arg):

				print	arg*2

An	example	in	PEP	318	contains	a	fancier	version	of	this	idea	that	lets	you	both
specify	the	required	type	and	check	the	returned	type.

Decorator	functions	can	take	arguments.	If	arguments	are	supplied,	your
decorator	function	is	called	with	only	those	arguments	and	must	return	a	new
decorator	function;	this	function	must	take	a	single	function	and	return	a
function,	as	previously	described.	In	other	words,	@A	@B	@C(args)	becomes:

def	f():	...

_deco	=	C(args)

f	=	A(B(_deco(f)))

Getting	this	right	can	be	slightly	brain-bending,	but	it's	not	too	difficult.

A	small	related	change	makes	the	func_name	attribute	of	functions	writable.
This	attribute	is	used	to	display	function	names	in	tracebacks,	so	decorators
should	change	the	name	of	any	new	function	that's	constructed	and	returned.

See	Also:

PEP	318,	Decorators	for	Functions,	Methods	and	Classes
Written	by	Kevin	D.	Smith,	Jim	Jewett,	and	Skip	Montanaro.	Several
people	wrote	patches	implementing	function	decorators,	but	the	one
that	was	actually	checked	in	was	patch	#979728,	written	by	Mark
Russell.

What's	New	in	Python	2.4
Previous:	4	PEP	292:	Simpler	Up:	What's	New	in	Python	Next:	6	PEP	322:
Reverse

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/peps/pep-0318.html
http://www.python.org/peps/pep-0318.html

Previous:	5	PEP	318:	Decorators	Up:	What's	New	in	Python	Next:	7	PEP	324:
New

6	PEP	322:	Reverse	Iteration
A	new	built-in	function,	reversed(seq),	takes	a	sequence	and	returns	an
iterator	that	loops	over	the	elements	of	the	sequence	in	reverse	order.

>>>	for	i	in	reversed(xrange(1,4)):

...				print	i

...	

3

2

1

Compared	to	extended	slicing,	such	as	range(1,4)[::-1],	reversed()
is	easier	to	read,	runs	faster,	and	uses	substantially	less	memory.

Note	that	reversed()	only	accepts	sequences,	not	arbitrary	iterators.	If	you
want	to	reverse	an	iterator,	first	convert	it	to	a	list	with	list().

>>>	input	=	open('/etc/passwd',	'r')

>>>	for	line	in	reversed(list(input)):

...			print	line

...	

root:*:0:0:System	Administrator:/var/root:/bin/tcsh

		...

See	Also:

PEP	322,	Reverse	Iteration
Written	and	implemented	by	Raymond	Hettinger.

What's	New	in	Python	2.4
Previous:	5	PEP	318:	Decorators	Up:	What's	New	in	Python	Next:	7	PEP	324:
New

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/peps/pep-0322.html

Previous:	6	PEP	322:	Reverse	Up:	What's	New	in	Python	Next:	8	PEP	327:
Decimal

7	PEP	324:	New	subprocess	Module
The	standard	library	provides	a	number	of	ways	to	execute	a	subprocess,
offering	different	features	and	different	levels	of	complexity.
os.system(command)	is	easy	to	use,	but	slow	(it	runs	a	shell	process	which
executes	the	command)	and	dangerous	(you	have	to	be	careful	about	escaping
the	shell's	metacharacters).	The	popen2	module	offers	classes	that	can	capture
standard	output	and	standard	error	from	the	subprocess,	but	the	naming	is
confusing.	The	subprocess	module	cleans	this	up,	providing	a	unified
interface	that	offers	all	the	features	you	might	need.

Instead	of	popen2's	collection	of	classes,	subprocess	contains	a	single	class
called	Popen	whose	constructor	supports	a	number	of	different	keyword
arguments.

class	Popen(args,	bufsize=0,	executable=None,

	 				stdin=None,	stdout=None,	stderr=None,

	 				preexec_fn=None,	close_fds=False,	shell=False,

	 				cwd=None,	env=None,	universal_newlines=False,

	 				startupinfo=None,	creationflags=0):

args	is	commonly	a	sequence	of	strings	that	will	be	the	arguments	to	the
program	executed	as	the	subprocess.	(If	the	shell	argument	is	true,	args	can	be	a
string	which	will	then	be	passed	on	to	the	shell	for	interpretation,	just	as
os.system()	does.)

stdin,	stdout,	and	stderr	specify	what	the	subprocess's	input,	output,	and	error
streams	will	be.	You	can	provide	a	file	object	or	a	file	descriptor,	or	you	can	use
the	constant	subprocess.PIPE	to	create	a	pipe	between	the	subprocess	and
the	parent.

The	constructor	has	a	number	of	handy	options:

close_fds	requests	that	all	file	descriptors	be	closed	before	running	the
subprocess.

cwd	specifies	the	working	directory	in	which	the	subprocess	will	be
executed	(defaulting	to	whatever	the	parent's	working	directory	is).

env	is	a	dictionary	specifying	environment	variables.

preexec_fn	is	a	function	that	gets	called	before	the	child	is	started.

universal_newlines	opens	the	child's	input	and	output	using	Python's
universal	newline	feature.

Once	you've	created	the	Popen	instance,	you	can	call	its	wait()	method	to
pause	until	the	subprocess	has	exited,	poll()	to	check	if	it's	exited	without
pausing,	or	communicate(data)	to	send	the	string	data	to	the	subprocess's
standard	input.	communicate(data)	then	reads	any	data	that	the	subprocess
has	sent	to	its	standard	output	or	standard	error,	returning	a	tuple	(stdout_data,
stderr_data).

call()	is	a	shortcut	that	passes	its	arguments	along	to	the	Popen	constructor,
waits	for	the	command	to	complete,	and	returns	the	status	code	of	the
subprocess.	It	can	serve	as	a	safer	analog	to	os.system():

sts	=	subprocess.call(['dpkg',	'-i',	'/tmp/new-package.deb'])

if	sts	==	0:

				#	Success

				...

else:

				#	dpkg	returned	an	error

				...

The	command	is	invoked	without	use	of	the	shell.	If	you	really	do	want	to	use
the	shell,	you	can	add	shell=True	as	a	keyword	argument	and	provide	a
string	instead	of	a	sequence:

sts	=	subprocess.call('dpkg	-i	/tmp/new-package.deb',	shell=True)

The	PEP	takes	various	examples	of	shell	and	Python	code	and	shows	how	they'd
be	translated	into	Python	code	that	uses	subprocess.	Reading	this	section	of
the	PEP	is	highly	recommended.

See	Also:

PEP	324,	subprocess	-	New	process	module
Written	and	implemented	by	Peter	Åstrand,	with	assistance	from

http://www.python.org/peps/pep-0324.html

Fredrik	Lundh	and	others.

What's	New	in	Python	2.4
Previous:	6	PEP	322:	Reverse	Up:	What's	New	in	Python	Next:	8	PEP	327:
Decimal

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7	PEP	324:	New	Up:	What's	New	in	Python	Next:	9	PEP	328:	Multi-
line

Subsections

8.1	Why	is	Decimal	needed?
8.2	The	Decimal	type
8.3	The	Context	type

8	PEP	327:	Decimal	Data	Type
Python	has	always	supported	floating-point	(FP)	numbers,	based	on	the
underlying	C	double	type,	as	a	data	type.	However,	while	most	programming
languages	provide	a	floating-point	type,	many	people	(even	programmers)	are
unaware	that	floating-point	numbers	don't	represent	certain	decimal	fractions
accurately.	The	new	Decimal	type	can	represent	these	fractions	accurately,	up
to	a	user-specified	precision	limit.

8.1	Why	is	Decimal	needed?
The	limitations	arise	from	the	representation	used	for	floating-point	numbers.	FP
numbers	are	made	up	of	three	components:

The	sign,	which	is	positive	or	negative.
The	mantissa,	which	is	a	single-digit	binary	number	followed	by	a
fractional	part.	For	example,	1.01	in	base-2	notation	is	1	+	0/2	+
1/4,	or	1.25	in	decimal	notation.
The	exponent,	which	tells	where	the	decimal	point	is	located	in	the	number
represented.

For	example,	the	number	1.25	has	positive	sign,	a	mantissa	value	of	1.01	(in
binary),	and	an	exponent	of	0	(the	decimal	point	doesn't	need	to	be	shifted).	The
number	5	has	the	same	sign	and	mantissa,	but	the	exponent	is	2	because	the
mantissa	is	multiplied	by	4	(2	to	the	power	of	the	exponent	2);	1.25	*	4	equals	5.

Modern	systems	usually	provide	floating-point	support	that	conforms	to	a
standard	called	IEEE	754.	C's	double	type	is	usually	implemented	as	a	64-bit
IEEE	754	number,	which	uses	52	bits	of	space	for	the	mantissa.	This	means	that
numbers	can	only	be	specified	to	52	bits	of	precision.	If	you're	trying	to
represent	numbers	whose	expansion	repeats	endlessly,	the	expansion	is	cut	off
after	52	bits.	Unfortunately,	most	software	needs	to	produce	output	in	base	10,
and	common	fractions	in	base	10	are	often	repeating	decimals	in	binary.	For
example,	1.1	decimal	is	binary	1.0001100110011	...;	.1	=	1/16	+	1/32	+
1/256	plus	an	infinite	number	of	additional	terms.	IEEE	754	has	to	chop	off	that
infinitely	repeated	decimal	after	52	digits,	so	the	representation	is	slightly
inaccurate.

Sometimes	you	can	see	this	inaccuracy	when	the	number	is	printed:

>>>	1.1

1.1000000000000001

The	inaccuracy	isn't	always	visible	when	you	print	the	number	because	the	FP-
to-decimal-string	conversion	is	provided	by	the	C	library,	and	most	C	libraries
try	to	produce	sensible	output.	Even	if	it's	not	displayed,	however,	the	inaccuracy
is	still	there	and	subsequent	operations	can	magnify	the	error.

For	many	applications	this	doesn't	matter.	If	I'm	plotting	points	and	displaying
them	on	my	monitor,	the	difference	between	1.1	and	1.1000000000000001	is	too
small	to	be	visible.	Reports	often	limit	output	to	a	certain	number	of	decimal
places,	and	if	you	round	the	number	to	two	or	three	or	even	eight	decimal	places,
the	error	is	never	apparent.	However,	for	applications	where	it	does	matter,	it's	a
lot	of	work	to	implement	your	own	custom	arithmetic	routines.

Hence,	the	Decimal	type	was	created.

8.2	The	Decimal	type

A	new	module,	decimal,	was	added	to	Python's	standard	library.	It	contains
two	classes,	Decimal	and	Context.	Decimal	instances	represent	numbers,
and	Context	instances	are	used	to	wrap	up	various	settings	such	as	the
precision	and	default	rounding	mode.

Decimal	instances	are	immutable,	like	regular	Python	integers	and	FP
numbers;	once	it's	been	created,	you	can't	change	the	value	an	instance
represents.	Decimal	instances	can	be	created	from	integers	or	strings:

>>>	import	decimal

>>>	decimal.Decimal(1972)

Decimal("1972")

>>>	decimal.Decimal("1.1")

Decimal("1.1")

You	can	also	provide	tuples	containing	the	sign,	the	mantissa	represented	as	a
tuple	of	decimal	digits,	and	the	exponent:

>>>	decimal.Decimal((1,	(1,	4,	7,	5),	-2))

Decimal("-14.75")

Cautionary	note:	the	sign	bit	is	a	Boolean	value,	so	0	is	positive	and	1	is
negative.

Converting	from	floating-point	numbers	poses	a	bit	of	a	problem:	should	the	FP
number	representing	1.1	turn	into	the	decimal	number	for	exactly	1.1,	or	for	1.1
plus	whatever	inaccuracies	are	introduced?	The	decision	was	to	dodge	the	issue
and	leave	such	a	conversion	out	of	the	API.	Instead,	you	should	convert	the
floating-point	number	into	a	string	using	the	desired	precision	and	pass	the	string
to	the	Decimal	constructor:

>>>	f	=	1.1

>>>	decimal.Decimal(str(f))

Decimal("1.1")

>>>	decimal.Decimal('%.12f'	%	f)

Decimal("1.100000000000")

Once	you	have	Decimal	instances,	you	can	perform	the	usual	mathematical
operations	on	them.	One	limitation:	exponentiation	requires	an	integer	exponent:

>>>	a	=	decimal.Decimal('35.72')

>>>	b	=	decimal.Decimal('1.73')

>>>	a+b

Decimal("37.45")

>>>	a-b

Decimal("33.99")

>>>	a*b

Decimal("61.7956")

>>>	a/b

Decimal("20.64739884393063583815028902")

>>>	a	**	2

Decimal("1275.9184")

>>>	a**b

Traceback	(most	recent	call	last):

		...

decimal.InvalidOperation:	x	**	(non-integer)

You	can	combine	Decimal	instances	with	integers,	but	not	with	floating-point
numbers:

>>>	a	+	4

Decimal("39.72")

>>>	a	+	4.5

Traceback	(most	recent	call	last):

		...

TypeError:	You	can	interact	Decimal	only	with	int,	long	or	Decimal	data	types.

>>>

Decimal	numbers	can	be	used	with	the	math	and	cmath	modules,	but	note
that	they'll	be	immediately	converted	to	floating-point	numbers	before	the
operation	is	performed,	resulting	in	a	possible	loss	of	precision	and	accuracy.
You'll	also	get	back	a	regular	floating-point	number	and	not	a	Decimal.

>>>	import	math,	cmath

>>>	d	=	decimal.Decimal('123456789012.345')

>>>	math.sqrt(d)

351364.18288201344

>>>	cmath.sqrt(-d)

351364.18288201344j

Decimal	instances	have	a	sqrt()	method	that	returns	a	Decimal,	but	if	you
need	other	things	such	as	trigonometric	functions	you'll	have	to	implement	them.

>>>	d.sqrt()

Decimal("351364.1828820134592177245001")

8.3	The	Context	type

Instances	of	the	Context	class	encapsulate	several	settings	for	decimal
operations:

prec	is	the	precision,	the	number	of	decimal	places.
rounding	specifies	the	rounding	mode.	The	decimal	module	has
constants	for	the	various	possibilities:	ROUND_DOWN,	ROUND_CEILING,
ROUND_HALF_EVEN,	and	various	others.
traps	is	a	dictionary	specifying	what	happens	on	encountering	certain
error	conditions:	either	an	exception	is	raised	or	a	value	is	returned.	Some
examples	of	error	conditions	are	division	by	zero,	loss	of	precision,	and
overflow.

There's	a	thread-local	default	context	available	by	calling	getcontext();	you
can	change	the	properties	of	this	context	to	alter	the	default	precision,	rounding,
or	trap	handling.	The	following	example	shows	the	effect	of	changing	the
precision	of	the	default	context:

>>>	decimal.getcontext().prec

28

>>>	decimal.Decimal(1)	/	decimal.Decimal(7)

Decimal("0.1428571428571428571428571429")

>>>	decimal.getcontext().prec	=	9	

>>>	decimal.Decimal(1)	/	decimal.Decimal(7)

Decimal("0.142857143")

The	default	action	for	error	conditions	is	selectable;	the	module	can	either	return
a	special	value	such	as	infinity	or	not-a-number,	or	exceptions	can	be	raised:

>>>	decimal.Decimal(1)	/	decimal.Decimal(0)

Traceback	(most	recent	call	last):

		...

decimal.DivisionByZero:	x	/	0

>>>	decimal.getcontext().traps[decimal.DivisionByZero]	=	False

>>>	decimal.Decimal(1)	/	decimal.Decimal(0)

Decimal("Infinity")

>>>

The	Context	instance	also	has	various	methods	for	formatting	numbers	such
as	to_eng_string()	and	to_sci_string().

For	more	information,	see	the	documentation	for	the	decimal	module,	which
includes	a	quick-start	tutorial	and	a	reference.

See	Also:

PEP	327,	Decimal	Data	Type
Written	by	Facundo	Batista	and	implemented	by	Facundo	Batista,	Eric
Price,	Raymond	Hettinger,	Aahz,	and	Tim	Peters.

http://research.microsoft.com/~hollasch/cgindex/coding/ieeefloat.html
A	more	detailed	overview	of	the	IEEE-754	representation.

http://www.lahey.com/float.htm
The	article	uses	Fortran	code	to	illustrate	many	of	the	problems	that
floating-point	inaccuracy	can	cause.

http://www2.hursley.ibm.com/decimal/
A	description	of	a	decimal-based	representation.	This	representation	is
being	proposed	as	a	standard,	and	underlies	the	new	Python	decimal
type.	Much	of	this	material	was	written	by	Mike	Cowlishaw,	designer
of	the	Rexx	language.

What's	New	in	Python	2.4
Previous:	7	PEP	324:	New	Up:	What's	New	in	Python	Next:	9	PEP	328:	Multi-
line

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/peps/pep-0327.html
http://research.microsoft.com/~hollasch/cgindex/coding/ieeefloat.html
http://www.lahey.com/float.htm
http://www2.hursley.ibm.com/decimal/

Previous:	8	PEP	327:	Decimal	Up:	What's	New	in	Python	Next:	10	PEP	331:
Locale-Independent

9	PEP	328:	Multi-line	Imports
One	language	change	is	a	small	syntactic	tweak	aimed	at	making	it	easier	to
import	many	names	from	a	module.	In	a	from	module	import	names
statement,	names	is	a	sequence	of	names	separated	by	commas.	If	the	sequence
is	very	long,	you	can	either	write	multiple	imports	from	the	same	module,	or	you
can	use	backslashes	to	escape	the	line	endings	like	this:

from	SimpleXMLRPCServer	import	SimpleXMLRPCServer,\

												SimpleXMLRPCRequestHandler,\

												CGIXMLRPCRequestHandler,\

												resolve_dotted_attribute

The	syntactic	change	in	Python	2.4	simply	allows	putting	the	names	within
parentheses.	Python	ignores	newlines	within	a	parenthesized	expression,	so	the
backslashes	are	no	longer	needed:

from	SimpleXMLRPCServer	import	(SimpleXMLRPCServer,

																																SimpleXMLRPCRequestHandler,

																																CGIXMLRPCRequestHandler,

																																resolve_dotted_attribute)

The	PEP	also	proposes	that	all	import	statements	be	absolute	imports,	with	a
leading	"."	character	to	indicate	a	relative	import.	This	part	of	the	PEP	is	not	yet
implemented,	and	will	have	to	wait	for	Python	2.5	or	some	other	future	version.

See	Also:

PEP	328,	Imports:	Multi-Line	and	Absolute/Relative
Written	by	Aahz.	Multi-line	imports	were	implemented	by	Dima
Dorfman.

What's	New	in	Python	2.4
Previous:	8	PEP	327:	Decimal	Up:	What's	New	in	Python	Next:	10	PEP	331:
Locale-Independent

http://www.python.org/peps/pep-0328.html

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	9	PEP	328:	Multi-line	Up:	What's	New	in	Python	Next:	11	Other
Language	Changes

10	PEP	331:	Locale-Independent
Float/String	Conversions
The	locale	modules	lets	Python	software	select	various	conversions	and
display	conventions	that	are	localized	to	a	particular	country	or	language.
However,	the	module	was	careful	to	not	change	the	numeric	locale	because
various	functions	in	Python's	implementation	required	that	the	numeric	locale
remain	set	to	the	'C'	locale.	Often	this	was	because	the	code	was	using	the	C
library's	atof()	function.

Not	setting	the	numeric	locale	caused	trouble	for	extensions	that	used	third-party
C	libraries,	however,	because	they	wouldn't	have	the	correct	locale	set.	The
motivating	example	was	GTK+,	whose	user	interface	widgets	weren't	displaying
numbers	in	the	current	locale.

The	solution	described	in	the	PEP	is	to	add	three	new	functions	to	the	Python
API	that	perform	ASCII-only	conversions,	ignoring	the	locale	setting:

PyOS_ascii_strtod(str,	ptr)	and	PyOS_ascii_atof(str,	ptr)
both	convert	a	string	to	a	C	double.
PyOS_ascii_formatd(buffer,	buf_len,	format,	d)	converts	a
double	to	an	ASCII	string.

The	code	for	these	functions	came	from	the	GLib	library
(http://developer.gnome.org/arch/gtk/glib.html),	whose	developers	kindly
relicensed	the	relevant	functions	and	donated	them	to	the	Python	Software
Foundation.	The	locale	module	can	now	change	the	numeric	locale,	letting
extensions	such	as	GTK+	produce	the	correct	results.

See	Also:

PEP	331,	Locale-Independent	Float/String	Conversions
Written	by	Christian	R.	Reis,	and	implemented	by	Gustavo	Carneiro.

http://developer.gnome.org/arch/gtk/glib.html
http://www.python.org/peps/pep-0331.html

What's	New	in	Python	2.4
Previous:	9	PEP	328:	Multi-line	Up:	What's	New	in	Python	Next:	11	Other
Language	Changes

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10	PEP	331:	Locale-Independent	Up:	What's	New	in	Python	Next:
12	New,	Improved,	and

Subsections

11.1	Optimizations

11	Other	Language	Changes
Here	are	all	of	the	changes	that	Python	2.4	makes	to	the	core	Python	language.

Decorators	for	functions	and	methods	were	added	(PEP	318).

Built-in	set	and	frozenset	types	were	added	(PEP	218).	Other	new
built-ins	include	the	reversed(seq)	function	(PEP	322).

Generator	expressions	were	added	(PEP	289).

Certain	numeric	expressions	no	longer	return	values	restricted	to	32	or	64
bits	(PEP	237).

You	can	now	put	parentheses	around	the	list	of	names	in	a	from	module
import	names	statement	(PEP	328).

The	dict.update()	method	now	accepts	the	same	argument	forms	as
the	dict	constructor.	This	includes	any	mapping,	any	iterable	of	key/value
pairs,	and	keyword	arguments.	(Contributed	by	Raymond	Hettinger.)

The	string	methods	ljust(),	rjust(),	and	center()	now	take	an
optional	argument	for	specifying	a	fill	character	other	than	a	space.
(Contributed	by	Raymond	Hettinger.)

Strings	also	gained	an	rsplit()	method	that	works	like	the	split()
method	but	splits	from	the	end	of	the	string.

>>>	'www.python.org'.split('.',	1)

['www',	'python.org']

'www.python.org'.rsplit('.',	1)

['www.python',	'org']

Three	keyword	parameters,	cmp,	key,	and	reverse,	were	added	to	the
sort()	method	of	lists.	These	parameters	make	some	common	usages	of
sort()	simpler.	All	of	these	parameters	are	optional.

For	the	cmp	parameter,	the	value	should	be	a	comparison	function	that	takes
two	parameters	and	returns	-1,	0,	or	+1	depending	on	how	the	parameters

http://www.python.org/peps/pep-0318.html
http://www.python.org/peps/pep-0218.html
http://www.python.org/peps/pep-0322.html
http://www.python.org/peps/pep-0289.html
http://www.python.org/peps/pep-0237.html
http://www.python.org/peps/pep-0328.html

compare.	This	function	will	then	be	used	to	sort	the	list.	Previously	this	was
the	only	parameter	that	could	be	provided	to	sort().

key	should	be	a	single-parameter	function	that	takes	a	list	element	and
returns	a	comparison	key	for	the	element.	The	list	is	then	sorted	using	the
comparison	keys.	The	following	example	sorts	a	list	case-insensitively:

>>>	L	=	['A',	'b',	'c',	'D']

>>>	L.sort()																	#	Case-sensitive	sort

>>>	L

['A',	'D',	'b',	'c']

>>>	#	Using	'key'	parameter	to	sort	list

>>>	L.sort(key=lambda	x:	x.lower())

>>>	L

['A',	'b',	'c',	'D']

>>>	#	Old-fashioned	way

>>>	L.sort(cmp=lambda	x,y:	cmp(x.lower(),	y.lower()))

>>>	L

['A',	'b',	'c',	'D']

The	last	example,	which	uses	the	cmp	parameter,	is	the	old	way	to	perform
a	case-insensitive	sort.	It	works	but	is	slower	than	using	a	key	parameter.
Using	key	calls	lower()	method	once	for	each	element	in	the	list	while
using	cmp	will	call	it	twice	for	each	comparison,	so	using	key	saves	on
invocations	of	the	lower()	method.

For	simple	key	functions	and	comparison	functions,	it	is	often	possible	to
avoid	a	lambda	expression	by	using	an	unbound	method	instead.	For
example,	the	above	case-insensitive	sort	is	best	written	as:

>>>	L.sort(key=str.lower)

>>>	L

['A',	'b',	'c',	'D']

Finally,	the	reverse	parameter	takes	a	Boolean	value.	If	the	value	is	true,	the
list	will	be	sorted	into	reverse	order.	Instead	of	L.sort()	;
L.reverse(),	you	can	now	write	L.sort(reverse=True).

The	results	of	sorting	are	now	guaranteed	to	be	stable.	This	means	that	two
entries	with	equal	keys	will	be	returned	in	the	same	order	as	they	were
input.	For	example,	you	can	sort	a	list	of	people	by	name,	and	then	sort	the
list	by	age,	resulting	in	a	list	sorted	by	age	where	people	with	the	same	age
are	in	name-sorted	order.

(All	changes	to	sort()	contributed	by	Raymond	Hettinger.)

There	is	a	new	built-in	function	sorted(iterable)	that	works	like	the	in-
place	list.sort()	method	but	can	be	used	in	expressions.	The
differences	are:

the	input	may	be	any	iterable;
a	newly	formed	copy	is	sorted,	leaving	the	original	intact;	and
the	expression	returns	the	new	sorted	copy

>>>	L	=	[9,7,8,3,2,4,1,6,5]

>>>	[10+i	for	i	in	sorted(L)]							#	usable	in	a	list	comprehension

[11,	12,	13,	14,	15,	16,	17,	18,	19]

>>>	L																															#	original	is	left	unchanged

[9,7,8,3,2,4,1,6,5]

>>>	sorted('Monty	Python')										#	any	iterable	may	be	an	input

['	',	'M',	'P',	'h',	'n',	'n',	'o',	'o',	't',	't',	'y',	'y']

>>>	#	List	the	contents	of	a	dict	sorted	by	key	values

>>>	colormap	=	dict(red=1,	blue=2,	green=3,	black=4,	yellow=5)

>>>	for	k,	v	in	sorted(colormap.iteritems()):

...					print	k,	v

...

black	4

blue	2

green	3

red	1

yellow	5

(Contributed	by	Raymond	Hettinger.)

Integer	operations	will	no	longer	trigger	an	OverflowWarning.	The
OverflowWarning	warning	will	disappear	in	Python	2.5.

The	interpreter	gained	a	new	switch,	-m,	that	takes	a	name,	searches	for	the
corresponding	module	on	sys.path,	and	runs	the	module	as	a	script.	For
example,	you	can	now	run	the	Python	profiler	with	python	-m
profile.	(Contributed	by	Nick	Coghlan.)

The	eval(expr,	globals,	locals)	and	execfile(filename,	globals,
locals)	functions	and	the	exec	statement	now	accept	any	mapping	type	for
the	locals	parameter.	Previously	this	had	to	be	a	regular	Python	dictionary.
(Contributed	by	Raymond	Hettinger.)

The	zip()	built-in	function	and	itertools.izip()	now	return	an

empty	list	if	called	with	no	arguments.	Previously	they	raised	a
TypeError	exception.	This	makes	them	more	suitable	for	use	with
variable	length	argument	lists:

>>>	def	transpose(array):

...				return	zip(*array)

...

>>>	transpose([(1,2,3),	(4,5,6)])

[(1,	4),	(2,	5),	(3,	6)]

>>>	transpose([])

[]

(Contributed	by	Raymond	Hettinger.)

Encountering	a	failure	while	importing	a	module	no	longer	leaves	a
partially-initialized	module	object	in	sys.modules.	The	incomplete
module	object	left	behind	would	fool	further	imports	of	the	same	module
into	succeeding,	leading	to	confusing	errors.	(Fixed	by	Tim	Peters.)

None	is	now	a	constant;	code	that	binds	a	new	value	to	the	name	"None"	is
now	a	syntax	error.	(Contributed	by	Raymond	Hettinger.)

11.1	Optimizations
The	inner	loops	for	list	and	tuple	slicing	were	optimized	and	now	run	about
one-third	faster.	The	inner	loops	for	dictionaries	were	also	optimized	,
resulting	in	performance	boosts	for	keys(),	values(),	items(),
iterkeys(),	itervalues(),	and	iteritems().	(Contributed	by
Raymond	Hettinger.)

The	machinery	for	growing	and	shrinking	lists	was	optimized	for	speed	and
for	space	efficiency.	Appending	and	popping	from	lists	now	runs	faster	due
to	more	efficient	code	paths	and	less	frequent	use	of	the	underlying	system
realloc().	List	comprehensions	also	benefit.	list.extend()	was
also	optimized	and	no	longer	converts	its	argument	into	a	temporary	list
before	extending	the	base	list.	(Contributed	by	Raymond	Hettinger.)

list(),	tuple(),	map(),	filter(),	and	zip()	now	run	several
times	faster	with	non-sequence	arguments	that	supply	a	__len__()
method.	(Contributed	by	Raymond	Hettinger.)

The	methods	list.__getitem__(),	dict.__getitem__(),	and
dict.__contains__()	are	are	now	implemented	as
method_descriptor	objects	rather	than	wrapper_descriptor
objects.	This	form	of	access	doubles	their	performance	and	makes	them
more	suitable	for	use	as	arguments	to	functionals:
"map(mydict.__getitem__,	keylist)".	(Contributed	by
Raymond	Hettinger.)

Added	a	new	opcode,	LIST_APPEND,	that	simplifies	the	generated
bytecode	for	list	comprehensions	and	speeds	them	up	by	about	a	third.
(Contributed	by	Raymond	Hettinger.)

The	peephole	bytecode	optimizer	has	been	improved	to	produce	shorter,
faster	bytecode;	remarkably,	the	resulting	bytecode	is	more	readable.
(Enhanced	by	Raymond	Hettinger.)

String	concatenations	in	statements	of	the	form	s	=	s	+	"abc"	and	s
+=	"abc"	are	now	performed	more	efficiently	in	certain	circumstances.

This	optimization	won't	be	present	in	other	Python	implementations	such	as
Jython,	so	you	shouldn't	rely	on	it;	using	the	join()	method	of	strings	is
still	recommended	when	you	want	to	efficiently	glue	a	large	number	of
strings	together.	(Contributed	by	Armin	Rigo.)

The	net	result	of	the	2.4	optimizations	is	that	Python	2.4	runs	the	pystone
benchmark	around	5%	faster	than	Python	2.3	and	35%	faster	than	Python	2.2.
(pystone	is	not	a	particularly	good	benchmark,	but	it's	the	most	commonly	used
measurement	of	Python's	performance.	Your	own	applications	may	show	greater
or	smaller	benefits	from	Python	2.4.)

What's	New	in	Python	2.4
Previous:	10	PEP	331:	Locale-Independent	Up:	What's	New	in	Python	Next:
12	New,	Improved,	and

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11	Other	Language	Changes	Up:	What's	New	in	Python	Next:	13
Build	and	C

Subsections

12.1	cookielib
12.2	doctest

12	New,	Improved,	and	Deprecated
Modules
As	usual,	Python's	standard	library	received	a	number	of	enhancements	and	bug
fixes.	Here's	a	partial	list	of	the	most	notable	changes,	sorted	alphabetically	by
module	name.	Consult	the	Misc/NEWS	file	in	the	source	tree	for	a	more
complete	list	of	changes,	or	look	through	the	CVS	logs	for	all	the	details.

The	asyncore	module's	loop()	function	now	has	a	count	parameter
that	lets	you	perform	a	limited	number	of	passes	through	the	polling	loop.
The	default	is	still	to	loop	forever.

The	base64	module	now	has	more	complete	RFC	3548	support	for
Base64,	Base32,	and	Base16	encoding	and	decoding,	including	optional
case	folding	and	optional	alternative	alphabets.	(Contributed	by	Barry
Warsaw.)

The	bisect	module	now	has	an	underlying	C	implementation	for
improved	performance.	(Contributed	by	Dmitry	Vasiliev.)

The	CJKCodecs	collections	of	East	Asian	codecs,	maintained	by	Hye-Shik
Chang,	was	integrated	into	2.4.	The	new	encodings	are:

Chinese	(PRC):	gb2312,	gbk,	gb18030,	big5hkscs,	hz
Chinese	(ROC):	big5,	cp950
Japanese:	cp932,	euc-jis-2004,	euc-jp,	euc-jisx0213,	iso-2022-jp,	iso-
2022-jp-1,	iso-2022-jp-2,	iso-2022-jp-3,	iso-2022-jp-ext,	iso-2022-jp-
2004,	shift-jis,	shift-jisx0213,	shift-jis-2004
Korean:	cp949,	euc-kr,	johab,	iso-2022-kr

Some	other	new	encodings	were	added:	HP	Roman8,	ISO_8859-11,
ISO_8859-16,	PCTP-154,	and	TIS-620.

The	UTF-8	and	UTF-16	codecs	now	cope	better	with	receiving	partial
input.	Previously	the	StreamReader	class	would	try	to	read	more	data,
making	it	impossible	to	resume	decoding	from	the	stream.	The	read()

method	will	now	return	as	much	data	as	it	can	and	future	calls	will	resume
decoding	where	previous	ones	left	off.	(Implemented	by	Walter	Dörwald.)

There	is	a	new	collections	module	for	various	specialized	collection
datatypes.	Currently	it	contains	just	one	type,	deque,	a	double-ended
queue	that	supports	efficiently	adding	and	removing	elements	from	either
end:

>>>	from	collections	import	deque

>>>	d	=	deque('ghi')								#	make	a	new	deque	with	three	items

>>>	d.append('j')											#	add	a	new	entry	to	the	right	side

>>>	d.appendleft('f')							#	add	a	new	entry	to	the	left	side

>>>	d																							#	show	the	representation	of	the	deque

deque(['f',	'g',	'h',	'i',	'j'])

>>>	d.pop()																	#	return	and	remove	the	rightmost	item

'j'

>>>	d.popleft()													#	return	and	remove	the	leftmost	item

'f'

>>>	list(d)																	#	list	the	contents	of	the	deque

['g',	'h',	'i']

>>>	'h'	in	d																#	search	the	deque

True

Several	modules,	such	as	the	Queue	and	threading	modules,	now	take
advantage	of	collections.deque	for	improved	performance.
(Contributed	by	Raymond	Hettinger.)

The	ConfigParser	classes	have	been	enhanced	slightly.	The	read()
method	now	returns	a	list	of	the	files	that	were	successfully	parsed,	and	the
set()	method	raises	TypeError	if	passed	a	value	argument	that	isn't	a
string.	(Contributed	by	John	Belmonte	and	David	Goodger.)

The	curses	module	now	supports	the	ncurses	extension
use_default_colors().	On	platforms	where	the	terminal	supports
transparency,	this	makes	it	possible	to	use	a	transparent	background.
(Contributed	by	Jörg	Lehmann.)

The	difflib	module	now	includes	an	HtmlDiff	class	that	creates	an
HTML	table	showing	a	side	by	side	comparison	of	two	versions	of	a	text.
(Contributed	by	Dan	Gass.)

The	email	package	was	updated	to	version	3.0,	which	dropped	various
deprecated	APIs	and	removes	support	for	Python	versions	earlier	than	2.3.

The	3.0	version	of	the	package	uses	a	new	incremental	parser	for	MIME
messages,	available	in	the	email.FeedParser	module.	The	new	parser
doesn't	require	reading	the	entire	message	into	memory,	and	doesn't	throw
exceptions	if	a	message	is	malformed;	instead	it	records	any	problems	in
the	defect	attribute	of	the	message.	(Developed	by	Anthony	Baxter,
Barry	Warsaw,	Thomas	Wouters,	and	others.)

The	heapq	module	has	been	converted	to	C.	The	resulting	tenfold
improvement	in	speed	makes	the	module	suitable	for	handling	high
volumes	of	data.	In	addition,	the	module	has	two	new	functions
nlargest()	and	nsmallest()	that	use	heaps	to	find	the	N	largest	or
smallest	values	in	a	dataset	without	the	expense	of	a	full	sort.	(Contributed
by	Raymond	Hettinger.)

The	httplib	module	now	contains	constants	for	HTTP	status	codes
defined	in	various	HTTP-related	RFC	documents.	Constants	have	names
such	as	OK,	CREATED,	CONTINUE,	and	MOVED_PERMANENTLY;	use
pydoc	to	get	a	full	list.	(Contributed	by	Andrew	Eland.)

The	imaplib	module	now	supports	IMAP's	THREAD	command
(contributed	by	Yves	Dionne)	and	new	deleteacl()	and	myrights()
methods	(contributed	by	Arnaud	Mazin).

The	itertools	module	gained	a	groupby(iterable[,	func])
function.	iterable	is	something	that	can	be	iterated	over	to	return	a	stream	of
elements,	and	the	optional	func	parameter	is	a	function	that	takes	an
element	and	returns	a	key	value;	if	omitted,	the	key	is	simply	the	element
itself.	groupby()	then	groups	the	elements	into	subsequences	which	have
matching	values	of	the	key,	and	returns	a	series	of	2-tuples	containing	the
key	value	and	an	iterator	over	the	subsequence.

Here's	an	example	to	make	this	clearer.	The	key	function	simply	returns
whether	a	number	is	even	or	odd,	so	the	result	of	groupby()	is	to	return
consecutive	runs	of	odd	or	even	numbers.

>>>	import	itertools

>>>	L	=	[2,	4,	6,	7,	8,	9,	11,	12,	14]

>>>	for	key_val,	it	in	itertools.groupby(L,	lambda	x:	x	%	2):

...				print	key_val,	list(it)

...	

0	[2,	4,	6]

1	[7]

0	[8]

1	[9,	11]

0	[12,	14]

>>>

groupby()	is	typically	used	with	sorted	input.	The	logic	for
groupby()	is	similar	to	the	UNIX	uniq	filter	which	makes	it	handy	for
eliminating,	counting,	or	identifying	duplicate	elements:

>>>	word	=	'abracadabra'

>>>	letters	=	sorted(word)			#	Turn	string	into	a	sorted	list	of	letters

>>>	letters	

['a',	'a',	'a',	'a',	'a',	'b',	'b',	'c',	'd',	'r',	'r']

>>>	for	k,	g	in	itertools.groupby(letters):

...				print	k,	list(g)

...	

a	['a',	'a',	'a',	'a',	'a']

b	['b',	'b']

c	['c']

d	['d']

r	['r',	'r']

>>>	#	List	unique	letters

>>>	[k	for	k,	g	in	groupby(letters)]																					

['a',	'b',	'c',	'd',	'r']

>>>	#	Count	letter	occurrences

>>>	[(k,	len(list(g)))	for	k,	g	in	groupby(letters)]					

[('a',	5),	('b',	2),	('c',	1),	('d',	1),	('r',	2)]

(Contributed	by	Hye-Shik	Chang.)

itertools	also	gained	a	function	named	tee(iterator,	N)	that	returns
N	independent	iterators	that	replicate	iterator.	If	N	is	omitted,	the	default	is
2.

>>>	L	=	[1,2,3]

>>>	i1,	i2	=	itertools.tee(L)

>>>	i1,i2

(<itertools.tee	object	at	0x402c2080>,	<itertools.tee	object	at	0x402c2090>)

>>>	list(i1)															#	Run	the	first	iterator	to	exhaustion

[1,	2,	3]

>>>	list(i2)															#	Run	the	second	iterator	to	exhaustion

[1,	2,	3]

>

Note	that	tee()	has	to	keep	copies	of	the	values	returned	by	the	iterator;
in	the	worst	case,	it	may	need	to	keep	all	of	them.	This	should	therefore	be

used	carefully	if	the	leading	iterator	can	run	far	ahead	of	the	trailing	iterator
in	a	long	stream	of	inputs.	If	the	separation	is	large,	then	you	might	as	well
use	list()	instead.	When	the	iterators	track	closely	with	one	another,
tee()	is	ideal.	Possible	applications	include	bookmarking,	windowing,	or
lookahead	iterators.	(Contributed	by	Raymond	Hettinger.)

A	number	of	functions	were	added	to	the	locale	module,	such	as
bind_textdomain_codeset()	to	specify	a	particular	encoding	and	a
family	of	l*gettext()	functions	that	return	messages	in	the	chosen
encoding.	(Contributed	by	Gustavo	Niemeyer.)

Some	keyword	arguments	were	added	to	the	logging	package's
basicConfig	function	to	simplify	log	configuration.	The	default
behavior	is	to	log	messages	to	standard	error,	but	various	keyword
arguments	can	be	specified	to	log	to	a	particular	file,	change	the	logging
format,	or	set	the	logging	level.	For	example:

import	logging

logging.basicConfig(filename='/var/log/application.log',

				level=0,		#	Log	all	messages

				format='%(levelname):%(process):%(thread):%(message)')	 												

Other	additions	to	the	logging	package	include	a	log(level,	msg)
convenience	method,	as	well	as	a	TimedRotatingFileHandler	class
that	rotates	its	log	files	at	a	timed	interval.	The	module	already	had
RotatingFileHandler,	which	rotated	logs	once	the	file	exceeded	a
certain	size.	Both	classes	derive	from	a	new	BaseRotatingHandler
class	that	can	be	used	to	implement	other	rotating	handlers.

(Changes	implemented	by	Vinay	Sajip.)

The	marshal	module	now	shares	interned	strings	on	unpacking	a	data
structure.	This	may	shrink	the	size	of	certain	pickle	strings,	but	the	primary
effect	is	to	make	.pyc	files	significantly	smaller.	(Contributed	by	Martin
von	Loewis.)

The	nntplib	module's	NNTP	class	gained	description()	and
descriptions()	methods	to	retrieve	newsgroup	descriptions	for	a
single	group	or	for	a	range	of	groups.	(Contributed	by	Jürgen	A.	Erhard.)

Two	new	functions	were	added	to	the	operator	module,
attrgetter(attr)	and	itemgetter(index).	Both	functions	return
callables	that	take	a	single	argument	and	return	the	corresponding	attribute
or	item;	these	callables	make	excellent	data	extractors	when	used	with
map()	or	sorted().	For	example:

>>>	L	=	[('c',	2),	('d',	1),	('a',	4),	('b',	3)]

>>>	map(operator.itemgetter(0),	L)

['c',	'd',	'a',	'b']

>>>	map(operator.itemgetter(1),	L)

[2,	1,	4,	3]

>>>	sorted(L,	key=operator.itemgetter(1))	#	Sort	list	by	second	tuple	item

[('d',	1),	('c',	2),	('b',	3),	('a',	4)]

(Contributed	by	Raymond	Hettinger.)

The	optparse	module	was	updated	in	various	ways.	The	module	now
passes	its	messages	through	gettext.gettext(),	making	it	possible	to
internationalize	Optik's	help	and	error	messages.	Help	messages	for	options
can	now	include	the	string	'%default',	which	will	be	replaced	by	the
option's	default	value.	(Contributed	by	Greg	Ward.)

The	long-term	plan	is	to	deprecate	the	rfc822	module	in	some	future
Python	release	in	favor	of	the	email	package.	To	this	end,	the
email.Utils.formatdate()	function	has	been	changed	to	make	it
usable	as	a	replacement	for	rfc822.formatdate().	You	may	want	to
write	new	e-mail	processing	code	with	this	in	mind.	(Change	implemented
by	Anthony	Baxter.)

A	new	urandom(n)	function	was	added	to	the	os	module,	returning	a
string	containing	n	bytes	of	random	data.	This	function	provides	access	to
platform-specific	sources	of	randomness	such	as	/dev/urandom	on	Linux
or	the	Windows	CryptoAPI.	(Contributed	by	Trevor	Perrin.)

Another	new	function:	os.path.lexists(path)	returns	true	if	the	file
specified	by	path	exists,	whether	or	not	it's	a	symbolic	link.	This	differs
from	the	existing	os.path.exists(path)	function,	which	returns	false
if	path	is	a	symlink	that	points	to	a	destination	that	doesn't	exist.
(Contributed	by	Beni	Cherniavsky.)

A	new	getsid()	function	was	added	to	the	posix	module	that	underlies

the	os	module.	(Contributed	by	J.	Raynor.)

The	poplib	module	now	supports	POP	over	SSL.	(Contributed	by	Hector
Urtubia.)

The	profile	module	can	now	profile	C	extension	functions.	(Contributed
by	Nick	Bastin.)

The	random	module	has	a	new	method	called	getrandbits(N)	that
returns	a	long	integer	N	bits	in	length.	The	existing	randrange()	method
now	uses	getrandbits()	where	appropriate,	making	generation	of
arbitrarily	large	random	numbers	more	efficient.	(Contributed	by	Raymond
Hettinger.)

The	regular	expression	language	accepted	by	the	re	module	was	extended
with	simple	conditional	expressions,	written	as	(?(group)A|B).	group	is
either	a	numeric	group	ID	or	a	group	name	defined	with	(?
P<group>...)	earlier	in	the	expression.	If	the	specified	group	matched,
the	regular	expression	pattern	A	will	be	tested	against	the	string;	if	the
group	didn't	match,	the	pattern	B	will	be	used	instead.	(Contributed	by
Gustavo	Niemeyer.)

The	re	module	is	also	no	longer	recursive,	thanks	to	a	massive	amount	of
work	by	Gustavo	Niemeyer.	In	a	recursive	regular	expression	engine,
certain	patterns	result	in	a	large	amount	of	C	stack	space	being	consumed,
and	it	was	possible	to	overflow	the	stack.	For	example,	if	you	matched	a
30000-byte	string	of	"a"	characters	against	the	expression	(a|b)+,	one
stack	frame	was	consumed	per	character.	Python	2.3	tried	to	check	for	stack
overflow	and	raise	a	RuntimeError	exception,	but	certain	patterns	could
sidestep	the	checking	and	if	you	were	unlucky	Python	could	segfault.
Python	2.4's	regular	expression	engine	can	match	this	pattern	without
problems.

A	new	socketpair()	function,	returning	a	pair	of	connected	sockets,
was	added	to	the	socket	module.	(Contributed	by	Dave	Cole.)

The	sys.exitfunc()	function	has	been	deprecated.	Code	should	be
using	the	existing	atexit	module,	which	correctly	handles	calling
multiple	exit	functions.	Eventually	sys.exitfunc()	will	become	a

purely	internal	interface,	accessed	only	by	atexit.

The	tarfile	module	now	generates	GNU-format	tar	files	by	default.
(Contributed	by	Lars	Gustaebel.)

The	threading	module	now	has	an	elegantly	simple	way	to	support
thread-local	data.	The	module	contains	a	local	class	whose	attribute
values	are	local	to	different	threads.

import	threading

data	=	threading.local()

data.number	=	42

data.url	=	('www.python.org',	80)

Other	threads	can	assign	and	retrieve	their	own	values	for	the	number	and
url	attributes.	You	can	subclass	local	to	initialize	attributes	or	to	add
methods.	(Contributed	by	Jim	Fulton.)

The	timeit	module	now	automatically	disables	periodic	garbarge
collection	during	the	timing	loop.	This	change	makes	consecutive	timings
more	comparable.	(Contributed	by	Raymond	Hettinger.)

The	weakref	module	now	supports	a	wider	variety	of	objects	including
Python	functions,	class	instances,	sets,	frozensets,	deques,	arrays,	files,
sockets,	and	regular	expression	pattern	objects.	(Contributed	by	Raymond
Hettinger.)

The	xmlrpclib	module	now	supports	a	multi-call	extension	for
transmitting	multiple	XML-RPC	calls	in	a	single	HTTP	operation.
(Contributed	by	Brian	Quinlan.)

The	mpz,	rotor,	and	xreadlines	modules	have	been	removed.

12.1	cookielib
The	cookielib	library	supports	client-side	handling	for	HTTP	cookies,
mirroring	the	Cookie	module's	server-side	cookie	support.	Cookies	are	stored
in	cookie	jars;	the	library	transparently	stores	cookies	offered	by	the	web	server
in	the	cookie	jar,	and	fetches	the	cookie	from	the	jar	when	connecting	to	the
server.	As	in	web	browsers,	policy	objects	control	whether	cookies	are	accepted
or	not.

In	order	to	store	cookies	across	sessions,	two	implementations	of	cookie	jars	are
provided:	one	that	stores	cookies	in	the	Netscape	format	so	applications	can	use
the	Mozilla	or	Lynx	cookie	files,	and	one	that	stores	cookies	in	the	same	format
as	the	Perl	libwww	libary.

urllib2	has	been	changed	to	interact	with	cookielib:
HTTPCookieProcessor	manages	a	cookie	jar	that	is	used	when	accessing
URLs.

This	module	was	contributed	by	John	J.	Lee.

12.2	doctest
The	doctest	module	underwent	considerable	refactoring	thanks	to	Edward
Loper	and	Tim	Peters.	Testing	can	still	be	as	simple	as	running
doctest.testmod(),	but	the	refactorings	allow	customizing	the	module's
operation	in	various	ways

The	new	DocTestFinder	class	extracts	the	tests	from	a	given	object's
docstrings:

def	f	(x,	y):

				""">>>	f(2,2)

4

>>>	f(3,2)

6

				"""

				return	x*y

finder	=	doctest.DocTestFinder()

#	Get	list	of	DocTest	instances

tests	=	finder.find(f)

The	new	DocTestRunner	class	then	runs	individual	tests	and	can	produce	a
summary	of	the	results:

runner	=	doctest.DocTestRunner()

for	t	in	tests:

				tried,	failed	=	runner.run(t)

				

runner.summarize(verbose=1)

The	above	example	produces	the	following	output:

1	items	passed	all	tests:

			2	tests	in	f

2	tests	in	1	items.

2	passed	and	0	failed.

Test	passed.

DocTestRunner	uses	an	instance	of	the	OutputChecker	class	to	compare
the	expected	output	with	the	actual	output.	This	class	takes	a	number	of	different
flags	that	customize	its	behaviour;	ambitious	users	can	also	write	a	completely
new	subclass	of	OutputChecker.

The	default	output	checker	provides	a	number	of	handy	features.	For	example,
with	the	doctest.ELLIPSIS	option	flag,	an	ellipsis	("...")	in	the	expected
output	matches	any	substring,	making	it	easier	to	accommodate	outputs	that	vary
in	minor	ways:

def	o	(n):

				""">>>	o(1)

<__main__.C	instance	at	0x...>

>>>

"""

Another	special	string,	"<BLANKLINE>",	matches	a	blank	line:

def	p	(n):

				""">>>	p(1)

<BLANKLINE>

>>>

"""

Another	new	capability	is	producing	a	diff-style	display	of	the	output	by
specifying	the	doctest.REPORT_UDIFF	(unified	diffs),
doctest.REPORT_CDIFF	(context	diffs),	or	doctest.REPORT_NDIFF
(delta-style)	option	flags.	For	example:

def	g	(n):

				""">>>	g(4)

here

is

a

lengthy

>>>"""

				L	=	'here	is	a	rather	lengthy	list	of	words'.split()

				for	word	in	L[:n]:

								print	word

Running	the	above	function's	tests	with	doctest.REPORT_UDIFF	specified,
you	get	the	following	output:

**

File	``t.py'',	line	15,	in	g

Failed	example:

				g(4)

Differences	(unified	diff	with	-expected	+actual):

				@@	-2,3	+2,3	@@

					is

					a

				-lengthy

				+rather

**

What's	New	in	Python	2.4
Previous:	11	Other	Language	Changes	Up:	What's	New	in	Python	Next:	13
Build	and	C

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12	New,	Improved,	and	Up:	What's	New	in	Python	Next:	14	Porting
to	Python

Subsections

13.1	Port-Specific	Changes

13	Build	and	C	API	Changes
Some	of	the	changes	to	Python's	build	process	and	to	the	C	API	are:

Three	new	convenience	macros	were	added	for	common	return	values	from
extension	functions:	Py_RETURN_NONE,	Py_RETURN_TRUE,	and
Py_RETURN_FALSE.	(Contributed	by	Brett	Cannon.)

Another	new	macro,	Py_CLEAR(obj),	decreases	the	reference	count	of	obj
and	sets	obj	to	the	null	pointer.	(Contributed	by	Jim	Fulton.)

A	new	function,	PyTuple_Pack(N,	obj1,	obj2,	...,	objN),
constructs	tuples	from	a	variable	length	argument	list	of	Python	objects.
(Contributed	by	Raymond	Hettinger.)

A	new	function,	PyDict_Contains(d,	k),	implements	fast	dictionary
lookups	without	masking	exceptions	raised	during	the	look-up	process.
(Contributed	by	Raymond	Hettinger.)

The	Py_IS_NAN(X)	macro	returns	1	if	its	float	or	double	argument	X	is	a
NaN.	(Contributed	by	Tim	Peters.)

C	code	can	avoid	unnecessary	locking	by	using	the	new
PyEval_ThreadsInitialized()	function	to	tell	if	any	thread
operations	have	been	performed.	If	this	function	returns	false,	no	lock
operations	are	needed.	(Contributed	by	Nick	Coghlan.)

A	new	function,	PyArg_VaParseTupleAndKeywords(),	is	the	same
as	PyArg_ParseTupleAndKeywords()	but	takes	a	va_list
instead	of	a	number	of	arguments.	(Contributed	by	Greg	Chapman.)

A	new	method	flag,	METH_COEXISTS,	allows	a	function	defined	in	slots
to	co-exist	with	a	PyCFunction	having	the	same	name.	This	can	halve
the	access	time	for	a	method	such	as	set.__contains__().
(Contributed	by	Raymond	Hettinger.)

Python	can	now	be	built	with	additional	profiling	for	the	interpreter	itself,

intended	as	an	aid	to	people	developing	the	Python	core.	Providing	---
enable-profiling	to	the	configure	script	will	let	you	profile	the	interpreter
with	gprof,	and	providing	the	---with-tsc	switch	enables	profiling	using	the
Pentium's	Time-Stamp-Counter	register.	Note	that	the	---with-tsc	switch	is
slightly	misnamed,	because	the	profiling	feature	also	works	on	the
PowerPC	platform,	though	that	processor	architecture	doesn't	call	that
register	``the	TSC	register''.	(Contributed	by	Jeremy	Hylton.)

The	tracebackobject	type	has	been	renamed	to
PyTracebackObject.

13.1	Port-Specific	Changes
The	Windows	port	now	builds	under	MSVC++	7.1	as	well	as	version	6.
(Contributed	by	Martin	von	Loewis.)

What's	New	in	Python	2.4
Previous:	12	New,	Improved,	and	Up:	What's	New	in	Python	Next:	14	Porting
to	Python

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13	Build	and	C	Up:	What's	New	in	Python	Next:	15
Acknowledgements

14	Porting	to	Python	2.4
This	section	lists	previously	described	changes	that	may	require	changes	to	your
code:

Left	shifts	and	hexadecimal/octal	constants	that	are	too	large	no	longer
trigger	a	FutureWarning	and	return	a	value	limited	to	32	or	64	bits;
instead	they	return	a	long	integer.

Integer	operations	will	no	longer	trigger	an	OverflowWarning.	The
OverflowWarning	warning	will	disappear	in	Python	2.5.

The	zip()	built-in	function	and	itertools.izip()	now	return	an
empty	list	instead	of	raising	a	TypeError	exception	if	called	with	no
arguments.

dircache.listdir()	now	passes	exceptions	to	the	caller	instead	of
returning	empty	lists.

LexicalHandler.startDTD()	used	to	receive	the	public	and	system
IDs	in	the	wrong	order.	This	has	been	corrected;	applications	relying	on	the
wrong	order	need	to	be	fixed.

fcntl.ioctl	now	warns	if	the	mutate	argument	is	omitted	and	relevant.

The	tarfile	module	now	generates	GNU-format	tar	files	by	default.

Encountering	a	failure	while	importing	a	module	no	longer	leaves	a
partially-initialized	module	object	in	sys.modules.

None	is	now	a	constant;	code	that	binds	a	new	value	to	the	name	"None"	is
now	a	syntax	error.

What's	New	in	Python	2.4
Previous:	13	Build	and	C	Up:	What's	New	in	Python	Next:	15
Acknowledgements

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

Acknowledgements
Up:	Python	Documentation	Index

Acknowledgements
These	people	have	contributed	in	some	way	to	the	Python	documentation.	This
list	is	probably	not	complete	--	if	you	feel	that	you	or	anyone	else	should	be	on
this	list,	please	let	us	know	(send	email	to	docs@python.org),	and	we	will	be
glad	to	correct	the	problem.

It	is	only	with	the	input	and	contributions	of	the	Python	community	that	Python
has	such	wonderful	documentation	--	Thank	You!

Aahz Ben	Gertzfield Detlef	Lannert Donald	Wallace
Rouse	II

Michael	Abbott Nadim	Ghaznavi Piers	Lauder Nick	Russo
Steve	Alexander Jonathan	Giddy Glyph	Lefkowitz Chris	Ryland

Jim	Ahlstrom Shelley	Gooch Marc-André
Lemburg Constantina	S.

Fred	Allen Nathaniel	Gray Ulf	A.	Lindgren Hugh	Sasse
A.	Amoroso Grant	Griffin Everett	Lipman Bob	Savage
Pehr	Anderson Thomas	Guettler Mirko	Liss Scott	Schram

Oliver	Andrich Anders
Hammarquist Martin	von	Löwis Neil	Schemenauer

Jesús	Cea	Avión Mark	Hammond Fredrik	Lundh Barry	Scott

Daniel	Barclay Harald	Hanche-
Olsen Jeff	MacDonald Joakim	Sernbrant

Chris	Barker Manus	Hand John	Machin Justin	Sheehy

Don	Bashford Gerhard	Häring Andrew
MacIntyre Michael	Simcich

Anthony	Baxter Travis	B.
Hartwell

Vladimir
Marangozov Ionel	Simionescu

Bennett	Benson Janko	Hauser Vincent	Marchetti Roy	Smith
Jonathan	Black Bernhard	Herzog Laura	Matson Clay	Spence

Robin	Boerdijk Magnus	L.
Hetland Daniel	May Nicholas	Spies

Michal	Bozon Konrad	Hinsen Doug	Mennella Tage	Stabell-Kulo

mailto:docs@python.org

Aaron	Brancotti Stefan
Hoffmeister

Paolo	Milani Frank	Stajano

Keith	Briggs Albert	Hofkamp Skip	Montanaro Anthony	Starks
Lee	Busby Gregor	Hoffleit Paul	Moore Greg	Stein

Lorenzo	M.	Catucci Steve	Holden Ross	Moore Peter	Stoehr

Mauro	Cicognini Thomas
Holenstein Sjoerd	Mullender Mark	Summerfield

Gilles	Civario Gerrit	Holl Dale	Nagata Reuben	Sumner
Mike	Clarkson Rob	Hooft Ng	Pheng	Siong Kalle	Svensson
Steve	Clift Brian	Hooper Koray	Oner Jim	Tittsler
Dave	Cole Randall	Hopper Tomas	Oppelstrup Ville	Vainio

Matthew	Cowles Michael	Hudson Denis	S.	Otkidach Martijn	Vries

Jeremy	Craven Eric	Huss Zooko
O'Whielacronx Charles	G.	Waldman

Andrew	Dalke Jeremy	Hylton William	Park Greg	Ward
Ben	Darnell Roger	Irwin Joonas	Paalasmaa Barry	Warsaw

L.	Peter	Deutsch Jack	Jansen Harri	Pasanen Corran	Webster
Robert	Donohue Philip	H.	Jensen Tim	Peters Glyn	Webster

Fred	L.	Drake,	Jr. Pedro	Diaz
Jimenez

Christopher
Petrilli Bob	Weiner

Jeff	Epler Lucas	de	Jonge Justin	D.	Pettit Eddy	Welbourne
Michael	Ernst Andreas	Jung Chris	Phoenix Mats	Wichmann
Blame	Andy
Eskilsson Robert	Kern François	Pinard Gerry	Wiener

Carey	Evans Jim	Kerr Paul	Prescod Timothy	Wild
Martijn	Faassen Jan	Kim Eric	S.	Raymond Blake	Winton
Carl	Feynman Greg	Kochanski Edward	K.	Ream Dan	Wolfe
Hernán	Martínez

Foffani Guido	Kollerie Sean
Reifschneider Steven	Work

Stefan	Franke Peter	A.	Koren Bernhard	Reiter Thomas	Wouters
Jim	Fulton Daniel	Kozan Armin	Rigo Ka-Ping	Yee

Peter	Funk Andrew	M.
Kuchling Wes	Rishel Moshe	Zadka

Lele	Gaifax Dave	Kuhlman Jim	Roskind Milan	Zamazal

Matthew	Gallagher Erno	Kuusela Guido	van
Rossum

Cheng	Zhang

Acknowledgements
Up:	Python	Documentation	Index	
See	About	this	document...	for	information	on	suggesting	changes.

About	the	Python	Documentation
Up:	Python	Documentation	Index

About	the	Python	Documentation
The	Python	documentation	was	originally	written	by	Guido	van	Rossum,	but	has
increasingly	become	a	community	effort	over	the	past	several	years.	This
growing	collection	of	documents	is	available	in	several	formats,	including
typeset	versions	in	PDF	and	PostScript	for	printing,	from	the	Python	Web	site.

A	list	of	contributors	is	available.

http://www.python.org/

Comments	and	Questions
General	comments	and	questions	regarding	this	document	should	be	sent	by
email	to	docs@python.org.	If	you	find	specific	errors	in	this	document,	please
report	the	bug	at	the	Python	Bug	Tracker	at	SourceForge.	If	you	are	able	to
provide	suggested	text,	either	to	replace	existing	incorrect	or	unclear	material,	or
additional	text	to	supplement	what's	already	available,	we'd	appreciate	the
contribution.	There's	no	need	to	worry	about	text	markup;	our	documentation
team	will	gladly	take	care	of	that.

Questions	regarding	how	to	use	the	information	in	this	document	should	be	sent
to	the	Python	news	group,	comp.lang.python,	or	the	Python	mailing	list	(which
is	gated	to	the	newsgroup	and	carries	the	same	content).

For	any	of	these	channels,	please	be	sure	not	to	send	HTML	email.	Thanks.

mailto:docs@python.org
http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/
news:comp.lang.python
http://www.python.org/mailman/listinfo/python-list

Up:	Python	Documentation	Index	Next:	Front	Matter

Python	Tutorial
Guido	van	Rossum	

Fred	L.	Drake,	Jr.,	editor
Python	Software	Foundation	
Email:	docs@python.org

Release	2.4
29	November	2004

Front	Matter
Contents
1.	Whetting	Your	Appetite
2.	Using	the	Python	Interpreter

2.1	Invoking	the	Interpreter
2.1.1	Argument	Passing
2.1.2	Interactive	Mode

2.2	The	Interpreter	and	Its	Environment
2.2.1	Error	Handling
2.2.2	Executable	Python	Scripts
2.2.3	Source	Code	Encoding
2.2.4	The	Interactive	Startup	File

3.	An	Informal	Introduction	to	Python
3.1	Using	Python	as	a	Calculator

3.1.1	Numbers
3.1.2	Strings
3.1.3	Unicode	Strings
3.1.4	Lists

3.2	First	Steps	Towards	Programming
4.	More	Control	Flow	Tools

4.1	if	Statements
4.2	for	Statements

4.3	The	range()	Function
4.4	break	and	continue	Statements,	and	else	Clauses	on	Loops
4.5	pass	Statements
4.6	Defining	Functions
4.7	More	on	Defining	Functions

4.7.1	Default	Argument	Values
4.7.2	Keyword	Arguments
4.7.3	Arbitrary	Argument	Lists
4.7.4	Unpacking	Argument	Lists
4.7.5	Lambda	Forms
4.7.6	Documentation	Strings

5.	Data	Structures
5.1	More	on	Lists

5.1.1	Using	Lists	as	Stacks
5.1.2	Using	Lists	as	Queues
5.1.3	Functional	Programming	Tools
5.1.4	List	Comprehensions

5.2	The	del	statement
5.3	Tuples	and	Sequences
5.4	Sets
5.5	Dictionaries
5.6	Looping	Techniques
5.7	More	on	Conditions
5.8	Comparing	Sequences	and	Other	Types

6.	Modules
6.1	More	on	Modules

6.1.1	The	Module	Search	Path
6.1.2	``Compiled''	Python	files

6.2	Standard	Modules
6.3	The	dir()	Function
6.4	Packages

6.4.1	Importing	*	From	a	Package
6.4.2	Intra-package	References
6.4.3	Packages	in	Multiple	Directories

7.	Input	and	Output
7.1	Fancier	Output	Formatting
7.2	Reading	and	Writing	Files

7.2.1	Methods	of	File	Objects

7.2.2	The	pickle	Module
8.	Errors	and	Exceptions

8.1	Syntax	Errors
8.2	Exceptions
8.3	Handling	Exceptions
8.4	Raising	Exceptions
8.5	User-defined	Exceptions
8.6	Defining	Clean-up	Actions

9.	Classes
9.1	A	Word	About	Terminology
9.2	Python	Scopes	and	Name	Spaces
9.3	A	First	Look	at	Classes

9.3.1	Class	Definition	Syntax
9.3.2	Class	Objects
9.3.3	Instance	Objects
9.3.4	Method	Objects

9.4	Random	Remarks
9.5	Inheritance

9.5.1	Multiple	Inheritance
9.6	Private	Variables
9.7	Odds	and	Ends
9.8	Exceptions	Are	Classes	Too
9.9	Iterators
9.10	Generators
9.11	Generator	Expressions

10.	Brief	Tour	of	the	Standard	Library
10.1	Operating	System	Interface
10.2	File	Wildcards
10.3	Command	Line	Arguments
10.4	Error	Output	Redirection	and	Program	Termination
10.5	String	Pattern	Matching
10.6	Mathematics
10.7	Internet	Access
10.8	Dates	and	Times
10.9	Data	Compression
10.10	Performance	Measurement
10.11	Quality	Control
10.12	Batteries	Included

11.	Brief	Tour	of	the	Standard	Library	-	Part	II

11.1	Output	Formatting
11.2	Templating
11.3	Working	with	Binary	Data	Record	Layouts
11.4	Multi-threading
11.5	Logging
11.6	Weak	References
11.7	Tools	for	Working	with	Lists
11.8	Decimal	Floating	Point	Arithmetic

12.	What	Now?
A.	Interactive	Input	Editing	and	History	Substitution

A.1	Line	Editing
A.2	History	Substitution
A.3	Key	Bindings
A.4	Commentary

B.	Floating	Point	Arithmetic:	Issues	and	Limitations
B.1	Representation	Error

C.	History	and	License
C.1	History	of	the	software
C.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
C.3	Licenses	and	Acknowledgements	for	Incorporated	Software

C.3.1	Mersenne	Twister
C.3.2	Sockets
C.3.3	Floating	point	exception	control
C.3.4	MD5	message	digest	algorithm
C.3.5	Asynchronous	socket	services
C.3.6	Cookie	management
C.3.7	Profiling
C.3.8	Execution	tracing
C.3.9	UUencode	and	UUdecode	functions
C.3.10	XML	Remote	Procedure	Calls

D.	Glossary
Index
About	this	document	...

Python	Tutorial
Up:	Python	Documentation	Index	Next:	Front	Matter

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Python	Tutorial	Up:	Python	Tutorial	Next:	Contents

Front	Matter
Copyright	©	2001-2004	Python	Software	Foundation.	All	rights	reserved.

Copyright	©	2000	BeOpen.com.	All	rights	reserved.

Copyright	©	1995-2000	Corporation	for	National	Research	Initiatives.	All	rights
reserved.

Copyright	©	1991-1995	Stichting	Mathematisch	Centrum.	All	rights	reserved.

See	the	end	of	this	document	for	complete	license	and	permissions	information.

Abstract:

Python	is	an	easy	to	learn,	powerful	programming	language.	It	has	efficient
high-level	data	structures	and	a	simple	but	effective	approach	to	object-oriented
programming.	Python's	elegant	syntax	and	dynamic	typing,	together	with	its
interpreted	nature,	make	it	an	ideal	language	for	scripting	and	rapid	application
development	in	many	areas	on	most	platforms.

The	Python	interpreter	and	the	extensive	standard	library	are	freely	available	in
source	or	binary	form	for	all	major	platforms	from	the	Python	Web	site,
http://www.python.org/,	and	can	be	freely	distributed.	The	same	site	also
contains	distributions	of	and	pointers	to	many	free	third	party	Python	modules,
programs	and	tools,	and	additional	documentation.

The	Python	interpreter	is	easily	extended	with	new	functions	and	data	types
implemented	in	C	or	C++	(or	other	languages	callable	from	C).	Python	is	also
suitable	as	an	extension	language	for	customizable	applications.

This	tutorial	introduces	the	reader	informally	to	the	basic	concepts	and	features
of	the	Python	language	and	system.	It	helps	to	have	a	Python	interpreter	handy
for	hands-on	experience,	but	all	examples	are	self-contained,	so	the	tutorial	can
be	read	off-line	as	well.

For	a	description	of	standard	objects	and	modules,	see	the	Python	Library

http://www.python.org/

Reference	document.	The	Python	Reference	Manual	gives	a	more	formal
definition	of	the	language.	To	write	extensions	in	C	or	C++,	read	Extending	and
Embedding	the	Python	Interpreter	and	Python/C	API	Reference.	There	are	also
several	books	covering	Python	in	depth.

This	tutorial	does	not	attempt	to	be	comprehensive	and	cover	every	single
feature,	or	even	every	commonly	used	feature.	Instead,	it	introduces	many	of
Python's	most	noteworthy	features,	and	will	give	you	a	good	idea	of	the
language's	flavor	and	style.	After	reading	it,	you	will	be	able	to	read	and	write
Python	modules	and	programs,	and	you	will	be	ready	to	learn	more	about	the
various	Python	library	modules	described	in	the	Python	Library	Reference.

Python	Tutorial
Previous:	Python	Tutorial	Up:	Python	Tutorial	Next:	Contents

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Contents	Up:	Python	Tutorial	Next:	2.	Using	the	Python

1.	Whetting	Your	Appetite
If	you	ever	wrote	a	large	shell	script,	you	probably	know	this	feeling:	you'd	love
to	add	yet	another	feature,	but	it's	already	so	slow,	and	so	big,	and	so
complicated;	or	the	feature	involves	a	system	call	or	other	function	that	is	only
accessible	from	C	...Usually	the	problem	at	hand	isn't	serious	enough	to	warrant
rewriting	the	script	in	C;	perhaps	the	problem	requires	variable-length	strings	or
other	data	types	(like	sorted	lists	of	file	names)	that	are	easy	in	the	shell	but	lots
of	work	to	implement	in	C,	or	perhaps	you're	not	sufficiently	familiar	with	C.

Another	situation:	perhaps	you	have	to	work	with	several	C	libraries,	and	the
usual	C	write/compile/test/re-compile	cycle	is	too	slow.	You	need	to	develop
software	more	quickly.	Possibly	perhaps	you've	written	a	program	that	could	use
an	extension	language,	and	you	don't	want	to	design	a	language,	write	and	debug
an	interpreter	for	it,	then	tie	it	into	your	application.

In	such	cases,	Python	may	be	just	the	language	for	you.	Python	is	simple	to	use,
but	it	is	a	real	programming	language,	offering	much	more	structure	and	support
for	large	programs	than	the	shell	has.	On	the	other	hand,	it	also	offers	much
more	error	checking	than	C,	and,	being	a	very-high-level	language,	it	has	high-
level	data	types	built	in,	such	as	flexible	arrays	and	dictionaries	that	would	cost
you	days	to	implement	efficiently	in	C.	Because	of	its	more	general	data	types
Python	is	applicable	to	a	much	larger	problem	domain	than	Awk	or	even	Perl,	yet
many	things	are	at	least	as	easy	in	Python	as	in	those	languages.

Python	allows	you	to	split	up	your	program	in	modules	that	can	be	reused	in
other	Python	programs.	It	comes	with	a	large	collection	of	standard	modules	that
you	can	use	as	the	basis	of	your	programs	--	or	as	examples	to	start	learning	to
program	in	Python.	There	are	also	built-in	modules	that	provide	things	like	file
I/O,	system	calls,	sockets,	and	even	interfaces	to	graphical	user	interface	toolkits
like	Tk.

Python	is	an	interpreted	language,	which	can	save	you	considerable	time	during
program	development	because	no	compilation	and	linking	is	necessary.	The
interpreter	can	be	used	interactively,	which	makes	it	easy	to	experiment	with
features	of	the	language,	to	write	throw-away	programs,	or	to	test	functions
during	bottom-up	program	development.	It	is	also	a	handy	desk	calculator.

Python	allows	writing	very	compact	and	readable	programs.	Programs	written	in
Python	are	typically	much	shorter	than	equivalent	C	or	C++	programs,	for
several	reasons:

the	high-level	data	types	allow	you	to	express	complex	operations	in	a
single	statement;
statement	grouping	is	done	by	indentation	instead	of	beginning	and	ending
brackets;
no	variable	or	argument	declarations	are	necessary.

Python	is	extensible:	if	you	know	how	to	program	in	C	it	is	easy	to	add	a	new
built-in	function	or	module	to	the	interpreter,	either	to	perform	critical	operations
at	maximum	speed,	or	to	link	Python	programs	to	libraries	that	may	only	be
available	in	binary	form	(such	as	a	vendor-specific	graphics	library).	Once	you
are	really	hooked,	you	can	link	the	Python	interpreter	into	an	application	written
in	C	and	use	it	as	an	extension	or	command	language	for	that	application.

By	the	way,	the	language	is	named	after	the	BBC	show	``Monty	Python's	Flying
Circus''	and	has	nothing	to	do	with	nasty	reptiles.	Making	references	to	Monty
Python	skits	in	documentation	is	not	only	allowed,	it	is	encouraged!

Now	that	you	are	all	excited	about	Python,	you'll	want	to	examine	it	in	some
more	detail.	Since	the	best	way	to	learn	a	language	is	using	it,	you	are	invited
here	to	do	so.

In	the	next	chapter,	the	mechanics	of	using	the	interpreter	are	explained.	This	is
rather	mundane	information,	but	essential	for	trying	out	the	examples	shown
later.

The	rest	of	the	tutorial	introduces	various	features	of	the	Python	language	and
system	through	examples,	beginning	with	simple	expressions,	statements	and
data	types,	through	functions	and	modules,	and	finally	touching	upon	advanced
concepts	like	exceptions	and	user-defined	classes.

Python	Tutorial
Previous:	Contents	Up:	Python	Tutorial	Next:	2.	Using	the	Python

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.	Whetting	Your	Appetite	Up:	Python	Tutorial	Next:	3.	An	Informal
Introduction

Subsections

2.1	Invoking	the	Interpreter
2.1.1	Argument	Passing
2.1.2	Interactive	Mode

2.2	The	Interpreter	and	Its	Environment
2.2.1	Error	Handling
2.2.2	Executable	Python	Scripts
2.2.3	Source	Code	Encoding
2.2.4	The	Interactive	Startup	File

2.	Using	the	Python	Interpreter

2.1	Invoking	the	Interpreter
The	Python	interpreter	is	usually	installed	as	/usr/local/bin/python	on	those
machines	where	it	is	available;	putting	/usr/local/bin	in	your	UNIX	shell's	search
path	makes	it	possible	to	start	it	by	typing	the	command

python

to	the	shell.	Since	the	choice	of	the	directory	where	the	interpreter	lives	is	an
installation	option,	other	places	are	possible;	check	with	your	local	Python	guru
or	system	administrator.	(E.g.,	/usr/local/python	is	a	popular	alternative
location.)

Typing	an	end-of-file	character	(Control-D	on	UNIX,	Control-Z	on	Windows)	at
the	primary	prompt	causes	the	interpreter	to	exit	with	a	zero	exit	status.	If	that
doesn't	work,	you	can	exit	the	interpreter	by	typing	the	following	commands:
"import	sys;	sys.exit()".

The	interpreter's	line-editing	features	usually	aren't	very	sophisticated.	On	UNIX,
whoever	installed	the	interpreter	may	have	enabled	support	for	the	GNU	readline
library,	which	adds	more	elaborate	interactive	editing	and	history	features.
Perhaps	the	quickest	check	to	see	whether	command	line	editing	is	supported	is
typing	Control-P	to	the	first	Python	prompt	you	get.	If	it	beeps,	you	have
command	line	editing;	see	Appendix	A	for	an	introduction	to	the	keys.	If	nothing
appears	to	happen,	or	if	P	is	echoed,	command	line	editing	isn't	available;	you'll
only	be	able	to	use	backspace	to	remove	characters	from	the	current	line.

The	interpreter	operates	somewhat	like	the	UNIX	shell:	when	called	with	standard
input	connected	to	a	tty	device,	it	reads	and	executes	commands	interactively;
when	called	with	a	file	name	argument	or	with	a	file	as	standard	input,	it	reads
and	executes	a	script	from	that	file.

A	second	way	of	starting	the	interpreter	is	"python	-c	command	[arg]
...",	which	executes	the	statement(s)	in	command,	analogous	to	the	shell's	-c
option.	Since	Python	statements	often	contain	spaces	or	other	characters	that	are
special	to	the	shell,	it	is	best	to	quote	command	in	its	entirety	with	double
quotes.

Some	Python	modules	are	also	useful	as	scripts.	These	can	be	invoked	using
"python	-m	module	[arg]	...",	which	executes	the	source	file	for
module	as	if	you	had	spelled	out	its	full	name	on	the	command	line.

Note	that	there	is	a	difference	between	"python	file"	and	"python
<file".	In	the	latter	case,	input	requests	from	the	program,	such	as	calls	to
input()	and	raw_input(),	are	satisfied	from	file.	Since	this	file	has
already	been	read	until	the	end	by	the	parser	before	the	program	starts	executing,
the	program	will	encounter	end-of-file	immediately.	In	the	former	case	(which	is
usually	what	you	want)	they	are	satisfied	from	whatever	file	or	device	is
connected	to	standard	input	of	the	Python	interpreter.

When	a	script	file	is	used,	it	is	sometimes	useful	to	be	able	to	run	the	script	and
enter	interactive	mode	afterwards.	This	can	be	done	by	passing	-i	before	the
script.	(This	does	not	work	if	the	script	is	read	from	standard	input,	for	the	same
reason	as	explained	in	the	previous	paragraph.)

2.1.1	Argument	Passing
When	known	to	the	interpreter,	the	script	name	and	additional	arguments
thereafter	are	passed	to	the	script	in	the	variable	sys.argv,	which	is	a	list	of
strings.	Its	length	is	at	least	one;	when	no	script	and	no	arguments	are	given,
sys.argv[0]	is	an	empty	string.	When	the	script	name	is	given	as	'-'
(meaning	standard	input),	sys.argv[0]	is	set	to	'-'.	When	-c	command	is
used,	sys.argv[0]	is	set	to	'-c'.	When	-m	module	is	used,	sys.argv[0]
is	set	to	the	full	name	of	the	located	module.	Options	found	after	-c	command	or
-m	module	are	not	consumed	by	the	Python	interpreter's	option	processing	but
left	in	sys.argv	for	the	command	or	module	to	handle.

2.1.2	Interactive	Mode
When	commands	are	read	from	a	tty,	the	interpreter	is	said	to	be	in	interactive
mode.	In	this	mode	it	prompts	for	the	next	command	with	the	primary	prompt,
usually	three	greater-than	signs	(">>>	");	for	continuation	lines	it	prompts	with
the	secondary	prompt,	by	default	three	dots	("...	").	The	interpreter	prints	a
welcome	message	stating	its	version	number	and	a	copyright	notice	before
printing	the	first	prompt:

python

Python	1.5.2b2	(#1,	Feb	28	1999,	00:02:06)		[GCC	2.8.1]	on	sunos5

Copyright	1991-1995	Stichting	Mathematisch	Centrum,	Amsterdam

>>>

Continuation	lines	are	needed	when	entering	a	multi-line	construct.	As	an
example,	take	a	look	at	this	if	statement:

>>>	the_world_is_flat	=	1

>>>	if	the_world_is_flat:

...					print	"Be	careful	not	to	fall	off!"

...	

Be	careful	not	to	fall	off!

2.2	The	Interpreter	and	Its
Environment

2.2.1	Error	Handling
When	an	error	occurs,	the	interpreter	prints	an	error	message	and	a	stack	trace.
In	interactive	mode,	it	then	returns	to	the	primary	prompt;	when	input	came	from
a	file,	it	exits	with	a	nonzero	exit	status	after	printing	the	stack	trace.	(Exceptions
handled	by	an	except	clause	in	a	try	statement	are	not	errors	in	this	context.)
Some	errors	are	unconditionally	fatal	and	cause	an	exit	with	a	nonzero	exit;	this
applies	to	internal	inconsistencies	and	some	cases	of	running	out	of	memory.	All
error	messages	are	written	to	the	standard	error	stream;	normal	output	from	the
executed	commands	is	written	to	standard	output.

Typing	the	interrupt	character	(usually	Control-C	or	DEL)	to	the	primary	or
secondary	prompt	cancels	the	input	and	returns	to	the	primary	prompt.2.1Typing
an	interrupt	while	a	command	is	executing	raises	the	KeyboardInterrupt
exception,	which	may	be	handled	by	a	try	statement.

2.2.2	Executable	Python	Scripts
On	BSD'ish	UNIX	systems,	Python	scripts	can	be	made	directly	executable,	like
shell	scripts,	by	putting	the	line

#!	/usr/bin/env	python

(assuming	that	the	interpreter	is	on	the	user's	PATH)	at	the	beginning	of	the
script	and	giving	the	file	an	executable	mode.	The	"#!"	must	be	the	first	two
characters	of	the	file.	On	some	platforms,	this	first	line	must	end	with	a	UNIX-
style	line	ending	("\n"),	not	a	Mac	OS	("\r")	or	Windows	("\r\n")	line
ending.	Note	that	the	hash,	or	pound,	character,	"#",	is	used	to	start	a	comment
in	Python.

The	script	can	be	given	a	executable	mode,	or	permission,	using	the	chmod
command:

$	chmod	+x	myscript.py

2.2.3	Source	Code	Encoding
It	is	possible	to	use	encodings	different	than	ASCII	in	Python	source	files.	The
best	way	to	do	it	is	to	put	one	more	special	comment	line	right	after	the	#!	line
to	define	the	source	file	encoding:

	#	-*-	coding:	encoding	-*-	
	

With	that	declaration,	all	characters	in	the	source	file	will	be	treated	as	having
the	encoding	encoding,	and	it	will	be	possible	to	directly	write	Unicode	string
literals	in	the	selected	encoding.	The	list	of	possible	encodings	can	be	found	in
the	Python	Library	Reference,	in	the	section	on	codecs.

For	example,	to	write	Unicode	literals	including	the	Euro	currency	symbol,	the
ISO-8859-15	encoding	can	be	used,	with	the	Euro	symbol	having	the	ordinal
value	164.	This	script	will	print	the	value	8364	(the	Unicode	codepoint
corresponding	to	the	Euro	symbol)	and	then	exit:

	#	-*-	coding:	iso-8859-15	-*-

	

	currency	=	u"€"

	print	ord(currency)

	

If	your	editor	supports	saving	files	as	UTF-8	with	a	UTF-8	byte	order	mark	(aka
BOM),	you	can	use	that	instead	of	an	encoding	declaration.	IDLE	supports	this
capability	if	Options/General/Default	Source	Encoding/UTF-8
is	set.	Notice	that	this	signature	is	not	understood	in	older	Python	releases	(2.2
and	earlier),	and	also	not	understood	by	the	operating	system	for	script	files	with
#!	lines	(only	used	on	UNIX	systems).

By	using	UTF-8	(either	through	the	signature	or	an	encoding	declaration),
characters	of	most	languages	in	the	world	can	be	used	simultaneously	in	string
literals	and	comments.	Using	non-ASCII	characters	in	identifiers	is	not
supported.	To	display	all	these	characters	properly,	your	editor	must	recognize
that	the	file	is	UTF-8,	and	it	must	use	a	font	that	supports	all	the	characters	in	the
file.

2.2.4	The	Interactive	Startup	File
When	you	use	Python	interactively,	it	is	frequently	handy	to	have	some	standard
commands	executed	every	time	the	interpreter	is	started.	You	can	do	this	by
setting	an	environment	variable	named	PYTHONSTARTUP	to	the	name	of	a	file
containing	your	start-up	commands.	This	is	similar	to	the	.profile	feature	of	the
UNIX	shells.

This	file	is	only	read	in	interactive	sessions,	not	when	Python	reads	commands
from	a	script,	and	not	when	/dev/tty	is	given	as	the	explicit	source	of	commands
(which	otherwise	behaves	like	an	interactive	session).	It	is	executed	in	the	same
namespace	where	interactive	commands	are	executed,	so	that	objects	that	it
defines	or	imports	can	be	used	without	qualification	in	the	interactive	session.
You	can	also	change	the	prompts	sys.ps1	and	sys.ps2	in	this	file.

If	you	want	to	read	an	additional	start-up	file	from	the	current	directory,	you	can
program	this	in	the	global	start-up	file	using	code	like	"if
os.path.isfile('.pythonrc.py'):

execfile('.pythonrc.py')".	If	you	want	to	use	the	startup	file	in	a
script,	you	must	do	this	explicitly	in	the	script:

import	os

filename	=	os.environ.get('PYTHONSTARTUP')

if	filename	and	os.path.isfile(filename):

				execfile(filename)

Footnotes

...	prompt.2.1
A	problem	with	the	GNU	Readline	package	may	prevent	this.

Python	Tutorial
Previous:	1.	Whetting	Your	Appetite	Up:	Python	Tutorial	Next:	3.	An	Informal
Introduction

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.	Using	the	Python	Up:	Python	Tutorial	Next:	4.	More	Control	Flow

Subsections

3.1	Using	Python	as	a	Calculator
3.1.1	Numbers
3.1.2	Strings
3.1.3	Unicode	Strings
3.1.4	Lists

3.2	First	Steps	Towards	Programming

3.	An	Informal	Introduction	to
Python
In	the	following	examples,	input	and	output	are	distinguished	by	the	presence	or
absence	of	prompts	(">>>	"	and	"...	"):	to	repeat	the	example,	you	must	type
everything	after	the	prompt,	when	the	prompt	appears;	lines	that	do	not	begin
with	a	prompt	are	output	from	the	interpreter.	Note	that	a	secondary	prompt	on	a
line	by	itself	in	an	example	means	you	must	type	a	blank	line;	this	is	used	to	end
a	multi-line	command.

Many	of	the	examples	in	this	manual,	even	those	entered	at	the	interactive
prompt,	include	comments.	Comments	in	Python	start	with	the	hash	character,
"#",	and	extend	to	the	end	of	the	physical	line.	A	comment	may	appear	at	the
start	of	a	line	or	following	whitespace	or	code,	but	not	within	a	string	literal.	A
hash	character	within	a	string	literal	is	just	a	hash	character.

Some	examples:

#	this	is	the	first	comment

SPAM	=	1																	#	and	this	is	the	second	comment

																									#	...	and	now	a	third!

STRING	=	"#	This	is	not	a	comment."

3.1	Using	Python	as	a	Calculator
Let's	try	some	simple	Python	commands.	Start	the	interpreter	and	wait	for	the
primary	prompt,	">>>	".	(It	shouldn't	take	long.)

3.1.1	Numbers
The	interpreter	acts	as	a	simple	calculator:	you	can	type	an	expression	at	it	and	it
will	write	the	value.	Expression	syntax	is	straightforward:	the	operators	+,	-,	*
and	/	work	just	like	in	most	other	languages	(for	example,	Pascal	or	C);
parentheses	can	be	used	for	grouping.	For	example:

>>>	2+2

4

>>>	#	This	is	a	comment

...	2+2

4

>>>	2+2		#	and	a	comment	on	the	same	line	as	code

4

>>>	(50-5*6)/4

5

>>>	#	Integer	division	returns	the	floor:

...	7/3

2

>>>	7/-3

-3

The	equal	sign	("=")	is	used	to	assign	a	value	to	a	variable.	Afterwards,	no	result
is	displayed	before	the	next	interactive	prompt:

>>>	width	=	20

>>>	height	=	5*9

>>>	width	*	height

900

A	value	can	be	assigned	to	several	variables	simultaneously:

>>>	x	=	y	=	z	=	0		#	Zero	x,	y	and	z

>>>	x

0

>>>	y

0

>>>	z

0

There	is	full	support	for	floating	point;	operators	with	mixed	type	operands
convert	the	integer	operand	to	floating	point:

>>>	3	*	3.75	/	1.5

7.5

>>>	7.0	/	2

3.5

Complex	numbers	are	also	supported;	imaginary	numbers	are	written	with	a
suffix	of	"j"	or	"J".	Complex	numbers	with	a	nonzero	real	component	are
written	as	"(real+imagj)",	or	can	be	created	with	the	"complex(real,
imag)"	function.

>>>	1j	*	1J

(-1+0j)

>>>	1j	*	complex(0,1)

(-1+0j)

>>>	3+1j*3

(3+3j)

>>>	(3+1j)*3

(9+3j)

>>>	(1+2j)/(1+1j)

(1.5+0.5j)

Complex	numbers	are	always	represented	as	two	floating	point	numbers,	the	real
and	imaginary	part.	To	extract	these	parts	from	a	complex	number	z,	use
z.real	and	z.imag.

>>>	a=1.5+0.5j

>>>	a.real

1.5

>>>	a.imag

0.5

The	conversion	functions	to	floating	point	and	integer	(float(),	int()	and
long())	don't	work	for	complex	numbers	--	there	is	no	one	correct	way	to
convert	a	complex	number	to	a	real	number.	Use	abs(z)	to	get	its	magnitude
(as	a	float)	or	z.real	to	get	its	real	part.

>>>	a=3.0+4.0j

>>>	float(a)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

TypeError:	can't	convert	complex	to	float;	use	abs(z)

>>>	a.real

3.0

>>>	a.imag

4.0

>>>	abs(a)		#	sqrt(a.real**2	+	a.imag**2)

5.0

>>>

In	interactive	mode,	the	last	printed	expression	is	assigned	to	the	variable	_.	This
means	that	when	you	are	using	Python	as	a	desk	calculator,	it	is	somewhat	easier
to	continue	calculations,	for	example:

>>>	tax	=	12.5	/	100

>>>	price	=	100.50

>>>	price	*	tax

12.5625

>>>	price	+	_

113.0625

>>>	round(_,	2)

113.06

>>>

This	variable	should	be	treated	as	read-only	by	the	user.	Don't	explicitly	assign	a
value	to	it	--	you	would	create	an	independent	local	variable	with	the	same	name
masking	the	built-in	variable	with	its	magic	behavior.

3.1.2	Strings
Besides	numbers,	Python	can	also	manipulate	strings,	which	can	be	expressed	in
several	ways.	They	can	be	enclosed	in	single	quotes	or	double	quotes:

>>>	'spam	eggs'

'spam	eggs'

>>>	'doesn\'t'

"doesn't"

>>>	"doesn't"

"doesn't"

>>>	'"Yes,"	he	said.'

'"Yes,"	he	said.'

>>>	"\"Yes,\"	he	said."

'"Yes,"	he	said.'

>>>	'"Isn\'t,"	she	said.'

'"Isn\'t,"	she	said.'

String	literals	can	span	multiple	lines	in	several	ways.	Continuation	lines	can	be
used,	with	a	backslash	as	the	last	character	on	the	line	indicating	that	the	next
line	is	a	logical	continuation	of	the	line:

hello	=	"This	is	a	rather	long	string	containing\n\

several	lines	of	text	just	as	you	would	do	in	C.\n\

				Note	that	whitespace	at	the	beginning	of	the	line	is\

	significant."

print	hello

Note	that	newlines	would	still	need	to	be	embedded	in	the	string	using	\n;	the
newline	following	the	trailing	backslash	is	discarded.	This	example	would	print
the	following:

This	is	a	rather	long	string	containing

several	lines	of	text	just	as	you	would	do	in	C.

				Note	that	whitespace	at	the	beginning	of	the	line	is	significant.

If	we	make	the	string	literal	a	``raw''	string,	however,	the	\n	sequences	are	not
converted	to	newlines,	but	the	backslash	at	the	end	of	the	line,	and	the	newline
character	in	the	source,	are	both	included	in	the	string	as	data.	Thus,	the
example:

hello	=	r"This	is	a	rather	long	string	containing\n\

several	lines	of	text	much	as	you	would	do	in	C."

print	hello

would	print:

This	is	a	rather	long	string	containing\n\

several	lines	of	text	much	as	you	would	do	in	C.

Or,	strings	can	be	surrounded	in	a	pair	of	matching	triple-quotes:	"""	or	'''.
End	of	lines	do	not	need	to	be	escaped	when	using	triple-quotes,	but	they	will	be
included	in	the	string.

print	"""

Usage:	thingy	[OPTIONS]	

					-h																								Display	this	usage	message

					-H	hostname															Hostname	to	connect	to

"""

produces	the	following	output:

Usage:	thingy	[OPTIONS]	

					-h																								Display	this	usage	message

					-H	hostname															Hostname	to	connect	to

The	interpreter	prints	the	result	of	string	operations	in	the	same	way	as	they	are
typed	for	input:	inside	quotes,	and	with	quotes	and	other	funny	characters
escaped	by	backslashes,	to	show	the	precise	value.	The	string	is	enclosed	in
double	quotes	if	the	string	contains	a	single	quote	and	no	double	quotes,	else	it's
enclosed	in	single	quotes.	(The	print	statement,	described	later,	can	be	used	to
write	strings	without	quotes	or	escapes.)

Strings	can	be	concatenated	(glued	together)	with	the	+	operator,	and	repeated
with	*:

>>>	word	=	'Help'	+	'A'

>>>	word

'HelpA'

>>>	'<'	+	word*5	+	'>'

'<HelpAHelpAHelpAHelpAHelpA>'

Two	string	literals	next	to	each	other	are	automatically	concatenated;	the	first
line	above	could	also	have	been	written	"word	=	'Help'	'A'";	this	only
works	with	two	literals,	not	with	arbitrary	string	expressions:

>>>	'str'	'ing'																			#		<-		This	is	ok

'string'

>>>	'str'.strip()	+	'ing'			#		<-		This	is	ok

'string'

>>>	'str'.strip()	'ing'					#		<-		This	is	invalid

		File	"<stdin>",	line	1,	in	?

				'str'.strip()	'ing'

																						^

SyntaxError:	invalid	syntax

Strings	can	be	subscripted	(indexed);	like	in	C,	the	first	character	of	a	string	has
subscript	(index)	0.	There	is	no	separate	character	type;	a	character	is	simply	a
string	of	size	one.	Like	in	Icon,	substrings	can	be	specified	with	the	slice
notation:	two	indices	separated	by	a	colon.

>>>	word[4]

'A'

>>>	word[0:2]

'He'

>>>	word[2:4]

'lp'

Slice	indices	have	useful	defaults;	an	omitted	first	index	defaults	to	zero,	an
omitted	second	index	defaults	to	the	size	of	the	string	being	sliced.

>>>	word[:2]				#	The	first	two	characters

'He'

>>>	word[2:]				#	Everything	except	the	first	two	characters

'lpA'

Unlike	a	C	string,	Python	strings	cannot	be	changed.	Assigning	to	an	indexed
position	in	the	string	results	in	an	error:

>>>	word[0]	=	'x'

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

TypeError:	object	doesn't	support	item	assignment

>>>	word[:1]	=	'Splat'

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

TypeError:	object	doesn't	support	slice	assignment

However,	creating	a	new	string	with	the	combined	content	is	easy	and	efficient:

>>>	'x'	+	word[1:]

'xelpA'

>>>	'Splat'	+	word[4]

'SplatA'

Here's	a	useful	invariant	of	slice	operations:	s[:i]	+	s[i:]	equals	s.

>>>	word[:2]	+	word[2:]

'HelpA'

>>>	word[:3]	+	word[3:]

'HelpA'

Degenerate	slice	indices	are	handled	gracefully:	an	index	that	is	too	large	is
replaced	by	the	string	size,	an	upper	bound	smaller	than	the	lower	bound	returns
an	empty	string.

>>>	word[1:100]

'elpA'

>>>	word[10:]

''

>>>	word[2:1]

''

Indices	may	be	negative	numbers,	to	start	counting	from	the	right.	For	example:

>>>	word[-1]					#	The	last	character

'A'

>>>	word[-2]					#	The	last-but-one	character

'p'

>>>	word[-2:]				#	The	last	two	characters

'pA'

>>>	word[:-2]				#	Everything	except	the	last	two	characters

'Hel'

But	note	that	-0	is	really	the	same	as	0,	so	it	does	not	count	from	the	right!

>>>	word[-0]					#	(since	-0	equals	0)

'H'

Out-of-range	negative	slice	indices	are	truncated,	but	don't	try	this	for	single-
element	(non-slice)	indices:

>>>	word[-100:]

'HelpA'

>>>	word[-10]				#	error

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

IndexError:	string	index	out	of	range

The	best	way	to	remember	how	slices	work	is	to	think	of	the	indices	as	pointing
between	characters,	with	the	left	edge	of	the	first	character	numbered	0.	Then	the
right	edge	of	the	last	character	of	a	string	of	n	characters	has	index	n,	for

example:

	+---+---+---+---+---+	

	|	H	|	e	|	l	|	p	|	A	|

	+---+---+---+---+---+	

	0			1			2			3			4			5	

-5		-4		-3		-2		-1

The	first	row	of	numbers	gives	the	position	of	the	indices	0...5	in	the	string;	the
second	row	gives	the	corresponding	negative	indices.	The	slice	from	i	to	j
consists	of	all	characters	between	the	edges	labeled	i	and	j,	respectively.

For	non-negative	indices,	the	length	of	a	slice	is	the	difference	of	the	indices,	if
both	are	within	bounds.	For	example,	the	length	of	word[1:3]	is	2.

The	built-in	function	len()	returns	the	length	of	a	string:

>>>	s	=	'supercalifragilisticexpialidocious'

>>>	len(s)

34

See	Also:

Sequence	Types
Strings,	and	the	Unicode	strings	described	in	the	next	section,	are
examples	of	sequence	types,	and	support	the	common	operations
supported	by	such	types.

String	Methods
Both	strings	and	Unicode	strings	support	a	large	number	of	methods
for	basic	transformations	and	searching.

String	Formatting	Operations
The	formatting	operations	invoked	when	strings	and	Unicode	strings
are	the	left	operand	of	the	%	operator	are	described	in	more	detail	here.

3.1.3	Unicode	Strings
Starting	with	Python	2.0	a	new	data	type	for	storing	text	data	is	available	to	the
programmer:	the	Unicode	object.	It	can	be	used	to	store	and	manipulate	Unicode
data	(see	http://www.unicode.org/)	and	integrates	well	with	the	existing	string
objects	providing	auto-conversions	where	necessary.

Unicode	has	the	advantage	of	providing	one	ordinal	for	every	character	in	every
script	used	in	modern	and	ancient	texts.	Previously,	there	were	only	256	possible
ordinals	for	script	characters	and	texts	were	typically	bound	to	a	code	page
which	mapped	the	ordinals	to	script	characters.	This	lead	to	very	much
confusion	especially	with	respect	to	internationalization	(usually	written	as
"i18n"	--	"i"	+	18	characters	+	"n")	of	software.	Unicode	solves	these
problems	by	defining	one	code	page	for	all	scripts.

Creating	Unicode	strings	in	Python	is	just	as	simple	as	creating	normal	strings:

>>>	u'Hello	World	!'

u'Hello	World	!'

The	small	"u"	in	front	of	the	quote	indicates	that	an	Unicode	string	is	supposed
to	be	created.	If	you	want	to	include	special	characters	in	the	string,	you	can	do
so	by	using	the	Python	Unicode-Escape	encoding.	The	following	example	shows
how:

>>>	u'Hello\u0020World	!'

u'Hello	World	!'

The	escape	sequence	\u0020	indicates	to	insert	the	Unicode	character	with	the
ordinal	value	0x0020	(the	space	character)	at	the	given	position.

Other	characters	are	interpreted	by	using	their	respective	ordinal	values	directly
as	Unicode	ordinals.	If	you	have	literal	strings	in	the	standard	Latin-1	encoding
that	is	used	in	many	Western	countries,	you	will	find	it	convenient	that	the	lower
256	characters	of	Unicode	are	the	same	as	the	256	characters	of	Latin-1.

For	experts,	there	is	also	a	raw	mode	just	like	the	one	for	normal	strings.	You
have	to	prefix	the	opening	quote	with	'ur'	to	have	Python	use	the	Raw-Unicode-
Escape	encoding.	It	will	only	apply	the	above	\uXXXX	conversion	if	there	is	an

http://www.unicode.org/

uneven	number	of	backslashes	in	front	of	the	small	'u'.

>>>	ur'Hello\u0020World	!'

u'Hello	World	!'

>>>	ur'Hello\\u0020World	!'

u'Hello\\\\u0020World	!'

The	raw	mode	is	most	useful	when	you	have	to	enter	lots	of	backslashes,	as	can
be	necessary	in	regular	expressions.

Apart	from	these	standard	encodings,	Python	provides	a	whole	set	of	other	ways
of	creating	Unicode	strings	on	the	basis	of	a	known	encoding.

The	built-in	function	unicode()	provides	access	to	all	registered	Unicode
codecs	(COders	and	DECoders).	Some	of	the	more	well	known	encodings	which
these	codecs	can	convert	are	Latin-1,	ASCII,	UTF-8,	and	UTF-16.	The	latter	two
are	variable-length	encodings	that	store	each	Unicode	character	in	one	or	more
bytes.	The	default	encoding	is	normally	set	to	ASCII,	which	passes	through
characters	in	the	range	0	to	127	and	rejects	any	other	characters	with	an	error.
When	a	Unicode	string	is	printed,	written	to	a	file,	or	converted	with	str(),
conversion	takes	place	using	this	default	encoding.

>>>	u"abc"

u'abc'

>>>	str(u"abc")

'abc'

>>>	u"äöü"

u'\xe4\xf6\xfc'

>>>	str(u"äöü")

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

UnicodeEncodeError:	'ascii'	codec	can't	encode	characters	in	position	0-2:	ordinal	not	in	range(128)

To	convert	a	Unicode	string	into	an	8-bit	string	using	a	specific	encoding,
Unicode	objects	provide	an	encode()	method	that	takes	one	argument,	the
name	of	the	encoding.	Lowercase	names	for	encodings	are	preferred.

>>>	u"äöü".encode('utf-8')

'\xc3\xa4\xc3\xb6\xc3\xbc'

If	you	have	data	in	a	specific	encoding	and	want	to	produce	a	corresponding
Unicode	string	from	it,	you	can	use	the	unicode()	function	with	the	encoding
name	as	the	second	argument.

>>>	unicode('\xc3\xa4\xc3\xb6\xc3\xbc',	'utf-8')

u'\xe4\xf6\xfc'

3.1.4	Lists
Python	knows	a	number	of	compound	data	types,	used	to	group	together	other
values.	The	most	versatile	is	the	list,	which	can	be	written	as	a	list	of	comma-
separated	values	(items)	between	square	brackets.	List	items	need	not	all	have
the	same	type.

>>>	a	=	['spam',	'eggs',	100,	1234]

>>>	a

['spam',	'eggs',	100,	1234]

Like	string	indices,	list	indices	start	at	0,	and	lists	can	be	sliced,	concatenated
and	so	on:

>>>	a[0]

'spam'

>>>	a[3]

1234

>>>	a[-2]

100

>>>	a[1:-1]

['eggs',	100]

>>>	a[:2]	+	['bacon',	2*2]

['spam',	'eggs',	'bacon',	4]

>>>	3*a[:3]	+	['Boe!']

['spam',	'eggs',	100,	'spam',	'eggs',	100,	'spam',	'eggs',	100,	'Boe!']

Unlike	strings,	which	are	immutable,	it	is	possible	to	change	individual	elements
of	a	list:

>>>	a

['spam',	'eggs',	100,	1234]

>>>	a[2]	=	a[2]	+	23

>>>	a

['spam',	'eggs',	123,	1234]

Assignment	to	slices	is	also	possible,	and	this	can	even	change	the	size	of	the
list:

>>>	#	Replace	some	items:

...	a[0:2]	=	[1,	12]

>>>	a

[1,	12,	123,	1234]

>>>	#	Remove	some:

...	a[0:2]	=	[]

>>>	a

[123,	1234]

>>>	#	Insert	some:

...	a[1:1]	=	['bletch',	'xyzzy']

>>>	a

[123,	'bletch',	'xyzzy',	1234]

>>>	a[:0]	=	a					#	Insert	(a	copy	of)	itself	at	the	beginning

>>>	a

[123,	'bletch',	'xyzzy',	1234,	123,	'bletch',	'xyzzy',	1234]

The	built-in	function	len()	also	applies	to	lists:

>>>	len(a)

8

It	is	possible	to	nest	lists	(create	lists	containing	other	lists),	for	example:

>>>	q	=	[2,	3]

>>>	p	=	[1,	q,	4]

>>>	len(p)

3

>>>	p[1]

[2,	3]

>>>	p[1][0]

2

>>>	p[1].append('xtra')					#	See	section	5.1

>>>	p

[1,	[2,	3,	'xtra'],	4]

>>>	q

[2,	3,	'xtra']

Note	that	in	the	last	example,	p[1]	and	q	really	refer	to	the	same	object!	We'll
come	back	to	object	semantics	later.

3.2	First	Steps	Towards
Programming
Of	course,	we	can	use	Python	for	more	complicated	tasks	than	adding	two	and
two	together.	For	instance,	we	can	write	an	initial	sub-sequence	of	the	Fibonacci
series	as	follows:

>>>	#	Fibonacci	series:

...	#	the	sum	of	two	elements	defines	the	next

...	a,	b	=	0,	1

>>>	while	b	<	10:

...							print	b

...							a,	b	=	b,	a+b

...	

1

1

2

3

5

8

This	example	introduces	several	new	features.

The	first	line	contains	a	multiple	assignment:	the	variables	a	and	b
simultaneously	get	the	new	values	0	and	1.	On	the	last	line	this	is	used
again,	demonstrating	that	the	expressions	on	the	right-hand	side	are	all
evaluated	first	before	any	of	the	assignments	take	place.	The	right-hand	side
expressions	are	evaluated	from	the	left	to	the	right.

The	while	loop	executes	as	long	as	the	condition	(here:	b	<	10)	remains
true.	In	Python,	like	in	C,	any	non-zero	integer	value	is	true;	zero	is	false.
The	condition	may	also	be	a	string	or	list	value,	in	fact	any	sequence;
anything	with	a	non-zero	length	is	true,	empty	sequences	are	false.	The	test
used	in	the	example	is	a	simple	comparison.	The	standard	comparison
operators	are	written	the	same	as	in	C:	<	(less	than),	>	(greater	than),	==
(equal	to),	<=	(less	than	or	equal	to),	>=	(greater	than	or	equal	to)	and	!=
(not	equal	to).

The	body	of	the	loop	is	indented:	indentation	is	Python's	way	of	grouping
statements.	Python	does	not	(yet!)	provide	an	intelligent	input	line	editing

facility,	so	you	have	to	type	a	tab	or	space(s)	for	each	indented	line.	In
practice	you	will	prepare	more	complicated	input	for	Python	with	a	text
editor;	most	text	editors	have	an	auto-indent	facility.	When	a	compound
statement	is	entered	interactively,	it	must	be	followed	by	a	blank	line	to
indicate	completion	(since	the	parser	cannot	guess	when	you	have	typed	the
last	line).	Note	that	each	line	within	a	basic	block	must	be	indented	by	the
same	amount.

The	print	statement	writes	the	value	of	the	expression(s)	it	is	given.	It
differs	from	just	writing	the	expression	you	want	to	write	(as	we	did	earlier
in	the	calculator	examples)	in	the	way	it	handles	multiple	expressions	and
strings.	Strings	are	printed	without	quotes,	and	a	space	is	inserted	between
items,	so	you	can	format	things	nicely,	like	this:

>>>	i	=	256*256

>>>	print	'The	value	of	i	is',	i

The	value	of	i	is	65536

A	trailing	comma	avoids	the	newline	after	the	output:

>>>	a,	b	=	0,	1

>>>	while	b	<	1000:

...					print	b,

...					a,	b	=	b,	a+b

...	

1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	987

Note	that	the	interpreter	inserts	a	newline	before	it	prints	the	next	prompt	if
the	last	line	was	not	completed.

Python	Tutorial
Previous:	2.	Using	the	Python	Up:	Python	Tutorial	Next:	4.	More	Control	Flow

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.	An	Informal	Introduction	Up:	Python	Tutorial	Next:	5.	Data
Structures

Subsections

4.1	if	Statements
4.2	for	Statements
4.3	The	range()	Function
4.4	break	and	continue	Statements,	and	else	Clauses	on	Loops
4.5	pass	Statements
4.6	Defining	Functions
4.7	More	on	Defining	Functions

4.7.1	Default	Argument	Values
4.7.2	Keyword	Arguments
4.7.3	Arbitrary	Argument	Lists
4.7.4	Unpacking	Argument	Lists
4.7.5	Lambda	Forms
4.7.6	Documentation	Strings

4.	More	Control	Flow	Tools
Besides	the	while	statement	just	introduced,	Python	knows	the	usual	control
flow	statements	known	from	other	languages,	with	some	twists.

4.1	if	Statements
Perhaps	the	most	well-known	statement	type	is	the	if	statement.	For	example:

>>>	x	=	int(raw_input("Please	enter	an	integer:	"))

>>>	if	x	<	0:

...						x	=	0

...						print	'Negative	changed	to	zero'

...	elif	x	==	0:

...						print	'Zero'

...	elif	x	==	1:

...						print	'Single'

...	else:

...						print	'More'

...

There	can	be	zero	or	more	elif	parts,	and	the	else	part	is	optional.	The
keyword	`elif'	is	short	for	`else	if',	and	is	useful	to	avoid	excessive
indentation.	An	if	...	elif	...	elif	...	sequence	is	a	substitute	for	the	switch
or	case	statements	found	in	other	languages.

4.2	for	Statements
The	for	statement	in	Python	differs	a	bit	from	what	you	may	be	used	to	in	C	or
Pascal.	Rather	than	always	iterating	over	an	arithmetic	progression	of	numbers
(like	in	Pascal),	or	giving	the	user	the	ability	to	define	both	the	iteration	step	and
halting	condition	(as	C),	Python's	for	statement	iterates	over	the	items	of	any
sequence	(a	list	or	a	string),	in	the	order	that	they	appear	in	the	sequence.	For
example	(no	pun	intended):

>>>	#	Measure	some	strings:

...	a	=	['cat',	'window',	'defenestrate']

>>>	for	x	in	a:

...					print	x,	len(x)

...	

cat	3

window	6

defenestrate	12

It	is	not	safe	to	modify	the	sequence	being	iterated	over	in	the	loop	(this	can	only
happen	for	mutable	sequence	types,	such	as	lists).	If	you	need	to	modify	the	list
you	are	iterating	over	(for	example,	to	duplicate	selected	items)	you	must	iterate
over	a	copy.	The	slice	notation	makes	this	particularly	convenient:

>>>	for	x	in	a[:]:	#	make	a	slice	copy	of	the	entire	list

...				if	len(x)	>	6:	a.insert(0,	x)

...	

>>>	a

['defenestrate',	'cat',	'window',	'defenestrate']

4.3	The	range()	Function
If	you	do	need	to	iterate	over	a	sequence	of	numbers,	the	built-in	function
range()	comes	in	handy.	It	generates	lists	containing	arithmetic	progressions:

>>>	range(10)

[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

The	given	end	point	is	never	part	of	the	generated	list;	range(10)	generates	a
list	of	10	values,	exactly	the	legal	indices	for	items	of	a	sequence	of	length	10.	It
is	possible	to	let	the	range	start	at	another	number,	or	to	specify	a	different
increment	(even	negative;	sometimes	this	is	called	the	`step'):

>>>	range(5,	10)

[5,	6,	7,	8,	9]

>>>	range(0,	10,	3)

[0,	3,	6,	9]

>>>	range(-10,	-100,	-30)

[-10,	-40,	-70]

To	iterate	over	the	indices	of	a	sequence,	combine	range()	and	len()	as
follows:

>>>	a	=	['Mary',	'had',	'a',	'little',	'lamb']

>>>	for	i	in	range(len(a)):

...					print	i,	a[i]

...	

0	Mary

1	had

2	a

3	little

4	lamb

4.4	break	and	continue
Statements,	and	else	Clauses	on
Loops
The	break	statement,	like	in	C,	breaks	out	of	the	smallest	enclosing	for	or
while	loop.

The	continue	statement,	also	borrowed	from	C,	continues	with	the	next
iteration	of	the	loop.

Loop	statements	may	have	an	else	clause;	it	is	executed	when	the	loop
terminates	through	exhaustion	of	the	list	(with	for)	or	when	the	condition
becomes	false	(with	while),	but	not	when	the	loop	is	terminated	by	a	break
statement.	This	is	exemplified	by	the	following	loop,	which	searches	for	prime
numbers:

>>>	for	n	in	range(2,	10):

...					for	x	in	range(2,	n):

...									if	n	%	x	==	0:

...													print	n,	'equals',	x,	'*',	n/x

...													break

...					else:

...									#	loop	fell	through	without	finding	a	factor

...									print	n,	'is	a	prime	number'

...	

2	is	a	prime	number

3	is	a	prime	number

4	equals	2	*	2

5	is	a	prime	number

6	equals	2	*	3

7	is	a	prime	number

8	equals	2	*	4

9	equals	3	*	3

4.5	pass	Statements
The	pass	statement	does	nothing.	It	can	be	used	when	a	statement	is	required
syntactically	but	the	program	requires	no	action.	For	example:

>>>	while	True:

...							pass	#	Busy-wait	for	keyboard	interrupt

...

4.6	Defining	Functions
We	can	create	a	function	that	writes	the	Fibonacci	series	to	an	arbitrary
boundary:

>>>	def	fib(n):				#	write	Fibonacci	series	up	to	n

...					"""Print	a	Fibonacci	series	up	to	n."""

...					a,	b	=	0,	1

...					while	b	<	n:

...									print	b,

...									a,	b	=	b,	a+b

...	

>>>	#	Now	call	the	function	we	just	defined:

...	fib(2000)

1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	987	1597

The	keyword	def	introduces	a	function	definition.	It	must	be	followed	by	the
function	name	and	the	parenthesized	list	of	formal	parameters.	The	statements
that	form	the	body	of	the	function	start	at	the	next	line,	and	must	be	indented.
The	first	statement	of	the	function	body	can	optionally	be	a	string	literal;	this
string	literal	is	the	function's	documentation	string,	or	docstring.

There	are	tools	which	use	docstrings	to	automatically	produce	online	or	printed
documentation,	or	to	let	the	user	interactively	browse	through	code;	it's	good
practice	to	include	docstrings	in	code	that	you	write,	so	try	to	make	a	habit	of	it.

The	execution	of	a	function	introduces	a	new	symbol	table	used	for	the	local
variables	of	the	function.	More	precisely,	all	variable	assignments	in	a	function
store	the	value	in	the	local	symbol	table;	whereas	variable	references	first	look	in
the	local	symbol	table,	then	in	the	global	symbol	table,	and	then	in	the	table	of
built-in	names.	Thus,	global	variables	cannot	be	directly	assigned	a	value	within
a	function	(unless	named	in	a	global	statement),	although	they	may	be
referenced.

The	actual	parameters	(arguments)	to	a	function	call	are	introduced	in	the	local
symbol	table	of	the	called	function	when	it	is	called;	thus,	arguments	are	passed
using	call	by	value	(where	the	value	is	always	an	object	reference,	not	the	value
of	the	object).4.1	When	a	function	calls	another	function,	a	new	local	symbol
table	is	created	for	that	call.

A	function	definition	introduces	the	function	name	in	the	current	symbol	table.
The	value	of	the	function	name	has	a	type	that	is	recognized	by	the	interpreter	as
a	user-defined	function.	This	value	can	be	assigned	to	another	name	which	can
then	also	be	used	as	a	function.	This	serves	as	a	general	renaming	mechanism:

>>>	fib

<function	fib	at	10042ed0>

>>>	f	=	fib

>>>	f(100)

1	1	2	3	5	8	13	21	34	55	89

You	might	object	that	fib	is	not	a	function	but	a	procedure.	In	Python,	like	in	C,
procedures	are	just	functions	that	don't	return	a	value.	In	fact,	technically
speaking,	procedures	do	return	a	value,	albeit	a	rather	boring	one.	This	value	is
called	None	(it's	a	built-in	name).	Writing	the	value	None	is	normally
suppressed	by	the	interpreter	if	it	would	be	the	only	value	written.	You	can	see	it
if	you	really	want	to:

>>>	print	fib(0)

None

It	is	simple	to	write	a	function	that	returns	a	list	of	the	numbers	of	the	Fibonacci
series,	instead	of	printing	it:

>>>	def	fib2(n):	#	return	Fibonacci	series	up	to	n

...					"""Return	a	list	containing	the	Fibonacci	series	up	to	n."""

...					result	=	[]

...					a,	b	=	0,	1

...					while	b	<	n:

...									result.append(b)				#	see	below

...									a,	b	=	b,	a+b

...					return	result

...	

>>>	f100	=	fib2(100)				#	call	it

>>>	f100																#	write	the	result

[1,	1,	2,	3,	5,	8,	13,	21,	34,	55,	89]

This	example,	as	usual,	demonstrates	some	new	Python	features:

The	return	statement	returns	with	a	value	from	a	function.	return
without	an	expression	argument	returns	None.	Falling	off	the	end	of	a
procedure	also	returns	None.

The	statement	result.append(b)	calls	a	method	of	the	list	object

result.	A	method	is	a	function	that	`belongs'	to	an	object	and	is	named
obj.methodname,	where	obj	is	some	object	(this	may	be	an
expression),	and	methodname	is	the	name	of	a	method	that	is	defined	by
the	object's	type.	Different	types	define	different	methods.	Methods	of
different	types	may	have	the	same	name	without	causing	ambiguity.	(It	is
possible	to	define	your	own	object	types	and	methods,	using	classes,	as
discussed	later	in	this	tutorial.)	The	method	append()	shown	in	the
example,	is	defined	for	list	objects;	it	adds	a	new	element	at	the	end	of	the
list.	In	this	example	it	is	equivalent	to	"result	=	result	+	[b]",	but
more	efficient.

4.7	More	on	Defining	Functions
It	is	also	possible	to	define	functions	with	a	variable	number	of	arguments.	There
are	three	forms,	which	can	be	combined.

4.7.1	Default	Argument	Values
The	most	useful	form	is	to	specify	a	default	value	for	one	or	more	arguments.
This	creates	a	function	that	can	be	called	with	fewer	arguments	than	it	is	defined
to	allow.	For	example:

def	ask_ok(prompt,	retries=4,	complaint='Yes	or	no,	please!'):

				while	True:

								ok	=	raw_input(prompt)

								if	ok	in	('y',	'ye',	'yes'):	return	True

								if	ok	in	('n',	'no',	'nop',	'nope'):	return	False

								retries	=	retries	-	1

								if	retries	<	0:	raise	IOError,	'refusenik	user'

								print	complaint

This	function	can	be	called	either	like	this:	ask_ok('Do	you	really
want	to	quit?')	or	like	this:	ask_ok('OK	to	overwrite	the
file?',	2).

This	example	also	introduces	the	in	keyword.	This	tests	whether	or	not	a
sequence	contains	a	certain	value.

The	default	values	are	evaluated	at	the	point	of	function	definition	in	the
defining	scope,	so	that

i	=	5

def	f(arg=i):

				print	arg

i	=	6

f()

will	print	5.

Important	warning:	The	default	value	is	evaluated	only	once.	This	makes	a
difference	when	the	default	is	a	mutable	object	such	as	a	list,	dictionary,	or
instances	of	most	classes.	For	example,	the	following	function	accumulates	the
arguments	passed	to	it	on	subsequent	calls:

def	f(a,	L=[]):

				L.append(a)

				return	L

print	f(1)

print	f(2)

print	f(3)

This	will	print

[1]

[1,	2]

[1,	2,	3]

If	you	don't	want	the	default	to	be	shared	between	subsequent	calls,	you	can
write	the	function	like	this	instead:

def	f(a,	L=None):

				if	L	is	None:

								L	=	[]

				L.append(a)

				return	L

4.7.2	Keyword	Arguments
Functions	can	also	be	called	using	keyword	arguments	of	the	form	"keyword	=
value".	For	instance,	the	following	function:

def	parrot(voltage,	state='a	stiff',	action='voom',	type='Norwegian	Blue'):

				print	"--	This	parrot	wouldn't",	action,

				print	"if	you	put",	voltage,	"Volts	through	it."

				print	"--	Lovely	plumage,	the",	type

				print	"--	It's",	state,	"!"

could	be	called	in	any	of	the	following	ways:

parrot(1000)

parrot(action	=	'VOOOOOM',	voltage	=	1000000)

parrot('a	thousand',	state	=	'pushing	up	the	daisies')

parrot('a	million',	'bereft	of	life',	'jump')

but	the	following	calls	would	all	be	invalid:

parrot()																					#	required	argument	missing

parrot(voltage=5.0,	'dead')		#	non-keyword	argument	following	keyword

parrot(110,	voltage=220)					#	duplicate	value	for	argument

parrot(actor='John	Cleese')		#	unknown	keyword

In	general,	an	argument	list	must	have	any	positional	arguments	followed	by	any
keyword	arguments,	where	the	keywords	must	be	chosen	from	the	formal
parameter	names.	It's	not	important	whether	a	formal	parameter	has	a	default
value	or	not.	No	argument	may	receive	a	value	more	than	once	--	formal
parameter	names	corresponding	to	positional	arguments	cannot	be	used	as
keywords	in	the	same	calls.	Here's	an	example	that	fails	due	to	this	restriction:

>>>	def	function(a):

...					pass

...	

>>>	function(0,	a=0)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

TypeError:	function()	got	multiple	values	for	keyword	argument	'a'

When	a	final	formal	parameter	of	the	form	**name	is	present,	it	receives	a
dictionary	containing	all	keyword	arguments	whose	keyword	doesn't	correspond
to	a	formal	parameter.	This	may	be	combined	with	a	formal	parameter	of	the

form	*name	(described	in	the	next	subsection)	which	receives	a	tuple	containing
the	positional	arguments	beyond	the	formal	parameter	list.	(*name	must	occur
before	**name.)	For	example,	if	we	define	a	function	like	this:

def	cheeseshop(kind,	*arguments,	**keywords):

				print	"--	Do	you	have	any",	kind,	'?'

				print	"--	I'm	sorry,	we're	all	out	of",	kind

				for	arg	in	arguments:	print	arg

				print	'-'*40

				keys	=	keywords.keys()

				keys.sort()

				for	kw	in	keys:	print	kw,	':',	keywords[kw]

It	could	be	called	like	this:

cheeseshop('Limburger',	"It's	very	runny,	sir.",

											"It's	really	very,	VERY	runny,	sir.",

											client='John	Cleese',

											shopkeeper='Michael	Palin',

											sketch='Cheese	Shop	Sketch')

and	of	course	it	would	print:

--	Do	you	have	any	Limburger	?

--	I'm	sorry,	we're	all	out	of	Limburger

It's	very	runny,	sir.

It's	really	very,	VERY	runny,	sir.

--

client	:	John	Cleese

shopkeeper	:	Michael	Palin

sketch	:	Cheese	Shop	Sketch

Note	that	the	sort()	method	of	the	list	of	keyword	argument	names	is	called
before	printing	the	contents	of	the	keywords	dictionary;	if	this	is	not	done,	the
order	in	which	the	arguments	are	printed	is	undefined.

4.7.3	Arbitrary	Argument	Lists
Finally,	the	least	frequently	used	option	is	to	specify	that	a	function	can	be	called
with	an	arbitrary	number	of	arguments.	These	arguments	will	be	wrapped	up	in	a
tuple.	Before	the	variable	number	of	arguments,	zero	or	more	normal	arguments
may	occur.

def	fprintf(file,	format,	*args):

				file.write(format	%	args)

4.7.4	Unpacking	Argument	Lists
The	reverse	situation	occurs	when	the	arguments	are	already	in	a	list	or	tuple	but
need	to	be	unpacked	for	a	function	call	requiring	separate	positional	arguments.
For	instance,	the	built-in	range()	function	expects	separate	start	and	stop
arguments.	If	they	are	not	available	separately,	write	the	function	call	with	the	*-
operator	to	unpack	the	arguments	out	of	a	list	or	tuple:

>>>	range(3,	6)													#	normal	call	with	separate	arguments

[3,	4,	5]

>>>	args	=	[3,	6]

>>>	range(*args)												#	call	with	arguments	unpacked	from	a	list

[3,	4,	5]

4.7.5	Lambda	Forms
By	popular	demand,	a	few	features	commonly	found	in	functional	programming
languages	and	Lisp	have	been	added	to	Python.	With	the	lambda	keyword,
small	anonymous	functions	can	be	created.	Here's	a	function	that	returns	the	sum
of	its	two	arguments:	"lambda	a,	b:	a+b".	Lambda	forms	can	be	used
wherever	function	objects	are	required.	They	are	syntactically	restricted	to	a
single	expression.	Semantically,	they	are	just	syntactic	sugar	for	a	normal
function	definition.	Like	nested	function	definitions,	lambda	forms	can	reference
variables	from	the	containing	scope:

>>>	def	make_incrementor(n):

...					return	lambda	x:	x	+	n

...

>>>	f	=	make_incrementor(42)

>>>	f(0)

42

>>>	f(1)

43

4.7.6	Documentation	Strings
There	are	emerging	conventions	about	the	content	and	formatting	of
documentation	strings.

The	first	line	should	always	be	a	short,	concise	summary	of	the	object's	purpose.
For	brevity,	it	should	not	explicitly	state	the	object's	name	or	type,	since	these
are	available	by	other	means	(except	if	the	name	happens	to	be	a	verb	describing
a	function's	operation).	This	line	should	begin	with	a	capital	letter	and	end	with	a
period.

If	there	are	more	lines	in	the	documentation	string,	the	second	line	should	be
blank,	visually	separating	the	summary	from	the	rest	of	the	description.	The
following	lines	should	be	one	or	more	paragraphs	describing	the	object's	calling
conventions,	its	side	effects,	etc.

The	Python	parser	does	not	strip	indentation	from	multi-line	string	literals	in
Python,	so	tools	that	process	documentation	have	to	strip	indentation	if	desired.
This	is	done	using	the	following	convention.	The	first	non-blank	line	after	the
first	line	of	the	string	determines	the	amount	of	indentation	for	the	entire
documentation	string.	(We	can't	use	the	first	line	since	it	is	generally	adjacent	to
the	string's	opening	quotes	so	its	indentation	is	not	apparent	in	the	string	literal.)
Whitespace	``equivalent''	to	this	indentation	is	then	stripped	from	the	start	of	all
lines	of	the	string.	Lines	that	are	indented	less	should	not	occur,	but	if	they	occur
all	their	leading	whitespace	should	be	stripped.	Equivalence	of	whitespace
should	be	tested	after	expansion	of	tabs	(to	8	spaces,	normally).

Here	is	an	example	of	a	multi-line	docstring:

>>>	def	my_function():

...					"""Do	nothing,	but	document	it.

...	

...					No,	really,	it	doesn't	do	anything.

...					"""

...					pass

...	

>>>	print	my_function.__doc__

Do	nothing,	but	document	it.

				No,	really,	it	doesn't	do	anything.

Footnotes

...	object).4.1
Actually,	call	by	object	reference	would	be	a	better	description,	since	if	a
mutable	object	is	passed,	the	caller	will	see	any	changes	the	callee	makes	to
it	(items	inserted	into	a	list).

Python	Tutorial
Previous:	3.	An	Informal	Introduction	Up:	Python	Tutorial	Next:	5.	Data
Structures

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.	More	Control	Flow	Up:	Python	Tutorial	Next:	6.	Modules

Subsections

5.1	More	on	Lists
5.1.1	Using	Lists	as	Stacks
5.1.2	Using	Lists	as	Queues
5.1.3	Functional	Programming	Tools
5.1.4	List	Comprehensions

5.2	The	del	statement
5.3	Tuples	and	Sequences
5.4	Sets
5.5	Dictionaries
5.6	Looping	Techniques
5.7	More	on	Conditions
5.8	Comparing	Sequences	and	Other	Types

5.	Data	Structures
This	chapter	describes	some	things	you've	learned	about	already	in	more	detail,
and	adds	some	new	things	as	well.

5.1	More	on	Lists
The	list	data	type	has	some	more	methods.	Here	are	all	of	the	methods	of	list
objects:

append(x)
Add	an	item	to	the	end	of	the	list;	equivalent	to	a[len(a):]	=	[x].

extend(L)
Extend	the	list	by	appending	all	the	items	in	the	given	list;	equivalent	to
a[len(a):]	=	L.

insert(i,	x)
Insert	an	item	at	a	given	position.	The	first	argument	is	the	index	of	the
element	before	which	to	insert,	so	a.insert(0,	x)	inserts	at	the	front
of	the	list,	and	a.insert(len(a),	x)	is	equivalent	to
a.append(x).

remove(x)
Remove	the	first	item	from	the	list	whose	value	is	x.	It	is	an	error	if	there	is
no	such	item.

pop([i])
Remove	the	item	at	the	given	position	in	the	list,	and	return	it.	If	no	index	is
specified,	a.pop()	returns	the	last	item	in	the	list.	The	item	is	also
removed	from	the	list.	(The	square	brackets	around	the	i	in	the	method
signature	denote	that	the	parameter	is	optional,	not	that	you	should	type
square	brackets	at	that	position.	You	will	see	this	notation	frequently	in	the
Python	Library	Reference.)

index(x)
Return	the	index	in	the	list	of	the	first	item	whose	value	is	x.	It	is	an	error	if
there	is	no	such	item.

count(x)

Return	the	number	of	times	x	appears	in	the	list.

sort()
Sort	the	items	of	the	list,	in	place.

reverse()
Reverse	the	elements	of	the	list,	in	place.

An	example	that	uses	most	of	the	list	methods:

>>>	a	=	[66.25,	333,	333,	1,	1234.5]

>>>	print	a.count(333),	a.count(66.25),	a.count('x')

2	1	0

>>>	a.insert(2,	-1)

>>>	a.append(333)

>>>	a

[66.25,	333,	-1,	333,	1,	1234.5,	333]

>>>	a.index(333)

1

>>>	a.remove(333)

>>>	a

[66.25,	-1,	333,	1,	1234.5,	333]

>>>	a.reverse()

>>>	a

[333,	1234.5,	1,	333,	-1,	66.25]

>>>	a.sort()

>>>	a

[-1,	1,	66.25,	333,	333,	1234.5]

5.1.1	Using	Lists	as	Stacks
The	list	methods	make	it	very	easy	to	use	a	list	as	a	stack,	where	the	last	element
added	is	the	first	element	retrieved	(``last-in,	first-out'').	To	add	an	item	to	the	top
of	the	stack,	use	append().	To	retrieve	an	item	from	the	top	of	the	stack,	use
pop()	without	an	explicit	index.	For	example:

>>>	stack	=	[3,	4,	5]

>>>	stack.append(6)

>>>	stack.append(7)

>>>	stack

[3,	4,	5,	6,	7]

>>>	stack.pop()

7

>>>	stack

[3,	4,	5,	6]

>>>	stack.pop()

6

>>>	stack.pop()

5

>>>	stack

[3,	4]

5.1.2	Using	Lists	as	Queues
You	can	also	use	a	list	conveniently	as	a	queue,	where	the	first	element	added	is
the	first	element	retrieved	(``first-in,	first-out'').	To	add	an	item	to	the	back	of	the
queue,	use	append().	To	retrieve	an	item	from	the	front	of	the	queue,	use
pop()	with	0	as	the	index.	For	example:

>>>	queue	=	["Eric",	"John",	"Michael"]

>>>	queue.append("Terry")											#	Terry	arrives

>>>	queue.append("Graham")										#	Graham	arrives

>>>	queue.pop(0)

'Eric'

>>>	queue.pop(0)

'John'

>>>	queue

['Michael',	'Terry',	'Graham']

5.1.3	Functional	Programming	Tools
There	are	three	built-in	functions	that	are	very	useful	when	used	with	lists:
filter(),	map(),	and	reduce().

"filter(function,	sequence)"	returns	a	sequence	(of	the	same	type,	if
possible)	consisting	of	those	items	from	the	sequence	for	which	function(item)
is	true.	For	example,	to	compute	some	primes:

>>>	def	f(x):	return	x	%	2	!=	0	and	x	%	3	!=	0

...

>>>	filter(f,	range(2,	25))

[5,	7,	11,	13,	17,	19,	23]

"map(function,	sequence)"	calls	function(item)	for	each	of	the	sequence's
items	and	returns	a	list	of	the	return	values.	For	example,	to	compute	some
cubes:

>>>	def	cube(x):	return	x*x*x

...

>>>	map(cube,	range(1,	11))

[1,	8,	27,	64,	125,	216,	343,	512,	729,	1000]

More	than	one	sequence	may	be	passed;	the	function	must	then	have	as	many
arguments	as	there	are	sequences	and	is	called	with	the	corresponding	item	from
each	sequence	(or	None	if	some	sequence	is	shorter	than	another).	For	example:

>>>	seq	=	range(8)

>>>	def	add(x,	y):	return	x+y

...

>>>	map(add,	seq,	seq)

[0,	2,	4,	6,	8,	10,	12,	14]

"reduce(func,	sequence)"	returns	a	single	value	constructed	by	calling	the
binary	function	func	on	the	first	two	items	of	the	sequence,	then	on	the	result	and
the	next	item,	and	so	on.	For	example,	to	compute	the	sum	of	the	numbers	1
through	10:

>>>	def	add(x,y):	return	x+y

...

>>>	reduce(add,	range(1,	11))

55

If	there's	only	one	item	in	the	sequence,	its	value	is	returned;	if	the	sequence	is
empty,	an	exception	is	raised.

A	third	argument	can	be	passed	to	indicate	the	starting	value.	In	this	case	the
starting	value	is	returned	for	an	empty	sequence,	and	the	function	is	first	applied
to	the	starting	value	and	the	first	sequence	item,	then	to	the	result	and	the	next
item,	and	so	on.	For	example,

>>>	def	sum(seq):

...					def	add(x,y):	return	x+y

...					return	reduce(add,	seq,	0)

...	

>>>	sum(range(1,	11))

55

>>>	sum([])

0

Don't	use	this	example's	definition	of	sum():	since	summing	numbers	is	such	a
common	need,	a	built-in	function	sum(sequence)	is	already	provided,	and
works	exactly	like	this.	New	in	version	2.3.

5.1.4	List	Comprehensions
List	comprehensions	provide	a	concise	way	to	create	lists	without	resorting	to
use	of	map(),	filter()	and/or	lambda.	The	resulting	list	definition	tends
often	to	be	clearer	than	lists	built	using	those	constructs.	Each	list
comprehension	consists	of	an	expression	followed	by	a	for	clause,	then	zero	or
more	for	or	if	clauses.	The	result	will	be	a	list	resulting	from	evaluating	the
expression	in	the	context	of	the	for	and	if	clauses	which	follow	it.	If	the
expression	would	evaluate	to	a	tuple,	it	must	be	parenthesized.

>>>	freshfruit	=	['		banana',	'		loganberry	',	'passion	fruit		']

>>>	[weapon.strip()	for	weapon	in	freshfruit]

['banana',	'loganberry',	'passion	fruit']

>>>	vec	=	[2,	4,	6]

>>>	[3*x	for	x	in	vec]

[6,	12,	18]

>>>	[3*x	for	x	in	vec	if	x	>	3]

[12,	18]

>>>	[3*x	for	x	in	vec	if	x	<	2]

[]

>>>	[[x,x**2]	for	x	in	vec]

[[2,	4],	[4,	16],	[6,	36]]

>>>	[x,	x**2	for	x	in	vec]	 #	error	-	parens	required	for	tuples

		File	"<stdin>",	line	1,	in	?

				[x,	x**2	for	x	in	vec]

															^

SyntaxError:	invalid	syntax

>>>	[(x,	x**2)	for	x	in	vec]

[(2,	4),	(4,	16),	(6,	36)]

>>>	vec1	=	[2,	4,	6]

>>>	vec2	=	[4,	3,	-9]

>>>	[x*y	for	x	in	vec1	for	y	in	vec2]

[8,	6,	-18,	16,	12,	-36,	24,	18,	-54]

>>>	[x+y	for	x	in	vec1	for	y	in	vec2]

[6,	5,	-7,	8,	7,	-5,	10,	9,	-3]

>>>	[vec1[i]*vec2[i]	for	i	in	range(len(vec1))]

[8,	12,	-54]

List	comprehensions	are	much	more	flexible	than	map()	and	can	be	applied	to
functions	with	more	than	one	argument	and	to	nested	functions:

>>>	[str(round(355/113.0,	i))	for	i	in	range(1,6)]

['3.1',	'3.14',	'3.142',	'3.1416',	'3.14159']

5.2	The	del	statement
There	is	a	way	to	remove	an	item	from	a	list	given	its	index	instead	of	its	value:
the	del	statement.	This	can	also	be	used	to	remove	slices	from	a	list	(which	we
did	earlier	by	assignment	of	an	empty	list	to	the	slice).	For	example:

>>>	a	=	[-1,	1,	66.25,	333,	333,	1234.5]

>>>	del	a[0]

>>>	a

[1,	66.25,	333,	333,	1234.5]

>>>	del	a[2:4]

>>>	a

[1,	66.25,	1234.5]

del	can	also	be	used	to	delete	entire	variables:

>>>	del	a

Referencing	the	name	a	hereafter	is	an	error	(at	least	until	another	value	is
assigned	to	it).	We'll	find	other	uses	for	del	later.

5.3	Tuples	and	Sequences
We	saw	that	lists	and	strings	have	many	common	properties,	such	as	indexing
and	slicing	operations.	They	are	two	examples	of	sequence	data	types.	Since
Python	is	an	evolving	language,	other	sequence	data	types	may	be	added.	There
is	also	another	standard	sequence	data	type:	the	tuple.

A	tuple	consists	of	a	number	of	values	separated	by	commas,	for	instance:

>>>	t	=	12345,	54321,	'hello!'

>>>	t[0]

12345

>>>	t

(12345,	54321,	'hello!')

>>>	#	Tuples	may	be	nested:

...	u	=	t,	(1,	2,	3,	4,	5)

>>>	u

((12345,	54321,	'hello!'),	(1,	2,	3,	4,	5))

As	you	see,	on	output	tuples	are	alway	enclosed	in	parentheses,	so	that	nested
tuples	are	interpreted	correctly;	they	may	be	input	with	or	without	surrounding
parentheses,	although	often	parentheses	are	necessary	anyway	(if	the	tuple	is	part
of	a	larger	expression).

Tuples	have	many	uses.	For	example:	(x,	y)	coordinate	pairs,	employee	records
from	a	database,	etc.	Tuples,	like	strings,	are	immutable:	it	is	not	possible	to
assign	to	the	individual	items	of	a	tuple	(you	can	simulate	much	of	the	same
effect	with	slicing	and	concatenation,	though).	It	is	also	possible	to	create	tuples
which	contain	mutable	objects,	such	as	lists.

A	special	problem	is	the	construction	of	tuples	containing	0	or	1	items:	the
syntax	has	some	extra	quirks	to	accommodate	these.	Empty	tuples	are
constructed	by	an	empty	pair	of	parentheses;	a	tuple	with	one	item	is	constructed
by	following	a	value	with	a	comma	(it	is	not	sufficient	to	enclose	a	single	value
in	parentheses).	Ugly,	but	effective.	For	example:

>>>	empty	=	()

>>>	singleton	=	'hello',				#	<--	note	trailing	comma

>>>	len(empty)

0

>>>	len(singleton)

1

>>>	singleton

('hello',)

The	statement	t	=	12345,	54321,	'hello!'	is	an	example	of	tuple
packing:	the	values	12345,	54321	and	'hello!'	are	packed	together	in	a
tuple.	The	reverse	operation	is	also	possible:

>>>	x,	y,	z	=	t

This	is	called,	appropriately	enough,	sequence	unpacking.	Sequence	unpacking
requires	that	the	list	of	variables	on	the	left	have	the	same	number	of	elements	as
the	length	of	the	sequence.	Note	that	multiple	assignment	is	really	just	a
combination	of	tuple	packing	and	sequence	unpacking!

There	is	a	small	bit	of	asymmetry	here:	packing	multiple	values	always	creates	a
tuple,	and	unpacking	works	for	any	sequence.

5.4	Sets
Python	also	includes	a	data	type	for	sets.	A	set	is	an	unordered	collection	with	no
duplicate	elements.	Basic	uses	include	membership	testing	and	eliminating
duplicate	entries.	Set	objects	also	support	mathematical	operations	like	union,
intersection,	difference,	and	symmetric	difference.

Here	is	a	brief	demonstration:

>>>	basket	=	['apple',	'orange',	'apple',	'pear',	'orange',	'banana']

>>>	fruits	=	set(basket)															#	create	a	set	without	duplicates

>>>	fruits

set(['orange',	'pear',	'apple',	'banana'])

>>>	'orange'	in	fruits																	#	fast	membership	testing

True

>>>	'crabgrass'	in	fruits

False

>>>	#	Demonstrate	set	operations	on	unique	letters	from	two	words

...

>>>	a	=	set('abracadabra')

>>>	b	=	set('alacazam')

>>>	a																																		#	unique	letters	in	a

set(['a',	'r',	'b',	'c',	'd'])

>>>	a	-	b																														#	letters	in	a	but	not	in	b

set(['r',	'd',	'b'])

>>>	a	|	b																														#	letters	in	either	a	or	b

set(['a',	'c',	'r',	'd',	'b',	'm',	'z',	'l'])

>>>	a	&	b																														#	letters	in	both	a	and	b

set(['a',	'c'])

>>>	a	^	b																														#	letters	in	a	or	b	but	not	both

set(['r',	'd',	'b',	'm',	'z',	'l'])

5.5	Dictionaries
Another	useful	data	type	built	into	Python	is	the	dictionary.	Dictionaries	are
sometimes	found	in	other	languages	as	``associative	memories''	or	``associative
arrays''.	Unlike	sequences,	which	are	indexed	by	a	range	of	numbers,
dictionaries	are	indexed	by	keys,	which	can	be	any	immutable	type;	strings	and
numbers	can	always	be	keys.	Tuples	can	be	used	as	keys	if	they	contain	only
strings,	numbers,	or	tuples;	if	a	tuple	contains	any	mutable	object	either	directly
or	indirectly,	it	cannot	be	used	as	a	key.	You	can't	use	lists	as	keys,	since	lists	can
be	modified	in	place	using	their	append()	and	extend()	methods,	as	well
as	slice	and	indexed	assignments.

It	is	best	to	think	of	a	dictionary	as	an	unordered	set	of	key:	value	pairs,	with	the
requirement	that	the	keys	are	unique	(within	one	dictionary).	A	pair	of	braces
creates	an	empty	dictionary:	{}.	Placing	a	comma-separated	list	of	key:value
pairs	within	the	braces	adds	initial	key:value	pairs	to	the	dictionary;	this	is	also
the	way	dictionaries	are	written	on	output.

The	main	operations	on	a	dictionary	are	storing	a	value	with	some	key	and
extracting	the	value	given	the	key.	It	is	also	possible	to	delete	a	key:value	pair
with	del.	If	you	store	using	a	key	that	is	already	in	use,	the	old	value	associated
with	that	key	is	forgotten.	It	is	an	error	to	extract	a	value	using	a	non-existent
key.

The	keys()	method	of	a	dictionary	object	returns	a	list	of	all	the	keys	used	in
the	dictionary,	in	arbitrary	order	(if	you	want	it	sorted,	just	apply	the	sort()
method	to	the	list	of	keys).	To	check	whether	a	single	key	is	in	the	dictionary,
use	the	has_key()	method	of	the	dictionary.

Here	is	a	small	example	using	a	dictionary:

>>>	tel	=	{'jack':	4098,	'sape':	4139}

>>>	tel['guido']	=	4127

>>>	tel

{'sape':	4139,	'guido':	4127,	'jack':	4098}

>>>	tel['jack']

4098

>>>	del	tel['sape']

>>>	tel['irv']	=	4127

>>>	tel

{'guido':	4127,	'irv':	4127,	'jack':	4098}

>>>	tel.keys()

['guido',	'irv',	'jack']

>>>	tel.has_key('guido')

True

The	dict()	constructor	builds	dictionaries	directly	from	lists	of	key-value
pairs	stored	as	tuples.	When	the	pairs	form	a	pattern,	list	comprehensions	can
compactly	specify	the	key-value	list.

>>>	dict([('sape',	4139),	('guido',	4127),	('jack',	4098)])

{'sape':	4139,	'jack':	4098,	'guido':	4127}

>>>	dict([(x,	x**2)	for	x	in	vec])					#	use	a	list	comprehension

{2:	4,	4:	16,	6:	36}

5.6	Looping	Techniques
When	looping	through	dictionaries,	the	key	and	corresponding	value	can	be
retrieved	at	the	same	time	using	the	iteritems()	method.

>>>	knights	=	{'gallahad':	'the	pure',	'robin':	'the	brave'}

>>>	for	k,	v	in	knights.iteritems():

...					print	k,	v

...

gallahad	the	pure

robin	the	brave

When	looping	through	a	sequence,	the	position	index	and	corresponding	value
can	be	retrieved	at	the	same	time	using	the	enumerate()	function.

	

>>>	for	i,	v	in	enumerate(['tic',	'tac',	'toe']):

...					print	i,	v

...

0	tic

1	tac

2	toe

To	loop	over	two	or	more	sequences	at	the	same	time,	the	entries	can	be	paired
with	the	zip()	function.

>>>	questions	=	['name',	'quest',	'favorite	color']

>>>	answers	=	['lancelot',	'the	holy	grail',	'blue']

>>>	for	q,	a	in	zip(questions,	answers):

...					print	'What	is	your	%s?		It	is	%s.'	%	(q,	a)

...	

What	is	your	name?		It	is	lancelot.

What	is	your	quest?		It	is	the	holy	grail.

What	is	your	favorite	color?		It	is	blue.

To	loop	over	a	sequence	in	reverse,	first	specify	the	sequence	in	a	forward
direction	and	then	call	the	reversed()	function.

>>>	for	i	in	reversed(xrange(1,10,2)):

...					print	i

...

9

7

5

3

1

To	loop	over	a	sequence	in	sorted	order,	use	the	sorted()	function	which
returns	a	new	sorted	list	while	leaving	the	source	unaltered.

>>>	basket	=	['apple',	'orange',	'apple',	'pear',	'orange',	'banana']

>>>	for	f	in	sorted(set(basket)):

...					print	f

...		

apple

banana

orange

pear

5.7	More	on	Conditions
The	conditions	used	in	while	and	if	statements	can	contain	any	operators,	not
just	comparisons.

The	comparison	operators	in	and	not	in	check	whether	a	value	occurs	(does
not	occur)	in	a	sequence.	The	operators	is	and	is	not	compare	whether	two
objects	are	really	the	same	object;	this	only	matters	for	mutable	objects	like	lists.
All	comparison	operators	have	the	same	priority,	which	is	lower	than	that	of	all
numerical	operators.

Comparisons	can	be	chained.	For	example,	a	<	b	==	c	tests	whether	a	is
less	than	b	and	moreover	b	equals	c.

Comparisons	may	be	combined	by	the	Boolean	operators	and	and	or,	and	the
outcome	of	a	comparison	(or	of	any	other	Boolean	expression)	may	be	negated
with	not.	These	have	lower	priorities	than	comparison	operators;	between	them,
not	has	the	highest	priority	and	or	the	lowest,	so	that	A	and	not	B	or	C
is	equivalent	to	(A	and	(not	B))	or	C.	As	always,	parentheses	can	be
used	to	express	the	desired	composition.

The	Boolean	operators	and	and	or	are	so-called	short-circuit	operators:	their
arguments	are	evaluated	from	left	to	right,	and	evaluation	stops	as	soon	as	the
outcome	is	determined.	For	example,	if	A	and	C	are	true	but	B	is	false,	A	and
B	and	C	does	not	evaluate	the	expression	C.	In	general,	the	return	value	of	a
short-circuit	operator,	when	used	as	a	general	value	and	not	as	a	Boolean,	is	the
last	evaluated	argument.

It	is	possible	to	assign	the	result	of	a	comparison	or	other	Boolean	expression	to
a	variable.	For	example,

>>>	string1,	string2,	string3	=	'',	'Trondheim',	'Hammer	Dance'

>>>	non_null	=	string1	or	string2	or	string3

>>>	non_null

'Trondheim'

Note	that	in	Python,	unlike	C,	assignment	cannot	occur	inside	expressions.	C
programmers	may	grumble	about	this,	but	it	avoids	a	common	class	of	problems

encountered	in	C	programs:	typing	=	in	an	expression	when	==	was	intended.

5.8	Comparing	Sequences	and	Other
Types
Sequence	objects	may	be	compared	to	other	objects	with	the	same	sequence
type.	The	comparison	uses	lexicographical	ordering:	first	the	first	two	items	are
compared,	and	if	they	differ	this	determines	the	outcome	of	the	comparison;	if
they	are	equal,	the	next	two	items	are	compared,	and	so	on,	until	either	sequence
is	exhausted.	If	two	items	to	be	compared	are	themselves	sequences	of	the	same
type,	the	lexicographical	comparison	is	carried	out	recursively.	If	all	items	of
two	sequences	compare	equal,	the	sequences	are	considered	equal.	If	one
sequence	is	an	initial	sub-sequence	of	the	other,	the	shorter	sequence	is	the
smaller	(lesser)	one.	Lexicographical	ordering	for	strings	uses	the	ASCII
ordering	for	individual	characters.	Some	examples	of	comparisons	between
sequences	with	the	same	types:

(1,	2,	3)														<	(1,	2,	4)

[1,	2,	3]														<	[1,	2,	4]

'ABC'	<	'C'	<	'Pascal'	<	'Python'

(1,	2,	3,	4)											<	(1,	2,	4)

(1,	2)																	<	(1,	2,	-1)

(1,	2,	3)													==	(1.0,	2.0,	3.0)

(1,	2,	('aa',	'ab'))			<	(1,	2,	('abc',	'a'),	4)

Note	that	comparing	objects	of	different	types	is	legal.	The	outcome	is
deterministic	but	arbitrary:	the	types	are	ordered	by	their	name.	Thus,	a	list	is
always	smaller	than	a	string,	a	string	is	always	smaller	than	a	tuple,	etc.	5.1
Mixed	numeric	types	are	compared	according	to	their	numeric	value,	so	0	equals
0.0,	etc.

Footnotes

...	etc.5.1
The	rules	for	comparing	objects	of	different	types	should	not	be	relied
upon;	they	may	change	in	a	future	version	of	the	language.

Python	Tutorial
Previous:	4.	More	Control	Flow	Up:	Python	Tutorial	Next:	6.	Modules

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.	Data	Structures	Up:	Python	Tutorial	Next:	7.	Input	and	Output

Subsections

6.1	More	on	Modules
6.1.1	The	Module	Search	Path
6.1.2	``Compiled''	Python	files

6.2	Standard	Modules
6.3	The	dir()	Function
6.4	Packages

6.4.1	Importing	*	From	a	Package
6.4.2	Intra-package	References
6.4.3	Packages	in	Multiple	Directories

6.	Modules
If	you	quit	from	the	Python	interpreter	and	enter	it	again,	the	definitions	you
have	made	(functions	and	variables)	are	lost.	Therefore,	if	you	want	to	write	a
somewhat	longer	program,	you	are	better	off	using	a	text	editor	to	prepare	the
input	for	the	interpreter	and	running	it	with	that	file	as	input	instead.	This	is
known	as	creating	a	script.	As	your	program	gets	longer,	you	may	want	to	split	it
into	several	files	for	easier	maintenance.	You	may	also	want	to	use	a	handy
function	that	you've	written	in	several	programs	without	copying	its	definition
into	each	program.

To	support	this,	Python	has	a	way	to	put	definitions	in	a	file	and	use	them	in	a
script	or	in	an	interactive	instance	of	the	interpreter.	Such	a	file	is	called	a
module;	definitions	from	a	module	can	be	imported	into	other	modules	or	into
the	main	module	(the	collection	of	variables	that	you	have	access	to	in	a	script
executed	at	the	top	level	and	in	calculator	mode).

A	module	is	a	file	containing	Python	definitions	and	statements.	The	file	name	is
the	module	name	with	the	suffix	.py	appended.	Within	a	module,	the	module's
name	(as	a	string)	is	available	as	the	value	of	the	global	variable	__name__.
For	instance,	use	your	favorite	text	editor	to	create	a	file	called	fibo.py	in	the
current	directory	with	the	following	contents:

#	Fibonacci	numbers	module

def	fib(n):				#	write	Fibonacci	series	up	to	n

				a,	b	=	0,	1

				while	b	<	n:

								print	b,

								a,	b	=	b,	a+b

def	fib2(n):	#	return	Fibonacci	series	up	to	n

				result	=	[]

				a,	b	=	0,	1

				while	b	<	n:

								result.append(b)

								a,	b	=	b,	a+b

				return	result

Now	enter	the	Python	interpreter	and	import	this	module	with	the	following
command:

>>>	import	fibo

This	does	not	enter	the	names	of	the	functions	defined	in	fibo	directly	in	the
current	symbol	table;	it	only	enters	the	module	name	fibo	there.	Using	the
module	name	you	can	access	the	functions:

>>>	fibo.fib(1000)

1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	987

>>>	fibo.fib2(100)

[1,	1,	2,	3,	5,	8,	13,	21,	34,	55,	89]

>>>	fibo.__name__

'fibo'

If	you	intend	to	use	a	function	often	you	can	assign	it	to	a	local	name:

>>>	fib	=	fibo.fib

>>>	fib(500)

1	1	2	3	5	8	13	21	34	55	89	144	233	377

6.1	More	on	Modules
A	module	can	contain	executable	statements	as	well	as	function	definitions.
These	statements	are	intended	to	initialize	the	module.	They	are	executed	only
the	first	time	the	module	is	imported	somewhere.6.1

Each	module	has	its	own	private	symbol	table,	which	is	used	as	the	global
symbol	table	by	all	functions	defined	in	the	module.	Thus,	the	author	of	a
module	can	use	global	variables	in	the	module	without	worrying	about
accidental	clashes	with	a	user's	global	variables.	On	the	other	hand,	if	you	know
what	you	are	doing	you	can	touch	a	module's	global	variables	with	the	same
notation	used	to	refer	to	its	functions,	modname.itemname.

Modules	can	import	other	modules.	It	is	customary	but	not	required	to	place	all
import	statements	at	the	beginning	of	a	module	(or	script,	for	that	matter).	The
imported	module	names	are	placed	in	the	importing	module's	global	symbol
table.

There	is	a	variant	of	the	import	statement	that	imports	names	from	a	module
directly	into	the	importing	module's	symbol	table.	For	example:

>>>	from	fibo	import	fib,	fib2

>>>	fib(500)

1	1	2	3	5	8	13	21	34	55	89	144	233	377

This	does	not	introduce	the	module	name	from	which	the	imports	are	taken	in
the	local	symbol	table	(so	in	the	example,	fibo	is	not	defined).

There	is	even	a	variant	to	import	all	names	that	a	module	defines:

>>>	from	fibo	import	*

>>>	fib(500)

1	1	2	3	5	8	13	21	34	55	89	144	233	377

This	imports	all	names	except	those	beginning	with	an	underscore	(_).

6.1.1	The	Module	Search	Path
When	a	module	named	spam	is	imported,	the	interpreter	searches	for	a	file
named	spam.py	in	the	current	directory,	and	then	in	the	list	of	directories
specified	by	the	environment	variable	PYTHONPATH.	This	has	the	same	syntax
as	the	shell	variable	PATH,	that	is,	a	list	of	directory	names.	When
PYTHONPATH	is	not	set,	or	when	the	file	is	not	found	there,	the	search
continues	in	an	installation-dependent	default	path;	on	UNIX,	this	is	usually
.:/usr/local/lib/python.

Actually,	modules	are	searched	in	the	list	of	directories	given	by	the	variable
sys.path	which	is	initialized	from	the	directory	containing	the	input	script	(or
the	current	directory),	PYTHONPATH	and	the	installation-dependent	default.
This	allows	Python	programs	that	know	what	they're	doing	to	modify	or	replace
the	module	search	path.	Note	that	because	the	directory	containing	the	script
being	run	is	on	the	search	path,	it	is	important	that	the	script	not	have	the	same
name	as	a	standard	module,	or	Python	will	attempt	to	load	the	script	as	a	module
when	that	module	is	imported.	This	will	generally	be	an	error.	See	section	6.2,
``Standard	Modules,''	for	more	information.

6.1.2	``Compiled''	Python	files
As	an	important	speed-up	of	the	start-up	time	for	short	programs	that	use	a	lot	of
standard	modules,	if	a	file	called	spam.pyc	exists	in	the	directory	where
spam.py	is	found,	this	is	assumed	to	contain	an	already-``byte-compiled''
version	of	the	module	spam.	The	modification	time	of	the	version	of	spam.py
used	to	create	spam.pyc	is	recorded	in	spam.pyc,	and	the	.pyc	file	is	ignored	if
these	don't	match.

Normally,	you	don't	need	to	do	anything	to	create	the	spam.pyc	file.	Whenever
spam.py	is	successfully	compiled,	an	attempt	is	made	to	write	the	compiled
version	to	spam.pyc.	It	is	not	an	error	if	this	attempt	fails;	if	for	any	reason	the
file	is	not	written	completely,	the	resulting	spam.pyc	file	will	be	recognized	as
invalid	and	thus	ignored	later.	The	contents	of	the	spam.pyc	file	are	platform
independent,	so	a	Python	module	directory	can	be	shared	by	machines	of
different	architectures.

Some	tips	for	experts:

When	the	Python	interpreter	is	invoked	with	the	-O	flag,	optimized	code	is
generated	and	stored	in	.pyo	files.	The	optimizer	currently	doesn't	help
much;	it	only	removes	assert	statements.	When	-O	is	used,	all	bytecode
is	optimized;	.pyc	files	are	ignored	and	.py	files	are	compiled	to
optimized	bytecode.

Passing	two	-O	flags	to	the	Python	interpreter	(-OO)	will	cause	the
bytecode	compiler	to	perform	optimizations	that	could	in	some	rare	cases
result	in	malfunctioning	programs.	Currently	only	__doc__	strings	are
removed	from	the	bytecode,	resulting	in	more	compact	.pyo	files.	Since
some	programs	may	rely	on	having	these	available,	you	should	only	use
this	option	if	you	know	what	you're	doing.

A	program	doesn't	run	any	faster	when	it	is	read	from	a	.pyc	or	.pyo	file
than	when	it	is	read	from	a	.py	file;	the	only	thing	that's	faster	about	.pyc	or
.pyo	files	is	the	speed	with	which	they	are	loaded.

When	a	script	is	run	by	giving	its	name	on	the	command	line,	the	bytecode
for	the	script	is	never	written	to	a	.pyc	or	.pyo	file.	Thus,	the	startup	time	of

a	script	may	be	reduced	by	moving	most	of	its	code	to	a	module	and	having
a	small	bootstrap	script	that	imports	that	module.	It	is	also	possible	to	name
a	.pyc	or	.pyo	file	directly	on	the	command	line.

It	is	possible	to	have	a	file	called	spam.pyc	(or	spam.pyo	when	-O	is
used)	without	a	file	spam.py	for	the	same	module.	This	can	be	used	to
distribute	a	library	of	Python	code	in	a	form	that	is	moderately	hard	to
reverse	engineer.

The	module	compileall	can	create	.pyc	files	(or	.pyo	files	when	-O	is
used)	for	all	modules	in	a	directory.

6.2	Standard	Modules
Python	comes	with	a	library	of	standard	modules,	described	in	a	separate
document,	the	Python	Library	Reference	(``Library	Reference''	hereafter).	Some
modules	are	built	into	the	interpreter;	these	provide	access	to	operations	that	are
not	part	of	the	core	of	the	language	but	are	nevertheless	built	in,	either	for
efficiency	or	to	provide	access	to	operating	system	primitives	such	as	system
calls.	The	set	of	such	modules	is	a	configuration	option	which	also	depends	on
the	underlying	platform	For	example,	the	amoeba	module	is	only	provided	on
systems	that	somehow	support	Amoeba	primitives.	One	particular	module
deserves	some	attention:	sys,	which	is	built	into	every	Python	interpreter.	The
variables	sys.ps1	and	sys.ps2	define	the	strings	used	as	primary	and
secondary	prompts:

>>>	import	sys

>>>	sys.ps1

'>>>	'

>>>	sys.ps2

'...	'

>>>	sys.ps1	=	'C>	'

C>	print	'Yuck!'

Yuck!

C>

These	two	variables	are	only	defined	if	the	interpreter	is	in	interactive	mode.

The	variable	sys.path	is	a	list	of	strings	that	determine	the	interpreter's	search
path	for	modules.	It	is	initialized	to	a	default	path	taken	from	the	environment
variable	PYTHONPATH,	or	from	a	built-in	default	if	PYTHONPATH	is	not	set.
You	can	modify	it	using	standard	list	operations:

>>>	import	sys

>>>	sys.path.append('/ufs/guido/lib/python')

6.3	The	dir()	Function
The	built-in	function	dir()	is	used	to	find	out	which	names	a	module	defines.
It	returns	a	sorted	list	of	strings:

>>>	import	fibo,	sys

>>>	dir(fibo)

['__name__',	'fib',	'fib2']

>>>	dir(sys)

['__displayhook__',	'__doc__',	'__excepthook__',	'__name__',	'__stderr__',

	'__stdin__',	'__stdout__',	'_getframe',	'api_version',	'argv',	

	'builtin_module_names',	'byteorder',	'callstats',	'copyright',

	'displayhook',	'exc_clear',	'exc_info',	'exc_type',	'excepthook',

	'exec_prefix',	'executable',	'exit',	'getdefaultencoding',	'getdlopenflags',

	'getrecursionlimit',	'getrefcount',	'hexversion',	'maxint',	'maxunicode',

	'meta_path',	'modules',	'path',	'path_hooks',	'path_importer_cache',

	'platform',	'prefix',	'ps1',	'ps2',	'setcheckinterval',	'setdlopenflags',

	'setprofile',	'setrecursionlimit',	'settrace',	'stderr',	'stdin',	'stdout',

	'version',	'version_info',	'warnoptions']

Without	arguments,	dir()	lists	the	names	you	have	defined	currently:

>>>	a	=	[1,	2,	3,	4,	5]

>>>	import	fibo,	sys

>>>	fib	=	fibo.fib

>>>	dir()

['__name__',	'a',	'fib',	'fibo',	'sys']

Note	that	it	lists	all	types	of	names:	variables,	modules,	functions,	etc.

dir()	does	not	list	the	names	of	built-in	functions	and	variables.	If	you	want	a
list	of	those,	they	are	defined	in	the	standard	module	__builtin__:

>>>	import	__builtin__

>>>	dir(__builtin__)

['ArithmeticError',	'AssertionError',	'AttributeError',

	'DeprecationWarning',	'EOFError',	'Ellipsis',	'EnvironmentError',

	'Exception',	'False',	'FloatingPointError',	'IOError',	'ImportError',

	'IndentationError',	'IndexError',	'KeyError',	'KeyboardInterrupt',

	'LookupError',	'MemoryError',	'NameError',	'None',	'NotImplemented',

	'NotImplementedError',	'OSError',	'OverflowError',	'OverflowWarning',

	'PendingDeprecationWarning',	'ReferenceError',

	'RuntimeError',	'RuntimeWarning',	'StandardError',	'StopIteration',

	'SyntaxError',	'SyntaxWarning',	'SystemError',	'SystemExit',	'TabError',

	'True',	'TypeError',	'UnboundLocalError',	'UnicodeError',	'UserWarning',

	'ValueError',	'Warning',	'ZeroDivisionError',	'__debug__',	'__doc__',

	'__import__',	'__name__',	'abs',	'apply',	'bool',	'buffer',

	'callable',	'chr',	'classmethod',	'cmp',	'coerce',	'compile',	'complex',

	'copyright',	'credits',	'delattr',	'dict',	'dir',	'divmod',

	'enumerate',	'eval',	'execfile',	'exit',	'file',	'filter',	'float',

	'getattr',	'globals',	'hasattr',	'hash',	'help',	'hex',	'id',

	'input',	'int',	'intern',	'isinstance',	'issubclass',	'iter',

	'len',	'license',	'list',	'locals',	'long',	'map',	'max',	'min',

	'object',	'oct',	'open',	'ord',	'pow',	'property',	'quit',

	'range',	'raw_input',	'reduce',	'reload',	'repr',	'round',

	'setattr',	'slice',	'staticmethod',	'str',	'string',	'sum',	'super',

	'tuple',	'type',	'unichr',	'unicode',	'vars',	'xrange',	'zip']

6.4	Packages
Packages	are	a	way	of	structuring	Python's	module	namespace	by	using	``dotted
module	names''.	For	example,	the	module	name	A.B	designates	a	submodule
named	"B"	in	a	package	named	"A".	Just	like	the	use	of	modules	saves	the
authors	of	different	modules	from	having	to	worry	about	each	other's	global
variable	names,	the	use	of	dotted	module	names	saves	the	authors	of	multi-
module	packages	like	NumPy	or	the	Python	Imaging	Library	from	having	to
worry	about	each	other's	module	names.

Suppose	you	want	to	design	a	collection	of	modules	(a	``package'')	for	the
uniform	handling	of	sound	files	and	sound	data.	There	are	many	different	sound
file	formats	(usually	recognized	by	their	extension,	for	example:	.wav,	.aiff,
.au),	so	you	may	need	to	create	and	maintain	a	growing	collection	of	modules
for	the	conversion	between	the	various	file	formats.	There	are	also	many
different	operations	you	might	want	to	perform	on	sound	data	(such	as	mixing,
adding	echo,	applying	an	equalizer	function,	creating	an	artificial	stereo	effect),
so	in	addition	you	will	be	writing	a	never-ending	stream	of	modules	to	perform
these	operations.	Here's	a	possible	structure	for	your	package	(expressed	in	terms
of	a	hierarchical	filesystem):

Sound/																										Top-level	package

						__init__.py															Initialize	the	sound	package

						Formats/																		Subpackage	for	file	format	conversions

														__init__.py

														wavread.py

														wavwrite.py

														aiffread.py

														aiffwrite.py

														auread.py

														auwrite.py

														...

						Effects/																		Subpackage	for	sound	effects

														__init__.py

														echo.py

														surround.py

														reverse.py

														...

						Filters/																		Subpackage	for	filters

														__init__.py

														equalizer.py

														vocoder.py

														karaoke.py

														...

When	importing	the	package,	Python	searches	through	the	directories	on
sys.path	looking	for	the	package	subdirectory.

The	__init__.py	files	are	required	to	make	Python	treat	the	directories	as
containing	packages;	this	is	done	to	prevent	directories	with	a	common	name,
such	as	"string",	from	unintentionally	hiding	valid	modules	that	occur	later
on	the	module	search	path.	In	the	simplest	case,	__init__.py	can	just	be	an
empty	file,	but	it	can	also	execute	initialization	code	for	the	package	or	set	the
__all__	variable,	described	later.

Users	of	the	package	can	import	individual	modules	from	the	package,	for
example:

import	Sound.Effects.echo

This	loads	the	submodule	Sound.Effects.echo.	It	must	be	referenced	with
its	full	name.

Sound.Effects.echo.echofilter(input,	output,	delay=0.7,	atten=4)

An	alternative	way	of	importing	the	submodule	is:

from	Sound.Effects	import	echo

This	also	loads	the	submodule	echo,	and	makes	it	available	without	its	package
prefix,	so	it	can	be	used	as	follows:

echo.echofilter(input,	output,	delay=0.7,	atten=4)

Yet	another	variation	is	to	import	the	desired	function	or	variable	directly:

from	Sound.Effects.echo	import	echofilter

Again,	this	loads	the	submodule	echo,	but	this	makes	its	function
echofilter()	directly	available:

echofilter(input,	output,	delay=0.7,	atten=4)

Note	that	when	using	from	package	import	item,	the	item	can	be	either	a

submodule	(or	subpackage)	of	the	package,	or	some	other	name	defined	in	the
package,	like	a	function,	class	or	variable.	The	import	statement	first	tests
whether	the	item	is	defined	in	the	package;	if	not,	it	assumes	it	is	a	module	and
attempts	to	load	it.	If	it	fails	to	find	it,	an	ImportError	exception	is	raised.

Contrarily,	when	using	syntax	like	import	item.subitem.subsubitem,	each	item
except	for	the	last	must	be	a	package;	the	last	item	can	be	a	module	or	a	package
but	can't	be	a	class	or	function	or	variable	defined	in	the	previous	item.

6.4.1	Importing	*	From	a	Package
Now	what	happens	when	the	user	writes	from	Sound.Effects	import
*?	Ideally,	one	would	hope	that	this	somehow	goes	out	to	the	filesystem,	finds
which	submodules	are	present	in	the	package,	and	imports	them	all.
Unfortunately,	this	operation	does	not	work	very	well	on	Mac	and	Windows
platforms,	where	the	filesystem	does	not	always	have	accurate	information	about
the	case	of	a	filename!	On	these	platforms,	there	is	no	guaranteed	way	to	know
whether	a	file	ECHO.PY	should	be	imported	as	a	module	echo,	Echo	or
ECHO.	(For	example,	Windows	95	has	the	annoying	practice	of	showing	all	file
names	with	a	capitalized	first	letter.)	The	DOS	8+3	filename	restriction	adds
another	interesting	problem	for	long	module	names.

The	only	solution	is	for	the	package	author	to	provide	an	explicit	index	of	the
package.	The	import	statement	uses	the	following	convention:	if	a	package's
__init__.py	code	defines	a	list	named	__all__,	it	is	taken	to	be	the	list	of
module	names	that	should	be	imported	when	from	package	import	*	is
encountered.	It	is	up	to	the	package	author	to	keep	this	list	up-to-date	when	a
new	version	of	the	package	is	released.	Package	authors	may	also	decide	not	to
support	it,	if	they	don't	see	a	use	for	importing	*	from	their	package.	For
example,	the	file	Sounds/Effects/__init__.py	could	contain	the	following	code:

__all__	=	["echo",	"surround",	"reverse"]

This	would	mean	that	from	Sound.Effects	import	*	would	import	the
three	named	submodules	of	the	Sound	package.

If	__all__	is	not	defined,	the	statement	from	Sound.Effects	import
*	does	not	import	all	submodules	from	the	package	Sound.Effects	into	the
current	namespace;	it	only	ensures	that	the	package	Sound.Effects	has	been
imported	(possibly	running	its	initialization	code,	__init__.py)	and	then	imports
whatever	names	are	defined	in	the	package.	This	includes	any	names	defined
(and	submodules	explicitly	loaded)	by	__init__.py.	It	also	includes	any
submodules	of	the	package	that	were	explicitly	loaded	by	previous	import
statements.	Consider	this	code:

import	Sound.Effects.echo

import	Sound.Effects.surround

from	Sound.Effects	import	*

In	this	example,	the	echo	and	surround	modules	are	imported	in	the	current
namespace	because	they	are	defined	in	the	Sound.Effects	package	when	the
from...import	statement	is	executed.	(This	also	works	when	__all__	is
defined.)

Note	that	in	general	the	practice	of	importing	*	from	a	module	or	package	is
frowned	upon,	since	it	often	causes	poorly	readable	code.	However,	it	is	okay	to
use	it	to	save	typing	in	interactive	sessions,	and	certain	modules	are	designed	to
export	only	names	that	follow	certain	patterns.

Remember,	there	is	nothing	wrong	with	using	from	Package	import
specific_submodule!	In	fact,	this	is	the	recommended	notation	unless	the
importing	module	needs	to	use	submodules	with	the	same	name	from	different
packages.

6.4.2	Intra-package	References
The	submodules	often	need	to	refer	to	each	other.	For	example,	the	surround
module	might	use	the	echo	module.	In	fact,	such	references	are	so	common	that
the	import	statement	first	looks	in	the	containing	package	before	looking	in
the	standard	module	search	path.	Thus,	the	surround	module	can	simply	use
import	echo	or	from	echo	import	echofilter.	If	the	imported
module	is	not	found	in	the	current	package	(the	package	of	which	the	current
module	is	a	submodule),	the	import	statement	looks	for	a	top-level	module
with	the	given	name.

When	packages	are	structured	into	subpackages	(as	with	the	Sound	package	in
the	example),	there's	no	shortcut	to	refer	to	submodules	of	sibling	packages	-	the
full	name	of	the	subpackage	must	be	used.	For	example,	if	the	module
Sound.Filters.vocoder	needs	to	use	the	echo	module	in	the
Sound.Effects	package,	it	can	use	from	Sound.Effects	import
echo.

6.4.3	Packages	in	Multiple	Directories
Packages	support	one	more	special	attribute,	__path__.	This	is	initialized	to
be	a	list	containing	the	name	of	the	directory	holding	the	package's	__init__.py
before	the	code	in	that	file	is	executed.	This	variable	can	be	modified;	doing	so
affects	future	searches	for	modules	and	subpackages	contained	in	the	package.

While	this	feature	is	not	often	needed,	it	can	be	used	to	extend	the	set	of	modules
found	in	a	package.

Footnotes

...	somewhere.6.1
In	fact	function	definitions	are	also	`statements'	that	are	`executed';	the
execution	enters	the	function	name	in	the	module's	global	symbol	table.

Python	Tutorial
Previous:	5.	Data	Structures	Up:	Python	Tutorial	Next:	7.	Input	and	Output

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.	Modules	Up:	Python	Tutorial	Next:	8.	Errors	and	Exceptions

Subsections

7.1	Fancier	Output	Formatting
7.2	Reading	and	Writing	Files

7.2.1	Methods	of	File	Objects
7.2.2	The	pickle	Module

7.	Input	and	Output
There	are	several	ways	to	present	the	output	of	a	program;	data	can	be	printed	in
a	human-readable	form,	or	written	to	a	file	for	future	use.	This	chapter	will
discuss	some	of	the	possibilities.

7.1	Fancier	Output	Formatting
So	far	we've	encountered	two	ways	of	writing	values:	expression	statements	and
the	print	statement.	(A	third	way	is	using	the	write()	method	of	file
objects;	the	standard	output	file	can	be	referenced	as	sys.stdout.	See	the
Library	Reference	for	more	information	on	this.)

Often	you'll	want	more	control	over	the	formatting	of	your	output	than	simply
printing	space-separated	values.	There	are	two	ways	to	format	your	output;	the
first	way	is	to	do	all	the	string	handling	yourself;	using	string	slicing	and
concatenation	operations	you	can	create	any	lay-out	you	can	imagine.	The
standard	module	string	contains	some	useful	operations	for	padding	strings	to
a	given	column	width;	these	will	be	discussed	shortly.	The	second	way	is	to	use
the	%	operator	with	a	string	as	the	left	argument.	The	%	operator	interprets	the
left	argument	much	like	a	sprintf()-style	format	string	to	be	applied	to	the
right	argument,	and	returns	the	string	resulting	from	this	formatting	operation.

One	question	remains,	of	course:	how	do	you	convert	values	to	strings?	Luckily,
Python	has	ways	to	convert	any	value	to	a	string:	pass	it	to	the	repr()	or
str()	functions.	Reverse	quotes	(``)	are	equivalent	to	repr(),	but	their	use
is	discouraged.

The	str()	function	is	meant	to	return	representations	of	values	which	are	fairly
human-readable,	while	repr()	is	meant	to	generate	representations	which	can
be	read	by	the	interpreter	(or	will	force	a	SyntaxError	if	there	is	not
equivalent	syntax).	For	objects	which	don't	have	a	particular	representation	for
human	consumption,	str()	will	return	the	same	value	as	repr().	Many
values,	such	as	numbers	or	structures	like	lists	and	dictionaries,	have	the	same
representation	using	either	function.	Strings	and	floating	point	numbers,	in
particular,	have	two	distinct	representations.

Some	examples:

>>>	s	=	'Hello,	world.'

>>>	str(s)

'Hello,	world.'

>>>	repr(s)

"'Hello,	world.'"

>>>	str(0.1)

'0.1'

>>>	repr(0.1)

'0.10000000000000001'

>>>	x	=	10	*	3.25

>>>	y	=	200	*	200

>>>	s	=	'The	value	of	x	is	'	+	repr(x)	+	',	and	y	is	'	+	repr(y)	+	'...'

>>>	print	s

The	value	of	x	is	32.5,	and	y	is	40000...

>>>	#	The	repr()	of	a	string	adds	string	quotes	and	backslashes:

...	hello	=	'hello,	world\n'

>>>	hellos	=	repr(hello)

>>>	print	hellos

'hello,	world\n'

>>>	#	The	argument	to	repr()	may	be	any	Python	object:

...	repr((x,	y,	('spam',	'eggs')))

"(32.5,	40000,	('spam',	'eggs'))"

>>>	#	reverse	quotes	are	convenient	in	interactive	sessions:

...	`x,	y,	('spam',	'eggs')`

"(32.5,	40000,	('spam',	'eggs'))"

Here	are	two	ways	to	write	a	table	of	squares	and	cubes:

>>>	for	x	in	range(1,	11):

...					print	repr(x).rjust(2),	repr(x*x).rjust(3),

...					#	Note	trailing	comma	on	previous	line

...					print	repr(x*x*x).rjust(4)

...

	1			1				1

	2			4				8

	3			9			27

	4		16			64

	5		25		125

	6		36		216

	7		49		343

	8		64		512

	9		81		729

10	100	1000

>>>	for	x	in	range(1,11):

...					print	'%2d	%3d	%4d'	%	(x,	x*x,	x*x*x)

...	

	1			1				1

	2			4				8

	3			9			27

	4		16			64

	5		25		125

	6		36		216

	7		49		343

	8		64		512

	9		81		729

10	100	1000

(Note	that	one	space	between	each	column	was	added	by	the	way	print	works:
it	always	adds	spaces	between	its	arguments.)

This	example	demonstrates	the	rjust()	method	of	string	objects,	which	right-
justifies	a	string	in	a	field	of	a	given	width	by	padding	it	with	spaces	on	the	left.
There	are	similar	methods	ljust()	and	center().	These	methods	do	not
write	anything,	they	just	return	a	new	string.	If	the	input	string	is	too	long,	they
don't	truncate	it,	but	return	it	unchanged;	this	will	mess	up	your	column	lay-out
but	that's	usually	better	than	the	alternative,	which	would	be	lying	about	a	value.
(If	you	really	want	truncation	you	can	always	add	a	slice	operation,	as	in
"x.ljust(n)[:n]".)

There	is	another	method,	zfill(),	which	pads	a	numeric	string	on	the	left
with	zeros.	It	understands	about	plus	and	minus	signs:

>>>	'12'.zfill(5)

'00012'

>>>	'-3.14'.zfill(7)

'-003.14'

>>>	'3.14159265359'.zfill(5)

'3.14159265359'

Using	the	%	operator	looks	like	this:

>>>	import	math

>>>	print	'The	value	of	PI	is	approximately	%5.3f.'	%	math.pi

The	value	of	PI	is	approximately	3.142.

If	there	is	more	than	one	format	in	the	string,	you	need	to	pass	a	tuple	as	right
operand,	as	in	this	example:

>>>	table	=	{'Sjoerd':	4127,	'Jack':	4098,	'Dcab':	7678}

>>>	for	name,	phone	in	table.items():

...					print	'%-10s	==>	%10d'	%	(name,	phone)

...	

Jack							==>							4098

Dcab							==>							7678

Sjoerd					==>							4127

Most	formats	work	exactly	as	in	C	and	require	that	you	pass	the	proper	type;
however,	if	you	don't	you	get	an	exception,	not	a	core	dump.	The	%s	format	is
more	relaxed:	if	the	corresponding	argument	is	not	a	string	object,	it	is	converted
to	string	using	the	str()	built-in	function.	Using	*	to	pass	the	width	or

precision	in	as	a	separate	(integer)	argument	is	supported.	The	C	formats	%n	and
%p	are	not	supported.

If	you	have	a	really	long	format	string	that	you	don't	want	to	split	up,	it	would	be
nice	if	you	could	reference	the	variables	to	be	formatted	by	name	instead	of	by
position.	This	can	be	done	by	using	form	%(name)format,	as	shown	here:

>>>	table	=	{'Sjoerd':	4127,	'Jack':	4098,	'Dcab':	8637678}

>>>	print	'Jack:	%(Jack)d;	Sjoerd:	%(Sjoerd)d;	Dcab:	%(Dcab)d'	%	table

Jack:	4098;	Sjoerd:	4127;	Dcab:	8637678

This	is	particularly	useful	in	combination	with	the	new	built-in	vars()
function,	which	returns	a	dictionary	containing	all	local	variables.

7.2	Reading	and	Writing	Files
open()	returns	a	file	object,	and	is	most	commonly	used	with	two	arguments:
"open(filename,	mode)".

>>>	f=open('/tmp/workfile',	'w')

>>>	print	f

<open	file	'/tmp/workfile',	mode	'w'	at	80a0960>

The	first	argument	is	a	string	containing	the	filename.	The	second	argument	is
another	string	containing	a	few	characters	describing	the	way	in	which	the	file
will	be	used.	mode	can	be	'r'	when	the	file	will	only	be	read,	'w'	for	only
writing	(an	existing	file	with	the	same	name	will	be	erased),	and	'a'	opens	the
file	for	appending;	any	data	written	to	the	file	is	automatically	added	to	the	end.
'r+'	opens	the	file	for	both	reading	and	writing.	The	mode	argument	is
optional;	'r'	will	be	assumed	if	it's	omitted.

On	Windows	and	the	Macintosh,	'b'	appended	to	the	mode	opens	the	file	in
binary	mode,	so	there	are	also	modes	like	'rb',	'wb',	and	'r+b'.	Windows
makes	a	distinction	between	text	and	binary	files;	the	end-of-line	characters	in
text	files	are	automatically	altered	slightly	when	data	is	read	or	written.	This
behind-the-scenes	modification	to	file	data	is	fine	for	ASCII	text	files,	but	it'll
corrupt	binary	data	like	that	in	JPEGs	or	.EXE	files.	Be	very	careful	to	use
binary	mode	when	reading	and	writing	such	files.	(Note	that	the	precise
semantics	of	text	mode	on	the	Macintosh	depends	on	the	underlying	C	library
being	used.)

7.2.1	Methods	of	File	Objects
The	rest	of	the	examples	in	this	section	will	assume	that	a	file	object	called	f	has
already	been	created.

To	read	a	file's	contents,	call	f.read(size),	which	reads	some	quantity	of	data
and	returns	it	as	a	string.	size	is	an	optional	numeric	argument.	When	size	is
omitted	or	negative,	the	entire	contents	of	the	file	will	be	read	and	returned;	it's
your	problem	if	the	file	is	twice	as	large	as	your	machine's	memory.	Otherwise,
at	most	size	bytes	are	read	and	returned.	If	the	end	of	the	file	has	been	reached,
f.read()	will	return	an	empty	string	("").

>>>	f.read()

'This	is	the	entire	file.\n'

>>>	f.read()

''

f.readline()	reads	a	single	line	from	the	file;	a	newline	character	(\n)	is
left	at	the	end	of	the	string,	and	is	only	omitted	on	the	last	line	of	the	file	if	the
file	doesn't	end	in	a	newline.	This	makes	the	return	value	unambiguous;	if
f.readline()	returns	an	empty	string,	the	end	of	the	file	has	been	reached,
while	a	blank	line	is	represented	by	'\n',	a	string	containing	only	a	single
newline.

>>>	f.readline()

'This	is	the	first	line	of	the	file.\n'

>>>	f.readline()

'Second	line	of	the	file\n'

>>>	f.readline()

''

f.readlines()	returns	a	list	containing	all	the	lines	of	data	in	the	file.	If
given	an	optional	parameter	sizehint,	it	reads	that	many	bytes	from	the	file	and
enough	more	to	complete	a	line,	and	returns	the	lines	from	that.	This	is	often
used	to	allow	efficient	reading	of	a	large	file	by	lines,	but	without	having	to	load
the	entire	file	in	memory.	Only	complete	lines	will	be	returned.

>>>	f.readlines()

['This	is	the	first	line	of	the	file.\n',	'Second	line	of	the	file\n']

f.write(string)	writes	the	contents	of	string	to	the	file,	returning	None.

>>>	f.write('This	is	a	test\n')

To	write	something	other	than	a	string,	it	needs	to	be	converted	to	a	string	first:

>>>	value	=	('the	answer',	42)

>>>	s	=	str(value)

>>>	f.write(s)

f.tell()	returns	an	integer	giving	the	file	object's	current	position	in	the	file,
measured	in	bytes	from	the	beginning	of	the	file.	To	change	the	file	object's
position,	use	"f.seek(offset,	from_what)".	The	position	is	computed	from
adding	offset	to	a	reference	point;	the	reference	point	is	selected	by	the
from_what	argument.	A	from_what	value	of	0	measures	from	the	beginning	of
the	file,	1	uses	the	current	file	position,	and	2	uses	the	end	of	the	file	as	the
reference	point.	from_what	can	be	omitted	and	defaults	to	0,	using	the	beginning
of	the	file	as	the	reference	point.

>>>	f	=	open('/tmp/workfile',	'r+')

>>>	f.write('0123456789abcdef')

>>>	f.seek(5)					#	Go	to	the	6th	byte	in	the	file

>>>	f.read(1)								

'5'

>>>	f.seek(-3,	2)	#	Go	to	the	3rd	byte	before	the	end

>>>	f.read(1)

'd'

When	you're	done	with	a	file,	call	f.close()	to	close	it	and	free	up	any
system	resources	taken	up	by	the	open	file.	After	calling	f.close(),	attempts
to	use	the	file	object	will	automatically	fail.

>>>	f.close()

>>>	f.read()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ValueError:	I/O	operation	on	closed	file

File	objects	have	some	additional	methods,	such	as	isatty()	and
truncate()	which	are	less	frequently	used;	consult	the	Library	Reference	for
a	complete	guide	to	file	objects.

7.2.2	The	pickle	Module

Strings	can	easily	be	written	to	and	read	from	a	file.	Numbers	take	a	bit	more
effort,	since	the	read()	method	only	returns	strings,	which	will	have	to	be
passed	to	a	function	like	int(),	which	takes	a	string	like	'123'	and	returns	its
numeric	value	123.	However,	when	you	want	to	save	more	complex	data	types
like	lists,	dictionaries,	or	class	instances,	things	get	a	lot	more	complicated.

Rather	than	have	users	be	constantly	writing	and	debugging	code	to	save
complicated	data	types,	Python	provides	a	standard	module	called	pickle.
This	is	an	amazing	module	that	can	take	almost	any	Python	object	(even	some
forms	of	Python	code!),	and	convert	it	to	a	string	representation;	this	process	is
called	pickling.	Reconstructing	the	object	from	the	string	representation	is	called
unpickling.	Between	pickling	and	unpickling,	the	string	representing	the	object
may	have	been	stored	in	a	file	or	data,	or	sent	over	a	network	connection	to	some
distant	machine.

If	you	have	an	object	x,	and	a	file	object	f	that's	been	opened	for	writing,	the
simplest	way	to	pickle	the	object	takes	only	one	line	of	code:

pickle.dump(x,	f)

To	unpickle	the	object	again,	if	f	is	a	file	object	which	has	been	opened	for
reading:

x	=	pickle.load(f)

(There	are	other	variants	of	this,	used	when	pickling	many	objects	or	when	you
don't	want	to	write	the	pickled	data	to	a	file;	consult	the	complete	documentation
for	pickle	in	the	Python	Library	Reference.)

pickle	is	the	standard	way	to	make	Python	objects	which	can	be	stored	and
reused	by	other	programs	or	by	a	future	invocation	of	the	same	program;	the
technical	term	for	this	is	a	persistent	object.	Because	pickle	is	so	widely	used,
many	authors	who	write	Python	extensions	take	care	to	ensure	that	new	data
types	such	as	matrices	can	be	properly	pickled	and	unpickled.

Python	Tutorial
Previous:	6.	Modules	Up:	Python	Tutorial	Next:	8.	Errors	and	Exceptions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.	Input	and	Output	Up:	Python	Tutorial	Next:	9.	Classes

Subsections

8.1	Syntax	Errors
8.2	Exceptions
8.3	Handling	Exceptions
8.4	Raising	Exceptions
8.5	User-defined	Exceptions
8.6	Defining	Clean-up	Actions

8.	Errors	and	Exceptions
Until	now	error	messages	haven't	been	more	than	mentioned,	but	if	you	have
tried	out	the	examples	you	have	probably	seen	some.	There	are	(at	least)	two
distinguishable	kinds	of	errors:	syntax	errors	and	exceptions.

8.1	Syntax	Errors
Syntax	errors,	also	known	as	parsing	errors,	are	perhaps	the	most	common	kind
of	complaint	you	get	while	you	are	still	learning	Python:

>>>	while	True	print	'Hello	world'

		File	"<stdin>",	line	1,	in	?

				while	True	print	'Hello	world'

																			^

SyntaxError:	invalid	syntax

The	parser	repeats	the	offending	line	and	displays	a	little	`arrow'	pointing	at	the
earliest	point	in	the	line	where	the	error	was	detected.	The	error	is	caused	by	(or
at	least	detected	at)	the	token	preceding	the	arrow:	in	the	example,	the	error	is
detected	at	the	keyword	print,	since	a	colon	(":")	is	missing	before	it.	File
name	and	line	number	are	printed	so	you	know	where	to	look	in	case	the	input
came	from	a	script.

8.2	Exceptions
Even	if	a	statement	or	expression	is	syntactically	correct,	it	may	cause	an	error
when	an	attempt	is	made	to	execute	it.	Errors	detected	during	execution	are
called	exceptions	and	are	not	unconditionally	fatal:	you	will	soon	learn	how	to
handle	them	in	Python	programs.	Most	exceptions	are	not	handled	by	programs,
however,	and	result	in	error	messages	as	shown	here:

>>>	10	*	(1/0)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ZeroDivisionError:	integer	division	or	modulo	by	zero

>>>	4	+	spam*3

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

NameError:	name	'spam'	is	not	defined

>>>	'2'	+	2

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

TypeError:	cannot	concatenate	'str'	and	'int'	objects

The	last	line	of	the	error	message	indicates	what	happened.	Exceptions	come	in
different	types,	and	the	type	is	printed	as	part	of	the	message:	the	types	in	the
example	are	ZeroDivisionError,	NameError	and	TypeError.	The
string	printed	as	the	exception	type	is	the	name	of	the	built-in	exception	that
occurred.	This	is	true	for	all	built-in	exceptions,	but	need	not	be	true	for	user-
defined	exceptions	(although	it	is	a	useful	convention).	Standard	exception
names	are	built-in	identifiers	(not	reserved	keywords).

The	rest	of	the	line	is	a	detail	whose	interpretation	depends	on	the	exception
type;	its	meaning	is	dependent	on	the	exception	type.

The	preceding	part	of	the	error	message	shows	the	context	where	the	exception
happened,	in	the	form	of	a	stack	backtrace.	In	general	it	contains	a	stack
backtrace	listing	source	lines;	however,	it	will	not	display	lines	read	from
standard	input.

The	Python	Library	Reference	lists	the	built-in	exceptions	and	their	meanings.

8.3	Handling	Exceptions
It	is	possible	to	write	programs	that	handle	selected	exceptions.	Look	at	the
following	example,	which	asks	the	user	for	input	until	a	valid	integer	has	been
entered,	but	allows	the	user	to	interrupt	the	program	(using	Control-C	or
whatever	the	operating	system	supports);	note	that	a	user-generated	interruption
is	signalled	by	raising	the	KeyboardInterrupt	exception.

>>>	while	True:

...					try:

...									x	=	int(raw_input("Please	enter	a	number:	"))

...									break

...					except	ValueError:

...									print	"Oops!	That	was	no	valid	number.		Try	again..."

...

The	try	statement	works	as	follows.

First,	the	try	clause	(the	statement(s)	between	the	try	and	except
keywords)	is	executed.

If	no	exception	occurs,	the	except	clause	is	skipped	and	execution	of	the
try	statement	is	finished.

If	an	exception	occurs	during	execution	of	the	try	clause,	the	rest	of	the
clause	is	skipped.	Then	if	its	type	matches	the	exception	named	after	the
except	keyword,	the	rest	of	the	try	clause	is	skipped,	the	except	clause	is
executed,	and	then	execution	continues	after	the	try	statement.

If	an	exception	occurs	which	does	not	match	the	exception	named	in	the
except	clause,	it	is	passed	on	to	outer	try	statements;	if	no	handler	is
found,	it	is	an	unhandled	exception	and	execution	stops	with	a	message	as
shown	above.

A	try	statement	may	have	more	than	one	except	clause,	to	specify	handlers	for
different	exceptions.	At	most	one	handler	will	be	executed.	Handlers	only	handle
exceptions	that	occur	in	the	corresponding	try	clause,	not	in	other	handlers	of	the
same	try	statement.	An	except	clause	may	name	multiple	exceptions	as	a
parenthesized	list,	for	example:

...	except	(RuntimeError,	TypeError,	NameError):

...					pass

The	last	except	clause	may	omit	the	exception	name(s),	to	serve	as	a	wildcard.
Use	this	with	extreme	caution,	since	it	is	easy	to	mask	a	real	programming	error
in	this	way!	It	can	also	be	used	to	print	an	error	message	and	then	re-raise	the
exception	(allowing	a	caller	to	handle	the	exception	as	well):

import	sys

try:

				f	=	open('myfile.txt')

				s	=	f.readline()

				i	=	int(s.strip())

except	IOError,	(errno,	strerror):

				print	"I/O	error(%s):	%s"	%	(errno,	strerror)

except	ValueError:

				print	"Could	not	convert	data	to	an	integer."

except:

				print	"Unexpected	error:",	sys.exc_info()[0]

				raise

The	try	...	except	statement	has	an	optional	else	clause,	which,	when	present,
must	follow	all	except	clauses.	It	is	useful	for	code	that	must	be	executed	if	the
try	clause	does	not	raise	an	exception.	For	example:

for	arg	in	sys.argv[1:]:

				try:

								f	=	open(arg,	'r')

				except	IOError:

								print	'cannot	open',	arg

				else:

								print	arg,	'has',	len(f.readlines()),	'lines'

								f.close()

The	use	of	the	else	clause	is	better	than	adding	additional	code	to	the	try
clause	because	it	avoids	accidentally	catching	an	exception	that	wasn't	raised	by
the	code	being	protected	by	the	try	...	except	statement.

When	an	exception	occurs,	it	may	have	an	associated	value,	also	known	as	the
exception's	argument.	The	presence	and	type	of	the	argument	depend	on	the
exception	type.

The	except	clause	may	specify	a	variable	after	the	exception	name	(or	list).	The
variable	is	bound	to	an	exception	instance	with	the	arguments	stored	in

instance.args.	For	convenience,	the	exception	instance	defines
__getitem__	and	__str__	so	the	arguments	can	be	accessed	or	printed
directly	without	having	to	reference	.args.

>>>	try:

...				raise	Exception('spam',	'eggs')

...	except	Exception,	inst:

...				print	type(inst)					#	the	exception	instance

...				print	inst.args						#	arguments	stored	in	.args

...				print	inst											#	__str__	allows	args	to	printed	directly

...				x,	y	=	inst										#	__getitem__	allows	args	to	be	unpacked	directly

...				print	'x	=',	x

...				print	'y	=',	y

...

<type	'instance'>

('spam',	'eggs')

('spam',	'eggs')

x	=	spam

y	=	eggs

If	an	exception	has	an	argument,	it	is	printed	as	the	last	part	(`detail')	of	the
message	for	unhandled	exceptions.

Exception	handlers	don't	just	handle	exceptions	if	they	occur	immediately	in	the
try	clause,	but	also	if	they	occur	inside	functions	that	are	called	(even	indirectly)
in	the	try	clause.	For	example:

>>>	def	this_fails():

...					x	=	1/0

...	

>>>	try:

...					this_fails()

...	except	ZeroDivisionError,	detail:

...					print	'Handling	run-time	error:',	detail

...	

Handling	run-time	error:	integer	division	or	modulo

8.4	Raising	Exceptions
The	raise	statement	allows	the	programmer	to	force	a	specified	exception	to
occur.	For	example:

>>>	raise	NameError,	'HiThere'

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

NameError:	HiThere

The	first	argument	to	raise	names	the	exception	to	be	raised.	The	optional
second	argument	specifies	the	exception's	argument.

If	you	need	to	determine	whether	an	exception	was	raised	but	don't	intend	to
handle	it,	a	simpler	form	of	the	raise	statement	allows	you	to	re-raise	the
exception:

>>>	try:

...					raise	NameError,	'HiThere'

...	except	NameError:

...					print	'An	exception	flew	by!'

...					raise

...

An	exception	flew	by!

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	2,	in	?

NameError:	HiThere

8.5	User-defined	Exceptions
Programs	may	name	their	own	exceptions	by	creating	a	new	exception	class.
Exceptions	should	typically	be	derived	from	the	Exception	class,	either
directly	or	indirectly.	For	example:

>>>	class	MyError(Exception):

...					def	__init__(self,	value):

...									self.value	=	value

...					def	__str__(self):

...									return	repr(self.value)

...	

>>>	try:

...					raise	MyError(2*2)

...	except	MyError,	e:

...					print	'My	exception	occurred,	value:',	e.value

...	

My	exception	occurred,	value:	4

>>>	raise	MyError,	'oops!'

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

__main__.MyError:	'oops!'

Exception	classes	can	be	defined	which	do	anything	any	other	class	can	do,	but
are	usually	kept	simple,	often	only	offering	a	number	of	attributes	that	allow
information	about	the	error	to	be	extracted	by	handlers	for	the	exception.	When
creating	a	module	which	can	raise	several	distinct	errors,	a	common	practice	is
to	create	a	base	class	for	exceptions	defined	by	that	module,	and	subclass	that	to
create	specific	exception	classes	for	different	error	conditions:

class	Error(Exception):

				"""Base	class	for	exceptions	in	this	module."""

				pass

class	InputError(Error):

				"""Exception	raised	for	errors	in	the	input.

				Attributes:

								expression	--	input	expression	in	which	the	error	occurred

								message	--	explanation	of	the	error

				"""

				def	__init__(self,	expression,	message):

								self.expression	=	expression

								self.message	=	message

class	TransitionError(Error):

				"""Raised	when	an	operation	attempts	a	state	transition	that's	not

				allowed.

				Attributes:

								previous	--	state	at	beginning	of	transition

								next	--	attempted	new	state

								message	--	explanation	of	why	the	specific	transition	is	not	allowed

				"""

				def	__init__(self,	previous,	next,	message):

								self.previous	=	previous

								self.next	=	next

								self.message	=	message

Most	exceptions	are	defined	with	names	that	end	in	``Error,''	similar	to	the
naming	of	the	standard	exceptions.

Many	standard	modules	define	their	own	exceptions	to	report	errors	that	may
occur	in	functions	they	define.	More	information	on	classes	is	presented	in
chapter	9,	``Classes.''

8.6	Defining	Clean-up	Actions
The	try	statement	has	another	optional	clause	which	is	intended	to	define
clean-up	actions	that	must	be	executed	under	all	circumstances.	For	example:

>>>	try:

...					raise	KeyboardInterrupt

...	finally:

...					print	'Goodbye,	world!'

...	

Goodbye,	world!

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	2,	in	?

KeyboardInterrupt

A	finally	clause	is	executed	whether	or	not	an	exception	has	occurred	in	the	try
clause.	When	an	exception	has	occurred,	it	is	re-raised	after	the	finally	clause	is
executed.	The	finally	clause	is	also	executed	``on	the	way	out''	when	the	try
statement	is	left	via	a	break	or	return	statement.

The	code	in	the	finally	clause	is	useful	for	releasing	external	resources	(such	as
files	or	network	connections),	regardless	of	whether	or	not	the	use	of	the
resource	was	successful.

A	try	statement	must	either	have	one	or	more	except	clauses	or	one	finally
clause,	but	not	both.

Python	Tutorial
Previous:	7.	Input	and	Output	Up:	Python	Tutorial	Next:	9.	Classes

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.	Errors	and	Exceptions	Up:	Python	Tutorial	Next:	10.	Brief	Tour	of

Subsections

9.1	A	Word	About	Terminology
9.2	Python	Scopes	and	Name	Spaces
9.3	A	First	Look	at	Classes

9.3.1	Class	Definition	Syntax
9.3.2	Class	Objects
9.3.3	Instance	Objects
9.3.4	Method	Objects

9.4	Random	Remarks
9.5	Inheritance

9.5.1	Multiple	Inheritance
9.6	Private	Variables
9.7	Odds	and	Ends
9.8	Exceptions	Are	Classes	Too
9.9	Iterators
9.10	Generators
9.11	Generator	Expressions

9.	Classes
Python's	class	mechanism	adds	classes	to	the	language	with	a	minimum	of	new
syntax	and	semantics.	It	is	a	mixture	of	the	class	mechanisms	found	in	C++	and
Modula-3.	As	is	true	for	modules,	classes	in	Python	do	not	put	an	absolute
barrier	between	definition	and	user,	but	rather	rely	on	the	politeness	of	the	user
not	to	``break	into	the	definition.''	The	most	important	features	of	classes	are
retained	with	full	power,	however:	the	class	inheritance	mechanism	allows
multiple	base	classes,	a	derived	class	can	override	any	methods	of	its	base	class
or	classes,	a	method	can	call	the	method	of	a	base	class	with	the	same	name.
Objects	can	contain	an	arbitrary	amount	of	private	data.

In	C++	terminology,	all	class	members	(including	the	data	members)	are	public,
and	all	member	functions	are	virtual.	There	are	no	special	constructors	or
destructors.	As	in	Modula-3,	there	are	no	shorthands	for	referencing	the	object's
members	from	its	methods:	the	method	function	is	declared	with	an	explicit	first
argument	representing	the	object,	which	is	provided	implicitly	by	the	call.	As	in
Smalltalk,	classes	themselves	are	objects,	albeit	in	the	wider	sense	of	the	word:
in	Python,	all	data	types	are	objects.	This	provides	semantics	for	importing	and
renaming.	Unlike	C++	and	Modula-3,	built-in	types	can	be	used	as	base	classes
for	extension	by	the	user.	Also,	like	in	C++	but	unlike	in	Modula-3,	most	built-in
operators	with	special	syntax	(arithmetic	operators,	subscripting	etc.)	can	be
redefined	for	class	instances.

9.1	A	Word	About	Terminology
Lacking	universally	accepted	terminology	to	talk	about	classes,	I	will	make
occasional	use	of	Smalltalk	and	C++	terms.	(I	would	use	Modula-3	terms,	since
its	object-oriented	semantics	are	closer	to	those	of	Python	than	C++,	but	I	expect
that	few	readers	have	heard	of	it.)

Objects	have	individuality,	and	multiple	names	(in	multiple	scopes)	can	be
bound	to	the	same	object.	This	is	known	as	aliasing	in	other	languages.	This	is
usually	not	appreciated	on	a	first	glance	at	Python,	and	can	be	safely	ignored
when	dealing	with	immutable	basic	types	(numbers,	strings,	tuples).	However,
aliasing	has	an	(intended!)	effect	on	the	semantics	of	Python	code	involving
mutable	objects	such	as	lists,	dictionaries,	and	most	types	representing	entities
outside	the	program	(files,	windows,	etc.).	This	is	usually	used	to	the	benefit	of
the	program,	since	aliases	behave	like	pointers	in	some	respects.	For	example,
passing	an	object	is	cheap	since	only	a	pointer	is	passed	by	the	implementation;
and	if	a	function	modifies	an	object	passed	as	an	argument,	the	caller	will	see	the
change	--	this	eliminates	the	need	for	two	different	argument	passing
mechanisms	as	in	Pascal.

9.2	Python	Scopes	and	Name
Spaces
Before	introducing	classes,	I	first	have	to	tell	you	something	about	Python's
scope	rules.	Class	definitions	play	some	neat	tricks	with	namespaces,	and	you
need	to	know	how	scopes	and	namespaces	work	to	fully	understand	what's	going
on.	Incidentally,	knowledge	about	this	subject	is	useful	for	any	advanced	Python
programmer.

Let's	begin	with	some	definitions.

A	namespace	is	a	mapping	from	names	to	objects.	Most	namespaces	are
currently	implemented	as	Python	dictionaries,	but	that's	normally	not	noticeable
in	any	way	(except	for	performance),	and	it	may	change	in	the	future.	Examples
of	namespaces	are:	the	set	of	built-in	names	(functions	such	as	abs(),	and
built-in	exception	names);	the	global	names	in	a	module;	and	the	local	names	in
a	function	invocation.	In	a	sense	the	set	of	attributes	of	an	object	also	form	a
namespace.	The	important	thing	to	know	about	namespaces	is	that	there	is
absolutely	no	relation	between	names	in	different	namespaces;	for	instance,	two
different	modules	may	both	define	a	function	``maximize''	without	confusion	--
users	of	the	modules	must	prefix	it	with	the	module	name.

By	the	way,	I	use	the	word	attribute	for	any	name	following	a	dot	--	for	example,
in	the	expression	z.real,	real	is	an	attribute	of	the	object	z.	Strictly
speaking,	references	to	names	in	modules	are	attribute	references:	in	the
expression	modname.funcname,	modname	is	a	module	object	and
funcname	is	an	attribute	of	it.	In	this	case	there	happens	to	be	a	straightforward
mapping	between	the	module's	attributes	and	the	global	names	defined	in	the
module:	they	share	the	same	namespace!	9.1

Attributes	may	be	read-only	or	writable.	In	the	latter	case,	assignment	to
attributes	is	possible.	Module	attributes	are	writable:	you	can	write
"modname.the_answer	=	42".	Writable	attributes	may	also	be	deleted
with	the	del	statement.	For	example,	"del	modname.the_answer"	will
remove	the	attribute	the_answer	from	the	object	named	by	modname.

Name	spaces	are	created	at	different	moments	and	have	different	lifetimes.	The
namespace	containing	the	built-in	names	is	created	when	the	Python	interpreter
starts	up,	and	is	never	deleted.	The	global	namespace	for	a	module	is	created
when	the	module	definition	is	read	in;	normally,	module	namespaces	also	last
until	the	interpreter	quits.	The	statements	executed	by	the	top-level	invocation	of
the	interpreter,	either	read	from	a	script	file	or	interactively,	are	considered	part
of	a	module	called	__main__,	so	they	have	their	own	global	namespace.	(The
built-in	names	actually	also	live	in	a	module;	this	is	called	__builtin__.)

The	local	namespace	for	a	function	is	created	when	the	function	is	called,	and
deleted	when	the	function	returns	or	raises	an	exception	that	is	not	handled
within	the	function.	(Actually,	forgetting	would	be	a	better	way	to	describe	what
actually	happens.)	Of	course,	recursive	invocations	each	have	their	own	local
namespace.

A	scope	is	a	textual	region	of	a	Python	program	where	a	namespace	is	directly
accessible.	``Directly	accessible''	here	means	that	an	unqualified	reference	to	a
name	attempts	to	find	the	name	in	the	namespace.

Although	scopes	are	determined	statically,	they	are	used	dynamically.	At	any
time	during	execution,	there	are	at	least	three	nested	scopes	whose	namespaces
are	directly	accessible:	the	innermost	scope,	which	is	searched	first,	contains	the
local	names;	the	namespaces	of	any	enclosing	functions,	which	are	searched
starting	with	the	nearest	enclosing	scope;	the	middle	scope,	searched	next,
contains	the	current	module's	global	names;	and	the	outermost	scope	(searched
last)	is	the	namespace	containing	built-in	names.

If	a	name	is	declared	global,	then	all	references	and	assignments	go	directly	to
the	middle	scope	containing	the	module's	global	names.	Otherwise,	all	variables
found	outside	of	the	innermost	scope	are	read-only.

Usually,	the	local	scope	references	the	local	names	of	the	(textually)	current
function.	Outside	of	functions,	the	local	scope	references	the	same	namespace	as
the	global	scope:	the	module's	namespace.	Class	definitions	place	yet	another
namespace	in	the	local	scope.

It	is	important	to	realize	that	scopes	are	determined	textually:	the	global	scope	of
a	function	defined	in	a	module	is	that	module's	namespace,	no	matter	from
where	or	by	what	alias	the	function	is	called.	On	the	other	hand,	the	actual

search	for	names	is	done	dynamically,	at	run	time	--	however,	the	language
definition	is	evolving	towards	static	name	resolution,	at	``compile''	time,	so	don't
rely	on	dynamic	name	resolution!	(In	fact,	local	variables	are	already	determined
statically.)

A	special	quirk	of	Python	is	that	assignments	always	go	into	the	innermost
scope.	Assignments	do	not	copy	data	--	they	just	bind	names	to	objects.	The
same	is	true	for	deletions:	the	statement	"del	x"	removes	the	binding	of	x	from
the	namespace	referenced	by	the	local	scope.	In	fact,	all	operations	that
introduce	new	names	use	the	local	scope:	in	particular,	import	statements	and
function	definitions	bind	the	module	or	function	name	in	the	local	scope.	(The
global	statement	can	be	used	to	indicate	that	particular	variables	live	in	the
global	scope.)

9.3	A	First	Look	at	Classes
Classes	introduce	a	little	bit	of	new	syntax,	three	new	object	types,	and	some
new	semantics.

9.3.1	Class	Definition	Syntax
The	simplest	form	of	class	definition	looks	like	this:

class	ClassName:

				<statement-1>

				.

				.

				.

				<statement-N>

Class	definitions,	like	function	definitions	(def	statements)	must	be	executed
before	they	have	any	effect.	(You	could	conceivably	place	a	class	definition	in	a
branch	of	an	if	statement,	or	inside	a	function.)

In	practice,	the	statements	inside	a	class	definition	will	usually	be	function
definitions,	but	other	statements	are	allowed,	and	sometimes	useful	--	we'll	come
back	to	this	later.	The	function	definitions	inside	a	class	normally	have	a	peculiar
form	of	argument	list,	dictated	by	the	calling	conventions	for	methods	--	again,
this	is	explained	later.

When	a	class	definition	is	entered,	a	new	namespace	is	created,	and	used	as	the
local	scope	--	thus,	all	assignments	to	local	variables	go	into	this	new
namespace.	In	particular,	function	definitions	bind	the	name	of	the	new	function
here.

When	a	class	definition	is	left	normally	(via	the	end),	a	class	object	is	created.
This	is	basically	a	wrapper	around	the	contents	of	the	namespace	created	by	the
class	definition;	we'll	learn	more	about	class	objects	in	the	next	section.	The
original	local	scope	(the	one	in	effect	just	before	the	class	definitions	was
entered)	is	reinstated,	and	the	class	object	is	bound	here	to	the	class	name	given
in	the	class	definition	header	(ClassName	in	the	example).

9.3.2	Class	Objects
Class	objects	support	two	kinds	of	operations:	attribute	references	and
instantiation.

Attribute	references	use	the	standard	syntax	used	for	all	attribute	references	in
Python:	obj.name.	Valid	attribute	names	are	all	the	names	that	were	in	the
class's	namespace	when	the	class	object	was	created.	So,	if	the	class	definition
looked	like	this:

class	MyClass:

				"A	simple	example	class"

				i	=	12345

				def	f(self):

								return	'hello	world'

then	MyClass.i	and	MyClass.f	are	valid	attribute	references,	returning	an
integer	and	a	method	object,	respectively.	Class	attributes	can	also	be	assigned
to,	so	you	can	change	the	value	of	MyClass.i	by	assignment.	__doc__	is
also	a	valid	attribute,	returning	the	docstring	belonging	to	the	class:	"A
simple	example	class".

Class	instantiation	uses	function	notation.	Just	pretend	that	the	class	object	is	a
parameterless	function	that	returns	a	new	instance	of	the	class.	For	example
(assuming	the	above	class):

x	=	MyClass()

creates	a	new	instance	of	the	class	and	assigns	this	object	to	the	local	variable	x.

The	instantiation	operation	(``calling''	a	class	object)	creates	an	empty	object.
Many	classes	like	to	create	objects	in	a	known	initial	state.	Therefore	a	class
may	define	a	special	method	named	__init__(),	like	this:

				def	__init__(self):

								self.data	=	[]

When	a	class	defines	an	__init__()	method,	class	instantiation	automatically
invokes	__init__()	for	the	newly-created	class	instance.	So	in	this	example,
a	new,	initialized	instance	can	be	obtained	by:

x	=	MyClass()

Of	course,	the	__init__()	method	may	have	arguments	for	greater	flexibility.
In	that	case,	arguments	given	to	the	class	instantiation	operator	are	passed	on	to
__init__().	For	example,

>>>	class	Complex:

...					def	__init__(self,	realpart,	imagpart):

...									self.r	=	realpart

...									self.i	=	imagpart

...	

>>>	x	=	Complex(3.0,	-4.5)

>>>	x.r,	x.i

(3.0,	-4.5)

9.3.3	Instance	Objects
Now	what	can	we	do	with	instance	objects?	The	only	operations	understood	by
instance	objects	are	attribute	references.	There	are	two	kinds	of	valid	attribute
names.

The	first	I'll	call	data	attributes.	These	correspond	to	``instance	variables''	in
Smalltalk,	and	to	``data	members''	in	C++.	Data	attributes	need	not	be	declared;
like	local	variables,	they	spring	into	existence	when	they	are	first	assigned	to.
For	example,	if	x	is	the	instance	of	MyClass	created	above,	the	following	piece
of	code	will	print	the	value	16,	without	leaving	a	trace:

x.counter	=	1

while	x.counter	<	10:

				x.counter	=	x.counter	*	2

print	x.counter

del	x.counter

The	second	kind	of	attribute	references	understood	by	instance	objects	are
methods.	A	method	is	a	function	that	``belongs	to''	an	object.	(In	Python,	the
term	method	is	not	unique	to	class	instances:	other	object	types	can	have
methods	as	well.	For	example,	list	objects	have	methods	called	append,	insert,
remove,	sort,	and	so	on.	However,	below,	we'll	use	the	term	method	exclusively
to	mean	methods	of	class	instance	objects,	unless	explicitly	stated	otherwise.)

Valid	method	names	of	an	instance	object	depend	on	its	class.	By	definition,	all
attributes	of	a	class	that	are	(user-defined)	function	objects	define	corresponding
methods	of	its	instances.	So	in	our	example,	x.f	is	a	valid	method	reference,
since	MyClass.f	is	a	function,	but	x.i	is	not,	since	MyClass.i	is	not.	But
x.f	is	not	the	same	thing	as	MyClass.f	--	it	is	a	method	object,	not	a	function
object.

9.3.4	Method	Objects
Usually,	a	method	is	called	immediately:

x.f()

In	our	example,	this	will	return	the	string	'hello	world'.	However,	it	is	not
necessary	to	call	a	method	right	away:	x.f	is	a	method	object,	and	can	be	stored
away	and	called	at	a	later	time.	For	example:

xf	=	x.f

while	True:

				print	xf()

will	continue	to	print	"hello	world"	until	the	end	of	time.

What	exactly	happens	when	a	method	is	called?	You	may	have	noticed	that
x.f()	was	called	without	an	argument	above,	even	though	the	function
definition	for	f	specified	an	argument.	What	happened	to	the	argument?	Surely
Python	raises	an	exception	when	a	function	that	requires	an	argument	is	called
without	any	--	even	if	the	argument	isn't	actually	used...

Actually,	you	may	have	guessed	the	answer:	the	special	thing	about	methods	is
that	the	object	is	passed	as	the	first	argument	of	the	function.	In	our	example,	the
call	x.f()	is	exactly	equivalent	to	MyClass.f(x).	In	general,	calling	a
method	with	a	list	of	n	arguments	is	equivalent	to	calling	the	corresponding
function	with	an	argument	list	that	is	created	by	inserting	the	method's	object
before	the	first	argument.

If	you	still	don't	understand	how	methods	work,	a	look	at	the	implementation	can
perhaps	clarify	matters.	When	an	instance	attribute	is	referenced	that	isn't	a	data
attribute,	its	class	is	searched.	If	the	name	denotes	a	valid	class	attribute	that	is	a
function	object,	a	method	object	is	created	by	packing	(pointers	to)	the	instance
object	and	the	function	object	just	found	together	in	an	abstract	object:	this	is	the
method	object.	When	the	method	object	is	called	with	an	argument	list,	it	is
unpacked	again,	a	new	argument	list	is	constructed	from	the	instance	object	and
the	original	argument	list,	and	the	function	object	is	called	with	this	new
argument	list.

9.4	Random	Remarks
Data	attributes	override	method	attributes	with	the	same	name;	to	avoid
accidental	name	conflicts,	which	may	cause	hard-to-find	bugs	in	large	programs,
it	is	wise	to	use	some	kind	of	convention	that	minimizes	the	chance	of	conflicts.
Possible	conventions	include	capitalizing	method	names,	prefixing	data	attribute
names	with	a	small	unique	string	(perhaps	just	an	underscore),	or	using	verbs	for
methods	and	nouns	for	data	attributes.

Data	attributes	may	be	referenced	by	methods	as	well	as	by	ordinary	users
(``clients'')	of	an	object.	In	other	words,	classes	are	not	usable	to	implement	pure
abstract	data	types.	In	fact,	nothing	in	Python	makes	it	possible	to	enforce	data
hiding	--	it	is	all	based	upon	convention.	(On	the	other	hand,	the	Python
implementation,	written	in	C,	can	completely	hide	implementation	details	and
control	access	to	an	object	if	necessary;	this	can	be	used	by	extensions	to	Python
written	in	C.)

Clients	should	use	data	attributes	with	care	--	clients	may	mess	up	invariants
maintained	by	the	methods	by	stamping	on	their	data	attributes.	Note	that	clients
may	add	data	attributes	of	their	own	to	an	instance	object	without	affecting	the
validity	of	the	methods,	as	long	as	name	conflicts	are	avoided	--	again,	a	naming
convention	can	save	a	lot	of	headaches	here.

There	is	no	shorthand	for	referencing	data	attributes	(or	other	methods!)	from
within	methods.	I	find	that	this	actually	increases	the	readability	of	methods:
there	is	no	chance	of	confusing	local	variables	and	instance	variables	when
glancing	through	a	method.

Conventionally,	the	first	argument	of	methods	is	often	called	self.	This	is
nothing	more	than	a	convention:	the	name	self	has	absolutely	no	special
meaning	to	Python.	(Note,	however,	that	by	not	following	the	convention	your
code	may	be	less	readable	by	other	Python	programmers,	and	it	is	also
conceivable	that	a	class	browser	program	be	written	which	relies	upon	such	a
convention.)

Any	function	object	that	is	a	class	attribute	defines	a	method	for	instances	of	that
class.	It	is	not	necessary	that	the	function	definition	is	textually	enclosed	in	the

class	definition:	assigning	a	function	object	to	a	local	variable	in	the	class	is	also
ok.	For	example:

#	Function	defined	outside	the	class

def	f1(self,	x,	y):

				return	min(x,	x+y)

class	C:

				f	=	f1

				def	g(self):

								return	'hello	world'

				h	=	g

Now	f,	g	and	h	are	all	attributes	of	class	C	that	refer	to	function	objects,	and
consequently	they	are	all	methods	of	instances	of	C	--	h	being	exactly	equivalent
to	g.	Note	that	this	practice	usually	only	serves	to	confuse	the	reader	of	a
program.

Methods	may	call	other	methods	by	using	method	attributes	of	the	self
argument:

class	Bag:

				def	__init__(self):

								self.data	=	[]

				def	add(self,	x):

								self.data.append(x)

				def	addtwice(self,	x):

								self.add(x)

								self.add(x)

Methods	may	reference	global	names	in	the	same	way	as	ordinary	functions.	The
global	scope	associated	with	a	method	is	the	module	containing	the	class
definition.	(The	class	itself	is	never	used	as	a	global	scope!)	While	one	rarely
encounters	a	good	reason	for	using	global	data	in	a	method,	there	are	many
legitimate	uses	of	the	global	scope:	for	one	thing,	functions	and	modules
imported	into	the	global	scope	can	be	used	by	methods,	as	well	as	functions	and
classes	defined	in	it.	Usually,	the	class	containing	the	method	is	itself	defined	in
this	global	scope,	and	in	the	next	section	we'll	find	some	good	reasons	why	a
method	would	want	to	reference	its	own	class!

9.5	Inheritance
Of	course,	a	language	feature	would	not	be	worthy	of	the	name	``class''	without
supporting	inheritance.	The	syntax	for	a	derived	class	definition	looks	as
follows:

class	DerivedClassName(BaseClassName):

				<statement-1>

				.

				.

				.

				<statement-N>

The	name	BaseClassName	must	be	defined	in	a	scope	containing	the	derived
class	definition.	Instead	of	a	base	class	name,	an	expression	is	also	allowed.	This
is	useful	when	the	base	class	is	defined	in	another	module,

class	DerivedClassName(modname.BaseClassName):

Execution	of	a	derived	class	definition	proceeds	the	same	as	for	a	base	class.
When	the	class	object	is	constructed,	the	base	class	is	remembered.	This	is	used
for	resolving	attribute	references:	if	a	requested	attribute	is	not	found	in	the
class,	it	is	searched	in	the	base	class.	This	rule	is	applied	recursively	if	the	base
class	itself	is	derived	from	some	other	class.

There's	nothing	special	about	instantiation	of	derived	classes:
DerivedClassName()	creates	a	new	instance	of	the	class.	Method
references	are	resolved	as	follows:	the	corresponding	class	attribute	is	searched,
descending	down	the	chain	of	base	classes	if	necessary,	and	the	method
reference	is	valid	if	this	yields	a	function	object.

Derived	classes	may	override	methods	of	their	base	classes.	Because	methods
have	no	special	privileges	when	calling	other	methods	of	the	same	object,	a
method	of	a	base	class	that	calls	another	method	defined	in	the	same	base	class,
may	in	fact	end	up	calling	a	method	of	a	derived	class	that	overrides	it.	(For	C++
programmers:	all	methods	in	Python	are	effectively	virtual.)

An	overriding	method	in	a	derived	class	may	in	fact	want	to	extend	rather	than
simply	replace	the	base	class	method	of	the	same	name.	There	is	a	simple	way	to

call	the	base	class	method	directly:	just	call
"BaseClassName.methodname(self,	arguments)".	This	is
occasionally	useful	to	clients	as	well.	(Note	that	this	only	works	if	the	base	class
is	defined	or	imported	directly	in	the	global	scope.)

9.5.1	Multiple	Inheritance
Python	supports	a	limited	form	of	multiple	inheritance	as	well.	A	class	definition
with	multiple	base	classes	looks	as	follows:

class	DerivedClassName(Base1,	Base2,	Base3):

				<statement-1>

				.

				.

				.

				<statement-N>

The	only	rule	necessary	to	explain	the	semantics	is	the	resolution	rule	used	for
class	attribute	references.	This	is	depth-first,	left-to-right.	Thus,	if	an	attribute	is
not	found	in	DerivedClassName,	it	is	searched	in	Base1,	then	(recursively)
in	the	base	classes	of	Base1,	and	only	if	it	is	not	found	there,	it	is	searched	in
Base2,	and	so	on.

(To	some	people	breadth	first	--	searching	Base2	and	Base3	before	the	base
classes	of	Base1	--	looks	more	natural.	However,	this	would	require	you	to
know	whether	a	particular	attribute	of	Base1	is	actually	defined	in	Base1	or	in
one	of	its	base	classes	before	you	can	figure	out	the	consequences	of	a	name
conflict	with	an	attribute	of	Base2.	The	depth-first	rule	makes	no	differences
between	direct	and	inherited	attributes	of	Base1.)

It	is	clear	that	indiscriminate	use	of	multiple	inheritance	is	a	maintenance
nightmare,	given	the	reliance	in	Python	on	conventions	to	avoid	accidental	name
conflicts.	A	well-known	problem	with	multiple	inheritance	is	a	class	derived
from	two	classes	that	happen	to	have	a	common	base	class.	While	it	is	easy
enough	to	figure	out	what	happens	in	this	case	(the	instance	will	have	a	single
copy	of	``instance	variables''	or	data	attributes	used	by	the	common	base	class),
it	is	not	clear	that	these	semantics	are	in	any	way	useful.

9.6	Private	Variables
There	is	limited	support	for	class-private	identifiers.	Any	identifier	of	the	form
__spam	(at	least	two	leading	underscores,	at	most	one	trailing	underscore)	is
textually	replaced	with	_classname__spam,	where	classname	is	the
current	class	name	with	leading	underscore(s)	stripped.	This	mangling	is	done
without	regard	of	the	syntactic	position	of	the	identifier,	so	it	can	be	used	to
define	class-private	instance	and	class	variables,	methods,	as	well	as	globals,	and
even	to	store	instance	variables	private	to	this	class	on	instances	of	other	classes.
Truncation	may	occur	when	the	mangled	name	would	be	longer	than	255
characters.	Outside	classes,	or	when	the	class	name	consists	of	only	underscores,
no	mangling	occurs.

Name	mangling	is	intended	to	give	classes	an	easy	way	to	define	``private''
instance	variables	and	methods,	without	having	to	worry	about	instance
variables	defined	by	derived	classes,	or	mucking	with	instance	variables	by	code
outside	the	class.	Note	that	the	mangling	rules	are	designed	mostly	to	avoid
accidents;	it	still	is	possible	for	a	determined	soul	to	access	or	modify	a	variable
that	is	considered	private.	This	can	even	be	useful	in	special	circumstances,	such
as	in	the	debugger,	and	that's	one	reason	why	this	loophole	is	not	closed.
(Buglet:	derivation	of	a	class	with	the	same	name	as	the	base	class	makes	use	of
private	variables	of	the	base	class	possible.)

Notice	that	code	passed	to	exec,	eval()	or	evalfile()	does	not	consider
the	classname	of	the	invoking	class	to	be	the	current	class;	this	is	similar	to	the
effect	of	the	global	statement,	the	effect	of	which	is	likewise	restricted	to	code
that	is	byte-compiled	together.	The	same	restriction	applies	to	getattr(),
setattr()	and	delattr(),	as	well	as	when	referencing	__dict__
directly.

9.7	Odds	and	Ends
Sometimes	it	is	useful	to	have	a	data	type	similar	to	the	Pascal	``record''	or	C
``struct'',	bundling	together	a	couple	of	named	data	items.	An	empty	class
definition	will	do	nicely:

class	Employee:

				pass

john	=	Employee()	#	Create	an	empty	employee	record

#	Fill	the	fields	of	the	record

john.name	=	'John	Doe'

john.dept	=	'computer	lab'

john.salary	=	1000

A	piece	of	Python	code	that	expects	a	particular	abstract	data	type	can	often	be
passed	a	class	that	emulates	the	methods	of	that	data	type	instead.	For	instance,
if	you	have	a	function	that	formats	some	data	from	a	file	object,	you	can	define	a
class	with	methods	read()	and	readline()	that	gets	the	data	from	a	string
buffer	instead,	and	pass	it	as	an	argument.

Instance	method	objects	have	attributes,	too:	m.im_self	is	the	object	of	which
the	method	is	an	instance,	and	m.im_func	is	the	function	object	corresponding
to	the	method.

9.8	Exceptions	Are	Classes	Too
User-defined	exceptions	are	identified	by	classes	as	well.	Using	this	mechanism
it	is	possible	to	create	extensible	hierarchies	of	exceptions.

There	are	two	new	valid	(semantic)	forms	for	the	raise	statement:

raise	Class,	instance

raise	instance

In	the	first	form,	instance	must	be	an	instance	of	Class	or	of	a	class	derived
from	it.	The	second	form	is	a	shorthand	for:

raise	instance.__class__,	instance

A	class	in	an	except	clause	is	compatible	with	an	exception	if	it	is	the	same	class
or	a	base	class	thereof	(but	not	the	other	way	around	--	an	except	clause	listing	a
derived	class	is	not	compatible	with	a	base	class).	For	example,	the	following
code	will	print	B,	C,	D	in	that	order:

class	B:

				pass

class	C(B):

				pass

class	D(C):

				pass

for	c	in	[B,	C,	D]:

				try:

								raise	c()

				except	D:

								print	"D"

				except	C:

								print	"C"

				except	B:

								print	"B"

Note	that	if	the	except	clauses	were	reversed	(with	"except	B"	first),	it	would
have	printed	B,	B,	B	--	the	first	matching	except	clause	is	triggered.

When	an	error	message	is	printed	for	an	unhandled	exception	which	is	a	class,
the	class	name	is	printed,	then	a	colon	and	a	space,	and	finally	the	instance

converted	to	a	string	using	the	built-in	function	str().

9.9	Iterators
By	now,	you've	probably	noticed	that	most	container	objects	can	be	looped	over
using	a	for	statement:

for	element	in	[1,	2,	3]:

				print	element

for	element	in	(1,	2,	3):

				print	element

for	key	in	{'one':1,	'two':2}:

				print	key

for	char	in	"123":

				print	char

for	line	in	open("myfile.txt"):

				print	line

This	style	of	access	is	clear,	concise,	and	convenient.	The	use	of	iterators
pervades	and	unifies	Python.	Behind	the	scenes,	the	for	statement	calls
iter()	on	the	container	object.	The	function	returns	an	iterator	object	that
defines	the	method	next()	which	accesses	elements	in	the	container	one	at	a
time.	When	there	are	no	more	elements,	next()	raises	a	StopIteration
exception	which	tells	the	for	loop	to	terminate.	This	example	shows	how	it	all
works:

>>>	s	=	'abc'

>>>	it	=	iter(s)

>>>	it

<iterator	object	at	0x00A1DB50>

>>>	it.next()

'a'

>>>	it.next()

'b'

>>>	it.next()

'c'

>>>	it.next()

Traceback	(most	recent	call	last):

		File	"<pyshell#6>",	line	1,	in	-toplevel-

				it.next()

StopIteration

Having	seen	the	mechanics	behind	the	iterator	protocol,	it	is	easy	to	add	iterator
behavior	to	your	classes.	Define	a	__iter__()	method	which	returns	an
object	with	a	next()	method.	If	the	class	defines	next(),	then

__iter__()	can	just	return	self:

class	Reverse:

				"Iterator	for	looping	over	a	sequence	backwards"

				def	__init__(self,	data):

								self.data	=	data

								self.index	=	len(data)

				def	__iter__(self):

								return	self

				def	next(self):

								if	self.index	==	0:

												raise	StopIteration

								self.index	=	self.index	-	1

								return	self.data[self.index]

>>>	for	char	in	Reverse('spam'):

...					print	char

...

m

a

p

s

9.10	Generators
Generators	are	a	simple	and	powerful	tool	for	creating	iterators.	They	are	written
like	regular	functions	but	use	the	yield	statement	whenever	they	want	to	return
data.	Each	time	next()	is	called,	the	generator	resumes	where	it	left-off	(it
remembers	all	the	data	values	and	which	statement	was	last	executed).	An
example	shows	that	generators	can	be	trivially	easy	to	create:

def	reverse(data):

				for	index	in	range(len(data)-1,	-1,	-1):

								yield	data[index]

	

>>>	for	char	in	reverse('golf'):

...					print	char

...

f

l

o

g

Anything	that	can	be	done	with	generators	can	also	be	done	with	class	based
iterators	as	described	in	the	previous	section.	What	makes	generators	so	compact
is	that	the	__iter__()	and	next()	methods	are	created	automatically.

Another	key	feature	is	that	the	local	variables	and	execution	state	are
automatically	saved	between	calls.	This	made	the	function	easier	to	write	and
much	more	clear	than	an	approach	using	class	variables	like	self.index	and
self.data.

In	addition	to	automatic	method	creation	and	saving	program	state,	when
generators	terminate,	they	automatically	raise	StopIteration.	In
combination,	these	features	make	it	easy	to	create	iterators	with	no	more	effort
than	writing	a	regular	function.

9.11	Generator	Expressions
Some	simple	generators	can	be	coded	succinctly	as	expressions	using	a	syntax
similar	to	list	comprehensions	but	with	parentheses	instead	of	brackets.	These
expressions	are	designed	for	situations	where	the	generator	is	used	right	away	by
an	enclosing	function.	Generator	expressions	are	more	compact	but	less	versatile
than	full	generator	definitions	and	tend	to	be	more	memory	friendly	than
equivalent	list	comprehensions.

Examples:

>>>	sum(i*i	for	i	in	range(10))																	#	sum	of	squares

285

>>>	xvec	=	[10,	20,	30]

>>>	yvec	=	[7,	5,	3]

>>>	sum(x*y	for	x,y	in	zip(xvec,	yvec))									#	dot	product

260

>>>	from	math	import	pi,	sin

>>>	sine_table	=	dict((x,	sin(x*pi/180))	for	x	in	range(0,	91))

>>>	unique_words	=	set(word		for	line	in	page		for	word	in	line.split())

>>>	valedictorian	=	max((student.gpa,	student.name)	for	student	in	graduates)

>>>	data	=	'golf'

>>>	list(data[i]	for	i	in	range(len(data)-1,-1,-1))

['f',	'l',	'o',	'g']

Footnotes

...	namespace!9.1
Except	for	one	thing.	Module	objects	have	a	secret	read-only	attribute
called	__dict__	which	returns	the	dictionary	used	to	implement	the
module's	namespace;	the	name	__dict__	is	an	attribute	but	not	a	global
name.	Obviously,	using	this	violates	the	abstraction	of	namespace
implementation,	and	should	be	restricted	to	things	like	post-mortem

debuggers.

Python	Tutorial
Previous:	8.	Errors	and	Exceptions	Up:	Python	Tutorial	Next:	10.	Brief	Tour	of

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	9.	Classes	Up:	Python	Tutorial	Next:	11.	Brief	Tour	of

Subsections

10.1	Operating	System	Interface
10.2	File	Wildcards
10.3	Command	Line	Arguments
10.4	Error	Output	Redirection	and	Program	Termination
10.5	String	Pattern	Matching
10.6	Mathematics
10.7	Internet	Access
10.8	Dates	and	Times
10.9	Data	Compression
10.10	Performance	Measurement
10.11	Quality	Control
10.12	Batteries	Included

10.	Brief	Tour	of	the	Standard
Library

10.1	Operating	System	Interface
The	os	module	provides	dozens	of	functions	for	interacting	with	the	operating
system:

>>>	import	os

>>>	os.system('time	0:02')

0

>>>	os.getcwd()						#	Return	the	current	working	directory

'C:\\Python24'

>>>	os.chdir('/server/accesslogs')

Be	sure	to	use	the	"import	os"	style	instead	of	"from	os	import	*".
This	will	keep	os.open()	from	shadowing	the	builtin	open()	function
which	operates	much	differently.

The	builtin	dir()	and	help()	functions	are	useful	as	interactive	aids	for
working	with	large	modules	like	os:

>>>	import	os

>>>	dir(os)

<returns	a	list	of	all	module	functions>

>>>	help(os)

<returns	an	extensive	manual	page	created	from	the	module's	docstrings>

For	daily	file	and	directory	management	tasks,	the	shutil	module	provides	a
higher	level	interface	that	is	easier	to	use:

>>>	import	shutil

>>>	shutil.copyfile('data.db',	'archive.db')

>>>	shutil.move('/build/executables',	'installdir')

10.2	File	Wildcards
The	glob	module	provides	a	function	for	making	file	lists	from	directory
wildcard	searches:

>>>	import	glob

>>>	glob.glob('*.py')

['primes.py',	'random.py',	'quote.py']

10.3	Command	Line	Arguments
Common	utility	scripts	often	invoke	processing	command	line	arguments.	These
arguments	are	stored	in	the	sys	module's	argv	attribute	as	a	list.	For	instance	the
following	output	results	from	running	"python	demo.py	one	two
three"	at	the	command	line:

>>>	import	sys

>>>	print	sys.argv

['demo.py',	'one',	'two',	'three']

The	getopt	module	processes	sys.argv	using	the	conventions	of	the	UNIX

getopt()	function.	More	powerful	and	flexible	command	line	processing	is
provided	by	the	optparse	module.

10.4	Error	Output	Redirection	and
Program	Termination
The	sys	module	also	has	attributes	for	stdin,	stdout,	and	stderr.	The	latter	is
useful	for	emitting	warnings	and	error	messages	to	make	them	visible	even	when
stdout	has	been	redirected:

>>>	sys.stderr.write('Warning,	log	file	not	found	starting	a	new	one')

Warning,	log	file	not	found	starting	a	new	one

The	most	direct	way	to	terminate	a	script	is	to	use	"sys.exit()".

10.5	String	Pattern	Matching
The	re	module	provides	regular	expression	tools	for	advanced	string	processing.
For	complex	matching	and	manipulation,	regular	expressions	offer	succinct,
optimized	solutions:

>>>	import	re

>>>	re.findall(r'\bf[a-z]*',	'which	foot	or	hand	fell	fastest')

['foot',	'fell',	'fastest']

>>>	re.sub(r'(\b[a-z]+)	\1',	r'\1',	'cat	in	the	the	hat')

'cat	in	the	hat'

When	only	simple	capabilities	are	needed,	string	methods	are	preferred	because
they	are	easier	to	read	and	debug:

>>>	'tea	for	too'.replace('too',	'two')

'tea	for	two'

10.6	Mathematics
The	math	module	gives	access	to	the	underlying	C	library	functions	for	floating
point	math:

>>>	import	math

>>>	math.cos(math.pi	/	4.0)

0.70710678118654757

>>>	math.log(1024,	2)

10.0

The	random	module	provides	tools	for	making	random	selections:

>>>	import	random

>>>	random.choice(['apple',	'pear',	'banana'])

'apple'

>>>	random.sample(xrange(100),	10)			#	sampling	without	replacement

[30,	83,	16,	4,	8,	81,	41,	50,	18,	33]

>>>	random.random()				#	random	float

0.17970987693706186

>>>	random.randrange(6)				#	random	integer	chosen	from	range(6)

4

10.7	Internet	Access
There	are	a	number	of	modules	for	accessing	the	internet	and	processing	internet
protocols.	Two	of	the	simplest	are	urllib2	for	retrieving	data	from	urls	and
smtplib	for	sending	mail:

>>>	import	urllib2

>>>	for	line	in	urllib2.urlopen('http://tycho.usno.navy.mil/cgi-bin/timer.pl'):

...					if	'EST'	in	line:						#	look	for	Eastern	Standard	Time

...									print	line

				

Nov.	25,	09:43:32	PM	EST

>>>	import	smtplib

>>>	server	=	smtplib.SMTP('localhost')

>>>	server.sendmail('soothsayer@example.org',	'jceasar@example.org',

"""To:	jceasar@example.org

From:	soothsayer@example.org

Beware	the	Ides	of	March.

""")

>>>	server.quit()

10.8	Dates	and	Times
The	datetime	module	supplies	classes	for	manipulating	dates	and	times	in
both	simple	and	complex	ways.	While	date	and	time	arithmetic	is	supported,	the
focus	of	the	implementation	is	on	efficient	member	extraction	for	output
formatting	and	manipulation.	The	module	also	supports	objects	that	are	time
zone	aware.

#	dates	are	easily	constructed	and	formatted

>>>	from	datetime	import	date

>>>	now	=	date.today()

>>>	now

datetime.date(2003,	12,	2)

>>>	now.strftime("%m-%d-%y	or	%d%b	%Y	is	a	%A	on	the	%d	day	of	%B")

'12-02-03	or	02Dec	2003	is	a	Tuesday	on	the	02	day	of	December'

#	dates	support	calendar	arithmetic

>>>	birthday	=	date(1964,	7,	31)

>>>	age	=	now	-	birthday

>>>	age.days

14368

10.9	Data	Compression
Common	data	archiving	and	compression	formats	are	directly	supported	by
modules	including:	zlib,	gzip,	bz2,	zipfile,	and	tarfile.

>>>	import	zlib

>>>	s	=	'witch	which	has	which	witches	wrist	watch'

>>>	len(s)

41

>>>	t	=	zlib.compress(s)

>>>	len(t)

37

>>>	zlib.decompress(t)

'witch	which	has	which	witches	wrist	watch'

>>>	zlib.crc32(t)

-1438085031

10.10	Performance	Measurement
Some	Python	users	develop	a	deep	interest	in	knowing	the	relative	performance
between	different	approaches	to	the	same	problem.	Python	provides	a
measurement	tool	that	answers	those	questions	immediately.

For	example,	it	may	be	tempting	to	use	the	tuple	packing	and	unpacking	feature
instead	of	the	traditional	approach	to	swapping	arguments.	The	timeit	module
quickly	demonstrates	a	modest	performance	advantage:

>>>	from	timeit	import	Timer

>>>	Timer('t=a;	a=b;	b=t',	'a=1;	b=2').timeit()

0.57535828626024577

>>>	Timer('a,b	=	b,a',	'a=1;	b=2').timeit()

0.54962537085770791

In	contrast	to	timeit's	fine	level	of	granularity,	the	profile	and	pstats
modules	provide	tools	for	identifying	time	critical	sections	in	larger	blocks	of
code.

10.11	Quality	Control
One	approach	for	developing	high	quality	software	is	to	write	tests	for	each
function	as	it	is	developed	and	to	run	those	tests	frequently	during	the
development	process.

The	doctest	module	provides	a	tool	for	scanning	a	module	and	validating
tests	embedded	in	a	program's	docstrings.	Test	construction	is	as	simple	as
cutting-and-pasting	a	typical	call	along	with	its	results	into	the	docstring.	This
improves	the	documentation	by	providing	the	user	with	an	example	and	it	allows
the	doctest	module	to	make	sure	the	code	remains	true	to	the	documentation:

def	average(values):

				"""Computes	the	arithmetic	mean	of	a	list	of	numbers.

				>>>	print	average([20,	30,	70])

				40.0

				"""

				return	sum(values,	0.0)	/	len(values)

import	doctest

doctest.testmod()			#	automatically	validate	the	embedded	tests

The	unittest	module	is	not	as	effortless	as	the	doctest	module,	but	it
allows	a	more	comprehensive	set	of	tests	to	be	maintained	in	a	separate	file:

import	unittest

class	TestStatisticalFunctions(unittest.TestCase):

				def	test_average(self):

								self.assertEqual(average([20,	30,	70]),	40.0)

								self.assertEqual(round(average([1,	5,	7]),	1),	4.3)

								self.assertRaises(ZeroDivisionError,	average,	[])

								self.assertRaises(TypeError,	average,	20,	30,	70)

unittest.main()	#	Calling	from	the	command	line	invokes	all	tests

10.12	Batteries	Included
Python	has	a	``batteries	included''	philosophy.	This	is	best	seen	through	the
sophisticated	and	robust	capabilities	of	its	larger	packages.	For	example:

The	xmlrpclib	and	SimpleXMLRPCServer	modules	make
implementing	remote	procedure	calls	into	an	almost	trivial	task.	Despite	the
names,	no	direct	knowledge	or	handling	of	XML	is	needed.
The	email	package	is	a	library	for	managing	email	messages,	including
MIME	and	other	RFC	2822-based	message	documents.	Unlike	smptlib
and	poplib	which	actually	send	and	receive	messages,	the	email	package
has	a	complete	toolset	for	building	or	decoding	complex	message	structures
(including	attachments)	and	for	implementing	internet	encoding	and	header
protocols.
The	xml.dom	and	xml.sax	packages	provide	robust	support	for	parsing
this	popular	data	interchange	format.	Likewise,	the	csv	module	supports
direct	reads	and	writes	in	a	common	database	format.	Together,	these
modules	and	packages	greatly	simplify	data	interchange	between	python
applications	and	other	tools.
Internationalization	is	supported	by	a	number	of	modules	including
gettext,	locale,	and	the	codecs	package.

Python	Tutorial
Previous:	9.	Classes	Up:	Python	Tutorial	Next:	11.	Brief	Tour	of

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.	Brief	Tour	of	Up:	Python	Tutorial	Next:	12.	What	Now?

Subsections

11.1	Output	Formatting
11.2	Templating
11.3	Working	with	Binary	Data	Record	Layouts
11.4	Multi-threading
11.5	Logging
11.6	Weak	References
11.7	Tools	for	Working	with	Lists
11.8	Decimal	Floating	Point	Arithmetic

11.	Brief	Tour	of	the	Standard
Library	-	Part	II
This	second	tour	covers	more	advanced	modules	that	support	professional
programming	needs.	These	modules	rarely	occur	in	small	scripts.

11.1	Output	Formatting
The	repr	module	provides	an	version	of	repr()	for	abbreviated	displays	of
large	or	deeply	nested	containers:

				>>>	import	repr			

				>>>	repr.repr(set('supercalifragilisticexpialidocious'))

				"set(['a',	'c',	'd',	'e',	'f',	'g',	...])"

The	pprint	module	offers	more	sophisticated	control	over	printing	both	built-
in	and	user	defined	objects	in	a	way	that	is	readable	by	the	interpreter.	When	the
result	is	longer	than	one	line,	the	``pretty	printer''	adds	line	breaks	and
indentation	to	more	clearly	reveal	data	structure:

				>>>	import	pprint

				>>>	t	=	[[[['black',	'cyan'],	'white',	['green',	'red']],	[['magenta',

				...					'yellow'],	'blue']]]

				...

				>>>	pprint.pprint(t,	width=30)

				[[[['black',	'cyan'],

							'white',

							['green',	'red']],

						[['magenta',	'yellow'],

							'blue']]]

The	textwrap	module	formats	paragraphs	of	text	to	fit	a	given	screen	width:

				>>>	import	textwrap

				>>>	doc	=	"""The	wrap()	method	is	just	like	fill()	except	that	it	returns

				...	a	list	of	strings	instead	of	one	big	string	with	newlines	to	separate

				...	the	wrapped	lines."""

				...

				>>>	print	textwrap.fill(doc,	width=40)

				The	wrap()	method	is	just	like	fill()

				except	that	it	returns	a	list	of	strings

				instead	of	one	big	string	with	newlines

				to	separate	the	wrapped	lines.

The	locale	module	accesses	a	database	of	culture	specific	data	formats.	The
grouping	attribute	of	locale's	format	function	provides	a	direct	way	of	formatting
numbers	with	group	separators:

				>>>	import	locale

				>>>	locale.setlocale(locale.LC_ALL,	'English_United	States.1252')

				'English_United	States.1252'

				>>>	conv	=	locale.localeconv()										#	get	a	mapping	of	conventions

				>>>	x	=	1234567.8

				>>>	locale.format("%d",	x,	grouping=True)

				'1,234,567'

				>>>	locale.format("%s%.*f",	(conv['currency_symbol'],

				...							conv['int_frac_digits'],	x),	grouping=True)

				'$1,234,567.80'

11.2	Templating
The	string	module	includes	a	versatile	Template	class	with	a	simplified
syntax	suitable	for	editing	by	end-users.	This	allows	users	to	customize	their
applications	without	having	to	alter	the	application.

The	format	uses	placeholder	names	formed	by	"$"	with	valid	Python	identifiers
(alphanumeric	characters	and	underscores).	Surrounding	the	placeholder	with
braces	allows	it	to	be	followed	by	more	alphanumeric	letters	with	no	intervening
spaces.	Writing	"$$"	creates	a	single	escaped	"$":

>>>	from	string	import	Template

>>>	t	=	Template('${village}folk	send	$$10	to	$cause.')

>>>	t.substitute(village='Nottingham',	cause='the	ditch	fund')

'Nottinghamfolk	send	$10	to	the	ditch	fund.'

The	substitute	method	raises	a	KeyError	when	a	placeholder	is	not
supplied	in	a	dictionary	or	a	keyword	argument.	For	mail-merge	style
applications,	user	supplied	data	may	be	incomplete	and	the
safe_substitute	method	may	be	more	appropriate	--	it	will	leave
placeholders	unchanged	if	data	is	missing:

>>>	t	=	Template('Return	the	$item	to	$owner.')

>>>	d	=	dict(item='unladen	swallow')

>>>	t.substitute(d)

Traceback	(most	recent	call	last):

		.	.	.

KeyError:	'owner'

>>>	t.safe_substitute(d)

'Return	the	unladen	swallow	to	$owner.'

Template	subclasses	can	specify	a	custom	delimiter.	For	example,	a	batch
renaming	utility	for	a	photo	browser	may	elect	to	use	percent	signs	for
placeholders	such	as	the	current	date,	image	sequence	number,	or	file	format:

>>>	import	time,	os.path

>>>	photofiles	=	['img_1074.jpg',	'img_1076.jpg',	'img_1077.jpg']

>>>	class	BatchRename(Template):

...					delimiter	=	'%'

>>>	fmt	=	raw_input('Enter	rename	style	(%d-date	%n-seqnum	%f-format):		')

Enter	rename	style	(%d-date	%n-seqnum	%f-format):		Ashley_%n%f

>>>	t	=	BatchRename(fmt)

>>>	date	=	time.strftime('%d%b%y')

>>>	for	i,	filename	in	enumerate(photofiles):

...					base,	ext	=	os.path.splitext(filename)

...					newname	=	t.substitute(d=date,	n=i,	f=ext)

...					print	'%s	-->	%s'	%	(filename,	newname)

img_1074.jpg	-->	Ashley_0.jpg

img_1076.jpg	-->	Ashley_1.jpg

img_1077.jpg	-->	Ashley_2.jpg

Another	application	for	templating	is	separating	program	logic	from	the	details
of	multiple	output	formats.	The	makes	it	possible	to	substitute	custom	templates
for	XML	files,	plain	text	reports,	and	HMTL	web	reports.

11.3	Working	with	Binary	Data
Record	Layouts
The	struct	module	provides	pack()	and	unpack()	functions	for	working
with	variable	length	binary	record	formats.	The	following	example	shows	how	to
loop	through	header	information	in	a	ZIP	file	(with	pack	codes	"H"	and	"L"
representing	two	and	four	byte	unsigned	numbers	respectively):

				import	struct

				data	=	open('myfile.zip',	'rb').read()

				start	=	0

				for	i	in	range(3):																						#	show	the	first	3	file	headers

								start	+=	14

								fields	=	struct.unpack('LLLHH',	data[start:start+16])

								crc32,	comp_size,	uncomp_size,	filenamesize,	extra_size	=		fields

								start	+=	16

								filename	=	data[start:start+filenamesize]

								start	+=	filenamesize

								extra	=	data[start:start+extra_size]

								print	filename,	hex(crc32),	comp_size,	uncomp_size

								start	+=	extra_size	+	comp_size					#	skip	to	the	next	header

11.4	Multi-threading
Threading	is	a	technique	for	decoupling	tasks	which	are	not	sequentially
dependent.	Threads	can	be	used	to	improve	the	responsiveness	of	applications
that	accept	user	input	while	other	tasks	run	in	the	background.	A	related	use	case
is	running	I/O	in	parallel	with	computations	in	another	thread.

The	following	code	shows	how	the	high	level	threading	module	can	run
tasks	in	background	while	the	main	program	continues	to	run:

				import	threading,	zipfile

				class	AsyncZip(threading.Thread):

								def	__init__(self,	infile,	outfile):

												threading.Thread.__init__(self)								

												self.infile	=	infile

												self.outfile	=	outfile

								def	run(self):

												f	=	zipfile.ZipFile(self.outfile,	'w',	zipfile.ZIP_DEFLATED)

												f.write(self.infile)

												f.close()

												print	'Finished	background	zip	of:	',	self.infile

				background	=	AsyncZip('mydata.txt',	'myarchive.zip')

				background.start()

				print	'The	main	program	continues	to	run	in	foreground.'

				

				background.join()				#	Wait	for	the	background	task	to	finish

				print	'Main	program	waited	until	background	was	done.'

The	principal	challenge	of	multi-threaded	applications	is	coordinating	threads
that	share	data	or	other	resources.	To	that	end,	the	threading	module	provides	a
number	of	synchronization	primitives	including	locks,	events,	condition
variables,	and	semaphores.

While	those	tools	are	powerful,	minor	design	errors	can	result	in	problems	that
are	difficult	to	reproduce.	So,	the	preferred	approach	to	task	coordination	is	to
concentrate	all	access	to	a	resource	in	a	single	thread	and	then	using	the	Queue
module	to	feed	that	thread	with	requests	from	other	threads.	Applications	using
Queue	objects	for	inter-thread	communication	and	coordination	are	easier	to
design,	more	readable,	and	more	reliable.

11.5	Logging
The	logging	module	offers	a	full	featured	and	flexible	logging	system.	At	its
simplest,	log	messages	are	sent	to	a	file	or	to	sys.stderr:

				import	logging

				logging.debug('Debugging	information')

				logging.info('Informational	message')

				logging.warning('Warning:config	file	%s	not	found',	'server.conf')

				logging.error('Error	occurred')

				logging.critical('Critical	error	--	shutting	down')

This	produces	the	following	output:

				WARNING:root:Warning:config	file	server.conf	not	found

				ERROR:root:Error	occurred

				CRITICAL:root:Critical	error	--	shutting	down

By	default,	informational	and	debugging	messages	are	suppressed	and	the	output
is	sent	to	standard	error.	Other	output	options	include	routing	messages	through
email,	datagrams,	sockets,	or	to	an	HTTP	Server.	New	filters	can	select	different
routing	based	on	message	priority:	DEBUG,	INFO,	WARNING,	ERROR,	and
CRITICAL.

The	logging	system	can	be	configured	directly	from	Python	or	can	be	loaded
from	a	user	editable	configuration	file	for	customized	logging	without	altering
the	application.

11.6	Weak	References
Python	does	automatic	memory	management	(reference	counting	for	most
objects	and	garbage	collection	to	eliminate	cycles).	The	memory	is	freed	shortly
after	the	last	reference	to	it	has	been	eliminated.

This	approach	works	fine	for	most	applications	but	occasionally	there	is	a	need
to	track	objects	only	as	long	as	they	are	being	used	by	something	else.
Unfortunately,	just	tracking	them	creates	a	reference	that	makes	them	permanent.
The	weakref	module	provides	tools	for	tracking	objects	without	creating	a
reference.	When	the	object	is	no	longer	needed,	it	is	automatically	removed	from
a	weakref	table	and	a	callback	is	triggered	for	weakref	objects.	Typical
applications	include	caching	objects	that	are	expensive	to	create:

				>>>	import	weakref,	gc

				>>>	class	A:

				...					def	__init__(self,	value):

				...													self.value	=	value

				...					def	__repr__(self):

				...													return	str(self.value)

				...

				>>>	a	=	A(10)																			#	create	a	reference

				>>>	d	=	weakref.WeakValueDictionary()

				>>>	d['primary']	=	a												#	does	not	create	a	reference

				>>>	d['primary']																#	fetch	the	object	if	it	is	still	alive

				10

				>>>	del	a																							#	remove	the	one	reference

				>>>	gc.collect()																#	run	garbage	collection	right	away

				0

				>>>	d['primary']																#	entry	was	automatically	removed

				Traceback	(most	recent	call	last):

						File	"<pyshell#108>",	line	1,	in	-toplevel-

								d['primary']																#	entry	was	automatically	removed

						File	"C:/PY24/lib/weakref.py",	line	46,	in	__getitem__

								o	=	self.data[key]()

				KeyError:	'primary'

11.7	Tools	for	Working	with	Lists
Many	data	structure	needs	can	be	met	with	the	built-in	list	type.	However,
sometimes	there	is	a	need	for	alternative	implementations	with	different
performance	trade-offs.

The	array	module	provides	an	array()	object	that	is	like	a	list	that	stores
only	homogenous	data	but	stores	it	more	compactly.	The	following	example
shows	an	array	of	numbers	stored	as	two	byte	unsigned	binary	numbers
(typecode	"H")	rather	than	the	usual	16	bytes	per	entry	for	regular	lists	of
python	int	objects:

				>>>	from	array	import	array

				>>>	a	=	array('H',	[4000,	10,	700,	22222])

				>>>	sum(a)

				26932

				>>>	a[1:3]

				array('H',	[10,	700])

The	collections	module	provides	a	deque()	object	that	is	like	a	list	with
faster	appends	and	pops	from	the	left	side	but	slower	lookups	in	the	middle.
These	objects	are	well	suited	for	implementing	queues	and	breadth	first	tree
searches:

				>>>	from	collections	import	deque

				>>>	d	=	deque(["task1",	"task2",	"task3"])

				>>>	d.append("task4")

				>>>	print	"Handling",	d.popleft()

				Handling	task1

				unsearched	=	deque([starting_node])

				def	breadth_first_search(unsearched):

								node	=	unsearched.popleft()

								for	m	in	gen_moves(node):

												if	is_goal(m):

																return	m

												unsearched.append(m)

In	addition	to	alternative	list	implementations,	the	library	also	offers	other	tools
such	as	the	bisect	module	with	functions	for	manipulating	sorted	lists:

				>>>	import	bisect

				>>>	scores	=	[(100,	'perl'),	(200,	'tcl'),	(400,	'lua'),	(500,	'python')]

				>>>	bisect.insort(scores,	(300,	'ruby'))

				>>>	scores

				[(100,	'perl'),	(200,	'tcl'),	(300,	'ruby'),	(400,	'lua'),	(500,	'python')]

The	heapq	module	provides	functions	for	implementing	heaps	based	on	regular
lists.	The	lowest	valued	entry	is	always	kept	at	position	zero.	This	is	useful	for
applications	which	repeatedly	access	the	smallest	element	but	do	not	want	to	run
a	full	list	sort:

				>>>	from	heapq	import	heapify,	heappop,	heappush

				>>>	data	=	[1,	3,	5,	7,	9,	2,	4,	6,	8,	0]

				>>>	heapify(data)																						#	rearrange	the	list	into	heap	order

				>>>	heappush(data,	-5)																	#	add	a	new	entry

				>>>	[heappop(data)	for	i	in	range(3)]		#	fetch	the	three	smallest	entries

				[-5,	0,	1]

11.8	Decimal	Floating	Point
Arithmetic
The	decimal	module	offers	a	Decimal	datatype	for	decimal	floating	point
arithmetic.	Compared	to	the	built-in	float	implementation	of	binary	floating
point,	the	new	class	is	especially	helpful	for	financial	applications	and	other	uses
which	require	exact	decimal	representation,	control	over	precision,	control	over
rounding	to	meet	legal	or	regulatory	requirements,	tracking	of	significant
decimal	places,	or	for	applications	where	the	user	expects	the	results	to	match
calculations	done	by	hand.

For	example,	calculating	a	5%	tax	on	a	70	cent	phone	charge	gives	different
results	in	decimal	floating	point	and	binary	floating	point.	The	difference
becomes	significant	if	the	results	are	rounded	to	the	nearest	cent:

>>>	from	decimal	import	*							

>>>	Decimal('0.70')	*	Decimal('1.05')

Decimal("0.7350")

>>>	.70	*	1.05

0.73499999999999999

The	Decimal	result	keeps	a	trailing	zero,	automatically	inferring	four	place
significance	from	the	two	digit	multiplicands.	Decimal	reproduces	mathematics
as	done	by	hand	and	avoids	issues	that	can	arise	when	binary	floating	point
cannot	exactly	represent	decimal	quantities.

Exact	representation	enables	the	Decimal	class	to	perform	modulo	calculations
and	equality	tests	that	are	unsuitable	for	binary	floating	point:

>>>	Decimal('1.00')	%	Decimal('.10')

Decimal("0.00")

>>>	1.00	%	0.10

0.09999999999999995

							

>>>	sum([Decimal('0.1')]*10)	==	Decimal('1.0')

True

>>>	sum([0.1]*10)	==	1.0

False

The	decimal	module	provides	arithmetic	with	as	much	precision	as	needed:

>>>	getcontext().prec	=	36

>>>	Decimal(1)	/	Decimal(7)

Decimal("0.142857142857142857142857142857142857")

Python	Tutorial
Previous:	10.	Brief	Tour	of	Up:	Python	Tutorial	Next:	12.	What	Now?

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.	Brief	Tour	of	Up:	Python	Tutorial	Next:	A.	Interactive	Input
Editing

12.	What	Now?
Reading	this	tutorial	has	probably	reinforced	your	interest	in	using	Python	--	you
should	be	eager	to	apply	Python	to	solve	your	real-world	problems.	Now	what
should	you	do?

You	should	read,	or	at	least	page	through,	the	Python	Library	Reference,	which
gives	complete	(though	terse)	reference	material	about	types,	functions,	and
modules	that	can	save	you	a	lot	of	time	when	writing	Python	programs.	The
standard	Python	distribution	includes	a	lot	of	code	in	both	C	and	Python;	there
are	modules	to	read	UNIX	mailboxes,	retrieve	documents	via	HTTP,	generate
random	numbers,	parse	command-line	options,	write	CGI	programs,	compress
data,	and	a	lot	more;	skimming	through	the	Library	Reference	will	give	you	an
idea	of	what's	available.

The	major	Python	Web	site	is	http://www.python.org/;	it	contains	code,
documentation,	and	pointers	to	Python-related	pages	around	the	Web.	This	Web
site	is	mirrored	in	various	places	around	the	world,	such	as	Europe,	Japan,	and
Australia;	a	mirror	may	be	faster	than	the	main	site,	depending	on	your
geographical	location.	A	more	informal	site	is	http://starship.python.net/,
which	contains	a	bunch	of	Python-related	personal	home	pages;	many	people
have	downloadable	software	there.	Many	more	user-created	Python	modules	can
be	found	in	the	Python	Package	Index	(PyPI).

For	Python-related	questions	and	problem	reports,	you	can	post	to	the
newsgroup	comp.lang.python,	or	send	them	to	the	mailing	list	at	python-
list@python.org.	The	newsgroup	and	mailing	list	are	gatewayed,	so	messages
posted	to	one	will	automatically	be	forwarded	to	the	other.	There	are	around	120
postings	a	day	(with	peaks	up	to	several	hundred),	asking	(and	answering)
questions,	suggesting	new	features,	and	announcing	new	modules.	Before
posting,	be	sure	to	check	the	list	of	Frequently	Asked	Questions	(also	called	the
FAQ),	or	look	for	it	in	the	Misc/	directory	of	the	Python	source	distribution.
Mailing	list	archives	are	available	at	http://www.python.org/pipermail/.	The
FAQ	answers	many	of	the	questions	that	come	up	again	and	again,	and	may
already	contain	the	solution	for	your	problem.

http://www.python.org/
http://starship.python.net/
http://www.python.org/pypi
news:comp.lang.python
http://www.python.org/doc/faq/
http://www.python.org/pipermail/

Python	Tutorial
Previous:	11.	Brief	Tour	of	Up:	Python	Tutorial	Next:	A.	Interactive	Input
Editing

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.	What	Now?	Up:	Python	Tutorial	Next:	B.	Floating	Point
Arithmetic:

Subsections

A.1	Line	Editing
A.2	History	Substitution
A.3	Key	Bindings
A.4	Commentary

A.	Interactive	Input	Editing	and
History	Substitution
Some	versions	of	the	Python	interpreter	support	editing	of	the	current	input	line
and	history	substitution,	similar	to	facilities	found	in	the	Korn	shell	and	the	GNU
Bash	shell.	This	is	implemented	using	the	GNU	Readline	library,	which	supports
Emacs-style	and	vi-style	editing.	This	library	has	its	own	documentation	which	I
won't	duplicate	here;	however,	the	basics	are	easily	explained.	The	interactive
editing	and	history	described	here	are	optionally	available	in	the	UNIX	and
CygWin	versions	of	the	interpreter.

This	chapter	does	not	document	the	editing	facilities	of	Mark	Hammond's
PythonWin	package	or	the	Tk-based	environment,	IDLE,	distributed	with
Python.	The	command	line	history	recall	which	operates	within	DOS	boxes	on
NT	and	some	other	DOS	and	Windows	flavors	is	yet	another	beast.

A.1	Line	Editing
If	supported,	input	line	editing	is	active	whenever	the	interpreter	prints	a	primary
or	secondary	prompt.	The	current	line	can	be	edited	using	the	conventional
Emacs	control	characters.	The	most	important	of	these	are:	C-A	(Control-A)
moves	the	cursor	to	the	beginning	of	the	line,	C-E	to	the	end,	C-B	moves	it	one
position	to	the	left,	C-F	to	the	right.	Backspace	erases	the	character	to	the	left	of
the	cursor,	C-D	the	character	to	its	right.	C-K	kills	(erases)	the	rest	of	the	line	to
the	right	of	the	cursor,	C-Y	yanks	back	the	last	killed	string.	C-underscore
undoes	the	last	change	you	made;	it	can	be	repeated	for	cumulative	effect.

A.2	History	Substitution
History	substitution	works	as	follows.	All	non-empty	input	lines	issued	are	saved
in	a	history	buffer,	and	when	a	new	prompt	is	given	you	are	positioned	on	a	new
line	at	the	bottom	of	this	buffer.	C-P	moves	one	line	up	(back)	in	the	history
buffer,	C-N	moves	one	down.	Any	line	in	the	history	buffer	can	be	edited;	an
asterisk	appears	in	front	of	the	prompt	to	mark	a	line	as	modified.	Pressing	the
Return	key	passes	the	current	line	to	the	interpreter.	C-R	starts	an	incremental
reverse	search;	C-S	starts	a	forward	search.

A.3	Key	Bindings
The	key	bindings	and	some	other	parameters	of	the	Readline	library	can	be
customized	by	placing	commands	in	an	initialization	file	called	~/.inputrc.	Key
bindings	have	the	form

key-name:	function-name

or

"string":	function-name

and	options	can	be	set	with

set	option-name	value

For	example:

#	I	prefer	vi-style	editing:

set	editing-mode	vi

#	Edit	using	a	single	line:

set	horizontal-scroll-mode	On

#	Rebind	some	keys:

Meta-h:	backward-kill-word

"\C-u":	universal-argument

"\C-x\C-r":	re-read-init-file

Note	that	the	default	binding	for	Tab	in	Python	is	to	insert	a	Tab	character	instead
of	Readline's	default	filename	completion	function.	If	you	insist,	you	can
override	this	by	putting

Tab:	complete

in	your	~/.inputrc.	(Of	course,	this	makes	it	harder	to	type	indented	continuation
lines	if	you're	accustomed	to	using	Tab	for	that	purpose.)

Automatic	completion	of	variable	and	module	names	is	optionally	available.	To
enable	it	in	the	interpreter's	interactive	mode,	add	the	following	to	your	startup
file:A.1

import	rlcompleter,	readline

readline.parse_and_bind('tab:	complete')

This	binds	the	Tab	key	to	the	completion	function,	so	hitting	the	Tab	key	twice
suggests	completions;	it	looks	at	Python	statement	names,	the	current	local
variables,	and	the	available	module	names.	For	dotted	expressions	such	as
string.a,	it	will	evaluate	the	expression	up	to	the	final	"."	and	then	suggest
completions	from	the	attributes	of	the	resulting	object.	Note	that	this	may
execute	application-defined	code	if	an	object	with	a	__getattr__()	method
is	part	of	the	expression.

A	more	capable	startup	file	might	look	like	this	example.	Note	that	this	deletes
the	names	it	creates	once	they	are	no	longer	needed;	this	is	done	since	the	startup
file	is	executed	in	the	same	namespace	as	the	interactive	commands,	and
removing	the	names	avoids	creating	side	effects	in	the	interactive	environments.
You	may	find	it	convenient	to	keep	some	of	the	imported	modules,	such	as	os,
which	turn	out	to	be	needed	in	most	sessions	with	the	interpreter.

#	Add	auto-completion	and	a	stored	history	file	of	commands	to	your	Python

#	interactive	interpreter.	Requires	Python	2.0+,	readline.	Autocomplete	is

#	bound	to	the	Esc	key	by	default	(you	can	change	it	-	see	readline	docs).

#

#	Store	the	file	in	~/.pystartup,	and	set	an	environment	variable	to	point

#	to	it:		"export	PYTHONSTARTUP=/max/home/itamar/.pystartup"	in	bash.

#

#	Note	that	PYTHONSTARTUP	does	*not*	expand	"~",	so	you	have	to	put	in	the

#	full	path	to	your	home	directory.

import	atexit

import	os

import	readline

import	rlcompleter

historyPath	=	os.path.expanduser("~/.pyhistory")

def	save_history(historyPath=historyPath):

				import	readline

				readline.write_history_file(historyPath)

if	os.path.exists(historyPath):

				readline.read_history_file(historyPath)

atexit.register(save_history)

del	os,	atexit,	readline,	rlcompleter,	save_history,	historyPath

A.4	Commentary
This	facility	is	an	enormous	step	forward	compared	to	earlier	versions	of	the
interpreter;	however,	some	wishes	are	left:	It	would	be	nice	if	the	proper
indentation	were	suggested	on	continuation	lines	(the	parser	knows	if	an	indent
token	is	required	next).	The	completion	mechanism	might	use	the	interpreter's
symbol	table.	A	command	to	check	(or	even	suggest)	matching	parentheses,
quotes,	etc.,	would	also	be	useful.

Footnotes

...	file:A.1
Python	will	execute	the	contents	of	a	file	identified	by	the
PYTHONSTARTUP	environment	variable	when	you	start	an	interactive
interpreter.

Python	Tutorial
Previous:	12.	What	Now?	Up:	Python	Tutorial	Next:	B.	Floating	Point
Arithmetic:

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.	Interactive	Input	Editing	Up:	Python	Tutorial	Next:	C.	History	and
License

Subsections

B.1	Representation	Error

B.	Floating	Point	Arithmetic:	Issues
and	Limitations
Floating-point	numbers	are	represented	in	computer	hardware	as	base	2	(binary)
fractions.	For	example,	the	decimal	fraction

0.125

has	value	1/10	+	2/100	+	5/1000,	and	in	the	same	way	the	binary	fraction

0.001

has	value	0/2	+	0/4	+	1/8.	These	two	fractions	have	identical	values,	the	only	real
difference	being	that	the	first	is	written	in	base	10	fractional	notation,	and	the
second	in	base	2.

Unfortunately,	most	decimal	fractions	cannot	be	represented	exactly	as	binary
fractions.	A	consequence	is	that,	in	general,	the	decimal	floating-point	numbers
you	enter	are	only	approximated	by	the	binary	floating-point	numbers	actually
stored	in	the	machine.

The	problem	is	easier	to	understand	at	first	in	base	10.	Consider	the	fraction	1/3.
You	can	approximate	that	as	a	base	10	fraction:

0.3

or,	better,

0.33

or,	better,

0.333

and	so	on.	No	matter	how	many	digits	you're	willing	to	write	down,	the	result
will	never	be	exactly	1/3,	but	will	be	an	increasingly	better	approximation	to	1/3.

In	the	same	way,	no	matter	how	many	base	2	digits	you're	willing	to	use,	the
decimal	value	0.1	cannot	be	represented	exactly	as	a	base	2	fraction.	In	base	2,

1/10	is	the	infinitely	repeating	fraction

0.0001100110011001100110011001100110011001100110011...

Stop	at	any	finite	number	of	bits,	and	you	get	an	approximation.	This	is	why	you
see	things	like:

>>>	0.1

0.10000000000000001

On	most	machines	today,	that	is	what	you'll	see	if	you	enter	0.1	at	a	Python
prompt.	You	may	not,	though,	because	the	number	of	bits	used	by	the	hardware
to	store	floating-point	values	can	vary	across	machines,	and	Python	only	prints	a
decimal	approximation	to	the	true	decimal	value	of	the	binary	approximation
stored	by	the	machine.	On	most	machines,	if	Python	were	to	print	the	true
decimal	value	of	the	binary	approximation	stored	for	0.1,	it	would	have	to
display

>>>	0.1

0.1000000000000000055511151231257827021181583404541015625

instead!	The	Python	prompt	(implicitly)	uses	the	builtin	repr()	function	to
obtain	a	string	version	of	everything	it	displays.	For	floats,	repr(float)	rounds
the	true	decimal	value	to	17	significant	digits,	giving

0.10000000000000001

repr(float)	produces	17	significant	digits	because	it	turns	out	that's	enough
(on	most	machines)	so	that	eval(repr(x))	==	x	exactly	for	all	finite	floats
x,	but	rounding	to	16	digits	is	not	enough	to	make	that	true.

Note	that	this	is	in	the	very	nature	of	binary	floating-point:	this	is	not	a	bug	in
Python,	it	is	not	a	bug	in	your	code	either,	and	you'll	see	the	same	kind	of	thing
in	all	languages	that	support	your	hardware's	floating-point	arithmetic	(although
some	languages	may	not	display	the	difference	by	default,	or	in	all	output
modes).

Python's	builtin	str()	function	produces	only	12	significant	digits,	and	you
may	wish	to	use	that	instead.	It's	unusual	for	eval(str(x))	to	reproduce	x,
but	the	output	may	be	more	pleasant	to	look	at:

>>>	print	str(0.1)

0.1

It's	important	to	realize	that	this	is,	in	a	real	sense,	an	illusion:	the	value	in	the
machine	is	not	exactly	1/10,	you're	simply	rounding	the	display	of	the	true
machine	value.

Other	surprises	follow	from	this	one.	For	example,	after	seeing

>>>	0.1

0.10000000000000001

you	may	be	tempted	to	use	the	round()	function	to	chop	it	back	to	the	single
digit	you	expect.	But	that	makes	no	difference:

>>>	round(0.1,	1)

0.10000000000000001

The	problem	is	that	the	binary	floating-point	value	stored	for	"0.1"	was	already
the	best	possible	binary	approximation	to	1/10,	so	trying	to	round	it	again	can't
make	it	better:	it	was	already	as	good	as	it	gets.

Another	consequence	is	that	since	0.1	is	not	exactly	1/10,	adding	0.1	to	itself	10
times	may	not	yield	exactly	1.0,	either:

>>>	sum	=	0.0

>>>	for	i	in	range(10):

...					sum	+=	0.1

...

>>>	sum

0.99999999999999989

Binary	floating-point	arithmetic	holds	many	surprises	like	this.	The	problem
with	"0.1"	is	explained	in	precise	detail	below,	in	the	"Representation	Error"
section.	See	The	Perils	of	Floating	Point	for	a	more	complete	account	of	other
common	surprises.

As	that	says	near	the	end,	``there	are	no	easy	answers.''	Still,	don't	be	unduly
wary	of	floating-point!	The	errors	in	Python	float	operations	are	inherited	from
the	floating-point	hardware,	and	on	most	machines	are	on	the	order	of	no	more
than	1	part	in	2**53	per	operation.	That's	more	than	adequate	for	most	tasks,	but
you	do	need	to	keep	in	mind	that	it's	not	decimal	arithmetic,	and	that	every	float
operation	can	suffer	a	new	rounding	error.

http://www.lahey.com/float.htm

While	pathological	cases	do	exist,	for	most	casual	use	of	floating-point
arithmetic	you'll	see	the	result	you	expect	in	the	end	if	you	simply	round	the
display	of	your	final	results	to	the	number	of	decimal	digits	you	expect.	str()
usually	suffices,	and	for	finer	control	see	the	discussion	of	Python's	%	format
operator:	the	%g,	%f	and	%e	format	codes	supply	flexible	and	easy	ways	to
round	float	results	for	display.

B.1	Representation	Error
This	section	explains	the	``0.1''	example	in	detail,	and	shows	how	you	can
perform	an	exact	analysis	of	cases	like	this	yourself.	Basic	familiarity	with
binary	floating-point	representation	is	assumed.

Representation	error	refers	to	that	some	(most,	actually)	decimal	fractions
cannot	be	represented	exactly	as	binary	(base	2)	fractions.	This	is	the	chief
reason	why	Python	(or	Perl,	C,	C++,	Java,	Fortran,	and	many	others)	often	won't
display	the	exact	decimal	number	you	expect:

>>>	0.1

0.10000000000000001

Why	is	that?	1/10	is	not	exactly	representable	as	a	binary	fraction.	Almost	all
machines	today	(November	2000)	use	IEEE-754	floating	point	arithmetic,	and
almost	all	platforms	map	Python	floats	to	IEEE-754	"double	precision".	754
doubles	contain	53	bits	of	precision,	so	on	input	the	computer	strives	to	convert
0.1	to	the	closest	fraction	it	can	of	the	form	J/2**N	where	J	is	an	integer
containing	exactly	53	bits.	Rewriting

	1	/	10	~=	J	/	(2**N)

as

J	~=	2**N	/	10

and	recalling	that	J	has	exactly	53	bits	(is	>=	2**52	but	<	2**53),	the	best
value	for	N	is	56:

>>>	2L**52

4503599627370496L

>>>	2L**53

9007199254740992L

>>>	2L**56/10

7205759403792793L

That	is,	56	is	the	only	value	for	N	that	leaves	J	with	exactly	53	bits.	The	best
possible	value	for	J	is	then	that	quotient	rounded:

>>>	q,	r	=	divmod(2L**56,	10)

>>>	r

6L

Since	the	remainder	is	more	than	half	of	10,	the	best	approximation	is	obtained
by	rounding	up:

>>>	q+1

7205759403792794L

Therefore	the	best	possible	approximation	to	1/10	in	754	double	precision	is	that
over	2**56,	or

7205759403792794	/	72057594037927936

Note	that	since	we	rounded	up,	this	is	actually	a	little	bit	larger	than	1/10;	if	we
had	not	rounded	up,	the	quotient	would	have	been	a	little	bit	smaller	than	1/10.
But	in	no	case	can	it	be	exactly	1/10!

So	the	computer	never	``sees''	1/10:	what	it	sees	is	the	exact	fraction	given
above,	the	best	754	double	approximation	it	can	get:

>>>	.1	*	2L**56

7205759403792794.0

If	we	multiply	that	fraction	by	10**30,	we	can	see	the	(truncated)	value	of	its	30
most	significant	decimal	digits:

>>>	7205759403792794L	*	10L**30	/	2L**56

100000000000000005551115123125L

meaning	that	the	exact	number	stored	in	the	computer	is	approximately	equal	to
the	decimal	value	0.100000000000000005551115123125.	Rounding	that	to	17
significant	digits	gives	the	0.10000000000000001	that	Python	displays	(well,
will	display	on	any	754-conforming	platform	that	does	best-possible	input	and
output	conversions	in	its	C	library	--	yours	may	not!).

Python	Tutorial
Previous:	A.	Interactive	Input	Editing	Up:	Python	Tutorial	Next:	C.	History	and
License

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.	Floating	Point	Arithmetic:	Up:	Python	Tutorial	Next:	D.	Glossary

Subsections

C.1	History	of	the	software
C.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
C.3	Licenses	and	Acknowledgements	for	Incorporated	Software

C.3.1	Mersenne	Twister
C.3.2	Sockets
C.3.3	Floating	point	exception	control
C.3.4	MD5	message	digest	algorithm
C.3.5	Asynchronous	socket	services
C.3.6	Cookie	management
C.3.7	Profiling
C.3.8	Execution	tracing
C.3.9	UUencode	and	UUdecode	functions
C.3.10	XML	Remote	Procedure	Calls

C.	History	and	License

C.1	History	of	the	software
Python	was	created	in	the	early	1990s	by	Guido	van	Rossum	at	Stichting
Mathematisch	Centrum	(CWI,	see	http://www.cwi.nl/)	in	the	Netherlands	as	a
successor	of	a	language	called	ABC.	Guido	remains	Python's	principal	author,
although	it	includes	many	contributions	from	others.

In	1995,	Guido	continued	his	work	on	Python	at	the	Corporation	for	National
Research	Initiatives	(CNRI,	see	http://www.cnri.reston.va.us/)	in	Reston,
Virginia	where	he	released	several	versions	of	the	software.

In	May	2000,	Guido	and	the	Python	core	development	team	moved	to
BeOpen.com	to	form	the	BeOpen	PythonLabs	team.	In	October	of	the	same
year,	the	PythonLabs	team	moved	to	Digital	Creations	(now	Zope	Corporation;
see	http://www.zope.com/).	In	2001,	the	Python	Software	Foundation	(PSF,	see
http://www.python.org/psf/)	was	formed,	a	non-profit	organization	created
specifically	to	own	Python-related	Intellectual	Property.	Zope	Corporation	is	a
sponsoring	member	of	the	PSF.

All	Python	releases	are	Open	Source	(see	http://www.opensource.org/	for	the
Open	Source	Definition).	Historically,	most,	but	not	all,	Python	releases	have
also	been	GPL-compatible;	the	table	below	summarizes	the	various	releases.

Release Derived
from

Year Owner GPL
compatible?

0.9.0	thru
1.2

n/a 1991-
1995

CWI yes

1.3	thru
1.5.2

1.2 1995-
1999

CNRI yes

1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-

2003
PSF yes

2.3 2.2.2 2002-
2003

PSF yes

2.3.1 2.3 2002-
2003

PSF yes

2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes

Note:	GPL-compatible	doesn't	mean	that	we're	distributing	Python	under	the
GPL.	All	Python	licenses,	unlike	the	GPL,	let	you	distribute	a	modified	version
without	making	your	changes	open	source.	The	GPL-compatible	licenses	make
it	possible	to	combine	Python	with	other	software	that	is	released	under	the
GPL;	the	others	don't.

Thanks	to	the	many	outside	volunteers	who	have	worked	under	Guido's	direction
to	make	these	releases	possible.

C.2	Terms	and	conditions	for
accessing	or	otherwise	using
Python

PSF	LICENSE	AGREEMENT	FOR	PYTHON	2.4

1.	 This	LICENSE	AGREEMENT	is	between	the	Python	Software	Foundation
(``PSF''),	and	the	Individual	or	Organization	(``Licensee'')	accessing	and
otherwise	using	Python	2.4	software	in	source	or	binary	form	and	its
associated	documentation.

2.	 Subject	to	the	terms	and	conditions	of	this	License	Agreement,	PSF	hereby
grants	Licensee	a	nonexclusive,	royalty-free,	world-wide	license	to
reproduce,	analyze,	test,	perform	and/or	display	publicly,	prepare	derivative
works,	distribute,	and	otherwise	use	Python	2.4	alone	or	in	any	derivative
version,	provided,	however,	that	PSF's	License	Agreement	and	PSF's	notice
of	copyright,	i.e.,	``Copyright	©	2001-2004	Python	Software	Foundation;
All	Rights	Reserved''	are	retained	in	Python	2.4	alone	or	in	any	derivative
version	prepared	by	Licensee.

3.	 In	the	event	Licensee	prepares	a	derivative	work	that	is	based	on	or
incorporates	Python	2.4	or	any	part	thereof,	and	wants	to	make	the
derivative	work	available	to	others	as	provided	herein,	then	Licensee
hereby	agrees	to	include	in	any	such	work	a	brief	summary	of	the	changes
made	to	Python	2.4.

4.	 PSF	is	making	Python	2.4	available	to	Licensee	on	an	``AS	IS''	basis.	PSF
MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,	EXPRESS	OR
IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT	LIMITATION,	PSF
MAKES	NO	AND	DISCLAIMS	ANY	REPRESENTATION	OR
WARRANTY	OF	MERCHANTABILITY	OR	FITNESS	FOR	ANY
PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF	PYTHON	2.4	WILL
NOT	INFRINGE	ANY	THIRD	PARTY	RIGHTS.

5.	 PSF	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER	USERS

OF	PYTHON	2.4	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF
MODIFYING,	DISTRIBUTING,	OR	OTHERWISE	USING	PYTHON	2.4,
OR	ANY	DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE
POSSIBILITY	THEREOF.

6.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

7.	 Nothing	in	this	License	Agreement	shall	be	deemed	to	create	any
relationship	of	agency,	partnership,	or	joint	venture	between	PSF	and
Licensee.	This	License	Agreement	does	not	grant	permission	to	use	PSF
trademarks	or	trade	name	in	a	trademark	sense	to	endorse	or	promote
products	or	services	of	Licensee,	or	any	third	party.

8.	 By	copying,	installing	or	otherwise	using	Python	2.4,	Licensee	agrees	to	be
bound	by	the	terms	and	conditions	of	this	License	Agreement.

BEOPEN.COM	LICENSE	AGREEMENT	FOR	PYTHON	2.0

BEOPEN	PYTHON	OPEN	SOURCE	LICENSE	AGREEMENT	VERSION
1

1.	 This	LICENSE	AGREEMENT	is	between	BeOpen.com	(``BeOpen''),
having	an	office	at	160	Saratoga	Avenue,	Santa	Clara,	CA	95051,	and	the
Individual	or	Organization	(``Licensee'')	accessing	and	otherwise	using	this
software	in	source	or	binary	form	and	its	associated	documentation	(``the
Software'').

2.	 Subject	to	the	terms	and	conditions	of	this	BeOpen	Python	License
Agreement,	BeOpen	hereby	grants	Licensee	a	non-exclusive,	royalty-free,
world-wide	license	to	reproduce,	analyze,	test,	perform	and/or	display
publicly,	prepare	derivative	works,	distribute,	and	otherwise	use	the
Software	alone	or	in	any	derivative	version,	provided,	however,	that	the
BeOpen	Python	License	is	retained	in	the	Software,	alone	or	in	any
derivative	version	prepared	by	Licensee.

3.	 BeOpen	is	making	the	Software	available	to	Licensee	on	an	``AS	IS''	basis.
BEOPEN	MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,
EXPRESS	OR	IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT

LIMITATION,	BEOPEN	MAKES	NO	AND	DISCLAIMS	ANY
REPRESENTATION	OR	WARRANTY	OF	MERCHANTABILITY	OR
FITNESS	FOR	ANY	PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF
THE	SOFTWARE	WILL	NOT	INFRINGE	ANY	THIRD	PARTY
RIGHTS.

4.	 BEOPEN	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER
USERS	OF	THE	SOFTWARE	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF	USING,
MODIFYING	OR	DISTRIBUTING	THE	SOFTWARE,	OR	ANY
DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY
THEREOF.

5.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

6.	 This	License	Agreement	shall	be	governed	by	and	interpreted	in	all	respects
by	the	law	of	the	State	of	California,	excluding	conflict	of	law	provisions.
Nothing	in	this	License	Agreement	shall	be	deemed	to	create	any
relationship	of	agency,	partnership,	or	joint	venture	between	BeOpen	and
Licensee.	This	License	Agreement	does	not	grant	permission	to	use
BeOpen	trademarks	or	trade	names	in	a	trademark	sense	to	endorse	or
promote	products	or	services	of	Licensee,	or	any	third	party.	As	an
exception,	the	``BeOpen	Python''	logos	available	at
http://www.pythonlabs.com/logos.html	may	be	used	according	to	the
permissions	granted	on	that	web	page.

7.	 By	copying,	installing	or	otherwise	using	the	software,	Licensee	agrees	to
be	bound	by	the	terms	and	conditions	of	this	License	Agreement.

CNRI	LICENSE	AGREEMENT	FOR	PYTHON	1.6.1

1.	 This	LICENSE	AGREEMENT	is	between	the	Corporation	for	National
Research	Initiatives,	having	an	office	at	1895	Preston	White	Drive,	Reston,
VA	20191	(``CNRI''),	and	the	Individual	or	Organization	(``Licensee'')
accessing	and	otherwise	using	Python	1.6.1	software	in	source	or	binary
form	and	its	associated	documentation.

2.	 Subject	to	the	terms	and	conditions	of	this	License	Agreement,	CNRI
hereby	grants	Licensee	a	nonexclusive,	royalty-free,	world-wide	license	to

reproduce,	analyze,	test,	perform	and/or	display	publicly,	prepare	derivative
works,	distribute,	and	otherwise	use	Python	1.6.1	alone	or	in	any	derivative
version,	provided,	however,	that	CNRI's	License	Agreement	and	CNRI's
notice	of	copyright,	i.e.,	``Copyright	©	1995-2001	Corporation	for	National
Research	Initiatives;	All	Rights	Reserved''	are	retained	in	Python	1.6.1
alone	or	in	any	derivative	version	prepared	by	Licensee.	Alternately,	in	lieu
of	CNRI's	License	Agreement,	Licensee	may	substitute	the	following	text
(omitting	the	quotes):	``Python	1.6.1	is	made	available	subject	to	the	terms
and	conditions	in	CNRI's	License	Agreement.	This	Agreement	together
with	Python	1.6.1	may	be	located	on	the	Internet	using	the	following
unique,	persistent	identifier	(known	as	a	handle):	1895.22/1013.	This
Agreement	may	also	be	obtained	from	a	proxy	server	on	the	Internet	using
the	following	URL:	http://hdl.handle.net/1895.22/1013.''

3.	 In	the	event	Licensee	prepares	a	derivative	work	that	is	based	on	or
incorporates	Python	1.6.1	or	any	part	thereof,	and	wants	to	make	the
derivative	work	available	to	others	as	provided	herein,	then	Licensee
hereby	agrees	to	include	in	any	such	work	a	brief	summary	of	the	changes
made	to	Python	1.6.1.

4.	 CNRI	is	making	Python	1.6.1	available	to	Licensee	on	an	``AS	IS''	basis.
CNRI	MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,	EXPRESS
OR	IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT	LIMITATION,	CNRI
MAKES	NO	AND	DISCLAIMS	ANY	REPRESENTATION	OR
WARRANTY	OF	MERCHANTABILITY	OR	FITNESS	FOR	ANY
PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF	PYTHON	1.6.1	WILL
NOT	INFRINGE	ANY	THIRD	PARTY	RIGHTS.

5.	 CNRI	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER
USERS	OF	PYTHON	1.6.1	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF
MODIFYING,	DISTRIBUTING,	OR	OTHERWISE	USING	PYTHON
1.6.1,	OR	ANY	DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE
POSSIBILITY	THEREOF.

6.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

7.	 This	License	Agreement	shall	be	governed	by	the	federal	intellectual

http://hdl.handle.net/1895.22/1013

property	law	of	the	United	States,	including	without	limitation	the	federal
copyright	law,	and,	to	the	extent	such	U.S.	federal	law	does	not	apply,	by
the	law	of	the	Commonwealth	of	Virginia,	excluding	Virginia's	conflict	of
law	provisions.	Notwithstanding	the	foregoing,	with	regard	to	derivative
works	based	on	Python	1.6.1	that	incorporate	non-separable	material	that
was	previously	distributed	under	the	GNU	General	Public	License	(GPL),
the	law	of	the	Commonwealth	of	Virginia	shall	govern	this	License
Agreement	only	as	to	issues	arising	under	or	with	respect	to	Paragraphs	4,
5,	and	7	of	this	License	Agreement.	Nothing	in	this	License	Agreement
shall	be	deemed	to	create	any	relationship	of	agency,	partnership,	or	joint
venture	between	CNRI	and	Licensee.	This	License	Agreement	does	not
grant	permission	to	use	CNRI	trademarks	or	trade	name	in	a	trademark
sense	to	endorse	or	promote	products	or	services	of	Licensee,	or	any	third
party.

8.	 By	clicking	on	the	``ACCEPT''	button	where	indicated,	or	by	copying,
installing	or	otherwise	using	Python	1.6.1,	Licensee	agrees	to	be	bound	by
the	terms	and	conditions	of	this	License	Agreement.

ACCEPT

CWI	LICENSE	AGREEMENT	FOR	PYTHON	0.9.0	THROUGH	1.2

Copyright	©	1991	-	1995,	Stichting	Mathematisch	Centrum	Amsterdam,	The
Netherlands.	All	rights	reserved.

Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its
documentation	for	any	purpose	and	without	fee	is	hereby	granted,	provided	that
the	above	copyright	notice	appear	in	all	copies	and	that	both	that	copyright
notice	and	this	permission	notice	appear	in	supporting	documentation,	and	that
the	name	of	Stichting	Mathematisch	Centrum	or	CWI	not	be	used	in	advertising
or	publicity	pertaining	to	distribution	of	the	software	without	specific,	written
prior	permission.

STICHTING	MATHEMATISCH	CENTRUM	DISCLAIMS	ALL
WARRANTIES	WITH	REGARD	TO	THIS	SOFTWARE,	INCLUDING	ALL
IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS,	IN	NO
EVENT	SHALL	STICHTING	MATHEMATISCH	CENTRUM	BE	LIABLE
FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR

ANY	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,
DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF	CONTRACT,
NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN
CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS
SOFTWARE.

C.3	Licenses	and
Acknowledgements	for	Incorporated
Software
This	section	is	an	incomplete,	but	growing	list	of	licenses	and
acknowledgements	for	third-party	software	incorporated	in	the	Python
distribution.

C.3.1	Mersenne	Twister
The	_random	module	includes	code	based	on	a	download	from
http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html.	The
following	are	the	verbatim	comments	from	the	original	code:

A	C-program	for	MT19937,	with	initialization	improved	2002/1/26.

Coded	by	Takuji	Nishimura	and	Makoto	Matsumoto.

Before	using,	initialize	the	state	by	using	init_genrand(seed)

or	init_by_array(init_key,	key_length).

Copyright	(C)	1997	-	2002,	Makoto	Matsumoto	and	Takuji	Nishimura,

All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

	1.	Redistributions	of	source	code	must	retain	the	above	copyright

				notice,	this	list	of	conditions	and	the	following	disclaimer.

	2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

				notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

				documentation	and/or	other	materials	provided	with	the	distribution.

	3.	The	names	of	its	contributors	may	not	be	used	to	endorse	or	promote

				products	derived	from	this	software	without	specific	prior	written

				permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND	CONTRIBUTORS

"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT

LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR

A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	COPYRIGHT	OWNER	OR

CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,

EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,

PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR

PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF

LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING

NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS

SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Any	feedback	is	very	welcome.

http://www.math.keio.ac.jp/matumoto/emt.html

email:	matumoto@math.keio.ac.jp

http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html

C.3.2	Sockets
The	socket	module	uses	the	functions,	getaddrinfo,	and	getnameinfo,
which	are	coded	in	separate	source	files	from	the	WIDE	Project,
http://www.wide.ad.jp/about/index.html.

						

Copyright	(C)	1995,	1996,	1997,	and	1998	WIDE	Project.

All	rights	reserved.

	

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

1.	Redistributions	of	source	code	must	retain	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer.

2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

			documentation	and/or	other	materials	provided	with	the	distribution.

3.	Neither	the	name	of	the	project	nor	the	names	of	its	contributors

			may	be	used	to	endorse	or	promote	products	derived	from	this	software

			without	specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	PROJECT	AND	CONTRIBUTORS	``AS	IS''	AND

GAI_ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	PROJECT	OR	CONTRIBUTORS	BE	LIABLE

FOR	GAI_ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL

DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS

OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

HOWEVER	CAUSED	AND	ON	GAI_ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT

LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	GAI_ANY	WAY

OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF

SUCH	DAMAGE.

http://www.wide.ad.jp/about/index.html

C.3.3	Floating	point	exception	control
The	source	for	the	fpectl	module	includes	the	following	notice:

				/																							Copyright	(c)	1996.																											\	

			|										The	Regents	of	the	University	of	California.																	|

			|																								All	rights	reserved.																											|

			|																																																																							|

			|			Permission	to	use,	copy,	modify,	and	distribute	this	software	for			|

			|			any	purpose	without	fee	is	hereby	granted,	provided	that	this	en-			|

			|			tire	notice	is	included	in	all	copies	of	any	software	which	is	or			|

			|			includes		a		copy		or		modification		of		this	software	and	in	all			|

			|			copies	of	the	supporting	documentation	for	such	software.											|

			|																																																																							|

			|			This		work	was	produced	at	the	University	of	California,	Lawrence			|

			|			Livermore	National	Laboratory	under		contract		no.		W-7405-ENG-48			|

			|			between		the		U.S.		Department		of		Energy	and	The	Regents	of	the			|

			|			University	of	California	for	the	operation	of	UC	LLNL.														|

			|																																																																							|

			|																														DISCLAIMER																															|

			|																																																																							|

			|			This		software	was	prepared	as	an	account	of	work	sponsored	by	an			|

			|			agency	of	the	United	States	Government.	Neither	the	United	States			|

			|			Government		nor	the	University	of	California	nor	any	of	their	em-			|

			|			ployees,	makes	any	warranty,	express	or	implied,	or		assumes		any			|

			|			liability		or		responsibility		for	the	accuracy,	completeness,	or			|

			|			usefulness	of	any	information,		apparatus,		product,		or		process			|

			|			disclosed,			or		represents		that		its		use		would		not		infringe			|

			|			privately-owned	rights.	Reference	herein	to	any	specific		commer-			|

			|			cial		products,		process,		or		service		by	trade	name,	trademark,			|

			|			manufacturer,	or	otherwise,	does	not		necessarily		constitute		or			|

			|			imply		its	endorsement,	recommendation,	or	favoring	by	the	United			|

			|			States	Government	or	the	University	of	California.	The	views		and			|

			|			opinions		of	authors	expressed	herein	do	not	necessarily	state	or			|

			|			reflect	those	of	the	United	States	Government	or		the		University			|

			|			of		California,		and	shall	not	be	used	for	advertising	or	product			|

				\		endorsement	purposes.																																														/	

C.3.4	MD5	message	digest	algorithm
The	source	code	for	the	md5	module	contains	the	following	notice:

Copyright	(C)	1991-2,	RSA	Data	Security,	Inc.	Created	1991.	All

rights	reserved.

License	to	copy	and	use	this	software	is	granted	provided	that	it

is	identified	as	the	"RSA	Data	Security,	Inc.	MD5	Message-Digest

Algorithm"	in	all	material	mentioning	or	referencing	this	software

or	this	function.

License	is	also	granted	to	make	and	use	derivative	works	provided

that	such	works	are	identified	as	"derived	from	the	RSA	Data

Security,	Inc.	MD5	Message-Digest	Algorithm"	in	all	material

mentioning	or	referencing	the	derived	work.

RSA	Data	Security,	Inc.	makes	no	representations	concerning	either

the	merchantability	of	this	software	or	the	suitability	of	this

software	for	any	particular	purpose.	It	is	provided	"as	is"

without	express	or	implied	warranty	of	any	kind.

These	notices	must	be	retained	in	any	copies	of	any	part	of	this

documentation	and/or	software.

C.3.5	Asynchronous	socket	services
The	asynchat	and	asyncore	modules	contain	the	following	notice:

						

	Copyright	1996	by	Sam	Rushing

																									All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and

	its	documentation	for	any	purpose	and	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appear	in	all

	copies	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of	Sam

	Rushing	not	be	used	in	advertising	or	publicity	pertaining	to

	distribution	of	the	software	without	specific,	written	prior

	permission.

	SAM	RUSHING	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS	SOFTWARE,

	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS,	IN

	NO	EVENT	SHALL	SAM	RUSHING	BE	LIABLE	FOR	ANY	SPECIAL,	INDIRECT	OR

	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS

	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF	CONTRACT,

	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN

	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

C.3.6	Cookie	management
The	Cookie	module	contains	the	following	notice:

	Copyright	2000	by	Timothy	O'Malley	<timo@alum.mit.edu>

																All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software

	and	its	documentation	for	any	purpose	and	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appear	in	all

	copies	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of

	Timothy	O'Malley		not	be	used	in	advertising	or	publicity

	pertaining	to	distribution	of	the	software	without	specific,	written

	prior	permission.

	Timothy	O'Malley	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS

	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY

	AND	FITNESS,	IN	NO	EVENT	SHALL	Timothy	O'Malley	BE	LIABLE	FOR

	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES

	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,

	WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS

	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR

	PERFORMANCE	OF	THIS	SOFTWARE.

C.3.7	Profiling
The	profile	and	pstats	modules	contain	the	following	notice:

	Copyright	1994,	by	InfoSeek	Corporation,	all	rights	reserved.

	Written	by	James	Roskind

	Permission	to	use,	copy,	modify,	and	distribute	this	Python	software

	and	its	associated	documentation	for	any	purpose	(subject	to	the

	restriction	in	the	following	sentence)	without	fee	is	hereby	granted,

	provided	that	the	above	copyright	notice	appears	in	all	copies,	and

	that	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	InfoSeek	not	be	used	in

	advertising	or	publicity	pertaining	to	distribution	of	the	software

	without	specific,	written	prior	permission.		This	permission	is

	explicitly	restricted	to	the	copying	and	modification	of	the	software

	to	remain	in	Python,	compiled	Python,	or	other	languages	(such	as	C)

	wherein	the	modified	or	derived	code	is	exclusively	imported	into	a

	Python	module.

	INFOSEEK	CORPORATION	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS

	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND

	FITNESS.	IN	NO	EVENT	SHALL	INFOSEEK	CORPORATION	BE	LIABLE	FOR	ANY

	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES	WHATSOEVER

	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF

	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN

	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

C.3.8	Execution	tracing
The	trace	module	contains	the	following	notice:

	portions	copyright	2001,	Autonomous	Zones	Industries,	Inc.,	all	rights...

	err...		reserved	and	offered	to	the	public	under	the	terms	of	the

	Python	2.2	license.

	Author:	Zooko	O'Whielacronx

	http://zooko.com/

	mailto:zooko@zooko.com

	Copyright	2000,	Mojam	Media,	Inc.,	all	rights	reserved.

	Author:	Skip	Montanaro

	Copyright	1999,	Bioreason,	Inc.,	all	rights	reserved.

	Author:	Andrew	Dalke

	Copyright	1995-1997,	Automatrix,	Inc.,	all	rights	reserved.

	Author:	Skip	Montanaro

	Copyright	1991-1995,	Stichting	Mathematisch	Centrum,	all	rights	reserved.

	Permission	to	use,	copy,	modify,	and	distribute	this	Python	software	and

	its	associated	documentation	for	any	purpose	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appears	in	all	copies,

	and	that	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	neither	Automatrix,

	Bioreason	or	Mojam	Media	be	used	in	advertising	or	publicity	pertaining	to

	distribution	of	the	software	without	specific,	written	prior	permission.

C.3.9	UUencode	and	UUdecode	functions
The	uu	module	contains	the	following	notice:

	Copyright	1994	by	Lance	Ellinghouse

	Cathedral	City,	California	Republic,	United	States	of	America.

																								All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its

	documentation	for	any	purpose	and	without	fee	is	hereby	granted,

	provided	that	the	above	copyright	notice	appear	in	all	copies	and	that

	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	Lance	Ellinghouse

	not	be	used	in	advertising	or	publicity	pertaining	to	distribution

	of	the	software	without	specific,	written	prior	permission.

	LANCE	ELLINGHOUSE	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO

	THIS	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND

	FITNESS,	IN	NO	EVENT	SHALL	LANCE	ELLINGHOUSE	CENTRUM	BE	LIABLE

	FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES

	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN

	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT

	OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

	Modified	by	Jack	Jansen,	CWI,	July	1995:

	-	Use	binascii	module	to	do	the	actual	line-by-line	conversion

			between	ascii	and	binary.	This	results	in	a	1000-fold	speedup.	The	C

			version	is	still	5	times	faster,	though.

	-	Arguments	more	compliant	with	python	standard

C.3.10	XML	Remote	Procedure	Calls
The	xmlrpclib	module	contains	the	following	notice:

					The	XML-RPC	client	interface	is

	Copyright	(c)	1999-2002	by	Secret	Labs	AB

	Copyright	(c)	1999-2002	by	Fredrik	Lundh

	By	obtaining,	using,	and/or	copying	this	software	and/or	its

	associated	documentation,	you	agree	that	you	have	read,	understood,

	and	will	comply	with	the	following	terms	and	conditions:

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and

	its	associated	documentation	for	any	purpose	and	without	fee	is

	hereby	granted,	provided	that	the	above	copyright	notice	appears	in

	all	copies,	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of

	Secret	Labs	AB	or	the	author	not	be	used	in	advertising	or	publicity

	pertaining	to	distribution	of	the	software	without	specific,	written

	prior	permission.

	SECRET	LABS	AB	AND	THE	AUTHOR	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD

	TO	THIS	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANT-

	ABILITY	AND	FITNESS.		IN	NO	EVENT	SHALL	SECRET	LABS	AB	OR	THE	AUTHOR

	BE	LIABLE	FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY

	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,

	WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS

	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE

	OF	THIS	SOFTWARE.

Python	Tutorial
Previous:	B.	Floating	Point	Arithmetic:	Up:	Python	Tutorial	Next:	D.	Glossary

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	C.	History	and	License	Up:	Python	Tutorial	Next:	Index

D.	Glossary
>>>

The	typical	Python	prompt	of	the	interactive	shell.	Often	seen	for	code
examples	that	can	be	tried	right	away	in	the	interpreter.

...
The	typical	Python	prompt	of	the	interactive	shell	when	entering	code	for
an	indented	code	block.

BDFL
Benevolent	Dictator	For	Life,	a.k.a.	Guido	van	Rossum,	Python's	creator.

byte	code
The	internal	representation	of	a	Python	program	in	the	interpreter.	The	byte
code	is	also	cached	in	the	.pyc	and	.pyo	files	so	that	executing	the	same
file	is	faster	the	second	time	(compilation	from	source	to	byte	code	can	be
saved).	This	``intermediate	language''	is	said	to	run	on	a	``virtual	machine''
that	calls	the	subroutines	corresponding	to	each	bytecode.

classic	class
Any	class	which	does	not	inherit	from	object.	See	new-style	class.

coercion

The	implicit	conversion	of	an	instance	of	one	type	to	another	during	an
operation	which	involves	two	arguments	of	the	same	type.	For	example,
int(3.15)	converts	the	floating	point	number	to	the	integer,	3,	but	in
3+4.5,	each	argument	is	of	a	different	type	(one	int,	one	float),	and	both
must	be	converted	to	the	same	type	before	they	can	be	added	or	it	will	raise
a	TypeError.	Coercion	between	two	operands	can	be	performed	with	the
coerce	builtin	function;	thus,	3+4.5	is	equivalent	to	calling
operator.add(*coerce(3,	4.5))	and	results	in
operator.add(3.0,	4.5).	Without	coercion,	all	arguments	of	even
compatible	types	would	have	to	be	normalized	to	the	same	value	by	the
programmer,	e.g.,	float(3)+4.5	rather	than	just	3+4.5.

http://www.python.org/~guido/

complex	number

An	extension	of	the	familiar	real	number	system	in	which	all	numbers	are
expressed	as	a	sum	of	a	real	part	and	an	imaginary	part.	Imaginary	numbers
are	real	multiples	of	the	imaginary	unit	(the	square	root	of	-1),	often
written	i	in	mathematics	or	j	in	engineering.	Python	has	builtin	support	for
complex	numbers,	which	are	written	with	this	latter	notation;	the	imaginary
part	is	written	with	a	j	suffix,	e.g.,	3+1j.	To	get	access	to	complex
equivalents	of	the	math	module,	use	cmath.	Use	of	complex	numbers	is	a
fairly	advanced	mathematical	feature.	If	you're	not	aware	of	a	need	for
them,	it's	almost	certain	you	can	safely	ignore	them.

descriptor
Any	new-style	object	that	defines	the	methods	__get__(),	__set__(),
or	__delete__().	When	a	class	attribute	is	a	descriptor,	its	special
binding	behavior	is	triggered	upon	attribute	lookup.	Normally,	writing	a.b
looks	up	the	object	b	in	the	class	dictionary	for	a,	but	if	b	is	a	descriptor,	the
defined	method	gets	called.	Understanding	descriptors	is	a	key	to	a	deep
understanding	of	Python	because	they	are	the	basis	for	many	features
including	functions,	methods,	properties,	class	methods,	static	methods,	and
reference	to	super	classes.

dictionary
An	associative	array,	where	arbitrary	keys	are	mapped	to	values.	The	use	of
dict	much	resembles	that	for	list,	but	the	keys	can	be	any	object	with	a
__hash__()	function,	not	just	integers	starting	from	zero.	Called	a	hash
in	Perl.

EAFP
Easier	to	ask	for	forgiveness	than	permission.	This	common	Python	coding
style	assumes	the	existence	of	valid	keys	or	attributes	and	catches
exceptions	if	the	assumption	proves	false.	This	clean	and	fast	style	is
characterized	by	the	presence	of	many	try	and	except	statements.	The
technique	contrasts	with	the	LBYL	style	that	is	common	in	many	other
languages	such	as	C.

__future__
A	pseudo	module	which	programmers	can	use	to	enable	new	language
features	which	are	not	compatible	with	the	current	interpreter.	For	example,

the	expression	11/4	currently	evaluates	to	2.	If	the	module	in	which	it	is
executed	had	enabled	true	division	by	executing:

from	__future__	import	division

the	expression	11/4	would	evaluate	to	2.75.	By	actually	importing	the
__future__	module	and	evaluating	its	variables,	you	can	see	when	a
new	feature	was	first	added	to	the	language	and	when	it	will	become	the
default:

>>>	import	__future__

>>>	__future__.division

_Feature((2,	2,	0,	'alpha',	2),	(3,	0,	0,	'alpha',	0),	8192)

generator
A	function	that	returns	an	iterator.	It	looks	like	a	normal	function	except
that	values	are	returned	to	the	caller	using	a	yield	statement	instead	of	a
return	statement.	Generator	functions	often	contain	one	or	more	for	or
while	loops	that	yield	elements	back	to	the	caller.	The	function
execution	is	stopped	at	the	yield	keyword	(returning	the	result)	and	is
resumed	there	when	the	next	element	is	requested	by	calling	the	next()
method	of	the	returned	iterator.

generator	expression
An	expression	that	returns	a	generator.	It	looks	like	a	normal	expression
followed	by	a	for	expression	defining	a	loop	variable,	range,	and	an
optional	if	expression.	The	combined	expression	generates	values	for	an
enclosing	function:

>>>	sum(i*i	for	i	in	range(10))									#	sum	of	squares	0,	1,	4,	...	81

285

GIL
See	global	interpreter	lock.

global	interpreter	lock
The	lock	used	by	Python	threads	to	assure	that	only	one	thread	can	be	run	at
a	time.	This	simplifies	Python	by	assuring	that	no	two	processes	can	access
the	same	memory	at	the	same	time.	Locking	the	entire	interpreter	makes	it
easier	for	the	interpreter	to	be	multi-threaded,	at	the	expense	of	some
parallelism	on	multi-processor	machines.	Efforts	have	been	made	in	the

past	to	create	a	``free-threaded''	interpreter	(one	which	locks	shared	data	at	a
much	finer	granularity),	but	performance	suffered	in	the	common	single-
processor	case.

IDLE
An	Integrated	Development	Environment	for	Python.	IDLE	is	a	basic	editor
and	interpreter	environment	that	ships	with	the	standard	distribution	of
Python.	Good	for	beginners,	it	also	serves	as	clear	example	code	for	those
wanting	to	implement	a	moderately	sophisticated,	multi-platform	GUI
application.

immutable
An	object	with	fixed	value.	Immutable	objects	are	numbers,	strings	or
tuples	(and	more).	Such	an	object	cannot	be	altered.	A	new	object	has	to	be
created	if	a	different	value	has	to	be	stored.	They	play	an	important	role	in
places	where	a	constant	hash	value	is	needed.	For	example	as	a	key	in	a
dictionary.

integer	division
Mathematical	division	discarding	any	remainder.	For	example,	the
expression	11/4	currently	evaluates	to	2	in	contrast	to	the	2.75	returned
by	float	division.	Also	called	floor	division.	When	dividing	two	integers	the
outcome	will	always	be	another	integer	(having	the	floor	function	applied
to	it).	However,	if	one	of	the	operands	is	another	numeric	type	(such	as	a
float),	the	result	will	be	coerced	(see	coercion)	to	a	common	type.	For
example,	an	integer	divided	by	a	float	will	result	in	a	float	value,	possibly
with	a	decimal	fraction.	Integer	division	can	be	forced	by	using	the	//
operator	instead	of	the	/	operator.	See	also	__future__.

interactive
Python	has	an	interactive	interpreter	which	means	that	you	can	try	out
things	and	directly	see	its	result.	Just	launch	python	with	no	arguments
(possibly	by	selecting	it	from	your	computer's	main	menu).	It	is	a	very
powerful	way	to	test	out	new	ideas	or	inspect	modules	and	packages
(remember	help(x)).

interpreted
Python	is	an	interpreted	language,	as	opposed	to	a	compiled	one.	This
means	that	the	source	files	can	be	run	directly	without	first	creating	an

executable	which	is	then	run.	Interpreted	languages	typically	have	a	shorter
development/debug	cycle	than	compiled	ones,	though	their	programs
generally	also	run	more	slowly.	See	also	interactive.

iterable
A	container	object	capable	of	returning	its	members	one	at	a	time.
Examples	of	iterables	include	all	sequence	types	(such	as	list,	str,	and
tuple)	and	some	non-sequence	types	like	dict	and	file	and	objects	of
any	classes	you	define	with	an	__iter__()	or	__getitem__()
method.	Iterables	can	be	used	in	a	for	loop	and	in	many	other	places
where	a	sequence	is	needed	(zip(),	map(),	...).	When	an	iterable	object
is	passed	as	an	argument	to	the	builtin	function	iter(),	it	returns	an
iterator	for	the	object.	This	iterator	is	good	for	one	pass	over	the	set	of
values.	When	using	iterables,	it	is	usually	not	necessary	to	call	iter()	or
deal	with	iterator	objects	yourself.	The	for	statement	does	that
automatically	for	you,	creating	a	temporary	unnamed	variable	to	hold	the
iterator	for	the	duration	of	the	loop.	See	also	iterator,	sequence,	and
generator.

iterator
An	object	representing	a	stream	of	data.	Repeated	calls	to	the	iterator's
next()	method	return	successive	items	in	the	stream.	When	no	more	data
is	available	a	StopIteration	exception	is	raised	instead.	At	this	point,
the	iterator	object	is	exhausted	and	any	further	calls	to	its	next()	method
just	raise	StopIteration	again.	Iterators	are	required	to	have	an
__iter__()	method	that	returns	the	iterator	object	itself	so	every	iterator
is	also	iterable	and	may	be	used	in	most	places	where	other	iterables	are
accepted.	One	notable	exception	is	code	that	attempts	multiple	iteration
passes.	A	container	object	(such	as	a	list)	produces	a	fresh	new	iterator
each	time	you	pass	it	to	the	iter()	function	or	use	it	in	a	for	loop.
Attempting	this	with	an	iterator	will	just	return	the	same	exhausted	iterator
object	from	the	second	iteration	pass,	making	it	appear	like	an	empty
container.

list	comprehension
A	compact	way	to	process	all	or	a	subset	of	elements	in	a	sequence	and
return	a	list	with	the	results.	result	=	["0x%02x"	%	x	for	x	in
range(256)	if	x	%	2	==	0]	generates	a	list	of	strings	containing

hex	numbers	(0x..)	that	are	even	and	in	the	range	from	0	to	255.	The	if
clause	is	optional.	If	omitted,	all	elements	in	range(256)	are	processed
in	that	case.

mapping
A	container	object	(such	as	dict)	that	supports	arbitrary	key	lookups	using
the	special	method	__getitem__().

metaclass
The	class	of	a	class.	Class	definitions	create	a	class	name,	a	class	dictionary,
and	a	list	of	base	classes.	The	metaclass	is	responsible	for	taking	those	three
arguments	and	creating	the	class.	Most	object	oriented	programming
languages	provide	a	default	implementation.	What	makes	Python	special	is
that	it	is	possible	to	create	custom	metaclasses.	Most	users	never	need	this
tool,	but	when	the	need	arises,	metaclasses	can	provide	powerful,	elegant
solutions.	They	have	been	used	for	logging	attribute	access,	adding	thread-
safety,	tracking	object	creation,	implementing	singletons,	and	many	other
tasks.

LBYL
Look	before	you	leap.	This	coding	style	explicitly	tests	for	pre-conditions
before	making	calls	or	lookups.	This	style	contrasts	with	the	EAFP
approach	and	is	characterized	the	presence	of	many	if	statements.

mutable
Mutable	objects	can	change	their	value	but	keep	their	id().	See	also
immutable.

namespace
The	place	where	a	variable	is	stored.	Namespaces	are	implemented	as
dictionary.	There	is	the	local,	global	and	builtins	namespace	and	the	nested
namespaces	in	objects	(in	methods).	Namespaces	support	modularity	by
preventing	naming	conflicts.	For	instance,	the	functions
__builtin__.open()	and	os.open()	are	distinguished	by	their
namespaces.	Namespaces	also	aid	readability	and	maintainability	by
making	it	clear	which	modules	implement	a	function.	For	instance,	writing
random.seed()	or	itertools.izip()	makes	it	clear	that	those
functions	are	implemented	by	the	random	and	itertools	modules
respectively.

nested	scope
The	ability	to	refer	to	a	variable	in	an	enclosing	definition.	For	instance,	a
function	defined	inside	another	function	can	refer	to	variables	in	the	outer
function.	Note	that	nested	scopes	work	only	for	reference	and	not	for
assignment	which	will	always	write	to	the	innermost	scope.	In	contrast,
local	variables	both	read	and	write	in	the	innermost	scope.	Likewise,	global
variables	read	and	write	to	the	global	namespace.

new-style	class
Any	class	that	inherits	from	object.	This	includes	all	built-in	types	like
list	and	dict.	Only	new-style	classes	can	use	Python's	newer,	versatile
features	like	__slots__,	descriptors,	properties,
__getattribute__(),	class	methods,	and	static	methods.

Python3000
A	mythical	python	release,	allowed	not	to	be	backward	compatible,	with
telepathic	interface.

__slots__
A	declaration	inside	a	new-style	class	that	saves	memory	by	pre-declaring
space	for	instance	attributes	and	eliminating	instance	dictionaries.	Though
popular,	the	technique	is	somewhat	tricky	to	get	right	and	is	best	reserved
for	rare	cases	where	there	are	large	numbers	of	instances	in	a	memory
critical	application.

sequence
An	iterable	which	supports	efficient	element	access	using	integer	indices
via	the	__getitem__()	and	__len__()	special	methods.	Some	built-
in	sequence	types	are	list,	str,	tuple,	and	unicode.	Note	that	dict
also	supports	__getitem__()	and	__len__(),	but	is	considered	a
mapping	rather	than	a	sequence	because	the	lookups	use	arbitrary
immutable	keys	rather	than	integers.

Zen	of	Python
Listing	of	Python	design	principles	and	philosophies	that	are	helpful	in
understanding	and	using	the	language.	The	listing	can	be	found	by	typing
``import	this''	at	the	interactive	prompt.

Python	Tutorial
Previous:	C.	History	and	License	Up:	Python	Tutorial	Next:	Index

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	D.	Glossary	Up:	Python	Tutorial	Next:	About	this	document	...

Index

Symbols	|	_	|	a	|	b	|	c	|	d	|	e	|	f	|	g	|	h	|	i	|	l	|	m	|	n	|	o	|	p	|	r	|	s	|	u	|	z

Symbols

... >>>

_	(underscore)

__all__
__builtin__	(built-in	module)

__future__
__slots__

A

append()	(list	method)

B

BDFL byte	code

C

classic	class
coercion
compileall	(standard	module)

complex	number
count()	(list	method)

D

descriptor
dictionary

docstrings,	[Link]
documentation	strings,	[Link]

E

EAFP
environment	variables

PATH,	[Link]
PYTHONPATH,	[Link],	[Link],
[Link],	[Link]

environment	variables	(continued)
PYTHONSTARTUP,	[Link]

extend()	(list	method)

F

file	object for	statement,	[Link]

G

generator
generator	expression

GIL
global	interpreter	lock

H

help()	(built-in	function)

I

IDLE
immutable
index()	(list	method)
insert()	(list	method)
integer	division

interactive
interpreted
iterable
iterator

L

LBYL list	comprehension

M

mapping
metaclass
method	object

module
search	path

mutable

N

namespace
nested	scope new-style	class

O

object
file
method

open()	(built-in	function)

P

path
module	search

PATH	(environment	variable),	[Link]
pickle	(standard	module)
pop()	(list	method)

Python3000
PYTHONPATH	(environment
variable),	[Link],	[Link],	[Link],	[Link]
PYTHONSTARTUP	(environment
variable),	[Link]

R

readline	(built-in	module)
remove()	(list	method)

reverse()	(list	method)
rlcompleter	(standard	module)

S

search
path,	module

sequence
sort()	(list	method)
statement

for,	[Link]

string	(standard	module)
strings,	documentation,	[Link]
sys	(standard	module)

U

unicode()	(built-in	function)

Z

Zen	of	Python

Python	Tutorial
Previous:	D.	Glossary	Up:	Python	Tutorial	Next:	About	this	document	...

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Index	Up:	Python	Tutorial

About	this	document	...
Python	Tutorial,	29	November	2004,	Release	2.4

This	document	was	generated	using	the	LaTeX2HTML	translator.

LaTeX2HTML	is	Copyright	©	1993,	1994,	1995,	1996,	1997,	Nikos	Drakos,
Computer	Based	Learning	Unit,	University	of	Leeds,	and	Copyright	©	1997,
1998,	Ross	Moore,	Mathematics	Department,	Macquarie	University,	Sydney.

The	application	of	LaTeX2HTML	to	the	Python	documentation	has	been	heavily
tailored	by	Fred	L.	Drake,	Jr.	Original	navigation	icons	were	contributed	by
Christopher	Petrilli.

http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://cbl.leeds.ac.uk/nikos/personal.html
http://www.maths.mq.edu.au/~ross/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/

Comments	and	Questions
General	comments	and	questions	regarding	this	document	should	be	sent	by
email	to	docs@python.org.	If	you	find	specific	errors	in	this	document,	either	in
the	content	or	the	presentation,	please	report	the	bug	at	the	Python	Bug	Tracker
at	SourceForge.	If	you	are	able	to	provide	suggested	text,	either	to	replace
existing	incorrect	or	unclear	material,	or	additional	text	to	supplement	what's
already	available,	we'd	appreciate	the	contribution.	There's	no	need	to	worry
about	text	markup;	our	documentation	team	will	gladly	take	care	of	that.

Questions	regarding	how	to	use	the	information	in	this	document	should	be	sent
to	the	Python	news	group,	comp.lang.python,	or	the	Python	mailing	list	(which
is	gated	to	the	newsgroup	and	carries	the	same	content).

For	any	of	these	channels,	please	be	sure	not	to	send	HTML	email.	Thanks.

Python	Tutorial
Previous:	Index	Up:	Python	Tutorial

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

mailto:docs@python.org
http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/
news:comp.lang.python
http://www.python.org/mailman/listinfo/python-list

Up:	Python	Documentation	Index	Next:	Front	Matter

Python	Library	Reference
Guido	van	Rossum	

Fred	L.	Drake,	Jr.,	editor
Python	Software	Foundation	
Email:	docs@python.org

Release	2.4
29	November	2004

Front	Matter
Contents
1.	Introduction
2.	Built-In	Objects

2.1	Built-in	Functions
2.2	Non-essential	Built-in	Functions
2.3	Built-in	Types

2.3.1	Truth	Value	Testing
2.3.2	Boolean	Operations
2.3.3	Comparisons
2.3.4	Numeric	Types
2.3.5	Iterator	Types
2.3.6	Sequence	Types
2.3.7	Set	Types
2.3.8	Mapping	Types
2.3.9	File	Objects
2.3.10	Other	Built-in	Types
2.3.11	Special	Attributes

2.4	Built-in	Exceptions
2.5	Built-in	Constants

3.	Python	Runtime	Services
3.1	sys	--	System-specific	parameters	and	functions

3.2	gc	--	Garbage	Collector	interface
3.3	weakref	--	Weak	references

3.3.1	Weak	Reference	Objects
3.3.2	Example
3.3.3	Weak	References	in	Extension	Types

3.4	fpectl	--	Floating	point	exception	control
3.4.1	Example
3.4.2	Limitations	and	other	considerations

3.5	atexit	--	Exit	handlers
3.5.1	atexit	Example

3.6	types	--	Names	for	built-in	types
3.7	UserDict	--	Class	wrapper	for	dictionary	objects
3.8	UserList	--	Class	wrapper	for	list	objects
3.9	UserString	--	Class	wrapper	for	string	objects
3.10	operator	--	Standard	operators	as	functions.

3.10.1	Mapping	Operators	to	Functions
3.11	inspect	--	Inspect	live	objects

3.11.1	Types	and	members
3.11.2	Retrieving	source	code
3.11.3	Classes	and	functions
3.11.4	The	interpreter	stack

3.12	traceback	--	Print	or	retrieve	a	stack	traceback
3.12.1	Traceback	Example

3.13	linecache	--	Random	access	to	text	lines
3.14	pickle	--	Python	object	serialization

3.14.1	Relationship	to	other	Python	modules
3.14.2	Data	stream	format
3.14.3	Usage
3.14.4	What	can	be	pickled	and	unpickled?
3.14.5	The	pickle	protocol
3.14.6	Subclassing	Unpicklers
3.14.7	Example

3.15	cPickle	--	A	faster	pickle
3.16	copy_reg	--	Register	pickle	support	functions
3.17	shelve	--	Python	object	persistence

3.17.1	Restrictions
3.17.2	Example

3.18	copy	--	Shallow	and	deep	copy	operations

3.19	marshal	--	Internal	Python	object	serialization
3.20	warnings	--	Warning	control

3.20.1	Warning	Categories
3.20.2	The	Warnings	Filter
3.20.3	Available	Functions

3.21	imp	--	Access	the	import	internals
3.21.1	Examples

3.22	pkgutil	--	Package	extension	utility
3.23	code	--	Interpreter	base	classes

3.23.1	Interactive	Interpreter	Objects
3.23.2	Interactive	Console	Objects

3.24	codeop	--	Compile	Python	code
3.25	pprint	--	Data	pretty	printer

3.25.1	PrettyPrinter	Objects
3.26	repr	--	Alternate	repr()	implementation

3.26.1	Repr	Objects
3.26.2	Subclassing	Repr	Objects

3.27	new	--	Creation	of	runtime	internal	objects
3.28	site	--	Site-specific	configuration	hook
3.29	user	--	User-specific	configuration	hook
3.30	__builtin__	--	Built-in	functions
3.31	__main__	--	Top-level	script	environment
3.32	__future__	--	Future	statement	definitions

4.	String	Services
4.1	string	--	Common	string	operations

4.1.1	String	constants
4.1.2	Template	strings
4.1.3	String	functions
4.1.4	Deprecated	string	functions

4.2	re	--	Regular	expression	operations
4.2.1	Regular	Expression	Syntax
4.2.2	Matching	vs	Searching
4.2.3	Module	Contents
4.2.4	Regular	Expression	Objects
4.2.5	Match	Objects
4.2.6	Examples

4.3	struct	--	Interpret	strings	as	packed	binary	data
4.4	difflib	--	Helpers	for	computing	deltas

4.4.1	SequenceMatcher	Objects
4.4.2	SequenceMatcher	Examples
4.4.3	Differ	Objects
4.4.4	Differ	Example

4.5	fpformat	--	Floating	point	conversions
4.6	StringIO	--	Read	and	write	strings	as	files
4.7	cStringIO	--	Faster	version	of	StringIO
4.8	textwrap	--	Text	wrapping	and	filling
4.9	codecs	--	Codec	registry	and	base	classes

4.9.1	Codec	Base	Classes
4.9.2	Standard	Encodings
4.9.3	encodings.idna	--	Internationalized	Domain	Names	in
Applications

4.10	unicodedata	--	Unicode	Database
4.11	stringprep	--	Internet	String	Preparation

5.	Miscellaneous	Services
5.1	pydoc	--	Documentation	generator	and	online	help	system
5.2	doctest	--	Test	interactive	Python	examples

5.2.1	Simple	Usage:	Checking	Examples	in	Docstrings
5.2.2	Simple	Usage:	Checking	Examples	in	a	Text	File
5.2.3	How	It	Works
5.2.4	Basic	API
5.2.5	Unittest	API
5.2.6	Advanced	API
5.2.7	Debugging
5.2.8	Soapbox

5.3	unittest	--	Unit	testing	framework
5.3.1	Basic	example
5.3.2	Organizing	test	code
5.3.3	Re-using	old	test	code
5.3.4	Classes	and	functions
5.3.5	TestCase	Objects
5.3.6	TestSuite	Objects
5.3.7	TestResult	Objects
5.3.8	TestLoader	Objects

5.4	test	--	Regression	tests	package	for	Python
5.4.1	Writing	Unit	Tests	for	the	test	package
5.4.2	Running	tests	using	test.regrtest

5.5	test.test_support	--	Utility	functions	for	tests
5.6	decimal	--	Decimal	floating	point	arithmetic

5.6.1	Quick-start	Tutorial
5.6.2	Decimal	objects
5.6.3	Context	objects
5.6.4	Signals
5.6.5	Floating	Point	Notes
5.6.6	Working	with	threads
5.6.7	Recipes

5.7	math	--	Mathematical	functions
5.8	cmath	--	Mathematical	functions	for	complex	numbers
5.9	random	--	Generate	pseudo-random	numbers
5.10	whrandom	--	Pseudo-random	number	generator
5.11	bisect	--	Array	bisection	algorithm

5.11.1	Examples
5.12	collections	--	High-performance	container	datatypes

5.12.1	Recipes
5.13	heapq	--	Heap	queue	algorithm

5.13.1	Theory
5.14	array	--	Efficient	arrays	of	numeric	values
5.15	sets	--	Unordered	collections	of	unique	elements

5.15.1	Set	Objects
5.15.2	Example
5.15.3	Protocol	for	automatic	conversion	to	immutable

5.16	itertools	--	Functions	creating	iterators	for	efficient	looping
5.16.1	Itertool	functions
5.16.2	Examples
5.16.3	Recipes

5.17	ConfigParser	--	Configuration	file	parser
5.17.1	RawConfigParser	Objects
5.17.2	ConfigParser	Objects
5.17.3	SafeConfigParser	Objects

5.18	fileinput	--	Iterate	over	lines	from	multiple	input	streams
5.19	calendar	--	General	calendar-related	functions
5.20	cmd	--	Support	for	line-oriented	command	interpreters

5.20.1	Cmd	Objects
5.21	shlex	--	Simple	lexical	analysis

5.21.1	shlex	Objects

5.21.2	Parsing	Rules
6.	Generic	Operating	System	Services

6.1	os	--	Miscellaneous	operating	system	interfaces
6.1.1	Process	Parameters
6.1.2	File	Object	Creation
6.1.3	File	Descriptor	Operations
6.1.4	Files	and	Directories
6.1.5	Process	Management
6.1.6	Miscellaneous	System	Information
6.1.7	Miscellaneous	Functions

6.2	os.path	--	Common	pathname	manipulations
6.3	dircache	--	Cached	directory	listings
6.4	stat	--	Interpreting	stat()	results
6.5	statcache	--	An	optimization	of	os.stat()
6.6	statvfs	--	Constants	used	with	os.statvfs()
6.7	filecmp	--	File	and	Directory	Comparisons

6.7.1	The	dircmp	class
6.8	subprocess	--	Subprocess	management

6.8.1	Using	the	subprocess	Module
6.8.2	Popen	Objects
6.8.3	Replacing	Older	Functions	with	the	subprocess	Module

6.9	popen2	--	Subprocesses	with	accessible	I/O	streams
6.9.1	Popen3	and	Popen4	Objects
6.9.2	Flow	Control	Issues

6.10	datetime	--	Basic	date	and	time	types
6.10.1	Available	Types
6.10.2	timedelta	Objects
6.10.3	date	Objects
6.10.4	datetime	Objects
6.10.5	time	Objects
6.10.6	tzinfo	Objects
6.10.7	strftime()	Behavior

6.11	time	--	Time	access	and	conversions
6.12	sched	--	Event	scheduler

6.12.1	Scheduler	Objects
6.13	mutex	--	Mutual	exclusion	support

6.13.1	Mutex	Objects
6.14	getpass	--	Portable	password	input

6.15	curses	--	Terminal	handling	for	character-cell	displays
6.15.1	Functions
6.15.2	Window	Objects
6.15.3	Constants

6.16	curses.textpad	--	Text	input	widget	for	curses	programs
6.16.1	Textbox	objects

6.17	curses.wrapper	--	Terminal	handler	for	curses	programs
6.18	curses.ascii	--	Utilities	for	ASCII	characters
6.19	curses.panel	--	A	panel	stack	extension	for	curses.

6.19.1	Functions
6.19.2	Panel	Objects

6.20	getopt	--	Parser	for	command	line	options
6.21	optparse	--	More	powerful	command	line	option	parser

6.21.1	Background
6.21.2	Tutorial
6.21.3	Reference	Guide
6.21.4	Option	Callbacks

6.22	tempfile	--	Generate	temporary	files	and	directories
6.23	errno	--	Standard	errno	system	symbols
6.24	glob	--	UNIX	style	pathname	pattern	expansion
6.25	fnmatch	--	UNIX	filename	pattern	matching
6.26	shutil	--	High-level	file	operations

6.26.1	Example
6.27	locale	--	Internationalization	services

6.27.1	Background,	details,	hints,	tips	and	caveats
6.27.2	For	extension	writers	and	programs	that	embed	Python
6.27.3	Access	to	message	catalogs

6.28	gettext	--	Multilingual	internationalization	services
6.28.1	GNU	gettext	API
6.28.2	Class-based	API
6.28.3	Internationalizing	your	programs	and	modules
6.28.4	Acknowledgements

6.29	logging	--	Logging	facility	for	Python
6.29.1	Logger	Objects
6.29.2	Basic	example
6.29.3	Logging	to	multiple	destinations
6.29.4	Sending	and	receiving	logging	events	across	a	network
6.29.5	Handler	Objects

6.29.6	Formatter	Objects
6.29.7	Filter	Objects
6.29.8	LogRecord	Objects
6.29.9	Thread	Safety
6.29.10	Configuration

6.30	platform	--	Access	to	underlying	platform's	identifying	data.
6.30.1	Cross	Platform
6.30.2	Java	Platform
6.30.3	Windows	Platform
6.30.4	Mac	OS	Platform
6.30.5	UNIX	Platforms

7.	Optional	Operating	System	Services
7.1	signal	--	Set	handlers	for	asynchronous	events

7.1.1	Example
7.2	socket	--	Low-level	networking	interface

7.2.1	Socket	Objects
7.2.2	SSL	Objects
7.2.3	Example

7.3	select	--	Waiting	for	I/O	completion
7.3.1	Polling	Objects

7.4	thread	--	Multiple	threads	of	control
7.5	threading	--	Higher-level	threading	interface

7.5.1	Lock	Objects
7.5.2	RLock	Objects
7.5.3	Condition	Objects
7.5.4	Semaphore	Objects
7.5.5	Event	Objects
7.5.6	Thread	Objects
7.5.7	Timer	Objects

7.6	dummy_thread	--	Drop-in	replacement	for	the	thread	module
7.7	dummy_threading	--	Drop-in	replacement	for	the
threading	module
7.8	Queue	--	A	synchronized	queue	class

7.8.1	Queue	Objects
7.9	mmap	--	Memory-mapped	file	support
7.10	anydbm	--	Generic	access	to	DBM-style	databases
7.11	dbhash	--	DBM-style	interface	to	the	BSD	database	library

7.11.1	Database	Objects

7.12	whichdb	--	Guess	which	DBM	module	created	a	database
7.13	bsddb	--	Interface	to	Berkeley	DB	library

7.13.1	Hash,	BTree	and	Record	Objects
7.14	dumbdbm	--	Portable	DBM	implementation

7.14.1	Dumbdbm	Objects
7.15	zlib	--	Compression	compatible	with	gzip
7.16	gzip	--	Support	for	gzip	files
7.17	bz2	--	Compression	compatible	with	bzip2

7.17.1	(De)compression	of	files
7.17.2	Sequential	(de)compression
7.17.3	One-shot	(de)compression

7.18	zipfile	--	Work	with	ZIP	archives
7.18.1	ZipFile	Objects
7.18.2	PyZipFile	Objects
7.18.3	ZipInfo	Objects

7.19	tarfile	--	Read	and	write	tar	archive	files
7.19.1	TarFile	Objects
7.19.2	TarInfo	Objects
7.19.3	Examples

7.20	readline	--	GNU	readline	interface
7.20.1	Example

7.21	rlcompleter	--	Completion	function	for	GNU	readline
7.21.1	Completer	Objects

8.	Unix	Specific	Services
8.1	posix	--	The	most	common	POSIX	system	calls

8.1.1	Large	File	Support
8.1.2	Module	Contents

8.2	pwd	--	The	password	database
8.3	grp	--	The	group	database
8.4	crypt	--	Function	to	check	UNIX	passwords
8.5	dl	--	Call	C	functions	in	shared	objects

8.5.1	Dl	Objects
8.6	dbm	--	Simple	``database''	interface
8.7	gdbm	--	GNU's	reinterpretation	of	dbm
8.8	termios	--	POSIX	style	tty	control

8.8.1	Example
8.9	tty	--	Terminal	control	functions
8.10	pty	--	Pseudo-terminal	utilities

8.11	fcntl	--	The	fcntl()	and	ioctl()	system	calls
8.12	pipes	--	Interface	to	shell	pipelines

8.12.1	Template	Objects
8.13	posixfile	--	File-like	objects	with	locking	support
8.14	resource	--	Resource	usage	information

8.14.1	Resource	Limits
8.14.2	Resource	Usage

8.15	nis	--	Interface	to	Sun's	NIS	(Yellow	Pages)
8.16	syslog	--	UNIX	syslog	library	routines
8.17	commands	--	Utilities	for	running	commands

9.	The	Python	Debugger
9.1	Debugger	Commands
9.2	How	It	Works

10.	The	Python	Profiler
10.1	Introduction	to	the	profiler
10.2	How	Is	This	Profiler	Different	From	The	Old	Profiler?
10.3	Instant	Users	Manual
10.4	What	Is	Deterministic	Profiling?
10.5	Reference	Manual

10.5.1	The	Stats	Class
10.6	Limitations
10.7	Calibration
10.8	Extensions	--	Deriving	Better	Profilers
10.9	hotshot	--	High	performance	logging	profiler

10.9.1	Profile	Objects
10.9.2	Using	hotshot	data
10.9.3	Example	Usage

10.10	timeit	--	Measure	execution	time	of	small	code	snippets
10.10.1	Command	Line	Interface
10.10.2	Examples

11.	Internet	Protocols	and	Support
11.1	webbrowser	--	Convenient	Web-browser	controller

11.1.1	Browser	Controller	Objects
11.2	cgi	--	Common	Gateway	Interface	support.

11.2.1	Introduction
11.2.2	Using	the	cgi	module
11.2.3	Higher	Level	Interface
11.2.4	Old	classes

11.2.5	Functions
11.2.6	Caring	about	security
11.2.7	Installing	your	CGI	script	on	a	UNIX	system
11.2.8	Testing	your	CGI	script
11.2.9	Debugging	CGI	scripts
11.2.10	Common	problems	and	solutions

11.3	cgitb	--	Traceback	manager	for	CGI	scripts
11.4	urllib	--	Open	arbitrary	resources	by	URL

11.4.1	URLopener	Objects
11.4.2	Examples

11.5	urllib2	--	extensible	library	for	opening	URLs
11.5.1	Request	Objects
11.5.2	OpenerDirector	Objects
11.5.3	BaseHandler	Objects
11.5.4	HTTPRedirectHandler	Objects
11.5.5	HTTPCookieProcessor	Objects
11.5.6	ProxyHandler	Objects
11.5.7	HTTPPasswordMgr	Objects
11.5.8	AbstractBasicAuthHandler	Objects
11.5.9	HTTPBasicAuthHandler	Objects
11.5.10	ProxyBasicAuthHandler	Objects
11.5.11	AbstractDigestAuthHandler	Objects
11.5.12	HTTPDigestAuthHandler	Objects
11.5.13	ProxyDigestAuthHandler	Objects
11.5.14	HTTPHandler	Objects
11.5.15	HTTPSHandler	Objects
11.5.16	FileHandler	Objects
11.5.17	FTPHandler	Objects
11.5.18	CacheFTPHandler	Objects
11.5.19	GopherHandler	Objects
11.5.20	UnknownHandler	Objects
11.5.21	HTTPErrorProcessor	Objects
11.5.22	Examples

11.6	httplib	--	HTTP	protocol	client
11.6.1	HTTPConnection	Objects
11.6.2	HTTPResponse	Objects
11.6.3	Examples

11.7	ftplib	--	FTP	protocol	client

11.7.1	FTP	Objects
11.8	gopherlib	--	Gopher	protocol	client
11.9	poplib	--	POP3	protocol	client

11.9.1	POP3	Objects
11.9.2	POP3	Example

11.10	imaplib	--	IMAP4	protocol	client
11.10.1	IMAP4	Objects
11.10.2	IMAP4	Example

11.11	nntplib	--	NNTP	protocol	client
11.11.1	NNTP	Objects

11.12	smtplib	--	SMTP	protocol	client
11.12.1	SMTP	Objects
11.12.2	SMTP	Example

11.13	smtpd	--	SMTP	Server
11.13.1	SMTPServer	Objects
11.13.2	DebuggingServer	Objects
11.13.3	PureProxy	Objects
11.13.4	MailmanProxy	Objects

11.14	telnetlib	--	Telnet	client
11.14.1	Telnet	Objects
11.14.2	Telnet	Example

11.15	urlparse	--	Parse	URLs	into	components
11.16	SocketServer	--	A	framework	for	network	servers
11.17	BaseHTTPServer	--	Basic	HTTP	server
11.18	SimpleHTTPServer	--	Simple	HTTP	request	handler
11.19	CGIHTTPServer	--	CGI-capable	HTTP	request	handler
11.20	cookielib	--	Cookie	handling	for	HTTP	clients

11.20.1	CookieJar	and	FileCookieJar	Objects
11.20.2	FileCookieJar	subclasses	and	co-operation	with	web
browsers
11.20.3	CookiePolicy	Objects
11.20.4	DefaultCookiePolicy	Objects
11.20.5	Cookie	Objects
11.20.6	Examples

11.21	Cookie	--	HTTP	state	management
11.21.1	Cookie	Objects
11.21.2	Morsel	Objects
11.21.3	Example

11.22	xmlrpclib	--	XML-RPC	client	access
11.22.1	ServerProxy	Objects
11.22.2	Boolean	Objects
11.22.3	DateTime	Objects
11.22.4	Binary	Objects
11.22.5	Fault	Objects
11.22.6	ProtocolError	Objects
11.22.7	MultiCall	Objects
11.22.8	Convenience	Functions
11.22.9	Example	of	Client	Usage

11.23	SimpleXMLRPCServer	--	Basic	XML-RPC	server
11.23.1	SimpleXMLRPCServer	Objects
11.23.2	CGIXMLRPCRequestHandler

11.24	DocXMLRPCServer	--	Self-documenting	XML-RPC	server
11.24.1	DocXMLRPCServer	Objects
11.24.2	DocCGIXMLRPCRequestHandler

11.25	asyncore	--	Asynchronous	socket	handler
11.25.1	asyncore	Example	basic	HTTP	client

11.26	asynchat	--	Asynchronous	socket	command/response	handler
11.26.1	asynchat	-	Auxiliary	Classes	and	Functions
11.26.2	asynchat	Example

12.	Internet	Data	Handling
12.1	formatter	--	Generic	output	formatting

12.1.1	The	Formatter	Interface
12.1.2	Formatter	Implementations
12.1.3	The	Writer	Interface
12.1.4	Writer	Implementations

12.2	email	--	An	email	and	MIME	handling	package
12.2.1	Representing	an	email	message
12.2.2	Parsing	email	messages
12.2.3	Generating	MIME	documents
12.2.4	Creating	email	and	MIME	objects	from	scratch
12.2.5	Internationalized	headers
12.2.6	Representing	character	sets
12.2.7	Encoders
12.2.8	Exception	and	Defect	classes
12.2.9	Miscellaneous	utilities
12.2.10	Iterators

12.2.11	Package	History
12.2.12	Differences	from	mimelib
12.2.13	Examples

12.3	mailcap	--	Mailcap	file	handling.
12.4	mailbox	--	Read	various	mailbox	formats

12.4.1	Mailbox	Objects
12.5	mhlib	--	Access	to	MH	mailboxes

12.5.1	MH	Objects
12.5.2	Folder	Objects
12.5.3	Message	Objects

12.6	mimetools	--	Tools	for	parsing	MIME	messages
12.6.1	Additional	Methods	of	Message	Objects

12.7	mimetypes	--	Map	filenames	to	MIME	types
12.7.1	MimeTypes	Objects

12.8	MimeWriter	--	Generic	MIME	file	writer
12.8.1	MimeWriter	Objects

12.9	mimify	--	MIME	processing	of	mail	messages
12.10	multifile	--	Support	for	files	containing	distinct	parts

12.10.1	MultiFile	Objects
12.10.2	MultiFile	Example

12.11	rfc822	--	Parse	RFC	2822	mail	headers
12.11.1	Message	Objects
12.11.2	AddressList	Objects

12.12	base64	--	RFC	3548:	Base16,	Base32,	Base64	Data	Encodings
12.13	binascii	--	Convert	between	binary	and	ASCII
12.14	binhex	--	Encode	and	decode	binhex4	files

12.14.1	Notes
12.15	quopri	--	Encode	and	decode	MIME	quoted-printable	data
12.16	uu	--	Encode	and	decode	uuencode	files
12.17	xdrlib	--	Encode	and	decode	XDR	data

12.17.1	Packer	Objects
12.17.2	Unpacker	Objects
12.17.3	Exceptions

12.18	netrc	--	netrc	file	processing
12.18.1	netrc	Objects

12.19	robotparser	--	Parser	for	robots.txt
12.20	csv	--	CSV	File	Reading	and	Writing

12.20.1	Module	Contents

12.20.2	Dialects	and	Formatting	Parameters
12.20.3	Reader	Objects
12.20.4	Writer	Objects
12.20.5	Examples

13.	Structured	Markup	Processing	Tools
13.1	HTMLParser	--	Simple	HTML	and	XHTML	parser

13.1.1	Example	HTML	Parser	Application
13.2	sgmllib	--	Simple	SGML	parser
13.3	htmllib	--	A	parser	for	HTML	documents

13.3.1	HTMLParser	Objects
13.4	htmlentitydefs	--	Definitions	of	HTML	general	entities
13.5	xml.parsers.expat	--	Fast	XML	parsing	using	Expat

13.5.1	XMLParser	Objects
13.5.2	ExpatError	Exceptions
13.5.3	Example
13.5.4	Content	Model	Descriptions
13.5.5	Expat	error	constants

13.6	xml.dom	--	The	Document	Object	Model	API
13.6.1	Module	Contents
13.6.2	Objects	in	the	DOM
13.6.3	Conformance

13.7	xml.dom.minidom	--	Lightweight	DOM	implementation
13.7.1	DOM	Objects
13.7.2	DOM	Example
13.7.3	minidom	and	the	DOM	standard

13.8	xml.dom.pulldom	--	Support	for	building	partial	DOM	trees
13.8.1	DOMEventStream	Objects

13.9	xml.sax	--	Support	for	SAX2	parsers
13.9.1	SAXException	Objects

13.10	xml.sax.handler	--	Base	classes	for	SAX	handlers
13.10.1	ContentHandler	Objects
13.10.2	DTDHandler	Objects
13.10.3	EntityResolver	Objects
13.10.4	ErrorHandler	Objects

13.11	xml.sax.saxutils	--	SAX	Utilities
13.12	xml.sax.xmlreader	--	Interface	for	XML	parsers

13.12.1	XMLReader	Objects
13.12.2	IncrementalParser	Objects

13.12.3	Locator	Objects
13.12.4	InputSource	Objects
13.12.5	The	Attributes	Interface
13.12.6	The	AttributesNS	Interface

13.13	xmllib	--	A	parser	for	XML	documents
13.13.1	XML	Namespaces

14.	Multimedia	Services
14.1	audioop	--	Manipulate	raw	audio	data
14.2	imageop	--	Manipulate	raw	image	data
14.3	aifc	--	Read	and	write	AIFF	and	AIFC	files
14.4	sunau	--	Read	and	write	Sun	AU	files

14.4.1	AU_read	Objects
14.4.2	AU_write	Objects

14.5	wave	--	Read	and	write	WAV	files
14.5.1	Wave_read	Objects
14.5.2	Wave_write	Objects

14.6	chunk	--	Read	IFF	chunked	data
14.7	colorsys	--	Conversions	between	color	systems
14.8	rgbimg	--	Read	and	write	``SGI	RGB''	files
14.9	imghdr	--	Determine	the	type	of	an	image
14.10	sndhdr	--	Determine	type	of	sound	file
14.11	ossaudiodev	--	Access	to	OSS-compatible	audio	devices

14.11.1	Audio	Device	Objects
14.11.2	Mixer	Device	Objects

15.	Cryptographic	Services
15.1	hmac	--	Keyed-Hashing	for	Message	Authentication
15.2	md5	--	MD5	message	digest	algorithm
15.3	sha	--	SHA-1	message	digest	algorithm

16.	Graphical	User	Interfaces	with	Tk
16.1	Tkinter	--	Python	interface	to	Tcl/Tk

16.1.1	Tkinter	Modules
16.1.2	Tkinter	Life	Preserver
16.1.3	A	(Very)	Quick	Look	at	Tcl/Tk
16.1.4	Mapping	Basic	Tk	into	Tkinter
16.1.5	How	Tk	and	Tkinter	are	Related
16.1.6	Handy	Reference

16.2	Tix	--	Extension	widgets	for	Tk
16.2.1	Using	Tix

16.2.2	Tix	Widgets
16.2.3	Tix	Commands

16.3	ScrolledText	--	Scrolled	Text	Widget
16.4	turtle	--	Turtle	graphics	for	Tk

16.4.1	Pen	and	RawPen	Objects
16.5	Idle

16.5.1	Menus
16.5.2	Basic	editing	and	navigation
16.5.3	Syntax	colors

16.6	Other	Graphical	User	Interface	Packages
17.	Restricted	Execution

17.1	rexec	--	Restricted	execution	framework
17.1.1	RExec	Objects
17.1.2	Defining	restricted	environments
17.1.3	An	example

17.2	Bastion	--	Restricting	access	to	objects
18.	Python	Language	Services

18.1	parser	--	Access	Python	parse	trees
18.1.1	Creating	AST	Objects
18.1.2	Converting	AST	Objects
18.1.3	Queries	on	AST	Objects
18.1.4	Exceptions	and	Error	Handling
18.1.5	AST	Objects
18.1.6	Examples

18.2	symbol	--	Constants	used	with	Python	parse	trees
18.3	token	--	Constants	used	with	Python	parse	trees
18.4	keyword	--	Testing	for	Python	keywords
18.5	tokenize	--	Tokenizer	for	Python	source
18.6	tabnanny	--	Detection	of	ambiguous	indentation
18.7	pyclbr	--	Python	class	browser	support

18.7.1	Class	Descriptor	Objects
18.7.2	Function	Descriptor	Objects

18.8	py_compile	--	Compile	Python	source	files
18.9	compileall	--	Byte-compile	Python	libraries
18.10	dis	--	Disassembler	for	Python	byte	code

18.10.1	Python	Byte	Code	Instructions
18.11	pickletools	--	Tools	for	pickle	developers.
18.12	distutils	--	Building	and	installing	Python	modules

19.	Python	compiler	package
19.1	The	basic	interface
19.2	Limitations
19.3	Python	Abstract	Syntax

19.3.1	AST	Nodes
19.3.2	Assignment	nodes
19.3.3	Examples

19.4	Using	Visitors	to	Walk	ASTs
19.5	Bytecode	Generation

20.	SGI	IRIX	Specific	Services
20.1	al	--	Audio	functions	on	the	SGI

20.1.1	Configuration	Objects
20.1.2	Port	Objects

20.2	AL	--	Constants	used	with	the	al	module
20.3	cd	--	CD-ROM	access	on	SGI	systems

20.3.1	Player	Objects
20.3.2	Parser	Objects

20.4	fl	--	FORMS	library	for	graphical	user	interfaces
20.4.1	Functions	Defined	in	Module	fl
20.4.2	Form	Objects
20.4.3	FORMS	Objects

20.5	FL	--	Constants	used	with	the	fl	module
20.6	flp	--	Functions	for	loading	stored	FORMS	designs
20.7	fm	--	Font	Manager	interface
20.8	gl	--	Graphics	Library	interface
20.9	DEVICE	--	Constants	used	with	the	gl	module
20.10	GL	--	Constants	used	with	the	gl	module
20.11	imgfile	--	Support	for	SGI	imglib	files
20.12	jpeg	--	Read	and	write	JPEG	files

21.	SunOS	Specific	Services
21.1	sunaudiodev	--	Access	to	Sun	audio	hardware

21.1.1	Audio	Device	Objects
21.2	SUNAUDIODEV	--	Constants	used	with	sunaudiodev

22.	MS	Windows	Specific	Services
22.1	msvcrt	-	Useful	routines	from	the	MS	VC++	runtime

22.1.1	File	Operations
22.1.2	Console	I/O
22.1.3	Other	Functions

22.2	_winreg	-	Windows	registry	access
22.2.1	Registry	Handle	Objects

22.3	winsound	--	Sound-playing	interface	for	Windows
A.	Undocumented	Modules

A.1	Frameworks
A.2	Miscellaneous	useful	utilities
A.3	Platform	specific	modules
A.4	Multimedia
A.5	Obsolete
A.6	SGI-specific	Extension	modules

B.	Reporting	Bugs
C.	History	and	License

C.1	History	of	the	software
C.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
C.3	Licenses	and	Acknowledgements	for	Incorporated	Software

C.3.1	Mersenne	Twister
C.3.2	Sockets
C.3.3	Floating	point	exception	control
C.3.4	MD5	message	digest	algorithm
C.3.5	Asynchronous	socket	services
C.3.6	Cookie	management
C.3.7	Profiling
C.3.8	Execution	tracing
C.3.9	UUencode	and	UUdecode	functions
C.3.10	XML	Remote	Procedure	Calls

Module	Index
Index
About	this	document	...

Python	Library	Reference
Up:	Python	Documentation	Index	Next:	Front	Matter

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Python	Library	Reference	Up:	Python	Library	Reference	Next:
Contents

Front	Matter
Copyright	©	2001-2004	Python	Software	Foundation.	All	rights	reserved.

Copyright	©	2000	BeOpen.com.	All	rights	reserved.

Copyright	©	1995-2000	Corporation	for	National	Research	Initiatives.	All	rights
reserved.

Copyright	©	1991-1995	Stichting	Mathematisch	Centrum.	All	rights	reserved.

See	the	end	of	this	document	for	complete	license	and	permissions	information.

Abstract:

Python	is	an	extensible,	interpreted,	object-oriented	programming	language.	It
supports	a	wide	range	of	applications,	from	simple	text	processing	scripts	to
interactive	Web	browsers.

While	the	Python	Reference	Manual	describes	the	exact	syntax	and	semantics	of
the	language,	it	does	not	describe	the	standard	library	that	is	distributed	with	the
language,	and	which	greatly	enhances	its	immediate	usability.	This	library
contains	built-in	modules	(written	in	C)	that	provide	access	to	system
functionality	such	as	file	I/O	that	would	otherwise	be	inaccessible	to	Python
programmers,	as	well	as	modules	written	in	Python	that	provide	standardized
solutions	for	many	problems	that	occur	in	everyday	programming.	Some	of	these
modules	are	explicitly	designed	to	encourage	and	enhance	the	portability	of
Python	programs.

This	library	reference	manual	documents	Python's	standard	library,	as	well	as
many	optional	library	modules	(which	may	or	may	not	be	available,	depending
on	whether	the	underlying	platform	supports	them	and	on	the	configuration
choices	made	at	compile	time).	It	also	documents	the	standard	types	of	the
language	and	its	built-in	functions	and	exceptions,	many	of	which	are	not	or
incompletely	documented	in	the	Reference	Manual.

This	manual	assumes	basic	knowledge	about	the	Python	language.	For	an

informal	introduction	to	Python,	see	the	Python	Tutorial;	the	Python	Reference
Manual	remains	the	highest	authority	on	syntactic	and	semantic	questions.
Finally,	the	manual	entitled	Extending	and	Embedding	the	Python	Interpreter
describes	how	to	add	new	extensions	to	Python	and	how	to	embed	it	in	other
applications.

Python	Library	Reference
Previous:	Python	Library	Reference	Up:	Python	Library	Reference	Next:
Contents

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Contents	Up:	Python	Library	Reference	Next:	2.	Built-In	Objects

1.	Introduction
The	``Python	library''	contains	several	different	kinds	of	components.

It	contains	data	types	that	would	normally	be	considered	part	of	the	``core''	of	a
language,	such	as	numbers	and	lists.	For	these	types,	the	Python	language	core
defines	the	form	of	literals	and	places	some	constraints	on	their	semantics,	but
does	not	fully	define	the	semantics.	(On	the	other	hand,	the	language	core	does
define	syntactic	properties	like	the	spelling	and	priorities	of	operators.)

The	library	also	contains	built-in	functions	and	exceptions	--	objects	that	can	be
used	by	all	Python	code	without	the	need	of	an	import	statement.	Some	of
these	are	defined	by	the	core	language,	but	many	are	not	essential	for	the	core
semantics	and	are	only	described	here.

The	bulk	of	the	library,	however,	consists	of	a	collection	of	modules.	There	are
many	ways	to	dissect	this	collection.	Some	modules	are	written	in	C	and	built	in
to	the	Python	interpreter;	others	are	written	in	Python	and	imported	in	source
form.	Some	modules	provide	interfaces	that	are	highly	specific	to	Python,	like
printing	a	stack	trace;	some	provide	interfaces	that	are	specific	to	particular
operating	systems,	such	as	access	to	specific	hardware;	others	provide	interfaces
that	are	specific	to	a	particular	application	domain,	like	the	World	Wide	Web.
Some	modules	are	available	in	all	versions	and	ports	of	Python;	others	are	only
available	when	the	underlying	system	supports	or	requires	them;	yet	others	are
available	only	when	a	particular	configuration	option	was	chosen	at	the	time
when	Python	was	compiled	and	installed.

This	manual	is	organized	``from	the	inside	out:''	it	first	describes	the	built-in	data
types,	then	the	built-in	functions	and	exceptions,	and	finally	the	modules,
grouped	in	chapters	of	related	modules.	The	ordering	of	the	chapters	as	well	as
the	ordering	of	the	modules	within	each	chapter	is	roughly	from	most	relevant	to
least	important.

This	means	that	if	you	start	reading	this	manual	from	the	start,	and	skip	to	the
next	chapter	when	you	get	bored,	you	will	get	a	reasonable	overview	of	the
available	modules	and	application	areas	that	are	supported	by	the	Python	library.
Of	course,	you	don't	have	to	read	it	like	a	novel	--	you	can	also	browse	the	table

of	contents	(in	front	of	the	manual),	or	look	for	a	specific	function,	module	or
term	in	the	index	(in	the	back).	And	finally,	if	you	enjoy	learning	about	random
subjects,	you	choose	a	random	page	number	(see	module	random)	and	read	a
section	or	two.	Regardless	of	the	order	in	which	you	read	the	sections	of	this
manual,	it	helps	to	start	with	chapter	2,	``Built-in	Types,	Exceptions	and
Functions,''	as	the	remainder	of	the	manual	assumes	familiarity	with	this
material.

Let	the	show	begin!

Python	Library	Reference
Previous:	Contents	Up:	Python	Library	Reference	Next:	2.	Built-In	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.	Introduction	Up:	Python	Library	Reference	Next:	2.1	Built-in
Functions

2.	Built-In	Objects
Names	for	built-in	exceptions	and	functions	and	a	number	of	constants	are	found
in	a	separate	symbol	table.	This	table	is	searched	last	when	the	interpreter	looks
up	the	meaning	of	a	name,	so	local	and	global	user-defined	names	can	override
built-in	names.	Built-in	types	are	described	together	here	for	easy	reference.2.1

The	tables	in	this	chapter	document	the	priorities	of	operators	by	listing	them	in
order	of	ascending	priority	(within	a	table)	and	grouping	operators	that	have	the
same	priority	in	the	same	box.	Binary	operators	of	the	same	priority	group	from
left	to	right.	(Unary	operators	group	from	right	to	left,	but	there	you	have	no	real
choice.)	See	chapter	5	of	the	Python	Reference	Manual	for	the	complete	picture
on	operator	priorities.	

Footnotes

...	reference.2.1
Most	descriptions	sorely	lack	explanations	of	the	exceptions	that	may	be
raised	--	this	will	be	fixed	in	a	future	version	of	this	manual.

Subsections

2.1	Built-in	Functions
2.2	Non-essential	Built-in	Functions
2.3	Built-in	Types

2.3.1	Truth	Value	Testing
2.3.2	Boolean	Operations
2.3.3	Comparisons
2.3.4	Numeric	Types

2.3.4.1	Bit-string	Operations	on	Integer	Types
2.3.5	Iterator	Types
2.3.6	Sequence	Types

2.3.6.1	String	Methods

2.3.6.2	String	Formatting	Operations
2.3.6.3	XRange	Type
2.3.6.4	Mutable	Sequence	Types

2.3.7	Set	Types
2.3.8	Mapping	Types
2.3.9	File	Objects
2.3.10	Other	Built-in	Types

2.3.10.1	Modules
2.3.10.2	Classes	and	Class	Instances
2.3.10.3	Functions
2.3.10.4	Methods
2.3.10.5	Code	Objects
2.3.10.6	Type	Objects
2.3.10.7	The	Null	Object
2.3.10.8	The	Ellipsis	Object
2.3.10.9	Boolean	Values
2.3.10.10	Internal	Objects

2.3.11	Special	Attributes
2.4	Built-in	Exceptions
2.5	Built-in	Constants

Python	Library	Reference
Previous:	1.	Introduction	Up:	Python	Library	Reference	Next:	2.1	Built-in
Functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.	Built-In	Objects	Up:	2.	Built-In	Objects	Next:	2.2	Non-essential
Built-in	Functions

2.1	Built-in	Functions
The	Python	interpreter	has	a	number	of	functions	built	into	it	that	are	always
available.	They	are	listed	here	in	alphabetical	order.

__import__(name[,	globals[,	locals[,	fromlist]]])
This	function	is	invoked	by	the	import	statement.	It	mainly	exists	so	that
you	can	replace	it	with	another	function	that	has	a	compatible	interface,	in
order	to	change	the	semantics	of	the	import	statement.	For	examples	of
why	and	how	you	would	do	this,	see	the	standard	library	modules	ihooks
and	rexec.	See	also	the	built-in	module	imp,	which	defines	some	useful
operations	out	of	which	you	can	build	your	own	__import__()	function.

For	example,	the	statement	"import	spam"	results	in	the	following	call:
__import__('spam',	globals(),	locals(),	[]);	the
statement	"from	spam.ham	import	eggs"	results	in
"__import__('spam.ham',	globals(),	locals(),
['eggs'])".	Note	that	even	though	locals()	and	['eggs']	are
passed	in	as	arguments,	the	__import__()	function	does	not	set	the
local	variable	named	eggs;	this	is	done	by	subsequent	code	that	is
generated	for	the	import	statement.	(In	fact,	the	standard	implementation
does	not	use	its	locals	argument	at	all,	and	uses	its	globals	only	to
determine	the	package	context	of	the	import	statement.)

When	the	name	variable	is	of	the	form	package.module,	normally,	the
top-level	package	(the	name	up	till	the	first	dot)	is	returned,	not	the	module
named	by	name.	However,	when	a	non-empty	fromlist	argument	is	given,
the	module	named	by	name	is	returned.	This	is	done	for	compatibility	with
the	bytecode	generated	for	the	different	kinds	of	import	statement;	when
using	"import	spam.ham.eggs",	the	top-level	package	spam	must	be
placed	in	the	importing	namespace,	but	when	using	"from	spam.ham
import	eggs",	the	spam.ham	subpackage	must	be	used	to	find	the
eggs	variable.	As	a	workaround	for	this	behavior,	use	getattr()	to
extract	the	desired	components.	For	example,	you	could	define	the
following	helper:

def	my_import(name):

				mod	=	__import__(name)

				components	=	name.split('.')

				for	comp	in	components[1:]:

								mod	=	getattr(mod,	comp)

				return	mod

abs(x)
Return	the	absolute	value	of	a	number.	The	argument	may	be	a	plain	or	long
integer	or	a	floating	point	number.	If	the	argument	is	a	complex	number,	its
magnitude	is	returned.

basestring()
This	abstract	type	is	the	superclass	for	str	and	unicode.	It	cannot	be
called	or	instantiated,	but	it	can	be	used	to	test	whether	an	object	is	an
instance	of	str	or	unicode.	isinstance(obj,	basestring)	is
equivalent	to	isinstance(obj,	(str,	unicode)).	New	in
version	2.3.

bool([x])
Convert	a	value	to	a	Boolean,	using	the	standard	truth	testing	procedure.	If
x	is	false	or	omitted,	this	returns	False;	otherwise	it	returns	True.	bool
is	also	a	class,	which	is	a	subclass	of	int.	Class	bool	cannot	be
subclassed	further.	Its	only	instances	are	False	and	True.

New	in	version	2.2.1.	Changed	in	version	2.3:	If	no	argument	is	given,	this
function	returns	False.

callable(object)
Return	true	if	the	object	argument	appears	callable,	false	if	not.	If	this
returns	true,	it	is	still	possible	that	a	call	fails,	but	if	it	is	false,	calling	object
will	never	succeed.	Note	that	classes	are	callable	(calling	a	class	returns	a
new	instance);	class	instances	are	callable	if	they	have	a	__call__()
method.

chr(i)
Return	a	string	of	one	character	whose	ASCII	code	is	the	integer	i.	For
example,	chr(97)	returns	the	string	'a'.	This	is	the	inverse	of	ord().
The	argument	must	be	in	the	range	[0..255],	inclusive;	ValueError	will

be	raised	if	i	is	outside	that	range.

classmethod(function)
Return	a	class	method	for	function.

A	class	method	receives	the	class	as	implicit	first	argument,	just	like	an
instance	method	receives	the	instance.	To	declare	a	class	method,	use	this
idiom:

class	C:

				@classmethod

				def	f(cls,	arg1,	arg2,	...):	...

The	@classmethod	form	is	a	function	decorator	-	see	the	description	of
function	definitions	in	chapter	7	of	the	Python	Reference	Manual	for
details.

It	can	be	called	either	on	the	class	(such	as	C.f())	or	on	an	instance	(such
as	C().f()).	The	instance	is	ignored	except	for	its	class.	If	a	class	method
is	called	for	a	derived	class,	the	derived	class	object	is	passed	as	the	implied
first	argument.

Class	methods	are	different	than	C++	or	Java	static	methods.	If	you	want
those,	see	staticmethod()	in	this	section.	New	in	version	2.2.
Changed	in	version	2.4:	Function	decorator	syntax	added.

cmp(x,	y)
Compare	the	two	objects	x	and	y	and	return	an	integer	according	to	the
outcome.	The	return	value	is	negative	if	x	<	y,	zero	if	x	==	y	and	strictly
positive	if	x	>	y.

compile(string,	filename,	kind[,	flags[,	dont_inherit]])
Compile	the	string	into	a	code	object.	Code	objects	can	be	executed	by	an
exec	statement	or	evaluated	by	a	call	to	eval().	The	filename	argument
should	give	the	file	from	which	the	code	was	read;	pass	some	recognizable
value	if	it	wasn't	read	from	a	file	('<string>'	is	commonly	used).	The
kind	argument	specifies	what	kind	of	code	must	be	compiled;	it	can	be
'exec'	if	string	consists	of	a	sequence	of	statements,	'eval'	if	it
consists	of	a	single	expression,	or	'single'	if	it	consists	of	a	single

interactive	statement	(in	the	latter	case,	expression	statements	that	evaluate
to	something	else	than	None	will	be	printed).

When	compiling	multi-line	statements,	two	caveats	apply:	line	endings
must	be	represented	by	a	single	newline	character	('\n'),	and	the	input
must	be	terminated	by	at	least	one	newline	character.	If	line	endings	are
represented	by	'\r\n',	use	the	string	replace()	method	to	change
them	into	'\n'.

The	optional	arguments	flags	and	dont_inherit	(which	are	new	in	Python
2.2)	control	which	future	statements	(see	PEP	236)	affect	the	compilation	of
string.	If	neither	is	present	(or	both	are	zero)	the	code	is	compiled	with
those	future	statements	that	are	in	effect	in	the	code	that	is	calling	compile.
If	the	flags	argument	is	given	and	dont_inherit	is	not	(or	is	zero)	then	the
future	statements	specified	by	the	flags	argument	are	used	in	addition	to
those	that	would	be	used	anyway.	If	dont_inherit	is	a	non-zero	integer	then
the	flags	argument	is	it	-	the	future	statements	in	effect	around	the	call	to
compile	are	ignored.

Future	statemants	are	specified	by	bits	which	can	be	bitwise	or-ed	together
to	specify	multiple	statements.	The	bitfield	required	to	specify	a	given
feature	can	be	found	as	the	compiler_flag	attribute	on	the	_Feature
instance	in	the	__future__	module.

complex([real[,	imag]])
Create	a	complex	number	with	the	value	real	+	imag*j	or	convert	a	string
or	number	to	a	complex	number.	If	the	first	parameter	is	a	string,	it	will	be
interpreted	as	a	complex	number	and	the	function	must	be	called	without	a
second	parameter.	The	second	parameter	can	never	be	a	string.	Each
argument	may	be	any	numeric	type	(including	complex).	If	imag	is	omitted,
it	defaults	to	zero	and	the	function	serves	as	a	numeric	conversion	function
like	int(),	long()	and	float().	If	both	arguments	are	omitted,
returns	0j.

delattr(object,	name)
This	is	a	relative	of	setattr().	The	arguments	are	an	object	and	a	string.
The	string	must	be	the	name	of	one	of	the	object's	attributes.	The	function
deletes	the	named	attribute,	provided	the	object	allows	it.	For	example,

http://www.python.org/peps/pep-0236.html

delattr(x,	'foobar')	is	equivalent	to	del	x.foobar.

dict([mapping-or-sequence])
Return	a	new	dictionary	initialized	from	an	optional	positional	argument	or
from	a	set	of	keyword	arguments.	If	no	arguments	are	given,	return	a	new
empty	dictionary.	If	the	positional	argument	is	a	mapping	object,	return	a
dictionary	mapping	the	same	keys	to	the	same	values	as	does	the	mapping
object.	Otherwise	the	positional	argument	must	be	a	sequence,	a	container
that	supports	iteration,	or	an	iterator	object.	The	elements	of	the	argument
must	each	also	be	of	one	of	those	kinds,	and	each	must	in	turn	contain
exactly	two	objects.	The	first	is	used	as	a	key	in	the	new	dictionary,	and	the
second	as	the	key's	value.	If	a	given	key	is	seen	more	than	once,	the	last
value	associated	with	it	is	retained	in	the	new	dictionary.

If	keyword	arguments	are	given,	the	keywords	themselves	with	their
associated	values	are	added	as	items	to	the	dictionary.	If	a	key	is	specified
both	in	the	positional	argument	and	as	a	keyword	argument,	the	value
associated	with	the	keyword	is	retained	in	the	dictionary.	For	example,
these	all	return	a	dictionary	equal	to	{"one":	2,	"two":	3}:

dict({'one':	2,	'two':	3})

dict({'one':	2,	'two':	3}.items())

dict({'one':	2,	'two':	3}.iteritems())

dict(zip(('one',	'two'),	(2,	3)))

dict([['two',	3],	['one',	2]])

dict(one=2,	two=3)

dict([(['one',	'two'][i-2],	i)	for	i	in	(2,

3)])

New	in	version	2.2.	Changed	in	version	2.3:	Support	for	building	a
dictionary	from	keyword	arguments	added.

dir([object])
Without	arguments,	return	the	list	of	names	in	the	current	local	symbol
table.	With	an	argument,	attempts	to	return	a	list	of	valid	attributes	for	that
object.	This	information	is	gleaned	from	the	object's	__dict__	attribute,
if	defined,	and	from	the	class	or	type	object.	The	list	is	not	necessarily
complete.	If	the	object	is	a	module	object,	the	list	contains	the	names	of	the

module's	attributes.	If	the	object	is	a	type	or	class	object,	the	list	contains
the	names	of	its	attributes,	and	recursively	of	the	attributes	of	its	bases.
Otherwise,	the	list	contains	the	object's	attributes'	names,	the	names	of	its
class's	attributes,	and	recursively	of	the	attributes	of	its	class's	base	classes.
The	resulting	list	is	sorted	alphabetically.	For	example:

>>>	import	struct

>>>	dir()

['__builtins__',	'__doc__',	'__name__',	'struct']

>>>	dir(struct)

['__doc__',	'__name__',	'calcsize',	'error',	'pack',	'unpack']

Note:	Because	dir()	is	supplied	primarily	as	a	convenience	for	use	at	an
interactive	prompt,	it	tries	to	supply	an	interesting	set	of	names	more	than	it
tries	to	supply	a	rigorously	or	consistently	defined	set	of	names,	and	its
detailed	behavior	may	change	across	releases.

divmod(a,	b)
Take	two	(non	complex)	numbers	as	arguments	and	return	a	pair	of
numbers	consisting	of	their	quotient	and	remainder	when	using	long
division.	With	mixed	operand	types,	the	rules	for	binary	arithmetic
operators	apply.	For	plain	and	long	integers,	the	result	is	the	same	as	(a	/
b,	a	%	b).	For	floating	point	numbers	the	result	is	(q,	a	%	b),	where
q	is	usually	math.floor(a	/	b)	but	may	be	1	less	than	that.	In	any
case	q	*	b	+	a	%	b	is	very	close	to	a,	if	a	%	b	is	non-zero	it	has	the
same	sign	as	b,	and	0	<=	abs(a	%	b)	<	abs(b).

Changed	in	version	2.3:	Using	divmod()	with	complex	numbers	is
deprecated.

enumerate(iterable)
Return	an	enumerate	object.	iterable	must	be	a	sequence,	an	iterator,	or
some	other	object	which	supports	iteration.	The	next()	method	of	the
iterator	returned	by	enumerate()	returns	a	tuple	containing	a	count
(from	zero)	and	the	corresponding	value	obtained	from	iterating	over
iterable.	enumerate()	is	useful	for	obtaining	an	indexed	series:	(0,
seq[0]),	(1,	seq[1]),	(2,	seq[2]),	New	in	version	2.3.

eval(expression[,	globals[,	locals]])

The	arguments	are	a	string	and	optional	globals	and	locals.	If	provided,
globals	must	be	a	dictionary.	If	provided,	locals	can	be	any	mapping	object.
Changed	in	version	2.4:	formerly	locals	was	required	to	be	a	dictionary.

The	expression	argument	is	parsed	and	evaluated	as	a	Python	expression
(technically	speaking,	a	condition	list)	using	the	globals	and	locals
dictionaries	as	global	and	local	name	space.	If	the	globals	dictionary	is
present	and	lacks	'__builtins__',	the	current	globals	are	copied	into	globals
before	expression	is	parsed.	This	means	that	expression	normally	has	full
access	to	the	standard	__builtin__	module	and	restricted	environments
are	propagated.	If	the	locals	dictionary	is	omitted	it	defaults	to	the	globals
dictionary.	If	both	dictionaries	are	omitted,	the	expression	is	executed	in	the
environment	where	eval	is	called.	The	return	value	is	the	result	of	the
evaluated	expression.	Syntax	errors	are	reported	as	exceptions.	Example:

>>>	x	=	1

>>>	print	eval('x+1')

2

This	function	can	also	be	used	to	execute	arbitrary	code	objects	(such	as
those	created	by	compile()).	In	this	case	pass	a	code	object	instead	of	a
string.	The	code	object	must	have	been	compiled	passing	'eval'	as	the
kind	argument.

Hints:	dynamic	execution	of	statements	is	supported	by	the	exec
statement.	Execution	of	statements	from	a	file	is	supported	by	the
execfile()	function.	The	globals()	and	locals()	functions
returns	the	current	global	and	local	dictionary,	respectively,	which	may	be
useful	to	pass	around	for	use	by	eval()	or	execfile().

execfile(filename[,	globals[,	locals]])
This	function	is	similar	to	the	exec	statement,	but	parses	a	file	instead	of	a
string.	It	is	different	from	the	import	statement	in	that	it	does	not	use	the
module	administration	--	it	reads	the	file	unconditionally	and	does	not
create	a	new	module.2.2

The	arguments	are	a	file	name	and	two	optional	dictionaries.	The	file	is
parsed	and	evaluated	as	a	sequence	of	Python	statements	(similarly	to	a
module)	using	the	globals	and	locals	dictionaries	as	global	and	local

namespace.	If	provided,	locals	can	be	any	mapping	object.	Changed	in
version	2.4:	formerly	locals	was	required	to	be	a	dictionary.	If	the	locals
dictionary	is	omitted	it	defaults	to	the	globals	dictionary.	If	both
dictionaries	are	omitted,	the	expression	is	executed	in	the	environment
where	execfile()	is	called.	The	return	value	is	None.

Warning:	The	default	locals	act	as	described	for	function	locals()
below:	modifications	to	the	default	locals	dictionary	should	not	be
attempted.	Pass	an	explicit	locals	dictionary	if	you	need	to	see	effects	of	the
code	on	locals	after	function	execfile()	returns.	execfile()	cannot
be	used	reliably	to	modify	a	function's	locals.

file(filename[,	mode[,	bufsize]])
Return	a	new	file	object	(described	in	section	2.3.9,	``File	Objects'').	The
first	two	arguments	are	the	same	as	for	stdio's	fopen():	filename	is	the
file	name	to	be	opened,	mode	indicates	how	the	file	is	to	be	opened:	'r'
for	reading,	'w'	for	writing	(truncating	an	existing	file),	and	'a'	opens	it
for	appending	(which	on	some	UNIX	systems	means	that	all	writes	append
to	the	end	of	the	file,	regardless	of	the	current	seek	position).

Modes	'r+',	'w+'	and	'a+'	open	the	file	for	updating	(note	that	'w+'
truncates	the	file).	Append	'b'	to	the	mode	to	open	the	file	in	binary
mode,	on	systems	that	differentiate	between	binary	and	text	files	(else	it	is
ignored).	If	the	file	cannot	be	opened,	IOError	is	raised.

In	addition	to	the	standard	fopen()	values	mode	may	be	'U'	or	'rU'.	If
Python	is	built	with	universal	newline	support	(the	default)	the	file	is
opened	as	a	text	file,	but	lines	may	be	terminated	by	any	of	'\n',	the	Unix
end-of-line	convention,	'\r',	the	Macintosh	convention	or	'\r\n',	the
Windows	convention.	All	of	these	external	representations	are	seen	as
'\n'	by	the	Python	program.	If	Python	is	built	without	universal	newline
support	mode	'U'	is	the	same	as	normal	text	mode.	Note	that	file	objects
so	opened	also	have	an	attribute	called	newlines	which	has	a	value	of
None	(if	no	newlines	have	yet	been	seen),	'\n',	'\r',	'\r\n',	or	a
tuple	containing	all	the	newline	types	seen.

If	mode	is	omitted,	it	defaults	to	'r'.	When	opening	a	binary	file,	you
should	append	'b'	to	the	mode	value	for	improved	portability.	(It's	useful

even	on	systems	which	don't	treat	binary	and	text	files	differently,	where	it
serves	as	documentation.)	The	optional	bufsize	argument	specifies	the	file's
desired	buffer	size:	0	means	unbuffered,	1	means	line	buffered,	any	other
positive	value	means	use	a	buffer	of	(approximately)	that	size.	A	negative
bufsize	means	to	use	the	system	default,	which	is	usually	line	buffered	for
tty	devices	and	fully	buffered	for	other	files.	If	omitted,	the	system	default
is	used.2.3

The	file()	constructor	is	new	in	Python	2.2.	The	previous	spelling,
open(),	is	retained	for	compatibility,	and	is	an	alias	for	file().

filter(function,	list)
Construct	a	list	from	those	elements	of	list	for	which	function	returns	true.
list	may	be	either	a	sequence,	a	container	which	supports	iteration,	or	an
iterator,	If	list	is	a	string	or	a	tuple,	the	result	also	has	that	type;	otherwise	it
is	always	a	list.	If	function	is	None,	the	identity	function	is	assumed,	that	is,
all	elements	of	list	that	are	false	(zero	or	empty)	are	removed.

Note	that	filter(function,	list)	is	equivalent	to	[item	for
item	in	list	if	function(item)]	if	function	is	not	None	and
[item	for	item	in	list	if	item]	if	function	is	None.

float([x])
Convert	a	string	or	a	number	to	floating	point.	If	the	argument	is	a	string,	it
must	contain	a	possibly	signed	decimal	or	floating	point	number,	possibly
embedded	in	whitespace.	Otherwise,	the	argument	may	be	a	plain	or	long
integer	or	a	floating	point	number,	and	a	floating	point	number	with	the
same	value	(within	Python's	floating	point	precision)	is	returned.	If	no
argument	is	given,	returns	0.0.

Note:	When	passing	in	a	string,	values	for	NaN	and	Infinity	may	be
returned,	depending	on	the	underlying	C	library.	The	specific	set	of	strings
accepted	which	cause	these	values	to	be	returned	depends	entirely	on	the	C
library	and	is	known	to	vary.

frozenset([iterable])
Return	a	frozenset	object	whose	elements	are	taken	from	iterable.
Frozensets	are	sets	that	have	no	update	methods	but	can	be	hashed	and	used

as	members	of	other	sets	or	as	dictionary	keys.	The	elements	of	a	frozenset
must	be	immutable	themselves.	To	represent	sets	of	sets,	the	inner	sets
should	also	be	frozenset	objects.	If	iterable	is	not	specified,	returns	a
new	empty	set,	frozenset([]).	New	in	version	2.4.

getattr(object,	name[,	default])
Return	the	value	of	the	named	attributed	of	object.	name	must	be	a	string.	If
the	string	is	the	name	of	one	of	the	object's	attributes,	the	result	is	the	value
of	that	attribute.	For	example,	getattr(x,	'foobar')	is	equivalent
to	x.foobar.	If	the	named	attribute	does	not	exist,	default	is	returned	if
provided,	otherwise	AttributeError	is	raised.

globals()
Return	a	dictionary	representing	the	current	global	symbol	table.	This	is
always	the	dictionary	of	the	current	module	(inside	a	function	or	method,
this	is	the	module	where	it	is	defined,	not	the	module	from	which	it	is
called).

hasattr(object,	name)
The	arguments	are	an	object	and	a	string.	The	result	is	True	if	the	string	is
the	name	of	one	of	the	object's	attributes,	False	if	not.	(This	is
implemented	by	calling	getattr(object,	name)	and	seeing	whether	it
raises	an	exception	or	not.)

hash(object)
Return	the	hash	value	of	the	object	(if	it	has	one).	Hash	values	are	integers.
They	are	used	to	quickly	compare	dictionary	keys	during	a	dictionary
lookup.	Numeric	values	that	compare	equal	have	the	same	hash	value	(even
if	they	are	of	different	types,	as	is	the	case	for	1	and	1.0).

help([object])
Invoke	the	built-in	help	system.	(This	function	is	intended	for	interactive
use.)	If	no	argument	is	given,	the	interactive	help	system	starts	on	the
interpreter	console.	If	the	argument	is	a	string,	then	the	string	is	looked	up
as	the	name	of	a	module,	function,	class,	method,	keyword,	or
documentation	topic,	and	a	help	page	is	printed	on	the	console.	If	the
argument	is	any	other	kind	of	object,	a	help	page	on	the	object	is	generated.

New	in	version	2.2.

hex(x)
Convert	an	integer	number	(of	any	size)	to	a	hexadecimal	string.	The	result
is	a	valid	Python	expression.	Changed	in	version	2.4:	Formerly	only
returned	an	unsigned	literal..

id(object)
Return	the	``identity''	of	an	object.	This	is	an	integer	(or	long	integer)	which
is	guaranteed	to	be	unique	and	constant	for	this	object	during	its	lifetime.
Two	objects	with	non-overlapping	lifetimes	may	have	the	same	id()
value.	(Implementation	note:	this	is	the	address	of	the	object.)

input([prompt])
Equivalent	to	eval(raw_input(prompt)).	Warning:	This	function	is
not	safe	from	user	errors!	It	expects	a	valid	Python	expression	as	input;	if
the	input	is	not	syntactically	valid,	a	SyntaxError	will	be	raised.	Other
exceptions	may	be	raised	if	there	is	an	error	during	evaluation.	(On	the
other	hand,	sometimes	this	is	exactly	what	you	need	when	writing	a	quick
script	for	expert	use.)

If	the	readline	module	was	loaded,	then	input()	will	use	it	to	provide
elaborate	line	editing	and	history	features.

Consider	using	the	raw_input()	function	for	general	input	from	users.

int([x[,	radix]])
Convert	a	string	or	number	to	a	plain	integer.	If	the	argument	is	a	string,	it
must	contain	a	possibly	signed	decimal	number	representable	as	a	Python
integer,	possibly	embedded	in	whitespace.	The	radix	parameter	gives	the
base	for	the	conversion	and	may	be	any	integer	in	the	range	[2,	36],	or	zero.
If	radix	is	zero,	the	proper	radix	is	guessed	based	on	the	contents	of	string;
the	interpretation	is	the	same	as	for	integer	literals.	If	radix	is	specified	and
x	is	not	a	string,	TypeError	is	raised.	Otherwise,	the	argument	may	be	a
plain	or	long	integer	or	a	floating	point	number.	Conversion	of	floating
point	numbers	to	integers	truncates	(towards	zero).	If	the	argument	is
outside	the	integer	range	a	long	object	will	be	returned	instead.	If	no
arguments	are	given,	returns	0.

isinstance(object,	classinfo)
Return	true	if	the	object	argument	is	an	instance	of	the	classinfo	argument,
or	of	a	(direct	or	indirect)	subclass	thereof.	Also	return	true	if	classinfo	is	a
type	object	and	object	is	an	object	of	that	type.	If	object	is	not	a	class
instance	or	an	object	of	the	given	type,	the	function	always	returns	false.	If
classinfo	is	neither	a	class	object	nor	a	type	object,	it	may	be	a	tuple	of	class
or	type	objects,	or	may	recursively	contain	other	such	tuples	(other
sequence	types	are	not	accepted).	If	classinfo	is	not	a	class,	type,	or	tuple	of
classes,	types,	and	such	tuples,	a	TypeError	exception	is	raised.	Changed
in	version	2.2:	Support	for	a	tuple	of	type	information	was	added.

issubclass(class,	classinfo)
Return	true	if	class	is	a	subclass	(direct	or	indirect)	of	classinfo.	A	class	is
considered	a	subclass	of	itself.	classinfo	may	be	a	tuple	of	class	objects,	in
which	case	every	entry	in	classinfo	will	be	checked.	In	any	other	case,	a
TypeError	exception	is	raised.	Changed	in	version	2.3:	Support	for	a
tuple	of	type	information	was	added.

iter(o[,	sentinel])
Return	an	iterator	object.	The	first	argument	is	interpreted	very	differently
depending	on	the	presence	of	the	second	argument.	Without	a	second
argument,	o	must	be	a	collection	object	which	supports	the	iteration
protocol	(the	__iter__()	method),	or	it	must	support	the	sequence
protocol	(the	__getitem__()	method	with	integer	arguments	starting	at
0).	If	it	does	not	support	either	of	those	protocols,	TypeError	is	raised.	If
the	second	argument,	sentinel,	is	given,	then	o	must	be	a	callable	object.
The	iterator	created	in	this	case	will	call	o	with	no	arguments	for	each	call
to	its	next()	method;	if	the	value	returned	is	equal	to	sentinel,
StopIteration	will	be	raised,	otherwise	the	value	will	be	returned.
New	in	version	2.2.

len(s)
Return	the	length	(the	number	of	items)	of	an	object.	The	argument	may	be
a	sequence	(string,	tuple	or	list)	or	a	mapping	(dictionary).

list([sequence])
Return	a	list	whose	items	are	the	same	and	in	the	same	order	as	sequence's

items.	sequence	may	be	either	a	sequence,	a	container	that	supports
iteration,	or	an	iterator	object.	If	sequence	is	already	a	list,	a	copy	is	made
and	returned,	similar	to	sequence[:].	For	instance,	list('abc')
returns	['a',	'b',	'c']	and	list((1,	2,	3))	returns	[1,
2,	3].	If	no	argument	is	given,	returns	a	new	empty	list,	[].

locals()
Update	and	return	a	dictionary	representing	the	current	local	symbol	table.
Warning:	The	contents	of	this	dictionary	should	not	be	modified;	changes
may	not	affect	the	values	of	local	variables	used	by	the	interpreter.

long([x[,	radix]])
Convert	a	string	or	number	to	a	long	integer.	If	the	argument	is	a	string,	it
must	contain	a	possibly	signed	number	of	arbitrary	size,	possibly	embedded
in	whitespace.	The	radix	argument	is	interpreted	in	the	same	way	as	for
int(),	and	may	only	be	given	when	x	is	a	string.	Otherwise,	the	argument
may	be	a	plain	or	long	integer	or	a	floating	point	number,	and	a	long	integer
with	the	same	value	is	returned.	Conversion	of	floating	point	numbers	to
integers	truncates	(towards	zero).	If	no	arguments	are	given,	returns	0L.

map(function,	list,	...)
Apply	function	to	every	item	of	list	and	return	a	list	of	the	results.	If
additional	list	arguments	are	passed,	function	must	take	that	many
arguments	and	is	applied	to	the	items	of	all	lists	in	parallel;	if	a	list	is
shorter	than	another	it	is	assumed	to	be	extended	with	None	items.	If
function	is	None,	the	identity	function	is	assumed;	if	there	are	multiple	list
arguments,	map()	returns	a	list	consisting	of	tuples	containing	the
corresponding	items	from	all	lists	(a	kind	of	transpose	operation).	The	list
arguments	may	be	any	kind	of	sequence;	the	result	is	always	a	list.

max(s[,	args...])
With	a	single	argument	s,	return	the	largest	item	of	a	non-empty	sequence
(such	as	a	string,	tuple	or	list).	With	more	than	one	argument,	return	the
largest	of	the	arguments.

min(s[,	args...])
With	a	single	argument	s,	return	the	smallest	item	of	a	non-empty	sequence

(such	as	a	string,	tuple	or	list).	With	more	than	one	argument,	return	the
smallest	of	the	arguments.

object()
Return	a	new	featureless	object.	object()	is	a	base	for	all	new	style
classes.	It	has	the	methods	that	are	common	to	all	instances	of	new	style
classes.	New	in	version	2.2.

Changed	in	version	2.3:	This	function	does	not	accept	any	arguments.
Formerly,	it	accepted	arguments	but	ignored	them.

oct(x)
Convert	an	integer	number	(of	any	size)	to	an	octal	string.	The	result	is	a
valid	Python	expression.	Changed	in	version	2.4:	Formerly	only	returned	an
unsigned	literal..

open(filename[,	mode[,	bufsize]])
An	alias	for	the	file()	function	above.

ord(c)
Return	the	ASCII	value	of	a	string	of	one	character	or	a	Unicode	character.
E.g.,	ord('a')	returns	the	integer	97,	ord(u'\u2020')	returns
8224.	This	is	the	inverse	of	chr()	for	strings	and	of	unichr()	for
Unicode	characters.

pow(x,	y[,	z])
Return	x	to	the	power	y;	if	z	is	present,	return	x	to	the	power	y,	modulo	z
(computed	more	efficiently	than	pow(x,	y)	%	z).	The	arguments	must
have	numeric	types.	With	mixed	operand	types,	the	coercion	rules	for
binary	arithmetic	operators	apply.	For	int	and	long	int	operands,	the	result
has	the	same	type	as	the	operands	(after	coercion)	unless	the	second
argument	is	negative;	in	that	case,	all	arguments	are	converted	to	float	and	a
float	result	is	delivered.	For	example,	10**2	returns	100,	but	10**-2
returns	0.01.	(This	last	feature	was	added	in	Python	2.2.	In	Python	2.1	and
before,	if	both	arguments	were	of	integer	types	and	the	second	argument
was	negative,	an	exception	was	raised.)	If	the	second	argument	is	negative,
the	third	argument	must	be	omitted.	If	z	is	present,	x	and	y	must	be	of

integer	types,	and	y	must	be	non-negative.	(This	restriction	was	added	in
Python	2.2.	In	Python	2.1	and	before,	floating	3-argument	pow()	returned
platform-dependent	results	depending	on	floating-point	rounding
accidents.)

property([fget[,	fset[,	fdel[,	doc]]]])
Return	a	property	attribute	for	new-style	classes	(classes	that	derive	from
object).

fget	is	a	function	for	getting	an	attribute	value,	likewise	fset	is	a	function	for
setting,	and	fdel	a	function	for	del'ing,	an	attribute.	Typical	use	is	to	define	a
managed	attribute	x:

class	C(object):

				def	getx(self):	return	self.__x

				def	setx(self,	value):	self.__x	=	value

				def	delx(self):	del	self.__x

				x	=	property(getx,	setx,	delx,	"I'm	the	'x'	property.")

New	in	version	2.2.

range([start,]	stop[,	step])
This	is	a	versatile	function	to	create	lists	containing	arithmetic	progressions.
It	is	most	often	used	in	for	loops.	The	arguments	must	be	plain	integers.	If
the	step	argument	is	omitted,	it	defaults	to	1.	If	the	start	argument	is
omitted,	it	defaults	to	0.	The	full	form	returns	a	list	of	plain	integers
[start,	start	+	step,	start	+	2	*	step,	...].	If	step	is	positive,	the
last	element	is	the	largest	start	+	i	*	step	less	than	stop;	if	step	is
negative,	the	last	element	is	the	largest	start	+	i	*	step	greater	than	stop.
step	must	not	be	zero	(or	else	ValueError	is	raised).	Example:

>>>	range(10)

[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

>>>	range(1,	11)

[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

>>>	range(0,	30,	5)

[0,	5,	10,	15,	20,	25]

>>>	range(0,	10,	3)

[0,	3,	6,	9]

>>>	range(0,	-10,	-1)

[0,	-1,	-2,	-3,	-4,	-5,	-6,	-7,	-8,	-9]

>>>	range(0)

[]

>>>	range(1,	0)

[]

raw_input([prompt])
If	the	prompt	argument	is	present,	it	is	written	to	standard	output	without	a
trailing	newline.	The	function	then	reads	a	line	from	input,	converts	it	to	a
string	(stripping	a	trailing	newline),	and	returns	that.	When	EOF	is	read,
EOFError	is	raised.	Example:

>>>	s	=	raw_input('-->	')

-->	Monty	Python's	Flying	Circus

>>>	s

"Monty	Python's	Flying	Circus"

If	the	readline	module	was	loaded,	then	raw_input()	will	use	it	to
provide	elaborate	line	editing	and	history	features.

reduce(function,	sequence[,	initializer])
Apply	function	of	two	arguments	cumulatively	to	the	items	of	sequence,
from	left	to	right,	so	as	to	reduce	the	sequence	to	a	single	value.	For
example,	reduce(lambda	x,	y:	x+y,	[1,	2,	3,	4,	5])
calculates	((((1+2)+3)+4)+5).	The	left	argument,	x,	is	the
accumulated	value	and	the	right	argument,	y,	is	the	update	value	from	the
sequence.	If	the	optional	initializer	is	present,	it	is	placed	before	the	items
of	the	sequence	in	the	calculation,	and	serves	as	a	default	when	the
sequence	is	empty.	If	initializer	is	not	given	and	sequence	contains	only	one
item,	the	first	item	is	returned.

reload(module)
Reload	a	previously	imported	module.	The	argument	must	be	a	module
object,	so	it	must	have	been	successfully	imported	before.	This	is	useful	if
you	have	edited	the	module	source	file	using	an	external	editor	and	want	to
try	out	the	new	version	without	leaving	the	Python	interpreter.	The	return
value	is	the	module	object	(the	same	as	the	module	argument).

When	reload(module)	is	executed:

Python	modules'	code	is	recompiled	and	the	module-level	code
reexecuted,	defining	a	new	set	of	objects	which	are	bound	to	names	in
the	module's	dictionary.	The	init	function	of	extension	modules	is

not	called	a	second	time.

As	with	all	other	objects	in	Python	the	old	objects	are	only	reclaimed
after	their	reference	counts	drop	to	zero.

The	names	in	the	module	namespace	are	updated	to	point	to	any	new
or	changed	objects.

Other	references	to	the	old	objects	(such	as	names	external	to	the
module)	are	not	rebound	to	refer	to	the	new	objects	and	must	be
updated	in	each	namespace	where	they	occur	if	that	is	desired.

There	are	a	number	of	other	caveats:

If	a	module	is	syntactically	correct	but	its	initialization	fails,	the	first
import	statement	for	it	does	not	bind	its	name	locally,	but	does	store	a
(partially	initialized)	module	object	in	sys.modules.	To	reload	the
module	you	must	first	import	it	again	(this	will	bind	the	name	to	the
partially	initialized	module	object)	before	you	can	reload()	it.

When	a	module	is	reloaded,	its	dictionary	(containing	the	module's	global
variables)	is	retained.	Redefinitions	of	names	will	override	the	old
definitions,	so	this	is	generally	not	a	problem.	If	the	new	version	of	a
module	does	not	define	a	name	that	was	defined	by	the	old	version,	the	old
definition	remains.	This	feature	can	be	used	to	the	module's	advantage	if	it
maintains	a	global	table	or	cache	of	objects	--	with	a	try	statement	it	can
test	for	the	table's	presence	and	skip	its	initialization	if	desired:

try:

				cache

except	NameError:

				cache	=	{}

It	is	legal	though	generally	not	very	useful	to	reload	built-in	or	dynamically
loaded	modules,	except	for	sys,	__main__	and	__builtin__.	In
many	cases,	however,	extension	modules	are	not	designed	to	be	initialized
more	than	once,	and	may	fail	in	arbitrary	ways	when	reloaded.

If	a	module	imports	objects	from	another	module	using	from	...	import
...,	calling	reload()	for	the	other	module	does	not	redefine	the	objects

imported	from	it	--	one	way	around	this	is	to	re-execute	the	from
statement,	another	is	to	use	import	and	qualified	names	(module.name)
instead.

If	a	module	instantiates	instances	of	a	class,	reloading	the	module	that
defines	the	class	does	not	affect	the	method	definitions	of	the	instances	--
they	continue	to	use	the	old	class	definition.	The	same	is	true	for	derived
classes.

repr(object)
Return	a	string	containing	a	printable	representation	of	an	object.	This	is	the
same	value	yielded	by	conversions	(reverse	quotes).	It	is	sometimes	useful
to	be	able	to	access	this	operation	as	an	ordinary	function.	For	many	types,
this	function	makes	an	attempt	to	return	a	string	that	would	yield	an	object
with	the	same	value	when	passed	to	eval().

reversed(seq)
Return	a	reverse	iterator.	seq	must	be	an	object	which	supports	the	sequence
protocol	(the	__len__()	method	and	the	__getitem__()	method	with
integer	arguments	starting	at	0).	New	in	version	2.4.

round(x[,	n])
Return	the	floating	point	value	x	rounded	to	n	digits	after	the	decimal	point.
If	n	is	omitted,	it	defaults	to	zero.	The	result	is	a	floating	point	number.
Values	are	rounded	to	the	closest	multiple	of	10	to	the	power	minus	n;	if
two	multiples	are	equally	close,	rounding	is	done	away	from	0	(so.	for
example,	round(0.5)	is	1.0	and	round(-0.5)	is	-1.0).

set([iterable])
Return	a	set	whose	elements	are	taken	from	iterable.	The	elements	must	be
immutable.	To	represent	sets	of	sets,	the	inner	sets	should	be	frozenset
objects.	If	iterable	is	not	specified,	returns	a	new	empty	set,	set([]).
New	in	version	2.4.

setattr(object,	name,	value)
This	is	the	counterpart	of	getattr().	The	arguments	are	an	object,	a
string	and	an	arbitrary	value.	The	string	may	name	an	existing	attribute	or	a

new	attribute.	The	function	assigns	the	value	to	the	attribute,	provided	the
object	allows	it.	For	example,	setattr(x,	'foobar',	123)	is
equivalent	to	x.foobar	=	123.

slice([start,]	stop[,	step])
Return	a	slice	object	representing	the	set	of	indices	specified	by
range(start,	stop,	step).	The	start	and	step	arguments	default	to
None.	Slice	objects	have	read-only	data	attributes	start,	stop	and
step	which	merely	return	the	argument	values	(or	their	default).	They
have	no	other	explicit	functionality;	however	they	are	used	by	Numerical
Python	and	other	third	party	extensions.	Slice	objects	are	also	generated
when	extended	indexing	syntax	is	used.	For	example:
"a[start:stop:step]"	or	"a[start:stop,	i]".

sorted(iterable[,	cmp[,	key[,	reverse]]])
Return	a	new	sorted	list	from	the	items	in	iterable.	The	optional	arguments
cmp,	key,	and	reverse	have	the	same	meaning	as	those	for	the
list.sort()	method.	New	in	version	2.4.

staticmethod(function)
Return	a	static	method	for	function.

A	static	method	does	not	receive	an	implicit	first	argument.	To	declare	a
static	method,	use	this	idiom:

class	C:

				@staticmethod

				def	f(arg1,	arg2,	...):	...

The	@staticmethod	form	is	a	function	decorator	-	see	the	description	of
function	definitions	in	chapter	7	of	the	Python	Reference	Manual	for
details.

It	can	be	called	either	on	the	class	(such	as	C.f())	or	on	an	instance	(such
as	C().f()).	The	instance	is	ignored	except	for	its	class.

Static	methods	in	Python	are	similar	to	those	found	in	Java	or	C++.	For	a
more	advanced	concept,	see	classmethod()	in	this	section.	New	in
version	2.2.	Changed	in	version	2.4:	Function	decorator	syntax	added.

str([object])
Return	a	string	containing	a	nicely	printable	representation	of	an	object.	For
strings,	this	returns	the	string	itself.	The	difference	with	repr(object)	is
that	str(object)	does	not	always	attempt	to	return	a	string	that	is
acceptable	to	eval();	its	goal	is	to	return	a	printable	string.	If	no
argument	is	given,	returns	the	empty	string,	''.

sum(sequence[,	start])
Sums	start	and	the	items	of	a	sequence,	from	left	to	right,	and	returns	the
total.	start	defaults	to	0.	The	sequence's	items	are	normally	numbers,	and
are	not	allowed	to	be	strings.	The	fast,	correct	way	to	concatenate	sequence
of	strings	is	by	calling	''.join(sequence).	Note	that	sum(range(n),
m)	is	equivalent	to	reduce(operator.add,	range(n),	m)	New
in	version	2.3.

super(type[,	object-or-type])
Return	the	superclass	of	type.	If	the	second	argument	is	omitted	the	super
object	returned	is	unbound.	If	the	second	argument	is	an	object,
isinstance(obj,	type)	must	be	true.	If	the	second	argument	is	a	type,
issubclass(type2,	type)	must	be	true.	super()	only	works	for
new-style	classes.

A	typical	use	for	calling	a	cooperative	superclass	method	is:

class	C(B):

				def	meth(self,	arg):

								super(C,	self).meth(arg)

Note	that	super	is	implemented	as	part	of	the	binding	process	for	explicit
dotted	attribute	lookups	such	as	"super(C,
self).__getitem__(name)".	Accordingly,	super	is	undefined	for
implicit	lookups	using	statements	or	operators	such	as	"super(C,
self)[name]".	New	in	version	2.2.

tuple([sequence])
Return	a	tuple	whose	items	are	the	same	and	in	the	same	order	as
sequence's	items.	sequence	may	be	a	sequence,	a	container	that	supports
iteration,	or	an	iterator	object.	If	sequence	is	already	a	tuple,	it	is	returned

unchanged.	For	instance,	tuple('abc')	returns	('a',	'b',	'c')
and	tuple([1,	2,	3])	returns	(1,	2,	3).	If	no	argument	is	given,
returns	a	new	empty	tuple,	().

type(object)
Return	the	type	of	an	object.	The	return	value	is	a	type	object.	The	standard
module	types	defines	names	for	all	built-in	types	that	don't	already	have
built-in	names.	For	instance:

>>>	import	types

>>>	x	=	'abc'

>>>	if	type(x)	is	str:	print	"It's	a	string"

...

It's	a	string

>>>	def	f():	pass

...

>>>	if	type(f)	is	types.FunctionType:	print	"It's	a	function"

...

It's	a	function

The	isinstance()	built-in	function	is	recommended	for	testing	the	type
of	an	object.

unichr(i)
Return	the	Unicode	string	of	one	character	whose	Unicode	code	is	the
integer	i.	For	example,	unichr(97)	returns	the	string	u'a'.	This	is	the
inverse	of	ord()	for	Unicode	strings.	The	argument	must	be	in	the	range
[0..65535],	inclusive.	ValueError	is	raised	otherwise.	New	in	version
2.0.

unicode([object[,	encoding	[,	errors]]])
Return	the	Unicode	string	version	of	object	using	one	of	the	following
modes:

If	encoding	and/or	errors	are	given,	unicode()	will	decode	the	object
which	can	either	be	an	8-bit	string	or	a	character	buffer	using	the	codec	for
encoding.	The	encoding	parameter	is	a	string	giving	the	name	of	an
encoding;	if	the	encoding	is	not	known,	LookupError	is	raised.	Error
handling	is	done	according	to	errors;	this	specifies	the	treatment	of
characters	which	are	invalid	in	the	input	encoding.	If	errors	is	'strict'

(the	default),	a	ValueError	is	raised	on	errors,	while	a	value	of
'ignore'	causes	errors	to	be	silently	ignored,	and	a	value	of
'replace'	causes	the	official	Unicode	replacement	character,	U+FFFD,
to	be	used	to	replace	input	characters	which	cannot	be	decoded.	See	also	the
codecs	module.

If	no	optional	parameters	are	given,	unicode()	will	mimic	the	behaviour
of	str()	except	that	it	returns	Unicode	strings	instead	of	8-bit	strings.
More	precisely,	if	object	is	a	Unicode	string	or	subclass	it	will	return	that
Unicode	string	without	any	additional	decoding	applied.

For	objects	which	provide	a	__unicode__()	method,	it	will	call	this
method	without	arguments	to	create	a	Unicode	string.	For	all	other	objects,
the	8-bit	string	version	or	representation	is	requested	and	then	converted	to
a	Unicode	string	using	the	codec	for	the	default	encoding	in	'strict'
mode.

New	in	version	2.0.	Changed	in	version	2.2:	Support	for
__unicode__()	added.

vars([object])
Without	arguments,	return	a	dictionary	corresponding	to	the	current	local
symbol	table.	With	a	module,	class	or	class	instance	object	as	argument	(or
anything	else	that	has	a	__dict__	attribute),	returns	a	dictionary
corresponding	to	the	object's	symbol	table.	The	returned	dictionary	should
not	be	modified:	the	effects	on	the	corresponding	symbol	table	are
undefined.2.4

xrange([start,]	stop[,	step])
This	function	is	very	similar	to	range(),	but	returns	an	``xrange	object''
instead	of	a	list.	This	is	an	opaque	sequence	type	which	yields	the	same
values	as	the	corresponding	list,	without	actually	storing	them	all
simultaneously.	The	advantage	of	xrange()	over	range()	is	minimal
(since	xrange()	still	has	to	create	the	values	when	asked	for	them)
except	when	a	very	large	range	is	used	on	a	memory-starved	machine	or
when	all	of	the	range's	elements	are	never	used	(such	as	when	the	loop	is
usually	terminated	with	break).

Note:	xrange()	is	intended	to	be	simple	and	fast.	Implementations	may
impose	restrictions	to	achieve	this.	The	C	implementation	of	Python
restricts	all	arguments	to	native	C	longs	("short"	Python	integers),	and	also
requires	that	the	number	of	elements	fit	in	a	native	C	long.

zip([seq1,	...])
This	function	returns	a	list	of	tuples,	where	the	i-th	tuple	contains	the	i-th
element	from	each	of	the	argument	sequences.	The	returned	list	is	truncated
in	length	to	the	length	of	the	shortest	argument	sequence.	When	there	are
multiple	argument	sequences	which	are	all	of	the	same	length,	zip()	is
similar	to	map()	with	an	initial	argument	of	None.	With	a	single	sequence
argument,	it	returns	a	list	of	1-tuples.	With	no	arguments,	it	returns	an
empty	list.	New	in	version	2.0.

Changed	in	version	2.4:	Formerly,	zip()	required	at	least	one	argument
and	zip()	raised	a	TypeError	instead	of	returning	an	empty	list..

Footnotes

...	module.2.2
It	is	used	relatively	rarely	so	does	not	warrant	being	made	into	a	statement.

...	used.2.3
Specifying	a	buffer	size	currently	has	no	effect	on	systems	that	don't	have
setvbuf().	The	interface	to	specify	the	buffer	size	is	not	done	using	a
method	that	calls	setvbuf(),	because	that	may	dump	core	when	called
after	any	I/O	has	been	performed,	and	there's	no	reliable	way	to	determine
whether	this	is	the	case.

...	undefined.2.4
In	the	current	implementation,	local	variable	bindings	cannot	normally	be
affected	this	way,	but	variables	retrieved	from	other	scopes	(such	as
modules)	can	be.	This	may	change.

Python	Library	Reference

Previous:	2.	Built-In	Objects	Up:	2.	Built-In	Objects	Next:	2.2	Non-essential
Built-in	Functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1	Built-in	Functions	Up:	2.	Built-In	Objects	Next:	2.3	Built-in	Types

2.2	Non-essential	Built-in	Functions
There	are	several	built-in	functions	that	are	no	longer	essential	to	learn,	know	or
use	in	modern	Python	programming.	They	have	been	kept	here	to	maintain
backwards	compatability	with	programs	written	for	older	versions	of	Python.

Python	programmers,	trainers,	students	and	bookwriters	should	feel	free	to
bypass	these	functions	without	concerns	about	missing	something	important.

apply(function,	args[,	keywords])
The	function	argument	must	be	a	callable	object	(a	user-defined	or	built-in
function	or	method,	or	a	class	object)	and	the	args	argument	must	be	a
sequence.	The	function	is	called	with	args	as	the	argument	list;	the	number
of	arguments	is	the	length	of	the	tuple.	If	the	optional	keywords	argument	is
present,	it	must	be	a	dictionary	whose	keys	are	strings.	It	specifies	keyword
arguments	to	be	added	to	the	end	of	the	argument	list.	Calling	apply()	is
different	from	just	calling	function(args),	since	in	that	case	there	is	always
exactly	one	argument.	The	use	of	apply()	is	equivalent	to
function(*args,	**keywords).	Use	of	apply()	is	not	necessary	since
the	``extended	call	syntax,''	as	used	in	the	last	example,	is	completely
equivalent.

Deprecated	since	release	2.3.	Use	the	extended	call	syntax	instead,	as
described	above.

buffer(object[,	offset[,	size]])
The	object	argument	must	be	an	object	that	supports	the	buffer	call	interface
(such	as	strings,	arrays,	and	buffers).	A	new	buffer	object	will	be	created
which	references	the	object	argument.	The	buffer	object	will	be	a	slice	from
the	beginning	of	object	(or	from	the	specified	offset).	The	slice	will	extend
to	the	end	of	object	(or	will	have	a	length	given	by	the	size	argument).

coerce(x,	y)
Return	a	tuple	consisting	of	the	two	numeric	arguments	converted	to	a
common	type,	using	the	same	rules	as	used	by	arithmetic	operations.	If
coercion	is	not	possible,	raise	TypeError.

intern(string)
Enter	string	in	the	table	of	``interned''	strings	and	return	the	interned	string	-
which	is	string	itself	or	a	copy.	Interning	strings	is	useful	to	gain	a	little
performance	on	dictionary	lookup	-	if	the	keys	in	a	dictionary	are	interned,
and	the	lookup	key	is	interned,	the	key	comparisons	(after	hashing)	can	be
done	by	a	pointer	compare	instead	of	a	string	compare.	Normally,	the
names	used	in	Python	programs	are	automatically	interned,	and	the
dictionaries	used	to	hold	module,	class	or	instance	attributes	have	interned
keys.	Changed	in	version	2.3:	Interned	strings	are	not	immortal	(like	they
used	to	be	in	Python	2.2	and	before);	you	must	keep	a	reference	to	the
return	value	of	intern()	around	to	benefit	from	it.

Python	Library	Reference
Previous:	2.1	Built-in	Functions	Up:	2.	Built-In	Objects	Next:	2.3	Built-in	Types

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.2	Non-essential	Built-in	Functions	Up:	2.	Built-In	Objects	Next:
2.3.1	Truth	Value	Testing

2.3	Built-in	Types
The	following	sections	describe	the	standard	types	that	are	built	into	the
interpreter.	Historically,	Python's	built-in	types	have	differed	from	user-defined
types	because	it	was	not	possible	to	use	the	built-in	types	as	the	basis	for	object-
oriented	inheritance.	With	the	2.2	release	this	situation	has	started	to	change,
although	the	intended	unification	of	user-defined	and	built-in	types	is	as	yet	far
from	complete.

The	principal	built-in	types	are	numerics,	sequences,	mappings,	files	classes,
instances	and	exceptions.

Some	operations	are	supported	by	several	object	types;	in	particular,	practically
all	objects	can	be	compared,	tested	for	truth	value,	and	converted	to	a	string
(with	the	`	...`	notation,	the	equivalent	repr()	function,	or	the	slightly
different	str()	function).	The	latter	function	is	implicitly	used	when	an	object
is	written	by	the	print	statement.	(Information	on	print	statement	and	other
language	statements	can	be	found	in	the	Python	Reference	Manual	and	the
Python	Tutorial.)

Subsections

2.3.1	Truth	Value	Testing
2.3.2	Boolean	Operations
2.3.3	Comparisons
2.3.4	Numeric	Types

2.3.4.1	Bit-string	Operations	on	Integer	Types
2.3.5	Iterator	Types
2.3.6	Sequence	Types

2.3.6.1	String	Methods
2.3.6.2	String	Formatting	Operations
2.3.6.3	XRange	Type
2.3.6.4	Mutable	Sequence	Types

2.3.7	Set	Types

2.3.8	Mapping	Types
2.3.9	File	Objects
2.3.10	Other	Built-in	Types

2.3.10.1	Modules
2.3.10.2	Classes	and	Class	Instances
2.3.10.3	Functions
2.3.10.4	Methods
2.3.10.5	Code	Objects
2.3.10.6	Type	Objects
2.3.10.7	The	Null	Object
2.3.10.8	The	Ellipsis	Object
2.3.10.9	Boolean	Values
2.3.10.10	Internal	Objects

2.3.11	Special	Attributes

Python	Library	Reference
Previous:	2.2	Non-essential	Built-in	Functions	Up:	2.	Built-In	Objects	Next:
2.3.1	Truth	Value	Testing

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3	Built-in	Types	Up:	2.3	Built-in	Types	Next:	2.3.2	Boolean
Operations

2.3.1	Truth	Value	Testing
Any	object	can	be	tested	for	truth	value,	for	use	in	an	if	or	while	condition	or
as	operand	of	the	Boolean	operations	below.	The	following	values	are
considered	false:

None

False

zero	of	any	numeric	type,	for	example,	0,	0L,	0.0,	0j.

any	empty	sequence,	for	example,	'',	(),	[].

any	empty	mapping,	for	example,	{}.

instances	of	user-defined	classes,	if	the	class	defines	a	__nonzero__()
or	__len__()	method,	when	that	method	returns	the	integer	zero	or
bool	value	False.2.5

All	other	values	are	considered	true	--	so	objects	of	many	types	are	always	true.

Operations	and	built-in	functions	that	have	a	Boolean	result	always	return	0	or
False	for	false	and	1	or	True	for	true,	unless	otherwise	stated.	(Important
exception:	the	Boolean	operations	"or"	and	"and"	always	return	one	of	their
operands.)

Footnotes

...False.2.5
Additional	information	on	these	special	methods	may	be	found	in	the
Python	Reference	Manual.

Python	Library	Reference
Previous:	2.3	Built-in	Types	Up:	2.3	Built-in	Types	Next:	2.3.2	Boolean
Operations

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.1	Truth	Value	Testing	Up:	2.3	Built-in	Types	Next:	2.3.3
Comparisons

2.3.2	Boolean	Operations
These	are	the	Boolean	operations,	ordered	by	ascending	priority:

Operation Result Notes
x	or	y if	x	is	false,	then	y,	else	x (1)
x	and	y if	x	is	false,	then	x,	else	y (1)
not	x if	x	is	false,	then	True,	else	False (2)

Notes:

(1)
These	only	evaluate	their	second	argument	if	needed	for	their	outcome.

(2)
"not"	has	a	lower	priority	than	non-Boolean	operators,	so	not	a	==	b	is
interpreted	as	not	(a	==	b),	and	a	==	not	b	is	a	syntax	error.

Python	Library	Reference
Previous:	2.3.1	Truth	Value	Testing	Up:	2.3	Built-in	Types	Next:	2.3.3
Comparisons

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.2	Boolean	Operations	Up:	2.3	Built-in	Types	Next:	2.3.4	Numeric
Types

2.3.3	Comparisons
Comparison	operations	are	supported	by	all	objects.	They	all	have	the	same
priority	(which	is	higher	than	that	of	the	Boolean	operations).	Comparisons	can
be	chained	arbitrarily;	for	example,	x	<	y	<=	z	is	equivalent	to	x	<	y	and
y	<=	z,	except	that	y	is	evaluated	only	once	(but	in	both	cases	z	is	not	evaluated
at	all	when	x	<	y	is	found	to	be	false).

This	table	summarizes	the	comparison	operations:

Operation Meaning Notes
< strictly	less	than
<= less	than	or	equal
> strictly	greater	than
>= greater	than	or	equal
== equal
!= not	equal (1)
<> not	equal (1)
is object	identity

is	not negated	object	identity

Notes:

(1)
<>	and	!=	are	alternate	spellings	for	the	same	operator.	!=	is	the	preferred
spelling;	<>	is	obsolescent.

Objects	of	different	types,	except	different	numeric	types	and	different	string
types,	never	compare	equal;	such	objects	are	ordered	consistently	but	arbitrarily
(so	that	sorting	a	heterogeneous	array	yields	a	consistent	result).	Furthermore,
some	types	(for	example,	file	objects)	support	only	a	degenerate	notion	of
comparison	where	any	two	objects	of	that	type	are	unequal.	Again,	such	objects
are	ordered	arbitrarily	but	consistently.	The	<,	<=,	>	and	>=	operators	will	raise
a	TypeError	exception	when	any	operand	is	a	complex	number.

Instances	of	a	class	normally	compare	as	non-equal	unless	the	class	defines	the

__cmp__()	method.	Refer	to	the	Python	Reference	Manual	for	information	on
the	use	of	this	method	to	effect	object	comparisons.

Implementation	note:	Objects	of	different	types	except	numbers	are	ordered	by
their	type	names;	objects	of	the	same	types	that	don't	support	proper	comparison
are	ordered	by	their	address.

Two	more	operations	with	the	same	syntactic	priority,	"in"	and	"not	in",	are
supported	only	by	sequence	types	(below).

Python	Library	Reference
Previous:	2.3.2	Boolean	Operations	Up:	2.3	Built-in	Types	Next:	2.3.4	Numeric
Types

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.3	Comparisons	Up:	2.3	Built-in	Types	Next:	2.3.4.1	Bit-string
Operations	on

2.3.4	Numeric	Types
There	are	four	distinct	numeric	types:	plain	integers,	long	integers,	floating
point	numbers,	and	complex	numbers.	In	addition,	Booleans	are	a	subtype	of
plain	integers.	Plain	integers	(also	just	called	integers)	are	implemented	using
long	in	C,	which	gives	them	at	least	32	bits	of	precision.	Long	integers	have
unlimited	precision.	Floating	point	numbers	are	implemented	using	double	in
C.	All	bets	on	their	precision	are	off	unless	you	happen	to	know	the	machine	you
are	working	with.

Complex	numbers	have	a	real	and	imaginary	part,	which	are	each	implemented
using	double	in	C.	To	extract	these	parts	from	a	complex	number	z,	use
z.real	and	z.imag.

Numbers	are	created	by	numeric	literals	or	as	the	result	of	built-in	functions	and
operators.	Unadorned	integer	literals	(including	hex	and	octal	numbers)	yield
plain	integers	unless	the	value	they	denote	is	too	large	to	be	represented	as	a
plain	integer,	in	which	case	they	yield	a	long	integer.	Integer	literals	with	an	"L"
or	"l"	suffix	yield	long	integers	("L"	is	preferred	because	"1l"	looks	too	much
like	eleven!).	Numeric	literals	containing	a	decimal	point	or	an	exponent	sign
yield	floating	point	numbers.	Appending	"j"	or	"J"	to	a	numeric	literal	yields	a
complex	number	with	a	zero	real	part.	A	complex	numeric	literal	is	the	sum	of	a
real	and	an	imaginary	part.

Python	fully	supports	mixed	arithmetic:	when	a	binary	arithmetic	operator	has
operands	of	different	numeric	types,	the	operand	with	the	``narrower''	type	is
widened	to	that	of	the	other,	where	plain	integer	is	narrower	than	long	integer	is
narrower	than	floating	point	is	narrower	than	complex.	Comparisons	between
numbers	of	mixed	type	use	the	same	rule.2.6	The	constructors	int(),	long(),
float(),	and	complex()	can	be	used	to	produce	numbers	of	a	specific	type.

All	numeric	types	(except	complex)	support	the	following	operations,	sorted	by
ascending	priority	(operations	in	the	same	box	have	the	same	priority;	all
numeric	operations	have	a	higher	priority	than	comparison	operations):

Operation Result Notes
x	+	y sum	of	x	and	y

x	-	y difference	of	x	and	y
x	*	y product	of	x	and	y
x	/	y quotient	of	x	and	y (1)
x	%	y remainder	of	x	/	y (4)
-x x	negated
+x x	unchanged

abs(x) absolute	value	or	magnitude	of	x
int(x) x	converted	to	integer (2)
long(x) x	converted	to	long	integer (2)
float(x) x	converted	to	floating	point

complex(re,im) a	complex	number	with	real	part	re,	imaginary
part	im.	im	defaults	to	zero.

c.conjugate() conjugate	of	the	complex	number	c
divmod(x,	y) the	pair	(x	/	y,	x	%	y) (3)(4)
pow(x,	y) x	to	the	power	y
x	**	y x	to	the	power	y

Notes:

(1)
For	(plain	or	long)	integer	division,	the	result	is	an	integer.	The	result	is
always	rounded	towards	minus	infinity:	1/2	is	0,	(-1)/2	is	-1,	1/(-2)	is	-1,
and	(-1)/(-2)	is	0.	Note	that	the	result	is	a	long	integer	if	either	operand	is	a
long	integer,	regardless	of	the	numeric	value.

(2)
Conversion	from	floating	point	to	(long	or	plain)	integer	may	round	or
truncate	as	in	C;	see	functions	floor()	and	ceil()	in	the	math	module
for	well-defined	conversions.

(3)
See	section	2.1,	``Built-in	Functions,''	for	a	full	description.

(4)
Complex	floor	division	operator,	modulo	operator,	and	divmod().

Deprecated	since	release	2.3.	Instead	convert	to	float	using	abs()	if

appropriate.

Footnotes

...	rule.2.6
As	a	consequence,	the	list	[1,	2]	is	considered	equal	to	[1.0,	2.0],
and	similarly	for	tuples.

Subsections

2.3.4.1	Bit-string	Operations	on	Integer	Types

Python	Library	Reference
Previous:	2.3.3	Comparisons	Up:	2.3	Built-in	Types	Next:	2.3.4.1	Bit-string
Operations	on

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.4.1	Bit-string	Operations	on	Up:	2.3	Built-in	Types	Next:	2.3.6
Sequence	Types

2.3.5	Iterator	Types
New	in	version	2.2.

Python	supports	a	concept	of	iteration	over	containers.	This	is	implemented
using	two	distinct	methods;	these	are	used	to	allow	user-defined	classes	to
support	iteration.	Sequences,	described	below	in	more	detail,	always	support	the
iteration	methods.

One	method	needs	to	be	defined	for	container	objects	to	provide	iteration
support:

__iter__()
Return	an	iterator	object.	The	object	is	required	to	support	the	iterator
protocol	described	below.	If	a	container	supports	different	types	of	iteration,
additional	methods	can	be	provided	to	specifically	request	iterators	for
those	iteration	types.	(An	example	of	an	object	supporting	multiple	forms	of
iteration	would	be	a	tree	structure	which	supports	both	breadth-first	and
depth-first	traversal.)	This	method	corresponds	to	the	tp_iter	slot	of	the
type	structure	for	Python	objects	in	the	Python/C	API.

The	iterator	objects	themselves	are	required	to	support	the	following	two
methods,	which	together	form	the	iterator	protocol:

__iter__()
Return	the	iterator	object	itself.	This	is	required	to	allow	both	containers
and	iterators	to	be	used	with	the	for	and	in	statements.	This	method
corresponds	to	the	tp_iter	slot	of	the	type	structure	for	Python	objects	in
the	Python/C	API.

next()
Return	the	next	item	from	the	container.	If	there	are	no	further	items,	raise
the	StopIteration	exception.	This	method	corresponds	to	the
tp_iternext	slot	of	the	type	structure	for	Python	objects	in	the
Python/C	API.

Python	defines	several	iterator	objects	to	support	iteration	over	general	and

specific	sequence	types,	dictionaries,	and	other	more	specialized	forms.	The
specific	types	are	not	important	beyond	their	implementation	of	the	iterator
protocol.

The	intention	of	the	protocol	is	that	once	an	iterator's	next()	method	raises
StopIteration,	it	will	continue	to	do	so	on	subsequent	calls.
Implementations	that	do	not	obey	this	property	are	deemed	broken.	(This
constraint	was	added	in	Python	2.3;	in	Python	2.2,	various	iterators	are	broken
according	to	this	rule.)

Python's	generators	provide	a	convenient	way	to	implement	the	iterator	protocol.
If	a	container	object's	__iter__()	method	is	implemented	as	a	generator,	it
will	automatically	return	an	iterator	object	(technically,	a	generator	object)
supplying	the	__iter__()	and	next()	methods.

Python	Library	Reference
Previous:	2.3.4.1	Bit-string	Operations	on	Up:	2.3	Built-in	Types	Next:	2.3.6
Sequence	Types

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.5	Iterator	Types	Up:	2.3	Built-in	Types	Next:	2.3.6.1	String
Methods

2.3.6	Sequence	Types
There	are	six	sequence	types:	strings,	Unicode	strings,	lists,	tuples,	buffers,	and
xrange	objects.

String	literals	are	written	in	single	or	double	quotes:	'xyzzy',	"frobozz".
See	chapter	2	of	the	Python	Reference	Manual	for	more	about	string	literals.
Unicode	strings	are	much	like	strings,	but	are	specified	in	the	syntax	using	a
preceeding	"u"	character:	u'abc',	u"def".	Lists	are	constructed	with	square
brackets,	separating	items	with	commas:	[a,	b,	c].	Tuples	are	constructed
by	the	comma	operator	(not	within	square	brackets),	with	or	without	enclosing
parentheses,	but	an	empty	tuple	must	have	the	enclosing	parentheses,	such	as	a,
b,	c	or	().	A	single	item	tuple	must	have	a	trailing	comma,	such	as	(d,).

Buffer	objects	are	not	directly	supported	by	Python	syntax,	but	can	be	created	by
calling	the	builtin	function	buffer().	They	don't	support	concatenation	or
repetition.

Xrange	objects	are	similar	to	buffers	in	that	there	is	no	specific	syntax	to	create
them,	but	they	are	created	using	the	xrange()	function.	They	don't	support
slicing,	concatenation	or	repetition,	and	using	in,	not	in,	min()	or	max()
on	them	is	inefficient.

Most	sequence	types	support	the	following	operations.	The	"in"	and	"not	in"
operations	have	the	same	priorities	as	the	comparison	operations.	The	"+"	and
"*"	operations	have	the	same	priority	as	the	corresponding	numeric
operations.2.7

This	table	lists	the	sequence	operations	sorted	in	ascending	priority	(operations
in	the	same	box	have	the	same	priority).	In	the	table,	s	and	t	are	sequences	of	the
same	type;	n,	i	and	j	are	integers:

Operation Result Notes
x	in	s True	if	an	item	of	s	is	equal	to	x,	else	False (1)

x	not	in	s False	if	an	item	of	s	is	equal	to	x,	else	True (1)
s	+	t the	concatenation	of	s	and	t (6)

s	*	n	,	n	*	s n	shallow	copies	of	s	concatenated (2)

s[i] i'th	item	of	s,	origin	0 (3)
s[i:j] slice	of	s	from	i	to	j (3),	(4)
s[i:j:k] slice	of	s	from	i	to	j	with	step	k (3),	(5)
len(s) length	of	s
min(s) smallest	item	of	s
max(s) largest	item	of	s

Notes:

(1)
When	s	is	a	string	or	Unicode	string	object	the	in	and	not	in	operations
act	like	a	substring	test.	In	Python	versions	before	2.3,	x	had	to	be	a	string
of	length	1.	In	Python	2.3	and	beyond,	x	may	be	a	string	of	any	length.

(2)
Values	of	n	less	than	0	are	treated	as	0	(which	yields	an	empty	sequence	of
the	same	type	as	s).	Note	also	that	the	copies	are	shallow;	nested	structures
are	not	copied.	This	often	haunts	new	Python	programmers;	consider:

>>>	lists	=	[[]]	*	3

>>>	lists

[[],	[],	[]]

>>>	lists[0].append(3)

>>>	lists

[[3],	[3],	[3]]

What	has	happened	is	that	[[]]	is	a	one-element	list	containing	an	empty
list,	so	all	three	elements	of	[[]]	*	3	are	(pointers	to)	this	single	empty
list.	Modifying	any	of	the	elements	of	lists	modifies	this	single	list.	You
can	create	a	list	of	different	lists	this	way:

>>>	lists	=	[[]	for	i	in	range(3)]

>>>	lists[0].append(3)

>>>	lists[1].append(5)

>>>	lists[2].append(7)

>>>	lists

[[3],	[5],	[7]]

(3)
If	i	or	j	is	negative,	the	index	is	relative	to	the	end	of	the	string:	len(s)	+
i	or	len(s)	+	j	is	substituted.	But	note	that	-0	is	still	0.

(4)
The	slice	of	s	from	i	to	j	is	defined	as	the	sequence	of	items	with	index	k
such	that	i	<=	k	<	j.	If	i	or	j	is	greater	than	len(s),	use	len(s).	If	i	is
omitted,	use	0.	If	j	is	omitted,	use	len(s).	If	i	is	greater	than	or	equal	to	j,
the	slice	is	empty.

(5)
The	slice	of	s	from	i	to	j	with	step	k	is	defined	as	the	sequence	of	items	with

index	x	=	i	+	n*k	such	that	 .	In	other	words,	the	indices	are
i,	i+k,	i+2*k,	i+3*k	and	so	on,	stopping	when	j	is	reached	(but	never
including	j).	If	i	or	j	is	greater	than	len(s),	use	len(s).	If	i	or	j	are
omitted	then	they	become	``end''	values	(which	end	depends	on	the	sign	of
k).	Note,	k	cannot	be	zero.

(6)
If	s	and	t	are	both	strings,	some	Python	implementations	such	as	CPython
can	usually	perform	an	in-place	optimization	for	assignments	of	the	form
s=s+t	or	s+=t.	When	applicable,	this	optimization	makes	quadratic	run-time
much	less	likely.	This	optimization	is	both	version	and	implementation
dependent.	For	performance	sensitive	code,	it	is	preferrable	to	use	the
str.join()	method	which	assures	consistent	linear	concatenation
performance	across	versions	and	implementations.	Changed	in	version	2.4:
Formerly,	string	concatenation	never	occurred	in-place.

Footnotes

...	operations.2.7
They	must	have	since	the	parser	can't	tell	the	type	of	the	operands.

Subsections

2.3.6.1	String	Methods

2.3.6.2	String	Formatting	Operations
2.3.6.3	XRange	Type
2.3.6.4	Mutable	Sequence	Types

Python	Library	Reference
Previous:	2.3.5	Iterator	Types	Up:	2.3	Built-in	Types	Next:	2.3.6.1	String
Methods

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.6.4	Mutable	Sequence	Types	Up:	2.3	Built-in	Types	Next:	2.3.8
Mapping	Types

2.3.7	Set	Types
A	set	object	is	an	unordered	collection	of	immutable	values.	Common	uses
include	membership	testing,	removing	duplicates	from	a	sequence,	and
computing	mathematical	operations	such	as	intersection,	union,	difference,	and
symmetric	difference.	New	in	version	2.4.

Like	other	collections,	sets	support	x	in	set,	len(set),	and	for	x	in	set.
Being	an	unordered	collection,	sets	do	not	record	element	position	or	order	of
insertion.	Accordingly,	sets	do	not	support	indexing,	slicing,	or	other	sequence-
like	behavior.

There	are	currently	two	builtin	set	types,	set	and	frozenset.	The	set	type
is	mutable	--	the	contents	can	be	changed	using	methods	like	add()	and
remove().	Since	it	is	mutable,	it	has	no	hash	value	and	cannot	be	used	as
either	a	dictionary	key	or	as	an	element	of	another	set.	The	frozenset	type	is
immutable	and	hashable	--	its	contents	cannot	be	altered	after	is	created;
however,	it	can	be	used	as	a	dictionary	key	or	as	an	element	of	another	set.

Instances	of	set	and	frozenset	provide	the	following	operations:

Operation Equivalent Result
len(s) cardinality	of	set	s
x	in	s test	x	for	membership	in	s

x	not	in	s test	x	for	non-
membership	in	s

s.issubset(t) s	<=	t test	whether	every
element	in	s	is	in	t

s.issuperset(t) s	>=	t test	whether	every
element	in	t	is	in	s

s.union(t) s	|	t new	set	with	elements
from	both	s	and	t

s.intersection(t) s	&	t new	set	with	elements
common	to	s	and	t

s.difference(t) s	-	t new	set	with	elements	in
s	but	not	in	t

s.symmetric_difference(t) s	^	t new	set	with	elements	in
either	s	or	t	but	not	both

s.copy() new	set	with	a	shallow
copy	of	s

Note,	the	non-operator	versions	of	union(),	intersection(),
difference(),	and	symmetric_difference(),	issubset(),	and
issuperset()	methods	will	accept	any	iterable	as	an	argument.	In	contrast,
their	operator	based	counterparts	require	their	arguments	to	be	sets.	This
precludes	error-prone	constructions	like	set('abc')	&	'cbs'	in	favor	of
the	more	readable	set('abc').intersection('cbs').

Both	set	and	frozenset	support	set	to	set	comparisons.	Two	sets	are	equal	if
and	only	if	every	element	of	each	set	is	contained	in	the	other	(each	is	a	subset	of
the	other).	A	set	is	less	than	another	set	if	and	only	if	the	first	set	is	a	proper
subset	of	the	second	set	(is	a	subset,	but	is	not	equal).	A	set	is	greater	than
another	set	if	and	only	if	the	first	set	is	a	proper	superset	of	the	second	set	(is	a
superset,	but	is	not	equal).

Instanceas	of	set	are	compared	to	instances	of	frozenset	based	on	their
members.	For	example,	"set('abc')	==	frozenset('abc')"	returns
True.

The	subset	and	equality	comparisons	do	not	generalize	to	a	complete	ordering
function.	For	example,	any	two	disjoint	sets	are	not	equal	and	are	not	subsets	of
each	other,	so	all	of	the	following	return	False:	a<b,	a==b,	or	a>b.
Accordingly,	sets	do	not	implement	the	__cmp__	method.

Since	sets	only	define	partial	ordering	(subset	relationships),	the	output	of	the
list.sort()	method	is	undefined	for	lists	of	sets.

Binary	operations	that	mix	set	instances	with	frozenset	return	the	type	of
the	first	operand.	For	example:	"frozenset('ab')	|	set('bc')"
returns	an	instance	of	frozenset.

The	following	table	lists	operations	available	for	set	that	do	not	apply	to
immutable	instances	of	frozenset:

Operation Equivalent Result
s.update(t) s	|=	t return	set	s

with	elements
added	from	t

s.intersection_update(t) s	&=	t return	set	s
keeping	only
elements	also
found	in	t

s.difference_update(t) s	-=	t return	set	s
after	removing
elements	found
in	t

s.symmetric_difference_update(t) s	^=	t return	set	s
with	elements
from	s	or	t	but
not	both

s.add(x) add	element	x
to	set	s

s.remove(x) remove	x	from
set	s;	raises
KeyError	if	not
present

s.discard(x) removes	x
from	set	s	if
present

s.pop() remove	and
return	an
arbitrary
element	from
s;	raises
KeyError	if
empty

s.clear() remove	all
elements	from
set	s

Note,	the	non-operator	versions	of	the	update(),
intersection_update(),	difference_update(),	and
symmetric_difference_update()	methods	will	accept	any	iterable	as
an	argument.

Python	Library	Reference
Previous:	2.3.6.4	Mutable	Sequence	Types	Up:	2.3	Built-in	Types	Next:	2.3.8
Mapping	Types

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.7	Set	Types	Up:	2.3	Built-in	Types	Next:	2.3.9	File	Objects

2.3.8	Mapping	Types
A	mapping	object	maps	immutable	values	to	arbitrary	objects.	Mappings	are
mutable	objects.	There	is	currently	only	one	standard	mapping	type,	the
dictionary.	A	dictionary's	keys	are	almost	arbitrary	values.	Only	values
containing	lists,	dictionaries	or	other	mutable	types	(that	are	compared	by	value
rather	than	by	object	identity)	may	not	be	used	as	keys.	Numeric	types	used	for
keys	obey	the	normal	rules	for	numeric	comparison:	if	two	numbers	compare
equal	(such	as	1	and	1.0)	then	they	can	be	used	interchangeably	to	index	the
same	dictionary	entry.

Dictionaries	are	created	by	placing	a	comma-separated	list	of	key:	value	pairs
within	braces,	for	example:	{'jack':	4098,	'sjoerd':	4127}	or
{4098:	'jack',	4127:	'sjoerd'}.

The	following	operations	are	defined	on	mappings	(where	a	and	b	are	mappings,
k	is	a	key,	and	v	and	x	are	arbitrary	objects):

Operation Result Notes
len(a) the	number	of	items	in	a
a[k] the	item	of	a	with	key	k (1)

a[k]	=	v set	a[k]	to	v
del	a[k] remove	a[k]	from	a (1)
a.clear() remove	all	items	from	a
a.copy() a	(shallow)	copy	of	a

a.has_key(k) True	if	a	has	a	key	k,	else	False
k	in	a Equivalent	to	a.has_key(k) (2)

k	not	in	a Equivalent	to	not	a.has_key(k) (2)
a.items() a	copy	of	a's	list	of	(key,	value)	pairs (3)
a.keys() a	copy	of	a's	list	of	keys (3)

a.update([b]) updates	(and	overwrites)	key/value	pairs
from	b

(9)

a.fromkeys(seq[,
value])

Creates	a	new	dictionary	with	keys	from
seq	and	values	set	to	value

(7)

a.values() a	copy	of	a's	list	of	values (3)

a.get(k[,	x]) a[k]	if	k	in	a,	else	x (4)
a.setdefault(k[,

x])
a[k]	if	k	in	a,	else	x	(also	setting	it) (5)

a.pop(k[,	x]) a[k]	if	k	in	a,	else	x	(and	remove	k) (8)
a.popitem() remove	and	return	an	arbitrary	(key,	value)

pair
(6)

a.iteritems() return	an	iterator	over	(key,	value)	pairs (2),
(3)

a.iterkeys() return	an	iterator	over	the	mapping's	keys (2),
(3)

a.itervalues() return	an	iterator	over	the	mapping's	values (2),
(3)

Notes:

(1)
Raises	a	KeyError	exception	if	k	is	not	in	the	map.

(2)
New	in	version	2.2.

(3)
Keys	and	values	are	listed	in	an	arbitrary	order	which	is	non-random,	varies
across	Python	implementations,	and	depends	on	the	dictionary's	history	of
insertions	and	deletions.	If	items(),	keys(),	values(),
iteritems(),	iterkeys(),	and	itervalues()	are	called	with	no
intervening	modifications	to	the	dictionary,	the	lists	will	directly
correspond.	This	allows	the	creation	of	(value,	key)	pairs	using	zip():
"pairs	=	zip(a.values(),	a.keys())".	The	same	relationship
holds	for	the	iterkeys()	and	itervalues()	methods:	"pairs	=
zip(a.itervalues(),	a.iterkeys())"	provides	the	same	value
for	pairs.	Another	way	to	create	the	same	list	is	"pairs	=	[(v,	k)
for	(k,	v)	in	a.iteritems()]".

(4)
Never	raises	an	exception	if	k	is	not	in	the	map,	instead	it	returns	x.	x	is
optional;	when	x	is	not	provided	and	k	is	not	in	the	map,	None	is	returned.

(5)
setdefault()	is	like	get(),	except	that	if	k	is	missing,	x	is	both
returned	and	inserted	into	the	dictionary	as	the	value	of	k.	x	defaults	to
None.

(6)
popitem()	is	useful	to	destructively	iterate	over	a	dictionary,	as	often
used	in	set	algorithms.

(7)
fromkeys()	is	a	class	method	that	returns	a	new	dictionary.	value
defaults	to	None.	New	in	version	2.3.

(8)
pop()	raises	a	KeyError	when	no	default	value	is	given	and	the	key	is
not	found.	New	in	version	2.3.

(9)
update()	accepts	either	another	mapping	object	or	an	iterable	of
key/value	pairs	(as	a	tuple	or	other	iterable	of	length	two).	If	keyword
arguments	are	specified,	the	mapping	is	then	is	updated	with	those
key/value	pairs:	"d.update(red=1,	blue=2)".	Changed	in	version
2.4:	Allowed	the	argument	to	be	an	iterable	of	key/value	pairs	and	allowed
keyword	arguments.

Python	Library	Reference
Previous:	2.3.7	Set	Types	Up:	2.3	Built-in	Types	Next:	2.3.9	File	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.8	Mapping	Types	Up:	2.3	Built-in	Types	Next:	2.3.10	Other	Built-
in	Types

2.3.9	File	Objects
File	objects	are	implemented	using	C's	stdio	package	and	can	be	created	with
the	built-in	constructor	file()	described	in	section	2.1,	``Built-in
Functions.''2.10	File	objects	are	also	returned	by	some	other	built-in	functions	and
methods,	such	as	os.popen()	and	os.fdopen()	and	the	makefile()
method	of	socket	objects.

When	a	file	operation	fails	for	an	I/O-related	reason,	the	exception	IOError	is
raised.	This	includes	situations	where	the	operation	is	not	defined	for	some
reason,	like	seek()	on	a	tty	device	or	writing	a	file	opened	for	reading.

Files	have	the	following	methods:

close()
Close	the	file.	A	closed	file	cannot	be	read	or	written	any	more.	Any
operation	which	requires	that	the	file	be	open	will	raise	a	ValueError
after	the	file	has	been	closed.	Calling	close()	more	than	once	is	allowed.

flush()
Flush	the	internal	buffer,	like	stdio's	fflush().	This	may	be	a	no-op	on
some	file-like	objects.

fileno()
Return	the	integer	``file	descriptor''	that	is	used	by	the	underlying
implementation	to	request	I/O	operations	from	the	operating	system.	This
can	be	useful	for	other,	lower	level	interfaces	that	use	file	descriptors,	such
as	the	fcntl	module	or	os.read()	and	friends.	Note:	File-like	objects
which	do	not	have	a	real	file	descriptor	should	not	provide	this	method!

isatty()
Return	True	if	the	file	is	connected	to	a	tty(-like)	device,	else	False.
Note:	If	a	file-like	object	is	not	associated	with	a	real	file,	this	method
should	not	be	implemented.

next()

A	file	object	is	its	own	iterator,	for	example	iter(f)	returns	f	(unless	f	is
closed).	When	a	file	is	used	as	an	iterator,	typically	in	a	for	loop	(for
example,	for	line	in	f:	print	line),	the	next()	method	is
called	repeatedly.	This	method	returns	the	next	input	line,	or	raises
StopIteration	when	EOF	is	hit.	In	order	to	make	a	for	loop	the	most
efficient	way	of	looping	over	the	lines	of	a	file	(a	very	common	operation),
the	next()	method	uses	a	hidden	read-ahead	buffer.	As	a	consequence	of
using	a	read-ahead	buffer,	combining	next()	with	other	file	methods	(like
readline())	does	not	work	right.	However,	using	seek()	to	reposition
the	file	to	an	absolute	position	will	flush	the	read-ahead	buffer.	New	in
version	2.3.

read([size])
Read	at	most	size	bytes	from	the	file	(less	if	the	read	hits	EOF	before
obtaining	size	bytes).	If	the	size	argument	is	negative	or	omitted,	read	all
data	until	EOF	is	reached.	The	bytes	are	returned	as	a	string	object.	An
empty	string	is	returned	when	EOF	is	encountered	immediately.	(For	certain
files,	like	ttys,	it	makes	sense	to	continue	reading	after	an	EOF	is	hit.)	Note
that	this	method	may	call	the	underlying	C	function	fread()	more	than
once	in	an	effort	to	acquire	as	close	to	size	bytes	as	possible.	Also	note	that
when	in	non-blocking	mode,	less	data	than	what	was	requested	may	be
returned,	even	if	no	size	parameter	was	given.

readline([size])
Read	one	entire	line	from	the	file.	A	trailing	newline	character	is	kept	in	the
string	(but	may	be	absent	when	a	file	ends	with	an	incomplete	line).2.11	If
the	size	argument	is	present	and	non-negative,	it	is	a	maximum	byte	count
(including	the	trailing	newline)	and	an	incomplete	line	may	be	returned.	An
empty	string	is	returned	only	when	EOF	is	encountered	immediately.	Note:
Unlike	stdio's	fgets(),	the	returned	string	contains	null	characters
('\0')	if	they	occurred	in	the	input.

readlines([sizehint])
Read	until	EOF	using	readline()	and	return	a	list	containing	the	lines
thus	read.	If	the	optional	sizehint	argument	is	present,	instead	of	reading	up
to	EOF,	whole	lines	totalling	approximately	sizehint	bytes	(possibly	after
rounding	up	to	an	internal	buffer	size)	are	read.	Objects	implementing	a

file-like	interface	may	choose	to	ignore	sizehint	if	it	cannot	be
implemented,	or	cannot	be	implemented	efficiently.

xreadlines()
This	method	returns	the	same	thing	as	iter(f).	New	in	version	2.1.
Deprecated	since	release	2.3.	Use	"for	line	in	file"	instead.

seek(offset[,	whence])
Set	the	file's	current	position,	like	stdio's	fseek().	The	whence
argument	is	optional	and	defaults	to	0	(absolute	file	positioning);	other
values	are	1	(seek	relative	to	the	current	position)	and	2	(seek	relative	to
the	file's	end).	There	is	no	return	value.	Note	that	if	the	file	is	opened	for
appending	(mode	'a'	or	'a+'),	any	seek()	operations	will	be	undone	at
the	next	write.	If	the	file	is	only	opened	for	writing	in	append	mode	(mode
'a'),	this	method	is	essentially	a	no-op,	but	it	remains	useful	for	files
opened	in	append	mode	with	reading	enabled	(mode	'a+').	If	the	file	is
opened	in	text	mode	(mode	't'),	only	offsets	returned	by	tell()	are
legal.	Use	of	other	offsets	causes	undefined	behavior.

Note	that	not	all	file	objects	are	seekable.

tell()
Return	the	file's	current	position,	like	stdio's	ftell().

truncate([size])
Truncate	the	file's	size.	If	the	optional	size	argument	is	present,	the	file	is
truncated	to	(at	most)	that	size.	The	size	defaults	to	the	current	position.
The	current	file	position	is	not	changed.	Note	that	if	a	specified	size
exceeds	the	file's	current	size,	the	result	is	platform-dependent:	possibilities
include	that	file	may	remain	unchanged,	increase	to	the	specified	size	as	if
zero-filled,	or	increase	to	the	specified	size	with	undefined	new	content.
Availability:	Windows,	many	UNIX	variants.

write(str)
Write	a	string	to	the	file.	There	is	no	return	value.	Due	to	buffering,	the
string	may	not	actually	show	up	in	the	file	until	the	flush()	or	close()
method	is	called.

writelines(sequence)
Write	a	sequence	of	strings	to	the	file.	The	sequence	can	be	any	iterable
object	producing	strings,	typically	a	list	of	strings.	There	is	no	return	value.
(The	name	is	intended	to	match	readlines();	writelines()	does
not	add	line	separators.)

Files	support	the	iterator	protocol.	Each	iteration	returns	the	same	result	as
file.readline(),	and	iteration	ends	when	the	readline()	method	returns
an	empty	string.

File	objects	also	offer	a	number	of	other	interesting	attributes.	These	are	not
required	for	file-like	objects,	but	should	be	implemented	if	they	make	sense	for
the	particular	object.

closed

bool	indicating	the	current	state	of	the	file	object.	This	is	a	read-only
attribute;	the	close()	method	changes	the	value.	It	may	not	be	available
on	all	file-like	objects.

encoding

The	encoding	that	this	file	uses.	When	Unicode	strings	are	written	to	a	file,
they	will	be	converted	to	byte	strings	using	this	encoding.	In	addition,	when
the	file	is	connected	to	a	terminal,	the	attribute	gives	the	encoding	that	the
terminal	is	likely	to	use	(that	information	might	be	incorrect	if	the	user	has
misconfigured	the	terminal).	The	attribute	is	read-only	and	may	not	be
present	on	all	file-like	objects.	It	may	also	be	None,	in	which	case	the	file
uses	the	system	default	encoding	for	converting	Unicode	strings.

New	in	version	2.3.

mode

The	I/O	mode	for	the	file.	If	the	file	was	created	using	the	open()	built-in
function,	this	will	be	the	value	of	the	mode	parameter.	This	is	a	read-only
attribute	and	may	not	be	present	on	all	file-like	objects.

name

If	the	file	object	was	created	using	open(),	the	name	of	the	file.
Otherwise,	some	string	that	indicates	the	source	of	the	file	object,	of	the
form	"<...>".	This	is	a	read-only	attribute	and	may	not	be	present	on	all

file-like	objects.

newlines

If	Python	was	built	with	the	--with-universal-newlines	option	to	configure
(the	default)	this	read-only	attribute	exists,	and	for	files	opened	in	universal
newline	read	mode	it	keeps	track	of	the	types	of	newlines	encountered
while	reading	the	file.	The	values	it	can	take	are	'\r',	'\n',	'\r\n',
None	(unknown,	no	newlines	read	yet)	or	a	tuple	containing	all	the	newline
types	seen,	to	indicate	that	multiple	newline	conventions	were	encountered.
For	files	not	opened	in	universal	newline	read	mode	the	value	of	this
attribute	will	be	None.

softspace

Boolean	that	indicates	whether	a	space	character	needs	to	be	printed	before
another	value	when	using	the	print	statement.	Classes	that	are	trying	to
simulate	a	file	object	should	also	have	a	writable	softspace	attribute,
which	should	be	initialized	to	zero.	This	will	be	automatic	for	most	classes
implemented	in	Python	(care	may	be	needed	for	objects	that	override
attribute	access);	types	implemented	in	C	will	have	to	provide	a	writable
softspace	attribute.	Note:	This	attribute	is	not	used	to	control	the
print	statement,	but	to	allow	the	implementation	of	print	to	keep	track
of	its	internal	state.

Footnotes

...	Functions.''2.10
file()	is	new	in	Python	2.2.	The	older	built-in	open()	is	an	alias	for
file().

...	line).2.11
The	advantage	of	leaving	the	newline	on	is	that	returning	an	empty	string	is
then	an	unambiguous	EOF	indication.	It	is	also	possible	(in	cases	where	it
might	matter,	for	example,	if	you	want	to	make	an	exact	copy	of	a	file	while
scanning	its	lines)	to	tell	whether	the	last	line	of	a	file	ended	in	a	newline	or
not	(yes	this	happens!).

Python	Library	Reference
Previous:	2.3.8	Mapping	Types	Up:	2.3	Built-in	Types	Next:	2.3.10	Other	Built-
in	Types

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.9	File	Objects	Up:	2.3	Built-in	Types	Next:	2.3.10.1	Modules

2.3.10	Other	Built-in	Types
The	interpreter	supports	several	other	kinds	of	objects.	Most	of	these	support
only	one	or	two	operations.

Subsections

2.3.10.1	Modules
2.3.10.2	Classes	and	Class	Instances
2.3.10.3	Functions
2.3.10.4	Methods
2.3.10.5	Code	Objects
2.3.10.6	Type	Objects
2.3.10.7	The	Null	Object
2.3.10.8	The	Ellipsis	Object
2.3.10.9	Boolean	Values
2.3.10.10	Internal	Objects

Python	Library	Reference
Previous:	2.3.9	File	Objects	Up:	2.3	Built-in	Types	Next:	2.3.10.1	Modules

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.10.10	Internal	Objects	Up:	2.3	Built-in	Types	Next:	2.4	Built-in
Exceptions

2.3.11	Special	Attributes
The	implementation	adds	a	few	special	read-only	attributes	to	several	object
types,	where	they	are	relevant.	Some	of	these	are	not	reported	by	the	dir()
built-in	function.

__dict__

A	dictionary	or	other	mapping	object	used	to	store	an	object's	(writable)
attributes.

__methods__

Deprecated	since	release	2.2.	Use	the	built-in	function	dir()	to	get	a	list
of	an	object's	attributes.	This	attribute	is	no	longer	available.

__members__

Deprecated	since	release	2.2.	Use	the	built-in	function	dir()	to	get	a	list
of	an	object's	attributes.	This	attribute	is	no	longer	available.

__class__

The	class	to	which	a	class	instance	belongs.

__bases__

The	tuple	of	base	classes	of	a	class	object.	If	there	are	no	base	classes,	this
will	be	an	empty	tuple.

__name__

The	name	of	the	class	or	type.

Python	Library	Reference
Previous:	2.3.10.10	Internal	Objects	Up:	2.3	Built-in	Types	Next:	2.4	Built-in
Exceptions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.11	Special	Attributes	Up:	2.	Built-In	Objects	Next:	2.5	Built-in
Constants

2.4	Built-in	Exceptions
Exceptions	should	be	class	objects.	The	exceptions	are	defined	in	the	module
exceptions.	This	module	never	needs	to	be	imported	explicitly:	the
exceptions	are	provided	in	the	built-in	namespace	as	well	as	the	exceptions
module.

Note: 	In	past	versions	of	Python	string	exceptions	were
supported.	In	Python	1.5	and	newer	versions,	all	standard
exceptions	have	been	converted	to	class	objects	and	users	are
encouraged	to	do	the	same.	String	exceptions	will	raise	a
PendingDeprecationWarning.	In	future	versions,	support
for	string	exceptions	will	be	removed.

Two	distinct	string	objects	with	the	same	value	are	considered
different	exceptions.	This	is	done	to	force	programmers	to	use
exception	names	rather	than	their	string	value	when	specifying
exception	handlers.	The	string	value	of	all	built-in	exceptions	is
their	name,	but	this	is	not	a	requirement	for	user-defined
exceptions	or	exceptions	defined	by	library	modules.

For	class	exceptions,	in	a	try	statement	with	an	except	clause	that	mentions	a
particular	class,	that	clause	also	handles	any	exception	classes	derived	from	that
class	(but	not	exception	classes	from	which	it	is	derived).	Two	exception	classes
that	are	not	related	via	subclassing	are	never	equivalent,	even	if	they	have	the
same	name.

The	built-in	exceptions	listed	below	can	be	generated	by	the	interpreter	or	built-
in	functions.	Except	where	mentioned,	they	have	an	``associated	value''
indicating	the	detailed	cause	of	the	error.	This	may	be	a	string	or	a	tuple
containing	several	items	of	information	(e.g.,	an	error	code	and	a	string
explaining	the	code).	The	associated	value	is	the	second	argument	to	the	raise
statement.	For	string	exceptions,	the	associated	value	itself	will	be	stored	in	the
variable	named	as	the	second	argument	of	the	except	clause	(if	any).	For	class

exceptions,	that	variable	receives	the	exception	instance.	If	the	exception	class	is
derived	from	the	standard	root	class	Exception,	the	associated	value	is
present	as	the	exception	instance's	args	attribute,	and	possibly	on	other
attributes	as	well.

User	code	can	raise	built-in	exceptions.	This	can	be	used	to	test	an	exception
handler	or	to	report	an	error	condition	``just	like''	the	situation	in	which	the
interpreter	raises	the	same	exception;	but	beware	that	there	is	nothing	to	prevent
user	code	from	raising	an	inappropriate	error.

The	built-in	exception	classes	can	be	sub-classed	to	define	new	exceptions;
programmers	are	encouraged	to	at	least	derive	new	exceptions	from	the
Exception	base	class.	More	information	on	defining	exceptions	is	available	in
the	Python	Tutorial	under	the	heading	``User-defined	Exceptions.''

The	following	exceptions	are	only	used	as	base	classes	for	other	exceptions.

exception	Exception
The	root	class	for	exceptions.	All	built-in	exceptions	are	derived	from	this
class.	All	user-defined	exceptions	should	also	be	derived	from	this	class,
but	this	is	not	(yet)	enforced.	The	str()	function,	when	applied	to	an
instance	of	this	class	(or	most	derived	classes)	returns	the	string	value	of	the
argument	or	arguments,	or	an	empty	string	if	no	arguments	were	given	to
the	constructor.	When	used	as	a	sequence,	this	accesses	the	arguments	given
to	the	constructor	(handy	for	backward	compatibility	with	old	code).	The
arguments	are	also	available	on	the	instance's	args	attribute,	as	a	tuple.

exception	StandardError
The	base	class	for	all	built-in	exceptions	except	StopIteration	and
SystemExit.	StandardError	itself	is	derived	from	the	root	class
Exception.

exception	ArithmeticError
The	base	class	for	those	built-in	exceptions	that	are	raised	for	various
arithmetic	errors:	OverflowError,	ZeroDivisionError,
FloatingPointError.

exception	LookupError
The	base	class	for	the	exceptions	that	are	raised	when	a	key	or	index	used

on	a	mapping	or	sequence	is	invalid:	IndexError,	KeyError.	This	can
be	raised	directly	by	sys.setdefaultencoding().

exception	EnvironmentError
The	base	class	for	exceptions	that	can	occur	outside	the	Python	system:
IOError,	OSError.	When	exceptions	of	this	type	are	created	with	a	2-
tuple,	the	first	item	is	available	on	the	instance's	errno	attribute	(it	is
assumed	to	be	an	error	number),	and	the	second	item	is	available	on	the
strerror	attribute	(it	is	usually	the	associated	error	message).	The	tuple
itself	is	also	available	on	the	args	attribute.	New	in	version	1.5.2.

When	an	EnvironmentError	exception	is	instantiated	with	a	3-tuple,
the	first	two	items	are	available	as	above,	while	the	third	item	is	available
on	the	filename	attribute.	However,	for	backwards	compatibility,	the
args	attribute	contains	only	a	2-tuple	of	the	first	two	constructor
arguments.

The	filename	attribute	is	None	when	this	exception	is	created	with	other
than	3	arguments.	The	errno	and	strerror	attributes	are	also	None
when	the	instance	was	created	with	other	than	2	or	3	arguments.	In	this	last
case,	args	contains	the	verbatim	constructor	arguments	as	a	tuple.

The	following	exceptions	are	the	exceptions	that	are	actually	raised.

exception	AssertionError
Raised	when	an	assert	statement	fails.

exception	AttributeError
Raised	when	an	attribute	reference	or	assignment	fails.	(When	an	object
does	not	support	attribute	references	or	attribute	assignments	at	all,
TypeError	is	raised.)

exception	EOFError
Raised	when	one	of	the	built-in	functions	(input()	or	raw_input())
hits	an	end-of-file	condition	(EOF)	without	reading	any	data.	(N.B.:	the
read()	and	readline()	methods	of	file	objects	return	an	empty	string
when	they	hit	EOF.)

exception	FloatingPointError

Raised	when	a	floating	point	operation	fails.	This	exception	is	always
defined,	but	can	only	be	raised	when	Python	is	configured	with	the	--with-
fpectl	option,	or	the	WANT_SIGFPE_HANDLER	symbol	is	defined	in	the
pyconfig.h	file.

exception	IOError
Raised	when	an	I/O	operation	(such	as	a	print	statement,	the	built-in
open()	function	or	a	method	of	a	file	object)	fails	for	an	I/O-related
reason,	e.g.,	``file	not	found''	or	``disk	full''.

This	class	is	derived	from	EnvironmentError.	See	the	discussion
above	for	more	information	on	exception	instance	attributes.

exception	ImportError
Raised	when	an	import	statement	fails	to	find	the	module	definition	or
when	a	from	...	import	fails	to	find	a	name	that	is	to	be	imported.

exception	IndexError
Raised	when	a	sequence	subscript	is	out	of	range.	(Slice	indices	are	silently
truncated	to	fall	in	the	allowed	range;	if	an	index	is	not	a	plain	integer,
TypeError	is	raised.)

exception	KeyError
Raised	when	a	mapping	(dictionary)	key	is	not	found	in	the	set	of	existing
keys.

exception	KeyboardInterrupt
Raised	when	the	user	hits	the	interrupt	key	(normally	Control-C	or
Delete).	During	execution,	a	check	for	interrupts	is	made	regularly.
Interrupts	typed	when	a	built-in	function	input()	or	raw_input()	is
waiting	for	input	also	raise	this	exception.

exception	MemoryError
Raised	when	an	operation	runs	out	of	memory	but	the	situation	may	still	be
rescued	(by	deleting	some	objects).	The	associated	value	is	a	string
indicating	what	kind	of	(internal)	operation	ran	out	of	memory.	Note	that
because	of	the	underlying	memory	management	architecture	(C's
malloc()	function),	the	interpreter	may	not	always	be	able	to	completely
recover	from	this	situation;	it	nevertheless	raises	an	exception	so	that	a

stack	traceback	can	be	printed,	in	case	a	run-away	program	was	the	cause.

exception	NameError
Raised	when	a	local	or	global	name	is	not	found.	This	applies	only	to
unqualified	names.	The	associated	value	is	an	error	message	that	includes
the	name	that	could	not	be	found.

exception	NotImplementedError
This	exception	is	derived	from	RuntimeError.	In	user	defined	base
classes,	abstract	methods	should	raise	this	exception	when	they	require
derived	classes	to	override	the	method.	New	in	version	1.5.2.

exception	OSError
This	class	is	derived	from	EnvironmentError	and	is	used	primarily	as
the	os	module's	os.error	exception.	See	EnvironmentError	above
for	a	description	of	the	possible	associated	values.	New	in	version	1.5.2.

exception	OverflowError
Raised	when	the	result	of	an	arithmetic	operation	is	too	large	to	be
represented.	This	cannot	occur	for	long	integers	(which	would	rather	raise
MemoryError	than	give	up).	Because	of	the	lack	of	standardization	of
floating	point	exception	handling	in	C,	most	floating	point	operations	also
aren't	checked.	For	plain	integers,	all	operations	that	can	overflow	are
checked	except	left	shift,	where	typical	applications	prefer	to	drop	bits	than
raise	an	exception.

exception	ReferenceError
This	exception	is	raised	when	a	weak	reference	proxy,	created	by	the
weakref.proxy()	function,	is	used	to	access	an	attribute	of	the	referent
after	it	has	been	garbage	collected.	For	more	information	on	weak
references,	see	the	weakref	module.	New	in	version	2.2:	Previously
known	as	the	weakref.ReferenceError	exception.

exception	RuntimeError
Raised	when	an	error	is	detected	that	doesn't	fall	in	any	of	the	other
categories.	The	associated	value	is	a	string	indicating	what	precisely	went
wrong.	(This	exception	is	mostly	a	relic	from	a	previous	version	of	the
interpreter;	it	is	not	used	very	much	any	more.)

exception	StopIteration
Raised	by	an	iterator's	next()	method	to	signal	that	there	are	no	further
values.	This	is	derived	from	Exception	rather	than	StandardError,
since	this	is	not	considered	an	error	in	its	normal	application.	New	in
version	2.2.

exception	SyntaxError
Raised	when	the	parser	encounters	a	syntax	error.	This	may	occur	in	an
import	statement,	in	an	exec	statement,	in	a	call	to	the	built-in	function
eval()	or	input(),	or	when	reading	the	initial	script	or	standard	input
(also	interactively).

Instances	of	this	class	have	atttributes	filename,	lineno,	offset	and
text	for	easier	access	to	the	details.	str()	of	the	exception	instance
returns	only	the	message.

exception	SystemError
Raised	when	the	interpreter	finds	an	internal	error,	but	the	situation	does	not
look	so	serious	to	cause	it	to	abandon	all	hope.	The	associated	value	is	a
string	indicating	what	went	wrong	(in	low-level	terms).

You	should	report	this	to	the	author	or	maintainer	of	your	Python
interpreter.	Be	sure	to	report	the	version	of	the	Python	interpreter
(sys.version;	it	is	also	printed	at	the	start	of	an	interactive	Python
session),	the	exact	error	message	(the	exception's	associated	value)	and	if
possible	the	source	of	the	program	that	triggered	the	error.

exception	SystemExit
This	exception	is	raised	by	the	sys.exit()	function.	When	it	is	not
handled,	the	Python	interpreter	exits;	no	stack	traceback	is	printed.	If	the
associated	value	is	a	plain	integer,	it	specifies	the	system	exit	status	(passed
to	C's	exit()	function);	if	it	is	None,	the	exit	status	is	zero;	if	it	has
another	type	(such	as	a	string),	the	object's	value	is	printed	and	the	exit
status	is	one.

Instances	have	an	attribute	code	which	is	set	to	the	proposed	exit	status	or
error	message	(defaulting	to	None).	Also,	this	exception	derives	directly
from	Exception	and	not	StandardError,	since	it	is	not	technically	an
error.

A	call	to	sys.exit()	is	translated	into	an	exception	so	that	clean-up
handlers	(finally	clauses	of	try	statements)	can	be	executed,	and	so
that	a	debugger	can	execute	a	script	without	running	the	risk	of	losing
control.	The	os._exit()	function	can	be	used	if	it	is	absolutely
positively	necessary	to	exit	immediately	(for	example,	in	the	child	process
after	a	call	to	fork()).

exception	TypeError
Raised	when	an	operation	or	function	is	applied	to	an	object	of
inappropriate	type.	The	associated	value	is	a	string	giving	details	about	the
type	mismatch.

exception	UnboundLocalError
Raised	when	a	reference	is	made	to	a	local	variable	in	a	function	or	method,
but	no	value	has	been	bound	to	that	variable.	This	is	a	subclass	of
NameError.	New	in	version	2.0.

exception	UnicodeError
Raised	when	a	Unicode-related	encoding	or	decoding	error	occurs.	It	is	a
subclass	of	ValueError.	New	in	version	2.0.

exception	UnicodeEncodeError
Raised	when	a	Unicode-related	error	occurs	during	encoding.	It	is	a
subclass	of	UnicodeError.	New	in	version	2.3.

exception	UnicodeDecodeError
Raised	when	a	Unicode-related	error	occurs	during	decoding.	It	is	a
subclass	of	UnicodeError.	New	in	version	2.3.

exception	UnicodeTranslateError
Raised	when	a	Unicode-related	error	occurs	during	translating.	It	is	a
subclass	of	UnicodeError.	New	in	version	2.3.

exception	ValueError
Raised	when	a	built-in	operation	or	function	receives	an	argument	that	has
the	right	type	but	an	inappropriate	value,	and	the	situation	is	not	described
by	a	more	precise	exception	such	as	IndexError.

exception	WindowsError

Raised	when	a	Windows-specific	error	occurs	or	when	the	error	number
does	not	correspond	to	an	errno	value.	The	errno	and	strerror
values	are	created	from	the	return	values	of	the	GetLastError()	and
FormatMessage()	functions	from	the	Windows	Platform	API.	This	is	a
subclass	of	OSError.	New	in	version	2.0.

exception	ZeroDivisionError
Raised	when	the	second	argument	of	a	division	or	modulo	operation	is	zero.
The	associated	value	is	a	string	indicating	the	type	of	the	operands	and	the
operation.

The	following	exceptions	are	used	as	warning	categories;	see	the	warnings
module	for	more	information.

exception	Warning
Base	class	for	warning	categories.

exception	UserWarning
Base	class	for	warnings	generated	by	user	code.

exception	DeprecationWarning
Base	class	for	warnings	about	deprecated	features.

exception	PendingDeprecationWarning
Base	class	for	warnings	about	features	which	will	be	deprecated	in	the
future.

exception	SyntaxWarning
Base	class	for	warnings	about	dubious	syntax

exception	RuntimeWarning
Base	class	for	warnings	about	dubious	runtime	behavior.

exception	FutureWarning
Base	class	for	warnings	about	constructs	that	will	change	semantically	in
the	future.

The	class	hierarchy	for	built-in	exceptions	is:

				Exception

					+--	SystemExit

					+--	StopIteration

					+--	StandardError

					|				+--	KeyboardInterrupt

					|				+--	ImportError

					|				+--	EnvironmentError

					|				|				+--	IOError

					|				|				+--	OSError

					|				|									+--	WindowsError

					|				+--	EOFError

					|				+--	RuntimeError

					|				|				+--	NotImplementedError

					|				+--	NameError

					|				|				+--	UnboundLocalError

					|				+--	AttributeError

					|				+--	SyntaxError

					|				|				+--	IndentationError

					|				|									+--	TabError

					|				+--	TypeError

					|				+--	AssertionError

					|				+--	LookupError

					|				|				+--	IndexError

					|				|				+--	KeyError

					|				+--	ArithmeticError

					|				|				+--	OverflowError

					|				|				+--	ZeroDivisionError

					|				|				+--	FloatingPointError

					|				+--	ValueError

					|				|				+--	UnicodeError

					|				|								+--	UnicodeEncodeError

					|				|								+--	UnicodeDecodeError

					|				|								+--	UnicodeTranslateError

					|				+--	ReferenceError

					|				+--	SystemError

					|				+--	MemoryError

					+---Warning

	 		+--	UserWarning

	 		+--	DeprecationWarning

	 		+--	PendingDeprecationWarning

	 		+--	SyntaxWarning

	 		+--	OverflowWarning	(not	generated	in	2.4;	won't	exist	in	2.5)

	 		+--	RuntimeWarning

	 		+--	FutureWarning

Python	Library	Reference
Previous:	2.3.11	Special	Attributes	Up:	2.	Built-In	Objects	Next:	2.5	Built-in
Constants

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.4	Built-in	Exceptions	Up:	2.	Built-In	Objects	Next:	3.	Python
Runtime	Services

2.5	Built-in	Constants
A	small	number	of	constants	live	in	the	built-in	namespace.	They	are:

False

The	false	value	of	the	bool	type.	New	in	version	2.3.

True

The	true	value	of	the	bool	type.	New	in	version	2.3.

None

The	sole	value	of	types.NoneType.	None	is	frequently	used	to
represent	the	absence	of	a	value,	as	when	default	arguments	are	not	passed
to	a	function.

NotImplemented

Special	value	which	can	be	returned	by	the	``rich	comparison''	special
methods	(__eq__(),	__lt__(),	and	friends),	to	indicate	that	the
comparison	is	not	implemented	with	respect	to	the	other	type.

Ellipsis

Special	value	used	in	conjunction	with	extended	slicing	syntax.

Python	Library	Reference
Previous:	2.4	Built-in	Exceptions	Up:	2.	Built-In	Objects	Next:	3.	Python
Runtime	Services

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.5	Built-in	Constants	Up:	Python	Library	Reference	Next:	3.1	sys

3.	Python	Runtime	Services
The	modules	described	in	this	chapter	provide	a	wide	range	of	services	related	to
the	Python	interpreter	and	its	interaction	with	its	environment.	Here's	an
overview:

sys 	 Access	system-specific	parameters	and	functions.
gc 	 Interface	to	the	cycle-detecting	garbage	collector.
weakref 	 Support	for	weak	references	and	weak	dictionaries.
fpectl 	 Provide	control	for	floating	point	exception	handling.
atexit 	 Register	and	execute	cleanup	functions.
types 	 Names	for	built-in	types.
UserDict 	 Class	wrapper	for	dictionary	objects.
UserList 	 Class	wrapper	for	list	objects.
UserString 	 Class	wrapper	for	string	objects.
operator 	 All	Python's	standard	operators	as	built-in	functions.
inspect 	 Extract	information	and	source	code	from	live	objects.
traceback 	 Print	or	retrieve	a	stack	traceback.

linecache 	 This	module	provides	random	access	to	individual	lines	fromtext	files.
pickle 	 Convert	Python	objects	to	streams	of	bytes	and	back.
cPickle 	 Faster	version	of	pickle,	but	not	subclassable.
copy_reg 	 Register	pickle	support	functions.
shelve 	 Python	object	persistence.
copy 	 Shallow	and	deep	copy	operations.

marshal 	 Convert	Python	objects	to	streams	of	bytes	and	back	(withdifferent	constraints).
warnings 	 Issue	warning	messages	and	control	their	disposition.
imp 	 Access	the	implementation	of	the	import	statement.
pkgutil 	 Utilities	to	support	extension	of	packages.
code 	 Base	classes	for	interactive	Python	interpreters.
codeop 	 Compile	(possibly	incomplete)	Python	code.

pprint 	 Data	pretty	printer.
repr 	 Alternate	repr()	implementation	with	size	limits.
new 	 Interface	to	the	creation	of	runtime	implementation	objects.
site 	 A	standard	way	to	reference	site-specific	modules.
user 	 A	standard	way	to	reference	user-specific	modules.
__builtin__ 	 The	set	of	built-in	functions.
__main__ 	 The	environment	where	the	top-level	script	is	run.
__future__ 	 Future	statement	definitions

Python	Library	Reference
Previous:	2.5	Built-in	Constants	Up:	Python	Library	Reference	Next:	3.1	sys

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.	Python	Runtime	Services	Up:	3.	Python	Runtime	Services	Next:
3.2	gc

3.1	sys	--	System-specific
parameters	and	functions
This	module	provides	access	to	some	variables	used	or	maintained	by	the
interpreter	and	to	functions	that	interact	strongly	with	the	interpreter.	It	is	always
available.

argv

The	list	of	command	line	arguments	passed	to	a	Python	script.	argv[0]	is
the	script	name	(it	is	operating	system	dependent	whether	this	is	a	full
pathname	or	not).	If	the	command	was	executed	using	the	-c	command	line
option	to	the	interpreter,	argv[0]	is	set	to	the	string	'-c'.	If	no	script
name	was	passed	to	the	Python	interpreter,	argv	has	zero	length.

byteorder

An	indicator	of	the	native	byte	order.	This	will	have	the	value	'big'	on
big-endian	(most-signigicant	byte	first)	platforms,	and	'little'	on	little-
endian	(least-significant	byte	first)	platforms.	New	in	version	2.0.

builtin_module_names

A	tuple	of	strings	giving	the	names	of	all	modules	that	are	compiled	into
this	Python	interpreter.	(This	information	is	not	available	in	any	other	way	-
-	modules.keys()	only	lists	the	imported	modules.)

copyright

A	string	containing	the	copyright	pertaining	to	the	Python	interpreter.

dllhandle

Integer	specifying	the	handle	of	the	Python	DLL.	Availability:	Windows.

displayhook(value)
If	value	is	not	None,	this	function	prints	it	to	sys.stdout,	and	saves	it	in
__builtin__._.

sys.displayhook	is	called	on	the	result	of	evaluating	an	expression
entered	in	an	interactive	Python	session.	The	display	of	these	values	can	be

customized	by	assigning	another	one-argument	function	to
sys.displayhook.

excepthook(type,	value,	traceback)
This	function	prints	out	a	given	traceback	and	exception	to	sys.stderr.

When	an	exception	is	raised	and	uncaught,	the	interpreter	calls
sys.excepthook	with	three	arguments,	the	exception	class,	exception
instance,	and	a	traceback	object.	In	an	interactive	session	this	happens	just
before	control	is	returned	to	the	prompt;	in	a	Python	program	this	happens
just	before	the	program	exits.	The	handling	of	such	top-level	exceptions	can
be	customized	by	assigning	another	three-argument	function	to
sys.excepthook.

__displayhook__

__excepthook__

These	objects	contain	the	original	values	of	displayhook	and
excepthook	at	the	start	of	the	program.	They	are	saved	so	that
displayhook	and	excepthook	can	be	restored	in	case	they	happen	to
get	replaced	with	broken	objects.

exc_info()
This	function	returns	a	tuple	of	three	values	that	give	information	about	the
exception	that	is	currently	being	handled.	The	information	returned	is
specific	both	to	the	current	thread	and	to	the	current	stack	frame.	If	the
current	stack	frame	is	not	handling	an	exception,	the	information	is	taken
from	the	calling	stack	frame,	or	its	caller,	and	so	on	until	a	stack	frame	is
found	that	is	handling	an	exception.	Here,	``handling	an	exception''	is
defined	as	``executing	or	having	executed	an	except	clause.''	For	any	stack
frame,	only	information	about	the	most	recently	handled	exception	is
accessible.

If	no	exception	is	being	handled	anywhere	on	the	stack,	a	tuple	containing
three	None	values	is	returned.	Otherwise,	the	values	returned	are	(type,
value,	traceback).	Their	meaning	is:	type	gets	the	exception	type	of	the
exception	being	handled	(a	class	object);	value	gets	the	exception	parameter
(its	associated	value	or	the	second	argument	to	raise,	which	is	always	a
class	instance	if	the	exception	type	is	a	class	object);	traceback	gets	a

traceback	object	(see	the	Reference	Manual)	which	encapsulates	the	call
stack	at	the	point	where	the	exception	originally	occurred.

If	exc_clear()	is	called,	this	function	will	return	three	None	values
until	either	another	exception	is	raised	in	the	current	thread	or	the	execution
stack	returns	to	a	frame	where	another	exception	is	being	handled.

Warning:	Assigning	the	traceback	return	value	to	a	local	variable	in	a
function	that	is	handling	an	exception	will	cause	a	circular	reference.	This
will	prevent	anything	referenced	by	a	local	variable	in	the	same	function	or
by	the	traceback	from	being	garbage	collected.	Since	most	functions	don't
need	access	to	the	traceback,	the	best	solution	is	to	use	something	like
exctype,	value	=	sys.exc_info()[:2]	to	extract	only	the
exception	type	and	value.	If	you	do	need	the	traceback,	make	sure	to	delete
it	after	use	(best	done	with	a	try	...	finally	statement)	or	to	call
exc_info()	in	a	function	that	does	not	itself	handle	an	exception.	Note:
Beginning	with	Python	2.2,	such	cycles	are	automatically	reclaimed	when
garbage	collection	is	enabled	and	they	become	unreachable,	but	it	remains
more	efficient	to	avoid	creating	cycles.

exc_clear()
This	function	clears	all	information	relating	to	the	current	or	last	exception
that	occurred	in	the	current	thread.	After	calling	this	function,
exc_info()	will	return	three	None	values	until	another	exception	is
raised	in	the	current	thread	or	the	execution	stack	returns	to	a	frame	where
another	exception	is	being	handled.

This	function	is	only	needed	in	only	a	few	obscure	situations.	These	include
logging	and	error	handling	systems	that	report	information	on	the	last	or
current	exception.	This	function	can	also	be	used	to	try	to	free	resources
and	trigger	object	finalization,	though	no	guarantee	is	made	as	to	what
objects	will	be	freed,	if	any.	New	in	version	2.3.

exc_type

exc_value

exc_traceback

Deprecated	since	release	1.5.	Use	exc_info()	instead.

Since	they	are	global	variables,	they	are	not	specific	to	the	current	thread,

so	their	use	is	not	safe	in	a	multi-threaded	program.	When	no	exception	is
being	handled,	exc_type	is	set	to	None	and	the	other	two	are	undefined.

exec_prefix

A	string	giving	the	site-specific	directory	prefix	where	the	platform-
dependent	Python	files	are	installed;	by	default,	this	is	also
'/usr/local'.	This	can	be	set	at	build	time	with	the	--exec-prefix
argument	to	the	configure	script.	Specifically,	all	configuration	files	(e.g.
the	pyconfig.h	header	file)	are	installed	in	the	directory	exec_prefix	+
'/lib/pythonversion/config',	and	shared	library	modules	are
installed	in	exec_prefix	+	'/lib/pythonversion/lib-
dynload',	where	version	is	equal	to	version[:3].

executable

A	string	giving	the	name	of	the	executable	binary	for	the	Python	interpreter,
on	systems	where	this	makes	sense.

exit([arg])
Exit	from	Python.	This	is	implemented	by	raising	the	SystemExit
exception,	so	cleanup	actions	specified	by	finally	clauses	of	try	statements
are	honored,	and	it	is	possible	to	intercept	the	exit	attempt	at	an	outer	level.
The	optional	argument	arg	can	be	an	integer	giving	the	exit	status
(defaulting	to	zero),	or	another	type	of	object.	If	it	is	an	integer,	zero	is
considered	``successful	termination''	and	any	nonzero	value	is	considered
``abnormal	termination''	by	shells	and	the	like.	Most	systems	require	it	to	be
in	the	range	0-127,	and	produce	undefined	results	otherwise.	Some	systems
have	a	convention	for	assigning	specific	meanings	to	specific	exit	codes,
but	these	are	generally	underdeveloped;	UNIX	programs	generally	use	2	for
command	line	syntax	errors	and	1	for	all	other	kind	of	errors.	If	another
type	of	object	is	passed,	None	is	equivalent	to	passing	zero,	and	any	other
object	is	printed	to	sys.stderr	and	results	in	an	exit	code	of	1.	In
particular,	sys.exit("some	error	message")	is	a	quick	way	to
exit	a	program	when	an	error	occurs.

exitfunc

This	value	is	not	actually	defined	by	the	module,	but	can	be	set	by	the	user
(or	by	a	program)	to	specify	a	clean-up	action	at	program	exit.	When	set,	it
should	be	a	parameterless	function.	This	function	will	be	called	when	the

interpreter	exits.	Only	one	function	may	be	installed	in	this	way;	to	allow
multiple	functions	which	will	be	called	at	termination,	use	the	atexit
module.	Note:	The	exit	function	is	not	called	when	the	program	is	killed	by
a	signal,	when	a	Python	fatal	internal	error	is	detected,	or	when
os._exit()	is	called.
Deprecated	since	release	2.4.	Use	atexit	instead.

getcheckinterval()
Return	the	interpreter's	``check	interval'';	see	setcheckinterval().
New	in	version	2.3.

getdefaultencoding()
Return	the	name	of	the	current	default	string	encoding	used	by	the	Unicode
implementation.	New	in	version	2.0.

getdlopenflags()
Return	the	current	value	of	the	flags	that	are	used	for	dlopen()	calls.	The
flag	constants	are	defined	in	the	dl	and	DLFCN	modules.	Availability:
UNIX.	New	in	version	2.2.

getfilesystemencoding()
Return	the	name	of	the	encoding	used	to	convert	Unicode	filenames	into
system	file	names,	or	None	if	the	system	default	encoding	is	used.	The
result	value	depends	on	the	operating	system:

On	Windows	9x,	the	encoding	is	``mbcs''.
On	Mac	OS	X,	the	encoding	is	``utf-8''.
On	Unix,	the	encoding	is	the	user's	preference	according	to	the	result
of	nl_langinfo(CODESET),	or	None	if	the	nl_langinfo(CODESET)
failed.
On	Windows	NT+,	file	names	are	Unicode	natively,	so	no	conversion
is	performed.	getfilesystemencoding	still	returns	``mbcs'',	as
this	is	the	encoding	that	applications	should	use	when	they	explicitly
want	to	convert	Unicode	strings	to	byte	strings	that	are	equivalent
when	used	as	file	names.

New	in	version	2.3.

getrefcount(object)

Return	the	reference	count	of	the	object.	The	count	returned	is	generally
one	higher	than	you	might	expect,	because	it	includes	the	(temporary)
reference	as	an	argument	to	getrefcount().

getrecursionlimit()
Return	the	current	value	of	the	recursion	limit,	the	maximum	depth	of	the
Python	interpreter	stack.	This	limit	prevents	infinite	recursion	from	causing
an	overflow	of	the	C	stack	and	crashing	Python.	It	can	be	set	by
setrecursionlimit().

_getframe([depth])
Return	a	frame	object	from	the	call	stack.	If	optional	integer	depth	is	given,
return	the	frame	object	that	many	calls	below	the	top	of	the	stack.	If	that	is
deeper	than	the	call	stack,	ValueError	is	raised.	The	default	for	depth	is
zero,	returning	the	frame	at	the	top	of	the	call	stack.

This	function	should	be	used	for	internal	and	specialized	purposes	only.

getwindowsversion()
Return	a	tuple	containing	five	components,	describing	the	Windows	version
currently	running.	The	elements	are	major,	minor,	build,	platform,	and	text.
text	contains	a	string	while	all	other	values	are	integers.

platform	may	be	one	of	the	following	values:

Constant Platform
VER_PLATFORM_WIN32s Win32s	on	Windows	3.1
VER_PLATFORM_WIN32_WINDOWS Windows	95/98/ME
VER_PLATFORM_WIN32_NT Windows	NT/2000/XP
VER_PLATFORM_WIN32_CE Windows	CE

This	function	wraps	the	Win32	GetVersionEx()	function;	see	the
Microsoft	documentation	for	more	information	about	these	fields.

Availability:	Windows.	New	in	version	2.3.

hexversion

The	version	number	encoded	as	a	single	integer.	This	is	guaranteed	to

increase	with	each	version,	including	proper	support	for	non-production
releases.	For	example,	to	test	that	the	Python	interpreter	is	at	least	version
1.5.2,	use:

if	sys.hexversion	>=	0x010502F0:

				#	use	some	advanced	feature

				...

else:

				#	use	an	alternative	implementation	or	warn	the	user

				...

This	is	called	"hexversion"	since	it	only	really	looks	meaningful	when
viewed	as	the	result	of	passing	it	to	the	built-in	hex()	function.	The
version_info	value	may	be	used	for	a	more	human-friendly	encoding
of	the	same	information.	New	in	version	1.5.2.

last_type

last_value

last_traceback

These	three	variables	are	not	always	defined;	they	are	set	when	an
exception	is	not	handled	and	the	interpreter	prints	an	error	message	and	a
stack	traceback.	Their	intended	use	is	to	allow	an	interactive	user	to	import
a	debugger	module	and	engage	in	post-mortem	debugging	without	having
to	re-execute	the	command	that	caused	the	error.	(Typical	use	is	"import
pdb;	pdb.pm()"	to	enter	the	post-mortem	debugger;	see	chapter	9,
``The	Python	Debugger,''	for	more	information.)

The	meaning	of	the	variables	is	the	same	as	that	of	the	return	values	from
exc_info()	above.	(Since	there	is	only	one	interactive	thread,	thread-
safety	is	not	a	concern	for	these	variables,	unlike	for	exc_type	etc.)

maxint

The	largest	positive	integer	supported	by	Python's	regular	integer	type.	This
is	at	least	2**31-1.	The	largest	negative	integer	is	-maxint-1	--	the
asymmetry	results	from	the	use	of	2's	complement	binary	arithmetic.

maxunicode

An	integer	giving	the	largest	supported	code	point	for	a	Unicode	character.
The	value	of	this	depends	on	the	configuration	option	that	specifies	whether
Unicode	characters	are	stored	as	UCS-2	or	UCS-4.

modules

This	is	a	dictionary	that	maps	module	names	to	modules	which	have
already	been	loaded.	This	can	be	manipulated	to	force	reloading	of	modules
and	other	tricks.	Note	that	removing	a	module	from	this	dictionary	is	not
the	same	as	calling	reload()	on	the	corresponding	module	object.

path

A	list	of	strings	that	specifies	the	search	path	for	modules.	Initialized	from
the	environment	variable	PYTHONPATH,	plus	an	installation-dependent
default.

As	initialized	upon	program	startup,	the	first	item	of	this	list,	path[0],	is
the	directory	containing	the	script	that	was	used	to	invoke	the	Python
interpreter.	If	the	script	directory	is	not	available	(e.g.	if	the	interpreter	is
invoked	interactively	or	if	the	script	is	read	from	standard	input),	path[0]
is	the	empty	string,	which	directs	Python	to	search	modules	in	the	current
directory	first.	Notice	that	the	script	directory	is	inserted	before	the	entries
inserted	as	a	result	of	PYTHONPATH.

A	program	is	free	to	modify	this	list	for	its	own	purposes.

Changed	in	version	2.3:	Unicode	strings	are	no	longer	ignored.

platform

This	string	contains	a	platform	identifier,	e.g.	'sunos5'	or	'linux1'.
This	can	be	used	to	append	platform-specific	components	to	path,	for
instance.

prefix

A	string	giving	the	site-specific	directory	prefix	where	the	platform
independent	Python	files	are	installed;	by	default,	this	is	the	string
'/usr/local'.	This	can	be	set	at	build	time	with	the	--prefix	argument
to	the	configure	script.	The	main	collection	of	Python	library	modules	is
installed	in	the	directory	prefix	+	'/lib/pythonversion'	while	the
platform	independent	header	files	(all	except	pyconfig.h)	are	stored	in
prefix	+	'/include/pythonversion',	where	version	is	equal	to
version[:3].

ps1

ps2

Strings	specifying	the	primary	and	secondary	prompt	of	the	interpreter.
These	are	only	defined	if	the	interpreter	is	in	interactive	mode.	Their	initial
values	in	this	case	are	'>>>	'	and	'...	'.	If	a	non-string	object	is
assigned	to	either	variable,	its	str()	is	re-evaluated	each	time	the
interpreter	prepares	to	read	a	new	interactive	command;	this	can	be	used	to
implement	a	dynamic	prompt.

setcheckinterval(interval)
Set	the	interpreter's	``check	interval''.	This	integer	value	determines	how
often	the	interpreter	checks	for	periodic	things	such	as	thread	switches	and
signal	handlers.	The	default	is	100,	meaning	the	check	is	performed	every
100	Python	virtual	instructions.	Setting	it	to	a	larger	value	may	increase
performance	for	programs	using	threads.	Setting	it	to	a	value	<=	0	checks
every	virtual	instruction,	maximizing	responsiveness	as	well	as	overhead.

setdefaultencoding(name)
Set	the	current	default	string	encoding	used	by	the	Unicode
implementation.	If	name	does	not	match	any	available	encoding,
LookupError	is	raised.	This	function	is	only	intended	to	be	used	by	the
site	module	implementation	and,	where	needed,	by	sitecustomize.
Once	used	by	the	site	module,	it	is	removed	from	the	sys	module's
namespace.	New	in	version	2.0.

setdlopenflags(n)
Set	the	flags	used	by	the	interpreter	for	dlopen()	calls,	such	as	when	the
interpreter	loads	extension	modules.	Among	other	things,	this	will	enable	a
lazy	resolving	of	symbols	when	importing	a	module,	if	called	as
sys.setdlopenflags(0).	To	share	symbols	across	extension
modules,	call	as	sys.setdlopenflags(dl.RTLD_NOW	|
dl.RTLD_GLOBAL).	Symbolic	names	for	the	flag	modules	can	be	either
found	in	the	dl	module,	or	in	the	DLFCN	module.	If	DLFCN	is	not
available,	it	can	be	generated	from	/usr/include/dlfcn.h	using	the	h2py
script.	Availability:	UNIX.	New	in	version	2.2.

setprofile(profilefunc)
Set	the	system's	profile	function,	which	allows	you	to	implement	a	Python

source	code	profiler	in	Python.	See	chapter	10	for	more	information	on	the
Python	profiler.	The	system's	profile	function	is	called	similarly	to	the
system's	trace	function	(see	settrace()),	but	it	isn't	called	for	each
executed	line	of	code	(only	on	call	and	return,	but	the	return	event	is
reported	even	when	an	exception	has	been	set).	The	function	is	thread-
specific,	but	there	is	no	way	for	the	profiler	to	know	about	context	switches
between	threads,	so	it	does	not	make	sense	to	use	this	in	the	presence	of
multiple	threads.	Also,	its	return	value	is	not	used,	so	it	can	simply	return
None.

setrecursionlimit(limit)
Set	the	maximum	depth	of	the	Python	interpreter	stack	to	limit.	This	limit
prevents	infinite	recursion	from	causing	an	overflow	of	the	C	stack	and
crashing	Python.

The	highest	possible	limit	is	platform-dependent.	A	user	may	need	to	set	the
limit	higher	when	she	has	a	program	that	requires	deep	recursion	and	a
platform	that	supports	a	higher	limit.	This	should	be	done	with	care,
because	a	too-high	limit	can	lead	to	a	crash.

settrace(tracefunc)
Set	the	system's	trace	function,	which	allows	you	to	implement	a	Python
source	code	debugger	in	Python.	See	section	9.2,	``How	It	Works,''	in	the
chapter	on	the	Python	debugger.	The	function	is	thread-specific;	for	a
debugger	to	support	multiple	threads,	it	must	be	registered	using
settrace()	for	each	thread	being	debugged.	Note:	The	settrace()
function	is	intended	only	for	implementing	debuggers,	profilers,	coverage
tools	and	the	like.	Its	behavior	is	part	of	the	implementation	platform,	rather
than	part	of	the	language	definition,	and	thus	may	not	be	available	in	all
Python	implementations.

settscdump(on_flag)
Activate	dumping	of	VM	measurements	using	the	Pentium	timestamp
counter,	if	on_flag	is	true.	Deactivate	these	dumps	if	on_flag	is	off.	The
function	is	available	only	if	Python	was	compiled	with	--with-tsc.	To
understand	the	output	of	this	dump,	read	Python/ceval.c	in	the	Python
sources.	New	in	version	2.4.

stdin

stdout

stderr

File	objects	corresponding	to	the	interpreter's	standard	input,	output	and
error	streams.	stdin	is	used	for	all	interpreter	input	except	for	scripts	but
including	calls	to	input()	and	raw_input().	stdout	is	used	for	the
output	of	print	and	expression	statements	and	for	the	prompts	of
input()	and	raw_input().	The	interpreter's	own	prompts	and	(almost
all	of)	its	error	messages	go	to	stderr.	stdout	and	stderr	needn't	be
built-in	file	objects:	any	object	is	acceptable	as	long	as	it	has	a	write()
method	that	takes	a	string	argument.	(Changing	these	objects	doesn't	affect
the	standard	I/O	streams	of	processes	executed	by	os.popen(),
os.system()	or	the	exec*()	family	of	functions	in	the	os	module.)

__stdin__

__stdout__

__stderr__

These	objects	contain	the	original	values	of	stdin,	stderr	and	stdout
at	the	start	of	the	program.	They	are	used	during	finalization,	and	could	be
useful	to	restore	the	actual	files	to	known	working	file	objects	in	case	they
have	been	overwritten	with	a	broken	object.

tracebacklimit

When	this	variable	is	set	to	an	integer	value,	it	determines	the	maximum
number	of	levels	of	traceback	information	printed	when	an	unhandled
exception	occurs.	The	default	is	1000.	When	set	to	0	or	less,	all	traceback
information	is	suppressed	and	only	the	exception	type	and	value	are	printed.

version

A	string	containing	the	version	number	of	the	Python	interpreter	plus
additional	information	on	the	build	number	and	compiler	used.	It	has	a
value	of	the	form	'version	(#build_number,	build_date,	build_time)
[compiler]'.	The	first	three	characters	are	used	to	identify	the	version	in
the	installation	directories	(where	appropriate	on	each	platform).	An
example:

>>>	import	sys

>>>	sys.version

'1.5.2	(#0	Apr	13	1999,	10:51:12)	[MSC	32	bit	(Intel)]'

api_version

The	C	API	version	for	this	interpreter.	Programmers	may	find	this	useful
when	debugging	version	conflicts	between	Python	and	extension	modules.
New	in	version	2.3.

version_info

A	tuple	containing	the	five	components	of	the	version	number:	major,
minor,	micro,	releaselevel,	and	serial.	All	values	except	releaselevel	are
integers;	the	release	level	is	'alpha',	'beta',	'candidate',	or
'final'.	The	version_info	value	corresponding	to	the	Python
version	2.0	is	(2,	0,	0,	'final',	0).	New	in	version	2.0.

warnoptions

This	is	an	implementation	detail	of	the	warnings	framework;	do	not	modify
this	value.	Refer	to	the	warnings	module	for	more	information	on	the
warnings	framework.

winver

The	version	number	used	to	form	registry	keys	on	Windows	platforms.	This
is	stored	as	string	resource	1000	in	the	Python	DLL.	The	value	is	normally
the	first	three	characters	of	version.	It	is	provided	in	the	sys	module	for
informational	purposes;	modifying	this	value	has	no	effect	on	the	registry
keys	used	by	Python.	Availability:	Windows.

See	Also:

Module	site:
This	describes	how	to	use	.pth	files	to	extend	sys.path.

Python	Library	Reference
Previous:	3.	Python	Runtime	Services	Up:	3.	Python	Runtime	Services	Next:
3.2	gc

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.1	sys	Up:	3.	Python	Runtime	Services	Next:	3.3	weakref

3.2	gc	--	Garbage	Collector	interface
The	gc	module	is	only	available	if	the	interpreter	was	built	with	the	optional
cyclic	garbage	detector	(enabled	by	default).	If	this	was	not	enabled,	an
ImportError	is	raised	by	attempts	to	import	this	module.

This	module	provides	an	interface	to	the	optional	garbage	collector.	It	provides
the	ability	to	disable	the	collector,	tune	the	collection	frequency,	and	set
debugging	options.	It	also	provides	access	to	unreachable	objects	that	the
collector	found	but	cannot	free.	Since	the	collector	supplements	the	reference
counting	already	used	in	Python,	you	can	disable	the	collector	if	you	are	sure
your	program	does	not	create	reference	cycles.	Automatic	collection	can	be
disabled	by	calling	gc.disable().	To	debug	a	leaking	program	call
gc.set_debug(gc.DEBUG_LEAK).

The	gc	module	provides	the	following	functions:

enable()
Enable	automatic	garbage	collection.

disable()
Disable	automatic	garbage	collection.

isenabled()
Returns	true	if	automatic	collection	is	enabled.

collect()
Run	a	full	collection.	All	generations	are	examined	and	the	number	of
unreachable	objects	found	is	returned.

set_debug(flags)
Set	the	garbage	collection	debugging	flags.	Debugging	information	will	be
written	to	sys.stderr.	See	below	for	a	list	of	debugging	flags	which	can
be	combined	using	bit	operations	to	control	debugging.

get_debug()

Return	the	debugging	flags	currently	set.

get_objects()
Returns	a	list	of	all	objects	tracked	by	the	collector,	excluding	the	list
returned.	New	in	version	2.2.

set_threshold(threshold0[,	threshold1[,	threshold2]])
Set	the	garbage	collection	thresholds	(the	collection	frequency).	Setting
threshold0	to	zero	disables	collection.

The	GC	classifies	objects	into	three	generations	depending	on	how	many
collection	sweeps	they	have	survived.	New	objects	are	placed	in	the
youngest	generation	(generation	0).	If	an	object	survives	a	collection	it	is
moved	into	the	next	older	generation.	Since	generation	2	is	the	oldest
generation,	objects	in	that	generation	remain	there	after	a	collection.	In
order	to	decide	when	to	run,	the	collector	keeps	track	of	the	number	object
allocations	and	deallocations	since	the	last	collection.	When	the	number	of
allocations	minus	the	number	of	deallocations	exceeds	threshold0,
collection	starts.	Initially	only	generation	0	is	examined.	If	generation	0	has
been	examined	more	than	threshold1	times	since	generation	1	has	been
examined,	then	generation	1	is	examined	as	well.	Similarly,	threshold2
controls	the	number	of	collections	of	generation	1	before	collecting
generation	2.

get_threshold()
Return	the	current	collection	thresholds	as	a	tuple	of	(threshold0,
threshold1,	threshold2).

get_referrers(*objs)
Return	the	list	of	objects	that	directly	refer	to	any	of	objs.	This	function	will
only	locate	those	containers	which	support	garbage	collection;	extension
types	which	do	refer	to	other	objects	but	do	not	support	garbage	collection
will	not	be	found.

Note	that	objects	which	have	already	been	dereferenced,	but	which	live	in
cycles	and	have	not	yet	been	collected	by	the	garbage	collector	can	be	listed
among	the	resulting	referrers.	To	get	only	currently	live	objects,	call
collect()	before	calling	get_referrers().

Care	must	be	taken	when	using	objects	returned	by	get_referrers()
because	some	of	them	could	still	be	under	construction	and	hence	in	a
temporarily	invalid	state.	Avoid	using	get_referrers()	for	any
purpose	other	than	debugging.

New	in	version	2.2.

get_referents(*objs)
Return	a	list	of	objects	directly	referred	to	by	any	of	the	arguments.	The
referents	returned	are	those	objects	visited	by	the	arguments'	C-level
tp_traverse	methods	(if	any),	and	may	not	be	all	objects	actually
directly	reachable.	tp_traverse	methods	are	supported	only	by	objects
that	support	garbage	collection,	and	are	only	required	to	visit	objects	that
may	be	involved	in	a	cycle.	So,	for	example,	if	an	integer	is	directly
reachable	from	an	argument,	that	integer	object	may	or	may	not	appear	in
the	result	list.

New	in	version	2.3.

The	following	variable	is	provided	for	read-only	access	(you	can	mutate	its	value
but	should	not	rebind	it):

garbage

A	list	of	objects	which	the	collector	found	to	be	unreachable	but	could	not
be	freed	(uncollectable	objects).	By	default,	this	list	contains	only	objects
with	__del__()	methods.3.1Objects	that	have	__del__()	methods	and
are	part	of	a	reference	cycle	cause	the	entire	reference	cycle	to	be
uncollectable,	including	objects	not	necessarily	in	the	cycle	but	reachable
only	from	it.	Python	doesn't	collect	such	cycles	automatically	because,	in
general,	it	isn't	possible	for	Python	to	guess	a	safe	order	in	which	to	run	the
__del__()	methods.	If	you	know	a	safe	order,	you	can	force	the	issue	by
examining	the	garbage	list,	and	explicitly	breaking	cycles	due	to	your
objects	within	the	list.	Note	that	these	objects	are	kept	alive	even	so	by
virtue	of	being	in	the	garbage	list,	so	they	should	be	removed	from	garbage
too.	For	example,	after	breaking	cycles,	do	del	gc.garbage[:]	to
empty	the	list.	It's	generally	better	to	avoid	the	issue	by	not	creating	cycles
containing	objects	with	__del__()	methods,	and	garbage	can	be
examined	in	that	case	to	verify	that	no	such	cycles	are	being	created.

If	DEBUG_SAVEALL	is	set,	then	all	unreachable	objects	will	be	added	to
this	list	rather	than	freed.

The	following	constants	are	provided	for	use	with	set_debug():

DEBUG_STATS

Print	statistics	during	collection.	This	information	can	be	useful	when
tuning	the	collection	frequency.

DEBUG_COLLECTABLE

Print	information	on	collectable	objects	found.

DEBUG_UNCOLLECTABLE

Print	information	of	uncollectable	objects	found	(objects	which	are	not
reachable	but	cannot	be	freed	by	the	collector).	These	objects	will	be	added
to	the	garbage	list.

DEBUG_INSTANCES

When	DEBUG_COLLECTABLE	or	DEBUG_UNCOLLECTABLE	is	set,	print
information	about	instance	objects	found.

DEBUG_OBJECTS

When	DEBUG_COLLECTABLE	or	DEBUG_UNCOLLECTABLE	is	set,	print
information	about	objects	other	than	instance	objects	found.

DEBUG_SAVEALL

When	set,	all	unreachable	objects	found	will	be	appended	to	garbage	rather
than	being	freed.	This	can	be	useful	for	debugging	a	leaking	program.

DEBUG_LEAK

The	debugging	flags	necessary	for	the	collector	to	print	information	about	a
leaking	program	(equal	to	DEBUG_COLLECTABLE	|
DEBUG_UNCOLLECTABLE	|	DEBUG_INSTANCES	|

DEBUG_OBJECTS	|	DEBUG_SAVEALL).

Footnotes

...	methods.3.1
Prior	to	Python	2.2,	the	list	contained	all	instance	objects	in	unreachable
cycles,	not	only	those	with	__del__()	methods.

Python	Library	Reference
Previous:	3.1	sys	Up:	3.	Python	Runtime	Services	Next:	3.3	weakref

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.2	gc	Up:	3.	Python	Runtime	Services	Next:	3.3.1	Weak	Reference
Objects

3.3	weakref	--	Weak	references
New	in	version	2.1.

The	weakref	module	allows	the	Python	programmer	to	create	weak	references
to	objects.

In	the	following,	the	term	referent	means	the	object	which	is	referred	to	by	a
weak	reference.

A	weak	reference	to	an	object	is	not	enough	to	keep	the	object	alive:	when	the
only	remaining	references	to	a	referent	are	weak	references,	garbage	collection	is
free	to	destroy	the	referent	and	reuse	its	memory	for	something	else.	A	primary
use	for	weak	references	is	to	implement	caches	or	mappings	holding	large
objects,	where	it's	desired	that	a	large	object	not	be	kept	alive	solely	because	it
appears	in	a	cache	or	mapping.	For	example,	if	you	have	a	number	of	large
binary	image	objects,	you	may	wish	to	associate	a	name	with	each.	If	you	used	a
Python	dictionary	to	map	names	to	images,	or	images	to	names,	the	image
objects	would	remain	alive	just	because	they	appeared	as	values	or	keys	in	the
dictionaries.	The	WeakKeyDictionary	and	WeakValueDictionary
classes	supplied	by	the	weakref	module	are	an	alternative,	using	weak
references	to	construct	mappings	that	don't	keep	objects	alive	solely	because
they	appear	in	the	mapping	objects.	If,	for	example,	an	image	object	is	a	value	in
a	WeakValueDictionary,	then	when	the	last	remaining	references	to	that
image	object	are	the	weak	references	held	by	weak	mappings,	garbage	collection
can	reclaim	the	object,	and	its	corresponding	entries	in	weak	mappings	are
simply	deleted.

WeakKeyDictionary	and	WeakValueDictionary	use	weak	references
in	their	implementation,	setting	up	callback	functions	on	the	weak	references
that	notify	the	weak	dictionaries	when	a	key	or	value	has	been	reclaimed	by
garbage	collection.	Most	programs	should	find	that	using	one	of	these	weak
dictionary	types	is	all	they	need	-	it's	not	usually	necessary	to	create	your	own
weak	references	directly.	The	low-level	machinery	used	by	the	weak	dictionary
implementations	is	exposed	by	the	weakref	module	for	the	benefit	of
advanced	uses.

Not	all	objects	can	be	weakly	referenced;	those	objects	which	can	include	class
instances,	functions	written	in	Python	(but	not	in	C),	methods	(both	bound	and
unbound),	sets,	frozensets,	file	objects,	generators,	type	objects,	DBcursor
objects	from	the	bsddb	module,	sockets,	arrays,	deques,	and	regular	expression
pattern	objects.	Changed	in	version	2.4:	Added	support	for	files,	sockets,	arrays,
and	patterns.

Several	builtin	types	such	as	list	and	dict	do	not	directly	support	weak
references	but	can	add	support	through	subclassing:

class	Dict(dict):

				pass

obj	=	Dict(red=1,	green=2,	blue=3)			#	this	object	is	weak	referencable

Extension	types	can	easily	be	made	to	support	weak	references;	see	section
3.3.3,	``Weak	References	in	Extension	Types,''	for	more	information.

class	ref(object[,	callback])
Return	a	weak	reference	to	object.	The	original	object	can	be	retrieved	by
calling	the	reference	object	if	the	referent	is	still	alive;	if	the	referent	is	no
longer	alive,	calling	the	reference	object	will	cause	None	to	be	returned.	If
callback	is	provided	and	not	None,	it	will	be	called	when	the	object	is
about	to	be	finalized;	the	weak	reference	object	will	be	passed	as	the	only
parameter	to	the	callback;	the	referent	will	no	longer	be	available.

It	is	allowable	for	many	weak	references	to	be	constructed	for	the	same
object.	Callbacks	registered	for	each	weak	reference	will	be	called	from	the
most	recently	registered	callback	to	the	oldest	registered	callback.

Exceptions	raised	by	the	callback	will	be	noted	on	the	standard	error	output,
but	cannot	be	propagated;	they	are	handled	in	exactly	the	same	way	as
exceptions	raised	from	an	object's	__del__()	method.

Weak	references	are	hashable	if	the	object	is	hashable.	They	will	maintain
their	hash	value	even	after	the	object	was	deleted.	If	hash()	is	called	the
first	time	only	after	the	object	was	deleted,	the	call	will	raise	TypeError.

Weak	references	support	tests	for	equality,	but	not	ordering.	If	the	referents
are	still	alive,	two	references	have	the	same	equality	relationship	as	their

referents	(regardless	of	the	callback).	If	either	referent	has	been	deleted,	the
references	are	equal	only	if	the	reference	objects	are	the	same	object.

Changed	in	version	2.4:	This	is	now	a	subclassable	type	rather	than	a
factory	function;	it	derives	from	object.

proxy(object[,	callback])
Return	a	proxy	to	object	which	uses	a	weak	reference.	This	supports	use	of
the	proxy	in	most	contexts	instead	of	requiring	the	explicit	dereferencing
used	with	weak	reference	objects.	The	returned	object	will	have	a	type	of
either	ProxyType	or	CallableProxyType,	depending	on	whether
object	is	callable.	Proxy	objects	are	not	hashable	regardless	of	the	referent;
this	avoids	a	number	of	problems	related	to	their	fundamentally	mutable
nature,	and	prevent	their	use	as	dictionary	keys.	callback	is	the	same	as	the
parameter	of	the	same	name	to	the	ref()	function.

getweakrefcount(object)
Return	the	number	of	weak	references	and	proxies	which	refer	to	object.

getweakrefs(object)
Return	a	list	of	all	weak	reference	and	proxy	objects	which	refer	to	object.

class	WeakKeyDictionary([dict])
Mapping	class	that	references	keys	weakly.	Entries	in	the	dictionary	will	be
discarded	when	there	is	no	longer	a	strong	reference	to	the	key.	This	can	be
used	to	associate	additional	data	with	an	object	owned	by	other	parts	of	an
application	without	adding	attributes	to	those	objects.	This	can	be
especially	useful	with	objects	that	override	attribute	accesses.

Note:	Caution:	Because	a	WeakKeyDictionary	is	built	on	top	of	a
Python	dictionary,	it	must	not	change	size	when	iterating	over	it.	This	can
be	difficult	to	ensure	for	a	WeakKeyDictionary	because	actions
performed	by	the	program	during	iteration	may	cause	items	in	the
dictionary	to	vanish	"by	magic"	(as	a	side	effect	of	garbage	collection).

class	WeakValueDictionary([dict])
Mapping	class	that	references	values	weakly.	Entries	in	the	dictionary	will

be	discarded	when	no	strong	reference	to	the	value	exists	any	more.

Note:	Caution:	Because	a	WeakValueDictionary	is	built	on	top	of	a
Python	dictionary,	it	must	not	change	size	when	iterating	over	it.	This	can
be	difficult	to	ensure	for	a	WeakValueDictionary	because	actions
performed	by	the	program	during	iteration	may	cause	items	in	the
dictionary	to	vanish	"by	magic"	(as	a	side	effect	of	garbage	collection).

ReferenceType

The	type	object	for	weak	references	objects.

ProxyType

The	type	object	for	proxies	of	objects	which	are	not	callable.

CallableProxyType

The	type	object	for	proxies	of	callable	objects.

ProxyTypes

Sequence	containing	all	the	type	objects	for	proxies.	This	can	make	it
simpler	to	test	if	an	object	is	a	proxy	without	being	dependent	on	naming
both	proxy	types.

exception	ReferenceError
Exception	raised	when	a	proxy	object	is	used	but	the	underlying	object	has
been	collected.	This	is	the	same	as	the	standard	ReferenceError
exception.

See	Also:

PEP	0205,	Weak	References
The	proposal	and	rationale	for	this	feature,	including	links	to	earlier
implementations	and	information	about	similar	features	in	other
languages.

Subsections

3.3.1	Weak	Reference	Objects

http://www.python.org/peps/pep-0205.html

3.3.2	Example
3.3.3	Weak	References	in	Extension	Types

Python	Library	Reference
Previous:	3.2	gc	Up:	3.	Python	Runtime	Services	Next:	3.3.1	Weak	Reference
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3	weakref	Up:	3.3	weakref	Next:	3.3.2	Example

3.3.1	Weak	Reference	Objects
Weak	reference	objects	have	no	attributes	or	methods,	but	do	allow	the	referent
to	be	obtained,	if	it	still	exists,	by	calling	it:

>>>	import	weakref

>>>	class	Object:

...					pass

...

>>>	o	=	Object()

>>>	r	=	weakref.ref(o)

>>>	o2	=	r()

>>>	o	is	o2

True

If	the	referent	no	longer	exists,	calling	the	reference	object	returns	None:

>>>	del	o,	o2

>>>	print	r()

None

Testing	that	a	weak	reference	object	is	still	live	should	be	done	using	the
expression	ref()	is	not	None.	Normally,	application	code	that	needs	to	use
a	reference	object	should	follow	this	pattern:

#	r	is	a	weak	reference	object

o	=	r()

if	o	is	None:

				#	referent	has	been	garbage	collected

				print	"Object	has	been	allocated;	can't	frobnicate."

else:

				print	"Object	is	still	live!"

				o.do_something_useful()

Using	a	separate	test	for	``liveness''	creates	race	conditions	in	threaded
applications;	another	thread	can	cause	a	weak	reference	to	become	invalidated
before	the	weak	reference	is	called;	the	idiom	shown	above	is	safe	in	threaded
applications	as	well	as	single-threaded	applications.

Specialized	versions	of	ref	objects	can	be	created	through	subclassing.	This	is
used	in	the	implementation	of	the	WeakValueDictionary	to	reduce	the
memory	overhead	for	each	entry	in	the	mapping.	This	may	be	most	useful	to
associate	additional	information	with	a	reference,	but	could	also	be	used	to	insert

additional	processing	on	calls	to	retrieve	the	referent.

This	example	shows	how	a	subclass	of	ref	can	be	used	to	store	additional
information	about	an	object	and	affect	the	value	that's	returned	when	the	referent
is	accessed:

import	weakref

class	ExtendedRef(weakref.ref):

				def	__new__(cls,	ob,	callback=None,	**annotations):

								weakref.ref.__new__(cls,	ob,	callback)

								self.__counter	=	0

				def	__init__(self,	ob,	callback=None,	**annotations):

								super(ExtendedRef,	self).__init__(ob,	callback)

								for	k,	v	in	annotations:

												setattr(self,	k,	v)

				def	__call__(self):

								"""Return	a	pair	containing	the	referent	and	the	number	of

								times	the	reference	has	been	called.

								"""

								ob	=	super(ExtendedRef,	self)()

								if	ob	is	not	None:

												self.__counter	+=	1

												ob	=	(ob,	self.__counter)

								return	ob

Python	Library	Reference
Previous:	3.3	weakref	Up:	3.3	weakref	Next:	3.3.2	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3.1	Weak	Reference	Objects	Up:	3.3	weakref	Next:	3.3.3	Weak
References	in

3.3.2	Example
This	simple	example	shows	how	an	application	can	use	objects	IDs	to	retrieve
objects	that	it	has	seen	before.	The	IDs	of	the	objects	can	then	be	used	in	other
data	structures	without	forcing	the	objects	to	remain	alive,	but	the	objects	can
still	be	retrieved	by	ID	if	they	do.

import	weakref

_id2obj_dict	=	weakref.WeakValueDictionary()

def	remember(obj):

				oid	=	id(obj)

				_id2obj_dict[oid]	=	obj

				return	oid

def	id2obj(oid):

				return	_id2obj_dict[oid]

Python	Library	Reference
Previous:	3.3.1	Weak	Reference	Objects	Up:	3.3	weakref	Next:	3.3.3	Weak
References	in

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3.2	Example	Up:	3.3	weakref	Next:	3.4	fpectl

3.3.3	Weak	References	in	Extension	Types
One	of	the	goals	of	the	implementation	is	to	allow	any	type	to	participate	in	the
weak	reference	mechanism	without	incurring	the	overhead	on	those	objects
which	do	not	benefit	by	weak	referencing	(such	as	numbers).

For	an	object	to	be	weakly	referencable,	the	extension	must	include	a
PyObject*	field	in	the	instance	structure	for	the	use	of	the	weak	reference
mechanism;	it	must	be	initialized	to	NULL	by	the	object's	constructor.	It	must
also	set	the	tp_weaklistoffset	field	of	the	corresponding	type	object	to
the	offset	of	the	field.	Also,	it	needs	to	add	Py_TPFLAGS_HAVE_WEAKREFS
to	the	tp_flags	slot.	For	example,	the	instance	type	is	defined	with	the	following
structure:

typedef	struct	{

				PyObject_HEAD

				PyClassObject	*in_class;							/*	The	class	object	*/

				PyObject						*in_dict;								/*	A	dictionary	*/

				PyObject						*in_weakreflist;	/*	List	of	weak	references	*/

}	PyInstanceObject;

The	statically-declared	type	object	for	instances	is	defined	this	way:

PyTypeObject	PyInstance_Type	=	{

				PyObject_HEAD_INIT(&PyType_Type)

				0,

				"module.instance",

				/*	Lots	of	stuff	omitted	for	brevity...	*/

				Py_TPFLAGS_DEFAULT	|	Py_TPFLAGS_HAVE_WEAKREFS			/*	tp_flags	*/

				0,																																										/*	tp_doc	*/

				0,																																										/*	tp_traverse	*/

				0,																																										/*	tp_clear	*/

				0,																																										/*	tp_richcompare	*/

				offsetof(PyInstanceObject,	in_weakreflist),	/*	tp_weaklistoffset	*/

};

The	type	constructor	is	responsible	for	initializing	the	weak	reference	list	to
NULL:

static	PyObject	*

instance_new()	{

				/*	Other	initialization	stuff	omitted	for	brevity	*/

				self->in_weakreflist	=	NULL;

				return	(PyObject	*)	self;

}

The	only	further	addition	is	that	the	destructor	needs	to	call	the	weak	reference
manager	to	clear	any	weak	references.	This	should	be	done	before	any	other
parts	of	the	destruction	have	occurred,	but	is	only	required	if	the	weak	reference
list	is	non-NULL:

static	void

instance_dealloc(PyInstanceObject	*inst)

{

				/*	Allocate	temporaries	if	needed,	but	do	not	begin

							destruction	just	yet.

					*/

				if	(inst->in_weakreflist	!=	NULL)

								PyObject_ClearWeakRefs((PyObject	*)	inst);

				/*	Proceed	with	object	destruction	normally.	*/

}

Python	Library	Reference
Previous:	3.3.2	Example	Up:	3.3	weakref	Next:	3.4	fpectl

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3.3	Weak	References	in	Up:	3.	Python	Runtime	Services	Next:
3.4.1	Example

3.4	fpectl	--	Floating	point
exception	control
Availability:	Unix.

Most	computers	carry	out	floating	point	operations	in	conformance	with	the	so-
called	IEEE-754	standard.	On	any	real	computer,	some	floating	point	operations
produce	results	that	cannot	be	expressed	as	a	normal	floating	point	value.	For
example,	try

>>>	import	math

>>>	math.exp(1000)

inf

>>>	math.exp(1000)	/	math.exp(1000)

nan

(The	example	above	will	work	on	many	platforms.	DEC	Alpha	may	be	one
exception.)	"Inf"	is	a	special,	non-numeric	value	in	IEEE-754	that	stands	for
"infinity",	and	"nan"	means	"not	a	number."	Note	that,	other	than	the	non-
numeric	results,	nothing	special	happened	when	you	asked	Python	to	carry	out
those	calculations.	That	is	in	fact	the	default	behaviour	prescribed	in	the	IEEE-
754	standard,	and	if	it	works	for	you,	stop	reading	now.

In	some	circumstances,	it	would	be	better	to	raise	an	exception	and	stop
processing	at	the	point	where	the	faulty	operation	was	attempted.	The	fpectl
module	is	for	use	in	that	situation.	It	provides	control	over	floating	point	units
from	several	hardware	manufacturers,	allowing	the	user	to	turn	on	the	generation
of	SIGFPE	whenever	any	of	the	IEEE-754	exceptions	Division	by	Zero,
Overflow,	or	Invalid	Operation	occurs.	In	tandem	with	a	pair	of	wrapper	macros
that	are	inserted	into	the	C	code	comprising	your	python	system,	SIGFPE	is
trapped	and	converted	into	the	Python	FloatingPointError	exception.

The	fpectl	module	defines	the	following	functions	and	may	raise	the	given
exception:

turnon_sigfpe()
Turn	on	the	generation	of	SIGFPE,	and	set	up	an	appropriate	signal

handler.

turnoff_sigfpe()
Reset	default	handling	of	floating	point	exceptions.

exception	FloatingPointError
After	turnon_sigfpe()	has	been	executed,	a	floating	point	operation
that	raises	one	of	the	IEEE-754	exceptions	Division	by	Zero,	Overflow,	or
Invalid	operation	will	in	turn	raise	this	standard	Python	exception.

Subsections

3.4.1	Example
3.4.2	Limitations	and	other	considerations

Python	Library	Reference
Previous:	3.3.3	Weak	References	in	Up:	3.	Python	Runtime	Services	Next:
3.4.1	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.4	fpectl	Up:	3.4	fpectl	Next:	3.4.2	Limitations	and	other

3.4.1	Example
The	following	example	demonstrates	how	to	start	up	and	test	operation	of	the
fpectl	module.

>>>	import	fpectl

>>>	import	fpetest

>>>	fpectl.turnon_sigfpe()

>>>	fpetest.test()

overflow								PASS

FloatingPointError:	Overflow

div	by	0								PASS

FloatingPointError:	Division	by	zero

		[more	output	from	test	elided]

>>>	import	math

>>>	math.exp(1000)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

FloatingPointError:	in	math_1

Python	Library	Reference
Previous:	3.4	fpectl	Up:	3.4	fpectl	Next:	3.4.2	Limitations	and	other

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.4.1	Example	Up:	3.4	fpectl	Next:	3.5	atexit

3.4.2	Limitations	and	other	considerations
Setting	up	a	given	processor	to	trap	IEEE-754	floating	point	errors	currently
requires	custom	code	on	a	per-architecture	basis.	You	may	have	to	modify
fpectl	to	control	your	particular	hardware.

Conversion	of	an	IEEE-754	exception	to	a	Python	exception	requires	that	the
wrapper	macros	PyFPE_START_PROTECT	and	PyFPE_END_PROTECT	be
inserted	into	your	code	in	an	appropriate	fashion.	Python	itself	has	been
modified	to	support	the	fpectl	module,	but	many	other	codes	of	interest	to
numerical	analysts	have	not.

The	fpectl	module	is	not	thread-safe.

See	Also:

Some	files	in	the	source	distribution	may	be	interesting	in	learning	more
about	how	this	module	operates.	The	include	file	Include/pyfpe.h
discusses	the	implementation	of	this	module	at	some	length.
Modules/fpetestmodule.c	gives	several	examples	of	use.	Many	additional
examples	can	be	found	in	Objects/floatobject.c.

Python	Library	Reference
Previous:	3.4.1	Example	Up:	3.4	fpectl	Next:	3.5	atexit

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.4.2	Limitations	and	other	Up:	3.	Python	Runtime	Services	Next:
3.5.1	atexit	Example

3.5	atexit	--	Exit	handlers
New	in	version	2.0.

The	atexit	module	defines	a	single	function	to	register	cleanup	functions.
Functions	thus	registered	are	automatically	executed	upon	normal	interpreter
termination.

Note:	the	functions	registered	via	this	module	are	not	called	when	the	program	is
killed	by	a	signal,	when	a	Python	fatal	internal	error	is	detected,	or	when
os._exit()	is	called.

This	is	an	alternate	interface	to	the	functionality	provided	by	the
sys.exitfunc	variable.

Note:	This	module	is	unlikely	to	work	correctly	when	used	with	other	code	that
sets	sys.exitfunc.	In	particular,	other	core	Python	modules	are	free	to	use
atexit	without	the	programmer's	knowledge.	Authors	who	use
sys.exitfunc	should	convert	their	code	to	use	atexit	instead.	The
simplest	way	to	convert	code	that	sets	sys.exitfunc	is	to	import	atexit
and	register	the	function	that	had	been	bound	to	sys.exitfunc.

register(func[,	*args[,	**kargs]])
Register	func	as	a	function	to	be	executed	at	termination.	Any	optional
arguments	that	are	to	be	passed	to	func	must	be	passed	as	arguments	to
register().

At	normal	program	termination	(for	instance,	if	sys.exit()	is	called	or
the	main	module's	execution	completes),	all	functions	registered	are	called
in	last	in,	first	out	order.	The	assumption	is	that	lower	level	modules	will
normally	be	imported	before	higher	level	modules	and	thus	must	be	cleaned
up	later.

If	an	exception	is	raised	during	execution	of	the	exit	handlers,	a	traceback	is
printed	(unless	SystemExit	is	raised)	and	the	exception	information	is
saved.	After	all	exit	handlers	have	had	a	chance	to	run	the	last	exception	to

be	raised	is	re-raised.

See	Also:

Module	readline:
Useful	example	of	atexit	to	read	and	write	readline	history
files.

Subsections

3.5.1	atexit	Example

Python	Library	Reference
Previous:	3.4.2	Limitations	and	other	Up:	3.	Python	Runtime	Services	Next:
3.5.1	atexit	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.5	atexit	Up:	3.5	atexit	Next:	3.6	types

3.5.1	atexit	Example

The	following	simple	example	demonstrates	how	a	module	can	initialize	a
counter	from	a	file	when	it	is	imported	and	save	the	counter's	updated	value
automatically	when	the	program	terminates	without	relying	on	the	application
making	an	explicit	call	into	this	module	at	termination.

try:

				_count	=	int(open("/tmp/counter").read())

except	IOError:

				_count	=	0

def	incrcounter(n):

				global	_count

				_count	=	_count	+	n

def	savecounter():

				open("/tmp/counter",	"w").write("%d"	%	_count)

import	atexit

atexit.register(savecounter)

Positional	and	keyword	arguments	may	also	be	passed	to	register()	to	be
passed	along	to	the	registered	function	when	it	is	called:

def	goodbye(name,	adjective):

				print	'Goodbye,	%s,	it	was	%s	to	meet	you.'	%	(name,	adjective)

import	atexit

atexit.register(goodbye,	'Donny',	'nice')

#	or:

atexit.register(goodbye,	adjective='nice',	name='Donny')

Python	Library	Reference
Previous:	3.5	atexit	Up:	3.5	atexit	Next:	3.6	types

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.5.1	atexit	Example	Up:	3.	Python	Runtime	Services	Next:	3.7
UserDict

3.6	types	--	Names	for	built-in	types
This	module	defines	names	for	some	object	types	that	are	used	by	the	standard
Python	interpreter,	but	not	for	the	types	defined	by	various	extension	modules.
Also,	it	does	not	include	some	of	the	types	that	arise	during	processing	such	the
listiterator	type.	It	is	safe	to	use	"from	types	import	*"	--	the
module	does	not	export	any	names	besides	the	ones	listed	here.	New	names
exported	by	future	versions	of	this	module	will	all	end	in	"Type".

Typical	use	is	for	functions	that	do	different	things	depending	on	their	argument
types,	like	the	following:

from	types	import	*

def	delete(mylist,	item):

				if	type(item)	is	IntType:

							del	mylist[item]

				else:

							mylist.remove(item)

Starting	in	Python	2.2,	built-in	factory	functions	such	as	int()	and	str()	are
also	names	for	the	corresponding	types.	This	is	now	the	preferred	way	to	access
the	type	instead	of	using	the	types	module.	Accordingly,	the	example	above
should	be	written	as	follows:

def	delete(mylist,	item):

				if	isinstance(item,	int):

							del	mylist[item]

				else:

							mylist.remove(item)

The	module	defines	the	following	names:

NoneType

The	type	of	None.

TypeType

The	type	of	type	objects	(such	as	returned	by	type()).

BooleanType

The	type	of	the	bool	values	True	and	False;	this	is	an	alias	of	the	built-

in	bool()	function.	New	in	version	2.3.

IntType

The	type	of	integers	(e.g.	1).

LongType

The	type	of	long	integers	(e.g.	1L).

FloatType

The	type	of	floating	point	numbers	(e.g.	1.0).

ComplexType

The	type	of	complex	numbers	(e.g.	1.0j).	This	is	not	defined	if	Python
was	built	without	complex	number	support.

StringType

The	type	of	character	strings	(e.g.	'Spam').

UnicodeType

The	type	of	Unicode	character	strings	(e.g.	u'Spam').	This	is	not	defined
if	Python	was	built	without	Unicode	support.

TupleType

The	type	of	tuples	(e.g.	(1,	2,	3,	'Spam')).

ListType

The	type	of	lists	(e.g.	[0,	1,	2,	3]).

DictType

The	type	of	dictionaries	(e.g.	{'Bacon':	1,	'Ham':	0}).

DictionaryType

An	alternate	name	for	DictType.

FunctionType

The	type	of	user-defined	functions	and	lambdas.

LambdaType

An	alternate	name	for	FunctionType.

GeneratorType

The	type	of	generator-iterator	objects,	produced	by	calling	a	generator
function.	New	in	version	2.2.

CodeType

The	type	for	code	objects	such	as	returned	by	compile().

ClassType

The	type	of	user-defined	classes.

InstanceType

The	type	of	instances	of	user-defined	classes.

MethodType

The	type	of	methods	of	user-defined	class	instances.

UnboundMethodType

An	alternate	name	for	MethodType.

BuiltinFunctionType

The	type	of	built-in	functions	like	len()	or	sys.exit().

BuiltinMethodType

An	alternate	name	for	BuiltinFunction.

ModuleType

The	type	of	modules.

FileType

The	type	of	open	file	objects	such	as	sys.stdout.

XRangeType

The	type	of	range	objects	returned	by	xrange().

SliceType

The	type	of	objects	returned	by	slice().

EllipsisType

The	type	of	Ellipsis.

TracebackType

The	type	of	traceback	objects	such	as	found	in	sys.exc_traceback.

FrameType

The	type	of	frame	objects	such	as	found	in	tb.tb_frame	if	tb	is	a
traceback	object.

BufferType

The	type	of	buffer	objects	created	by	the	buffer()	function.

StringTypes

A	sequence	containing	StringType	and	UnicodeType	used	to
facilitate	easier	checking	for	any	string	object.	Using	this	is	more	portable
than	using	a	sequence	of	the	two	string	types	constructed	elsewhere	since	it
only	contains	UnicodeType	if	it	has	been	built	in	the	running	version	of
Python.	For	example:	isinstance(s,	types.StringTypes).	New
in	version	2.2.

Python	Library	Reference
Previous:	3.5.1	atexit	Example	Up:	3.	Python	Runtime	Services	Next:	3.7
UserDict

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.6	types	Up:	3.	Python	Runtime	Services	Next:	3.8	UserList

3.7	UserDict	--	Class	wrapper	for
dictionary	objects
Note:	This	module	is	available	for	backward	compatibility	only.	If	you	are
writing	code	that	does	not	need	to	work	with	versions	of	Python	earlier	than
Python	2.2,	please	consider	subclassing	directly	from	the	built-in	dict	type.

This	module	defines	a	class	that	acts	as	a	wrapper	around	dictionary	objects.	It	is
a	useful	base	class	for	your	own	dictionary-like	classes,	which	can	inherit	from
them	and	override	existing	methods	or	add	new	ones.	In	this	way	one	can	add
new	behaviors	to	dictionaries.

The	module	also	defines	a	mixin	defining	all	dictionary	methods	for	classes	that
already	have	a	minimum	mapping	interface.	This	greatly	simplifies	writing
classes	that	need	to	be	substitutable	for	dictionaries	(such	as	the	shelve	module).

The	UserDict	module	defines	the	UserDict	class	and	DictMixin:

class	UserDict([initialdata])
Class	that	simulates	a	dictionary.	The	instance's	contents	are	kept	in	a
regular	dictionary,	which	is	accessible	via	the	data	attribute	of
UserDict	instances.	If	initialdata	is	provided,	data	is	initialized	with	its
contents;	note	that	a	reference	to	initialdata	will	not	be	kept,	allowing	it	be
used	for	other	purposes.

In	addition	to	supporting	the	methods	and	operations	of	mappings	(see	section
2.3.8),	UserDict	instances	provide	the	following	attribute:

data

A	real	dictionary	used	to	store	the	contents	of	the	UserDict	class.

class	DictMixin()
Mixin	defining	all	dictionary	methods	for	classes	that	already	have	a
minimum	dictionary	interface	including	__getitem__(),
__setitem__(),	__delitem__(),	and	keys().

This	mixin	should	be	used	as	a	superclass.	Adding	each	of	the	above
methods	adds	progressively	more	functionality.	For	instance,	defining	all
but	__delitem__	will	preclude	only	pop	and	popitem	from	the	full
interface.

In	addition	to	the	four	base	methods,	progessively	more	efficiency	comes
with	defining	__contains__(),	__iter__(),	and	iteritems().

Since	the	mixin	has	no	knowledge	of	the	subclass	constructor,	it	does	not
define	__init__()	or	copy().

Python	Library	Reference
Previous:	3.6	types	Up:	3.	Python	Runtime	Services	Next:	3.8	UserList

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.7	UserDict	Up:	3.	Python	Runtime	Services	Next:	3.9	UserString

3.8	UserList	--	Class	wrapper	for
list	objects
Note:	This	module	is	available	for	backward	compatibility	only.	If	you	are
writing	code	that	does	not	need	to	work	with	versions	of	Python	earlier	than
Python	2.2,	please	consider	subclassing	directly	from	the	built-in	list	type.

This	module	defines	a	class	that	acts	as	a	wrapper	around	list	objects.	It	is	a
useful	base	class	for	your	own	list-like	classes,	which	can	inherit	from	them	and
override	existing	methods	or	add	new	ones.	In	this	way	one	can	add	new
behaviors	to	lists.

The	UserList	module	defines	the	UserList	class:

class	UserList([list])
Class	that	simulates	a	list.	The	instance's	contents	are	kept	in	a	regular	list,
which	is	accessible	via	the	data	attribute	of	UserList	instances.	The
instance's	contents	are	initially	set	to	a	copy	of	list,	defaulting	to	the	empty
list	[].	list	can	be	either	a	regular	Python	list,	or	an	instance	of	UserList
(or	a	subclass).

In	addition	to	supporting	the	methods	and	operations	of	mutable	sequences	(see
section	2.3.6),	UserList	instances	provide	the	following	attribute:

data

A	real	Python	list	object	used	to	store	the	contents	of	the	UserList	class.

Subclassing	requirements:	Subclasses	of	UserList	are	expect	to	offer	a
constructor	which	can	be	called	with	either	no	arguments	or	one	argument.	List
operations	which	return	a	new	sequence	attempt	to	create	an	instance	of	the
actual	implementation	class.	To	do	so,	it	assumes	that	the	constructor	can	be
called	with	a	single	parameter,	which	is	a	sequence	object	used	as	a	data	source.

If	a	derived	class	does	not	wish	to	comply	with	this	requirement,	all	of	the
special	methods	supported	by	this	class	will	need	to	be	overridden;	please
consult	the	sources	for	information	about	the	methods	which	need	to	be	provided

in	that	case.

Changed	in	version	2.0:	Python	versions	1.5.2	and	1.6	also	required	that	the
constructor	be	callable	with	no	parameters,	and	offer	a	mutable	data	attribute.
Earlier	versions	of	Python	did	not	attempt	to	create	instances	of	the	derived
class.

Python	Library	Reference
Previous:	3.7	UserDict	Up:	3.	Python	Runtime	Services	Next:	3.9	UserString

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.8	UserList	Up:	3.	Python	Runtime	Services	Next:	3.10	operator

3.9	UserString	--	Class	wrapper	for
string	objects
Note:	This	UserString	class	from	this	module	is	available	for	backward
compatibility	only.	If	you	are	writing	code	that	does	not	need	to	work	with
versions	of	Python	earlier	than	Python	2.2,	please	consider	subclassing	directly
from	the	built-in	str	type	instead	of	using	UserString	(there	is	no	built-in
equivalent	to	MutableString).

This	module	defines	a	class	that	acts	as	a	wrapper	around	string	objects.	It	is	a
useful	base	class	for	your	own	string-like	classes,	which	can	inherit	from	them
and	override	existing	methods	or	add	new	ones.	In	this	way	one	can	add	new
behaviors	to	strings.

It	should	be	noted	that	these	classes	are	highly	inefficient	compared	to	real	string
or	Unicode	objects;	this	is	especially	the	case	for	MutableString.

The	UserString	module	defines	the	following	classes:

class	UserString([sequence])
Class	that	simulates	a	string	or	a	Unicode	string	object.	The	instance's
content	is	kept	in	a	regular	string	or	Unicode	string	object,	which	is
accessible	via	the	data	attribute	of	UserString	instances.	The
instance's	contents	are	initially	set	to	a	copy	of	sequence.	sequence	can	be
either	a	regular	Python	string	or	Unicode	string,	an	instance	of
UserString	(or	a	subclass)	or	an	arbitrary	sequence	which	can	be
converted	into	a	string	using	the	built-in	str()	function.

class	MutableString([sequence])
This	class	is	derived	from	the	UserString	above	and	redefines	strings	to
be	mutable.	Mutable	strings	can't	be	used	as	dictionary	keys,	because
dictionaries	require	immutable	objects	as	keys.	The	main	intention	of	this
class	is	to	serve	as	an	educational	example	for	inheritance	and	necessity	to
remove	(override)	the	__hash__()	method	in	order	to	trap	attempts	to
use	a	mutable	object	as	dictionary	key,	which	would	be	otherwise	very	error

prone	and	hard	to	track	down.

In	addition	to	supporting	the	methods	and	operations	of	string	and	Unicode
objects	(see	section	2.3.6,	``String	Methods''),	UserString	instances	provide
the	following	attribute:

data

A	real	Python	string	or	Unicode	object	used	to	store	the	content	of	the
UserString	class.

Python	Library	Reference
Previous:	3.8	UserList	Up:	3.	Python	Runtime	Services	Next:	3.10	operator

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.9	UserString	Up:	3.	Python	Runtime	Services	Next:	3.10.1
Mapping	Operators	to

3.10	operator	--	Standard	operators
as	functions.
The	operator	module	exports	a	set	of	functions	implemented	in	C
corresponding	to	the	intrinsic	operators	of	Python.	For	example,
operator.add(x,	y)	is	equivalent	to	the	expression	x+y.	The	function
names	are	those	used	for	special	class	methods;	variants	without	leading	and
trailing	"__"	are	also	provided	for	convenience.

The	functions	fall	into	categories	that	perform	object	comparisons,	logical
operations,	mathematical	operations,	sequence	operations,	and	abstract	type
tests.

The	object	comparison	functions	are	useful	for	all	objects,	and	are	named	after
the	rich	comparison	operators	they	support:

lt(a,	b)
le(a,	b)
eq(a,	b)
ne(a,	b)
ge(a,	b)
gt(a,	b)
__lt__(a,	b)
__le__(a,	b)
__eq__(a,	b)
__ne__(a,	b)
__ge__(a,	b)
__gt__(a,	b)

Perform	``rich	comparisons''	between	a	and	b.	Specifically,	lt(a,	b)	is
equivalent	to	a	<	b,	le(a,	b)	is	equivalent	to	a	<=	b,	eq(a,	b)	is
equivalent	to	a	==	b,	ne(a,	b)	is	equivalent	to	a	!=	b,	gt(a,	b)	is
equivalent	to	a	>	b	and	ge(a,	b)	is	equivalent	to	a	>=	b.	Note	that

unlike	the	built-in	cmp(),	these	functions	can	return	any	value,	which	may
or	may	not	be	interpretable	as	a	Boolean	value.	See	the	Python	Reference
Manual	for	more	informations	about	rich	comparisons.	New	in	version	2.2.

The	logical	operations	are	also	generally	applicable	to	all	objects,	and	support
truth	tests,	identity	tests,	and	boolean	operations:

not_(o)
__not__(o)

Return	the	outcome	of	not	o.	(Note	that	there	is	no	__not__()	method
for	object	instances;	only	the	interpreter	core	defines	this	operation.	The
result	is	affected	by	the	__nonzero__()	and	__len__()	methods.)

truth(o)
Return	True	if	o	is	true,	and	False	otherwise.	This	is	equivalent	to	using
the	bool	constructor.

is_(a,	b)
Return	a	is	b.	Tests	object	identity.	New	in	version	2.3.

is_not(a,	b)
Return	a	is	not	b.	Tests	object	identity.	New	in	version	2.3.

The	mathematical	and	bitwise	operations	are	the	most	numerous:

abs(o)
__abs__(o)

Return	the	absolute	value	of	o.

add(a,	b)
__add__(a,	b)

Return	a	+	b,	for	a	and	b	numbers.

and_(a,	b)
__and__(a,	b)

Return	the	bitwise	and	of	a	and	b.

div(a,	b)
__div__(a,	b)

Return	a	/	b	when	__future__.division	is	not	in	effect.	This	is	also
known	as	``classic''	division.

floordiv(a,	b)
__floordiv__(a,	b)

Return	a	//	b.	New	in	version	2.2.

inv(o)
invert(o)
__inv__(o)
__invert__(o)

Return	the	bitwise	inverse	of	the	number	o.	This	is	equivalent	to	~o.	The
names	invert()	and	__invert__()	were	added	in	Python	2.0.

lshift(a,	b)
__lshift__(a,	b)

Return	a	shifted	left	by	b.

mod(a,	b)
__mod__(a,	b)

Return	a	%	b.

mul(a,	b)
__mul__(a,	b)

Return	a	*	b,	for	a	and	b	numbers.

neg(o)
__neg__(o)

Return	o	negated.

or_(a,	b)
__or__(a,	b)

Return	the	bitwise	or	of	a	and	b.

pos(o)
__pos__(o)

Return	o	positive.

pow(a,	b)
__pow__(a,	b)

Return	a	**	b,	for	a	and	b	numbers.	New	in	version	2.3.

rshift(a,	b)
__rshift__(a,	b)

Return	a	shifted	right	by	b.

sub(a,	b)
__sub__(a,	b)

Return	a	-	b.

truediv(a,	b)
__truediv__(a,	b)

Return	a	/	b	when	__future__.division	is	in	effect.	This	is	also
known	as	division.	New	in	version	2.2.

xor(a,	b)
__xor__(a,	b)

Return	the	bitwise	exclusive	or	of	a	and	b.

Operations	which	work	with	sequences	include:

concat(a,	b)
__concat__(a,	b)

Return	a	+	b	for	a	and	b	sequences.

contains(a,	b)
__contains__(a,	b)

Return	the	outcome	of	the	test	b	in	a.	Note	the	reversed	operands.	The
name	__contains__()	was	added	in	Python	2.0.

countOf(a,	b)
Return	the	number	of	occurrences	of	b	in	a.

delitem(a,	b)
__delitem__(a,	b)

Remove	the	value	of	a	at	index	b.

delslice(a,	b,	c)
__delslice__(a,	b,	c)

Delete	the	slice	of	a	from	index	b	to	index	c-1.

getitem(a,	b)
__getitem__(a,	b)

Return	the	value	of	a	at	index	b.

getslice(a,	b,	c)
__getslice__(a,	b,	c)

Return	the	slice	of	a	from	index	b	to	index	c-1.

indexOf(a,	b)
Return	the	index	of	the	first	of	occurrence	of	b	in	a.

repeat(a,	b)
__repeat__(a,	b)

Return	a	*	b	where	a	is	a	sequence	and	b	is	an	integer.

sequenceIncludes(...)
Deprecated	since	release	2.0.	Use	contains()	instead.

Alias	for	contains().

setitem(a,	b,	c)

__setitem__(a,	b,	c)
Set	the	value	of	a	at	index	b	to	c.

setslice(a,	b,	c,	v)
__setslice__(a,	b,	c,	v)

Set	the	slice	of	a	from	index	b	to	index	c-1	to	the	sequence	v.

The	operator	module	also	defines	a	few	predicates	to	test	the	type	of	objects.
Note:	Be	careful	not	to	misinterpret	the	results	of	these	functions;	only
isCallable()	has	any	measure	of	reliability	with	instance	objects.	For
example:

>>>	class	C:

...					pass

...	

>>>	import	operator

>>>	o	=	C()

>>>	operator.isMappingType(o)

True

isCallable(o)
Deprecated	since	release	2.0.	Use	the	callable()	built-in	function
instead.

Returns	true	if	the	object	o	can	be	called	like	a	function,	otherwise	it	returns
false.	True	is	returned	for	functions,	bound	and	unbound	methods,	class
objects,	and	instance	objects	which	support	the	__call__()	method.

isMappingType(o)
Returns	true	if	the	object	o	supports	the	mapping	interface.	This	is	true	for
dictionaries	and	all	instance	objects.	Warning:	There	is	no	reliable	way	to
test	if	an	instance	supports	the	complete	mapping	protocol	since	the
interface	itself	is	ill-defined.	This	makes	this	test	less	useful	than	it
otherwise	might	be.

isNumberType(o)
Returns	true	if	the	object	o	represents	a	number.	This	is	true	for	all	numeric
types	implemented	in	C,	and	for	all	instance	objects.	Warning:	There	is	no
reliable	way	to	test	if	an	instance	supports	the	complete	numeric	interface

since	the	interface	itself	is	ill-defined.	This	makes	this	test	less	useful	than	it
otherwise	might	be.

isSequenceType(o)
Returns	true	if	the	object	o	supports	the	sequence	protocol.	This	returns	true
for	all	objects	which	define	sequence	methods	in	C,	and	for	all	instance
objects.	Warning:	There	is	no	reliable	way	to	test	if	an	instance	supports
the	complete	sequence	interface	since	the	interface	itself	is	ill-defined.	This
makes	this	test	less	useful	than	it	otherwise	might	be.

Example:	Build	a	dictionary	that	maps	the	ordinals	from	0	to	256	to	their
character	equivalents.

>>>	import	operator

>>>	d	=	{}

>>>	keys	=	range(256)

>>>	vals	=	map(chr,	keys)

>>>	map(operator.setitem,	[d]*len(keys),	keys,	vals)

The	operator	module	also	defines	tools	for	generalized	attribute	and	item
lookups.	These	are	useful	for	making	fast	field	extractors	as	arguments	for
map(),	sorted(),	itertools.groupby(),	or	other	functions	that	expect
a	function	argument.

attrgetter(attr)
Return	a	callable	object	that	fetches	attr	from	its	operand.	After,
"f=attrgetter('name')",	the	call	"f(b)"	returns	"b.name".	New
in	version	2.4.

itemgetter(item)
Return	a	callable	object	that	fetches	item	from	its	operand.	After,
"f=itemgetter(2)",	the	call	"f(b)"	returns	"b[2]".	New	in	version
2.4.

Examples:

>>>	from	operator	import	*

>>>	inventory	=	[('apple',	3),	('banana',	2),	('pear',	5),	('orange',	1)]

>>>	getcount	=	itemgetter(1)

>>>	map(getcount,	inventory)

[3,	2,	5,	1]

>>>	sorted(inventory,	key=getcount)

[('orange',	1),	('banana',	2),	('apple',	3),	('pear',	5)]

Subsections

3.10.1	Mapping	Operators	to	Functions

Python	Library	Reference
Previous:	3.9	UserString	Up:	3.	Python	Runtime	Services	Next:	3.10.1
Mapping	Operators	to

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.10	operator	Up:	3.10	operator	Next:	3.11	inspect

3.10.1	Mapping	Operators	to	Functions
This	table	shows	how	abstract	operations	correspond	to	operator	symbols	in	the
Python	syntax	and	the	functions	in	the	operator	module.

Operation Syntax Function
Addition a	+	b add(a,	b)
Concatenation seq1	+	seq2 concat(seq1,	seq2)
Containment
Test

o	in	seq contains(seq,	o)

Division a	/	b div(a,	b)	#	without
__future__.division

Division a	/	b truediv(a,	b)	#	with
__future__.division

Division a	//	b floordiv(a,	b)
Bitwise	And a	&	b and_(a,	b)
Bitwise
Exclusive	Or

a	^	b xor(a,	b)

Bitwise
Inversion

~	a invert(a)

Bitwise	Or a	|	b or_(a,	b)
Exponentiation a	**	b pow(a,	b)
Identity a	is	b is_(a,	b)
Identity a	is	not

b
is_not(a,	b)

Indexed
Assignment

o[k]	=	v setitem(o,	k,	v)

Indexed
Deletion

del	o[k] delitem(o,	k)

Indexing o[k] getitem(o,	k)
Left	Shift a	<<	b lshift(a,	b)
Modulo a	%	b mod(a,	b)
Multiplication a	*	b mul(a,	b)
Negation -	a neg(a)

(Arithmetic)
Negation
(Logical)

not	a not_(a)

Right	Shift a	>>	b rshift(a,	b)
Sequence
Repitition

seq	*	i repeat(seq,	i)

Slice
Assignment

seq[i:j]	=
values

setslice(seq,	i,	j,	values)

Slice	Deletion del

seq[i:j]
delslice(seq,	i,	j)

Slicing seq[i:j] getslice(seq,	i,	j)
String
Formatting

s	%	o mod(s,	o)

Subtraction a	-	b sub(a,	b)
Truth	Test o truth(o)
Ordering a	<	b lt(a,	b)
Ordering a	<=	b le(a,	b)
Equality a	==	b eq(a,	b)
Difference a	!=	b ne(a,	b)
Ordering a	>=	b ge(a,	b)
Ordering a	>	b gt(a,	b)

Python	Library	Reference
Previous:	3.10	operator	Up:	3.10	operator	Next:	3.11	inspect

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.10.1	Mapping	Operators	to	Up:	3.	Python	Runtime	Services	Next:
3.11.1	Types	and	members

3.11	inspect	--	Inspect	live	objects
New	in	version	2.1.

The	inspect	module	provides	several	useful	functions	to	help	get	information
about	live	objects	such	as	modules,	classes,	methods,	functions,	tracebacks,
frame	objects,	and	code	objects.	For	example,	it	can	help	you	examine	the
contents	of	a	class,	retrieve	the	source	code	of	a	method,	extract	and	format	the
argument	list	for	a	function,	or	get	all	the	information	you	need	to	display	a
detailed	traceback.

There	are	four	main	kinds	of	services	provided	by	this	module:	type	checking,
getting	source	code,	inspecting	classes	and	functions,	and	examining	the
interpreter	stack.

Subsections

3.11.1	Types	and	members
3.11.2	Retrieving	source	code
3.11.3	Classes	and	functions
3.11.4	The	interpreter	stack

Python	Library	Reference
Previous:	3.10.1	Mapping	Operators	to	Up:	3.	Python	Runtime	Services	Next:
3.11.1	Types	and	members

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.11	inspect	Up:	3.11	inspect	Next:	3.11.2	Retrieving	source	code

3.11.1	Types	and	members
The	getmembers()	function	retrieves	the	members	of	an	object	such	as	a
class	or	module.	The	eleven	functions	whose	names	begin	with	``is''	are	mainly
provided	as	convenient	choices	for	the	second	argument	to	getmembers().
They	also	help	you	determine	when	you	can	expect	to	find	the	following	special
attributes:

Type Attribute Description Notes
module __doc__ documentation	string

__file__ filename	(missing	for	built-in	modules)
class __doc__ documentation	string

__module__ name	of	module	in	which	this	class	was
defined

method __doc__ documentation	string
__name__ name	with	which	this	method	was

defined
im_class class	object	that	asked	for	this	method (1)
im_func function	object	containing

implementation	of	method
im_self instance	to	which	this	method	is	bound,

or	None
function __doc__ documentation	string

__name__ name	with	which	this	function	was
defined

func_code code	object	containing	compiled
function	bytecode

func_defaults tuple	of	any	default	values	for
arguments

func_doc (same	as	__doc__)
func_globals global	namespace	in	which	this

function	was	defined
func_name (same	as	__name__)

traceback tb_frame frame	object	at	this	level

tb_lasti index	of	last	attempted	instruction	in
bytecode

tb_lineno current	line	number	in	Python	source
code

tb_next next	inner	traceback	object	(called	by
this	level)

frame f_back next	outer	frame	object	(this	frame's
caller)

f_builtins built-in	namespace	seen	by	this	frame
f_code code	object	being	executed	in	this

frame
f_exc_traceback traceback	if	raised	in	this	frame,	or

None

f_exc_type exception	type	if	raised	in	this	frame,
or	None

f_exc_value exception	value	if	raised	in	this	frame,
or	None

f_globals global	namespace	seen	by	this	frame
f_lasti index	of	last	attempted	instruction	in

bytecode
f_lineno current	line	number	in	Python	source

code
f_locals local	namespace	seen	by	this	frame
f_restricted 0	or	1	if	frame	is	in	restricted	execution

mode
f_trace tracing	function	for	this	frame,	or

None

code co_argcount number	of	arguments	(not	including	*
or	**	args)

co_code string	of	raw	compiled	bytecode
co_consts tuple	of	constants	used	in	the	bytecode
co_filename name	of	file	in	which	this	code	object

was	created
co_firstlineno number	of	first	line	in	Python	source

code

co_flags bitmap:	1=optimized	|	2=newlocals	|
4=*arg	|	8=**arg

co_lnotab encoded	mapping	of	line	numbers	to
bytecode	indices

co_name name	with	which	this	code	object	was
defined

co_names tuple	of	names	of	local	variables
co_nlocals number	of	local	variables
co_stacksize virtual	machine	stack	space	required
co_varnames tuple	of	names	of	arguments	and	local

variables
builtin __doc__ documentation	string

__name__ original	name	of	this	function	or
method

__self__ instance	to	which	a	method	is	bound,	or
None

Note:

(1)
Changed	in	version	2.2:	im_class	used	to	refer	to	the	class	that	defined
the	method.

getmembers(object[,	predicate])
Return	all	the	members	of	an	object	in	a	list	of	(name,	value)	pairs	sorted	by
name.	If	the	optional	predicate	argument	is	supplied,	only	members	for
which	the	predicate	returns	a	true	value	are	included.

getmoduleinfo(path)
Return	a	tuple	of	values	that	describe	how	Python	will	interpret	the	file
identified	by	path	if	it	is	a	module,	or	None	if	it	would	not	be	identified	as
a	module.	The	return	tuple	is	(name,	suffix,	mode,	mtype),	where
name	is	the	name	of	the	module	without	the	name	of	any	enclosing
package,	suffix	is	the	trailing	part	of	the	file	name	(which	may	not	be	a	dot-
delimited	extension),	mode	is	the	open()	mode	that	would	be	used	('r'
or	'rb'),	and	mtype	is	an	integer	giving	the	type	of	the	module.	mtype	will
have	a	value	which	can	be	compared	to	the	constants	defined	in	the	imp

module;	see	the	documentation	for	that	module	for	more	information	on
module	types.

getmodulename(path)
Return	the	name	of	the	module	named	by	the	file	path,	without	including
the	names	of	enclosing	packages.	This	uses	the	same	algorithm	as	the
interpreter	uses	when	searching	for	modules.	If	the	name	cannot	be	matched
according	to	the	interpreter's	rules,	None	is	returned.

ismodule(object)
Return	true	if	the	object	is	a	module.

isclass(object)
Return	true	if	the	object	is	a	class.

ismethod(object)
Return	true	if	the	object	is	a	method.

isfunction(object)
Return	true	if	the	object	is	a	Python	function	or	unnamed	(lambda)
function.

istraceback(object)
Return	true	if	the	object	is	a	traceback.

isframe(object)
Return	true	if	the	object	is	a	frame.

iscode(object)
Return	true	if	the	object	is	a	code.

isbuiltin(object)
Return	true	if	the	object	is	a	built-in	function.

isroutine(object)
Return	true	if	the	object	is	a	user-defined	or	built-in	function	or	method.

ismethoddescriptor(object)
Return	true	if	the	object	is	a	method	descriptor,	but	not	if	ismethod()	or
isclass()	or	isfunction()	are	true.

This	is	new	as	of	Python	2.2,	and,	for	example,	is	true	of	int.__add__.	An
object	passing	this	test	has	a	__get__	attribute	but	not	a	__set__	attribute,
but	beyond	that	the	set	of	attributes	varies.	__name__	is	usually	sensible,
and	__doc__	often	is.

Methods	implemented	via	descriptors	that	also	pass	one	of	the	other	tests
return	false	from	the	ismethoddescriptor()	test,	simply	because	the	other
tests	promise	more	-	you	can,	e.g.,	count	on	having	the	im_func	attribute
(etc)	when	an	object	passes	ismethod().

isdatadescriptor(object)
Return	true	if	the	object	is	a	data	descriptor.

Data	descriptors	have	both	a	__get__	and	a	__set__	attribute.	Examples	are
properties	(defined	in	Python)	and	getsets	and	members	(defined	in	C).
Typically,	data	descriptors	will	also	have	__name__	and	__doc__	attributes
(properties,	getsets,	and	members	have	both	of	these	attributes),	but	this	is
not	guaranteed.	New	in	version	2.3.

Python	Library	Reference
Previous:	3.11	inspect	Up:	3.11	inspect	Next:	3.11.2	Retrieving	source	code

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.11.1	Types	and	members	Up:	3.11	inspect	Next:	3.11.3	Classes
and	functions

3.11.2	Retrieving	source	code

getdoc(object)
Get	the	documentation	string	for	an	object.	All	tabs	are	expanded	to	spaces.
To	clean	up	docstrings	that	are	indented	to	line	up	with	blocks	of	code,	any
whitespace	than	can	be	uniformly	removed	from	the	second	line	onwards	is
removed.

getcomments(object)
Return	in	a	single	string	any	lines	of	comments	immediately	preceding	the
object's	source	code	(for	a	class,	function,	or	method),	or	at	the	top	of	the
Python	source	file	(if	the	object	is	a	module).

getfile(object)
Return	the	name	of	the	(text	or	binary)	file	in	which	an	object	was	defined.
This	will	fail	with	a	TypeError	if	the	object	is	a	built-in	module,	class,	or
function.

getmodule(object)
Try	to	guess	which	module	an	object	was	defined	in.

getsourcefile(object)
Return	the	name	of	the	Python	source	file	in	which	an	object	was	defined.
This	will	fail	with	a	TypeError	if	the	object	is	a	built-in	module,	class,	or
function.

getsourcelines(object)
Return	a	list	of	source	lines	and	starting	line	number	for	an	object.	The
argument	may	be	a	module,	class,	method,	function,	traceback,	frame,	or
code	object.	The	source	code	is	returned	as	a	list	of	the	lines	corresponding
to	the	object	and	the	line	number	indicates	where	in	the	original	source	file
the	first	line	of	code	was	found.	An	IOError	is	raised	if	the	source	code
cannot	be	retrieved.

getsource(object)
Return	the	text	of	the	source	code	for	an	object.	The	argument	may	be	a

module,	class,	method,	function,	traceback,	frame,	or	code	object.	The
source	code	is	returned	as	a	single	string.	An	IOError	is	raised	if	the
source	code	cannot	be	retrieved.

Python	Library	Reference
Previous:	3.11.1	Types	and	members	Up:	3.11	inspect	Next:	3.11.3	Classes
and	functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.11.2	Retrieving	source	code	Up:	3.11	inspect	Next:	3.11.4	The
interpreter	stack

3.11.3	Classes	and	functions

getclasstree(classes[,	unique])
Arrange	the	given	list	of	classes	into	a	hierarchy	of	nested	lists.	Where	a
nested	list	appears,	it	contains	classes	derived	from	the	class	whose	entry
immediately	precedes	the	list.	Each	entry	is	a	2-tuple	containing	a	class	and
a	tuple	of	its	base	classes.	If	the	unique	argument	is	true,	exactly	one	entry
appears	in	the	returned	structure	for	each	class	in	the	given	list.	Otherwise,
classes	using	multiple	inheritance	and	their	descendants	will	appear
multiple	times.

getargspec(func)
Get	the	names	and	default	values	of	a	function's	arguments.	A	tuple	of	four
things	is	returned:	(args,	varargs,	varkw,	defaults).	args	is	a	list	of
the	argument	names	(it	may	contain	nested	lists).	varargs	and	varkw	are	the
names	of	the	*	and	**	arguments	or	None.	defaults	is	a	tuple	of	default
argument	values	or	None	if	there	are	no	default	arguments;	if	this	tuple	has
n	elements,	they	correspond	to	the	last	n	elements	listed	in	args.

getargvalues(frame)
Get	information	about	arguments	passed	into	a	particular	frame.	A	tuple	of
four	things	is	returned:	(args,	varargs,	varkw,	locals).	args	is	a	list	of
the	argument	names	(it	may	contain	nested	lists).	varargs	and	varkw	are	the
names	of	the	*	and	**	arguments	or	None.	locals	is	the	locals	dictionary	of
the	given	frame.

formatargspec(args[,	varargs,	varkw,	defaults,	argformat,	varargsformat,
varkwformat,	defaultformat])

Format	a	pretty	argument	spec	from	the	four	values	returned	by
getargspec().	The	other	four	arguments	are	the	corresponding	optional
formatting	functions	that	are	called	to	turn	names	and	values	into	strings.

formatargvalues(args[,	varargs,	varkw,	locals,	argformat,	varargsformat,
varkwformat,	valueformat])

Format	a	pretty	argument	spec	from	the	four	values	returned	by
getargvalues().	The	other	four	arguments	are	the	corresponding
optional	formatting	functions	that	are	called	to	turn	names	and	values	into
strings.

getmro(cls)
Return	a	tuple	of	class	cls's	base	classes,	including	cls,	in	method	resolution
order.	No	class	appears	more	than	once	in	this	tuple.	Note	that	the	method
resolution	order	depends	on	cls's	type.	Unless	a	very	peculiar	user-defined
metatype	is	in	use,	cls	will	be	the	first	element	of	the	tuple.

Python	Library	Reference
Previous:	3.11.2	Retrieving	source	code	Up:	3.11	inspect	Next:	3.11.4	The
interpreter	stack

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.11.3	Classes	and	functions	Up:	3.11	inspect	Next:	3.12	traceback

3.11.4	The	interpreter	stack
When	the	following	functions	return	``frame	records,''	each	record	is	a	tuple	of
six	items:	the	frame	object,	the	filename,	the	line	number	of	the	current	line,	the
function	name,	a	list	of	lines	of	context	from	the	source	code,	and	the	index	of
the	current	line	within	that	list.

Warning: 	Keeping	references	to	frame	objects,	as	found	in
the	first	element	of	the	frame	records	these	functions	return,	can
cause	your	program	to	create	reference	cycles.	Once	a	reference
cycle	has	been	created,	the	lifespan	of	all	objects	which	can	be
accessed	from	the	objects	which	form	the	cycle	can	become
much	longer	even	if	Python's	optional	cycle	detector	is	enabled.
If	such	cycles	must	be	created,	it	is	important	to	ensure	they	are
explicitly	broken	to	avoid	the	delayed	destruction	of	objects	and
increased	memory	consumption	which	occurs.

Though	the	cycle	detector	will	catch	these,	destruction	of	the
frames	(and	local	variables)	can	be	made	deterministic	by
removing	the	cycle	in	a	finally	clause.	This	is	also	important
if	the	cycle	detector	was	disabled	when	Python	was	compiled	or
using	gc.disable().	For	example:

def	handle_stackframe_without_leak():

				frame	=	inspect.currentframe()

				try:

								#	do	something	with	the	frame

				finally:

								del	frame

The	optional	context	argument	supported	by	most	of	these	functions	specifies	the
number	of	lines	of	context	to	return,	which	are	centered	around	the	current	line.

getframeinfo(frame[,	context])
Get	information	about	a	frame	or	traceback	object.	A	5-tuple	is	returned,	the
last	five	elements	of	the	frame's	frame	record.

getouterframes(frame[,	context])
Get	a	list	of	frame	records	for	a	frame	and	all	outer	frames.	These	frames
represent	the	calls	that	lead	to	the	creation	of	frame.	The	first	entry	in	the
returned	list	represents	frame;	the	last	entry	represents	the	outermost	call	on
frame's	stack.

getinnerframes(traceback[,	context])
Get	a	list	of	frame	records	for	a	traceback's	frame	and	all	inner	frames.
These	frames	represent	calls	made	as	a	consequence	of	frame.	The	first
entry	in	the	list	represents	traceback;	the	last	entry	represents	where	the
exception	was	raised.

currentframe()
Return	the	frame	object	for	the	caller's	stack	frame.

stack([context])
Return	a	list	of	frame	records	for	the	caller's	stack.	The	first	entry	in	the
returned	list	represents	the	caller;	the	last	entry	represents	the	outermost	call
on	the	stack.

trace([context])
Return	a	list	of	frame	records	for	the	stack	between	the	current	frame	and
the	frame	in	which	an	exception	currently	being	handled	was	raised	in.	The
first	entry	in	the	list	represents	the	caller;	the	last	entry	represents	where	the
exception	was	raised.

Python	Library	Reference
Previous:	3.11.3	Classes	and	functions	Up:	3.11	inspect	Next:	3.12	traceback

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.11.4	The	interpreter	stack	Up:	3.	Python	Runtime	Services	Next:
3.12.1	Traceback	Example

3.12	traceback	--	Print	or	retrieve	a
stack	traceback
This	module	provides	a	standard	interface	to	extract,	format	and	print	stack
traces	of	Python	programs.	It	exactly	mimics	the	behavior	of	the	Python
interpreter	when	it	prints	a	stack	trace.	This	is	useful	when	you	want	to	print
stack	traces	under	program	control,	such	as	in	a	``wrapper''	around	the
interpreter.

The	module	uses	traceback	objects	--	this	is	the	object	type	that	is	stored	in	the
variables	sys.exc_traceback	(deprecated)	and	sys.last_traceback
and	returned	as	the	third	item	from	sys.exc_info().

The	module	defines	the	following	functions:

print_tb(traceback[,	limit[,	file]])
Print	up	to	limit	stack	trace	entries	from	traceback.	If	limit	is	omitted	or
None,	all	entries	are	printed.	If	file	is	omitted	or	None,	the	output	goes	to
sys.stderr;	otherwise	it	should	be	an	open	file	or	file-like	object	to
receive	the	output.

print_exception(type,	value,	traceback[,	limit[,	file]])
Print	exception	information	and	up	to	limit	stack	trace	entries	from
traceback	to	file.	This	differs	from	print_tb()	in	the	following	ways:
(1)	if	traceback	is	not	None,	it	prints	a	header	"Traceback	(most
recent	call	last):";	(2)	it	prints	the	exception	type	and	value	after
the	stack	trace;	(3)	if	type	is	SyntaxError	and	value	has	the	appropriate
format,	it	prints	the	line	where	the	syntax	error	occurred	with	a	caret
indicating	the	approximate	position	of	the	error.

print_exc([limit[,	file]])
This	is	a	shorthand	for	print_exception(sys.exc_type,
sys.exc_value,	sys.exc_traceback,	limit,	file).	(In	fact,	it
uses	sys.exc_info()	to	retrieve	the	same	information	in	a	thread-safe

way	instead	of	using	the	deprecated	variables.)

format_exc([limit[,	file]])
This	is	like	print_exc(limit)	but	returns	a	string	instead	of	printing	to	a
file.	New	in	version	2.4.

print_last([limit[,	file]])
This	is	a	shorthand	for	print_exception(sys.last_type,
sys.last_value,	sys.last_traceback,	limit,	file).

print_stack([f[,	limit[,	file]]])
This	function	prints	a	stack	trace	from	its	invocation	point.	The	optional	f
argument	can	be	used	to	specify	an	alternate	stack	frame	to	start.	The
optional	limit	and	file	arguments	have	the	same	meaning	as	for
print_exception().

extract_tb(traceback[,	limit])
Return	a	list	of	up	to	limit	``pre-processed''	stack	trace	entries	extracted
from	the	traceback	object	traceback.	It	is	useful	for	alternate	formatting	of
stack	traces.	If	limit	is	omitted	or	None,	all	entries	are	extracted.	A	``pre-
processed''	stack	trace	entry	is	a	quadruple	(filename,	line	number,	function
name,	text)	representing	the	information	that	is	usually	printed	for	a	stack
trace.	The	text	is	a	string	with	leading	and	trailing	whitespace	stripped;	if
the	source	is	not	available	it	is	None.

extract_stack([f[,	limit]])
Extract	the	raw	traceback	from	the	current	stack	frame.	The	return	value
has	the	same	format	as	for	extract_tb().	The	optional	f	and	limit
arguments	have	the	same	meaning	as	for	print_stack().

format_list(list)
Given	a	list	of	tuples	as	returned	by	extract_tb()	or
extract_stack(),	return	a	list	of	strings	ready	for	printing.	Each	string
in	the	resulting	list	corresponds	to	the	item	with	the	same	index	in	the
argument	list.	Each	string	ends	in	a	newline;	the	strings	may	contain
internal	newlines	as	well,	for	those	items	whose	source	text	line	is	not

None.

format_exception_only(type,	value)
Format	the	exception	part	of	a	traceback.	The	arguments	are	the	exception
type	and	value	such	as	given	by	sys.last_type	and
sys.last_value.	The	return	value	is	a	list	of	strings,	each	ending	in	a
newline.	Normally,	the	list	contains	a	single	string;	however,	for
SyntaxError	exceptions,	it	contains	several	lines	that	(when	printed)
display	detailed	information	about	where	the	syntax	error	occurred.	The
message	indicating	which	exception	occurred	is	the	always	last	string	in	the
list.

format_exception(type,	value,	tb[,	limit])
Format	a	stack	trace	and	the	exception	information.	The	arguments	have	the
same	meaning	as	the	corresponding	arguments	to	print_exception().
The	return	value	is	a	list	of	strings,	each	ending	in	a	newline	and	some
containing	internal	newlines.	When	these	lines	are	concatenated	and
printed,	exactly	the	same	text	is	printed	as	does	print_exception().

format_tb(tb[,	limit])
A	shorthand	for	format_list(extract_tb(tb,	limit)).

format_stack([f[,	limit]])
A	shorthand	for	format_list(extract_stack(f,	limit)).

tb_lineno(tb)
This	function	returns	the	current	line	number	set	in	the	traceback	object.
This	function	was	necessary	because	in	versions	of	Python	prior	to	2.3
when	the	-O	flag	was	passed	to	Python	the	tb.tb_lineno	was	not
updated	correctly.	This	function	has	no	use	in	versions	past	2.3.

Subsections

3.12.1	Traceback	Example

Python	Library	Reference

Previous:	3.11.4	The	interpreter	stack	Up:	3.	Python	Runtime	Services	Next:
3.12.1	Traceback	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.12	traceback	Up:	3.12	traceback	Next:	3.13	linecache

3.12.1	Traceback	Example
This	simple	example	implements	a	basic	read-eval-print	loop,	similar	to	(but	less
useful	than)	the	standard	Python	interactive	interpreter	loop.	For	a	more
complete	implementation	of	the	interpreter	loop,	refer	to	the	code	module.

import	sys,	traceback

def	run_user_code(envdir):

				source	=	raw_input(">>>	")

				try:

								exec	source	in	envdir

				except:

								print	"Exception	in	user	code:"

								print	'-'*60

								traceback.print_exc(file=sys.stdout)

								print	'-'*60

envdir	=	{}

while	1:

				run_user_code(envdir)

Python	Library	Reference
Previous:	3.12	traceback	Up:	3.12	traceback	Next:	3.13	linecache

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.12.1	Traceback	Example	Up:	3.	Python	Runtime	Services	Next:
3.14	pickle

3.13	linecache	--	Random	access
to	text	lines
The	linecache	module	allows	one	to	get	any	line	from	any	file,	while
attempting	to	optimize	internally,	using	a	cache,	the	common	case	where	many
lines	are	read	from	a	single	file.	This	is	used	by	the	traceback	module	to
retrieve	source	lines	for	inclusion	in	the	formatted	traceback.

The	linecache	module	defines	the	following	functions:

getline(filename,	lineno)
Get	line	lineno	from	file	named	filename.	This	function	will	never	throw	an
exception	--	it	will	return	''	on	errors	(the	terminating	newline	character
will	be	included	for	lines	that	are	found).

If	a	file	named	filename	is	not	found,	the	function	will	look	for	it	in	the
module	search	path,	sys.path.

clearcache()
Clear	the	cache.	Use	this	function	if	you	no	longer	need	lines	from	files
previously	read	using	getline().

checkcache([filename])
Check	the	cache	for	validity.	Use	this	function	if	files	in	the	cache	may	have
changed	on	disk,	and	you	require	the	updated	version.	If	filename	is
omitted,	it	will	check	the	whole	cache	entries.

Example:

>>>	import	linecache

>>>	linecache.getline('/etc/passwd',	4)

'sys:x:3:3:sys:/dev:/bin/sh\n'

Python	Library	Reference
Previous:	3.12.1	Traceback	Example	Up:	3.	Python	Runtime	Services	Next:

3.14	pickle

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.13	linecache	Up:	3.	Python	Runtime	Services	Next:	3.14.1
Relationship	to	other

3.14	pickle	--	Python	object
serialization
The	pickle	module	implements	a	fundamental,	but	powerful	algorithm	for
serializing	and	de-serializing	a	Python	object	structure.	``Pickling''	is	the	process
whereby	a	Python	object	hierarchy	is	converted	into	a	byte	stream,	and
``unpickling''	is	the	inverse	operation,	whereby	a	byte	stream	is	converted	back
into	an	object	hierarchy.	Pickling	(and	unpickling)	is	alternatively	known	as
``serialization'',	``marshalling,''3.2	or	``flattening'',	however,	to	avoid	confusion,
the	terms	used	here	are	``pickling''	and	``unpickling''.

This	documentation	describes	both	the	pickle	module	and	the	cPickle
module.

Footnotes

...	``marshalling,''3.2
Don't	confuse	this	with	the	marshal	module

Subsections

3.14.1	Relationship	to	other	Python	modules
3.14.2	Data	stream	format
3.14.3	Usage
3.14.4	What	can	be	pickled	and	unpickled?
3.14.5	The	pickle	protocol

3.14.5.1	Pickling	and	unpickling	normal	class	instances
3.14.5.2	Pickling	and	unpickling	extension	types
3.14.5.3	Pickling	and	unpickling	external	objects

3.14.6	Subclassing	Unpicklers
3.14.7	Example

Python	Library	Reference
Previous:	3.13	linecache	Up:	3.	Python	Runtime	Services	Next:	3.14.1
Relationship	to	other

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.14	pickle	Up:	3.14	pickle	Next:	3.14.2	Data	stream	format

3.14.1	Relationship	to	other	Python	modules
The	pickle	module	has	an	optimized	cousin	called	the	cPickle	module.	As
its	name	implies,	cPickle	is	written	in	C,	so	it	can	be	up	to	1000	times	faster
than	pickle.	However	it	does	not	support	subclassing	of	the	Pickler()	and
Unpickler()	classes,	because	in	cPickle	these	are	functions,	not	classes.
Most	applications	have	no	need	for	this	functionality,	and	can	benefit	from	the
improved	performance	of	cPickle.	Other	than	that,	the	interfaces	of	the	two
modules	are	nearly	identical;	the	common	interface	is	described	in	this	manual
and	differences	are	pointed	out	where	necessary.	In	the	following	discussions,
we	use	the	term	``pickle''	to	collectively	describe	the	pickle	and	cPickle
modules.

The	data	streams	the	two	modules	produce	are	guaranteed	to	be	interchangeable.

Python	has	a	more	primitive	serialization	module	called	marshal,	but	in
general	pickle	should	always	be	the	preferred	way	to	serialize	Python	objects.
marshal	exists	primarily	to	support	Python's	.pyc	files.

The	pickle	module	differs	from	marshal	several	significant	ways:

The	pickle	module	keeps	track	of	the	objects	it	has	already	serialized,	so
that	later	references	to	the	same	object	won't	be	serialized	again.	marshal
doesn't	do	this.

This	has	implications	both	for	recursive	objects	and	object	sharing.
Recursive	objects	are	objects	that	contain	references	to	themselves.	These
are	not	handled	by	marshal,	and	in	fact,	attempting	to	marshal	recursive
objects	will	crash	your	Python	interpreter.	Object	sharing	happens	when
there	are	multiple	references	to	the	same	object	in	different	places	in	the
object	hierarchy	being	serialized.	pickle	stores	such	objects	only	once,
and	ensures	that	all	other	references	point	to	the	master	copy.	Shared
objects	remain	shared,	which	can	be	very	important	for	mutable	objects.

marshal	cannot	be	used	to	serialize	user-defined	classes	and	their
instances.	pickle	can	save	and	restore	class	instances	transparently,
however	the	class	definition	must	be	importable	and	live	in	the	same

module	as	when	the	object	was	stored.

The	marshal	serialization	format	is	not	guaranteed	to	be	portable	across
Python	versions.	Because	its	primary	job	in	life	is	to	support	.pyc	files,	the
Python	implementers	reserve	the	right	to	change	the	serialization	format	in
non-backwards	compatible	ways	should	the	need	arise.	The	pickle
serialization	format	is	guaranteed	to	be	backwards	compatible	across
Python	releases.

Warning: 	The	pickle	module	is	not	intended	to	be	secure
against	erroneous	or	maliciously	constructed	data.	Never
unpickle	data	received	from	an	untrusted	or	unauthenticated
source.

Note	that	serialization	is	a	more	primitive	notion	than	persistence;	although
pickle	reads	and	writes	file	objects,	it	does	not	handle	the	issue	of	naming
persistent	objects,	nor	the	(even	more	complicated)	issue	of	concurrent	access	to
persistent	objects.	The	pickle	module	can	transform	a	complex	object	into	a
byte	stream	and	it	can	transform	the	byte	stream	into	an	object	with	the	same
internal	structure.	Perhaps	the	most	obvious	thing	to	do	with	these	byte	streams
is	to	write	them	onto	a	file,	but	it	is	also	conceivable	to	send	them	across	a
network	or	store	them	in	a	database.	The	module	shelve	provides	a	simple
interface	to	pickle	and	unpickle	objects	on	DBM-style	database	files.

Python	Library	Reference
Previous:	3.14	pickle	Up:	3.14	pickle	Next:	3.14.2	Data	stream	format

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.14.1	Relationship	to	other	Up:	3.14	pickle	Next:	3.14.3	Usage

3.14.2	Data	stream	format
The	data	format	used	by	pickle	is	Python-specific.	This	has	the	advantage	that
there	are	no	restrictions	imposed	by	external	standards	such	as	XDR	(which	can't
represent	pointer	sharing);	however	it	means	that	non-Python	programs	may	not
be	able	to	reconstruct	pickled	Python	objects.

By	default,	the	pickle	data	format	uses	a	printable	ASCII	representation.	This
is	slightly	more	voluminous	than	a	binary	representation.	The	big	advantage	of
using	printable	ASCII	(and	of	some	other	characteristics	of	pickle's
representation)	is	that	for	debugging	or	recovery	purposes	it	is	possible	for	a
human	to	read	the	pickled	file	with	a	standard	text	editor.

There	are	currently	3	different	protocols	which	can	be	used	for	pickling.

Protocol	version	0	is	the	original	ASCII	protocol	and	is	backwards
compatible	with	earlier	versions	of	Python.

Protocol	version	1	is	the	old	binary	format	which	is	also	compatible	with
earlier	versions	of	Python.

Protocol	version	2	was	introduced	in	Python	2.3.	It	provides	much	more
efficient	pickling	of	new-style	classes.

Refer	to	PEP	307	for	more	information.

If	a	protocol	is	not	specified,	protocol	0	is	used.	If	protocol	is	specified	as	a
negative	value	or	HIGHEST_PROTOCOL,	the	highest	protocol	version	available
will	be	used.

Changed	in	version	2.3:	The	bin	parameter	is	deprecated	and	only	provided	for
backwards	compatibility.	You	should	use	the	protocol	parameter	instead.

A	binary	format,	which	is	slightly	more	efficient,	can	be	chosen	by	specifying	a
true	value	for	the	bin	argument	to	the	Pickler	constructor	or	the	dump()	and
dumps()	functions.	A	protocol	version	>=	1	implies	use	of	a	binary	format.

Python	Library	Reference
Previous:	3.14.1	Relationship	to	other	Up:	3.14	pickle	Next:	3.14.3	Usage

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.14.2	Data	stream	format	Up:	3.14	pickle	Next:	3.14.4	What	can	be

3.14.3	Usage
To	serialize	an	object	hierarchy,	you	first	create	a	pickler,	then	you	call	the
pickler's	dump()	method.	To	de-serialize	a	data	stream,	you	first	create	an
unpickler,	then	you	call	the	unpickler's	load()	method.	The	pickle	module
provides	the	following	constant:

HIGHEST_PROTOCOL

The	highest	protocol	version	available.	This	value	can	be	passed	as	a
protocol	value.	New	in	version	2.3.

The	pickle	module	provides	the	following	functions	to	make	this	process
more	convenient:

dump(obj,	file[,	protocol[,	bin]])
Write	a	pickled	representation	of	obj	to	the	open	file	object	file.	This	is
equivalent	to	Pickler(file,	protocol,	bin).dump(obj).

If	the	protocol	parameter	is	omitted,	protocol	0	is	used.	If	protocol	is
specified	as	a	negative	value	or	HIGHEST_PROTOCOL,	the	highest
protocol	version	will	be	used.

Changed	in	version	2.3:	The	protocol	parameter	was	added.	The	bin
parameter	is	deprecated	and	only	provided	for	backwards	compatibility.
You	should	use	the	protocol	parameter	instead.

If	the	optional	bin	argument	is	true,	the	binary	pickle	format	is	used;
otherwise	the	(less	efficient)	text	pickle	format	is	used	(for	backwards
compatibility,	this	is	the	default).

file	must	have	a	write()	method	that	accepts	a	single	string	argument.	It
can	thus	be	a	file	object	opened	for	writing,	a	StringIO	object,	or	any
other	custom	object	that	meets	this	interface.

load(file)
Read	a	string	from	the	open	file	object	file	and	interpret	it	as	a	pickle	data
stream,	reconstructing	and	returning	the	original	object	hierarchy.	This	is

equivalent	to	Unpickler(file).load().

file	must	have	two	methods,	a	read()	method	that	takes	an	integer
argument,	and	a	readline()	method	that	requires	no	arguments.	Both
methods	should	return	a	string.	Thus	file	can	be	a	file	object	opened	for
reading,	a	StringIO	object,	or	any	other	custom	object	that	meets	this
interface.

This	function	automatically	determines	whether	the	data	stream	was	written
in	binary	mode	or	not.

dumps(obj[,	protocol[,	bin]])
Return	the	pickled	representation	of	the	object	as	a	string,	instead	of	writing
it	to	a	file.

If	the	protocol	parameter	is	omitted,	protocol	0	is	used.	If	protocol	is
specified	as	a	negative	value	or	HIGHEST_PROTOCOL,	the	highest
protocol	version	will	be	used.

Changed	in	version	2.3:	The	protocol	parameter	was	added.	The	bin
parameter	is	deprecated	and	only	provided	for	backwards	compatibility.
You	should	use	the	protocol	parameter	instead.

If	the	optional	bin	argument	is	true,	the	binary	pickle	format	is	used;
otherwise	the	(less	efficient)	text	pickle	format	is	used	(this	is	the	default).

loads(string)
Read	a	pickled	object	hierarchy	from	a	string.	Characters	in	the	string	past
the	pickled	object's	representation	are	ignored.

The	pickle	module	also	defines	three	exceptions:

exception	PickleError
A	common	base	class	for	the	other	exceptions	defined	below.	This	inherits
from	Exception.

exception	PicklingError
This	exception	is	raised	when	an	unpicklable	object	is	passed	to	the
dump()	method.

exception	UnpicklingError
This	exception	is	raised	when	there	is	a	problem	unpickling	an	object.	Note
that	other	exceptions	may	also	be	raised	during	unpickling,	including	(but
not	necessarily	limited	to)	AttributeError,	EOFError,
ImportError,	and	IndexError.

The	pickle	module	also	exports	two	callables3.3,	Pickler	and	Unpickler:

class	Pickler(file[,	protocol[,	bin]])
This	takes	a	file-like	object	to	which	it	will	write	a	pickle	data	stream.

If	the	protocol	parameter	is	omitted,	protocol	0	is	used.	If	protocol	is
specified	as	a	negative	value,	the	highest	protocol	version	will	be	used.

Changed	in	version	2.3:	The	bin	parameter	is	deprecated	and	only	provided
for	backwards	compatibility.	You	should	use	the	protocol	parameter	instead.

Optional	bin	if	true,	tells	the	pickler	to	use	the	more	efficient	binary	pickle
format,	otherwise	the	ASCII	format	is	used	(this	is	the	default).

file	must	have	a	write()	method	that	accepts	a	single	string	argument.	It
can	thus	be	an	open	file	object,	a	StringIO	object,	or	any	other	custom
object	that	meets	this	interface.

Pickler	objects	define	one	(or	two)	public	methods:

dump(obj)
Write	a	pickled	representation	of	obj	to	the	open	file	object	given	in	the
constructor.	Either	the	binary	or	ASCII	format	will	be	used,	depending	on
the	value	of	the	bin	flag	passed	to	the	constructor.

clear_memo()
Clears	the	pickler's	``memo''.	The	memo	is	the	data	structure	that
remembers	which	objects	the	pickler	has	already	seen,	so	that	shared	or
recursive	objects	pickled	by	reference	and	not	by	value.	This	method	is
useful	when	re-using	picklers.

Note: 	Prior	to	Python	2.3,	clear_memo()	was	only

available	on	the	picklers	created	by	cPickle.	In	the
pickle	module,	picklers	have	an	instance	variable	called
memo	which	is	a	Python	dictionary.	So	to	clear	the	memo
for	a	pickle	module	pickler,	you	could	do	the	following:

mypickler.memo.clear()

Code	that	does	not	need	to	support	older	versions	of	Python
should	simply	use	clear_memo().

It	is	possible	to	make	multiple	calls	to	the	dump()	method	of	the	same
Pickler	instance.	These	must	then	be	matched	to	the	same	number	of	calls	to
the	load()	method	of	the	corresponding	Unpickler	instance.	If	the	same
object	is	pickled	by	multiple	dump()	calls,	the	load()	will	all	yield
references	to	the	same	object.3.4

Unpickler	objects	are	defined	as:

class	Unpickler(file)
This	takes	a	file-like	object	from	which	it	will	read	a	pickle	data	stream.
This	class	automatically	determines	whether	the	data	stream	was	written	in
binary	mode	or	not,	so	it	does	not	need	a	flag	as	in	the	Pickler	factory.

file	must	have	two	methods,	a	read()	method	that	takes	an	integer
argument,	and	a	readline()	method	that	requires	no	arguments.	Both
methods	should	return	a	string.	Thus	file	can	be	a	file	object	opened	for
reading,	a	StringIO	object,	or	any	other	custom	object	that	meets	this
interface.

Unpickler	objects	have	one	(or	two)	public	methods:

load()
Read	a	pickled	object	representation	from	the	open	file	object	given	in	the
constructor,	and	return	the	reconstituted	object	hierarchy	specified	therein.

noload()
This	is	just	like	load()	except	that	it	doesn't	actually	create	any	objects.

This	is	useful	primarily	for	finding	what's	called	``persistent	ids''	that	may
be	referenced	in	a	pickle	data	stream.	See	section	3.14.5	below	for	more
details.

Note:	the	noload()	method	is	currently	only	available	on	Unpickler
objects	created	with	the	cPickle	module.	pickle	module
Unpicklers	do	not	have	the	noload()	method.

Footnotes

...	callables3.3
In	the	pickle	module	these	callables	are	classes,	which	you	could
subclass	to	customize	the	behavior.	However,	in	the	cPickle	module
these	callables	are	factory	functions	and	so	cannot	be	subclassed.	One
common	reason	to	subclass	is	to	control	what	objects	can	actually	be
unpickled.	See	section	3.14.6	for	more	details.

...	object.3.4
Warning:	this	is	intended	for	pickling	multiple	objects	without	intervening
modifications	to	the	objects	or	their	parts.	If	you	modify	an	object	and	then
pickle	it	again	using	the	same	Pickler	instance,	the	object	is	not	pickled
again	--	a	reference	to	it	is	pickled	and	the	Unpickler	will	return	the	old
value,	not	the	modified	one.	There	are	two	problems	here:	(1)	detecting
changes,	and	(2)	marshalling	a	minimal	set	of	changes.	Garbage	Collection
may	also	become	a	problem	here.

Python	Library	Reference
Previous:	3.14.2	Data	stream	format	Up:	3.14	pickle	Next:	3.14.4	What	can	be

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.14.3	Usage	Up:	3.14	pickle	Next:	3.14.5	The	pickle	protocol

3.14.4	What	can	be	pickled	and	unpickled?
The	following	types	can	be	pickled:

None,	True,	and	False

integers,	long	integers,	floating	point	numbers,	complex	numbers

normal	and	Unicode	strings

tuples,	lists,	sets,	and	dictionaries	containing	only	picklable	objects

functions	defined	at	the	top	level	of	a	module

built-in	functions	defined	at	the	top	level	of	a	module

classes	that	are	defined	at	the	top	level	of	a	module

instances	of	such	classes	whose	__dict__	or	__setstate__()	is
picklable	(see	section	3.14.5	for	details)

Attempts	to	pickle	unpicklable	objects	will	raise	the	PicklingError
exception;	when	this	happens,	an	unspecified	number	of	bytes	may	have	already
been	written	to	the	underlying	file.

Note	that	functions	(built-in	and	user-defined)	are	pickled	by	``fully	qualified''
name	reference,	not	by	value.	This	means	that	only	the	function	name	is	pickled,
along	with	the	name	of	module	the	function	is	defined	in.	Neither	the	function's
code,	nor	any	of	its	function	attributes	are	pickled.	Thus	the	defining	module
must	be	importable	in	the	unpickling	environment,	and	the	module	must	contain
the	named	object,	otherwise	an	exception	will	be	raised.3.5

Similarly,	classes	are	pickled	by	named	reference,	so	the	same	restrictions	in	the
unpickling	environment	apply.	Note	that	none	of	the	class's	code	or	data	is
pickled,	so	in	the	following	example	the	class	attribute	attr	is	not	restored	in
the	unpickling	environment:

class	Foo:

				attr	=	'a	class	attr'

picklestring	=	pickle.dumps(Foo)

These	restrictions	are	why	picklable	functions	and	classes	must	be	defined	in	the
top	level	of	a	module.

Similarly,	when	class	instances	are	pickled,	their	class's	code	and	data	are	not
pickled	along	with	them.	Only	the	instance	data	are	pickled.	This	is	done	on
purpose,	so	you	can	fix	bugs	in	a	class	or	add	methods	to	the	class	and	still	load
objects	that	were	created	with	an	earlier	version	of	the	class.	If	you	plan	to	have
long-lived	objects	that	will	see	many	versions	of	a	class,	it	may	be	worthwhile	to
put	a	version	number	in	the	objects	so	that	suitable	conversions	can	be	made	by
the	class's	__setstate__()	method.

Footnotes

...	raised.3.5
The	exception	raised	will	likely	be	an	ImportError	or	an
AttributeError	but	it	could	be	something	else.

Python	Library	Reference
Previous:	3.14.3	Usage	Up:	3.14	pickle	Next:	3.14.5	The	pickle	protocol

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.14.4	What	can	be	Up:	3.14	pickle	Next:	3.14.5.1	Pickling	and
unpickling

3.14.5	The	pickle	protocol
This	section	describes	the	``pickling	protocol''	that	defines	the	interface	between
the	pickler/unpickler	and	the	objects	that	are	being	serialized.	This	protocol
provides	a	standard	way	for	you	to	define,	customize,	and	control	how	your
objects	are	serialized	and	de-serialized.	The	description	in	this	section	doesn't
cover	specific	customizations	that	you	can	employ	to	make	the	unpickling
environment	slightly	safer	from	untrusted	pickle	data	streams;	see	section	3.14.6
for	more	details.

Subsections

3.14.5.1	Pickling	and	unpickling	normal	class	instances
3.14.5.2	Pickling	and	unpickling	extension	types
3.14.5.3	Pickling	and	unpickling	external	objects

Python	Library	Reference
Previous:	3.14.4	What	can	be	Up:	3.14	pickle	Next:	3.14.5.1	Pickling	and
unpickling

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.14.5.3	Pickling	and	unpickling	Up:	3.14	pickle	Next:	3.14.7
Example

3.14.6	Subclassing	Unpicklers
By	default,	unpickling	will	import	any	class	that	it	finds	in	the	pickle	data.	You
can	control	exactly	what	gets	unpickled	and	what	gets	called	by	customizing
your	unpickler.	Unfortunately,	exactly	how	you	do	this	is	different	depending	on
whether	you're	using	pickle	or	cPickle.3.10

In	the	pickle	module,	you	need	to	derive	a	subclass	from	Unpickler,
overriding	the	load_global()	method.	load_global()	should	read	two
lines	from	the	pickle	data	stream	where	the	first	line	will	the	name	of	the	module
containing	the	class	and	the	second	line	will	be	the	name	of	the	instance's	class.
It	then	looks	up	the	class,	possibly	importing	the	module	and	digging	out	the
attribute,	then	it	appends	what	it	finds	to	the	unpickler's	stack.	Later	on,	this
class	will	be	assigned	to	the	__class__	attribute	of	an	empty	class,	as	a	way
of	magically	creating	an	instance	without	calling	its	class's	__init__().	Your
job	(should	you	choose	to	accept	it),	would	be	to	have	load_global()	push
onto	the	unpickler's	stack,	a	known	safe	version	of	any	class	you	deem	safe	to
unpickle.	It	is	up	to	you	to	produce	such	a	class.	Or	you	could	raise	an	error	if
you	want	to	disallow	all	unpickling	of	instances.	If	this	sounds	like	a	hack,
you're	right.	Refer	to	the	source	code	to	make	this	work.

Things	are	a	little	cleaner	with	cPickle,	but	not	by	much.	To	control	what	gets
unpickled,	you	can	set	the	unpickler's	find_global	attribute	to	a	function	or
None.	If	it	is	None	then	any	attempts	to	unpickle	instances	will	raise	an
UnpicklingError.	If	it	is	a	function,	then	it	should	accept	a	module	name
and	a	class	name,	and	return	the	corresponding	class	object.	It	is	responsible	for
looking	up	the	class	and	performing	any	necessary	imports,	and	it	may	raise	an
error	to	prevent	instances	of	the	class	from	being	unpickled.

The	moral	of	the	story	is	that	you	should	be	really	careful	about	the	source	of	the
strings	your	application	unpickles.

Footnotes

...cPickle.3.10
A	word	of	caution:	the	mechanisms	described	here	use	internal	attributes
and	methods,	which	are	subject	to	change	in	future	versions	of	Python.	We
intend	to	someday	provide	a	common	interface	for	controlling	this
behavior,	which	will	work	in	either	pickle	or	cPickle.

Python	Library	Reference
Previous:	3.14.5.3	Pickling	and	unpickling	Up:	3.14	pickle	Next:	3.14.7
Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.14.6	Subclassing	Unpicklers	Up:	3.14	pickle	Next:	3.15	cPickle

3.14.7	Example
Here's	a	simple	example	of	how	to	modify	pickling	behavior	for	a	class.	The
TextReader	class	opens	a	text	file,	and	returns	the	line	number	and	line
contents	each	time	its	readline()	method	is	called.	If	a	TextReader
instance	is	pickled,	all	attributes	except	the	file	object	member	are	saved.	When
the	instance	is	unpickled,	the	file	is	reopened,	and	reading	resumes	from	the	last
location.	The	__setstate__()	and	__getstate__()	methods	are	used	to
implement	this	behavior.

class	TextReader:

				"""Print	and	number	lines	in	a	text	file."""

				def	__init__(self,	file):

								self.file	=	file

								self.fh	=	open(file)

								self.lineno	=	0

				def	readline(self):

								self.lineno	=	self.lineno	+	1

								line	=	self.fh.readline()

								if	not	line:

												return	None

								if	line.endswith("\n"):

												line	=	line[:-1]

								return	"%d:	%s"	%	(self.lineno,	line)

				def	__getstate__(self):

								odict	=	self.__dict__.copy()	#	copy	the	dict	since	we	change	it

								del	odict['fh']														#	remove	filehandle	entry

								return	odict

				def	__setstate__(self,dict):

								fh	=	open(dict['file'])						#	reopen	file

								count	=	dict['lineno']							#	read	from	file...

								while	count:																	#	until	line	count	is	restored

												fh.readline()

												count	=	count	-	1

								self.__dict__.update(dict)			#	update	attributes

								self.fh	=	fh																	#	save	the	file	object

A	sample	usage	might	be	something	like	this:

>>>	import	TextReader

>>>	obj	=	TextReader.TextReader("TextReader.py")

>>>	obj.readline()

'1:	#!/usr/local/bin/python'

>>>	#	(more	invocations	of	obj.readline()	here)

...	obj.readline()

'7:	class	TextReader:'

>>>	import	pickle

>>>	pickle.dump(obj,open('save.p','w'))

If	you	want	to	see	that	pickle	works	across	Python	processes,	start	another
Python	session,	before	continuing.	What	follows	can	happen	from	either	the
same	process	or	a	new	process.

>>>	import	pickle

>>>	reader	=	pickle.load(open('save.p'))

>>>	reader.readline()

'8:					"Print	and	number	lines	in	a	text	file."'

See	Also:

Module	copy_reg:
Pickle	interface	constructor	registration	for	extension	types.

Module	shelve:
Indexed	databases	of	objects;	uses	pickle.

Module	copy:
Shallow	and	deep	object	copying.

Module	marshal:
High-performance	serialization	of	built-in	types.

Python	Library	Reference
Previous:	3.14.6	Subclassing	Unpicklers	Up:	3.14	pickle	Next:	3.15	cPickle

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.14.7	Example	Up:	3.	Python	Runtime	Services	Next:	3.16
copy_reg

3.15	cPickle	--	A	faster	pickle
The	cPickle	module	supports	serialization	and	de-serialization	of	Python
objects,	providing	an	interface	and	functionality	nearly	identical	to	the	pickle
module.	There	are	several	differences,	the	most	important	being	performance
and	subclassability.

First,	cPickle	can	be	up	to	1000	times	faster	than	pickle	because	the	former
is	implemented	in	C.	Second,	in	the	cPickle	module	the	callables
Pickler()	and	Unpickler()	are	functions,	not	classes.	This	means	that
you	cannot	use	them	to	derive	custom	pickling	and	unpickling	subclasses.	Most
applications	have	no	need	for	this	functionality	and	should	benefit	from	the
greatly	improved	performance	of	the	cPickle	module.

The	pickle	data	stream	produced	by	pickle	and	cPickle	are	identical,	so	it
is	possible	to	use	pickle	and	cPickle	interchangeably	with	existing
pickles.3.11

There	are	additional	minor	differences	in	API	between	cPickle	and	pickle,
however	for	most	applications,	they	are	interchangable.	More	documentation	is
provided	in	the	pickle	module	documentation,	which	includes	a	list	of	the
documented	differences.

Footnotes

...	pickles.3.11
Since	the	pickle	data	format	is	actually	a	tiny	stack-oriented	programming
language,	and	some	freedom	is	taken	in	the	encodings	of	certain	objects,	it
is	possible	that	the	two	modules	produce	different	data	streams	for	the	same
input	objects.	However	it	is	guaranteed	that	they	will	always	be	able	to	read
each	other's	data	streams.

Python	Library	Reference

Previous:	3.14.7	Example	Up:	3.	Python	Runtime	Services	Next:	3.16
copy_reg

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.15	cPickle	Up:	3.	Python	Runtime	Services	Next:	3.17	shelve

3.16	copy_reg	--	Register	pickle
support	functions
The	copy_reg	module	provides	support	for	the	pickle	and	cPickle
modules.	The	copy	module	is	likely	to	use	this	in	the	future	as	well.	It	provides
configuration	information	about	object	constructors	which	are	not	classes.	Such
constructors	may	be	factory	functions	or	class	instances.

constructor(object)
Declares	object	to	be	a	valid	constructor.	If	object	is	not	callable	(and	hence
not	valid	as	a	constructor),	raises	TypeError.

pickle(type,	function[,	constructor])
Declares	that	function	should	be	used	as	a	``reduction''	function	for	objects
of	type	type;	type	must	not	be	a	``classic''	class	object.	(Classic	classes	are
handled	differently;	see	the	documentation	for	the	pickle	module	for
details.)	function	should	return	either	a	string	or	a	tuple	containing	two	or
three	elements.

The	optional	constructor	parameter,	if	provided,	is	a	callable	object	which
can	be	used	to	reconstruct	the	object	when	called	with	the	tuple	of
arguments	returned	by	function	at	pickling	time.	TypeError	will	be
raised	if	object	is	a	class	or	constructor	is	not	callable.

See	the	pickle	module	for	more	details	on	the	interface	expected	of
function	and	constructor.

Python	Library	Reference
Previous:	3.15	cPickle	Up:	3.	Python	Runtime	Services	Next:	3.17	shelve

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.16	copy_reg	Up:	3.	Python	Runtime	Services	Next:	3.17.1
Restrictions

3.17	shelve	--	Python	object
persistence
A	``shelf''	is	a	persistent,	dictionary-like	object.	The	difference	with	``dbm''
databases	is	that	the	values	(not	the	keys!)	in	a	shelf	can	be	essentially	arbitrary
Python	objects	--	anything	that	the	pickle	module	can	handle.	This	includes
most	class	instances,	recursive	data	types,	and	objects	containing	lots	of	shared
sub-objects.	The	keys	are	ordinary	strings.

open(filename[,flag='c'[,protocol=None[,writeback=False[,binary=None]]
Open	a	persistent	dictionary.	The	filename	specified	is	the	base	filename	for
the	underlying	database.	As	a	side-effect,	an	extension	may	be	added	to	the
filename	and	more	than	one	file	may	be	created.	By	default,	the	underlying
database	file	is	opened	for	reading	and	writing.	The	optional	flag
pararameter	has	the	same	interpretation	as	the	flag	parameter	of
anydbm.open.

By	default,	version	0	pickles	are	used	to	serialize	values.	The	version	of	the
pickle	protocol	can	be	specified	with	the	protocol	parameter.	Changed	in
version	2.3:	The	protocol	parameter	was	added.	The	binary	parameter	is
deprecated	and	provided	for	backwards	compatibility	only.

By	default,	mutations	to	persistent-dictionary	mutable	entries	are	not
automatically	written	back.	If	the	optional	writeback	parameter	is	set	to
True,	all	entries	accessed	are	cached	in	memory,	and	written	back	at	close
time;	this	can	make	it	handier	to	mutate	mutable	entries	in	the	persistent
dictionary,	but,	if	many	entries	are	accessed,	it	can	consume	vast	amounts
of	memory	for	the	cache,	and	it	can	make	the	close	operation	very	slow
since	all	accessed	entries	are	written	back	(there	is	no	way	to	determine
which	accessed	entries	are	mutable,	nor	which	ones	were	actually	mutated).

Shelve	objects	support	all	methods	supported	by	dictionaries.	This	eases	the
transition	from	dictionary	based	scripts	to	those	requiring	persistent	storage.

Subsections

3.17.1	Restrictions
3.17.2	Example

Python	Library	Reference
Previous:	3.16	copy_reg	Up:	3.	Python	Runtime	Services	Next:	3.17.1
Restrictions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.17	shelve	Up:	3.17	shelve	Next:	3.17.2	Example

3.17.1	Restrictions
The	choice	of	which	database	package	will	be	used	(such	as	dbm,	gdbm	or
bsddb)	depends	on	which	interface	is	available.	Therefore	it	is	not	safe	to
open	the	database	directly	using	dbm.	The	database	is	also	(unfortunately)
subject	to	the	limitations	of	dbm,	if	it	is	used	--	this	means	that	(the	pickled
representation	of)	the	objects	stored	in	the	database	should	be	fairly	small,
and	in	rare	cases	key	collisions	may	cause	the	database	to	refuse	updates.

Depending	on	the	implementation,	closing	a	persistent	dictionary	may	or
may	not	be	necessary	to	flush	changes	to	disk.	The	__del__	method	of
the	Shelf	class	calls	the	close	method,	so	the	programmer	generally
need	not	do	this	explicitly.

The	shelve	module	does	not	support	concurrent	read/write	access	to
shelved	objects.	(Multiple	simultaneous	read	accesses	are	safe.)	When	a
program	has	a	shelf	open	for	writing,	no	other	program	should	have	it	open
for	reading	or	writing.	UNIX	file	locking	can	be	used	to	solve	this,	but	this
differs	across	UNIX	versions	and	requires	knowledge	about	the	database
implementation	used.

class	Shelf(dict[,	protocol=None[,	writeback=False[,	binary=None]]])
A	subclass	of	UserDict.DictMixin	which	stores	pickled	values	in	the
dict	object.

By	default,	version	0	pickles	are	used	to	serialize	values.	The	version	of	the
pickle	protocol	can	be	specified	with	the	protocol	parameter.	See	the
pickle	documentation	for	a	discussion	of	the	pickle	protocols.	Changed
in	version	2.3:	The	protocol	parameter	was	added.	The	binary	parameter	is
deprecated	and	provided	for	backwards	compatibility	only.

If	the	writeback	parameter	is	True,	the	object	will	hold	a	cache	of	all
entries	accessed	and	write	them	back	to	the	dict	at	sync	and	close	times.
This	allows	natural	operations	on	mutable	entries,	but	can	consume	much
more	memory	and	make	sync	and	close	take	a	long	time.

dict[,	protocol=None[,	writeback=False[,

class	BsdDbShelf(binary=None]]])

A	subclass	of	Shelf	which	exposes	first,	next,	previous,	last
and	set_location	which	are	available	in	the	bsddb	module	but	not	in
other	database	modules.	The	dict	object	passed	to	the	constructor	must
support	those	methods.	This	is	generally	accomplished	by	calling	one	of
bsddb.hashopen,	bsddb.btopen	or	bsddb.rnopen.	The	optional
protocol,	writeback,	and	binary	parameters	have	the	same	interpretation	as
for	the	Shelf	class.

class	DbfilenameShelf(filename[,	flag='c'[,	protocol=None[,
writeback=False[,	binary=None]]]])

A	subclass	of	Shelf	which	accepts	a	filename	instead	of	a	dict-like	object.
The	underlying	file	will	be	opened	using	anydbm.open.	By	default,	the
file	will	be	created	and	opened	for	both	read	and	write.	The	optional	flag
parameter	has	the	same	interpretation	as	for	the	open	function.	The
optional	protocol,	writeback,	and	binary	parameters	have	the	same
interpretation	as	for	the	Shelf	class.

Python	Library	Reference
Previous:	3.17	shelve	Up:	3.17	shelve	Next:	3.17.2	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.17.1	Restrictions	Up:	3.17	shelve	Next:	3.18	copy

3.17.2	Example
To	summarize	the	interface	(key	is	a	string,	data	is	an	arbitrary	object):

import	shelve

d	=	shelve.open(filename)	#	open	--	file	may	get	suffix	added	by	low-level

																										#	library

d[key]	=	data			#	store	data	at	key	(overwrites	old	data	if

																#	using	an	existing	key)

data	=	d[key]			#	retrieve	a	COPY	of	data	at	key	(raise	KeyError	if	no

																#	such	key)

del	d[key]						#	delete	data	stored	at	key	(raises	KeyError

																#	if	no	such	key)

flag	=	d.has_key(key)			#	true	if	the	key	exists

list	=	d.keys()	#	a	list	of	all	existing	keys	(slow!)

#	as	d	was	opened	WITHOUT	writeback=True,	beware:

d['xx']	=	range(4)		#	this	works	as	expected,	but...

d['xx'].append(5)			#	*this	doesn't!*	--	d['xx']	is	STILL	range(4)!!!

#	having	opened	d	without	writeback=True,	you	need	to	code	carefully:

temp	=	d['xx']						#	extracts	the	copy

temp.append(5)						#	mutates	the	copy

d['xx']	=	temp						#	stores	the	copy	right	back,	to	persist	it

#	or,	d=shelve.open(filename,writeback=True)	would	let	you	just	code

#	d['xx'].append(5)	and	have	it	work	as	expected,	BUT	it	would	also

#	consume	more	memory	and	make	the	d.close()	operation	slower.

d.close()							#	close	it

See	Also:

Module	anydbm:
Generic	interface	to	dbm-style	databases.

Module	bsddb:
BSD	db	database	interface.

Module	dbhash:
Thin	layer	around	the	bsddb	which	provides	an	open	function	like
the	other	database	modules.

Module	dbm:
Standard	UNIX	database	interface.

Module	dumbdbm:
Portable	implementation	of	the	dbm	interface.

Module	gdbm:
GNU	database	interface,	based	on	the	dbm	interface.

Module	pickle:
Object	serialization	used	by	shelve.

Module	cPickle:
High-performance	version	of	pickle.

Python	Library	Reference
Previous:	3.17.1	Restrictions	Up:	3.17	shelve	Next:	3.18	copy

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.17.2	Example	Up:	3.	Python	Runtime	Services	Next:	3.19	marshal

3.18	copy	--	Shallow	and	deep	copy
operations
This	module	provides	generic	(shallow	and	deep)	copying	operations.

Interface	summary:

import	copy

x	=	copy.copy(y)								#	make	a	shallow	copy	of	y

x	=	copy.deepcopy(y)				#	make	a	deep	copy	of	y

For	module	specific	errors,	copy.error	is	raised.

The	difference	between	shallow	and	deep	copying	is	only	relevant	for	compound
objects	(objects	that	contain	other	objects,	like	lists	or	class	instances):

A	shallow	copy	constructs	a	new	compound	object	and	then	(to	the	extent
possible)	inserts	references	into	it	to	the	objects	found	in	the	original.

A	deep	copy	constructs	a	new	compound	object	and	then,	recursively,
inserts	copies	into	it	of	the	objects	found	in	the	original.

Two	problems	often	exist	with	deep	copy	operations	that	don't	exist	with	shallow
copy	operations:

Recursive	objects	(compound	objects	that,	directly	or	indirectly,	contain	a
reference	to	themselves)	may	cause	a	recursive	loop.

Because	deep	copy	copies	everything	it	may	copy	too	much,	e.g.,
administrative	data	structures	that	should	be	shared	even	between	copies.

The	deepcopy()	function	avoids	these	problems	by:

keeping	a	``memo''	dictionary	of	objects	already	copied	during	the	current
copying	pass;	and

letting	user-defined	classes	override	the	copying	operation	or	the	set	of

components	copied.

This	version	does	not	copy	types	like	module,	class,	function,	method,	stack
trace,	stack	frame,	file,	socket,	window,	array,	or	any	similar	types.

Classes	can	use	the	same	interfaces	to	control	copying	that	they	use	to	control
pickling.	See	the	description	of	module	pickle	for	information	on	these
methods.	The	copy	module	does	not	use	the	copy_reg	registration	module.

In	order	for	a	class	to	define	its	own	copy	implementation,	it	can	define	special
methods	__copy__()	and	__deepcopy__().	The	former	is	called	to
implement	the	shallow	copy	operation;	no	additional	arguments	are	passed.	The
latter	is	called	to	implement	the	deep	copy	operation;	it	is	passed	one	argument,
the	memo	dictionary.	If	the	__deepcopy__()	implementation	needs	to	make
a	deep	copy	of	a	component,	it	should	call	the	deepcopy()	function	with	the
component	as	first	argument	and	the	memo	dictionary	as	second	argument.

See	Also:

Module	pickle:
Discussion	of	the	special	methods	used	to	support	object	state	retrieval
and	restoration.

Python	Library	Reference
Previous:	3.17.2	Example	Up:	3.	Python	Runtime	Services	Next:	3.19	marshal

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.18	copy	Up:	3.	Python	Runtime	Services	Next:	3.20	warnings

3.19	marshal	--	Internal	Python
object	serialization
This	module	contains	functions	that	can	read	and	write	Python	values	in	a	binary
format.	The	format	is	specific	to	Python,	but	independent	of	machine
architecture	issues	(e.g.,	you	can	write	a	Python	value	to	a	file	on	a	PC,	transport
the	file	to	a	Sun,	and	read	it	back	there).	Details	of	the	format	are	undocumented
on	purpose;	it	may	change	between	Python	versions	(although	it	rarely	does).3.12

This	is	not	a	general	``persistence''	module.	For	general	persistence	and	transfer
of	Python	objects	through	RPC	calls,	see	the	modules	pickle	and	shelve.
The	marshal	module	exists	mainly	to	support	reading	and	writing	the
``pseudo-compiled''	code	for	Python	modules	of	.pyc	files.	Therefore,	the
Python	maintainers	reserve	the	right	to	modify	the	marshal	format	in	backward
incompatible	ways	should	the	need	arise.	If	you're	serializing	and	de-serializing
Python	objects,	use	the	pickle	module	instead.

Warning: 	The	marshal	module	is	not	intended	to	be	secure
against	erroneous	or	maliciously	constructed	data.	Never
unmarshal	data	received	from	an	untrusted	or	unauthenticated
source.

Not	all	Python	object	types	are	supported;	in	general,	only	objects	whose	value
is	independent	from	a	particular	invocation	of	Python	can	be	written	and	read	by
this	module.	The	following	types	are	supported:	None,	integers,	long	integers,
floating	point	numbers,	strings,	Unicode	objects,	tuples,	lists,	dictionaries,	and
code	objects,	where	it	should	be	understood	that	tuples,	lists	and	dictionaries	are
only	supported	as	long	as	the	values	contained	therein	are	themselves	supported;
and	recursive	lists	and	dictionaries	should	not	be	written	(they	will	cause	infinite
loops).

Caveat:	On	machines	where	C's	long	int	type	has	more	than	32	bits	(such	as
the	DEC	Alpha),	it	is	possible	to	create	plain	Python	integers	that	are	longer	than
32	bits.	If	such	an	integer	is	marshaled	and	read	back	in	on	a	machine	where	C's

long	int	type	has	only	32	bits,	a	Python	long	integer	object	is	returned
instead.	While	of	a	different	type,	the	numeric	value	is	the	same.	(This	behavior
is	new	in	Python	2.2.	In	earlier	versions,	all	but	the	least-significant	32	bits	of
the	value	were	lost,	and	a	warning	message	was	printed.)

There	are	functions	that	read/write	files	as	well	as	functions	operating	on	strings.

The	module	defines	these	functions:

dump(value,	file)
Write	the	value	on	the	open	file.	The	value	must	be	a	supported	type.	The
file	must	be	an	open	file	object	such	as	sys.stdout	or	returned	by
open()	or	posix.popen().	It	must	be	opened	in	binary	mode	('wb'
or	'w+b').

If	the	value	has	(or	contains	an	object	that	has)	an	unsupported	type,	a
ValueError	exception	is	raised	--	but	garbage	data	will	also	be	written	to
the	file.	The	object	will	not	be	properly	read	back	by	load().

New	in	version	2.4:	The	version	argument	indicates	the	data	format	that
dumps	should	use..

load(file)
Read	one	value	from	the	open	file	and	return	it.	If	no	valid	value	is	read,
raise	EOFError,	ValueError	or	TypeError.	The	file	must	be	an
open	file	object	opened	in	binary	mode	('rb'	or	'r+b').

Warning:	If	an	object	containing	an	unsupported	type	was	marshalled	with
dump(),	load()	will	substitute	None	for	the	unmarshallable	type.

dumps(value[,	version])
Return	the	string	that	would	be	written	to	a	file	by	dump(value,	file).
The	value	must	be	a	supported	type.	Raise	a	ValueError	exception	if
value	has	(or	contains	an	object	that	has)	an	unsupported	type.

New	in	version	2.4:	The	version	argument	indicates	the	data	format	that
dumps	should	use..

loads(string)
Convert	the	string	to	a	value.	If	no	valid	value	is	found,	raise	EOFError,
ValueError	or	TypeError.	Extra	characters	in	the	string	are	ignored.

In	addition,	the	following	constants	are	defined:

version

Indicates	the	format	that	the	module	uses.	Version	0	is	the	historical	format,
version	1	(added	in	Python	2.4)	shares	interned	strings.	The	current	version
is	1.

New	in	version	2.4.

Footnotes

...	does).3.12
The	name	of	this	module	stems	from	a	bit	of	terminology	used	by	the
designers	of	Modula-3	(amongst	others),	who	use	the	term	``marshalling''
for	shipping	of	data	around	in	a	self-contained	form.	Strictly	speaking,	``to
marshal''	means	to	convert	some	data	from	internal	to	external	form	(in	an
RPC	buffer	for	instance)	and	``unmarshalling''	for	the	reverse	process.

Python	Library	Reference
Previous:	3.18	copy	Up:	3.	Python	Runtime	Services	Next:	3.20	warnings

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.19	marshal	Up:	3.	Python	Runtime	Services	Next:	3.20.1	Warning
Categories

3.20	warnings	--	Warning	control
New	in	version	2.1.

Warning	messages	are	typically	issued	in	situations	where	it	is	useful	to	alert	the
user	of	some	condition	in	a	program,	where	that	condition	(normally)	doesn't
warrant	raising	an	exception	and	terminating	the	program.	For	example,	one
might	want	to	issue	a	warning	when	a	program	uses	an	obsolete	module.

Python	programmers	issue	warnings	by	calling	the	warn()	function	defined	in
this	module.	(C	programmers	use	PyErr_Warn();	see	the	Python/C	API
Reference	Manual	for	details).

Warning	messages	are	normally	written	to	sys.stderr,	but	their	disposition
can	be	changed	flexibly,	from	ignoring	all	warnings	to	turning	them	into
exceptions.	The	disposition	of	warnings	can	vary	based	on	the	warning	category
(see	below),	the	text	of	the	warning	message,	and	the	source	location	where	it	is
issued.	Repetitions	of	a	particular	warning	for	the	same	source	location	are
typically	suppressed.

There	are	two	stages	in	warning	control:	first,	each	time	a	warning	is	issued,	a
determination	is	made	whether	a	message	should	be	issued	or	not;	next,	if	a
message	is	to	be	issued,	it	is	formatted	and	printed	using	a	user-settable	hook.

The	determination	whether	to	issue	a	warning	message	is	controlled	by	the
warning	filter,	which	is	a	sequence	of	matching	rules	and	actions.	Rules	can	be
added	to	the	filter	by	calling	filterwarnings()	and	reset	to	its	default	state
by	calling	resetwarnings().

The	printing	of	warning	messages	is	done	by	calling	showwarning(),	which
may	be	overidden;	the	default	implementation	of	this	function	formats	the
message	by	calling	formatwarning(),	which	is	also	available	for	use	by
custom	implementations.

Subsections

3.20.1	Warning	Categories

3.20.2	The	Warnings	Filter
3.20.3	Available	Functions

Python	Library	Reference
Previous:	3.19	marshal	Up:	3.	Python	Runtime	Services	Next:	3.20.1	Warning
Categories

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.20	warnings	Up:	3.20	warnings	Next:	3.20.2	The	Warnings	Filter

3.20.1	Warning	Categories
There	are	a	number	of	built-in	exceptions	that	represent	warning	categories.	This
categorization	is	useful	to	be	able	to	filter	out	groups	of	warnings.	The	following
warnings	category	classes	are	currently	defined:

Class Description
Warning This	is	the	base	class	of	all	warning	category

classes.	It	is	a	subclass	of	Exception.
UserWarning The	default	category	for	warn().
DeprecationWarning Base	category	for	warnings	about	deprecated

features.
SyntaxWarning Base	category	for	warnings	about	dubious

syntactic	features.
RuntimeWarning Base	category	for	warnings	about	dubious

runtime	features.
FutureWarning Base	category	for	warnings	about	constructs	that

will	change	semantically	in	the	future.

While	these	are	technically	built-in	exceptions,	they	are	documented	here,
because	conceptually	they	belong	to	the	warnings	mechanism.

User	code	can	define	additional	warning	categories	by	subclassing	one	of	the
standard	warning	categories.	A	warning	category	must	always	be	a	subclass	of
the	Warning	class.

Python	Library	Reference
Previous:	3.20	warnings	Up:	3.20	warnings	Next:	3.20.2	The	Warnings	Filter

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.20.1	Warning	Categories	Up:	3.20	warnings	Next:	3.20.3	Available
Functions

3.20.2	The	Warnings	Filter
The	warnings	filter	controls	whether	warnings	are	ignored,	displayed,	or	turned
into	errors	(raising	an	exception).

Conceptually,	the	warnings	filter	maintains	an	ordered	list	of	filter	specifications;
any	specific	warning	is	matched	against	each	filter	specification	in	the	list	in	turn
until	a	match	is	found;	the	match	determines	the	disposition	of	the	match.	Each
entry	is	a	tuple	of	the	form	(action,	message,	category,	module,	lineno),	where:

action	is	one	of	the	following	strings:

Value Disposition
"error" turn	matching	warnings	into	exceptions
"ignore" never	print	matching	warnings
"always" always	print	matching	warnings
"default" print	the	first	occurrence	of	matching	warnings	for	each

location	where	the	warning	is	issued
"module" print	the	first	occurrence	of	matching	warnings	for	each

module	where	the	warning	is	issued
"once" print	only	the	first	occurrence	of	matching	warnings,

regardless	of	location

message	is	a	string	containing	a	regular	expression	that	the	warning
message	must	match	(the	match	is	compiled	to	always	be	case-insensitive)

category	is	a	class	(a	subclass	of	Warning)	of	which	the	warning	category
must	be	a	subclass	in	order	to	match

module	is	a	string	containing	a	regular	expression	that	the	module	name
must	match	(the	match	is	compiled	to	be	case-sensitive)

lineno	is	an	integer	that	the	line	number	where	the	warning	occurred	must
match,	or	0	to	match	all	line	numbers

Since	the	Warning	class	is	derived	from	the	built-in	Exception	class,	to	turn
a	warning	into	an	error	we	simply	raise	category(message).

The	warnings	filter	is	initialized	by	-W	options	passed	to	the	Python	interpreter
command	line.	The	interpreter	saves	the	arguments	for	all	-W	options	without
interpretation	in	sys.warnoptions;	the	warnings	module	parses	these
when	it	is	first	imported	(invalid	options	are	ignored,	after	printing	a	message	to
sys.stderr).

Python	Library	Reference
Previous:	3.20.1	Warning	Categories	Up:	3.20	warnings	Next:	3.20.3	Available
Functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.20.2	The	Warnings	Filter	Up:	3.20	warnings	Next:	3.21	imp

3.20.3	Available	Functions

warn(message[,	category[,	stacklevel]])
Issue	a	warning,	or	maybe	ignore	it	or	raise	an	exception.	The	category
argument,	if	given,	must	be	a	warning	category	class	(see	above);	it	defaults
to	UserWarning.	Alternatively	message	can	be	a	Warning	instance,	in
which	case	category	will	be	ignored	and	message.__class__	will	be
used.	In	this	case	the	message	text	will	be	str(message).	This	function
raises	an	exception	if	the	particular	warning	issued	is	changed	into	an	error
by	the	warnings	filter	see	above.	The	stacklevel	argument	can	be	used	by
wrapper	functions	written	in	Python,	like	this:

def	deprecation(message):

				warnings.warn(message,	DeprecationWarning,	stacklevel=2)

This	makes	the	warning	refer	to	deprecation()'s	caller,	rather	than	to
the	source	of	deprecation()	itself	(since	the	latter	would	defeat	the
purpose	of	the	warning	message).

warn_explicit(message,	category,	filename,	lineno[,	module[,	registry]])
This	is	a	low-level	interface	to	the	functionality	of	warn(),	passing	in
explicitly	the	message,	category,	filename	and	line	number,	and	optionally
the	module	name	and	the	registry	(which	should	be	the
__warningregistry__	dictionary	of	the	module).	The	module	name
defaults	to	the	filename	with	.py	stripped;	if	no	registry	is	passed,	the
warning	is	never	suppressed.	message	must	be	a	string	and	category	a
subclass	of	Warning	or	message	may	be	a	Warning	instance,	in	which
case	category	will	be	ignored.

showwarning(message,	category,	filename,	lineno[,	file])
Write	a	warning	to	a	file.	The	default	implementation	calls
formatwarning(message,	category,	filename,	lineno)	and	writes
the	resulting	string	to	file,	which	defaults	to	sys.stderr.	You	may
replace	this	function	with	an	alternative	implementation	by	assigning	to
warnings.showwarning.

formatwarning(message,	category,	filename,	lineno)
Format	a	warning	the	standard	way.	This	returns	a	string	which	may	contain
embedded	newlines	and	ends	in	a	newline.

filterwarnings(action[,	message[,	category[,	module[,	lineno[,
append]]]]])

Insert	an	entry	into	the	list	of	warnings	filters.	The	entry	is	inserted	at	the
front	by	default;	if	append	is	true,	it	is	inserted	at	the	end.	This	checks	the
types	of	the	arguments,	compiles	the	message	and	module	regular
expressions,	and	inserts	them	as	a	tuple	in	front	of	the	warnings	filter.
Entries	inserted	later	override	entries	inserted	earlier,	if	both	match	a
particular	warning.	Omitted	arguments	default	to	a	value	that	matches
everything.

resetwarnings()
Reset	the	warnings	filter.	This	discards	the	effect	of	all	previous	calls	to
filterwarnings(),	including	that	of	the	-W	command	line	options.

Python	Library	Reference
Previous:	3.20.2	The	Warnings	Filter	Up:	3.20	warnings	Next:	3.21	imp

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.20.3	Available	Functions	Up:	3.	Python	Runtime	Services	Next:
3.21.1	Examples

3.21	imp	--	Access	the	import
internals
This	module	provides	an	interface	to	the	mechanisms	used	to	implement	the
import	statement.	It	defines	the	following	constants	and	functions:

get_magic()
Return	the	magic	string	value	used	to	recognize	byte-compiled	code	files
(.pyc	files).	(This	value	may	be	different	for	each	Python	version.)

get_suffixes()
Return	a	list	of	triples,	each	describing	a	particular	type	of	module.	Each
triple	has	the	form	(suffix,	mode,	type),	where	suffix	is	a	string	to	be
appended	to	the	module	name	to	form	the	filename	to	search	for,	mode	is
the	mode	string	to	pass	to	the	built-in	open()	function	to	open	the	file
(this	can	be	'r'	for	text	files	or	'rb'	for	binary	files),	and	type	is	the	file
type,	which	has	one	of	the	values	PY_SOURCE,	PY_COMPILED,	or
C_EXTENSION,	described	below.

find_module(name[,	path])
Try	to	find	the	module	name	on	the	search	path	path.	If	path	is	a	list	of
directory	names,	each	directory	is	searched	for	files	with	any	of	the	suffixes
returned	by	get_suffixes()	above.	Invalid	names	in	the	list	are
silently	ignored	(but	all	list	items	must	be	strings).	If	path	is	omitted	or
None,	the	list	of	directory	names	given	by	sys.path	is	searched,	but	first
it	searches	a	few	special	places:	it	tries	to	find	a	built-in	module	with	the
given	name	(C_BUILTIN),	then	a	frozen	module	(PY_FROZEN),	and	on
some	systems	some	other	places	are	looked	in	as	well	(on	the	Mac,	it	looks
for	a	resource	(PY_RESOURCE);	on	Windows,	it	looks	in	the	registry
which	may	point	to	a	specific	file).

If	search	is	successful,	the	return	value	is	a	triple	(file,	pathname,
description)	where	file	is	an	open	file	object	positioned	at	the	beginning,
pathname	is	the	pathname	of	the	file	found,	and	description	is	a	triple	as

contained	in	the	list	returned	by	get_suffixes()	describing	the	kind	of
module	found.	If	the	module	does	not	live	in	a	file,	the	returned	file	is
None,	filename	is	the	empty	string,	and	the	description	tuple	contains
empty	strings	for	its	suffix	and	mode;	the	module	type	is	as	indicate	in
parentheses	above.	If	the	search	is	unsuccessful,	ImportError	is	raised.
Other	exceptions	indicate	problems	with	the	arguments	or	environment.

This	function	does	not	handle	hierarchical	module	names	(names
containing	dots).	In	order	to	find	P.M,	that	is,	submodule	M	of	package	P,
use	find_module()	and	load_module()	to	find	and	load	package	P,
and	then	use	find_module()	with	the	path	argument	set	to
P.__path__.	When	P	itself	has	a	dotted	name,	apply	this	recipe
recursively.

load_module(name,	file,	filename,	description)
Load	a	module	that	was	previously	found	by	find_module()	(or	by	an
otherwise	conducted	search	yielding	compatible	results).	This	function	does
more	than	importing	the	module:	if	the	module	was	already	imported,	it	is
equivalent	to	a	reload()!	The	name	argument	indicates	the	full	module
name	(including	the	package	name,	if	this	is	a	submodule	of	a	package).
The	file	argument	is	an	open	file,	and	filename	is	the	corresponding	file
name;	these	can	be	None	and	'',	respectively,	when	the	module	is	not
being	loaded	from	a	file.	The	description	argument	is	a	tuple,	as	would	be
returned	by	get_suffixes(),	describing	what	kind	of	module	must	be
loaded.

If	the	load	is	successful,	the	return	value	is	the	module	object;	otherwise,	an
exception	(usually	ImportError)	is	raised.

Important:	the	caller	is	responsible	for	closing	the	file	argument,	if	it	was
not	None,	even	when	an	exception	is	raised.	This	is	best	done	using	a	try
...	finally	statement.

new_module(name)
Return	a	new	empty	module	object	called	name.	This	object	is	not	inserted
in	sys.modules.

lock_held()

Return	True	if	the	import	lock	is	currently	held,	else	False.	On	platforms
without	threads,	always	return	False.

On	platforms	with	threads,	a	thread	executing	an	import	holds	an	internal
lock	until	the	import	is	complete.	This	lock	blocks	other	threads	from	doing
an	import	until	the	original	import	completes,	which	in	turn	prevents	other
threads	from	seeing	incomplete	module	objects	constructed	by	the	original
thread	while	in	the	process	of	completing	its	import	(and	the	imports,	if	any,
triggered	by	that).

acquire_lock()
Acquires	the	interpreter's	import	lock	for	the	current	thread.	This	lock
should	be	used	by	import	hooks	to	ensure	thread-safety	when	importing
modules.	On	platforms	without	threads,	this	function	does	nothing.	New	in
version	2.3.

release_lock()
Release	the	interpreter's	import	lock.	On	platforms	without	threads,	this
function	does	nothing.	New	in	version	2.3.

The	following	constants	with	integer	values,	defined	in	this	module,	are	used	to
indicate	the	search	result	of	find_module().

PY_SOURCE

The	module	was	found	as	a	source	file.

PY_COMPILED

The	module	was	found	as	a	compiled	code	object	file.

C_EXTENSION

The	module	was	found	as	dynamically	loadable	shared	library.

PY_RESOURCE

The	module	was	found	as	a	Macintosh	resource.	This	value	can	only	be
returned	on	a	Macintosh.

PKG_DIRECTORY

The	module	was	found	as	a	package	directory.

C_BUILTIN

The	module	was	found	as	a	built-in	module.

PY_FROZEN

The	module	was	found	as	a	frozen	module	(see	init_frozen()).

The	following	constant	and	functions	are	obsolete;	their	functionality	is	available
through	find_module()	or	load_module().	They	are	kept	around	for
backward	compatibility:

SEARCH_ERROR

Unused.

init_builtin(name)
Initialize	the	built-in	module	called	name	and	return	its	module	object.	If
the	module	was	already	initialized,	it	will	be	initialized	again.	A	few
modules	cannot	be	initialized	twice	--	attempting	to	initialize	these	again
will	raise	an	ImportError	exception.	If	there	is	no	built-in	module
called	name,	None	is	returned.

init_frozen(name)
Initialize	the	frozen	module	called	name	and	return	its	module	object.	If	the
module	was	already	initialized,	it	will	be	initialized	again.	If	there	is	no
frozen	module	called	name,	None	is	returned.	(Frozen	modules	are
modules	written	in	Python	whose	compiled	byte-code	object	is	incorporated
into	a	custom-built	Python	interpreter	by	Python's	freeze	utility.	See
Tools/freeze/	for	now.)

is_builtin(name)
Return	1	if	there	is	a	built-in	module	called	name	which	can	be	initialized
again.	Return	-1	if	there	is	a	built-in	module	called	name	which	cannot	be
initialized	again	(see	init_builtin()).	Return	0	if	there	is	no	built-in
module	called	name.

is_frozen(name)
Return	True	if	there	is	a	frozen	module	(see	init_frozen())	called
name,	or	False	if	there	is	no	such	module.

load_compiled(name,	pathname,	[file])
Load	and	initialize	a	module	implemented	as	a	byte-compiled	code	file	and
return	its	module	object.	If	the	module	was	already	initialized,	it	will	be
initialized	again.	The	name	argument	is	used	to	create	or	access	a	module
object.	The	pathname	argument	points	to	the	byte-compiled	code	file.	The
file	argument	is	the	byte-compiled	code	file,	open	for	reading	in	binary
mode,	from	the	beginning.	It	must	currently	be	a	real	file	object,	not	a	user-
defined	class	emulating	a	file.

load_dynamic(name,	pathname[,	file])
Load	and	initialize	a	module	implemented	as	a	dynamically	loadable	shared
library	and	return	its	module	object.	If	the	module	was	already	initialized,	it
will	be	initialized	again.	Some	modules	don't	like	that	and	may	raise	an
exception.	The	pathname	argument	must	point	to	the	shared	library.	The
name	argument	is	used	to	construct	the	name	of	the	initialization	function:
an	external	C	function	called	"initname()"	in	the	shared	library	is	called.
The	optional	file	argument	is	ignored.	(Note:	using	shared	libraries	is	highly
system	dependent,	and	not	all	systems	support	it.)

load_source(name,	pathname[,	file])
Load	and	initialize	a	module	implemented	as	a	Python	source	file	and
return	its	module	object.	If	the	module	was	already	initialized,	it	will	be
initialized	again.	The	name	argument	is	used	to	create	or	access	a	module
object.	The	pathname	argument	points	to	the	source	file.	The	file	argument
is	the	source	file,	open	for	reading	as	text,	from	the	beginning.	It	must
currently	be	a	real	file	object,	not	a	user-defined	class	emulating	a	file.	Note
that	if	a	properly	matching	byte-compiled	file	(with	suffix	.pyc	or	.pyo)
exists,	it	will	be	used	instead	of	parsing	the	given	source	file.

Subsections

3.21.1	Examples

Python	Library	Reference
Previous:	3.20.3	Available	Functions	Up:	3.	Python	Runtime	Services	Next:
3.21.1	Examples

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.21	imp	Up:	3.21	imp	Next:	3.22	pkgutil

3.21.1	Examples
The	following	function	emulates	what	was	the	standard	import	statement	up	to
Python	1.4	(no	hierarchical	module	names).	(This	implementation	wouldn't	work
in	that	version,	since	find_module()	has	been	extended	and
load_module()	has	been	added	in	1.4.)

import	imp

import	sys

def	__import__(name,	globals=None,	locals=None,	fromlist=None):

				#	Fast	path:	see	if	the	module	has	already	been	imported.

				try:

								return	sys.modules[name]

				except	KeyError:

								pass

				#	If	any	of	the	following	calls	raises	an	exception,

				#	there's	a	problem	we	can't	handle	--	let	the	caller	handle	it.

				fp,	pathname,	description	=	imp.find_module(name)

				

				try:

								return	imp.load_module(name,	fp,	pathname,	description)

				finally:

								#	Since	we	may	exit	via	an	exception,	close	fp	explicitly.

								if	fp:

												fp.close()

A	more	complete	example	that	implements	hierarchical	module	names	and
includes	a	reload()	function	can	be	found	in	the	module	knee.	The	knee
module	can	be	found	in	Demo/imputil/	in	the	Python	source	distribution.

Python	Library	Reference
Previous:	3.21	imp	Up:	3.21	imp	Next:	3.22	pkgutil

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.21.1	Examples	Up:	3.	Python	Runtime	Services	Next:	3.23	code

3.22	pkgutil	--	Package	extension
utility
New	in	version	2.3.

This	module	provides	a	single	function:

extend_path(path,	name)
Extend	the	search	path	for	the	modules	which	comprise	a	package.	Intended
use	is	to	place	the	following	code	in	a	package's	__init__.py:

from	pkgutil	import	extend_path

__path__	=	extend_path(__path__,	__name__)

This	will	add	to	the	package's	__path__	all	subdirectories	of	directories
on	sys.path	named	after	the	package.	This	is	useful	if	one	wants	to
distribute	different	parts	of	a	single	logical	package	as	multiple	directories.

It	also	looks	for	*.pkg	files	beginning	where	*	matches	the	name	argument.
This	feature	is	similar	to	*.pth	files	(see	the	site	module	for	more
information),	except	that	it	doesn't	special-case	lines	starting	with	import.
A	*.pkg	file	is	trusted	at	face	value:	apart	from	checking	for	duplicates,	all
entries	found	in	a	*.pkg	file	are	added	to	the	path,	regardless	of	whether
they	exist	the	filesystem.	(This	is	a	feature.)

If	the	input	path	is	not	a	list	(as	is	the	case	for	frozen	packages)	it	is
returned	unchanged.	The	input	path	is	not	modified;	an	extended	copy	is
returned.	Items	are	only	appended	to	the	copy	at	the	end.

It	is	assumed	that	sys.path	is	a	sequence.	Items	of	sys.path	that	are
not	(Unicode	or	8-bit)	strings	referring	to	existing	directories	are	ignored.
Unicode	items	on	sys.path	that	cause	errors	when	used	as	filenames
may	cause	this	function	to	raise	an	exception	(in	line	with
os.path.isdir()	behavior).

Python	Library	Reference
Previous:	3.21.1	Examples	Up:	3.	Python	Runtime	Services	Next:	3.23	code

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.22	pkgutil	Up:	3.	Python	Runtime	Services	Next:	3.23.1	Interactive
Interpreter	Objects

3.23	code	--	Interpreter	base	classes
The	code	module	provides	facilities	to	implement	read-eval-print	loops	in
Python.	Two	classes	and	convenience	functions	are	included	which	can	be	used
to	build	applications	which	provide	an	interactive	interpreter	prompt.

class	InteractiveInterpreter([locals])
This	class	deals	with	parsing	and	interpreter	state	(the	user's	namespace);	it
does	not	deal	with	input	buffering	or	prompting	or	input	file	naming	(the
filename	is	always	passed	in	explicitly).	The	optional	locals	argument
specifies	the	dictionary	in	which	code	will	be	executed;	it	defaults	to	a
newly	created	dictionary	with	key	'__name__'	set	to	'__console__'
and	key	'__doc__'	set	to	None.

class	InteractiveConsole([locals[,	filename]])
Closely	emulate	the	behavior	of	the	interactive	Python	interpreter.	This
class	builds	on	InteractiveInterpreter	and	adds	prompting	using
the	familiar	sys.ps1	and	sys.ps2,	and	input	buffering.

interact([banner[,	readfunc[,	local]]])
Convenience	function	to	run	a	read-eval-print	loop.	This	creates	a	new
instance	of	InteractiveConsole	and	sets	readfunc	to	be	used	as	the
raw_input()	method,	if	provided.	If	local	is	provided,	it	is	passed	to	the
InteractiveConsole	constructor	for	use	as	the	default	namespace	for
the	interpreter	loop.	The	interact()	method	of	the	instance	is	then	run
with	banner	passed	as	the	banner	to	use,	if	provided.	The	console	object	is
discarded	after	use.

compile_command(source[,	filename[,	symbol]])
This	function	is	useful	for	programs	that	want	to	emulate	Python's
interpreter	main	loop	(a.k.a.	the	read-eval-print	loop).	The	tricky	part	is	to
determine	when	the	user	has	entered	an	incomplete	command	that	can	be
completed	by	entering	more	text	(as	opposed	to	a	complete	command	or	a
syntax	error).	This	function	almost	always	makes	the	same	decision	as	the
real	interpreter	main	loop.

source	is	the	source	string;	filename	is	the	optional	filename	from	which
source	was	read,	defaulting	to	'<input>';	and	symbol	is	the	optional
grammar	start	symbol,	which	should	be	either	'single'	(the	default)	or
'eval'.

Returns	a	code	object	(the	same	as	compile(source,	filename,
symbol))	if	the	command	is	complete	and	valid;	None	if	the	command	is
incomplete;	raises	SyntaxError	if	the	command	is	complete	and
contains	a	syntax	error,	or	raises	OverflowError	or	ValueError	if
the	command	contains	an	invalid	literal.

Subsections

3.23.1	Interactive	Interpreter	Objects
3.23.2	Interactive	Console	Objects

Python	Library	Reference
Previous:	3.22	pkgutil	Up:	3.	Python	Runtime	Services	Next:	3.23.1	Interactive
Interpreter	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.23	code	Up:	3.23	code	Next:	3.23.2	Interactive	Console	Objects

3.23.1	Interactive	Interpreter	Objects

runsource(source[,	filename[,	symbol]])
Compile	and	run	some	source	in	the	interpreter.	Arguments	are	the	same	as
for	compile_command();	the	default	for	filename	is	'<input>',	and
for	symbol	is	'single'.	One	several	things	can	happen:

The	input	is	incorrect;	compile_command()	raised	an	exception
(SyntaxError	or	OverflowError).	A	syntax	traceback	will	be
printed	by	calling	the	showsyntaxerror()	method.
runsource()	returns	False.

The	input	is	incomplete,	and	more	input	is	required;
compile_command()	returned	None.	runsource()	returns
True.

The	input	is	complete;	compile_command()	returned	a	code
object.	The	code	is	executed	by	calling	the	runcode()	(which	also
handles	run-time	exceptions,	except	for	SystemExit).
runsource()	returns	False.

The	return	value	can	be	used	to	decide	whether	to	use	sys.ps1	or
sys.ps2	to	prompt	the	next	line.

runcode(code)
Execute	a	code	object.	When	an	exception	occurs,	showtraceback()	is
called	to	display	a	traceback.	All	exceptions	are	caught	except
SystemExit,	which	is	allowed	to	propagate.

A	note	about	KeyboardInterrupt:	this	exception	may	occur	elsewhere
in	this	code,	and	may	not	always	be	caught.	The	caller	should	be	prepared
to	deal	with	it.

showsyntaxerror([filename])
Display	the	syntax	error	that	just	occurred.	This	does	not	display	a	stack
trace	because	there	isn't	one	for	syntax	errors.	If	filename	is	given,	it	is

stuffed	into	the	exception	instead	of	the	default	filename	provided	by
Python's	parser,	because	it	always	uses	'<string>'	when	reading	from	a
string.	The	output	is	written	by	the	write()	method.

showtraceback()
Display	the	exception	that	just	occurred.	We	remove	the	first	stack	item
because	it	is	within	the	interpreter	object	implementation.	The	output	is
written	by	the	write()	method.

write(data)
Write	a	string	to	the	standard	error	stream	(sys.stderr).	Derived	classes
should	override	this	to	provide	the	appropriate	output	handling	as	needed.

Python	Library	Reference
Previous:	3.23	code	Up:	3.23	code	Next:	3.23.2	Interactive	Console	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.23.1	Interactive	Interpreter	Objects	Up:	3.23	code	Next:	3.24
codeop

3.23.2	Interactive	Console	Objects
The	InteractiveConsole	class	is	a	subclass	of
InteractiveInterpreter,	and	so	offers	all	the	methods	of	the	interpreter
objects	as	well	as	the	following	additions.

interact([banner])
Closely	emulate	the	interactive	Python	console.	The	optional	banner
argument	specify	the	banner	to	print	before	the	first	interaction;	by	default
it	prints	a	banner	similar	to	the	one	printed	by	the	standard	Python
interpreter,	followed	by	the	class	name	of	the	console	object	in	parentheses
(so	as	not	to	confuse	this	with	the	real	interpreter	-	since	it's	so	close!).

push(line)
Push	a	line	of	source	text	to	the	interpreter.	The	line	should	not	have	a
trailing	newline;	it	may	have	internal	newlines.	The	line	is	appended	to	a
buffer	and	the	interpreter's	runsource()	method	is	called	with	the
concatenated	contents	of	the	buffer	as	source.	If	this	indicates	that	the
command	was	executed	or	invalid,	the	buffer	is	reset;	otherwise,	the
command	is	incomplete,	and	the	buffer	is	left	as	it	was	after	the	line	was
appended.	The	return	value	is	True	if	more	input	is	required,	False	if	the
line	was	dealt	with	in	some	way	(this	is	the	same	as	runsource()).

resetbuffer()
Remove	any	unhandled	source	text	from	the	input	buffer.

raw_input([prompt])
Write	a	prompt	and	read	a	line.	The	returned	line	does	not	include	the
trailing	newline.	When	the	user	enters	the	EOF	key	sequence,	EOFError
is	raised.	The	base	implementation	uses	the	built-in	function
raw_input();	a	subclass	may	replace	this	with	a	different
implementation.

Python	Library	Reference
Previous:	3.23.1	Interactive	Interpreter	Objects	Up:	3.23	code	Next:	3.24

codeop

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.23.2	Interactive	Console	Objects	Up:	3.	Python	Runtime
Services	Next:	3.25	pprint

3.24	codeop	--	Compile	Python	code
The	codeop	module	provides	utilities	upon	which	the	Python	read-eval-print
loop	can	be	emulated,	as	is	done	in	the	code	module.	As	a	result,	you	probably
don't	want	to	use	the	module	directly;	if	you	want	to	include	such	a	loop	in	your
program	you	probably	want	to	use	the	code	module	instead.

There	are	two	parts	to	this	job:

1.	 Being	able	to	tell	if	a	line	of	input	completes	a	Python	statement:	in	short,
telling	whether	to	print	`>>>	'	or	`...	'	next.

2.	 Remembering	which	future	statements	the	user	has	entered,	so	subsequent
input	can	be	compiled	with	these	in	effect.

The	codeop	module	provides	a	way	of	doing	each	of	these	things,	and	a	way	of
doing	them	both.

To	do	just	the	former:

compile_command(source[,	filename[,	symbol]])
Tries	to	compile	source,	which	should	be	a	string	of	Python	code	and	return
a	code	object	if	source	is	valid	Python	code.	In	that	case,	the	filename
attribute	of	the	code	object	will	be	filename,	which	defaults	to
'<input>'.	Returns	None	if	source	is	not	valid	Python	code,	but	is	a
prefix	of	valid	Python	code.

If	there	is	a	problem	with	source,	an	exception	will	be	raised.
SyntaxError	is	raised	if	there	is	invalid	Python	syntax,	and
OverflowError	or	ValueError	if	there	is	an	invalid	literal.

The	symbol	argument	determines	whether	source	is	compiled	as	a	statement
('single',	the	default)	or	as	an	expression	('eval').	Any	other	value
will	cause	ValueError	to	be	raised.

Caveat:	It	is	possible	(but	not	likely)	that	the	parser	stops	parsing	with	a
successful	outcome	before	reaching	the	end	of	the	source;	in	this	case,
trailing	symbols	may	be	ignored	instead	of	causing	an	error.	For	example,	a

backslash	followed	by	two	newlines	may	be	followed	by	arbitrary	garbage.
This	will	be	fixed	once	the	API	for	the	parser	is	better.

class	Compile()
Instances	of	this	class	have	__call__()	methods	indentical	in	signature
to	the	built-in	function	compile(),	but	with	the	difference	that	if	the
instance	compiles	program	text	containing	a	__future__	statement,	the
instance	'remembers'	and	compiles	all	subsequent	program	texts	with	the
statement	in	force.

class	CommandCompiler()
Instances	of	this	class	have	__call__()	methods	identical	in	signature	to
compile_command();	the	difference	is	that	if	the	instance	compiles
program	text	containing	a	__future__	statement,	the	instance
'remembers'	and	compiles	all	subsequent	program	texts	with	the	statement
in	force.

A	note	on	version	compatibility:	the	Compile	and	CommandCompiler	are
new	in	Python	2.2.	If	you	want	to	enable	the	future-tracking	features	of	2.2	but
also	retain	compatibility	with	2.1	and	earlier	versions	of	Python	you	can	either
write

try:

				from	codeop	import	CommandCompiler

				compile_command	=	CommandCompiler()

				del	CommandCompiler

except	ImportError:

				from	codeop	import	compile_command

which	is	a	low-impact	change,	but	introduces	possibly	unwanted	global	state	into
your	program,	or	you	can	write:

try:

				from	codeop	import	CommandCompiler

except	ImportError:

				def	CommandCompiler():

								from	codeop	import	compile_command

								return	compile_command

and	then	call	CommandCompiler	every	time	you	need	a	fresh	compiler	object.

Python	Library	Reference
Previous:	3.23.2	Interactive	Console	Objects	Up:	3.	Python	Runtime
Services	Next:	3.25	pprint

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.24	codeop	Up:	3.	Python	Runtime	Services	Next:	3.25.1
PrettyPrinter	Objects

3.25	pprint	--	Data	pretty	printer
The	pprint	module	provides	a	capability	to	``pretty-print''	arbitrary	Python
data	structures	in	a	form	which	can	be	used	as	input	to	the	interpreter.	If	the
formatted	structures	include	objects	which	are	not	fundamental	Python	types,	the
representation	may	not	be	loadable.	This	may	be	the	case	if	objects	such	as	files,
sockets,	classes,	or	instances	are	included,	as	well	as	many	other	builtin	objects
which	are	not	representable	as	Python	constants.

The	formatted	representation	keeps	objects	on	a	single	line	if	it	can,	and	breaks
them	onto	multiple	lines	if	they	don't	fit	within	the	allowed	width.	Construct
PrettyPrinter	objects	explicitly	if	you	need	to	adjust	the	width	constraint.

The	pprint	module	defines	one	class:

class	PrettyPrinter(...)
Construct	a	PrettyPrinter	instance.	This	constructor	understands
several	keyword	parameters.	An	output	stream	may	be	set	using	the	stream
keyword;	the	only	method	used	on	the	stream	object	is	the	file	protocol's
write()	method.	If	not	specified,	the	PrettyPrinter	adopts
sys.stdout.	Three	additional	parameters	may	be	used	to	control	the
formatted	representation.	The	keywords	are	indent,	depth,	and	width.	The
amount	of	indentation	added	for	each	recursive	level	is	specified	by	indent;
the	default	is	one.	Other	values	can	cause	output	to	look	a	little	odd,	but	can
make	nesting	easier	to	spot.	The	number	of	levels	which	may	be	printed	is
controlled	by	depth;	if	the	data	structure	being	printed	is	too	deep,	the	next
contained	level	is	replaced	by	"...".	By	default,	there	is	no	constraint	on
the	depth	of	the	objects	being	formatted.	The	desired	output	width	is
constrained	using	the	width	parameter;	the	default	is	eighty	characters.	If	a
structure	cannot	be	formatted	within	the	constrained	width,	a	best	effort	will
be	made.

>>>	import	pprint,	sys

>>>	stuff	=	sys.path[:]

>>>	stuff.insert(0,	stuff[:])

>>>	pp	=	pprint.PrettyPrinter(indent=4)

>>>	pp.pprint(stuff)

[['',

								'/usr/local/lib/python1.5',

								'/usr/local/lib/python1.5/test',

								'/usr/local/lib/python1.5/sunos5',

								'/usr/local/lib/python1.5/sharedmodules',

								'/usr/local/lib/python1.5/tkinter'],

				'',

				'/usr/local/lib/python1.5',

				'/usr/local/lib/python1.5/test',

				'/usr/local/lib/python1.5/sunos5',

				'/usr/local/lib/python1.5/sharedmodules',

				'/usr/local/lib/python1.5/tkinter']

>>>

>>>	import	parser

>>>	tup	=	parser.ast2tuple(

...					parser.suite(open('pprint.py').read()))[1][1][1]

>>>	pp	=	pprint.PrettyPrinter(depth=6)

>>>	pp.pprint(tup)

(266,	(267,	(307,	(287,	(288,	(...))))))

The	PrettyPrinter	class	supports	several	derivative	functions:

pformat(object[,	indent[,	width[,	depth]]])
Return	the	formatted	representation	of	object	as	a	string.	indent,	width	and
depth	will	be	passed	to	the	PrettyPrinter	constructor	as	formatting
parameters.	Changed	in	version	2.4:	The	parameters	indent,	width	and
depth	were	added.

pprint(object[,	stream[,	indent[,	width[,	depth]]]])
Prints	the	formatted	representation	of	object	on	stream,	followed	by	a
newline.	If	stream	is	omitted,	sys.stdout	is	used.	This	may	be	used	in
the	interactive	interpreter	instead	of	a	print	statement	for	inspecting
values.	indent,	width	and	depth	will	be	passed	to	the	PrettyPrinter
constructor	as	formatting	parameters.

>>>	stuff	=	sys.path[:]

>>>	stuff.insert(0,	stuff)

>>>	pprint.pprint(stuff)

[<Recursion	on	list	with	id=869440>,

	'',

	'/usr/local/lib/python1.5',

	'/usr/local/lib/python1.5/test',

	'/usr/local/lib/python1.5/sunos5',

	'/usr/local/lib/python1.5/sharedmodules',

	'/usr/local/lib/python1.5/tkinter']

Changed	in	version	2.4:	The	parameters	indent,	width	and	depth	were

added.

isreadable(object)
Determine	if	the	formatted	representation	of	object	is	``readable,''	or	can	be
used	to	reconstruct	the	value	using	eval().	This	always	returns	false	for
recursive	objects.

>>>	pprint.isreadable(stuff)

False

isrecursive(object)
Determine	if	object	requires	a	recursive	representation.

One	more	support	function	is	also	defined:

saferepr(object)
Return	a	string	representation	of	object,	protected	against	recursive	data
structures.	If	the	representation	of	object	exposes	a	recursive	entry,	the
recursive	reference	will	be	represented	as	"<Recursion	on	typename
with	id=number>".	The	representation	is	not	otherwise	formatted.

>>>	pprint.saferepr(stuff)

"[<Recursion	on	list	with	id=682968>,	'',	'/usr/local/lib/python1.5',	'/usr/loca

l/lib/python1.5/test',	'/usr/local/lib/python1.5/sunos5',	'/usr/local/lib/python

1.5/sharedmodules',	'/usr/local/lib/python1.5/tkinter']"

Subsections

3.25.1	PrettyPrinter	Objects

Python	Library	Reference
Previous:	3.24	codeop	Up:	3.	Python	Runtime	Services	Next:	3.25.1
PrettyPrinter	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.25	pprint	Up:	3.25	pprint	Next:	3.26	repr

3.25.1	PrettyPrinter	Objects
PrettyPrinter	instances	have	the	following	methods:

pformat(object)
Return	the	formatted	representation	of	object.	This	takes	into	Account	the
options	passed	to	the	PrettyPrinter	constructor.

pprint(object)
Print	the	formatted	representation	of	object	on	the	configured	stream,
followed	by	a	newline.

The	following	methods	provide	the	implementations	for	the	corresponding
functions	of	the	same	names.	Using	these	methods	on	an	instance	is	slightly
more	efficient	since	new	PrettyPrinter	objects	don't	need	to	be	created.

isreadable(object)
Determine	if	the	formatted	representation	of	the	object	is	``readable,''	or	can
be	used	to	reconstruct	the	value	using	eval().	Note	that	this	returns	false
for	recursive	objects.	If	the	depth	parameter	of	the	PrettyPrinter	is	set
and	the	object	is	deeper	than	allowed,	this	returns	false.

isrecursive(object)
Determine	if	the	object	requires	a	recursive	representation.

This	method	is	provided	as	a	hook	to	allow	subclasses	to	modify	the	way	objects
are	converted	to	strings.	The	default	implementation	uses	the	internals	of	the
saferepr()	implementation.

format(object,	context,	maxlevels,	level)
Returns	three	values:	the	formatted	version	of	object	as	a	string,	a	flag
indicating	whether	the	result	is	readable,	and	a	flag	indicating	whether
recursion	was	detected.	The	first	argument	is	the	object	to	be	presented.	The
second	is	a	dictionary	which	contains	the	id()	of	objects	that	are	part	of
the	current	presentation	context	(direct	and	indirect	containers	for	object
that	are	affecting	the	presentation)	as	the	keys;	if	an	object	needs	to	be

presented	which	is	already	represented	in	context,	the	third	return	value
should	be	true.	Recursive	calls	to	the	format()	method	should	add
additionaly	entries	for	containers	to	this	dictionary.	The	fourth	argument,
maxlevels,	gives	the	requested	limit	to	recursion;	this	will	be	0	if	there	is	no
requested	limit.	This	argument	should	be	passed	unmodified	to	recursive
calls.	The	fourth	argument,	level	gives	the	current	level;	recursive	calls
should	be	passed	a	value	less	than	that	of	the	current	call.	New	in	version
2.3.

Python	Library	Reference
Previous:	3.25	pprint	Up:	3.25	pprint	Next:	3.26	repr

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.25.1	PrettyPrinter	Objects	Up:	3.	Python	Runtime	Services	Next:
3.26.1	Repr	Objects

3.26	repr	--	Alternate	repr()
implementation
The	repr	module	provides	a	means	for	producing	object	representations	with
limits	on	the	size	of	the	resulting	strings.	This	is	used	in	the	Python	debugger
and	may	be	useful	in	other	contexts	as	well.

This	module	provides	a	class,	an	instance,	and	a	function:

class	Repr()
Class	which	provides	formatting	services	useful	in	implementing	functions
similar	to	the	built-in	repr();	size	limits	for	different	object	types	are
added	to	avoid	the	generation	of	representations	which	are	excessively
long.

aRepr

This	is	an	instance	of	Repr	which	is	used	to	provide	the	repr()	function
described	below.	Changing	the	attributes	of	this	object	will	affect	the	size
limits	used	by	repr()	and	the	Python	debugger.

repr(obj)
This	is	the	repr()	method	of	aRepr.	It	returns	a	string	similar	to	that
returned	by	the	built-in	function	of	the	same	name,	but	with	limits	on	most
sizes.

Subsections

3.26.1	Repr	Objects
3.26.2	Subclassing	Repr	Objects

Python	Library	Reference
Previous:	3.25.1	PrettyPrinter	Objects	Up:	3.	Python	Runtime	Services	Next:
3.26.1	Repr	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.26	repr	Up:	3.26	repr	Next:	3.26.2	Subclassing	Repr	Objects

3.26.1	Repr	Objects
Repr	instances	provide	several	members	which	can	be	used	to	provide	size
limits	for	the	representations	of	different	object	types,	and	methods	which	format
specific	object	types.

maxlevel

Depth	limit	on	the	creation	of	recursive	representations.	The	default	is	6.

maxdict

maxlist

maxtuple

maxset

maxfrozenset

maxdeque

maxarray

Limits	on	the	number	of	entries	represented	for	the	named	object	type.	The
default	is	4	for	maxdict,	5	for	maxarray,	and	6	for	the	others.	New	in
version	2.4:	maxset,	maxfrozenset,	and	set.	.

maxlong

Maximum	number	of	characters	in	the	representation	for	a	long	integer.
Digits	are	dropped	from	the	middle.	The	default	is	40.

maxstring

Limit	on	the	number	of	characters	in	the	representation	of	the	string.	Note
that	the	``normal''	representation	of	the	string	is	used	as	the	character
source:	if	escape	sequences	are	needed	in	the	representation,	these	may	be
mangled	when	the	representation	is	shortened.	The	default	is	30.

maxother

This	limit	is	used	to	control	the	size	of	object	types	for	which	no	specific
formatting	method	is	available	on	the	Repr	object.	It	is	applied	in	a	similar
manner	as	maxstring.	The	default	is	20.

repr(obj)
The	equivalent	to	the	built-in	repr()	that	uses	the	formatting	imposed	by

the	instance.

repr1(obj,	level)
Recursive	implementation	used	by	repr().	This	uses	the	type	of	obj	to
determine	which	formatting	method	to	call,	passing	it	obj	and	level.	The
type-specific	methods	should	call	repr1()	to	perform	recursive
formatting,	with	level	-	1	for	the	value	of	level	in	the	recursive	call.

repr_type(obj,	level)
Formatting	methods	for	specific	types	are	implemented	as	methods	with	a
name	based	on	the	type	name.	In	the	method	name,	type	is	replaced	by
string.join(string.split(type(obj).__name__,	'_')).
Dispatch	to	these	methods	is	handled	by	repr1().	Type-specific	methods
which	need	to	recursively	format	a	value	should	call
"self.repr1(subobj,	level	-	1)".

Python	Library	Reference
Previous:	3.26	repr	Up:	3.26	repr	Next:	3.26.2	Subclassing	Repr	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.26.1	Repr	Objects	Up:	3.26	repr	Next:	3.27	new

3.26.2	Subclassing	Repr	Objects
The	use	of	dynamic	dispatching	by	Repr.repr1()	allows	subclasses	of	Repr
to	add	support	for	additional	built-in	object	types	or	to	modify	the	handling	of
types	already	supported.	This	example	shows	how	special	support	for	file	objects
could	be	added:

import	repr

import	sys

class	MyRepr(repr.Repr):

				def	repr_file(self,	obj,	level):

								if	obj.name	in	['<stdin>',	'<stdout>',	'<stderr>']:

												return	obj.name

								else:

												return	`obj`

aRepr	=	MyRepr()

print	aRepr.repr(sys.stdin)										#	prints	'<stdin>'

Python	Library	Reference
Previous:	3.26.1	Repr	Objects	Up:	3.26	repr	Next:	3.27	new

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.26.2	Subclassing	Repr	Objects	Up:	3.	Python	Runtime	Services
Next:	3.28	site

3.27	new	--	Creation	of	runtime
internal	objects
The	new	module	allows	an	interface	to	the	interpreter	object	creation	functions.
This	is	for	use	primarily	in	marshal-type	functions,	when	a	new	object	needs	to
be	created	``magically''	and	not	by	using	the	regular	creation	functions.	This
module	provides	a	low-level	interface	to	the	interpreter,	so	care	must	be
exercised	when	using	this	module.	It	is	possible	to	supply	non-sensical
arguments	which	crash	the	interpreter	when	the	object	is	used.

The	new	module	defines	the	following	functions:

instance(class[,	dict])
This	function	creates	an	instance	of	class	with	dictionary	dict	without
calling	the	__init__()	constructor.	If	dict	is	omitted	or	None,	a	new,
empty	dictionary	is	created	for	the	new	instance.	Note	that	there	are	no
guarantees	that	the	object	will	be	in	a	consistent	state.

instancemethod(function,	instance,	class)
This	function	will	return	a	method	object,	bound	to	instance,	or	unbound	if
instance	is	None.	function	must	be	callable.

function(code,	globals[,	name[,	argdefs]])
Returns	a	(Python)	function	with	the	given	code	and	globals.	If	name	is
given,	it	must	be	a	string	or	None.	If	it	is	a	string,	the	function	will	have	the
given	name,	otherwise	the	function	name	will	be	taken	from
code.co_name.	If	argdefs	is	given,	it	must	be	a	tuple	and	will	be	used	to
determine	the	default	values	of	parameters.

code(argcount,	nlocals,	stacksize,	flags,	codestring,	constants,	names,varnames,	filename,	name,	firstlineno,	lnotab)
This	function	is	an	interface	to	the	PyCode_New()	C	function.

module(name)

This	function	returns	a	new	module	object	with	name	name.	name	must	be
a	string.

classobj(name,	baseclasses,	dict)
This	function	returns	a	new	class	object,	with	name	name,	derived	from
baseclasses	(which	should	be	a	tuple	of	classes)	and	with	namespace	dict.

Python	Library	Reference
Previous:	3.26.2	Subclassing	Repr	Objects	Up:	3.	Python	Runtime	Services
Next:	3.28	site

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.27	new	Up:	3.	Python	Runtime	Services	Next:	3.29	user

3.28	site	--	Site-specific
configuration	hook
This	module	is	automatically	imported	during	initialization.	The	automatic
import	can	be	suppressed	using	the	interpreter's	-S	option.

Importing	this	module	will	append	site-specific	paths	to	the	module	search	path.

It	starts	by	constructing	up	to	four	directories	from	a	head	and	a	tail	part.	For	the
head	part,	it	uses	sys.prefix	and	sys.exec_prefix;	empty	heads	are
skipped.	For	the	tail	part,	it	uses	the	empty	string	(on	Macintosh	or	Windows)	or
it	uses	first	lib/python2.4/site-packages	and	then	lib/site-python	(on	UNIX).
For	each	of	the	distinct	head-tail	combinations,	it	sees	if	it	refers	to	an	existing
directory,	and	if	so,	adds	it	to	sys.path	and	also	inspects	the	newly	added	path
for	configuration	files.

A	path	configuration	file	is	a	file	whose	name	has	the	form	package.pth	and
exists	in	one	of	the	four	directories	mentioned	above;	its	contents	are	additional
items	(one	per	line)	to	be	added	to	sys.path.	Non-existing	items	are	never
added	to	sys.path,	but	no	check	is	made	that	the	item	refers	to	a	directory
(rather	than	a	file).	No	item	is	added	to	sys.path	more	than	once.	Blank	lines
and	lines	beginning	with	#	are	skipped.	Lines	starting	with	import	are
executed.

For	example,	suppose	sys.prefix	and	sys.exec_prefix	are	set	to
/usr/local.	The	Python	2.4	library	is	then	installed	in	/usr/local/lib/python2.4
(where	only	the	first	three	characters	of	sys.version	are	used	to	form	the
installation	path	name).	Suppose	this	has	a	subdirectory
/usr/local/lib/python2.4/site-packages	with	three	subsubdirectories,	foo,	bar
and	spam,	and	two	path	configuration	files,	foo.pth	and	bar.pth.	Assume
foo.pth	contains	the	following:

#	foo	package	configuration

foo

bar

bletch

and	bar.pth	contains:

#	bar	package	configuration

bar

Then	the	following	directories	are	added	to	sys.path,	in	this	order:

/usr/local/lib/python2.3/site-packages/bar

/usr/local/lib/python2.3/site-packages/foo

Note	that	bletch	is	omitted	because	it	doesn't	exist;	the	bar	directory	precedes
the	foo	directory	because	bar.pth	comes	alphabetically	before	foo.pth;	and
spam	is	omitted	because	it	is	not	mentioned	in	either	path	configuration	file.

After	these	path	manipulations,	an	attempt	is	made	to	import	a	module	named
sitecustomize,	which	can	perform	arbitrary	site-specific	customizations.	If
this	import	fails	with	an	ImportError	exception,	it	is	silently	ignored.

Note	that	for	some	non-UNIX	systems,	sys.prefix	and	sys.exec_prefix
are	empty,	and	the	path	manipulations	are	skipped;	however	the	import	of
sitecustomize	is	still	attempted.

Python	Library	Reference
Previous:	3.27	new	Up:	3.	Python	Runtime	Services	Next:	3.29	user

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.28	site	Up:	3.	Python	Runtime	Services	Next:	3.30	__builtin__

3.29	user	--	User-specific
configuration	hook
As	a	policy,	Python	doesn't	run	user-specified	code	on	startup	of	Python
programs.	(Only	interactive	sessions	execute	the	script	specified	in	the
PYTHONSTARTUP	environment	variable	if	it	exists).

However,	some	programs	or	sites	may	find	it	convenient	to	allow	users	to	have	a
standard	customization	file,	which	gets	run	when	a	program	requests	it.	This
module	implements	such	a	mechanism.	A	program	that	wishes	to	use	the
mechanism	must	execute	the	statement

import	user

The	user	module	looks	for	a	file	.pythonrc.py	in	the	user's	home	directory	and
if	it	can	be	opened,	executes	it	(using	execfile())	in	its	own	(the	module
user's)	global	namespace.	Errors	during	this	phase	are	not	caught;	that's	up	to
the	program	that	imports	the	user	module,	if	it	wishes.	The	home	directory	is
assumed	to	be	named	by	the	HOME	environment	variable;	if	this	is	not	set,	the
current	directory	is	used.

The	user's	.pythonrc.py	could	conceivably	test	for	sys.version	if	it	wishes
to	do	different	things	depending	on	the	Python	version.

A	warning	to	users:	be	very	conservative	in	what	you	place	in	your	.pythonrc.py
file.	Since	you	don't	know	which	programs	will	use	it,	changing	the	behavior	of
standard	modules	or	functions	is	generally	not	a	good	idea.

A	suggestion	for	programmers	who	wish	to	use	this	mechanism:	a	simple	way	to
let	users	specify	options	for	your	package	is	to	have	them	define	variables	in
their	.pythonrc.py	file	that	you	test	in	your	module.	For	example,	a	module
spam	that	has	a	verbosity	level	can	look	for	a	variable
user.spam_verbose,	as	follows:

import	user

verbose	=	bool(getattr(user,	"spam_verbose",	0))

(The	three-argument	form	of	getattr()	is	used	in	case	the	user	has	not
defined	spam_verbose	in	their	.pythonrc.py	file.)

Programs	with	extensive	customization	needs	are	better	off	reading	a	program-
specific	customization	file.

Programs	with	security	or	privacy	concerns	should	not	import	this	module;	a
user	can	easily	break	into	a	program	by	placing	arbitrary	code	in	the
.pythonrc.py	file.

Modules	for	general	use	should	not	import	this	module;	it	may	interfere	with	the
operation	of	the	importing	program.

See	Also:

Module	site:
Site-wide	customization	mechanism.

Python	Library	Reference
Previous:	3.28	site	Up:	3.	Python	Runtime	Services	Next:	3.30	__builtin__

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.29	user	Up:	3.	Python	Runtime	Services	Next:	3.31	__main__

3.30	__builtin__	--	Built-in
functions
This	module	provides	direct	access	to	all	`built-in'	identifiers	of	Python;	e.g.
__builtin__.open	is	the	full	name	for	the	built-in	function	open().	See
section	2.1,	``Built-in	Functions.''

Python	Library	Reference
Previous:	3.29	user	Up:	3.	Python	Runtime	Services	Next:	3.31	__main__

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.30	__builtin__	Up:	3.	Python	Runtime	Services	Next:	3.32
__future__

3.31	__main__	--	Top-level	script
environment
This	module	represents	the	(otherwise	anonymous)	scope	in	which	the
interpreter's	main	program	executes	--	commands	read	either	from	standard
input,	from	a	script	file,	or	from	an	interactive	prompt.	It	is	this	environment	in
which	the	idiomatic	``conditional	script''	stanza	causes	a	script	to	run:

if	__name__	==	"__main__":

				main()

Python	Library	Reference
Previous:	3.30	__builtin__	Up:	3.	Python	Runtime	Services	Next:	3.32
__future__

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.31	__main__	Up:	3.	Python	Runtime	Services	Next:	4.	String
Services

3.32	__future__	--	Future	statement
definitions
__future__	is	a	real	module,	and	serves	three	purposes:

To	avoid	confusing	existing	tools	that	analyze	import	statements	and	expect
to	find	the	modules	they're	importing.

To	ensure	that	future_statements	run	under	releases	prior	to	2.1	at	least
yield	runtime	exceptions	(the	import	of	__future__	will	fail,	because
there	was	no	module	of	that	name	prior	to	2.1).

To	document	when	incompatible	changes	were	introduced,	and	when	they
will	be	--	or	were	--	made	mandatory.	This	is	a	form	of	executable
documentation,	and	can	be	inspected	programatically	via	importing
__future__	and	examining	its	contents.

Each	statement	in	__future__.py	is	of	the	form:

	FeatureName	=	"_Feature("	OptionalRelease	","	MandatoryRelease	","
																									CompilerFlag	")"
	

where,	normally,	OptionalRelease	is	less	than	MandatoryRelease,	and	both	are
5-tuples	of	the	same	form	as	sys.version_info:

				(PY_MAJOR_VERSION,	#	the	2	in	2.1.0a3;	an	int

					PY_MINOR_VERSION,	#	the	1;	an	int

					PY_MICRO_VERSION,	#	the	0;	an	int

					PY_RELEASE_LEVEL,	#	"alpha",	"beta",	"candidate"	or	"final";	string

					PY_RELEASE_SERIAL	#	the	3;	an	int

)

OptionalRelease	records	the	first	release	in	which	the	feature	was	accepted.

In	the	case	of	a	MandatoryRelease	that	has	not	yet	occurred,	MandatoryRelease
predicts	the	release	in	which	the	feature	will	become	part	of	the	language.

Else	MandatoryRelease	records	when	the	feature	became	part	of	the	language;	in
releases	at	or	after	that,	modules	no	longer	need	a	future	statement	to	use	the
feature	in	question,	but	may	continue	to	use	such	imports.

MandatoryRelease	may	also	be	None,	meaning	that	a	planned	feature	got
dropped.

Instances	of	class	_Feature	have	two	corresponding	methods,
getOptionalRelease()	and	getMandatoryRelease().

CompilerFlag	is	the	(bitfield)	flag	that	should	be	passed	in	the	fourth	argument
to	the	builtin	function	compile()	to	enable	the	feature	in	dynamically
compiled	code.	This	flag	is	stored	in	the	compiler_flag	attribute	on
_Future	instances.

No	feature	description	will	ever	be	deleted	from	__future__.

Python	Library	Reference
Previous:	3.31	__main__	Up:	3.	Python	Runtime	Services	Next:	4.	String
Services

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.32	__future__	Up:	Python	Library	Reference	Next:	4.1	string

4.	String	Services
The	modules	described	in	this	chapter	provide	a	wide	range	of	string
manipulation	operations.	Here's	an	overview:

string 	 Common	string	operations.

re 	 Regular	expression	search	and	match	operations	with	aPerl-style	expression	syntax.
struct 	 Interpret	strings	as	packed	binary	data.
difflib 	 Helpers	for	computing	differences	between	objects.
fpformat 	 General	floating	point	formatting	functions.
StringIO 	 Read	and	write	strings	as	if	they	were	files.
cStringIO 	 Faster	version	of	StringIO,	but	not	subclassable.
textwrap 	 Text	wrapping	and	filling
codecs 	 Encode	and	decode	data	and	streams.
encodings.idna 	 Internationalized	Domain	Names	implementation
unicodedata 	 Access	the	Unicode	Database.
stringprep 	 String	preparation,	as	per	RFC	3453

Information	on	the	methods	of	string	objects	can	be	found	in	section	2.3.6,
``String	Methods.''

Python	Library	Reference
Previous:	3.32	__future__	Up:	Python	Library	Reference	Next:	4.1	string

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.	String	Services	Up:	4.	String	Services	Next:	4.1.1	String
constants

4.1	string	--	Common	string
operations
The	string	module	contains	a	number	of	useful	constants	and	classes,	as	well
as	some	deprecated	legacy	functions	that	are	also	available	as	methods	on
strings.	See	the	module	re	for	string	functions	based	on	regular	expressions.

Subsections

4.1.1	String	constants
4.1.2	Template	strings
4.1.3	String	functions
4.1.4	Deprecated	string	functions

Python	Library	Reference
Previous:	4.	String	Services	Up:	4.	String	Services	Next:	4.1.1	String
constants

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.1	string	Up:	4.1	string	Next:	4.1.2	Template	strings

4.1.1	String	constants
The	constants	defined	in	this	module	are:

ascii_letters

The	concatenation	of	the	ascii_lowercase	and	ascii_uppercase
constants	described	below.	This	value	is	not	locale-dependent.

ascii_lowercase

The	lowercase	letters	'abcdefghijklmnopqrstuvwxyz'.	This	value
is	not	locale-dependent	and	will	not	change.

ascii_uppercase

The	uppercase	letters	'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.	This	value
is	not	locale-dependent	and	will	not	change.

digits

The	string	'0123456789'.

hexdigits

The	string	'0123456789abcdefABCDEF'.

letters

The	concatenation	of	the	strings	lowercase	and	uppercase	described
below.	The	specific	value	is	locale-dependent,	and	will	be	updated	when
locale.setlocale()	is	called.

lowercase

A	string	containing	all	the	characters	that	are	considered	lowercase	letters.
On	most	systems	this	is	the	string
'abcdefghijklmnopqrstuvwxyz'.	Do	not	change	its	definition	--
the	effect	on	the	routines	upper()	and	swapcase()	is	undefined.	The
specific	value	is	locale-dependent,	and	will	be	updated	when
locale.setlocale()	is	called.

octdigits

The	string	'01234567'.

punctuation

String	of	ASCII	characters	which	are	considered	punctuation	characters	in
the	"C"	locale.

printable

String	of	characters	which	are	considered	printable.	This	is	a	combination
of	digits,	letters,	punctuation,	and	whitespace.

uppercase

A	string	containing	all	the	characters	that	are	considered	uppercase	letters.
On	most	systems	this	is	the	string
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.	Do	not	change	its	definition	--
the	effect	on	the	routines	lower()	and	swapcase()	is	undefined.	The
specific	value	is	locale-dependent,	and	will	be	updated	when
locale.setlocale()	is	called.

whitespace

A	string	containing	all	characters	that	are	considered	whitespace.	On	most
systems	this	includes	the	characters	space,	tab,	linefeed,	return,	formfeed,
and	vertical	tab.	Do	not	change	its	definition	--	the	effect	on	the	routines
strip()	and	split()	is	undefined.

Python	Library	Reference
Previous:	4.1	string	Up:	4.1	string	Next:	4.1.2	Template	strings

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.1.1	String	constants	Up:	4.1	string	Next:	4.1.3	String	functions

4.1.2	Template	strings
Templates	provide	simpler	string	substitutions	as	described	in	PEP	292.	Instead
of	the	normal	"%"-based	substitutions,	Templates	support	"$"-based
substitutions,	using	the	following	rules:

"$$"	is	an	escape;	it	is	replaced	with	a	single	"$".

"$identifier"	names	a	substitution	placeholder	matching	a	mapping
key	of	"identifier".	By	default,	"identifier"	must	spell	a	Python	identifier.
The	first	non-identifier	character	after	the	"$"	character	terminates	this
placeholder	specification.

"${identifier}"	is	equivalent	to	"$identifier".	It	is	required
when	valid	identifier	characters	follow	the	placeholder	but	are	not	part	of
the	placeholder,	such	as	"${noun}ification".

Any	other	appearance	of	"$"	in	the	string	will	result	in	a	ValueError	being
raised.

New	in	version	2.4.

The	string	module	provides	a	Template	class	that	implements	these	rules.
The	methods	of	Template	are:

class	Template(template)
The	constructor	takes	a	single	argument	which	is	the	template	string.

substitute(mapping[,	**kws])
Performs	the	template	substitution,	returning	a	new	string.	mapping	is	any
dictionary-like	object	with	keys	that	match	the	placeholders	in	the	template.
Alternatively,	you	can	provide	keyword	arguments,	where	the	keywords	are
the	placeholders.	When	both	mapping	and	kws	are	given	and	there	are
duplicates,	the	placeholders	from	kws	take	precedence.

safe_substitute(mapping[,	**kws])
Like	substitute(),	except	that	if	placeholders	are	missing	from

http://www.python.org/peps/pep-0292.html

mapping	and	kws,	instead	of	raising	a	KeyError	exception,	the	original
placeholder	will	appear	in	the	resulting	string	intact.	Also,	unlike	with
substitute(),	any	other	appearances	of	the	"$"	will	simply	return	"$"
instead	of	raising	ValueError.

While	other	exceptions	may	still	occur,	this	method	is	called	``safe''	because
substitutions	always	tries	to	return	a	usable	string	instead	of	raising	an
exception.	In	another	sense,	safe_substitute()	may	be	anything
other	than	safe,	since	it	will	silently	ignore	malformed	templates	containing
dangling	delimiters,	unmatched	braces,	or	placeholders	that	are	not	valid
Python	identifiers.

Template	instances	also	provide	one	public	data	attribute:

template

This	is	the	object	passed	to	the	constructor's	template	argument.	In	general,
you	shouldn't	change	it,	but	read-only	access	is	not	enforced.

Here	is	an	example	of	how	to	use	a	Template:

>>>	from	string	import	Template

>>>	s	=	Template('$who	likes	$what')

>>>	s.substitute(who='tim',	what='kung	pao')

'tim	likes	kung	pao'

>>>	d	=	dict(who='tim')

>>>	Template('Give	$who	$100').substitute(d)

Traceback	(most	recent	call	last):

[...]

ValueError:	Invalid	placeholder	in	string:	line	1,	col	10

>>>	Template('$who	likes	$what').substitute(d)

Traceback	(most	recent	call	last):

[...]

KeyError:	'what'

>>>	Template('$who	likes	$what').safe_substitute(d)

'tim	likes	$what'

Advanced	usage:	you	can	derive	subclasses	of	Template	to	customize	the
placeholder	syntax,	delimiter	character,	or	the	entire	regular	expression	used	to
parse	template	strings.	To	do	this,	you	can	override	these	class	attributes:

delimiter	-	This	is	the	literal	string	describing	a	placeholder	introducing
delimiter.	The	default	value	"$".	Note	that	this	should	not	be	a	regular
expression,	as	the	implementation	will	call	re.escape()	on	this	string

as	needed.
idpattern	-	This	is	the	regular	expression	describing	the	pattern	for	non-
braced	placeholders	(the	braces	will	be	added	automatically	as	appropriate).
The	default	value	is	the	regular	expression	"[_a-z][_a-z0-9]*".

Alternatively,	you	can	provide	the	entire	regular	expression	pattern	by	overriding
the	class	attribute	pattern.	If	you	do	this,	the	value	must	be	a	regular	expression
object	with	four	named	capturing	groups.	The	capturing	groups	correspond	to
the	rules	given	above,	along	with	the	invalid	placeholder	rule:

escaped	-	This	group	matches	the	escape	sequence,	e.g.	"$$",	in	the	default
pattern.
named	-	This	group	matches	the	unbraced	placeholder	name;	it	should	not
include	the	delimiter	in	capturing	group.
braced	-	This	group	matches	the	brace	enclosed	placeholder	name;	it	should
not	include	either	the	delimiter	or	braces	in	the	capturing	group.
invalid	-	This	group	matches	any	other	delimiter	pattern	(usually	a	single
delimiter),	and	it	should	appear	last	in	the	regular	expression.

Python	Library	Reference
Previous:	4.1.1	String	constants	Up:	4.1	string	Next:	4.1.3	String	functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.1.2	Template	strings	Up:	4.1	string	Next:	4.1.4	Deprecated	string
functions

4.1.3	String	functions
The	following	functions	are	available	to	operate	on	string	and	Unicode	objects.
They	are	not	available	as	string	methods.

capwords(s)
Split	the	argument	into	words	using	split(),	capitalize	each	word	using
capitalize(),	and	join	the	capitalized	words	using	join().	Note	that
this	replaces	runs	of	whitespace	characters	by	a	single	space,	and	removes
leading	and	trailing	whitespace.

maketrans(from,	to)
Return	a	translation	table	suitable	for	passing	to	translate()	or
regex.compile(),	that	will	map	each	character	in	from	into	the
character	at	the	same	position	in	to;	from	and	to	must	have	the	same	length.

Warning:	Don't	use	strings	derived	from	lowercase	and	uppercase
as	arguments;	in	some	locales,	these	don't	have	the	same	length.	For	case
conversions,	always	use	lower()	and	upper().

Python	Library	Reference
Previous:	4.1.2	Template	strings	Up:	4.1	string	Next:	4.1.4	Deprecated	string
functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.1.3	String	functions	Up:	4.1	string	Next:	4.2	re

4.1.4	Deprecated	string	functions
The	following	list	of	functions	are	also	defined	as	methods	of	string	and	Unicode
objects;	see	``String	Methods''	(section	2.3.6)	for	more	information	on	those.
You	should	consider	these	functions	as	deprecated,	although	they	will	not	be
removed	until	Python	3.0.	The	functions	defined	in	this	module	are:

atof(s)
Deprecated	since	release	2.0.	Use	the	float()	built-in	function.

Convert	a	string	to	a	floating	point	number.	The	string	must	have	the
standard	syntax	for	a	floating	point	literal	in	Python,	optionally	preceded	by
a	sign	("+"	or	"-").	Note	that	this	behaves	identical	to	the	built-in	function
float()	when	passed	a	string.

Note:	When	passing	in	a	string,	values	for	NaN	and	Infinity	may	be
returned,	depending	on	the	underlying	C	library.	The	specific	set	of	strings
accepted	which	cause	these	values	to	be	returned	depends	entirely	on	the	C
library	and	is	known	to	vary.

atoi(s[,	base])
Deprecated	since	release	2.0.	Use	the	int()	built-in	function.

Convert	string	s	to	an	integer	in	the	given	base.	The	string	must	consist	of
one	or	more	digits,	optionally	preceded	by	a	sign	("+"	or	"-").	The	base
defaults	to	10.	If	it	is	0,	a	default	base	is	chosen	depending	on	the	leading
characters	of	the	string	(after	stripping	the	sign):	"0x"	or	"0X"	means	16,
"0"	means	8,	anything	else	means	10.	If	base	is	16,	a	leading	"0x"	or	"0X"
is	always	accepted,	though	not	required.	This	behaves	identically	to	the
built-in	function	int()	when	passed	a	string.	(Also	note:	for	a	more
flexible	interpretation	of	numeric	literals,	use	the	built-in	function
eval().)

atol(s[,	base])
Deprecated	since	release	2.0.	Use	the	long()	built-in	function.

Convert	string	s	to	a	long	integer	in	the	given	base.	The	string	must	consist
of	one	or	more	digits,	optionally	preceded	by	a	sign	("+"	or	"-").	The	base
argument	has	the	same	meaning	as	for	atoi().	A	trailing	"l"	or	"L"	is	not
allowed,	except	if	the	base	is	0.	Note	that	when	invoked	without	base	or
with	base	set	to	10,	this	behaves	identical	to	the	built-in	function	long()
when	passed	a	string.

capitalize(word)
Return	a	copy	of	word	with	only	its	first	character	capitalized.

expandtabs(s[,	tabsize])
Expand	tabs	in	a	string	replacing	them	by	one	or	more	spaces,	depending	on
the	current	column	and	the	given	tab	size.	The	column	number	is	reset	to
zero	after	each	newline	occurring	in	the	string.	This	doesn't	understand
other	non-printing	characters	or	escape	sequences.	The	tab	size	defaults	to
8.

find(s,	sub[,	start[,end]])
Return	the	lowest	index	in	s	where	the	substring	sub	is	found	such	that	sub
is	wholly	contained	in	s[start:end].	Return	-1	on	failure.	Defaults	for
start	and	end	and	interpretation	of	negative	values	is	the	same	as	for	slices.

rfind(s,	sub[,	start[,	end]])
Like	find()	but	find	the	highest	index.

index(s,	sub[,	start[,	end]])
Like	find()	but	raise	ValueError	when	the	substring	is	not	found.

rindex(s,	sub[,	start[,	end]])
Like	rfind()	but	raise	ValueError	when	the	substring	is	not	found.

count(s,	sub[,	start[,	end]])
Return	the	number	of	(non-overlapping)	occurrences	of	substring	sub	in
string	s[start:end].	Defaults	for	start	and	end	and	interpretation	of
negative	values	are	the	same	as	for	slices.

lower(s)
Return	a	copy	of	s,	but	with	upper	case	letters	converted	to	lower	case.

split(s[,	sep[,	maxsplit]])
Return	a	list	of	the	words	of	the	string	s.	If	the	optional	second	argument
sep	is	absent	or	None,	the	words	are	separated	by	arbitrary	strings	of
whitespace	characters	(space,	tab,	newline,	return,	formfeed).	If	the	second
argument	sep	is	present	and	not	None,	it	specifies	a	string	to	be	used	as	the
word	separator.	The	returned	list	will	then	have	one	more	item	than	the
number	of	non-overlapping	occurrences	of	the	separator	in	the	string.	The
optional	third	argument	maxsplit	defaults	to	0.	If	it	is	nonzero,	at	most
maxsplit	number	of	splits	occur,	and	the	remainder	of	the	string	is	returned
as	the	final	element	of	the	list	(thus,	the	list	will	have	at	most	maxsplit+1
elements).

The	behavior	of	split	on	an	empty	string	depends	on	the	value	of	sep.	If	sep
is	not	specified,	or	specified	as	None,	the	result	will	be	an	empty	list.	If	sep
is	specified	as	any	string,	the	result	will	be	a	list	containing	one	element
which	is	an	empty	string.

rsplit(s[,	sep[,	maxsplit]])
Return	a	list	of	the	words	of	the	string	s,	scanning	s	from	the	end.	To	all
intents	and	purposes,	the	resulting	list	of	words	is	the	same	as	returned	by
split(),	except	when	the	optional	third	argument	maxsplit	is	explicitly
specified	and	nonzero.	When	maxsplit	is	nonzero,	at	most	maxsplit	number
of	splits	-	the	rightmost	ones	-	occur,	and	the	remainder	of	the	string	is
returned	as	the	first	element	of	the	list	(thus,	the	list	will	have	at	most
maxsplit+1	elements).	New	in	version	2.4.

splitfields(s[,	sep[,	maxsplit]])
This	function	behaves	identically	to	split().	(In	the	past,	split()	was
only	used	with	one	argument,	while	splitfields()	was	only	used	with
two	arguments.)

join(words[,	sep])
Concatenate	a	list	or	tuple	of	words	with	intervening	occurrences	of	sep.
The	default	value	for	sep	is	a	single	space	character.	It	is	always	true	that

"string.join(string.split(s,	sep),	sep)"	equals	s.

joinfields(words[,	sep])
This	function	behaves	identically	to	join().	(In	the	past,	join()	was
only	used	with	one	argument,	while	joinfields()	was	only	used	with
two	arguments.)	Note	that	there	is	no	joinfields()	method	on	string
objects;	use	the	join()	method	instead.

lstrip(s[,	chars])
Return	a	copy	of	the	string	with	leading	characters	removed.	If	chars	is
omitted	or	None,	whitespace	characters	are	removed.	If	given	and	not
None,	chars	must	be	a	string;	the	characters	in	the	string	will	be	stripped
from	the	beginning	of	the	string	this	method	is	called	on.	Changed	in
version	2.2.3:	The	chars	parameter	was	added.	The	chars	parameter	cannot
be	passed	in	earlier	2.2	versions.

rstrip(s[,	chars])
Return	a	copy	of	the	string	with	trailing	characters	removed.	If	chars	is
omitted	or	None,	whitespace	characters	are	removed.	If	given	and	not
None,	chars	must	be	a	string;	the	characters	in	the	string	will	be	stripped
from	the	end	of	the	string	this	method	is	called	on.	Changed	in	version
2.2.3:	The	chars	parameter	was	added.	The	chars	parameter	cannot	be
passed	in	earlier	2.2	versions.

strip(s[,	chars])
Return	a	copy	of	the	string	with	leading	and	trailing	characters	removed.	If
chars	is	omitted	or	None,	whitespace	characters	are	removed.	If	given	and
not	None,	chars	must	be	a	string;	the	characters	in	the	string	will	be
stripped	from	the	both	ends	of	the	string	this	method	is	called	on.	Changed
in	version	2.2.3:	The	chars	parameter	was	added.	The	chars	parameter
cannot	be	passed	in	earlier	2.2	versions.

swapcase(s)
Return	a	copy	of	s,	but	with	lower	case	letters	converted	to	upper	case	and
vice	versa.

translate(s,	table[,	deletechars])

Delete	all	characters	from	s	that	are	in	deletechars	(if	present),	and	then
translate	the	characters	using	table,	which	must	be	a	256-character	string
giving	the	translation	for	each	character	value,	indexed	by	its	ordinal.

upper(s)
Return	a	copy	of	s,	but	with	lower	case	letters	converted	to	upper	case.

ljust(s,	width)
rjust(s,	width)
center(s,	width)

These	functions	respectively	left-justify,	right-justify	and	center	a	string	in	a
field	of	given	width.	They	return	a	string	that	is	at	least	width	characters
wide,	created	by	padding	the	string	s	with	spaces	until	the	given	width	on
the	right,	left	or	both	sides.	The	string	is	never	truncated.

zfill(s,	width)
Pad	a	numeric	string	on	the	left	with	zero	digits	until	the	given	width	is
reached.	Strings	starting	with	a	sign	are	handled	correctly.

replace(str,	old,	new[,	maxreplace])
Return	a	copy	of	string	str	with	all	occurrences	of	substring	old	replaced	by
new.	If	the	optional	argument	maxreplace	is	given,	the	first	maxreplace
occurrences	are	replaced.

Python	Library	Reference
Previous:	4.1.3	String	functions	Up:	4.1	string	Next:	4.2	re

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.1.4	Deprecated	string	functions	Up:	4.	String	Services	Next:	4.2.1
Regular	Expression	Syntax

4.2	re	--	Regular	expression
operations
This	module	provides	regular	expression	matching	operations	similar	to	those
found	in	Perl.	Regular	expression	pattern	strings	may	not	contain	null	bytes,	but
can	specify	the	null	byte	using	the	\number	notation.	Both	patterns	and	strings
to	be	searched	can	be	Unicode	strings	as	well	as	8-bit	strings.	The	re	module	is
always	available.

Regular	expressions	use	the	backslash	character	("\")	to	indicate	special	forms
or	to	allow	special	characters	to	be	used	without	invoking	their	special	meaning.
This	collides	with	Python's	usage	of	the	same	character	for	the	same	purpose	in
string	literals;	for	example,	to	match	a	literal	backslash,	one	might	have	to	write
'\\\\'	as	the	pattern	string,	because	the	regular	expression	must	be	"\\",	and
each	backslash	must	be	expressed	as	"\\"	inside	a	regular	Python	string	literal.

The	solution	is	to	use	Python's	raw	string	notation	for	regular	expression
patterns;	backslashes	are	not	handled	in	any	special	way	in	a	string	literal
prefixed	with	"r".	So	r"\n"	is	a	two-character	string	containing	"\"	and	"n",
while	"\n"	is	a	one-character	string	containing	a	newline.	Usually	patterns	will
be	expressed	in	Python	code	using	this	raw	string	notation.

See	Also:

Mastering	Regular	Expressions
Book	on	regular	expressions	by	Jeffrey	Friedl,	published	by	O'Reilly.
The	second	edition	of	the	book	no	longer	covers	Python	at	all,	but	the
first	edition	covered	writing	good	regular	expression	patterns	in	great
detail.

Subsections

4.2.1	Regular	Expression	Syntax

4.2.2	Matching	vs	Searching
4.2.3	Module	Contents
4.2.4	Regular	Expression	Objects
4.2.5	Match	Objects
4.2.6	Examples

Python	Library	Reference
Previous:	4.1.4	Deprecated	string	functions	Up:	4.	String	Services	Next:	4.2.1
Regular	Expression	Syntax

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.2	re	Up:	4.2	re	Next:	4.2.2	Matching	vs	Searching

4.2.1	Regular	Expression	Syntax
A	regular	expression	(or	RE)	specifies	a	set	of	strings	that	matches	it;	the
functions	in	this	module	let	you	check	if	a	particular	string	matches	a	given
regular	expression	(or	if	a	given	regular	expression	matches	a	particular	string,
which	comes	down	to	the	same	thing).

Regular	expressions	can	be	concatenated	to	form	new	regular	expressions;	if	A
and	B	are	both	regular	expressions,	then	AB	is	also	a	regular	expression.	In
general,	if	a	string	p	matches	A	and	another	string	q	matches	B,	the	string	pq	will
match	AB.	This	holds	unless	A	or	B	contain	low	precedence	operations;
boundary	conditions	between	A	and	B;	or	have	numbered	group	references.
Thus,	complex	expressions	can	easily	be	constructed	from	simpler	primitive
expressions	like	the	ones	described	here.	For	details	of	the	theory	and
implementation	of	regular	expressions,	consult	the	Friedl	book	referenced	above,
or	almost	any	textbook	about	compiler	construction.

A	brief	explanation	of	the	format	of	regular	expressions	follows.	For	further
information	and	a	gentler	presentation,	consult	the	Regular	Expression	HOWTO,
accessible	from	http://www.python.org/doc/howto/.

Regular	expressions	can	contain	both	special	and	ordinary	characters.	Most
ordinary	characters,	like	"A",	"a",	or	"0",	are	the	simplest	regular	expressions;
they	simply	match	themselves.	You	can	concatenate	ordinary	characters,	so
last	matches	the	string	'last'.	(In	the	rest	of	this	section,	we'll	write	RE's	in
this	special	style,	usually	without	quotes,	and	strings	to	be	matched
'in	single	quotes'.)

Some	characters,	like	"|"	or	"(",	are	special.	Special	characters	either	stand	for
classes	of	ordinary	characters,	or	affect	how	the	regular	expressions	around	them
are	interpreted.

The	special	characters	are:

"."
(Dot.)	In	the	default	mode,	this	matches	any	character	except	a	newline.	If
the	DOTALL	flag	has	been	specified,	this	matches	any	character	including	a
newline.

http://www.python.org/doc/howto/

"^"
(Caret.)	Matches	the	start	of	the	string,	and	in	MULTILINE	mode	also
matches	immediately	after	each	newline.

"$"
Matches	the	end	of	the	string	or	just	before	the	newline	at	the	end	of	the
string,	and	in	MULTILINE	mode	also	matches	before	a	newline.	foo
matches	both	'foo'	and	'foobar',	while	the	regular	expression	foo$	matches
only	'foo'.	More	interestingly,	searching	for	foo.$	in	'foo1\nfoo2\n'
matches	'foo2'	normally,	but	'foo1'	in	MULTILINE	mode.

"*"
Causes	the	resulting	RE	to	match	0	or	more	repetitions	of	the	preceding	RE,
as	many	repetitions	as	are	possible.	ab*	will	match	'a',	'ab',	or	'a'	followed
by	any	number	of	'b's.

"+"
Causes	the	resulting	RE	to	match	1	or	more	repetitions	of	the	preceding	RE.
ab+	will	match	'a'	followed	by	any	non-zero	number	of	'b's;	it	will	not
match	just	'a'.

"?"
Causes	the	resulting	RE	to	match	0	or	1	repetitions	of	the	preceding	RE.
ab?	will	match	either	'a'	or	'ab'.

*?,	+?,	??
The	"*",	"+",	and	"?"	qualifiers	are	all	greedy;	they	match	as	much	text	as
possible.	Sometimes	this	behaviour	isn't	desired;	if	the	RE	<.*>	is
matched	against	'<H1>title</H1>',	it	will	match	the	entire	string,	and
not	just	'<H1>'.	Adding	"?"	after	the	qualifier	makes	it	perform	the	match
in	non-greedy	or	minimal	fashion;	as	few	characters	as	possible	will	be
matched.	Using	.*?	in	the	previous	expression	will	match	only	'<H1>'.

{m}
Specifies	that	exactly	m	copies	of	the	previous	RE	should	be	matched;
fewer	matches	cause	the	entire	RE	not	to	match.	For	example,	a{6}	will
match	exactly	six	"a"	characters,	but	not	five.

{m,n}

Causes	the	resulting	RE	to	match	from	m	to	n	repetitions	of	the	preceding
RE,	attempting	to	match	as	many	repetitions	as	possible.	For	example,
a{3,5}	will	match	from	3	to	5	"a"	characters.	Omitting	m	specifies	a
lower	bound	of	zero,	and	omitting	n	specifies	an	infinite	upper	bound.	As
an	example,	a{4,}b	will	match	aaaab	or	a	thousand	"a"	characters
followed	by	a	b,	but	not	aaab.	The	comma	may	not	be	omitted	or	the
modifier	would	be	confused	with	the	previously	described	form.

{m,n}?
Causes	the	resulting	RE	to	match	from	m	to	n	repetitions	of	the	preceding
RE,	attempting	to	match	as	few	repetitions	as	possible.	This	is	the	non-
greedy	version	of	the	previous	qualifier.	For	example,	on	the	6-character
string	'aaaaaa',	a{3,5}	will	match	5	"a"	characters,	while	a{3,5}?
will	only	match	3	characters.

"\"
Either	escapes	special	characters	(permitting	you	to	match	characters	like
"*",	"?",	and	so	forth),	or	signals	a	special	sequence;	special	sequences	are
discussed	below.

If	you're	not	using	a	raw	string	to	express	the	pattern,	remember	that	Python
also	uses	the	backslash	as	an	escape	sequence	in	string	literals;	if	the	escape
sequence	isn't	recognized	by	Python's	parser,	the	backslash	and	subsequent
character	are	included	in	the	resulting	string.	However,	if	Python	would
recognize	the	resulting	sequence,	the	backslash	should	be	repeated	twice.
This	is	complicated	and	hard	to	understand,	so	it's	highly	recommended	that
you	use	raw	strings	for	all	but	the	simplest	expressions.

[]

Used	to	indicate	a	set	of	characters.	Characters	can	be	listed	individually,	or
a	range	of	characters	can	be	indicated	by	giving	two	characters	and
separating	them	by	a	"-".	Special	characters	are	not	active	inside	sets.	For
example,	[akm$]	will	match	any	of	the	characters	"a",	"k",	"m",	or	"$";
[a-z]	will	match	any	lowercase	letter,	and	[a-zA-Z0-9]	matches	any
letter	or	digit.	Character	classes	such	as	\w	or	\S	(defined	below)	are	also
acceptable	inside	a	range.	If	you	want	to	include	a	"]"	or	a	"-"	inside	a	set,
precede	it	with	a	backslash,	or	place	it	as	the	first	character.	The	pattern
[]]	will	match	']',	for	example.

You	can	match	the	characters	not	within	a	range	by	complementing	the	set.
This	is	indicated	by	including	a	"^"	as	the	first	character	of	the	set;	"^"
elsewhere	will	simply	match	the	"^"	character.	For	example,	[^5]	will
match	any	character	except	"5",	and	[^^]	will	match	any	character	except
"^".

"|"
A|B,	where	A	and	B	can	be	arbitrary	REs,	creates	a	regular	expression	that
will	match	either	A	or	B.	An	arbitrary	number	of	REs	can	be	separated	by
the	"|"	in	this	way.	This	can	be	used	inside	groups	(see	below)	as	well.	As
the	target	string	is	scanned,	REs	separated	by	"|"	are	tried	from	left	to	right.
When	one	pattern	completely	matches,	that	branch	is	accepted.	This	means
that	once	A	matches,	B	will	not	be	tested	further,	even	if	it	would	produce	a
longer	overall	match.	In	other	words,	the	"|"	operator	is	never	greedy.	To
match	a	literal	"|",	use	\|,	or	enclose	it	inside	a	character	class,	as	in	[|].

(...)

Matches	whatever	regular	expression	is	inside	the	parentheses,	and
indicates	the	start	and	end	of	a	group;	the	contents	of	a	group	can	be
retrieved	after	a	match	has	been	performed,	and	can	be	matched	later	in	the
string	with	the	\number	special	sequence,	described	below.	To	match	the
literals	"("	or	")",	use	\(or	\),	or	enclose	them	inside	a	character	class:
[(]	[)].

(?...)

This	is	an	extension	notation	(a	"?"	following	a	"("	is	not	meaningful
otherwise).	The	first	character	after	the	"?"	determines	what	the	meaning
and	further	syntax	of	the	construct	is.	Extensions	usually	do	not	create	a
new	group;	(?P<name>...)	is	the	only	exception	to	this	rule.	Following
are	the	currently	supported	extensions.

(?iLmsux)

(One	or	more	letters	from	the	set	"i",	"L",	"m",	"s",	"u",	"x".)	The	group
matches	the	empty	string;	the	letters	set	the	corresponding	flags	(re.I,
re.L,	re.M,	re.S,	re.U,	re.X)	for	the	entire	regular	expression.	This
is	useful	if	you	wish	to	include	the	flags	as	part	of	the	regular	expression,
instead	of	passing	a	flag	argument	to	the	compile()	function.

Note	that	the	(?x)	flag	changes	how	the	expression	is	parsed.	It	should	be
used	first	in	the	expression	string,	or	after	one	or	more	whitespace
characters.	If	there	are	non-whitespace	characters	before	the	flag,	the	results
are	undefined.

(?:...)

A	non-grouping	version	of	regular	parentheses.	Matches	whatever	regular
expression	is	inside	the	parentheses,	but	the	substring	matched	by	the	group
cannot	be	retrieved	after	performing	a	match	or	referenced	later	in	the
pattern.

(?P<name>...)
Similar	to	regular	parentheses,	but	the	substring	matched	by	the	group	is
accessible	via	the	symbolic	group	name	name.	Group	names	must	be	valid
Python	identifiers,	and	each	group	name	must	be	defined	only	once	within	a
regular	expression.	A	symbolic	group	is	also	a	numbered	group,	just	as	if
the	group	were	not	named.	So	the	group	named	'id'	in	the	example	above
can	also	be	referenced	as	the	numbered	group	1.

For	example,	if	the	pattern	is	(?P<id>[a-zA-Z_]\w*),	the	group	can
be	referenced	by	its	name	in	arguments	to	methods	of	match	objects,	such
as	m.group('id')	or	m.end('id'),	and	also	by	name	in	pattern	text
(for	example,	(?P=id))	and	replacement	text	(such	as	\g<id>).

(?P=name)
Matches	whatever	text	was	matched	by	the	earlier	group	named	name.

(?#...)

A	comment;	the	contents	of	the	parentheses	are	simply	ignored.

(?=...)

Matches	if	...	matches	next,	but	doesn't	consume	any	of	the	string.	This	is
called	a	lookahead	assertion.	For	example,	Isaac	(?=Asimov)	will
match	'Isaac	'	only	if	it's	followed	by	'Asimov'.

(?!...)

Matches	if	...	doesn't	match	next.	This	is	a	negative	lookahead	assertion.
For	example,	Isaac	(?!Asimov)	will	match	'Isaac	'	only	if	it's	not
followed	by	'Asimov'.

(?<=...)

Matches	if	the	current	position	in	the	string	is	preceded	by	a	match	for	...
that	ends	at	the	current	position.	This	is	called	a	positive	lookbehind
assertion.	(?<=abc)def	will	find	a	match	in	"abcdef",	since	the
lookbehind	will	back	up	3	characters	and	check	if	the	contained	pattern
matches.	The	contained	pattern	must	only	match	strings	of	some	fixed
length,	meaning	that	abc	or	a|b	are	allowed,	but	a*	and	a{3,4}	are	not.
Note	that	patterns	which	start	with	positive	lookbehind	assertions	will	never
match	at	the	beginning	of	the	string	being	searched;	you	will	most	likely
want	to	use	the	search()	function	rather	than	the	match()	function:

>>>	import	re

>>>	m	=	re.search('(?<=abc)def',	'abcdef')

>>>	m.group(0)

'def'

This	example	looks	for	a	word	following	a	hyphen:

>>>	m	=	re.search('(?<=-)\w+',	'spam-egg')

>>>	m.group(0)

'egg'

(?<!...)

Matches	if	the	current	position	in	the	string	is	not	preceded	by	a	match	for
....	This	is	called	a	negative	lookbehind	assertion.	Similar	to	positive
lookbehind	assertions,	the	contained	pattern	must	only	match	strings	of
some	fixed	length.	Patterns	which	start	with	negative	lookbehind	assertions
may	match	at	the	beginning	of	the	string	being	searched.

(?(id/name)yes-pattern|no-pattern)
Will	try	to	match	with	yes-pattern	if	the	group	with	given	id	or	name
exists,	and	with	no-pattern	if	it	doesn't.	|no-pattern	is	optional	and
can	be	omitted.	For	example,	(<)?(\w+@\w+(?:\.\w+)+)(?(1)>)
is	a	poor	email	matching	pattern,	which	will	match	with
'<user@host.com>'	as	well	as	'user@host.com',	but	not	with
'<user@host.com'.	New	in	version	2.4.

The	special	sequences	consist	of	"\"	and	a	character	from	the	list	below.	If	the
ordinary	character	is	not	on	the	list,	then	the	resulting	RE	will	match	the	second
character.	For	example,	\$	matches	the	character	"$".

\number
Matches	the	contents	of	the	group	of	the	same	number.	Groups	are
numbered	starting	from	1.	For	example,	(.+)	\1	matches	'the	the'
or	'55	55',	but	not	'the	end'	(note	the	space	after	the	group).	This
special	sequence	can	only	be	used	to	match	one	of	the	first	99	groups.	If	the
first	digit	of	number	is	0,	or	number	is	3	octal	digits	long,	it	will	not	be
interpreted	as	a	group	match,	but	as	the	character	with	octal	value	number.
Inside	the	"["	and	"]"	of	a	character	class,	all	numeric	escapes	are	treated
as	characters.

\A

Matches	only	at	the	start	of	the	string.

\b

Matches	the	empty	string,	but	only	at	the	beginning	or	end	of	a	word.	A
word	is	defined	as	a	sequence	of	alphanumeric	or	underscore	characters,	so
the	end	of	a	word	is	indicated	by	whitespace	or	a	non-alphanumeric,	non-
underscore	character.	Note	that	\b	is	defined	as	the	boundary	between	\w
and	\	W,	so	the	precise	set	of	characters	deemed	to	be	alphanumeric
depends	on	the	values	of	the	UNICODE	and	LOCALE	flags.	Inside	a
character	range,	\b	represents	the	backspace	character,	for	compatibility
with	Python's	string	literals.

\B

Matches	the	empty	string,	but	only	when	it	is	not	at	the	beginning	or	end	of
a	word.	This	is	just	the	opposite	of	\	b,	so	is	also	subject	to	the	settings	of
LOCALE	and	UNICODE.

\d

Matches	any	decimal	digit;	this	is	equivalent	to	the	set	[0-9].

\D

Matches	any	non-digit	character;	this	is	equivalent	to	the	set	[^0-9].

\s

Matches	any	whitespace	character;	this	is	equivalent	to	the	set	[
\t\n\r\f\v].

\S

Matches	any	non-whitespace	character;	this	is	equivalent	to	the	set	[^
\t\n\r\f\v].

\w

When	the	LOCALE	and	UNICODE	flags	are	not	specified,	matches	any
alphanumeric	character	and	the	underscore;	this	is	equivalent	to	the	set	[a-
zA-Z0-9_].	With	LOCALE,	it	will	match	the	set	[0-9_]	plus	whatever
characters	are	defined	as	alphanumeric	for	the	current	locale.	If	UNICODE
is	set,	this	will	match	the	characters	[0-9_]	plus	whatever	is	classified	as
alphanumeric	in	the	Unicode	character	properties	database.

\W

When	the	LOCALE	and	UNICODE	flags	are	not	specified,	matches	any	non-
alphanumeric	character;	this	is	equivalent	to	the	set	[^a-zA-Z0-9_].
With	LOCALE,	it	will	match	any	character	not	in	the	set	[0-9_],	and	not
defined	as	alphanumeric	for	the	current	locale.	If	UNICODE	is	set,	this	will
match	anything	other	than	[0-9_]	and	characters	marked	as	alphanumeric
in	the	Unicode	character	properties	database.

\Z

Matches	only	at	the	end	of	the	string.

Most	of	the	standard	escapes	supported	by	Python	string	literals	are	also
accepted	by	the	regular	expression	parser:

\a						\b						\f						\n

\r						\t						\v						\x

\\

Octal	escapes	are	included	in	a	limited	form:	If	the	first	digit	is	a	0,	or	if	there
are	three	octal	digits,	it	is	considered	an	octal	escape.	Otherwise,	it	is	a	group
reference.	As	for	string	literals,	octal	escapes	are	always	at	most	three	digits	in
length.

Python	Library	Reference
Previous:	4.2	re	Up:	4.2	re	Next:	4.2.2	Matching	vs	Searching

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.2.1	Regular	Expression	Syntax	Up:	4.2	re	Next:	4.2.3	Module
Contents

4.2.2	Matching	vs	Searching
Python	offers	two	different	primitive	operations	based	on	regular	expressions:
match	and	search.	If	you	are	accustomed	to	Perl's	semantics,	the	search	operation
is	what	you're	looking	for.	See	the	search()	function	and	corresponding
method	of	compiled	regular	expression	objects.

Note	that	match	may	differ	from	search	using	a	regular	expression	beginning
with	"^":	"^"	matches	only	at	the	start	of	the	string,	or	in	MULTILINE	mode
also	immediately	following	a	newline.	The	``match''	operation	succeeds	only	if
the	pattern	matches	at	the	start	of	the	string	regardless	of	mode,	or	at	the	starting
position	given	by	the	optional	pos	argument	regardless	of	whether	a	newline
precedes	it.

re.compile("a").match("ba",	1)											#	succeeds

re.compile("^a").search("ba",	1)									#	fails;	'a'	not	at	start

re.compile("^a").search("\na",	1)								#	fails;	'a'	not	at	start

re.compile("^a",	re.M).search("\na",	1)		#	succeeds

re.compile("^a",	re.M).search("ba",	1)			#	fails;	no	preceding	\n

Python	Library	Reference
Previous:	4.2.1	Regular	Expression	Syntax	Up:	4.2	re	Next:	4.2.3	Module
Contents

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.2.2	Matching	vs	Searching	Up:	4.2	re	Next:	4.2.4	Regular
Expression	Objects

4.2.3	Module	Contents
The	module	defines	several	functions,	constants,	and	an	exception.	Some	of	the
functions	are	simplified	versions	of	the	full	featured	methods	for	compiled
regular	expressions.	Most	non-trivial	applications	always	use	the	compiled	form.

compile(pattern[,	flags])
Compile	a	regular	expression	pattern	into	a	regular	expression	object,
which	can	be	used	for	matching	using	its	match()	and	search()
methods,	described	below.

The	expression's	behaviour	can	be	modified	by	specifying	a	flags	value.
Values	can	be	any	of	the	following	variables,	combined	using	bitwise	OR
(the	|	operator).

The	sequence

prog	=	re.compile(pat)

result	=	prog.match(str)

is	equivalent	to

result	=	re.match(pat,	str)

but	the	version	using	compile()	is	more	efficient	when	the	expression
will	be	used	several	times	in	a	single	program.

I

IGNORECASE

Perform	case-insensitive	matching;	expressions	like	[A-Z]	will	match
lowercase	letters,	too.	This	is	not	affected	by	the	current	locale.

L

LOCALE

Make	\w,	\W,	\b,	and	\B	dependent	on	the	current	locale.

M

MULTILINE

When	specified,	the	pattern	character	"^"	matches	at	the	beginning	of	the

string	and	at	the	beginning	of	each	line	(immediately	following	each
newline);	and	the	pattern	character	"$"	matches	at	the	end	of	the	string	and
at	the	end	of	each	line	(immediately	preceding	each	newline).	By	default,
"^"	matches	only	at	the	beginning	of	the	string,	and	"$"	only	at	the	end	of
the	string	and	immediately	before	the	newline	(if	any)	at	the	end	of	the
string.

S

DOTALL

Make	the	"."	special	character	match	any	character	at	all,	including	a
newline;	without	this	flag,	"."	will	match	anything	except	a	newline.

U

UNICODE

Make	\w,	\W,	\b,	and	\B	dependent	on	the	Unicode	character	properties
database.	New	in	version	2.0.

X

VERBOSE

This	flag	allows	you	to	write	regular	expressions	that	look	nicer.
Whitespace	within	the	pattern	is	ignored,	except	when	in	a	character	class
or	preceded	by	an	unescaped	backslash,	and,	when	a	line	contains	a	"#"
neither	in	a	character	class	or	preceded	by	an	unescaped	backslash,	all
characters	from	the	leftmost	such	"#"	through	the	end	of	the	line	are
ignored.

search(pattern,	string[,	flags])
Scan	through	string	looking	for	a	location	where	the	regular	expression
pattern	produces	a	match,	and	return	a	corresponding	MatchObject
instance.	Return	None	if	no	position	in	the	string	matches	the	pattern;	note
that	this	is	different	from	finding	a	zero-length	match	at	some	point	in	the
string.

match(pattern,	string[,	flags])
If	zero	or	more	characters	at	the	beginning	of	string	match	the	regular
expression	pattern,	return	a	corresponding	MatchObject	instance.
Return	None	if	the	string	does	not	match	the	pattern;	note	that	this	is
different	from	a	zero-length	match.

Note:	If	you	want	to	locate	a	match	anywhere	in	string,	use	search()
instead.

split(pattern,	string[,	maxsplit	=	0])
Split	string	by	the	occurrences	of	pattern.	If	capturing	parentheses	are	used
in	pattern,	then	the	text	of	all	groups	in	the	pattern	are	also	returned	as	part
of	the	resulting	list.	If	maxsplit	is	nonzero,	at	most	maxsplit	splits	occur,	and
the	remainder	of	the	string	is	returned	as	the	final	element	of	the	list.
(Incompatibility	note:	in	the	original	Python	1.5	release,	maxsplit	was
ignored.	This	has	been	fixed	in	later	releases.)

>>>	re.split('\W+',	'Words,	words,	words.')

['Words',	'words',	'words',	'']

>>>	re.split('(\W+)',	'Words,	words,	words.')

['Words',	',	',	'words',	',	',	'words',	'.',	'']

>>>	re.split('\W+',	'Words,	words,	words.',	1)

['Words',	'words,	words.']

This	function	combines	and	extends	the	functionality	of	the	old
regsub.split()	and	regsub.splitx().

findall(pattern,	string[,	flags])
Return	a	list	of	all	non-overlapping	matches	of	pattern	in	string.	If	one	or
more	groups	are	present	in	the	pattern,	return	a	list	of	groups;	this	will	be	a
list	of	tuples	if	the	pattern	has	more	than	one	group.	Empty	matches	are
included	in	the	result	unless	they	touch	the	beginning	of	another	match.
New	in	version	1.5.2.	Changed	in	version	2.4:	Added	the	optional	flags
argument.

finditer(pattern,	string[,	flags])
Return	an	iterator	over	all	non-overlapping	matches	for	the	RE	pattern	in
string.	For	each	match,	the	iterator	returns	a	match	object.	Empty	matches
are	included	in	the	result	unless	they	touch	the	beginning	of	another	match.
New	in	version	2.2.	Changed	in	version	2.4:	Added	the	optional	flags
argument.

sub(pattern,	repl,	string[,	count])
Return	the	string	obtained	by	replacing	the	leftmost	non-overlapping
occurrences	of	pattern	in	string	by	the	replacement	repl.	If	the	pattern	isn't

found,	string	is	returned	unchanged.	repl	can	be	a	string	or	a	function;	if	it
is	a	string,	any	backslash	escapes	in	it	are	processed.	That	is,	"\n"	is
converted	to	a	single	newline	character,	"\r"	is	converted	to	a	linefeed,	and
so	forth.	Unknown	escapes	such	as	"\j"	are	left	alone.	Backreferences,
such	as	"\6",	are	replaced	with	the	substring	matched	by	group	6	in	the
pattern.	For	example:

>>>	re.sub(r'def\s+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\):',

...								r'static	PyObject*\npy_\1(void)\n{',

...								'def	myfunc():')

'static	PyObject*\npy_myfunc(void)\n{'

If	repl	is	a	function,	it	is	called	for	every	non-overlapping	occurrence	of
pattern.	The	function	takes	a	single	match	object	argument,	and	returns	the
replacement	string.	For	example:

>>>	def	dashrepl(matchobj):

...					if	matchobj.group(0)	==	'-':	return	'	'

...					else:	return	'-'

>>>	re.sub('-{1,2}',	dashrepl,	'pro----gram-files')

'pro--gram	files'

The	pattern	may	be	a	string	or	an	RE	object;	if	you	need	to	specify	regular
expression	flags,	you	must	use	a	RE	object,	or	use	embedded	modifiers	in	a
pattern;	for	example,	"sub("(?i)b+",	"x",	"bbbb	BBBB")"
returns	'x	x'.

The	optional	argument	count	is	the	maximum	number	of	pattern
occurrences	to	be	replaced;	count	must	be	a	non-negative	integer.	If	omitted
or	zero,	all	occurrences	will	be	replaced.	Empty	matches	for	the	pattern	are
replaced	only	when	not	adjacent	to	a	previous	match,	so	"sub('x*',	'-
',	'abc')"	returns	'-a-b-c-'.

In	addition	to	character	escapes	and	backreferences	as	described	above,
"\g<name>"	will	use	the	substring	matched	by	the	group	named	"name",
as	defined	by	the	(?P<name>...)	syntax.	"\g<number>"	uses	the
corresponding	group	number;	"\g<2>"	is	therefore	equivalent	to	"\2",	but
isn't	ambiguous	in	a	replacement	such	as	"\g<2>0".	"\20"	would	be
interpreted	as	a	reference	to	group	20,	not	a	reference	to	group	2	followed
by	the	literal	character	"0".	The	backreference	"\g<0>"	substitutes	in	the
entire	substring	matched	by	the	RE.

subn(pattern,	repl,	string[,	count])
Perform	the	same	operation	as	sub(),	but	return	a	tuple	(new_string,
number_of_subs_made).

escape(string)
Return	string	with	all	non-alphanumerics	backslashed;	this	is	useful	if	you
want	to	match	an	arbitrary	literal	string	that	may	have	regular	expression
metacharacters	in	it.

exception	error
Exception	raised	when	a	string	passed	to	one	of	the	functions	here	is	not	a
valid	regular	expression	(for	example,	it	might	contain	unmatched
parentheses)	or	when	some	other	error	occurs	during	compilation	or
matching.	It	is	never	an	error	if	a	string	contains	no	match	for	a	pattern.

Python	Library	Reference
Previous:	4.2.2	Matching	vs	Searching	Up:	4.2	re	Next:	4.2.4	Regular
Expression	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.2.3	Module	Contents	Up:	4.2	re	Next:	4.2.5	Match	Objects

4.2.4	Regular	Expression	Objects
Compiled	regular	expression	objects	support	the	following	methods	and
attributes:

match(string[,	pos[,	endpos]])
If	zero	or	more	characters	at	the	beginning	of	string	match	this	regular
expression,	return	a	corresponding	MatchObject	instance.	Return	None
if	the	string	does	not	match	the	pattern;	note	that	this	is	different	from	a
zero-length	match.

Note:	If	you	want	to	locate	a	match	anywhere	in	string,	use	search()
instead.

The	optional	second	parameter	pos	gives	an	index	in	the	string	where	the
search	is	to	start;	it	defaults	to	0.	This	is	not	completely	equivalent	to
slicing	the	string;	the	'^'	pattern	character	matches	at	the	real	beginning	of
the	string	and	at	positions	just	after	a	newline,	but	not	necessarily	at	the
index	where	the	search	is	to	start.

The	optional	parameter	endpos	limits	how	far	the	string	will	be	searched;	it
will	be	as	if	the	string	is	endpos	characters	long,	so	only	the	characters	from
pos	to	endpos	-	1	will	be	searched	for	a	match.	If	endpos	is	less	than	pos,
no	match	will	be	found,	otherwise,	if	rx	is	a	compiled	regular	expression
object,	rx.match(string,	0,	50)	is	equivalent	to
rx.match(string[:50],	0).

search(string[,	pos[,	endpos]])
Scan	through	string	looking	for	a	location	where	this	regular	expression
produces	a	match,	and	return	a	corresponding	MatchObject	instance.
Return	None	if	no	position	in	the	string	matches	the	pattern;	note	that	this
is	different	from	finding	a	zero-length	match	at	some	point	in	the	string.

The	optional	pos	and	endpos	parameters	have	the	same	meaning	as	for	the
match()	method.

split(

string[,	maxsplit	=	0])
Identical	to	the	split()	function,	using	the	compiled	pattern.

findall(string[,	pos[,	endpos]])
Identical	to	the	findall()	function,	using	the	compiled	pattern.

finditer(string[,	pos[,	endpos]])
Identical	to	the	finditer()	function,	using	the	compiled	pattern.

sub(repl,	string[,	count	=	0])
Identical	to	the	sub()	function,	using	the	compiled	pattern.

subn(repl,	string[,	count	=	0])
Identical	to	the	subn()	function,	using	the	compiled	pattern.

flags

The	flags	argument	used	when	the	RE	object	was	compiled,	or	0	if	no	flags
were	provided.

groupindex

A	dictionary	mapping	any	symbolic	group	names	defined	by	(?P<id>)	to
group	numbers.	The	dictionary	is	empty	if	no	symbolic	groups	were	used	in
the	pattern.

pattern

The	pattern	string	from	which	the	RE	object	was	compiled.

Python	Library	Reference
Previous:	4.2.3	Module	Contents	Up:	4.2	re	Next:	4.2.5	Match	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.2.4	Regular	Expression	Objects	Up:	4.2	re	Next:	4.2.6	Examples

4.2.5	Match	Objects
MatchObject	instances	support	the	following	methods	and	attributes:

expand(template)
Return	the	string	obtained	by	doing	backslash	substitution	on	the	template
string	template,	as	done	by	the	sub()	method.	Escapes	such	as	"\n"	are
converted	to	the	appropriate	characters,	and	numeric	backreferences	("\1",
"\2")	and	named	backreferences	("\g<1>",	"\g<name>")	are	replaced	by
the	contents	of	the	corresponding	group.

group([group1,	...])
Returns	one	or	more	subgroups	of	the	match.	If	there	is	a	single	argument,
the	result	is	a	single	string;	if	there	are	multiple	arguments,	the	result	is	a
tuple	with	one	item	per	argument.	Without	arguments,	group1	defaults	to
zero	(the	whole	match	is	returned).	If	a	groupN	argument	is	zero,	the
corresponding	return	value	is	the	entire	matching	string;	if	it	is	in	the
inclusive	range	[1..99],	it	is	the	string	matching	the	corresponding
parenthesized	group.	If	a	group	number	is	negative	or	larger	than	the
number	of	groups	defined	in	the	pattern,	an	IndexError	exception	is
raised.	If	a	group	is	contained	in	a	part	of	the	pattern	that	did	not	match,	the
corresponding	result	is	None.	If	a	group	is	contained	in	a	part	of	the	pattern
that	matched	multiple	times,	the	last	match	is	returned.

If	the	regular	expression	uses	the	(?P<name>...)	syntax,	the	groupN
arguments	may	also	be	strings	identifying	groups	by	their	group	name.	If	a
string	argument	is	not	used	as	a	group	name	in	the	pattern,	an
IndexError	exception	is	raised.

A	moderately	complicated	example:

m	=	re.match(r"(?P<int>\d+)\.(\d*)",	'3.14')

After	performing	this	match,	m.group(1)	is	'3',	as	is
m.group('int'),	and	m.group(2)	is	'14'.

groups([default])

Return	a	tuple	containing	all	the	subgroups	of	the	match,	from	1	up	to
however	many	groups	are	in	the	pattern.	The	default	argument	is	used	for
groups	that	did	not	participate	in	the	match;	it	defaults	to	None.
(Incompatibility	note:	in	the	original	Python	1.5	release,	if	the	tuple	was
one	element	long,	a	string	would	be	returned	instead.	In	later	versions	(from
1.5.1	on),	a	singleton	tuple	is	returned	in	such	cases.)

groupdict([default])
Return	a	dictionary	containing	all	the	named	subgroups	of	the	match,	keyed
by	the	subgroup	name.	The	default	argument	is	used	for	groups	that	did	not
participate	in	the	match;	it	defaults	to	None.

start([group])
end([group])

Return	the	indices	of	the	start	and	end	of	the	substring	matched	by	group;
group	defaults	to	zero	(meaning	the	whole	matched	substring).	Return	-1	if
group	exists	but	did	not	contribute	to	the	match.	For	a	match	object	m,	and
a	group	g	that	did	contribute	to	the	match,	the	substring	matched	by	group	g
(equivalent	to	m.group(g))	is

m.string[m.start(g):m.end(g)]

Note	that	m.start(group)	will	equal	m.end(group)	if	group	matched
a	null	string.	For	example,	after	m	=	re.search('b(c?)',
'cba'),	m.start(0)	is	1,	m.end(0)	is	2,	m.start(1)	and
m.end(1)	are	both	2,	and	m.start(2)	raises	an	IndexError
exception.

span([group])
For	MatchObject	m,	return	the	2-tuple	(m.start(group),
m.end(group)).	Note	that	if	group	did	not	contribute	to	the	match,	this	is
(-1,	-1).	Again,	group	defaults	to	zero.

pos

The	value	of	pos	which	was	passed	to	the	search()	or	match()	method
of	the	RegexObject.	This	is	the	index	into	the	string	at	which	the	RE
engine	started	looking	for	a	match.

endpos

The	value	of	endpos	which	was	passed	to	the	search()	or	match()
method	of	the	RegexObject.	This	is	the	index	into	the	string	beyond
which	the	RE	engine	will	not	go.

lastindex

The	integer	index	of	the	last	matched	capturing	group,	or	None	if	no	group
was	matched	at	all.	For	example,	the	expressions	(a)b,	((a)(b)),	and
((ab))	will	have	lastindex	==	1	if	applyied	to	the	string	'ab',
while	the	expression	(a)(b)	will	have	lastindex	==	2,	if	applyied	to
the	same	string.

lastgroup

The	name	of	the	last	matched	capturing	group,	or	None	if	the	group	didn't
have	a	name,	or	if	no	group	was	matched	at	all.

re

The	regular	expression	object	whose	match()	or	search()	method
produced	this	MatchObject	instance.

string

The	string	passed	to	match()	or	search().

Python	Library	Reference
Previous:	4.2.4	Regular	Expression	Objects	Up:	4.2	re	Next:	4.2.6	Examples

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.2.5	Match	Objects	Up:	4.2	re	Next:	4.3	struct

4.2.6	Examples
Simulating	scanf()

Python	does	not	currently	have	an	equivalent	to	scanf().	Regular	expressions
are	generally	more	powerful,	though	also	more	verbose,	than	scanf()	format
strings.	The	table	below	offers	some	more-or-less	equivalent	mappings	between
scanf()	format	tokens	and	regular	expressions.

scanf()

Token
Regular	Expression

%c .

%5c .{5}

%d [-+]?\d+

%e,	%E,	%f,	%g [-+]?(\d+(\.\d*)?|\d*\.\d+)([eE][-+]?

\d+)?

%i [-+]?(0[xX][\dA-Fa-f]+|0[0-7]*|\d+)

%o 0[0-7]*

%s \S+

%u \d+

%x,	%X 0[xX][\dA-Fa-f]+

To	extract	the	filename	and	numbers	from	a	string	like

				/usr/sbin/sendmail	-	0	errors,	4	warnings

you	would	use	a	scanf()	format	like

				%s	-	%d	errors,	%d	warnings

The	equivalent	regular	expression	would	be

				(\S+)	-	(\d+)	errors,	(\d+)	warnings

Avoiding	recursion

If	you	create	regular	expressions	that	require	the	engine	to	perform	a	lot	of

recursion,	you	may	encounter	a	RuntimeError	exception	with	the	message
maximum	recursion	limit	exceeded.	For	example,

>>>	import	re

>>>	s	=	'Begin	'	+	1000*'a	very	long	string	'	+	'end'

>>>	re.match('Begin	(\w|)*?	end',	s).end()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

		File	"/usr/local/lib/python2.3/sre.py",	line	132,	in	match

				return	_compile(pattern,	flags).match(string)

RuntimeError:	maximum	recursion	limit	exceeded

You	can	often	restructure	your	regular	expression	to	avoid	recursion.

Starting	with	Python	2.3,	simple	uses	of	the	*?	pattern	are	special-cased	to	avoid
recursion.	Thus,	the	above	regular	expression	can	avoid	recursion	by	being
recast	as	Begin	[a-zA-Z0-9_]*?end.	As	a	further	benefit,	such	regular
expressions	will	run	faster	than	their	recursive	equivalents.

Python	Library	Reference
Previous:	4.2.5	Match	Objects	Up:	4.2	re	Next:	4.3	struct

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.2.6	Examples	Up:	4.	String	Services	Next:	4.4	difflib

4.3	struct	--	Interpret	strings	as
packed	binary	data
This	module	performs	conversions	between	Python	values	and	C	structs
represented	as	Python	strings.	It	uses	format	strings	(explained	below)	as
compact	descriptions	of	the	lay-out	of	the	C	structs	and	the	intended	conversion
to/from	Python	values.	This	can	be	used	in	handling	binary	data	stored	in	files	or
from	network	connections,	among	other	sources.

The	module	defines	the	following	exception	and	functions:

exception	error
Exception	raised	on	various	occasions;	argument	is	a	string	describing	what
is	wrong.

pack(fmt,	v1,	v2,	...)
Return	a	string	containing	the	values	v1,	v2,	...	packed	according	to
the	given	format.	The	arguments	must	match	the	values	required	by	the
format	exactly.

unpack(fmt,	string)
Unpack	the	string	(presumably	packed	by	pack(fmt,	...))	according	to
the	given	format.	The	result	is	a	tuple	even	if	it	contains	exactly	one	item.
The	string	must	contain	exactly	the	amount	of	data	required	by	the	format
(len(string)	must	equal	calcsize(fmt)).

calcsize(fmt)
Return	the	size	of	the	struct	(and	hence	of	the	string)	corresponding	to	the
given	format.

Format	characters	have	the	following	meaning;	the	conversion	between	C	and
Python	values	should	be	obvious	given	their	types:

Format C	Type Python Notes
x pad	byte no	value

c char string	of	length	1
b signed	char integer
B unsigned	char integer
h short integer
H unsigned	short integer
i int integer
I unsigned	int long
l long integer
L unsigned	long long
q long	long long (1)
Q unsigned	long	long long (1)
f float float
d double float
s char[] string
p char[] string
P void	* integer

Notes:

(1)
The	"q"	and	"Q"	conversion	codes	are	available	in	native	mode	only	if	the
platform	C	compiler	supports	C	long	long,	or,	on	Windows,	__int64.
They	are	always	available	in	standard	modes.	New	in	version	2.2.

A	format	character	may	be	preceded	by	an	integral	repeat	count.	For	example,
the	format	string	'4h'	means	exactly	the	same	as	'hhhh'.

Whitespace	characters	between	formats	are	ignored;	a	count	and	its	format	must
not	contain	whitespace	though.

For	the	"s"	format	character,	the	count	is	interpreted	as	the	size	of	the	string,	not
a	repeat	count	like	for	the	other	format	characters;	for	example,	'10s'	means	a
single	10-byte	string,	while	'10c'	means	10	characters.	For	packing,	the	string
is	truncated	or	padded	with	null	bytes	as	appropriate	to	make	it	fit.	For
unpacking,	the	resulting	string	always	has	exactly	the	specified	number	of	bytes.
As	a	special	case,	'0s'	means	a	single,	empty	string	(while	'0c'	means	0

characters).

The	"p"	format	character	encodes	a	"Pascal	string",	meaning	a	short	variable-
length	string	stored	in	a	fixed	number	of	bytes.	The	count	is	the	total	number	of
bytes	stored.	The	first	byte	stored	is	the	length	of	the	string,	or	255,	whichever	is
smaller.	The	bytes	of	the	string	follow.	If	the	string	passed	in	to	pack()	is	too
long	(longer	than	the	count	minus	1),	only	the	leading	count-1	bytes	of	the	string
are	stored.	If	the	string	is	shorter	than	count-1,	it	is	padded	with	null	bytes	so	that
exactly	count	bytes	in	all	are	used.	Note	that	for	unpack(),	the	"p"	format
character	consumes	count	bytes,	but	that	the	string	returned	can	never	contain
more	than	255	characters.

For	the	"I",	"L",	"q"	and	"Q"	format	characters,	the	return	value	is	a	Python	long
integer.

For	the	"P"	format	character,	the	return	value	is	a	Python	integer	or	long	integer,
depending	on	the	size	needed	to	hold	a	pointer	when	it	has	been	cast	to	an
integer	type.	A	NULL	pointer	will	always	be	returned	as	the	Python	integer	0.
When	packing	pointer-sized	values,	Python	integer	or	long	integer	objects	may
be	used.	For	example,	the	Alpha	and	Merced	processors	use	64-bit	pointer
values,	meaning	a	Python	long	integer	will	be	used	to	hold	the	pointer;	other
platforms	use	32-bit	pointers	and	will	use	a	Python	integer.

By	default,	C	numbers	are	represented	in	the	machine's	native	format	and	byte
order,	and	properly	aligned	by	skipping	pad	bytes	if	necessary	(according	to	the
rules	used	by	the	C	compiler).

Alternatively,	the	first	character	of	the	format	string	can	be	used	to	indicate	the
byte	order,	size	and	alignment	of	the	packed	data,	according	to	the	following
table:

Character Byte	order Size	and	alignment
@ native native
= native standard
< little-endian standard
> big-endian standard
! network	(=	big-endian) standard

If	the	first	character	is	not	one	of	these,	"@"	is	assumed.

Native	byte	order	is	big-endian	or	little-endian,	depending	on	the	host	system.
For	example,	Motorola	and	Sun	processors	are	big-endian;	Intel	and	DEC
processors	are	little-endian.

Native	size	and	alignment	are	determined	using	the	C	compiler's	sizeof
expression.	This	is	always	combined	with	native	byte	order.

Standard	size	and	alignment	are	as	follows:	no	alignment	is	required	for	any	type
(so	you	have	to	use	pad	bytes);	short	is	2	bytes;	int	and	long	are	4	bytes;
long	long	(__int64	on	Windows)	is	8	bytes;	float	and	double	are	32-
bit	and	64-bit	IEEE	floating	point	numbers,	respectively.

Note	the	difference	between	"@"	and	"=":	both	use	native	byte	order,	but	the	size
and	alignment	of	the	latter	is	standardized.

The	form	"!"	is	available	for	those	poor	souls	who	claim	they	can't	remember
whether	network	byte	order	is	big-endian	or	little-endian.

There	is	no	way	to	indicate	non-native	byte	order	(force	byte-swapping);	use	the
appropriate	choice	of	"<"	or	">".

The	"P"	format	character	is	only	available	for	the	native	byte	ordering	(selected
as	the	default	or	with	the	"@"	byte	order	character).	The	byte	order	character	"="
chooses	to	use	little-	or	big-endian	ordering	based	on	the	host	system.	The	struct
module	does	not	interpret	this	as	native	ordering,	so	the	"P"	format	is	not
available.

Examples	(all	using	native	byte	order,	size	and	alignment,	on	a	big-endian
machine):

>>>	from	struct	import	*

>>>	pack('hhl',	1,	2,	3)

'\x00\x01\x00\x02\x00\x00\x00\x03'

>>>	unpack('hhl',	'\x00\x01\x00\x02\x00\x00\x00\x03')

(1,	2,	3)

>>>	calcsize('hhl')

8

Hint:	to	align	the	end	of	a	structure	to	the	alignment	requirement	of	a	particular

type,	end	the	format	with	the	code	for	that	type	with	a	repeat	count	of	zero.	For
example,	the	format	'llh0l'	specifies	two	pad	bytes	at	the	end,	assuming
longs	are	aligned	on	4-byte	boundaries.	This	only	works	when	native	size	and
alignment	are	in	effect;	standard	size	and	alignment	does	not	enforce	any
alignment.

See	Also:

Module	array:
Packed	binary	storage	of	homogeneous	data.

Module	xdrlib:
Packing	and	unpacking	of	XDR	data.

Python	Library	Reference
Previous:	4.2.6	Examples	Up:	4.	String	Services	Next:	4.4	difflib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.3	struct	Up:	4.	String	Services	Next:	4.4.1	SequenceMatcher
Objects

4.4	difflib	--	Helpers	for
computing	deltas
New	in	version	2.1.

class	SequenceMatcher
This	is	a	flexible	class	for	comparing	pairs	of	sequences	of	any	type,	so
long	as	the	sequence	elements	are	hashable.	The	basic	algorithm	predates,
and	is	a	little	fancier	than,	an	algorithm	published	in	the	late	1980's	by
Ratcliff	and	Obershelp	under	the	hyperbolic	name	``gestalt	pattern
matching.''	The	idea	is	to	find	the	longest	contiguous	matching	subsequence
that	contains	no	``junk''	elements	(the	Ratcliff	and	Obershelp	algorithm
doesn't	address	junk).	The	same	idea	is	then	applied	recursively	to	the
pieces	of	the	sequences	to	the	left	and	to	the	right	of	the	matching
subsequence.	This	does	not	yield	minimal	edit	sequences,	but	does	tend	to
yield	matches	that	``look	right''	to	people.

Timing:	The	basic	Ratcliff-Obershelp	algorithm	is	cubic	time	in	the	worst
case	and	quadratic	time	in	the	expected	case.	SequenceMatcher	is
quadratic	time	for	the	worst	case	and	has	expected-case	behavior	dependent
in	a	complicated	way	on	how	many	elements	the	sequences	have	in
common;	best	case	time	is	linear.

class	Differ
This	is	a	class	for	comparing	sequences	of	lines	of	text,	and	producing
human-readable	differences	or	deltas.	Differ	uses	SequenceMatcher
both	to	compare	sequences	of	lines,	and	to	compare	sequences	of	characters
within	similar	(near-matching)	lines.

Each	line	of	a	Differ	delta	begins	with	a	two-letter	code:

Code Meaning
'-	' line	unique	to	sequence	1
'+	' line	unique	to	sequence	2
'	' line	common	to	both	sequences

'?	' line	not	present	in	either	input	sequence

Lines	beginning	with	`?	'	attempt	to	guide	the	eye	to	intraline	differences,
and	were	not	present	in	either	input	sequence.	These	lines	can	be	confusing
if	the	sequences	contain	tab	characters.

class	HtmlDiff

This	class	can	be	used	to	create	an	HTML	table	(or	a	complete	HTML	file
containing	the	table)	showing	a	side	by	side,	line	by	line	comparison	of	text
with	inter-line	and	intra-line	change	highlights.	The	table	can	be	generated
in	either	full	or	contextual	difference	mode.

The	constructor	for	this	class	is:

__init__([tabsize][,	wrapcolumn][,	linejunk][,	charjunk])

Initializes	instance	of	HtmlDiff.

tabsize	is	an	optional	keyword	argument	to	specify	tab	stop	spacing
and	defaults	to	8.

wrapcolumn	is	an	optional	keyword	to	specify	column	number	where
lines	are	broken	and	wrapped,	defaults	to	None	where	lines	are	not
wrapped.

linejunk	and	charjunk	are	optional	keyword	arguments	passed	into
ndiff()	(used	by	HtmlDiff	to	generate	the	side	by	side	HTML
differences).	See	ndiff()	documentation	for	argument	default
values	and	descriptions.

The	following	methods	are	public:

make_file(fromlines,	tolines	[,	fromdesc][,	todesc][,	context][,
numlines])

Compares	fromlines	and	tolines	(lists	of	strings)	and	returns	a	string
which	is	a	complete	HTML	file	containing	a	table	showing	line	by	line
differences	with	inter-line	and	intra-line	changes	highlighted.

fromdesc	and	todesc	are	optional	keyword	arguments	to	specify
from/to	file	column	header	strings	(both	default	to	an	empty	string).

context	and	numlines	are	both	optional	keyword	arguments.	Set
context	to	True	when	contextual	differences	are	to	be	shown,	else	the
default	is	False	to	show	the	full	files.	numlines	defaults	to	5.	When
context	is	True	numlines	controls	the	number	of	context	lines	which
surround	the	difference	highlights.	When	context	is	False	numlines
controls	the	number	of	lines	which	are	shown	before	a	difference
highlight	when	using	the	"next"	hyperlinks	(setting	to	zero	would
cause	the	"next"	hyperlinks	to	place	the	next	difference	highlight	at	the
top	of	the	browser	without	any	leading	context).

make_table(fromlines,	tolines	[,	fromdesc][,	todesc][,	context][,
numlines])

Compares	fromlines	and	tolines	(lists	of	strings)	and	returns	a	string
which	is	a	complete	HTML	table	showing	line	by	line	differences	with
inter-line	and	intra-line	changes	highlighted.

The	arguments	for	this	method	are	the	same	as	those	for	the
make_file()	method.

Tools/scripts/diff.py	is	a	command-line	front-end	to	this	class	and	contains
a	good	example	of	its	use.

New	in	version	2.4.

context_diff(a,	b[,	fromfile][,	tofile][,	fromfiledate][,	tofiledate][,	n][,
lineterm])

Compare	a	and	b	(lists	of	strings);	return	a	delta	(a	generator	generating	the
delta	lines)	in	context	diff	format.

Context	diffs	are	a	compact	way	of	showing	just	the	lines	that	have	changed
plus	a	few	lines	of	context.	The	changes	are	shown	in	a	before/after	style.
The	number	of	context	lines	is	set	by	n	which	defaults	to	three.

By	default,	the	diff	control	lines	(those	with	***	or	---)	are	created	with	a
trailing	newline.	This	is	helpful	so	that	inputs	created	from

file.readlines()	result	in	diffs	that	are	suitable	for	use	with
file.writelines()	since	both	the	inputs	and	outputs	have	trailing
newlines.

For	inputs	that	do	not	have	trailing	newlines,	set	the	lineterm	argument	to
""	so	that	the	output	will	be	uniformly	newline	free.

The	context	diff	format	normally	has	a	header	for	filenames	and
modification	times.	Any	or	all	of	these	may	be	specified	using	strings	for
fromfile,	tofile,	fromfiledate,	and	tofiledate.	The	modification	times	are
normally	expressed	in	the	format	returned	by	time.ctime().	If	not
specified,	the	strings	default	to	blanks.

Tools/scripts/diff.py	is	a	command-line	front-end	for	this	function.

New	in	version	2.3.

get_close_matches(word,	possibilities[,	n][,	cutoff])
Return	a	list	of	the	best	``good	enough''	matches.	word	is	a	sequence	for
which	close	matches	are	desired	(typically	a	string),	and	possibilities	is	a
list	of	sequences	against	which	to	match	word	(typically	a	list	of	strings).

Optional	argument	n	(default	3)	is	the	maximum	number	of	close	matches
to	return;	n	must	be	greater	than	0.

Optional	argument	cutoff	(default	0.6)	is	a	float	in	the	range	[0,	1].
Possibilities	that	don't	score	at	least	that	similar	to	word	are	ignored.

The	best	(no	more	than	n)	matches	among	the	possibilities	are	returned	in	a
list,	sorted	by	similarity	score,	most	similar	first.

>>>	get_close_matches('appel',	['ape',	'apple',	'peach',	'puppy'])

['apple',	'ape']

>>>	import	keyword

>>>	get_close_matches('wheel',	keyword.kwlist)

['while']

>>>	get_close_matches('apple',	keyword.kwlist)

[]

>>>	get_close_matches('accept',	keyword.kwlist)

['except']

ndiff(a,	b[,	linejunk][,	charjunk])
Compare	a	and	b	(lists	of	strings);	return	a	Differ-style	delta	(a	generator
generating	the	delta	lines).

Optional	keyword	parameters	linejunk	and	charjunk	are	for	filter	functions
(or	None):

linejunk:	A	function	that	accepts	a	single	string	argument,	and	returns	true	if
the	string	is	junk,	or	false	if	not.	The	default	is	(None),	starting	with	Python
2.3.	Before	then,	the	default	was	the	module-level	function
IS_LINE_JUNK(),	which	filters	out	lines	without	visible	characters,
except	for	at	most	one	pound	character	("#").	As	of	Python	2.3,	the
underlying	SequenceMatcher	class	does	a	dynamic	analysis	of	which
lines	are	so	frequent	as	to	constitute	noise,	and	this	usually	works	better
than	the	pre-2.3	default.

charjunk:	A	function	that	accepts	a	character	(a	string	of	length	1),	and
returns	if	the	character	is	junk,	or	false	if	not.	The	default	is	module-level
function	IS_CHARACTER_JUNK(),	which	filters	out	whitespace
characters	(a	blank	or	tab;	note:	bad	idea	to	include	newline	in	this!).

Tools/scripts/ndiff.py	is	a	command-line	front-end	to	this	function.

>>>	diff	=	ndiff('one\ntwo\nthree\n'.splitlines(1),

...														'ore\ntree\nemu\n'.splitlines(1))

>>>	print	''.join(diff),

-	one

?		^

+	ore

?		^

-	two

-	three

?		-

+	tree

+	emu

restore(sequence,	which)
Return	one	of	the	two	sequences	that	generated	a	delta.

Given	a	sequence	produced	by	Differ.compare()	or	ndiff(),
extract	lines	originating	from	file	1	or	2	(parameter	which),	stripping	off
line	prefixes.

Example:

>>>	diff	=	ndiff('one\ntwo\nthree\n'.splitlines(1),

...														'ore\ntree\nemu\n'.splitlines(1))

>>>	diff	=	list(diff)	#	materialize	the	generated	delta	into	a	list

>>>	print	''.join(restore(diff,	1)),

one

two

three

>>>	print	''.join(restore(diff,	2)),

ore

tree

emu

unified_diff(a,	b[,	fromfile][,	tofile][,	fromfiledate][,	tofiledate][,	n][,
lineterm])

Compare	a	and	b	(lists	of	strings);	return	a	delta	(a	generator	generating	the
delta	lines)	in	unified	diff	format.

Unified	diffs	are	a	compact	way	of	showing	just	the	lines	that	have	changed
plus	a	few	lines	of	context.	The	changes	are	shown	in	a	inline	style	(instead
of	separate	before/after	blocks).	The	number	of	context	lines	is	set	by	n
which	defaults	to	three.

By	default,	the	diff	control	lines	(those	with	---,	+++,	or	@@)	are	created
with	a	trailing	newline.	This	is	helpful	so	that	inputs	created	from
file.readlines()	result	in	diffs	that	are	suitable	for	use	with
file.writelines()	since	both	the	inputs	and	outputs	have	trailing
newlines.

For	inputs	that	do	not	have	trailing	newlines,	set	the	lineterm	argument	to
""	so	that	the	output	will	be	uniformly	newline	free.

The	context	diff	format	normally	has	a	header	for	filenames	and
modification	times.	Any	or	all	of	these	may	be	specified	using	strings	for
fromfile,	tofile,	fromfiledate,	and	tofiledate.	The	modification	times	are
normally	expressed	in	the	format	returned	by	time.ctime().	If	not
specified,	the	strings	default	to	blanks.

Tools/scripts/diff.py	is	a	command-line	front-end	for	this	function.

New	in	version	2.3.

IS_LINE_JUNK(line)
Return	true	for	ignorable	lines.	The	line	line	is	ignorable	if	line	is	blank	or
contains	a	single	"#",	otherwise	it	is	not	ignorable.	Used	as	a	default	for
parameter	linejunk	in	ndiff()	before	Python	2.3.

IS_CHARACTER_JUNK(ch)
Return	true	for	ignorable	characters.	The	character	ch	is	ignorable	if	ch	is	a
space	or	tab,	otherwise	it	is	not	ignorable.	Used	as	a	default	for	parameter
charjunk	in	ndiff().

See	Also:

Pattern	Matching:	The	Gestalt	Approach
Discussion	of	a	similar	algorithm	by	John	W.	Ratcliff	and	D.	E.
Metzener.	This	was	published	in	Dr.	Dobb's	Journal	in	July,	1988.

Subsections

4.4.1	SequenceMatcher	Objects
4.4.2	SequenceMatcher	Examples
4.4.3	Differ	Objects
4.4.4	Differ	Example

Python	Library	Reference
Previous:	4.3	struct	Up:	4.	String	Services	Next:	4.4.1	SequenceMatcher
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.ddj.com/documents/s=1103/ddj8807c/
http://www.ddj.com/

Previous:	4.4	difflib	Up:	4.4	difflib	Next:	4.4.2	SequenceMatcher	Examples

4.4.1	SequenceMatcher	Objects
The	SequenceMatcher	class	has	this	constructor:

class	SequenceMatcher([isjunk[,	a[,	b]]])
Optional	argument	isjunk	must	be	None	(the	default)	or	a	one-argument
function	that	takes	a	sequence	element	and	returns	true	if	and	only	if	the
element	is	``junk''	and	should	be	ignored.	Passing	None	for	isjunk	is
equivalent	to	passing	lambda	x:	0;	in	other	words,	no	elements	are
ignored.	For	example,	pass:

lambda	x:	x	in	"	\t"

if	you're	comparing	lines	as	sequences	of	characters,	and	don't	want	to
synch	up	on	blanks	or	hard	tabs.

The	optional	arguments	a	and	b	are	sequences	to	be	compared;	both	default
to	empty	strings.	The	elements	of	both	sequences	must	be	hashable.

SequenceMatcher	objects	have	the	following	methods:

set_seqs(a,	b)
Set	the	two	sequences	to	be	compared.

SequenceMatcher	computes	and	caches	detailed	information	about	the
second	sequence,	so	if	you	want	to	compare	one	sequence	against	many
sequences,	use	set_seq2()	to	set	the	commonly	used	sequence	once	and	call
set_seq1()	repeatedly,	once	for	each	of	the	other	sequences.

set_seq1(a)
Set	the	first	sequence	to	be	compared.	The	second	sequence	to	be	compared
is	not	changed.

set_seq2(b)
Set	the	second	sequence	to	be	compared.	The	first	sequence	to	be	compared
is	not	changed.

find_longest_match(alo,	ahi,	blo,	bhi)
Find	longest	matching	block	in	a[alo:ahi]	and	b[blo:bhi].

If	isjunk	was	omitted	or	None,	get_longest_match()	returns	(i,	j,
k)	such	that	a[i:i+k]	is	equal	to	b[j:j+k],	where	alo	<=	i	<=	i+k	<=
ahi	and	blo	<=	j	<=	j+k	<=	bhi.	For	all	(i',	j',	k')	meeting	those
conditions,	the	additional	conditions	k	>=	k',	i	<=	i',	and	if	i	==	i',	j
<=	j'	are	also	met.	In	other	words,	of	all	maximal	matching	blocks,	return
one	that	starts	earliest	in	a,	and	of	all	those	maximal	matching	blocks	that
start	earliest	in	a,	return	the	one	that	starts	earliest	in	b.

>>>	s	=	SequenceMatcher(None,	"	abcd",	"abcd	abcd")

>>>	s.find_longest_match(0,	5,	0,	9)

(0,	4,	5)

If	isjunk	was	provided,	first	the	longest	matching	block	is	determined	as
above,	but	with	the	additional	restriction	that	no	junk	element	appears	in	the
block.	Then	that	block	is	extended	as	far	as	possible	by	matching	(only)
junk	elements	on	both	sides.	So	the	resulting	block	never	matches	on	junk
except	as	identical	junk	happens	to	be	adjacent	to	an	interesting	match.

Here's	the	same	example	as	before,	but	considering	blanks	to	be	junk.	That
prevents	'	abcd'	from	matching	the	'	abcd'	at	the	tail	end	of	the
second	sequence	directly.	Instead	only	the	'abcd'	can	match,	and	matches
the	leftmost	'abcd'	in	the	second	sequence:

>>>	s	=	SequenceMatcher(lambda	x:	x=="	",	"	abcd",	"abcd	abcd")

>>>	s.find_longest_match(0,	5,	0,	9)

(1,	0,	4)

If	no	blocks	match,	this	returns	(alo,	blo,	0).

get_matching_blocks()
Return	list	of	triples	describing	matching	subsequences.	Each	triple	is	of	the
form	(i,	j,	n),	and	means	that	a[i:i+n]	==	b[j:j+n].	The	triples	are
monotonically	increasing	in	i	and	j.

The	last	triple	is	a	dummy,	and	has	the	value	(len(a),	len(b),	0).	It
is	the	only	triple	with	n	==	0.

>>>	s	=	SequenceMatcher(None,	"abxcd",	"abcd")

>>>	s.get_matching_blocks()

[(0,	0,	2),	(3,	2,	2),	(5,	4,	0)]

get_opcodes()
Return	list	of	5-tuples	describing	how	to	turn	a	into	b.	Each	tuple	is	of	the
form	(tag,	i1,	i2,	j1,	j2).	The	first	tuple	has	i1	==	j1	==	0,	and
remaining	tuples	have	i1	equal	to	the	i2	from	the	preceeding	tuple,	and,
likewise,	j1	equal	to	the	previous	j2.

The	tag	values	are	strings,	with	these	meanings:

Value Meaning
'replace' a[i1:i2]	should	be	replaced	by	b[j1:j2].
'delete' a[i1:i2]	should	be	deleted.	Note	that	j1	==	j2	in	this

case.
'insert' b[j1:j2]	should	be	inserted	at	a[i1:i1].	Note	that	i1

==	i2	in	this	case.
'equal' a[i1:i2]	==	b[j1:j2]	(the	sub-sequences	are	equal).

For	example:

>>>	a	=	"qabxcd"

>>>	b	=	"abycdf"

>>>	s	=	SequenceMatcher(None,	a,	b)

>>>	for	tag,	i1,	i2,	j1,	j2	in	s.get_opcodes():

...				print	("%7s	a[%d:%d]	(%s)	b[%d:%d]	(%s)"	%

...											(tag,	i1,	i2,	a[i1:i2],	j1,	j2,	b[j1:j2]))

	delete	a[0:1]	(q)	b[0:0]	()

		equal	a[1:3]	(ab)	b[0:2]	(ab)

replace	a[3:4]	(x)	b[2:3]	(y)

		equal	a[4:6]	(cd)	b[3:5]	(cd)

	insert	a[6:6]	()	b[5:6]	(f)

get_grouped_opcodes([n])
Return	a	generator	of	groups	with	up	to	n	lines	of	context.

Starting	with	the	groups	returned	by	get_opcodes(),	this	method	splits
out	smaller	change	clusters	and	eliminates	intervening	ranges	which	have
no	changes.

The	groups	are	returned	in	the	same	format	as	get_opcodes().	New	in

version	2.3.

ratio()
Return	a	measure	of	the	sequences'	similarity	as	a	float	in	the	range	[0,	1].

Where	T	is	the	total	number	of	elements	in	both	sequences,	and	M	is	the
number	of	matches,	this	is	2.0*M	/	T.	Note	that	this	is	1.0	if	the	sequences
are	identical,	and	0.0	if	they	have	nothing	in	common.

This	is	expensive	to	compute	if	get_matching_blocks()	or
get_opcodes()	hasn't	already	been	called,	in	which	case	you	may	want
to	try	quick_ratio()	or	real_quick_ratio()	first	to	get	an	upper
bound.

quick_ratio()
Return	an	upper	bound	on	ratio()	relatively	quickly.

This	isn't	defined	beyond	that	it	is	an	upper	bound	on	ratio(),	and	is
faster	to	compute.

real_quick_ratio()
Return	an	upper	bound	on	ratio()	very	quickly.

This	isn't	defined	beyond	that	it	is	an	upper	bound	on	ratio(),	and	is
faster	to	compute	than	either	ratio()	or	quick_ratio().

The	three	methods	that	return	the	ratio	of	matching	to	total	characters	can	give
different	results	due	to	differing	levels	of	approximation,	although
quick_ratio()	and	real_quick_ratio()	are	always	at	least	as	large	as
ratio():

>>>	s	=	SequenceMatcher(None,	"abcd",	"bcde")

>>>	s.ratio()

0.75

>>>	s.quick_ratio()

0.75

>>>	s.real_quick_ratio()

1.0

Python	Library	Reference
Previous:	4.4	difflib	Up:	4.4	difflib	Next:	4.4.2	SequenceMatcher	Examples

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.4.1	SequenceMatcher	Objects	Up:	4.4	difflib	Next:	4.4.3	Differ
Objects

4.4.2	SequenceMatcher	Examples
This	example	compares	two	strings,	considering	blanks	to	be	``junk:''

>>>	s	=	SequenceMatcher(lambda	x:	x	==	"	",

...																					"private	Thread	currentThread;",

...																					"private	volatile	Thread	currentThread;")

ratio()	returns	a	float	in	[0,	1],	measuring	the	similarity	of	the	sequences.	As
a	rule	of	thumb,	a	ratio()	value	over	0.6	means	the	sequences	are	close
matches:

>>>	print	round(s.ratio(),	3)

0.866

If	you're	only	interested	in	where	the	sequences	match,
get_matching_blocks()	is	handy:

>>>	for	block	in	s.get_matching_blocks():

...					print	"a[%d]	and	b[%d]	match	for	%d	elements"	%	block

a[0]	and	b[0]	match	for	8	elements

a[8]	and	b[17]	match	for	6	elements

a[14]	and	b[23]	match	for	15	elements

a[29]	and	b[38]	match	for	0	elements

Note	that	the	last	tuple	returned	by	get_matching_blocks()	is	always	a
dummy,	(len(a),	len(b),	0),	and	this	is	the	only	case	in	which	the	last
tuple	element	(number	of	elements	matched)	is	0.

If	you	want	to	know	how	to	change	the	first	sequence	into	the	second,	use
get_opcodes():

>>>	for	opcode	in	s.get_opcodes():

...					print	"%6s	a[%d:%d]	b[%d:%d]"	%	opcode

	equal	a[0:8]	b[0:8]

insert	a[8:8]	b[8:17]

	equal	a[8:14]	b[17:23]

	equal	a[14:29]	b[23:38]

See	also	the	function	get_close_matches()	in	this	module,	which	shows
how	simple	code	building	on	SequenceMatcher	can	be	used	to	do	useful
work.

Python	Library	Reference
Previous:	4.4.1	SequenceMatcher	Objects	Up:	4.4	difflib	Next:	4.4.3	Differ
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.4.2	SequenceMatcher	Examples	Up:	4.4	difflib	Next:	4.4.4	Differ
Example

4.4.3	Differ	Objects
Note	that	Differ-generated	deltas	make	no	claim	to	be	minimal	diffs.	To	the
contrary,	minimal	diffs	are	often	counter-intuitive,	because	they	synch	up
anywhere	possible,	sometimes	accidental	matches	100	pages	apart.	Restricting
synch	points	to	contiguous	matches	preserves	some	notion	of	locality,	at	the
occasional	cost	of	producing	a	longer	diff.

The	Differ	class	has	this	constructor:

class	Differ([linejunk[,	charjunk]])
Optional	keyword	parameters	linejunk	and	charjunk	are	for	filter	functions
(or	None):

linejunk:	A	function	that	accepts	a	single	string	argument,	and	returns	true	if
the	string	is	junk.	The	default	is	None,	meaning	that	no	line	is	considered
junk.

charjunk:	A	function	that	accepts	a	single	character	argument	(a	string	of
length	1),	and	returns	true	if	the	character	is	junk.	The	default	is	None,
meaning	that	no	character	is	considered	junk.

Differ	objects	are	used	(deltas	generated)	via	a	single	method:

compare(a,	b)
Compare	two	sequences	of	lines,	and	generate	the	delta	(a	sequence	of
lines).

Each	sequence	must	contain	individual	single-line	strings	ending	with
newlines.	Such	sequences	can	be	obtained	from	the	readlines()
method	of	file-like	objects.	The	delta	generated	also	consists	of	newline-
terminated	strings,	ready	to	be	printed	as-is	via	the	writelines()
method	of	a	file-like	object.

Python	Library	Reference
Previous:	4.4.2	SequenceMatcher	Examples	Up:	4.4	difflib	Next:	4.4.4	Differ

Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.4.3	Differ	Objects	Up:	4.4	difflib	Next:	4.5	fpformat

4.4.4	Differ	Example
This	example	compares	two	texts.	First	we	set	up	the	texts,	sequences	of
individual	single-line	strings	ending	with	newlines	(such	sequences	can	also	be
obtained	from	the	readlines()	method	of	file-like	objects):

>>>	text1	=	'''		1.	Beautiful	is	better	than	ugly.

...			2.	Explicit	is	better	than	implicit.

...			3.	Simple	is	better	than	complex.

...			4.	Complex	is	better	than	complicated.

...	'''.splitlines(1)

>>>	len(text1)

4

>>>	text1[0][-1]

'\n'

>>>	text2	=	'''		1.	Beautiful	is	better	than	ugly.

...			3.			Simple	is	better	than	complex.

...			4.	Complicated	is	better	than	complex.

...			5.	Flat	is	better	than	nested.

...	'''.splitlines(1)

Next	we	instantiate	a	Differ	object:

>>>	d	=	Differ()

Note	that	when	instantiating	a	Differ	object	we	may	pass	functions	to	filter
out	line	and	character	``junk.''	See	the	Differ()	constructor	for	details.

Finally,	we	compare	the	two:

>>>	result	=	list(d.compare(text1,	text2))

result	is	a	list	of	strings,	so	let's	pretty-print	it:

>>>	from	pprint	import	pprint

>>>	pprint(result)

['				1.	Beautiful	is	better	than	ugly.\n',

	'-			2.	Explicit	is	better	than	implicit.\n',

	'-			3.	Simple	is	better	than	complex.\n',

	'+			3.			Simple	is	better	than	complex.\n',

	'?					++																																\n',

	'-			4.	Complex	is	better	than	complicated.\n',

	'?												^																					----	^		\n',

	'+			4.	Complicated	is	better	than	complex.\n',

	'?											++++	^																						^		\n',

	'+			5.	Flat	is	better	than	nested.\n']

As	a	single	multi-line	string	it	looks	like	this:

>>>	import	sys

>>>	sys.stdout.writelines(result)

				1.	Beautiful	is	better	than	ugly.

-			2.	Explicit	is	better	than	implicit.

-			3.	Simple	is	better	than	complex.

+			3.			Simple	is	better	than	complex.

?					++

-			4.	Complex	is	better	than	complicated.

?												^																					----	^

+			4.	Complicated	is	better	than	complex.

?											++++	^																						^

+			5.	Flat	is	better	than	nested.

Python	Library	Reference
Previous:	4.4.3	Differ	Objects	Up:	4.4	difflib	Next:	4.5	fpformat

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.4.4	Differ	Example	Up:	4.	String	Services	Next:	4.6	StringIO

4.5	fpformat	--	Floating	point
conversions
The	fpformat	module	defines	functions	for	dealing	with	floating	point
numbers	representations	in	100%	pure	Python.	Note:	This	module	is	unneeded:
everything	here	could	be	done	via	the	%	string	interpolation	operator.

The	fpformat	module	defines	the	following	functions	and	an	exception:

fix(x,	digs)
Format	x	as	[-]ddd.ddd	with	digs	digits	after	the	point	and	at	least	one
digit	before.	If	digs	<=	0,	the	decimal	point	is	suppressed.

x	can	be	either	a	number	or	a	string	that	looks	like	one.	digs	is	an	integer.

Return	value	is	a	string.

sci(x,	digs)
Format	x	as	[-]d.dddE[+-]ddd	with	digs	digits	after	the	point	and
exactly	one	digit	before.	If	digs	<=	0,	one	digit	is	kept	and	the	point	is
suppressed.

x	can	be	either	a	real	number,	or	a	string	that	looks	like	one.	digs	is	an
integer.

Return	value	is	a	string.

exception	NotANumber
Exception	raised	when	a	string	passed	to	fix()	or	sci()	as	the	x
parameter	does	not	look	like	a	number.	This	is	a	subclass	of	ValueError
when	the	standard	exceptions	are	strings.	The	exception	value	is	the
improperly	formatted	string	that	caused	the	exception	to	be	raised.

Example:

>>>	import	fpformat

>>>	fpformat.fix(1.23,	1)

'1.2'

Python	Library	Reference
Previous:	4.4.4	Differ	Example	Up:	4.	String	Services	Next:	4.6	StringIO

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.5	fpformat	Up:	4.	String	Services	Next:	4.7	cStringIO

4.6	StringIO	--	Read	and	write
strings	as	files
This	module	implements	a	file-like	class,	StringIO,	that	reads	and	writes	a
string	buffer	(also	known	as	memory	files).	See	the	description	of	file	objects	for
operations	(section	2.3.9).

class	StringIO([buffer])
When	a	StringIO	object	is	created,	it	can	be	initialized	to	an	existing
string	by	passing	the	string	to	the	constructor.	If	no	string	is	given,	the
StringIO	will	start	empty.

The	StringIO	object	can	accept	either	Unicode	or	8-bit	strings,	but
mixing	the	two	may	take	some	care.	If	both	are	used,	8-bit	strings	that
cannot	be	interpreted	as	7-bit	ASCII	(that	use	the	8th	bit)	will	cause	a
UnicodeError	to	be	raised	when	getvalue()	is	called.

The	following	methods	of	StringIO	objects	require	special	mention:

getvalue()
Retrieve	the	entire	contents	of	the	``file''	at	any	time	before	the	StringIO
object's	close()	method	is	called.	See	the	note	above	for	information
about	mixing	Unicode	and	8-bit	strings;	such	mixing	can	cause	this	method
to	raise	UnicodeError.

close()
Free	the	memory	buffer.

Python	Library	Reference
Previous:	4.5	fpformat	Up:	4.	String	Services	Next:	4.7	cStringIO

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.6	StringIO	Up:	4.	String	Services	Next:	4.8	textwrap

4.7	cStringIO	--	Faster	version	of
StringIO

The	module	cStringIO	provides	an	interface	similar	to	that	of	the	StringIO
module.	Heavy	use	of	StringIO.StringIO	objects	can	be	made	more
efficient	by	using	the	function	StringIO()	from	this	module	instead.

Since	this	module	provides	a	factory	function	which	returns	objects	of	built-in
types,	there's	no	way	to	build	your	own	version	using	subclassing.	Use	the
original	StringIO	module	in	that	case.

Unlike	the	memory	files	implemented	by	the	StringIO	module,	those
provided	by	this	module	are	not	able	to	accept	Unicode	strings	that	cannot	be
encoded	as	plain	ASCII	strings.

Another	difference	from	the	StringIO	module	is	that	calling	StringIO()
with	a	string	parameter	creates	a	read-only	object.	Unlike	an	object	created
without	a	string	parameter,	it	does	not	have	write	methods.	These	objects	are	not
generally	visible.	They	turn	up	in	tracebacks	as	StringI	and	StringO.

The	following	data	objects	are	provided	as	well:

InputType

The	type	object	of	the	objects	created	by	calling	StringIO	with	a	string
parameter.

OutputType

The	type	object	of	the	objects	returned	by	calling	StringIO	with	no
parameters.

There	is	a	C	API	to	the	module	as	well;	refer	to	the	module	source	for	more
information.

Python	Library	Reference
Previous:	4.6	StringIO	Up:	4.	String	Services	Next:	4.8	textwrap

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.7	cStringIO	Up:	4.	String	Services	Next:	4.9	codecs

4.8	textwrap	--	Text	wrapping	and
filling
New	in	version	2.3.

The	textwrap	module	provides	two	convenience	functions,	wrap()	and
fill(),	as	well	as	TextWrapper,	the	class	that	does	all	the	work,	and	a
utility	function	dedent().	If	you're	just	wrapping	or	filling	one	or	two	text
strings,	the	convenience	functions	should	be	good	enough;	otherwise,	you	should
use	an	instance	of	TextWrapper	for	efficiency.

wrap(text[,	width[,	...]])
Wraps	the	single	paragraph	in	text	(a	string)	so	every	line	is	at	most	width
characters	long.	Returns	a	list	of	output	lines,	without	final	newlines.

Optional	keyword	arguments	correspond	to	the	instance	attributes	of
TextWrapper,	documented	below.	width	defaults	to	70.

fill(text[,	width[,	...]])
Wraps	the	single	paragraph	in	text,	and	returns	a	single	string	containing	the
wrapped	paragraph.	fill()	is	shorthand	for

"\n".join(wrap(text,	...))

In	particular,	fill()	accepts	exactly	the	same	keyword	arguments	as
wrap().

Both	wrap()	and	fill()	work	by	creating	a	TextWrapper	instance	and
calling	a	single	method	on	it.	That	instance	is	not	reused,	so	for	applications	that
wrap/fill	many	text	strings,	it	will	be	more	efficient	for	you	to	create	your	own
TextWrapper	object.

An	additional	utility	function,	dedent(),	is	provided	to	remove	indentation
from	strings	that	have	unwanted	whitespace	to	the	left	of	the	text.

dedent(text)

Remove	any	whitespace	that	can	be	uniformly	removed	from	the	left	of
every	line	in	text.

This	is	typically	used	to	make	triple-quoted	strings	line	up	with	the	left
edge	of	screen/whatever,	while	still	presenting	it	in	the	source	code	in
indented	form.

For	example:

def	test():

				#	end	first	line	with	\	to	avoid	the	empty	line!

				s	=	'''\

				hello

						world

				'''

				print	repr(s)										#	prints	'				hello\n						world\n				'

				print	repr(dedent(s))		#	prints	'hello\n		world\n'

class	TextWrapper(...)
The	TextWrapper	constructor	accepts	a	number	of	optional	keyword
arguments.	Each	argument	corresponds	to	one	instance	attribute,	so	for
example

wrapper	=	TextWrapper(initial_indent="*	")

is	the	same	as
wrapper	=	TextWrapper()

wrapper.initial_indent	=	"*	"

You	can	re-use	the	same	TextWrapper	object	many	times,	and	you	can
change	any	of	its	options	through	direct	assignment	to	instance	attributes
between	uses.

The	TextWrapper	instance	attributes	(and	keyword	arguments	to	the
constructor)	are	as	follows:

width

(default:	70)	The	maximum	length	of	wrapped	lines.	As	long	as	there	are
no	individual	words	in	the	input	text	longer	than	width,	TextWrapper
guarantees	that	no	output	line	will	be	longer	than	width	characters.

expand_tabs

(default:	True)	If	true,	then	all	tab	characters	in	text	will	be	expanded	to
spaces	using	the	expand_tabs()	method	of	text.

replace_whitespace

(default:	True)	If	true,	each	whitespace	character	(as	defined	by
string.whitespace)	remaining	after	tab	expansion	will	be	replaced
by	a	single	space.	Note:	If	expand_tabs	is	false	and
replace_whitespace	is	true,	each	tab	character	will	be	replaced	by	a
single	space,	which	is	not	the	same	as	tab	expansion.

initial_indent

(default:	'')	String	that	will	be	prepended	to	the	first	line	of	wrapped
output.	Counts	towards	the	length	of	the	first	line.

subsequent_indent

(default:	'')	String	that	will	be	prepended	to	all	lines	of	wrapped	output
except	the	first.	Counts	towards	the	length	of	each	line	except	the	first.

fix_sentence_endings

(default:	False)	If	true,	TextWrapper	attempts	to	detect	sentence
endings	and	ensure	that	sentences	are	always	separated	by	exactly	two
spaces.	This	is	generally	desired	for	text	in	a	monospaced	font.	However,
the	sentence	detection	algorithm	is	imperfect:	it	assumes	that	a	sentence
ending	consists	of	a	lowercase	letter	followed	by	one	of	".",	"!",	or	"?",
possibly	followed	by	one	of	"""	or	"'",	followed	by	a	space.	One	problem
with	this	is	algorithm	is	that	it	is	unable	to	detect	the	difference	between
``Dr.''	in

[...]	Dr.	Frankenstein's	monster	[...]

and	``Spot.''	in

[...]	See	Spot.	See	Spot	run	[...]

fix_sentence_endings	is	false	by	default.

Since	the	sentence	detection	algorithm	relies	on	string.lowercase	for
the	definition	of	``lowercase	letter,''	and	a	convention	of	using	two	spaces
after	a	period	to	separate	sentences	on	the	same	line,	it	is	specific	to
English-language	texts.

break_long_words

(default:	True)	If	true,	then	words	longer	than	width	will	be	broken	in
order	to	ensure	that	no	lines	are	longer	than	width.	If	it	is	false,	long
words	will	not	be	broken,	and	some	lines	may	be	longer	than	width.
(Long	words	will	be	put	on	a	line	by	themselves,	in	order	to	minimize	the
amount	by	which	width	is	exceeded.)

TextWrapper	also	provides	two	public	methods,	analogous	to	the	module-
level	convenience	functions:

wrap(text)
Wraps	the	single	paragraph	in	text	(a	string)	so	every	line	is	at	most	width
characters	long.	All	wrapping	options	are	taken	from	instance	attributes	of
the	TextWrapper	instance.	Returns	a	list	of	output	lines,	without	final
newlines.

fill(text)
Wraps	the	single	paragraph	in	text,	and	returns	a	single	string	containing	the
wrapped	paragraph.

Python	Library	Reference
Previous:	4.7	cStringIO	Up:	4.	String	Services	Next:	4.9	codecs

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.8	textwrap	Up:	4.	String	Services	Next:	4.9.1	Codec	Base	Classes

4.9	codecs	--	Codec	registry	and
base	classes
This	module	defines	base	classes	for	standard	Python	codecs	(encoders	and
decoders)	and	provides	access	to	the	internal	Python	codec	registry	which
manages	the	codec	and	error	handling	lookup	process.

It	defines	the	following	functions:

register(search_function)
Register	a	codec	search	function.	Search	functions	are	expected	to	take	one
argument,	the	encoding	name	in	all	lower	case	letters,	and	return	a	tuple	of
functions	(encoder,	decoder,	stream_reader,	stream_writer)	taking
the	following	arguments:

encoder	and	decoder:	These	must	be	functions	or	methods	which	have	the
same	interface	as	the	encode()/decode()	methods	of	Codec	instances
(see	Codec	Interface).	The	functions/methods	are	expected	to	work	in	a
stateless	mode.

stream_reader	and	stream_writer:	These	have	to	be	factory	functions
providing	the	following	interface:

factory(stream,	errors='strict')

The	factory	functions	must	return	objects	providing	the	interfaces	defined
by	the	base	classes	StreamWriter	and	StreamReader,	respectively.
Stream	codecs	can	maintain	state.

Possible	values	for	errors	are	'strict'	(raise	an	exception	in	case	of	an
encoding	error),	'replace'	(replace	malformed	data	with	a	suitable
replacement	marker,	such	as	"?"),	'ignore'	(ignore	malformed	data	and
continue	without	further	notice),	'xmlcharrefreplace'	(replace	with
the	appropriate	XML	character	reference	(for	encoding	only))	and
'backslashreplace'	(replace	with	backslashed	escape	sequences	(for
encoding	only))	as	well	as	any	other	error	handling	name	defined	via

register_error().

In	case	a	search	function	cannot	find	a	given	encoding,	it	should	return
None.

lookup(encoding)
Looks	up	a	codec	tuple	in	the	Python	codec	registry	and	returns	the
function	tuple	as	defined	above.

Encodings	are	first	looked	up	in	the	registry's	cache.	If	not	found,	the	list	of
registered	search	functions	is	scanned.	If	no	codecs	tuple	is	found,	a
LookupError	is	raised.	Otherwise,	the	codecs	tuple	is	stored	in	the	cache
and	returned	to	the	caller.

To	simplify	access	to	the	various	codecs,	the	module	provides	these	additional
functions	which	use	lookup()	for	the	codec	lookup:

getencoder(encoding)
Lookup	up	the	codec	for	the	given	encoding	and	return	its	encoder	function.

Raises	a	LookupError	in	case	the	encoding	cannot	be	found.

getdecoder(encoding)
Lookup	up	the	codec	for	the	given	encoding	and	return	its	decoder	function.

Raises	a	LookupError	in	case	the	encoding	cannot	be	found.

getreader(encoding)
Lookup	up	the	codec	for	the	given	encoding	and	return	its	StreamReader
class	or	factory	function.

Raises	a	LookupError	in	case	the	encoding	cannot	be	found.

getwriter(encoding)
Lookup	up	the	codec	for	the	given	encoding	and	return	its	StreamWriter
class	or	factory	function.

Raises	a	LookupError	in	case	the	encoding	cannot	be	found.

register_error(name,	error_handler)
Register	the	error	handling	function	error_handler	under	the	name	name.
error_handler	will	be	called	during	encoding	and	decoding	in	case	of	an
error,	when	name	is	specified	as	the	errors	parameter.

For	encoding	error_handler	will	be	called	with	a
UnicodeEncodeError	instance,	which	contains	information	about	the
location	of	the	error.	The	error	handler	must	either	raise	this	or	a	different
exception	or	return	a	tuple	with	a	replacement	for	the	unencodable	part	of
the	input	and	a	position	where	encoding	should	continue.	The	encoder	will
encode	the	replacement	and	continue	encoding	the	original	input	at	the
specified	position.	Negative	position	values	will	be	treated	as	being	relative
to	the	end	of	the	input	string.	If	the	resulting	position	is	out	of	bound	an
IndexError	will	be	raised.

Decoding	and	translating	works	similar,	except	UnicodeDecodeError
or	UnicodeTranslateError	will	be	passed	to	the	handler	and	that	the
replacement	from	the	error	handler	will	be	put	into	the	output	directly.

lookup_error(name)
Return	the	error	handler	previously	register	under	the	name	name.

Raises	a	LookupError	in	case	the	handler	cannot	be	found.

strict_errors(exception)
Implements	the	strict	error	handling.

replace_errors(exception)
Implements	the	replace	error	handling.

ignore_errors(exception)
Implements	the	ignore	error	handling.

xmlcharrefreplace_errors_errors(exception)
Implements	the	xmlcharrefreplace	error	handling.

backslashreplace_errors_errors(exception)

Implements	the	backslashreplace	error	handling.

To	simplify	working	with	encoded	files	or	stream,	the	module	also	defines	these
utility	functions:

open(filename,	mode[,	encoding[,	errors[,	buffering]]])
Open	an	encoded	file	using	the	given	mode	and	return	a	wrapped	version
providing	transparent	encoding/decoding.

Note:	The	wrapped	version	will	only	accept	the	object	format	defined	by
the	codecs,	i.e.	Unicode	objects	for	most	built-in	codecs.	Output	is	also
codec-dependent	and	will	usually	be	Unicode	as	well.

encoding	specifies	the	encoding	which	is	to	be	used	for	the	file.

errors	may	be	given	to	define	the	error	handling.	It	defaults	to	'strict'
which	causes	a	ValueError	to	be	raised	in	case	an	encoding	error
occurs.

buffering	has	the	same	meaning	as	for	the	built-in	open()	function.	It
defaults	to	line	buffered.

EncodedFile(file,	input[,	output[,	errors]])
Return	a	wrapped	version	of	file	which	provides	transparent	encoding
translation.

Strings	written	to	the	wrapped	file	are	interpreted	according	to	the	given
input	encoding	and	then	written	to	the	original	file	as	strings	using	the
output	encoding.	The	intermediate	encoding	will	usually	be	Unicode	but
depends	on	the	specified	codecs.

If	output	is	not	given,	it	defaults	to	input.

errors	may	be	given	to	define	the	error	handling.	It	defaults	to	'strict',
which	causes	ValueError	to	be	raised	in	case	an	encoding	error	occurs.

The	module	also	provides	the	following	constants	which	are	useful	for	reading
and	writing	to	platform	dependent	files:

BOM

BOM_BE

BOM_LE

BOM_UTF8

BOM_UTF16

BOM_UTF16_BE

BOM_UTF16_LE

BOM_UTF32

BOM_UTF32_BE

BOM_UTF32_LE

These	constants	define	various	encodings	of	the	Unicode	byte	order	mark
(BOM)	used	in	UTF-16	and	UTF-32	data	streams	to	indicate	the	byte	order
used	in	the	stream	or	file	and	in	UTF-8	as	a	Unicode	signature.
BOM_UTF16	is	either	BOM_UTF16_BE	or	BOM_UTF16_LE	depending	on
the	platform's	native	byte	order,	BOM	is	an	alias	for	BOM_UTF16,	BOM_LE
for	BOM_UTF16_LE	and	BOM_BE	for	BOM_UTF16_BE.	The	others
represent	the	BOM	in	UTF-8	and	UTF-32	encodings.

Subsections

4.9.1	Codec	Base	Classes
4.9.1.1	Codec	Objects
4.9.1.2	StreamWriter	Objects
4.9.1.3	StreamReader	Objects
4.9.1.4	StreamReaderWriter	Objects
4.9.1.5	StreamRecoder	Objects

4.9.2	Standard	Encodings
4.9.3	encodings.idna	--	Internationalized	Domain	Names	in
Applications

Python	Library	Reference
Previous:	4.8	textwrap	Up:	4.	String	Services	Next:	4.9.1	Codec	Base	Classes

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.9	codecs	Up:	4.9	codecs	Next:	4.9.1.1	Codec	Objects

4.9.1	Codec	Base	Classes
The	codecs	defines	a	set	of	base	classes	which	define	the	interface	and	can
also	be	used	to	easily	write	you	own	codecs	for	use	in	Python.

Each	codec	has	to	define	four	interfaces	to	make	it	usable	as	codec	in	Python:
stateless	encoder,	stateless	decoder,	stream	reader	and	stream	writer.	The	stream
reader	and	writers	typically	reuse	the	stateless	encoder/decoder	to	implement	the
file	protocols.

The	Codec	class	defines	the	interface	for	stateless	encoders/decoders.

To	simplify	and	standardize	error	handling,	the	encode()	and	decode()
methods	may	implement	different	error	handling	schemes	by	providing	the
errors	string	argument.	The	following	string	values	are	defined	and	implemented
by	all	standard	Python	codecs:

Value Meaning
'strict' Raise	UnicodeError	(or	a	subclass);	this	is

the	default.
'ignore' Ignore	the	character	and	continue	with	the	next.
'replace' Replace	with	a	suitable	replacement	character;

Python	will	use	the	official	U+FFFD
REPLACEMENT	CHARACTER	for	the	built-
in	Unicode	codecs	on	decoding	and	'?'	on
encoding.

'xmlcharrefreplace' Replace	with	the	appropriate	XML	character
reference	(only	for	encoding).

'backslashreplace' Replace	with	backslashed	escape	sequences
(only	for	encoding).

The	set	of	allowed	values	can	be	extended	via	register_error.

Subsections

4.9.1.1	Codec	Objects

4.9.1.2	StreamWriter	Objects
4.9.1.3	StreamReader	Objects
4.9.1.4	StreamReaderWriter	Objects
4.9.1.5	StreamRecoder	Objects

Python	Library	Reference
Previous:	4.9	codecs	Up:	4.9	codecs	Next:	4.9.1.1	Codec	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.9.1.5	StreamRecoder	Objects	Up:	4.9	codecs	Next:	4.9.3
encodings.idna

4.9.2	Standard	Encodings
Python	comes	with	a	number	of	codecs	builtin,	either	implemented	as	C
functions,	or	with	dictionaries	as	mapping	tables.	The	following	table	lists	the
codecs	by	name,	together	with	a	few	common	aliases,	and	the	languages	for
which	the	encoding	is	likely	used.	Neither	the	list	of	aliases	nor	the	list	of
languages	is	meant	to	be	exhaustive.	Notice	that	spelling	alternatives	that	only
differ	in	case	or	use	a	hyphen	instead	of	an	underscore	are	also	valid	aliases.

Many	of	the	character	sets	support	the	same	languages.	They	vary	in	individual
characters	(e.g.	whether	the	EURO	SIGN	is	supported	or	not),	and	in	the
assignment	of	characters	to	code	positions.	For	the	European	languages	in
particular,	the	following	variants	typically	exist:

an	ISO	8859	codeset
a	Microsoft	Windows	code	page,	which	is	typically	derived	from	a	8859
codeset,	but	replaces	control	characters	with	additional	graphic	characters
an	IBM	EBCDIC	code	page
an	IBM	PC	code	page,	which	is	ASCII	compatible

Codec Aliases Languages
ascii 646,	us-ascii English
big5 big5-tw,	csbig5 Traditional	Chinese
big5hkscs big5-hkscs,	hkscs Traditional	Chinese
cp037 IBM037,	IBM039 English
cp424 EBCDIC-CP-HE,	IBM424 Hebrew
cp437 437,	IBM437 English
cp500 EBCDIC-CP-BE,	EBCDIC-CP-

CH,	IBM500
Western	Europe

cp737 Greek
cp775 IBM775 Baltic	languages
cp850 850,	IBM850 Western	Europe
cp852 852,	IBM852 Central	and	Eastern

Europe
cp855 855,	IBM855 Bulgarian,

Byelorussian,

Macedonian,	Russian,
Serbian

cp856 Hebrew
cp857 857,	IBM857 Turkish
cp860 860,	IBM860 Portuguese
cp861 861,	CP-IS,	IBM861 Icelandic
cp862 862,	IBM862 Hebrew
cp863 863,	IBM863 Canadian
cp864 IBM864 Arabic
cp865 865,	IBM865 Danish,	Norwegian
cp866 866,	IBM866 Russian
cp869 869,	CP-GR,	IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932,	ms932,	mskanji,	ms-kanji Japanese
cp949 949,	ms949,	uhc Korean
cp950 950,	ms950 Traditional	Chinese
cp1006 Urdu
cp1026 ibm1026 Turkish
cp1140 ibm1140 Western	Europe
cp1250 windows-1250 Central	and	Eastern

Europe
cp1251 windows-1251 Bulgarian,

Byelorussian,
Macedonian,	Russian,
Serbian

cp1252 windows-1252 Western	Europe
cp1253 windows-1253 Greek
cp1254 windows-1254 Turkish
cp1255 windows-1255 Hebrew
cp1256 windows1256 Arabic
cp1257 windows-1257 Baltic	languages
cp1258 windows-1258 Vietnamese
euc_jp eucjp,	ujis,	u-jis Japanese
euc_jis_2004 jisx0213,	eucjis2004 Japanese

euc_jisx0213 eucjisx0213 Japanese

euc_kr euckr,	korean,	ksc5601,	ks_c-
5601,	ks_c-5601-1987,	ksx1001,
ks_x-1001

Korean

gb2312 chinese,	csiso58gb231280,	euc-
cn,	euccn,	eucgb2312-cn,	gb2312-
1980,	gb2312-80,	iso-ir-58

Simplified	Chinese

gbk 936,	cp936,	ms936 Unified	Chinese
gb18030 gb18030-2000 Unified	Chinese
hz hzgb,	hz-gb,	hz-gb-2312 Simplified	Chinese
iso2022_jp csiso2022jp,	iso2022jp,	iso-2022-

jp
Japanese

iso2022_jp_1 iso2022jp-1,	iso-2022-jp-1 Japanese
iso2022_jp_2 iso2022jp-2,	iso-2022-jp-2 Japanese,	Korean,

Simplified	Chinese,
Western	Europe,
Greek

iso2022_jp_2004 iso2022jp-2004,	iso-2022-jp-2004 Japanese
iso2022_jp_3 iso2022jp-3,	iso-2022-jp-3 Japanese
iso2022_jp_ext iso2022jp-ext,	iso-2022-jp-ext Japanese
iso2022_kr csiso2022kr,	iso2022kr,	iso-2022-

kr
Korean

latin_1 iso-8859-1,	iso8859-1,	8859,
cp819,	latin,	latin1,	L1

West	Europe

iso8859_2 iso-8859-2,	latin2,	L2 Central	and	Eastern
Europe

iso8859_3 iso-8859-3,	latin3,	L3 Esperanto,	Maltese
iso8859_4 iso-8859-4,	latin4,	L4 Baltic	languagues
iso8859_5 iso-8859-5,	cyrillic Bulgarian,

Byelorussian,
Macedonian,	Russian,
Serbian

iso8859_6 iso-8859-6,	arabic Arabic
iso8859_7 iso-8859-7,	greek,	greek8 Greek
iso8859_8 iso-8859-8,	hebrew Hebrew

iso8859_9 iso-8859-9,	latin5,	L5 Turkish
iso8859_10 iso-8859-10,	latin6,	L6 Nordic	languages
iso8859_13 iso-8859-13 Baltic	languages
iso8859_14 iso-8859-14,	latin8,	L8 Celtic	languages
iso8859_15 iso-8859-15 Western	Europe
johab cp1361,	ms1361 Korean
koi8_r Russian
koi8_u Ukrainian
mac_cyrillic maccyrillic Bulgarian,

Byelorussian,
Macedonian,	Russian,
Serbian

mac_greek macgreek Greek
mac_iceland maciceland Icelandic
mac_latin2 maclatin2,	maccentraleurope Central	and	Eastern

Europe
mac_roman macroman Western	Europe
mac_turkish macturkish Turkish
ptcp154 csptcp154,	pt154,	cp154,	cyrillic-

asian
Kazakh

shift_jis csshiftjis,	shiftjis,	sjis,	s_jis Japanese
shift_jis_2004 shiftjis2004,	sjis_2004,	sjis2004 Japanese
shift_jisx0213 shiftjisx0213,	sjisx0213,

s_jisx0213
Japanese

utf_16 U16,	utf16 all	languages
utf_16_be UTF-16BE all	languages	(BMP

only)
utf_16_le UTF-16LE all	languages	(BMP

only)
utf_7 U7 all	languages
utf_8 U8,	UTF,	utf8 all	languages

A	number	of	codecs	are	specific	to	Python,	so	their	codec	names	have	no
meaning	outside	Python.	Some	of	them	don't	convert	from	Unicode	strings	to
byte	strings,	but	instead	use	the	property	of	the	Python	codecs	machinery	that
any	bijective	function	with	one	argument	can	be	considered	as	an	encoding.

For	the	codecs	listed	below,	the	result	in	the	``encoding''	direction	is	always	a
byte	string.	The	result	of	the	``decoding''	direction	is	listed	as	operand	type	in	the
table.

Codec Aliases Operand
type

Purpose

base64_codec base64,	base-
64

byte
string

Convert	operand	to
MIME	base64

bz2_codec bz2 byte
string

Compress	the	operand
using	bz2

hex_codec hex byte
string

Convert	operand	to
hexadecimal
representation,	with	two
digits	per	byte

idna Unicode
string

Implements	RFC	3490.
New	in	version	2.3.	See
also	encodings.idna

mbcs dbcs Unicode
string

Windows	only:	Encode
operand	according	to	the
ANSI	codepage
(CP_ACP)

palmos Unicode
string

Encoding	of	PalmOS	3.5

punycode Unicode
string

Implements	RFC	3492.
New	in	version	2.3.

quopri_codec quopri,	quoted-
printable,
quotedprintable

byte
string

Convert	operand	to
MIME	quoted	printable

raw_unicode_escape Unicode
string

Produce	a	string	that	is
suitable	as	raw	Unicode
literal	in	Python	source
code

rot_13 rot13 byte
string

Returns	the	Caesar-
cypher	encryption	of	the
operand

string_escape byte
string

Produce	a	string	that	is
suitable	as	string	literal	in

http://www.faqs.org/rfcs/rfc3490.html
http://www.faqs.org/rfcs/rfc3492.html

Python	source	code
undefined any Raise	an	exception	for	all

conversion.	Can	be	used
as	the	system	encoding	if
no	automatic	coercion
between	byte	and
Unicode	strings	is
desired.

unicode_escape Unicode
string

Produce	a	string	that	is
suitable	as	Unicode
literal	in	Python	source
code

unicode_internal Unicode
string

Return	the	internal
represenation	of	the
operand

uu_codec uu byte
string

Convert	the	operand
using	uuencode

zlib_codec zip,	zlib byte
string

Compress	the	operand
using	gzip

Python	Library	Reference
Previous:	4.9.1.5	StreamRecoder	Objects	Up:	4.9	codecs	Next:	4.9.3
encodings.idna

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.9.2	Standard	Encodings	Up:	4.9	codecs	Next:	4.10	unicodedata

4.9.3	encodings.idna	--	Internationalized
Domain	Names	in	Applications
New	in	version	2.3.

This	module	implements	RFC	3490	(Internationalized	Domain	Names	in
Applications)	and	RFC	3492	(Nameprep:	A	Stringprep	Profile	for
Internationalized	Domain	Names	(IDN)).	It	builds	upon	the	punycode
encoding	and	stringprep.

These	RFCs	together	define	a	protocol	to	support	non-ASCII	characters	in
domain	names.	A	domain	name	containing	non-ASCII	characters	(such	as
``www.Alliancefrançaise.nu'')	is	converted	into	an	ASCII-compatible	encoding
(ACE,	such	as	``www.xn-alliancefranaise-npb.nu'').	The	ACE	form	of	the
domain	name	is	then	used	in	all	places	where	arbitrary	characters	are	not
allowed	by	the	protocol,	such	as	DNS	queries,	HTTP	Host:	fields,	and	so	on.
This	conversion	is	carried	out	in	the	application;	if	possible	invisible	to	the	user:
The	application	should	transparently	convert	Unicode	domain	labels	to	IDNA	on
the	wire,	and	convert	back	ACE	labels	to	Unicode	before	presenting	them	to	the
user.

Python	supports	this	conversion	in	several	ways:	The	idna	codec	allows	to
convert	between	Unicode	and	the	ACE.	Furthermore,	the	socket	module
transparently	converts	Unicode	host	names	to	ACE,	so	that	applications	need	not
be	concerned	about	converting	host	names	themselves	when	they	pass	them	to
the	socket	module.	On	top	of	that,	modules	that	have	host	names	as	function
parameters,	such	as	httplib	and	ftplib,	accept	Unicode	host	names
(httplib	then	also	transparently	sends	an	IDNA	hostname	in	the	Host:	field	if
it	sends	that	field	at	all).

When	receiving	host	names	from	the	wire	(such	as	in	reverse	name	lookup),	no
automatic	conversion	to	Unicode	is	performed:	Applications	wishing	to	present
such	host	names	to	the	user	should	decode	them	to	Unicode.

The	module	encodings.idna	also	implements	the	nameprep	procedure,
which	performs	certain	normalizations	on	host	names,	to	achieve	case-
insensitivity	of	international	domain	names,	and	to	unify	similar	characters.	The

http://www.faqs.org/rfcs/rfc3490.html
http://www.faqs.org/rfcs/rfc3492.html

nameprep	functions	can	be	used	directly	if	desired.

nameprep(label)
Return	the	nameprepped	version	of	label.	The	implementation	currently
assumes	query	strings,	so	AllowUnassigned	is	true.

ToASCII(label)
Convert	a	label	to	ASCII,	as	specified	in	RFC	3490.
UseSTD3ASCIIRules	is	assumed	to	be	false.

ToUnicode(label)
Convert	a	label	to	Unicode,	as	specified	in	RFC	3490.

Python	Library	Reference
Previous:	4.9.2	Standard	Encodings	Up:	4.9	codecs	Next:	4.10	unicodedata

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.faqs.org/rfcs/rfc3490.html
http://www.faqs.org/rfcs/rfc3490.html

Previous:	4.9.3	encodings.idna	Up:	4.	String	Services	Next:	4.11	stringprep

4.10	unicodedata	--	Unicode
Database
This	module	provides	access	to	the	Unicode	Character	Database	which	defines
character	properties	for	all	Unicode	characters.	The	data	in	this	database	is	based
on	the	UnicodeData.txt	file	version	3.2.0	which	is	publically	available	from
ftp://ftp.unicode.org/.

The	module	uses	the	same	names	and	symbols	as	defined	by	the	UnicodeData
File	Format	3.2.0	(see
http://www.unicode.org/Public/UNIDATA/UnicodeData.html).	It	defines	the
following	functions:

lookup(name)
Look	up	character	by	name.	If	a	character	with	the	given	name	is	found,
return	the	corresponding	Unicode	character.	If	not	found,	KeyError	is
raised.

name(unichr[,	default])
Returns	the	name	assigned	to	the	Unicode	character	unichr	as	a	string.	If	no
name	is	defined,	default	is	returned,	or,	if	not	given,	ValueError	is
raised.

decimal(unichr[,	default])
Returns	the	decimal	value	assigned	to	the	Unicode	character	unichr	as
integer.	If	no	such	value	is	defined,	default	is	returned,	or,	if	not	given,
ValueError	is	raised.

digit(unichr[,	default])
Returns	the	digit	value	assigned	to	the	Unicode	character	unichr	as	integer.
If	no	such	value	is	defined,	default	is	returned,	or,	if	not	given,
ValueError	is	raised.

numeric(unichr[,	default])

ftp://ftp.unicode.org/
http://www.unicode.org/Public/UNIDATA/UnicodeData.html

Returns	the	numeric	value	assigned	to	the	Unicode	character	unichr	as
float.	If	no	such	value	is	defined,	default	is	returned,	or,	if	not	given,
ValueError	is	raised.

category(unichr)
Returns	the	general	category	assigned	to	the	Unicode	character	unichr	as
string.

bidirectional(unichr)
Returns	the	bidirectional	category	assigned	to	the	Unicode	character	unichr
as	string.	If	no	such	value	is	defined,	an	empty	string	is	returned.

combining(unichr)
Returns	the	canonical	combining	class	assigned	to	the	Unicode	character
unichr	as	integer.	Returns	0	if	no	combining	class	is	defined.

east_asian_width(unichr)
Returns	the	east	asian	width	assigned	to	the	Unicode	character	unichr	as
string.	New	in	version	2.4.

mirrored(unichr)
Returns	the	mirrored	property	assigned	to	the	Unicode	character	unichr	as
integer.	Returns	1	if	the	character	has	been	identified	as	a	``mirrored''
character	in	bidirectional	text,	0	otherwise.

decomposition(unichr)
Returns	the	character	decomposition	mapping	assigned	to	the	Unicode
character	unichr	as	string.	An	empty	string	is	returned	in	case	no	such
mapping	is	defined.

normalize(form,	unistr)

Return	the	normal	form	form	for	the	Unicode	string	unistr.	Valid	values	for
form	are	'NFC',	'NFKC',	'NFD',	and	'NFKD'.

The	Unicode	standard	defines	various	normalization	forms	of	a	Unicode
string,	based	on	the	definition	of	canonical	equivalence	and	compatibility
equivalence.	In	Unicode,	several	characters	can	be	expressed	in	various

way.	For	example,	the	character	U+00C7	(LATIN	CAPITAL	LETTER	C
WITH	CEDILLA)	can	also	be	expressed	as	the	sequence	U+0043	(LATIN
CAPITAL	LETTER	C)	U+0327	(COMBINING	CEDILLA).

For	each	character,	there	are	two	normal	forms:	normal	form	C	and	normal
form	D.	Normal	form	D	(NFD)	is	also	known	as	canonical	decomposition,
and	translates	each	character	into	its	decomposed	form.	Normal	form	C
(NFC)	first	applies	a	canonical	decomposition,	then	composes	pre-
combined	characters	again.

In	addition	to	these	two	forms,	there	two	additional	normal	forms	based	on
compatibility	equivalence.	In	Unicode,	certain	characters	are	supported
which	normally	would	be	unified	with	other	characters.	For	example,
U+2160	(ROMAN	NUMERAL	ONE)	is	really	the	same	thing	as	U+0049
(LATIN	CAPITAL	LETTER	I).	However,	it	is	supported	in	Unicode	for
compatibility	with	existing	character	sets	(e.g.	gb2312).

The	normal	form	KD	(NFKD)	will	apply	the	compatibility	decomposition,
i.e.	replace	all	compatibility	characters	with	their	equivalents.	The	normal
form	KC	(NFKC)	first	applies	the	compatibility	decomposition,	followed
by	the	canonical	composition.

New	in	version	2.3.

In	addition,	the	module	exposes	the	following	constant:

unidata_version

The	version	of	the	Unicode	database	used	in	this	module.

New	in	version	2.3.

Python	Library	Reference
Previous:	4.9.3	encodings.idna	Up:	4.	String	Services	Next:	4.11	stringprep

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.10	unicodedata	Up:	4.	String	Services	Next:	5.	Miscellaneous
Services

4.11	stringprep	--	Internet	String
Preparation
When	identifying	things	(such	as	host	names)	in	the	internet,	it	is	often	necessary
to	compare	such	identifications	for	``equality''.	Exactly	how	this	comparison	is
executed	may	depend	on	the	application	domain,	e.g.	whether	it	should	be	case-
insensitive	or	not.	It	may	be	also	necessary	to	restrict	the	possible	identifications,
to	allow	only	identifications	consisting	of	``printable''	characters.

RFC	3454	defines	a	procedure	for	``preparing''	Unicode	strings	in	internet
protocols.	Before	passing	strings	onto	the	wire,	they	are	processed	with	the
preparation	procedure,	after	which	they	have	a	certain	normalized	form.	The
RFC	defines	a	set	of	tables,	which	can	be	combined	into	profiles.	Each	profile
must	define	which	tables	it	uses,	and	what	other	optional	parts	of	the
stringprep	procedure	are	part	of	the	profile.	One	example	of	a
stringprep	profile	is	nameprep,	which	is	used	for	internationalized	domain
names.

The	module	stringprep	only	exposes	the	tables	from	RFC	3454.	As	these
tables	would	be	very	large	to	represent	them	as	dictionaries	or	lists,	the	module
uses	the	Unicode	character	database	internally.	The	module	source	code	itself
was	generated	using	the	mkstringprep.py	utility.

As	a	result,	these	tables	are	exposed	as	functions,	not	as	data	structures.	There
are	two	kinds	of	tables	in	the	RFC:	sets	and	mappings.	For	a	set,	stringprep
provides	the	``characteristic	function'',	i.e.	a	function	that	returns	true	if	the
parameter	is	part	of	the	set.	For	mappings,	it	provides	the	mapping	function:
given	the	key,	it	returns	the	associated	value.	Below	is	a	list	of	all	functions
available	in	the	module.

in_table_a1(code)
Determine	whether	code	is	in	tableA.1	(Unassigned	code	points	in	Unicode
3.2).

in_table_b1(code)

http://www.faqs.org/rfcs/rfc3454.html

Determine	whether	code	is	in	tableB.1	(Commonly	mapped	to	nothing).

map_table_b2(code)
Return	the	mapped	value	for	code	according	to	tableB.2	(Mapping	for	case-
folding	used	with	NFKC).

map_table_b3(code)
Return	the	mapped	value	for	code	according	to	tableB.3	(Mapping	for	case-
folding	used	with	no	normalization).

in_table_c11(code)
Determine	whether	code	is	in	tableC.1.1	(ASCII	space	characters).

in_table_c12(code)
Determine	whether	code	is	in	tableC.1.2	(Non-ASCII	space	characters).

in_table_c11_c12(code)
Determine	whether	code	is	in	tableC.1	(Space	characters,	union	of	C.1.1
and	C.1.2).

in_table_c21(code)
Determine	whether	code	is	in	tableC.2.1	(ASCII	control	characters).

in_table_c22(code)
Determine	whether	code	is	in	tableC.2.2	(Non-ASCII	control	characters).

in_table_c21_c22(code)
Determine	whether	code	is	in	tableC.2	(Control	characters,	union	of	C.2.1
and	C.2.2).

in_table_c3(code)
Determine	whether	code	is	in	tableC.3	(Private	use).

in_table_c4(code)
Determine	whether	code	is	in	tableC.4	(Non-character	code	points).

in_table_c5(code)

Determine	whether	code	is	in	tableC.5	(Surrogate	codes).

in_table_c6(code)
Determine	whether	code	is	in	tableC.6	(Inappropriate	for	plain	text).

in_table_c7(code)
Determine	whether	code	is	in	tableC.7	(Inappropriate	for	canonical
representation).

in_table_c8(code)
Determine	whether	code	is	in	tableC.8	(Change	display	properties	or	are
deprecated).

in_table_c9(code)
Determine	whether	code	is	in	tableC.9	(Tagging	characters).

in_table_d1(code)
Determine	whether	code	is	in	tableD.1	(Characters	with	bidirectional
property	``R''	or	``AL'').

in_table_d2(code)
Determine	whether	code	is	in	tableD.2	(Characters	with	bidirectional
property	``L'').

Python	Library	Reference
Previous:	4.10	unicodedata	Up:	4.	String	Services	Next:	5.	Miscellaneous
Services

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.11	stringprep	Up:	Python	Library	Reference	Next:	5.1	pydoc

5.	Miscellaneous	Services
The	modules	described	in	this	chapter	provide	miscellaneous	services	that	are
available	in	all	Python	versions.	Here's	an	overview:

pydoc 	 Documentation	generator	and	online	help	system.

doctest 	 A	framework	for	verifying	interactive	Pythonexamples.
unittest 	 Unit	testing	framework	for	Python.

test 	 Regression	tests	package	containing	the	testing	suitefor	Python.
test.test_support 	 Support	for	Python	regression	tests.

decimal 	 Implementation	of	the	General	Decimal	ArithmeticSpecification.
math 	 Mathematical	functions	(sin()	etc.).
cmath 	 Mathematical	functions	for	complex	numbers.

random 	 Generate	pseudo-random	numbers	with	variouscommon	distributions.
whrandom 	 Floating	point	pseudo-random	number	generator.
bisect 	 Array	bisection	algorithms	for	binary	searching.
collections 	 High-performance	datatypes
heapq 	 Heap	queue	algorithm	(a.k.a.	priority	queue).
array 	 Efficient	arrays	of	uniformly	typed	numeric	values.
sets 	 Implementation	of	sets	of	unique	elements.
itertools 	 Functions	creating	iterators	for	efficient	looping.
ConfigParser 	 Configuration	file	parser.

fileinput 	 Perl-like	iteration	over	lines	from	multiple	inputstreams,	with	``save	in	place''	capability.

calendar 	 Functions	for	working	with	calendars,	includingsome	emulation	of	the	UNIX	cal	program.
cmd 	 Build	line-oriented	command	interpreters.
shlex 	 Simple	lexical	analysis	for	UNIX	shell-like	languages.

Python	Library	Reference
Previous:	4.11	stringprep	Up:	Python	Library	Reference	Next:	5.1	pydoc

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.	Miscellaneous	Services	Up:	5.	Miscellaneous	Services	Next:	5.2
doctest

5.1	pydoc	--	Documentation
generator	and	online	help	system
New	in	version	2.1.

The	pydoc	module	automatically	generates	documentation	from	Python
modules.	The	documentation	can	be	presented	as	pages	of	text	on	the	console,
served	to	a	Web	browser,	or	saved	to	HTML	files.

The	built-in	function	help()	invokes	the	online	help	system	in	the	interactive
interpreter,	which	uses	pydoc	to	generate	its	documentation	as	text	on	the
console.	The	same	text	documentation	can	also	be	viewed	from	outside	the
Python	interpreter	by	running	pydoc	as	a	script	at	the	operating	system's
command	prompt.	For	example,	running

pydoc	sys

at	a	shell	prompt	will	display	documentation	on	the	sys	module,	in	a	style
similar	to	the	manual	pages	shown	by	the	UNIX	man	command.	The	argument	to
pydoc	can	be	the	name	of	a	function,	module,	or	package,	or	a	dotted	reference
to	a	class,	method,	or	function	within	a	module	or	module	in	a	package.	If	the
argument	to	pydoc	looks	like	a	path	(that	is,	it	contains	the	path	separator	for
your	operating	system,	such	as	a	slash	in	UNIX),	and	refers	to	an	existing	Python
source	file,	then	documentation	is	produced	for	that	file.

Specifying	a	-w	flag	before	the	argument	will	cause	HTML	documentation	to	be
written	out	to	a	file	in	the	current	directory,	instead	of	displaying	text	on	the
console.

Specifying	a	-k	flag	before	the	argument	will	search	the	synopsis	lines	of	all
available	modules	for	the	keyword	given	as	the	argument,	again	in	a	manner
similar	to	the	UNIX	man	command.	The	synopsis	line	of	a	module	is	the	first	line
of	its	documentation	string.

You	can	also	use	pydoc	to	start	an	HTTP	server	on	the	local	machine	that	will
serve	documentation	to	visiting	Web	browsers.	pydoc	-p	1234	will	start	a	HTTP
server	on	port	1234,	allowing	you	to	browse	the	documentation	at

http://localhost:1234/	in	your	preferred	Web	browser.	pydoc	-g	will
start	the	server	and	additionally	bring	up	a	small	Tkinter-based	graphical
interface	to	help	you	search	for	documentation	pages.

When	pydoc	generates	documentation,	it	uses	the	current	environment	and	path
to	locate	modules.	Thus,	invoking	pydoc	spam	documents	precisely	the	version
of	the	module	you	would	get	if	you	started	the	Python	interpreter	and	typed
"import	spam".

Module	docs	for	core	modules	are	assumed	to	reside	in
http://www.python.org/doc/current/lib/.	This	can	be	overridden	by	setting	the
PYTHONDOCS	environment	variable	to	a	different	URL	or	to	a	local	directory
containing	the	Library	Reference	Manual	pages.

Python	Library	Reference
Previous:	5.	Miscellaneous	Services	Up:	5.	Miscellaneous	Services	Next:	5.2
doctest

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/doc/current/lib/

Previous:	5.1	pydoc	Up:	5.	Miscellaneous	Services	Next:	5.2.1	Simple	Usage:
Checking

5.2	doctest	--	Test	interactive
Python	examples
The	doctest	module	searches	for	pieces	of	text	that	look	like	interactive
Python	sessions,	and	then	executes	those	sessions	to	verify	that	they	work
exactly	as	shown.	There	are	several	common	ways	to	use	doctest:

To	check	that	a	module's	docstrings	are	up-to-date	by	verifying	that	all
interactive	examples	still	work	as	documented.
To	perform	regression	testing	by	verifying	that	interactive	examples	from	a
test	file	or	a	test	object	work	as	expected.
To	write	tutorial	documentation	for	a	package,	liberally	illustrated	with
input-output	examples.	Depending	on	whether	the	examples	or	the
expository	text	are	emphasized,	this	has	the	flavor	of	"literate	testing"	or
"executable	documentation".

Here's	a	complete	but	small	example	module:

"""

This	is	the	"example"	module.

The	example	module	supplies	one	function,	factorial().		For	example,

>>>	factorial(5)

120

"""

def	factorial(n):

				"""Return	the	factorial	of	n,	an	exact	integer	>=	0.

				If	the	result	is	small	enough	to	fit	in	an	int,	return	an	int.

				Else	return	a	long.

				>>>	[factorial(n)	for	n	in	range(6)]

				[1,	1,	2,	6,	24,	120]

				>>>	[factorial(long(n))	for	n	in	range(6)]

				[1,	1,	2,	6,	24,	120]

				>>>	factorial(30)

				265252859812191058636308480000000L

				>>>	factorial(30L)

				265252859812191058636308480000000L

				>>>	factorial(-1)

				Traceback	(most	recent	call	last):

								...

				ValueError:	n	must	be	>=	0

				Factorials	of	floats	are	OK,	but	the	float	must	be	an	exact	integer:

				>>>	factorial(30.1)

				Traceback	(most	recent	call	last):

								...

				ValueError:	n	must	be	exact	integer

				>>>	factorial(30.0)

				265252859812191058636308480000000L

				It	must	also	not	be	ridiculously	large:

				>>>	factorial(1e100)

				Traceback	(most	recent	call	last):

								...

				OverflowError:	n	too	large

				"""

				import	math

				if	not	n	>=	0:

								raise	ValueError("n	must	be	>=	0")

				if	math.floor(n)	!=	n:

								raise	ValueError("n	must	be	exact	integer")

				if	n+1	==	n:		#	catch	a	value	like	1e300

								raise	OverflowError("n	too	large")

				result	=	1

				factor	=	2

				while	factor	<=	n:

								result	*=	factor

								factor	+=	1

				return	result

def	_test():

				import	doctest

				doctest.testmod()

if	__name__	==	"__main__":

				_test()

If	you	run	example.py	directly	from	the	command	line,	doctest	works	its
magic:

$	python	example.py

$

There's	no	output!	That's	normal,	and	it	means	all	the	examples	worked.	Pass	-v
to	the	script,	and	doctest	prints	a	detailed	log	of	what	it's	trying,	and	prints	a
summary	at	the	end:

$	python	example.py	-v

Trying:

				factorial(5)

Expecting:

				120

ok

Trying:

				[factorial(n)	for	n	in	range(6)]

Expecting:

				[1,	1,	2,	6,	24,	120]

ok

Trying:

				[factorial(long(n))	for	n	in	range(6)]

Expecting:

				[1,	1,	2,	6,	24,	120]

ok

And	so	on,	eventually	ending	with:

Trying:

				factorial(1e100)

Expecting:

				Traceback	(most	recent	call	last):

								...

				OverflowError:	n	too	large

ok

1	items	had	no	tests:

				__main__._test

2	items	passed	all	tests:

			1	tests	in	__main__

			8	tests	in	__main__.factorial

9	tests	in	3	items.

9	passed	and	0	failed.

Test	passed.

$

That's	all	you	need	to	know	to	start	making	productive	use	of	doctest!	Jump
in.	The	following	sections	provide	full	details.	Note	that	there	are	many
examples	of	doctests	in	the	standard	Python	test	suite	and	libraries.	Especially
useful	examples	can	be	found	in	the	standard	test	file	Lib/test/test_doctest.py.

Subsections

5.2.1	Simple	Usage:	Checking	Examples	in	Docstrings
5.2.2	Simple	Usage:	Checking	Examples	in	a	Text	File
5.2.3	How	It	Works

5.2.3.1	Which	Docstrings	Are	Examined?

5.2.3.2	How	are	Docstring	Examples	Recognized?
5.2.3.3	What's	the	Execution	Context?
5.2.3.4	What	About	Exceptions?
5.2.3.5	Option	Flags	and	Directives
5.2.3.6	Warnings

5.2.4	Basic	API
5.2.5	Unittest	API
5.2.6	Advanced	API

5.2.6.1	DocTest	Objects
5.2.6.2	Example	Objects
5.2.6.3	DocTestFinder	objects
5.2.6.4	DocTestParser	objects
5.2.6.5	DocTestRunner	objects
5.2.6.6	OutputChecker	objects

5.2.7	Debugging
5.2.8	Soapbox

Python	Library	Reference
Previous:	5.1	pydoc	Up:	5.	Miscellaneous	Services	Next:	5.2.1	Simple	Usage:
Checking

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2	doctest	Up:	5.2	doctest	Next:	5.2.2	Simple	Usage:	Checking

5.2.1	Simple	Usage:	Checking	Examples	in
Docstrings
The	simplest	way	to	start	using	doctest	(but	not	necessarily	the	way	you'll
continue	to	do	it)	is	to	end	each	module	M	with:

def	_test():

				import	doctest

				doctest.testmod()

if	__name__	==	"__main__":

				_test()

doctest	then	examines	docstrings	in	module	M.

Running	the	module	as	a	script	causes	the	examples	in	the	docstrings	to	get
executed	and	verified:

python	M.py

This	won't	display	anything	unless	an	example	fails,	in	which	case	the	failing
example(s)	and	the	cause(s)	of	the	failure(s)	are	printed	to	stdout,	and	the	final
line	of	output	is	"***Test	Failed***	N	failures.",	where	N	is	the
number	of	examples	that	failed.

Run	it	with	the	-v	switch	instead:

python	M.py	-v

and	a	detailed	report	of	all	examples	tried	is	printed	to	standard	output,	along
with	assorted	summaries	at	the	end.

You	can	force	verbose	mode	by	passing	verbose=True	to	testmod(),	or
prohibit	it	by	passing	verbose=False.	In	either	of	those	cases,	sys.argv	is
not	examined	by	testmod()	(so	passing	-v	or	not	has	no	effect).

For	more	information	on	testmod(),	see	section	5.2.4.

Python	Library	Reference

Previous:	5.2	doctest	Up:	5.2	doctest	Next:	5.2.2	Simple	Usage:	Checking

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.1	Simple	Usage:	Checking	Up:	5.2	doctest	Next:	5.2.3	How	It
Works

5.2.2	Simple	Usage:	Checking	Examples	in	a
Text	File
Another	simple	application	of	doctest	is	testing	interactive	examples	in	a	text
file.	This	can	be	done	with	the	testfile()	function:

import	doctest

doctest.testfile("example.txt")

That	short	script	executes	and	verifies	any	interactive	Python	examples
contained	in	the	file	example.txt.	The	file	content	is	treated	as	if	it	were	a	single
giant	docstring;	the	file	doesn't	need	to	contain	a	Python	program!	For	example,
perhaps	example.txt	contains	this:

The	``example``	module

======================

Using	``factorial``

This	is	an	example	text	file	in	reStructuredText	format.		First	import

``factorial``	from	the	``example``	module:

				>>>	from	example	import	factorial

Now	use	it:

				>>>	factorial(6)

				120

Running	doctest.testfile("example.txt")	then	finds	the	error	in
this	documentation:

File	"./example.txt",	line	14,	in	example.txt

Failed	example:

				factorial(6)

Expected:

				120

Got:

				720

As	with	testmod(),	testfile()	won't	display	anything	unless	an	example
fails.	If	an	example	does	fail,	then	the	failing	example(s)	and	the	cause(s)	of	the
failure(s)	are	printed	to	stdout,	using	the	same	format	as	testmod().

By	default,	testfile()	looks	for	files	in	the	calling	module's	directory.	See
section	5.2.4	for	a	description	of	the	optional	arguments	that	can	be	used	to	tell	it
to	look	for	files	in	other	locations.

Like	testmod(),	testfile()'s	verbosity	can	be	set	with	the	-v	command-
line	switch	or	with	the	optional	keyword	argument	verbose.

For	more	information	on	testfile(),	see	section	5.2.4.

Python	Library	Reference
Previous:	5.2.1	Simple	Usage:	Checking	Up:	5.2	doctest	Next:	5.2.3	How	It
Works

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.2	Simple	Usage:	Checking	Up:	5.2	doctest	Next:	5.2.3.1	Which
Docstrings	Are

5.2.3	How	It	Works
This	section	examines	in	detail	how	doctest	works:	which	docstrings	it	looks	at,
how	it	finds	interactive	examples,	what	execution	context	it	uses,	how	it	handles
exceptions,	and	how	option	flags	can	be	used	to	control	its	behavior.	This	is	the
information	that	you	need	to	know	to	write	doctest	examples;	for	information
about	actually	running	doctest	on	these	examples,	see	the	following	sections.

Subsections

5.2.3.1	Which	Docstrings	Are	Examined?
5.2.3.2	How	are	Docstring	Examples	Recognized?
5.2.3.3	What's	the	Execution	Context?
5.2.3.4	What	About	Exceptions?
5.2.3.5	Option	Flags	and	Directives
5.2.3.6	Warnings

Python	Library	Reference
Previous:	5.2.2	Simple	Usage:	Checking	Up:	5.2	doctest	Next:	5.2.3.1	Which
Docstrings	Are

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.3.6	Warnings	Up:	5.2	doctest	Next:	5.2.5	Unittest	API

5.2.4	Basic	API
The	functions	testmod()	and	testfile()	provide	a	simple	interface	to
doctest	that	should	be	sufficient	for	most	basic	uses.	For	a	less	formal
introduction	to	these	two	functions,	see	sections	5.2.1	and	5.2.2.

testfile(
filename[,	module_relative][,	name][,	package][,	globs][,
verbose][,	report][,	optionflags][,	extraglobs][,	raise_on_error][,
parser])

All	arguments	except	filename	are	optional,	and	should	be	specified	in
keyword	form.

Test	examples	in	the	file	named	filename.	Return	"(failure_count,
test_count)".

Optional	argument	module_relative	specifies	how	the	filename	should	be
interpreted:

If	module_relative	is	True	(the	default),	then	filename	specifies	an
OS-independent	module-relative	path.	By	default,	this	path	is	relative
to	the	calling	module's	directory;	but	if	the	package	argument	is
specified,	then	it	is	relative	to	that	package.	To	ensure	OS-
independence,	filename	should	use	/	characters	to	separate	path
segments,	and	may	not	be	an	absolute	path	(i.e.,	it	may	not	begin	with
/).
If	module_relative	is	False,	then	filename	specifies	an	OS-specific
path.	The	path	may	be	absolute	or	relative;	relative	paths	are	resolved
with	respect	to	the	current	working	directory.

Optional	argument	name	gives	the	name	of	the	test;	by	default,	or	if	None,
os.path.basename(filename)	is	used.

Optional	argument	package	is	a	Python	package	or	the	name	of	a	Python
package	whose	directory	should	be	used	as	the	base	directory	for	a	module-
relative	filename.	If	no	package	is	specified,	then	the	calling	module's
directory	is	used	as	the	base	directory	for	module-relative	filenames.	It	is	an

error	to	specify	package	if	module_relative	is	False.

Optional	argument	globs	gives	a	dict	to	be	used	as	the	globals	when
executing	examples.	A	new	shallow	copy	of	this	dict	is	created	for	the
doctest,	so	its	examples	start	with	a	clean	slate.	By	default,	or	if	None,	a
new	empty	dict	is	used.

Optional	argument	extraglobs	gives	a	dict	merged	into	the	globals	used	to
execute	examples.	This	works	like	dict.update():	if	globs	and
extraglobs	have	a	common	key,	the	associated	value	in	extraglobs	appears
in	the	combined	dict.	By	default,	or	if	None,	no	extra	globals	are	used.	This
is	an	advanced	feature	that	allows	parameterization	of	doctests.	For
example,	a	doctest	can	be	written	for	a	base	class,	using	a	generic	name	for
the	class,	then	reused	to	test	any	number	of	subclasses	by	passing	an
extraglobs	dict	mapping	the	generic	name	to	the	subclass	to	be	tested.

Optional	argument	verbose	prints	lots	of	stuff	if	true,	and	prints	only
failures	if	false;	by	default,	or	if	None,	it's	true	if	and	only	if	'-v'	is	in
sys.argv.

Optional	argument	report	prints	a	summary	at	the	end	when	true,	else	prints
nothing	at	the	end.	In	verbose	mode,	the	summary	is	detailed,	else	the
summary	is	very	brief	(in	fact,	empty	if	all	tests	passed).

Optional	argument	optionflags	or's	together	option	flags.	See	section	5.2.3.

Optional	argument	raise_on_error	defaults	to	false.	If	true,	an	exception	is
raised	upon	the	first	failure	or	unexpected	exception	in	an	example.	This
allows	failures	to	be	post-mortem	debugged.	Default	behavior	is	to	continue
running	examples.

Optional	argument	parser	specifies	a	DocTestParser	(or	subclass)	that
should	be	used	to	extract	tests	from	the	files.	It	defaults	to	a	normal	parser
(i.e.,	DocTestParser()).

New	in	version	2.4.

testmod([m][,	name][,	globs][,	verbose][,	isprivate][,	report][,	optionflags]
[,	extraglobs][,	raise_on_error][,	exclude_empty])

All	arguments	are	optional,	and	all	except	for	m	should	be	specified	in
keyword	form.

Test	examples	in	docstrings	in	functions	and	classes	reachable	from	module
m	(or	module	__main__	if	m	is	not	supplied	or	is	None),	starting	with
m.__doc__.

Also	test	examples	reachable	from	dict	m.__test__,	if	it	exists	and	is
not	None.	m.__test__	maps	names	(strings)	to	functions,	classes	and
strings;	function	and	class	docstrings	are	searched	for	examples;	strings	are
searched	directly,	as	if	they	were	docstrings.

Only	docstrings	attached	to	objects	belonging	to	module	m	are	searched.

Return	"(failure_count,	test_count)".

Optional	argument	name	gives	the	name	of	the	module;	by	default,	or	if
None,	m.__name__	is	used.

Optional	argument	exclude_empty	defaults	to	false.	If	true,	objects	for
which	no	doctests	are	found	are	excluded	from	consideration.	The	default	is
a	backward	compatibility	hack,	so	that	code	still	using
doctest.master.summarize()	in	conjunction	with	testmod()
continues	to	get	output	for	objects	with	no	tests.	The	exclude_empty
argument	to	the	newer	DocTestFinder	constructor	defaults	to	true.

Optional	arguments	extraglobs,	verbose,	report,	optionflags,
raise_on_error,	and	globs	are	the	same	as	for	function	testfile()
above,	except	that	globs	defaults	to	m.__dict__.

Optional	argument	isprivate	specifies	a	function	used	to	determine	whether
a	name	is	private.	The	default	function	treats	all	names	as	public.	isprivate
can	be	set	to	doctest.is_private	to	skip	over	names	that	are	private
according	to	Python's	underscore	naming	convention.

Deprecated	since	release	2.4.	isprivate	was	a	stupid	idea	-	don't	use	it.	If
you	need	to	skip	tests	based	on	name,	filter	the	list	returned	by
DocTestFinder.find()	instead.

Changed	in	version	2.3:	The	parameter	optionflags	was	added.

Changed	in	version	2.4:	The	parameters	extraglobs,	raise_on_error	and
exclude_empty	were	added.

There's	also	a	function	to	run	the	doctests	associated	with	a	single	object.	This
function	is	provided	for	backward	compatibility.	There	are	no	plans	to	deprecate
it,	but	it's	rarely	useful:

run_docstring_examples(f,	globs[,	verbose][,	name][,	compileflags][,
optionflags])

Test	examples	associated	with	object	f;	for	example,	f	may	be	a	module,
function,	or	class	object.

A	shallow	copy	of	dictionary	argument	globs	is	used	for	the	execution
context.

Optional	argument	name	is	used	in	failure	messages,	and	defaults	to
"NoName".

If	optional	argument	verbose	is	true,	output	is	generated	even	if	there	are	no
failures.	By	default,	output	is	generated	only	in	case	of	an	example	failure.

Optional	argument	compileflags	gives	the	set	of	flags	that	should	be	used
by	the	Python	compiler	when	running	the	examples.	By	default,	or	if	None,
flags	are	deduced	corresponding	to	the	set	of	future	features	found	in	globs.

Optional	argument	optionflags	works	as	for	function	testfile()	above.

Python	Library	Reference
Previous:	5.2.3.6	Warnings	Up:	5.2	doctest	Next:	5.2.5	Unittest	API

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.4	Basic	API	Up:	5.2	doctest	Next:	5.2.6	Advanced	API

5.2.5	Unittest	API
As	your	collection	of	doctest'ed	modules	grows,	you'll	want	a	way	to	run	all	their
doctests	systematically.	Prior	to	Python	2.4,	doctest	had	a	barely	documented
Tester	class	that	supplied	a	rudimentary	way	to	combine	doctests	from
multiple	modules.	Tester	was	feeble,	and	in	practice	most	serious	Python
testing	frameworks	build	on	the	unittest	module,	which	supplies	many
flexible	ways	to	combine	tests	from	multiple	sources.	So,	in	Python	2.4,
doctest's	Tester	class	is	deprecated,	and	doctest	provides	two	functions
that	can	be	used	to	create	unittest	test	suites	from	modules	and	text	files
containing	doctests.	These	test	suites	can	then	be	run	using	unittest	test
runners:

import	unittest

import	doctest

import	my_module_with_doctests,	and_another

suite	=	unittest.TestSuite()

for	mod	in	my_module_with_doctests,	and_another:

				suite.addTest(doctest.DocTestSuite(mod))

runner	=	unittest.TextTestRunner()

runner.run(suite)

There	are	two	main	functions	for	creating	unittest.TestSuite	instances	from
text	files	and	modules	with	doctests:

DocFileSuite(*paths,	**kw)
Convert	doctest	tests	from	one	or	more	text	files	to	a	unittest.TestSuite.

The	returned	unittest.TestSuite	is	to	be	run	by	the	unittest	framework
and	runs	the	interactive	examples	in	each	file.	If	an	example	in	any	file
fails,	then	the	synthesized	unit	test	fails,	and	a	failureException
exception	is	raised	showing	the	name	of	the	file	containing	the	test	and	a
(sometimes	approximate)	line	number.

Pass	one	or	more	paths	(as	strings)	to	text	files	to	be	examined.

Options	may	be	provided	as	keyword	arguments:

Optional	argument	module_relative	specifies	how	the	filenames	in	paths

should	be	interpreted:

If	module_relative	is	True	(the	default),	then	each	filename	specifies
an	OS-independent	module-relative	path.	By	default,	this	path	is
relative	to	the	calling	module's	directory;	but	if	the	package	argument
is	specified,	then	it	is	relative	to	that	package.	To	ensure	OS-
independence,	each	filename	should	use	/	characters	to	separate	path
segments,	and	may	not	be	an	absolute	path	(i.e.,	it	may	not	begin	with
/).
If	module_relative	is	False,	then	each	filename	specifies	an	OS-
specific	path.	The	path	may	be	absolute	or	relative;	relative	paths	are
resolved	with	respect	to	the	current	working	directory.

Optional	argument	package	is	a	Python	package	or	the	name	of	a	Python
package	whose	directory	should	be	used	as	the	base	directory	for	module-
relative	filenames.	If	no	package	is	specified,	then	the	calling	module's
directory	is	used	as	the	base	directory	for	module-relative	filenames.	It	is	an
error	to	specify	package	if	module_relative	is	False.

Optional	argument	setUp	specifies	a	set-up	function	for	the	test	suite.	This
is	called	before	running	the	tests	in	each	file.	The	setUp	function	will	be
passed	a	DocTest	object.	The	setUp	function	can	access	the	test	globals	as
the	globs	attribute	of	the	test	passed.

Optional	argument	tearDown	specifies	a	tear-down	function	for	the	test
suite.	This	is	called	after	running	the	tests	in	each	file.	The	tearDown
function	will	be	passed	a	DocTest	object.	The	setUp	function	can	access
the	test	globals	as	the	globs	attribute	of	the	test	passed.

Optional	argument	globs	is	a	dictionary	containing	the	initial	global
variables	for	the	tests.	A	new	copy	of	this	dictionary	is	created	for	each	test.
By	default,	globs	is	a	new	empty	dictionary.

Optional	argument	optionflags	specifies	the	default	doctest	options	for	the
tests,	created	by	or-ing	together	individual	option	flags.	See	section	5.2.3.
See	function	set_unittest_reportflags()	below	for	a	better	way
to	set	reporting	options.

Optional	argument	parser	specifies	a	DocTestParser	(or	subclass)	that

should	be	used	to	extract	tests	from	the	files.	It	defaults	to	a	normal	parser
(i.e.,	DocTestParser()).

New	in	version	2.4.

DocTestSuite([module][,	globs][,	extraglobs][,	test_finder][,	setUp][,
tearDown][,	checker])

Convert	doctest	tests	for	a	module	to	a	unittest.TestSuite.

The	returned	unittest.TestSuite	is	to	be	run	by	the	unittest	framework
and	runs	each	doctest	in	the	module.	If	any	of	the	doctests	fail,	then	the
synthesized	unit	test	fails,	and	a	failureException	exception	is	raised
showing	the	name	of	the	file	containing	the	test	and	a	(sometimes
approximate)	line	number.

Optional	argument	module	provides	the	module	to	be	tested.	It	can	be	a
module	object	or	a	(possibly	dotted)	module	name.	If	not	specified,	the
module	calling	this	function	is	used.

Optional	argument	globs	is	a	dictionary	containing	the	initial	global
variables	for	the	tests.	A	new	copy	of	this	dictionary	is	created	for	each	test.
By	default,	globs	is	a	new	empty	dictionary.

Optional	argument	extraglobs	specifies	an	extra	set	of	global	variables,
which	is	merged	into	globs.	By	default,	no	extra	globals	are	used.

Optional	argument	test_finder	is	the	DocTestFinder	object	(or	a	drop-in
replacement)	that	is	used	to	extract	doctests	from	the	module.

Optional	arguments	setUp,	tearDown,	and	optionflags	are	the	same	as	for
function	DocFileSuite()	above.

New	in	version	2.3.

Changed	in	version	2.4:	The	parameters	globs,	extraglobs,	test_finder,
setUp,	tearDown,	and	optionflags	were	added;	this	function	now	uses	the
same	search	technique	as	testmod().

Under	the	covers,	DocTestSuite()	creates	a	unittest.TestSuite	out	of

doctest.DocTestCase	instances,	and	DocTestCase	is	a	subclass	of
unittest.TestCase.	DocTestCase	isn't	documented	here	(it's	an	internal
detail),	but	studying	its	code	can	answer	questions	about	the	exact	details	of
unittest	integration.

Similarly,	DocFileSuite()	creates	a	unittest.TestSuite	out	of
doctest.DocFileCase	instances,	and	DocFileCase	is	a	subclass	of
DocTestCase.

So	both	ways	of	creating	a	unittest.TestSuite	run	instances	of
DocTestCase.	This	is	important	for	a	subtle	reason:	when	you	run	doctest
functions	yourself,	you	can	control	the	doctest	options	in	use	directly,	by
passing	option	flags	to	doctest	functions.	However,	if	you're	writing	a
unittest	framework,	unittest	ultimately	controls	when	and	how	tests	get
run.	The	framework	author	typically	wants	to	control	doctest	reporting
options	(perhaps,	e.g.,	specified	by	command	line	options),	but	there's	no	way	to
pass	options	through	unittest	to	doctest	test	runners.

For	this	reason,	doctest	also	supports	a	notion	of	doctest	reporting	flags
specific	to	unittest	support,	via	this	function:

set_unittest_reportflags(flags)
Set	the	doctest	reporting	flags	to	use.

Argument	flags	or's	together	option	flags.	See	section	5.2.3.	Only	"reporting
flags"	can	be	used.

This	is	a	module-global	setting,	and	affects	all	future	doctests	run	by
module	unittest:	the	runTest()	method	of	DocTestCase	looks	at
the	option	flags	specified	for	the	test	case	when	the	DocTestCase
instance	was	constructed.	If	no	reporting	flags	were	specified	(which	is	the
typical	and	expected	case),	doctest's	unittest	reporting	flags	are
or'ed	into	the	option	flags,	and	the	option	flags	so	augmented	are	passed	to
the	DocTestRunner	instance	created	to	run	the	doctest.	If	any	reporting
flags	were	specified	when	the	DocTestCase	instance	was	constructed,
doctest's	unittest	reporting	flags	are	ignored.

The	value	of	the	unittest	reporting	flags	in	effect	before	the	function

was	called	is	returned	by	the	function.

New	in	version	2.4.

Python	Library	Reference
Previous:	5.2.4	Basic	API	Up:	5.2	doctest	Next:	5.2.6	Advanced	API

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.5	Unittest	API	Up:	5.2	doctest	Next:	5.2.6.1	DocTest	Objects

5.2.6	Advanced	API
The	basic	API	is	a	simple	wrapper	that's	intended	to	make	doctest	easy	to	use.	It
is	fairly	flexible,	and	should	meet	most	users'	needs;	however,	if	you	require
more	fine-grained	control	over	testing,	or	wish	to	extend	doctest's	capabilities,
then	you	should	use	the	advanced	API.

The	advanced	API	revolves	around	two	container	classes,	which	are	used	to
store	the	interactive	examples	extracted	from	doctest	cases:

Example:	A	single	python	statement,	paired	with	its	expected	output.
DocTest:	A	collection	of	Examples,	typically	extracted	from	a	single
docstring	or	text	file.

Additional	processing	classes	are	defined	to	find,	parse,	and	run,	and	check
doctest	examples:

DocTestFinder:	Finds	all	docstrings	in	a	given	module,	and	uses	a
DocTestParser	to	create	a	DocTest	from	every	docstring	that
contains	interactive	examples.
DocTestParser:	Creates	a	DocTest	object	from	a	string	(such	as	an
object's	docstring).
DocTestRunner:	Executes	the	examples	in	a	DocTest,	and	uses	an
OutputChecker	to	verify	their	output.
OutputChecker:	Compares	the	actual	output	from	a	doctest	example
with	the	expected	output,	and	decides	whether	they	match.

The	relationships	among	these	processing	classes	are	summarized	in	the
following	diagram:

																												list	of:

+------+																			+---------+

|module|	--DocTestFinder->	|	DocTest	|	--DocTestRunner->	results

+------+				|								^					+---------+					|							^				(printed)

												|								|					|	Example	|					|							|

												v								|					|			...			|					v							|

											DocTestParser			|	Example	|			OutputChecker

																											+---------+

Subsections

5.2.6.1	DocTest	Objects
5.2.6.2	Example	Objects
5.2.6.3	DocTestFinder	objects
5.2.6.4	DocTestParser	objects
5.2.6.5	DocTestRunner	objects
5.2.6.6	OutputChecker	objects

Python	Library	Reference
Previous:	5.2.5	Unittest	API	Up:	5.2	doctest	Next:	5.2.6.1	DocTest	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.6.6	OutputChecker	objects	Up:	5.2	doctest	Next:	5.2.8	Soapbox

5.2.7	Debugging
Doctest	provides	several	mechanisms	for	debugging	doctest	examples:

Several	functions	convert	doctests	to	executable	Python	programs,	which
can	be	run	under	the	Python	debugger,	pdb.
The	DebugRunner	class	is	a	subclass	of	DocTestRunner	that	raises	an
exception	for	the	first	failing	example,	containing	information	about	that
example.	This	information	can	be	used	to	perform	post-mortem	debugging
on	the	example.
The	unittest	cases	generated	by	DocTestSuite()	support	the
debug()	method	defined	by	unittest.TestCase.
You	can	add	a	call	to	pdb.set_trace()	in	a	doctest	example,	and	you'll	drop
into	the	Python	debugger	when	that	line	is	executed.	Then	you	can	inspect
current	values	of	variables,	and	so	on.	For	example,	suppose	a.py	contains
just	this	module	docstring:

"""

>>>	def	f(x):

...					g(x*2)

>>>	def	g(x):

...					print	x+3

...					import	pdb;	pdb.set_trace()

>>>	f(3)

9

"""

Then	an	interactive	Python	session	may	look	like	this:

>>>	import	a,	doctest

>>>	doctest.testmod(a)

--Return--

>	<doctest	a[1]>(3)g()->None

->	import	pdb;	pdb.set_trace()

(Pdb)	list

		1					def	g(x):

		2									print	x+3

		3		->					import	pdb;	pdb.set_trace()

[EOF]

(Pdb)	print	x

6

(Pdb)	step

--Return--

>	<doctest	a[0]>(2)f()->None

->	g(x*2)

(Pdb)	list

		1					def	f(x):

		2		->					g(x*2)

[EOF]

(Pdb)	print	x

3

(Pdb)	step

--Return--

>	<doctest	a[2]>(1)?()->None

->	f(3)

(Pdb)	cont

(0,	3)

>>>

Changed	in	version	2.4:	The	ability	to	use	pdb.set_trace()	usefully
inside	doctests	was	added.

Functions	that	convert	doctests	to	Python	code,	and	possibly	run	the	synthesized
code	under	the	debugger:

script_from_examples(s)
Convert	text	with	examples	to	a	script.

Argument	s	is	a	string	containing	doctest	examples.	The	string	is	converted
to	a	Python	script,	where	doctest	examples	in	s	are	converted	to	regular
code,	and	everything	else	is	converted	to	Python	comments.	The	generated
script	is	returned	as	a	string.	For	example,

				import	doctest

				print	doctest.script_from_examples(r"""

								Set	x	and	y	to	1	and	2.

								>>>	x,	y	=	1,	2

								Print	their	sum:

								>>>	print	x+y

								3

				""")

displays:

				#	Set	x	and	y	to	1	and	2.

				x,	y	=	1,	2

				#

				#	Print	their	sum:

				print	x+y

				#	Expected:

				##	3

This	function	is	used	internally	by	other	functions	(see	below),	but	can	also
be	useful	when	you	want	to	transform	an	interactive	Python	session	into	a
Python	script.

New	in	version	2.4.

testsource(module,	name)
Convert	the	doctest	for	an	object	to	a	script.

Argument	module	is	a	module	object,	or	dotted	name	of	a	module,
containing	the	object	whose	doctests	are	of	interest.	Argument	name	is	the
name	(within	the	module)	of	the	object	with	the	doctests	of	interest.	The
result	is	a	string,	containing	the	object's	docstring	converted	to	a	Python
script,	as	described	for	script_from_examples()	above.	For
example,	if	module	a.py	contains	a	top-level	function	f(),	then

import	a,	doctest

print	doctest.testsource(a,	"a.f")

prints	a	script	version	of	function	f()'s	docstring,	with	doctests	converted
to	code,	and	the	rest	placed	in	comments.

New	in	version	2.3.

debug(module,	name[,	pm])
Debug	the	doctests	for	an	object.

The	module	and	name	arguments	are	the	same	as	for	function
testsource()	above.	The	synthesized	Python	script	for	the	named
object's	docstring	is	written	to	a	temporary	file,	and	then	that	file	is	run
under	the	control	of	the	Python	debugger,	pdb.

A	shallow	copy	of	module.__dict__	is	used	for	both	local	and	global
execution	context.

Optional	argument	pm	controls	whether	post-mortem	debugging	is	used.	If
pm	has	a	true	value,	the	script	file	is	run	directly,	and	the	debugger	gets
involved	only	if	the	script	terminates	via	raising	an	unhandled	exception.	If

it	does,	then	post-mortem	debugging	is	invoked,	via
pdb.post_mortem(),	passing	the	traceback	object	from	the	unhandled
exception.	If	pm	is	not	specified,	or	is	false,	the	script	is	run	under	the
debugger	from	the	start,	via	passing	an	appropriate	execfile()	call	to
pdb.run().

New	in	version	2.3.

Changed	in	version	2.4:	The	pm	argument	was	added.

debug_src(src[,	pm][,	globs])
Debug	the	doctests	in	a	string.

This	is	like	function	debug()	above,	except	that	a	string	containing
doctest	examples	is	specified	directly,	via	the	src	argument.

Optional	argument	pm	has	the	same	meaning	as	in	function	debug()
above.

Optional	argument	globs	gives	a	dictionary	to	use	as	both	local	and	global
execution	context.	If	not	specified,	or	None,	an	empty	dictionary	is	used.	If
specified,	a	shallow	copy	of	the	dictionary	is	used.

New	in	version	2.4.

The	DebugRunner	class,	and	the	special	exceptions	it	may	raise,	are	of	most
interest	to	testing	framework	authors,	and	will	only	be	sketched	here.	See	the
source	code,	and	especially	DebugRunner's	docstring	(which	is	a	doctest!)	for
more	details:

class	DebugRunner([checker][,	verbose][,	optionflags])

A	subclass	of	DocTestRunner	that	raises	an	exception	as	soon	as	a
failure	is	encountered.	If	an	unexpected	exception	occurs,	an
UnexpectedException	exception	is	raised,	containing	the	test,	the
example,	and	the	original	exception.	If	the	output	doesn't	match,	then	a
DocTestFailure	exception	is	raised,	containing	the	test,	the	example,
and	the	actual	output.

For	information	about	the	constructor	parameters	and	methods,	see	the
documentation	for	DocTestRunner	in	section	5.2.6.

There	are	two	exceptions	that	may	be	raised	by	DebugRunner	instances:

exception	DocTestFailure(test,	example,	got)
An	exception	thrown	by	DocTestRunner	to	signal	that	a	doctest
example's	actual	output	did	not	match	its	expected	output.	The	constructor
arguments	are	used	to	initialize	the	member	variables	of	the	same	names.

DocTestFailure	defines	the	following	member	variables:

test

The	DocTest	object	that	was	being	run	when	the	example	failed.

example

The	Example	that	failed.

got

The	example's	actual	output.

exception	UnexpectedException(test,	example,	exc_info)
An	exception	thrown	by	DocTestRunner	to	signal	that	a	doctest
example	raised	an	unexpected	exception.	The	constructor	arguments	are
used	to	initialize	the	member	variables	of	the	same	names.

UnexpectedException	defines	the	following	member	variables:

test

The	DocTest	object	that	was	being	run	when	the	example	failed.

example

The	Example	that	failed.

exc_info

A	tuple	containing	information	about	the	unexpected	exception,	as	returned
by	sys.exc_info().

Python	Library	Reference
Previous:	5.2.6.6	OutputChecker	objects	Up:	5.2	doctest	Next:	5.2.8	Soapbox

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.7	Debugging	Up:	5.2	doctest	Next:	5.3	unittest

5.2.8	Soapbox
As	mentioned	in	the	introduction,	doctest	has	grown	to	have	three	primary
uses:

1.	 Checking	examples	in	docstrings.
2.	 Regression	testing.
3.	 Executable	documentation	/	literate	testing.

These	uses	have	different	requirements,	and	it	is	important	to	distinguish	them.
In	particular,	filling	your	docstrings	with	obscure	test	cases	makes	for	bad
documentation.

When	writing	a	docstring,	choose	docstring	examples	with	care.	There's	an	art	to
this	that	needs	to	be	learned--it	may	not	be	natural	at	first.	Examples	should	add
genuine	value	to	the	documentation.	A	good	example	can	often	be	worth	many
words.	If	done	with	care,	the	examples	will	be	invaluable	for	your	users,	and	will
pay	back	the	time	it	takes	to	collect	them	many	times	over	as	the	years	go	by	and
things	change.	I'm	still	amazed	at	how	often	one	of	my	doctest	examples
stops	working	after	a	"harmless"	change.

Doctest	also	makes	an	excellent	tool	for	regression	testing,	especially	if	you
don't	skimp	on	explanatory	text.	By	interleaving	prose	and	examples,	it	becomes
much	easier	to	keep	track	of	what's	actually	being	tested,	and	why.	When	a	test
fails,	good	prose	can	make	it	much	easier	to	figure	out	what	the	problem	is,	and
how	it	should	be	fixed.	It's	true	that	you	could	write	extensive	comments	in
code-based	testing,	but	few	programmers	do.	Many	have	found	that	using
doctest	approaches	instead	leads	to	much	clearer	tests.	Perhaps	this	is	simply
because	doctest	makes	writing	prose	a	little	easier	than	writing	code,	while
writing	comments	in	code	is	a	little	harder.	I	think	it	goes	deeper	than	just	that:
the	natural	attitude	when	writing	a	doctest-based	test	is	that	you	want	to	explain
the	fine	points	of	your	software,	and	illustrate	them	with	examples.	This	in	turn
naturally	leads	to	test	files	that	start	with	the	simplest	features,	and	logically
progress	to	complications	and	edge	cases.	A	coherent	narrative	is	the	result,
instead	of	a	collection	of	isolated	functions	that	test	isolated	bits	of	functionality
seemingly	at	random.	It's	a	different	attitude,	and	produces	different	results,
blurring	the	distinction	between	testing	and	explaining.

Regression	testing	is	best	confined	to	dedicated	objects	or	files.	There	are
several	options	for	organizing	tests:

Write	text	files	containing	test	cases	as	interactive	examples,	and	test	the
files	using	testfile()	or	DocFileSuite().	This	is	recommended,
although	is	easiest	to	do	for	new	projects,	designed	from	the	start	to	use
doctest.
Define	functions	named	_regrtest_topic	that	consist	of	single
docstrings,	containing	test	cases	for	the	named	topics.	These	functions	can
be	included	in	the	same	file	as	the	module,	or	separated	out	into	a	separate
test	file.
Define	a	__test__	dictionary	mapping	from	regression	test	topics	to
docstrings	containing	test	cases.

Python	Library	Reference
Previous:	5.2.7	Debugging	Up:	5.2	doctest	Next:	5.3	unittest

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.8	Soapbox	Up:	5.	Miscellaneous	Services	Next:	5.3.1	Basic
example

5.3	unittest	--	Unit	testing
framework
New	in	version	2.1.

The	Python	unit	testing	framework,	often	referred	to	as	``PyUnit,''	is	a	Python
language	version	of	JUnit,	by	Kent	Beck	and	Erich	Gamma.	JUnit	is,	in	turn,	a
Java	version	of	Kent's	Smalltalk	testing	framework.	Each	is	the	de	facto	standard
unit	testing	framework	for	its	respective	language.

PyUnit	supports	test	automation,	sharing	of	setup	and	shutdown	code	for	tests,
aggregation	of	tests	into	collections,	and	independence	of	the	tests	from	the
reporting	framework.	The	unittest	module	provides	classes	that	make	it	easy
to	support	these	qualities	for	a	set	of	tests.

To	achieve	this,	PyUnit	supports	some	important	concepts:

test	fixture
A	test	fixture	represents	the	preparation	needed	to	perform	one	or	more
tests,	and	any	associate	cleanup	actions.	This	may	involve,	for	example,
creating	temporary	or	proxy	databases,	directories,	or	starting	a	server
process.

test	case
A	test	case	is	the	smallest	unit	of	testing.	It	checks	for	a	specific	response	to
a	particular	set	of	inputs.	PyUnit	provides	a	base	class,	TestCase,	which
may	be	used	to	create	new	test	cases.	You	may	provide	your	own
implementation	that	does	not	subclass	from	TestCase,	of	course.

test	suite
A	test	suite	is	a	collection	of	test	cases,	test	suites,	or	both.	It	is	used	to
aggregate	tests	that	should	be	executed	together.

test	runner
A	test	runner	is	a	component	which	orchestrates	the	execution	of	tests	and
provides	the	outcome	to	the	user.	The	runner	may	use	a	graphical	interface,

a	textual	interface,	or	return	a	special	value	to	indicate	the	results	of
executing	the	tests.

The	test	case	and	test	fixture	concepts	are	supported	through	the	TestCase	and
FunctionTestCase	classes;	the	former	should	be	used	when	creating	new
tests,	and	the	latter	can	be	used	when	integrating	existing	test	code	with	a
PyUnit-driven	framework.	When	building	test	fixtures	using	TestCase,	the
setUp()	and	tearDown()	methods	can	be	overridden	to	provide
initialization	and	cleanup	for	the	fixture.	With	FunctionTestCase,	existing
functions	can	be	passed	to	the	constructor	for	these	purposes.	When	the	test	is
run,	the	fixture	initialization	is	run	first;	if	it	succeeds,	the	cleanup	method	is	run
after	the	test	has	been	executed,	regardless	of	the	outcome	of	the	test.	Each
instance	of	the	TestCase	will	only	be	used	to	run	a	single	test	method,	so	a
new	fixture	is	created	for	each	test.

Test	suites	are	implemented	by	the	TestSuite	class.	This	class	allows
individual	tests	and	test	suites	to	be	aggregated;	when	the	suite	is	executed,	all
tests	added	directly	to	the	suite	and	in	``child''	test	suites	are	run.

A	test	runner	is	an	object	that	provides	a	single	method,	run(),	which	accepts	a
TestCase	or	TestSuite	object	as	a	parameter,	and	returns	a	result	object.
The	class	TestResult	is	provided	for	use	as	the	result	object.	PyUnit	provide
the	TextTestRunner	as	an	example	test	runner	which	reports	test	results	on
the	standard	error	stream	by	default.	Alternate	runners	can	be	implemented	for
other	environments	(such	as	graphical	environments)	without	any	need	to	derive
from	a	specific	class.

See	Also:

Module	doctest:
Another	test-support	module	with	a	very	different	flavor.

PyUnit	Web	Site
The	source	for	further	information	on	PyUnit.

Simple	Smalltalk	Testing:	With	Patterns
Kent	Beck's	original	paper	on	testing	frameworks	using	the	pattern
shared	by	unittest.

http://pyunit.sourceforge.net/
http://www.XProgramming.com/testfram.htm

Subsections

5.3.1	Basic	example
5.3.2	Organizing	test	code
5.3.3	Re-using	old	test	code
5.3.4	Classes	and	functions
5.3.5	TestCase	Objects
5.3.6	TestSuite	Objects
5.3.7	TestResult	Objects
5.3.8	TestLoader	Objects

Python	Library	Reference
Previous:	5.2.8	Soapbox	Up:	5.	Miscellaneous	Services	Next:	5.3.1	Basic
example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3	unittest	Up:	5.3	unittest	Next:	5.3.2	Organizing	test	code

5.3.1	Basic	example
The	unittest	module	provides	a	rich	set	of	tools	for	constructing	and	running
tests.	This	section	demonstrates	that	a	small	subset	of	the	tools	suffice	to	meet
the	needs	of	most	users.

Here	is	a	short	script	to	test	three	functions	from	the	random	module:

import	random

import	unittest

class	TestSequenceFunctions(unittest.TestCase):

				

				def	setUp(self):

								self.seq	=	range(10)

				def	testshuffle(self):

								#	make	sure	the	shuffled	sequence	does	not	lose	any	elements

								random.shuffle(self.seq)

								self.seq.sort()

								self.assertEqual(self.seq,	range(10))

				def	testchoice(self):

								element	=	random.choice(self.seq)

								self.assert_(element	in	self.seq)

				def	testsample(self):

								self.assertRaises(ValueError,	random.sample,	self.seq,	20)

								for	element	in	random.sample(self.seq,	5):

												self.assert_(element	in	self.seq)

if	__name__	==	'__main__':

				unittest.main()

A	testcase	is	created	by	subclassing	unittest.TestCase.	The	three
individual	tests	are	defined	with	methods	whose	names	start	with	the	letters
"test".	This	naming	convention	informs	the	test	runner	about	which	methods
represent	tests.

The	crux	of	each	test	is	a	call	to	assertEqual()	to	check	for	an	expected
result;	assert_()	to	verify	a	condition;	or	assertRaises()	to	verify	that
an	expected	exception	gets	raised.	These	methods	are	used	instead	of	the
assert	statement	so	the	test	runner	can	accumulate	all	test	results	and	produce
a	report.

When	a	setUp()	method	is	defined,	the	test	runner	will	run	that	method	prior
to	each	test.	Likewise,	if	a	tearDown()	method	is	defined,	the	test	runner	will
invoke	that	method	after	each	test.	In	the	example,	setUp()	was	used	to	create
a	fresh	sequence	for	each	test.

The	final	block	shows	a	simple	way	to	run	the	tests.	unittest.main()
provides	a	command	line	interface	to	the	test	script.	When	run	from	the
command	line,	the	above	script	produces	an	output	that	looks	like	this:

...

--

Ran	3	tests	in	0.000s

OK

Instead	of	unittest.main(),	there	are	other	ways	to	run	the	tests	with	a
finer	level	of	control,	less	terse	output,	and	no	requirement	to	be	run	from	the
command	line.	For	example,	the	last	two	lines	may	be	replaced	with:

suite	=	unittest.makeSuite(TestSequenceFunctions)

unittest.TextTestRunner(verbosity=2).run(suite)

Running	the	revised	script	from	the	interpreter	or	another	script	produces	the
following	output:

testchoice	(__main__.TestSequenceFunctions)	...	ok

testsample	(__main__.TestSequenceFunctions)	...	ok

testshuffle	(__main__.TestSequenceFunctions)	...	ok

--

Ran	3	tests	in	0.110s

OK

The	above	examples	show	the	most	commonly	used	unittest	features	which
are	sufficient	to	meet	many	everyday	testing	needs.	The	remainder	of	the
documentation	explores	the	full	feature	set	from	first	principles.

Python	Library	Reference
Previous:	5.3	unittest	Up:	5.3	unittest	Next:	5.3.2	Organizing	test	code

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3.1	Basic	example	Up:	5.3	unittest	Next:	5.3.3	Re-using	old	test

5.3.2	Organizing	test	code
The	basic	building	blocks	of	unit	testing	are	test	cases	--	single	scenarios	that
must	be	set	up	and	checked	for	correctness.	In	PyUnit,	test	cases	are	represented
by	instances	of	the	TestCase	class	in	the	unittest	module.	To	make	your
own	test	cases	you	must	write	subclasses	of	TestCase,	or	use
FunctionTestCase.

An	instance	of	a	TestCase-derived	class	is	an	object	that	can	completely	run	a
single	test	method,	together	with	optional	set-up	and	tidy-up	code.

The	testing	code	of	a	TestCase	instance	should	be	entirely	self	contained,
such	that	it	can	be	run	either	in	isolation	or	in	arbitrary	combination	with	any
number	of	other	test	cases.

The	simplest	test	case	subclass	will	simply	override	the	runTest()	method	in
order	to	perform	specific	testing	code:

import	unittest

class	DefaultWidgetSizeTestCase(unittest.TestCase):

				def	runTest(self):

								widget	=	Widget("The	widget")

								self.failUnless(widget.size()	==	(50,50),	'incorrect	default	size')

Note	that	in	order	to	test	something,	we	use	the	one	of	the	assert*()	or
fail*()	methods	provided	by	the	TestCase	base	class.	If	the	test	fails	when
the	test	case	runs,	an	exception	will	be	raised,	and	the	testing	framework	will
identify	the	test	case	as	a	failure.	Other	exceptions	that	do	not	arise	from	checks
made	through	the	assert*()	and	fail*()	methods	are	identified	by	the
testing	framework	as	dfnerrors.

The	way	to	run	a	test	case	will	be	described	later.	For	now,	note	that	to	construct
an	instance	of	such	a	test	case,	we	call	its	constructor	without	arguments:

testCase	=	DefaultWidgetSizeTestCase()

Now,	such	test	cases	can	be	numerous,	and	their	set-up	can	be	repetitive.	In	the
above	case,	constructing	a	``Widget''	in	each	of	100	Widget	test	case	subclasses
would	mean	unsightly	duplication.

Luckily,	we	can	factor	out	such	set-up	code	by	implementing	a	method	called
setUp(),	which	the	testing	framework	will	automatically	call	for	us	when	we
run	the	test:

import	unittest

class	SimpleWidgetTestCase(unittest.TestCase):

				def	setUp(self):

								self.widget	=	Widget("The	widget")

class	DefaultWidgetSizeTestCase(SimpleWidgetTestCase):

				def	runTest(self):

								self.failUnless(self.widget.size()	==	(50,50),

																								'incorrect	default	size')

class	WidgetResizeTestCase(SimpleWidgetTestCase):

				def	runTest(self):

								self.widget.resize(100,150)

								self.failUnless(self.widget.size()	==	(100,150),

																								'wrong	size	after	resize')

If	the	setUp()	method	raises	an	exception	while	the	test	is	running,	the
framework	will	consider	the	test	to	have	suffered	an	error,	and	the	runTest()
method	will	not	be	executed.

Similarly,	we	can	provide	a	tearDown()	method	that	tidies	up	after	the
runTest()	method	has	been	run:

import	unittest

class	SimpleWidgetTestCase(unittest.TestCase):

				def	setUp(self):

								self.widget	=	Widget("The	widget")

				def	tearDown(self):

								self.widget.dispose()

								self.widget	=	None

If	setUp()	succeeded,	the	tearDown()	method	will	be	run	regardless	of
whether	or	not	runTest()	succeeded.

Such	a	working	environment	for	the	testing	code	is	called	a	fixture.

Often,	many	small	test	cases	will	use	the	same	fixture.	In	this	case,	we	would
end	up	subclassing	SimpleWidgetTestCase	into	many	small	one-method
classes	such	as	DefaultWidgetSizeTestCase.	This	is	time-consuming

and	discouraging,	so	in	the	same	vein	as	JUnit,	PyUnit	provides	a	simpler
mechanism:

import	unittest

class	WidgetTestCase(unittest.TestCase):

				def	setUp(self):

								self.widget	=	Widget("The	widget")

				def	tearDown(self):

								self.widget.dispose()

								self.widget	=	None

				def	testDefaultSize(self):

								self.failUnless(self.widget.size()	==	(50,50),

																								'incorrect	default	size')

				def	testResize(self):

								self.widget.resize(100,150)

								self.failUnless(self.widget.size()	==	(100,150),

																								'wrong	size	after	resize')

Here	we	have	not	provided	a	runTest()	method,	but	have	instead	provided
two	different	test	methods.	Class	instances	will	now	each	run	one	of	the	test*
()	methods,	with	self.widget	created	and	destroyed	separately	for	each
instance.	When	creating	an	instance	we	must	specify	the	test	method	it	is	to	run.
We	do	this	by	passing	the	method	name	in	the	constructor:

defaultSizeTestCase	=	WidgetTestCase("testDefaultSize")

resizeTestCase	=	WidgetTestCase("testResize")

Test	case	instances	are	grouped	together	according	to	the	features	they	test.
PyUnit	provides	a	mechanism	for	this:	the	test	suite,	represented	by	the
class	TestSuite	in	the	unittest	module:

widgetTestSuite	=	unittest.TestSuite()

widgetTestSuite.addTest(WidgetTestCase("testDefaultSize"))

widgetTestSuite.addTest(WidgetTestCase("testResize"))

For	the	ease	of	running	tests,	as	we	will	see	later,	it	is	a	good	idea	to	provide	in
each	test	module	a	callable	object	that	returns	a	pre-built	test	suite:

def	suite():

				suite	=	unittest.TestSuite()

				suite.addTest(WidgetTestCase("testDefaultSize"))

				suite.addTest(WidgetTestCase("testResize"))

				return	suite

or	even:

class	WidgetTestSuite(unittest.TestSuite):

				def	__init__(self):

								unittest.TestSuite.__init__(self,map(WidgetTestCase,

																																														("testDefaultSize",

																																															"testResize")))

(The	latter	is	admittedly	not	for	the	faint-hearted!)

Since	it	is	a	common	pattern	to	create	a	TestCase	subclass	with	many
similarly	named	test	functions,	there	is	a	convenience	function	called
makeSuite()	that	constructs	a	test	suite	that	comprises	all	of	the	test	cases	in
a	test	case	class:

suite	=	unittest.makeSuite(WidgetTestCase)

Note	that	when	using	the	makeSuite()	function,	the	order	in	which	the
various	test	cases	will	be	run	by	the	test	suite	is	the	order	determined	by	sorting
the	test	function	names	using	the	cmp()	built-in	function.

Often	it	is	desirable	to	group	suites	of	test	cases	together,	so	as	to	run	tests	for
the	whole	system	at	once.	This	is	easy,	since	TestSuite	instances	can	be
added	to	a	TestSuite	just	as	TestCase	instances	can	be	added	to	a
TestSuite:

suite1	=	module1.TheTestSuite()

suite2	=	module2.TheTestSuite()

alltests	=	unittest.TestSuite((suite1,	suite2))

You	can	place	the	definitions	of	test	cases	and	test	suites	in	the	same	modules	as
the	code	they	are	to	test	(such	as	widget.py),	but	there	are	several	advantages	to
placing	the	test	code	in	a	separate	module,	such	as	widgettests.py:

The	test	module	can	be	run	standalone	from	the	command	line.
The	test	code	can	more	easily	be	separated	from	shipped	code.
There	is	less	temptation	to	change	test	code	to	fit	the	code	it	tests	without	a
good	reason.
Test	code	should	be	modified	much	less	frequently	than	the	code	it	tests.
Tested	code	can	be	refactored	more	easily.
Tests	for	modules	written	in	C	must	be	in	separate	modules	anyway,	so	why
not	be	consistent?

If	the	testing	strategy	changes,	there	is	no	need	to	change	the	source	code.

Python	Library	Reference
Previous:	5.3.1	Basic	example	Up:	5.3	unittest	Next:	5.3.3	Re-using	old	test

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3.2	Organizing	test	code	Up:	5.3	unittest	Next:	5.3.4	Classes	and
functions

5.3.3	Re-using	old	test	code
Some	users	will	find	that	they	have	existing	test	code	that	they	would	like	to	run
from	PyUnit,	without	converting	every	old	test	function	to	a	TestCase
subclass.

For	this	reason,	PyUnit	provides	a	FunctionTestCase	class.	This	subclass
of	TestCase	can	be	used	to	wrap	an	existing	test	function.	Set-up	and	tear-
down	functions	can	also	optionally	be	wrapped.

Given	the	following	test	function:

def	testSomething():

				something	=	makeSomething()

				assert	something.name	is	not	None

				#	...

one	can	create	an	equivalent	test	case	instance	as	follows:

testcase	=	unittest.FunctionTestCase(testSomething)

If	there	are	additional	set-up	and	tear-down	methods	that	should	be	called	as	part
of	the	test	case's	operation,	they	can	also	be	provided:

testcase	=	unittest.FunctionTestCase(testSomething,

																																					setUp=makeSomethingDB,

																																					tearDown=deleteSomethingDB)

Note:	PyUnit	supports	the	use	of	AssertionError	as	an	indicator	of	test
failure,	but	does	not	recommend	it.	Future	versions	may	treat
AssertionError	differently.

Python	Library	Reference
Previous:	5.3.2	Organizing	test	code	Up:	5.3	unittest	Next:	5.3.4	Classes	and
functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3.3	Re-using	old	test	Up:	5.3	unittest	Next:	5.3.5	TestCase	Objects

5.3.4	Classes	and	functions

class	TestCase()
Instances	of	the	TestCase	class	represent	the	smallest	testable	units	in	a
set	of	tests.	This	class	is	intended	to	be	used	as	a	base	class,	with	specific
tests	being	implemented	by	concrete	subclasses.	This	class	implements	the
interface	needed	by	the	test	runner	to	allow	it	to	drive	the	test,	and	methods
that	the	test	code	can	use	to	check	for	and	report	various	kinds	of	failures.

class	FunctionTestCase(testFunc[,	setUp[,	tearDown[,	description]]])
This	class	implements	the	portion	of	the	TestCase	interface	which	allows
the	test	runner	to	drive	the	test,	but	does	not	provide	the	methods	which	test
code	can	use	to	check	and	report	errors.	This	is	used	to	create	test	cases
using	legacy	test	code,	allowing	it	to	be	integrated	into	a	unittest-based
test	framework.

class	TestSuite([tests])
This	class	represents	an	aggregation	of	individual	tests	cases	and	test	suites.
The	class	presents	the	interface	needed	by	the	test	runner	to	allow	it	to	be
run	as	any	other	test	case,	but	all	the	contained	tests	and	test	suites	are
executed.	Additional	methods	are	provided	to	add	test	cases	and	suites	to
the	aggregation.	If	tests	is	given,	it	must	be	a	sequence	of	individual	tests
that	will	be	added	to	the	suite.

class	TestLoader()
This	class	is	responsible	for	loading	tests	according	to	various	criteria	and
returning	them	wrapped	in	a	TestSuite.	It	can	load	all	tests	within	a
given	module	or	TestCase	class.	When	loading	from	a	module,	it
considers	all	TestCase-derived	classes.	For	each	such	class,	it	creates	an
instance	for	each	method	with	a	name	beginning	with	the	string	"test".

defaultTestLoader

Instance	of	the	TestLoader	class	which	can	be	shared.	If	no
customization	of	the	TestLoader	is	needed,	this	instance	can	always	be
used	instead	of	creating	new	instances.

class	TextTestRunner([stream[,	descriptions[,	verbosity]]])
A	basic	test	runner	implementation	which	prints	results	on	standard	output.
It	has	a	few	configurable	parameters,	but	is	essentially	very	simple.
Graphical	applications	which	run	test	suites	should	provide	alternate
implementations.

main([module[,	defaultTest[,	argv[,	testRunner[,	testRunner]]]]])
A	command-line	program	that	runs	a	set	of	tests;	this	is	primarily	for
making	test	modules	conveniently	executable.	The	simplest	use	for	this
function	is:

if	__name__	==	'__main__':

				unittest.main()

In	some	cases,	the	existing	tests	may	have	be	written	using	the	doctest
module.	If	so,	that	module	provides	a	DocTestSuite	class	that	can
automatically	build	unittest.TestSuite	instances	from	the	existing	test
code.	New	in	version	2.3.

Python	Library	Reference
Previous:	5.3.3	Re-using	old	test	Up:	5.3	unittest	Next:	5.3.5	TestCase	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3.4	Classes	and	functions	Up:	5.3	unittest	Next:	5.3.6	TestSuite
Objects

5.3.5	TestCase	Objects
Each	TestCase	instance	represents	a	single	test,	but	each	concrete	subclass
may	be	used	to	define	multiple	tests	--	the	concrete	class	represents	a	single	test
fixture.	The	fixture	is	created	and	cleaned	up	for	each	test	case.

TestCase	instances	provide	three	groups	of	methods:	one	group	used	to	run
the	test,	another	used	by	the	test	implementation	to	check	conditions	and	report
failures,	and	some	inquiry	methods	allowing	information	about	the	test	itself	to
be	gathered.

Methods	in	the	first	group	are:

setUp()
Method	called	to	prepare	the	test	fixture.	This	is	called	immediately	before
calling	the	test	method;	any	exception	raised	by	this	method	will	be
considered	an	error	rather	than	a	test	failure.	The	default	implementation
does	nothing.

tearDown()
Method	called	immediately	after	the	test	method	has	been	called	and	the
result	recorded.	This	is	called	even	if	the	test	method	raised	an	exception,
so	the	implementation	in	subclasses	may	need	to	be	particularly	careful
about	checking	internal	state.	Any	exception	raised	by	this	method	will	be
considered	an	error	rather	than	a	test	failure.	This	method	will	only	be
called	if	the	setUp()	succeeds,	regardless	of	the	outcome	of	the	test
method.	The	default	implementation	does	nothing.

run([result])
Run	the	test,	collecting	the	result	into	the	test	result	object	passed	as	result.
If	result	is	omitted	or	None,	a	temporary	result	object	is	created	and	used,
but	is	not	made	available	to	the	caller.	This	is	equivalent	to	simply	calling
the	TestCase	instance.

debug()
Run	the	test	without	collecting	the	result.	This	allows	exceptions	raised	by

the	test	to	be	propogated	to	the	caller,	and	can	be	used	to	support	running
tests	under	a	debugger.

The	test	code	can	use	any	of	the	following	methods	to	check	for	and	report
failures.

assert_(expr[,	msg])
failUnless(expr[,	msg])

Signal	a	test	failure	if	expr	is	false;	the	explanation	for	the	error	will	be	msg
if	given,	otherwise	it	will	be	None.

assertEqual(first,	second[,	msg])
failUnlessEqual(first,	second[,	msg])

Test	that	first	and	second	are	equal.	If	the	values	do	not	compare	equal,	the
test	will	fail	with	the	explanation	given	by	msg,	or	None.	Note	that	using
failUnlessEqual()	improves	upon	doing	the	comparison	as	the	first
parameter	to	failUnless():	the	default	value	for	msg	can	be	computed
to	include	representations	of	both	first	and	second.

assertNotEqual(first,	second[,	msg])
failIfEqual(first,	second[,	msg])

Test	that	first	and	second	are	not	equal.	If	the	values	do	compare	equal,	the
test	will	fail	with	the	explanation	given	by	msg,	or	None.	Note	that	using
failIfEqual()	improves	upon	doing	the	comparison	as	the	first
parameter	to	failUnless()	is	that	the	default	value	for	msg	can	be
computed	to	include	representations	of	both	first	and	second.

assertAlmostEqual(first,	second[,	places[,	msg]])
failUnlessAlmostEqual(first,	second[,	places[,	msg]])

Test	that	first	and	second	are	approximately	equal	by	computing	the
difference,	rounding	to	the	given	number	of	places,	and	comparing	to	zero.
Note	that	comparing	a	given	number	of	decimal	places	is	not	the	same	as
comparing	a	given	number	of	significant	digits.	If	the	values	do	not
compare	equal,	the	test	will	fail	with	the	explanation	given	by	msg,	or
None.

assertNotAlmostEqual(first,	second[,	places[,	msg]])
failIfAlmostEqual(first,	second[,	places[,	msg]])

Test	that	first	and	second	are	not	approximately	equal	by	computing	the
difference,	rounding	to	the	given	number	of	places,	and	comparing	to	zero.
Note	that	comparing	a	given	number	of	decimal	places	is	not	the	same	as
comparing	a	given	number	of	significant	digits.	If	the	values	do	not
compare	equal,	the	test	will	fail	with	the	explanation	given	by	msg,	or
None.

assertRaises(exception,	callable,	...)
failUnlessRaises(exception,	callable,	...)

Test	that	an	exception	is	raised	when	callable	is	called	with	any	positional
or	keyword	arguments	that	are	also	passed	to	assertRaises().	The	test
passes	if	exception	is	raised,	is	an	error	if	another	exception	is	raised,	or
fails	if	no	exception	is	raised.	To	catch	any	of	a	group	of	exceptions,	a	tuple
containing	the	exception	classes	may	be	passed	as	exception.

failIf(expr[,	msg])
The	inverse	of	the	failUnless()	method	is	the	failIf()	method.
This	signals	a	test	failure	if	expr	is	true,	with	msg	or	None	for	the	error
message.

fail([msg])
Signals	a	test	failure	unconditionally,	with	msg	or	None	for	the	error
message.

failureException

This	class	attribute	gives	the	exception	raised	by	the	test()	method.	If	a
test	framework	needs	to	use	a	specialized	exception,	possibly	to	carry
additional	information,	it	must	subclass	this	exception	in	order	to	``play
fair''	with	the	framework.	The	initial	value	of	this	attribute	is
AssertionError.

Testing	frameworks	can	use	the	following	methods	to	collect	information	on	the
test:

countTestCases()

Return	the	number	of	tests	represented	by	the	this	test	object.	For
TestCase	instances,	this	will	always	be	1,	but	this	method	is	also
implemented	by	the	TestSuite	class,	which	can	return	larger	values.

defaultTestResult()
Return	the	default	type	of	test	result	object	to	be	used	to	run	this	test.

id()
Return	a	string	identifying	the	specific	test	case.	This	is	usually	the	full
name	of	the	test	method,	including	the	module	and	class	names.

shortDescription()
Returns	a	one-line	description	of	the	test,	or	None	if	no	description	has
been	provided.	The	default	implementation	of	this	method	returns	the	first
line	of	the	test	method's	docstring,	if	available,	or	None.

Python	Library	Reference
Previous:	5.3.4	Classes	and	functions	Up:	5.3	unittest	Next:	5.3.6	TestSuite
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3.5	TestCase	Objects	Up:	5.3	unittest	Next:	5.3.7	TestResult
Objects

5.3.6	TestSuite	Objects
TestSuite	objects	behave	much	like	TestCase	objects,	except	they	do	not
actually	implement	a	test.	Instead,	they	are	used	to	aggregate	tests	into	groups
that	should	be	run	together.	Some	additional	methods	are	available	to	add	tests	to
TestSuite	instances:

addTest(test)
Add	a	TestCase	or	TestSuite	to	the	set	of	tests	that	make	up	the	suite.

addTests(tests)
Add	all	the	tests	from	a	sequence	of	TestCase	and	TestSuite
instances	to	this	test	suite.

The	run()	method	is	also	slightly	different:

run(result)
Run	the	tests	associated	with	this	suite,	collecting	the	result	into	the	test
result	object	passed	as	result.	Note	that	unlike	TestCase.run(),
TestSuite.run()	requires	the	result	object	to	be	passed	in.

In	the	typical	usage	of	a	TestSuite	object,	the	run()	method	is	invoked	by	a
TestRunner	rather	than	by	the	end-user	test	harness.

Python	Library	Reference
Previous:	5.3.5	TestCase	Objects	Up:	5.3	unittest	Next:	5.3.7	TestResult
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3.6	TestSuite	Objects	Up:	5.3	unittest	Next:	5.3.8	TestLoader
Objects

5.3.7	TestResult	Objects
A	TestResult	object	stores	the	results	of	a	set	of	tests.	The	TestCase	and
TestSuite	classes	ensure	that	results	are	properly	stored;	test	authors	do	not
need	to	worry	about	recording	the	outcome	of	tests.

Testing	frameworks	built	on	top	of	unittest	may	want	access	to	the
TestResult	object	generated	by	running	a	set	of	tests	for	reporting	purposes;
a	TestResult	instance	is	returned	by	the	TestRunner.run()	method	for
this	purpose.

Each	instance	holds	the	total	number	of	tests	run,	and	collections	of	failures	and
errors	that	occurred	among	those	test	runs.	The	collections	contain	tuples	of
(testcase,	traceback),	where	traceback	is	a	string	containing	a	formatted
version	of	the	traceback	for	the	exception.

TestResult	instances	have	the	following	attributes	that	will	be	of	interest
when	inspecting	the	results	of	running	a	set	of	tests:

errors

A	list	containing	pairs	of	TestCase	instances	and	the	formatted
tracebacks	for	tests	which	raised	an	exception	but	did	not	signal	a	test
failure.	Changed	in	version	2.2:	Contains	formatted	tracebacks	instead	of
sys.exc_info()	results.

failures

A	list	containing	pairs	of	TestCase	instances	and	the	formatted
tracebacks	for	tests	which	signalled	a	failure	in	the	code	under	test.
Changed	in	version	2.2:	Contains	formatted	tracebacks	instead	of
sys.exc_info()	results.

testsRun

The	number	of	tests	which	have	been	started.

wasSuccessful()
Returns	true	if	all	tests	run	so	far	have	passed,	otherwise	returns	false.

The	following	methods	of	the	TestResult	class	are	used	to	maintain	the
internal	data	structures,	and	may	be	extended	in	subclasses	to	support	additional
reporting	requirements.	This	is	particularly	useful	in	building	tools	which
support	interactive	reporting	while	tests	are	being	run.

startTest(test)
Called	when	the	test	case	test	is	about	to	be	run.

stopTest(test)
Called	when	the	test	case	test	has	been	executed,	regardless	of	the	outcome.

addError(test,	err)
Called	when	the	test	case	test	raises	an	exception	without	signalling	a	test
failure.	err	is	a	tuple	of	the	form	returned	by	sys.exc_info():	(type,
value,	traceback).

addFailure(test,	err)
Called	when	the	test	case	test	signals	a	failure.	err	is	a	tuple	of	the	form
returned	by	sys.exc_info():	(type,	value,	traceback).

addSuccess(test)
This	method	is	called	for	a	test	that	does	not	fail;	test	is	the	test	case	object.

One	additional	method	is	available	for	TestResult	objects:

stop()
This	method	can	be	called	to	signal	that	the	set	of	tests	being	run	should	be
aborted.	Once	this	has	been	called,	the	TestRunner	object	return	to	its
caller	without	running	any	additional	tests.	This	is	used	by	the
TextTestRunner	class	to	stop	the	test	framework	when	the	user	signals
an	interrupt	from	the	keyboard.	Interactive	tools	which	provide	runners	can
use	this	in	a	similar	manner.

Python	Library	Reference
Previous:	5.3.6	TestSuite	Objects	Up:	5.3	unittest	Next:	5.3.8	TestLoader
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3.7	TestResult	Objects	Up:	5.3	unittest	Next:	5.4	test

5.3.8	TestLoader	Objects
The	TestLoader	class	is	used	to	create	test	suites	from	classes	and	modules.
Normally,	there	is	no	need	to	create	an	instance	of	this	class;	the	unittest
module	provides	an	instance	that	can	be	shared	as	the	defaultTestLoader
module	attribute.	Using	a	subclass	or	instance	would	allow	customization	of
some	configurable	properties.

TestLoader	objects	have	the	following	methods:

loadTestsFromTestCase(testCaseClass)
Return	a	suite	of	all	tests	cases	contained	in	the	TestCase-derived	class
testCaseClass.

loadTestsFromModule(module)
Return	a	suite	of	all	tests	cases	contained	in	the	given	module.	This	method
searches	module	for	classes	derived	from	TestCase	and	creates	an
instance	of	the	class	for	each	test	method	defined	for	the	class.

Warning:	While	using	a	hierarchy	of	Testcase-derived	classes	can	be
convenient	in	sharing	fixtures	and	helper	functions,	defining	test	methods
on	base	classes	that	are	not	intended	to	be	instantiated	directly	does	not	play
well	with	this	method.	Doing	so,	however,	can	be	useful	when	the	fixtures
are	different	and	defined	in	subclasses.

loadTestsFromName(name[,	module])
Return	a	suite	of	all	tests	cases	given	a	string	specifier.

The	specifier	name	is	a	``dotted	name''	that	may	resolve	either	to	a	module,
a	test	case	class,	a	test	method	within	a	test	case	class,	or	a	callable	object
which	returns	a	TestCase	or	TestSuite	instance.	For	example,	if	you
have	a	module	SampleTests	containing	a	TestCase-derived	class
SampleTestCase	with	three	test	methods	(test_one(),
test_two(),	and	test_three()),	the	specifier
'SampleTests.SampleTestCase'	would	cause	this	method	to
return	a	suite	which	will	run	all	three	test	methods.	Using	the	specifier

'SampleTests.SampleTestCase.test_two'	would	cause	it	to
return	a	test	suite	which	will	run	only	the	test_two()	test	method.	The
specifier	can	refer	to	modules	and	packages	which	have	not	been	imported;
they	will	be	imported	as	a	side-effect.

The	method	optionally	resolves	name	relative	to	a	given	module.

loadTestsFromNames(names[,	module])
Similar	to	loadTestsFromName(),	but	takes	a	sequence	of	names
rather	than	a	single	name.	The	return	value	is	a	test	suite	which	supports	all
the	tests	defined	for	each	name.

getTestCaseNames(testCaseClass)
Return	a	sorted	sequence	of	method	names	found	within	testCaseClass.

The	following	attributes	of	a	TestLoader	can	be	configured	either	by
subclassing	or	assignment	on	an	instance:

testMethodPrefix

String	giving	the	prefix	of	method	names	which	will	be	interpreted	as	test
methods.	The	default	value	is	'test'.

sortTestMethodsUsing

Function	to	be	used	to	compare	method	names	when	sorting	them	in
getTestCaseNames().	The	default	value	is	the	built-in	cmp()
function;	it	can	be	set	to	None	to	disable	the	sort.

suiteClass

Callable	object	that	constructs	a	test	suite	from	a	list	of	tests.	No	methods
on	the	resulting	object	are	needed.	The	default	value	is	the	TestSuite
class.

Python	Library	Reference
Previous:	5.3.7	TestResult	Objects	Up:	5.3	unittest	Next:	5.4	test

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3.8	TestLoader	Objects	Up:	5.	Miscellaneous	Services	Next:	5.4.1
Writing	Unit	Tests

5.4	test	--	Regression	tests
package	for	Python
The	test	package	contains	all	regression	tests	for	Python	as	well	as	the
modules	test.test_support	and	test.regrtest.
test.test_support	is	used	to	enhance	your	tests	while	test.regrtest
drives	the	testing	suite.

Each	module	in	the	test	package	whose	name	starts	with	"test_"	is	a	testing
suite	for	a	specific	module	or	feature.	All	new	tests	should	be	written	using	the
unittest	module;	using	unittest	is	not	required	but	makes	the	tests	more
flexible	and	maintenance	of	the	tests	easier.	Some	older	tests	are	written	to	use
doctest	and	a	``traditional''	testing	style;	these	styles	of	tests	will	not	be
covered.

See	Also:

Module	unittest:
Writing	PyUnit	regression	tests.

Module	doctest:
Tests	embedded	in	documentation	strings.

Subsections

5.4.1	Writing	Unit	Tests	for	the	test	package
5.4.2	Running	tests	using	test.regrtest

Python	Library	Reference
Previous:	5.3.8	TestLoader	Objects	Up:	5.	Miscellaneous	Services	Next:	5.4.1
Writing	Unit	Tests

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.4	test	Up:	5.4	test	Next:	5.4.2	Running	tests	using

5.4.1	Writing	Unit	Tests	for	the	test	package

It	is	preferred	that	tests	for	the	test	package	use	the	unittest	module	and
follow	a	few	guidelines.	One	is	to	have	the	name	of	all	the	test	methods	start
with	"test_"	as	well	as	the	module's	name.	This	is	needed	so	that	the	methods
are	recognized	by	the	test	driver	as	test	methods.	Also,	no	documentation	string
for	the	method	should	be	included.	A	comment	(such	as	"#	Tests
function	returns	only	True	or	False")	should	be	used	to	provide
documentation	for	test	methods.	This	is	done	because	documentation	strings	get
printed	out	if	they	exist	and	thus	what	test	is	being	run	is	not	stated.

A	basic	boilerplate	is	often	used:

import	unittest

from	test	import	test_support

class	MyTestCase1(unittest.TestCase):

				#	Only	use	setUp()	and	tearDown()	if	necessary

				def	setUp(self):

								...	code	to	execute	in	preparation	for	tests	...

				def	tearDown(self):

								...	code	to	execute	to	clean	up	after	tests	...

				def	test_feature_one(self):

								#	Test	feature	one.

								...	testing	code	...

				def	test_feature_two(self):

								#	Test	feature	two.

								...	testing	code	...

				...	more	test	methods	...

class	MyTestCase2(unittest.TestCase):

				...	same	structure	as	MyTestCase1	...

...	more	test	classes	...

def	test_main():

				test_support.run_unittest(MyTestCase1,

																														MyTestCase2,

																														...	list	other	tests	...

)

if	__name__	==	'__main__':

				test_main()

This	boilerplate	code	allows	the	testing	suite	to	be	run	by	test.regrtest	as
well	as	on	its	own	as	a	script.

The	goal	for	regression	testing	is	to	try	to	break	code.	This	leads	to	a	few
guidelines	to	be	followed:

The	testing	suite	should	exercise	all	classes,	functions,	and	constants.	This
includes	not	just	the	external	API	that	is	to	be	presented	to	the	outside
world	but	also	"private"	code.
Whitebox	testing	(examining	the	code	being	tested	when	the	tests	are	being
written)	is	preferred.	Blackbox	testing	(testing	only	the	published	user
interface)	is	not	complete	enough	to	make	sure	all	boundary	and	edge	cases
are	tested.
Make	sure	all	possible	values	are	tested	including	invalid	ones.	This	makes
sure	that	not	only	all	valid	values	are	acceptable	but	also	that	improper
values	are	handled	correctly.
Exhaust	as	many	code	paths	as	possible.	Test	where	branching	occurs	and
thus	tailor	input	to	make	sure	as	many	different	paths	through	the	code	are
taken.
Add	an	explicit	test	for	any	bugs	discovered	for	the	tested	code.	This	will
make	sure	that	the	error	does	not	crop	up	again	if	the	code	is	changed	in	the
future.
Make	sure	to	clean	up	after	your	tests	(such	as	close	and	remove	all
temporary	files).
Import	as	few	modules	as	possible	and	do	it	as	soon	as	possible.	This
minimizes	external	dependencies	of	tests	and	also	minimizes	possible
anomalous	behavior	from	side-effects	of	importing	a	module.
Try	to	maximize	code	reuse.	On	occasion,	tests	will	vary	by	something	as
small	as	what	type	of	input	is	used.	Minimize	code	duplication	by
subclassing	a	basic	test	class	with	a	class	that	specifies	the	input:

class	TestFuncAcceptsSequences(unittest.TestCase):

				func	=	mySuperWhammyFunction

				def	test_func(self):

								self.func(self.arg)

class	AcceptLists(TestFuncAcceptsSequences):

				arg	=	[1,2,3]

class	AcceptStrings(TestFuncAcceptsSequences):

				arg	=	'abc'

class	AcceptTuples(TestFuncAcceptsSequences):

				arg	=	(1,2,3)

See	Also:

Test	Driven	Development
A	book	by	Kent	Beck	on	writing	tests	before	code.

Python	Library	Reference
Previous:	5.4	test	Up:	5.4	test	Next:	5.4.2	Running	tests	using

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.4.1	Writing	Unit	Tests	Up:	5.4	test	Next:	5.5	test.test_support

5.4.2	Running	tests	using	test.regrtest

test.regrtest	can	be	used	as	a	script	to	drive	Python's	regression	test	suite.
Running	the	script	by	itself	automatically	starts	running	all	regression	tests	in	the
test	package.	It	does	this	by	finding	all	modules	in	the	package	whose	name
starts	with	"test_",	importing	them,	and	executing	the	function
test_main()	if	present.	The	names	of	tests	to	execute	may	also	be	passed	to
the	script.	Specifying	a	single	regression	test	(python	regrtest.py	test_spam.py)
will	minimize	output	and	only	print	whether	the	test	passed	or	failed	and	thus
minimize	output.

Running	test.regrtest	directly	allows	what	resources	are	available	for
tests	to	use	to	be	set.	You	do	this	by	using	the	-u	command-line	option.	Run
python	regrtest.py	-uall	to	turn	on	all	resources;	specifying	all	as	an	option	for
-u	enables	all	possible	resources.	If	all	but	one	resource	is	desired	(a	more
common	case),	a	comma-separated	list	of	resources	that	are	not	desired	may	be
listed	after	all.	The	command	python	regrtest.py	-uall,-audio,-largefile	will
run	test.regrtest	with	all	resources	except	the	audio	and	largefile
resources.	For	a	list	of	all	resources	and	more	command-line	options,	run	python
regrtest.py	-h.

Some	other	ways	to	execute	the	regression	tests	depend	on	what	platform	the
tests	are	being	executed	on.	On	UNIX,	you	can	run	make	test	at	the	top-level
directory	where	Python	was	built.	On	Windows,	executing	rt.bat	from	your
PCBuild	directory	will	run	all	regression	tests.

Python	Library	Reference
Previous:	5.4.1	Writing	Unit	Tests	Up:	5.4	test	Next:	5.5	test.test_support

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.4.2	Running	tests	using	Up:	5.	Miscellaneous	Services	Next:	5.6
decimal

5.5	test.test_support	--	Utility
functions	for	tests
The	test.test_support	module	provides	support	for	Python's	regression
tests.

This	module	defines	the	following	exceptions:

exception	TestFailed
Exception	to	be	raised	when	a	test	fails.

exception	TestSkipped
Subclass	of	TestFailed.	Raised	when	a	test	is	skipped.	This	occurs
when	a	needed	resource	(such	as	a	network	connection)	is	not	available	at
the	time	of	testing.

exception	ResourceDenied
Subclass	of	TestSkipped.	Raised	when	a	resource	(such	as	a	network
connection)	is	not	available.	Raised	by	the	requires()	function.

The	test.test_support	module	defines	the	following	constants:

verbose

True	when	verbose	output	is	enabled.	Should	be	checked	when	more
detailed	information	is	desired	about	a	running	test.	verbose	is	set	by
test.regrtest.

have_unicode

True	when	Unicode	support	is	available.

is_jython

True	if	the	running	interpreter	is	Jython.

TESTFN

Set	to	the	path	that	a	temporary	file	may	be	created	at.	Any	temporary	that
is	created	should	be	closed	and	unlinked	(removed).

The	test.test_support	module	defines	the	following	functions:

forget(module_name)
Removes	the	module	named	module_name	from	sys.modules	and
deletes	any	byte-compiled	files	of	the	module.

is_resource_enabled(resource)
Returns	True	if	resource	is	enabled	and	available.	The	list	of	available
resources	is	only	set	when	test.regrtest	is	executing	the	tests.

requires(resource[,	msg])
Raises	ResourceDenied	if	resource	is	not	available.	msg	is	the
argument	to	ResourceDenied	if	it	is	raised.	Always	returns	true	if
called	by	a	function	whose	__name__	is	'__main__'.	Used	when	tests
are	executed	by	test.regrtest.

findfile(filename)
Return	the	path	to	the	file	named	filename.	If	no	match	is	found	filename	is
returned.	This	does	not	equal	a	failure	since	it	could	be	the	path	to	the	file.

run_unittest(*classes)
Execute	unittest.TestCase	subclasses	passed	to	the	function.	The
function	scans	the	classes	for	methods	starting	with	the	prefix	"test_"	and
executes	the	tests	individually.	This	is	the	preferred	way	to	execute	tests.

run_suite(suite[,	testclass])
Execute	the	unittest.TestSuite	instance	suite.	The	optional
argument	testclass	accepts	one	of	the	test	classes	in	the	suite	so	as	to	print
out	more	detailed	information	on	where	the	testing	suite	originated	from.

Python	Library	Reference
Previous:	5.4.2	Running	tests	using	Up:	5.	Miscellaneous	Services	Next:	5.6
decimal

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.5	test.test_support	Up:	5.	Miscellaneous	Services	Next:	5.6.1
Quick-start	Tutorial

5.6	decimal	--	Decimal	floating	point
arithmetic
New	in	version	2.4.

The	decimal	module	provides	support	for	decimal	floating	point	arithmetic.	It
offers	several	advantages	over	the	float()	datatype:

Decimal	numbers	can	be	represented	exactly.	In	contrast,	numbers	like	1.1
do	not	have	an	exact	representation	in	binary	floating	point.	End	users
typically	would	not	expect	1.1	to	display	as	1.1000000000000001	as
it	does	with	binary	floating	point.

The	exactness	carries	over	into	arithmetic.	In	decimal	floating	point,	"0.1
+	0.1	+	0.1	-	0.3"	is	exactly	equal	to	zero.	In	binary	floating	point,
result	is	5.5511151231257827e-017.	While	near	to	zero,	the
differences	prevent	reliable	equality	testing	and	differences	can	accumulate.
For	this	reason,	decimal	would	be	preferred	in	accounting	applications
which	have	strict	equality	invariants.

The	decimal	module	incorporates	notion	of	significant	places	so	that	"1.30
+	1.20"	is	2.50.	The	trailing	zero	is	kept	to	indicate	significance.	This	is
the	customary	presentation	for	monetary	applications.	For	multiplication,
the	``schoolbook''	approach	uses	all	the	figures	in	the	multiplicands.	For
instance,	"1.3	*	1.2"	gives	1.56	while	"1.30	*	1.20"	gives
1.5600.

Unlike	hardware	based	binary	floating	point,	the	decimal	module	has	a	user
settable	precision	(defaulting	to	28	places)	which	can	be	as	large	as	needed
for	a	given	problem:

>>>	getcontext().prec	=	6

>>>	Decimal(1)	/	Decimal(7)

Decimal("0.142857")

>>>	getcontext().prec	=	28

>>>	Decimal(1)	/	Decimal(7)

Decimal("0.1428571428571428571428571429")

Both	binary	and	decimal	floating	point	are	implemented	in	terms	of
published	standards.	While	the	built-in	float	type	exposes	only	a	modest
portion	of	its	capabilities,	the	decimal	module	exposes	all	required	parts	of
the	standard.	When	needed,	the	programmer	has	full	control	over	rounding
and	signal	handling.

The	module	design	is	centered	around	three	concepts:	the	decimal	number,	the
context	for	arithmetic,	and	signals.

A	decimal	number	is	immutable.	It	has	a	sign,	coefficient	digits,	and	an
exponent.	To	preserve	significance,	the	coefficient	digits	do	not	truncate	trailing
zeroes.	Decimals	also	include	special	values	such	as	Infinity,	-Infinity,
and	NaN.	The	standard	also	differentiates	-0	from	+0.

The	context	for	arithmetic	is	an	environment	specifying	precision,	rounding
rules,	limits	on	exponents,	flags	indicating	the	results	of	operations,	and	trap
enablers	which	determine	whether	signals	are	treated	as	exceptions.	Rounding
options	include	ROUND_CEILING,	ROUND_DOWN,	ROUND_FLOOR,
ROUND_HALF_DOWN,	ROUND_HALF_EVEN,	ROUND_HALF_UP,	and
ROUND_UP.

Signals	are	groups	of	exceptional	conditions	arising	during	the	course	of
computation.	Depending	on	the	needs	of	the	application,	signals	may	be	ignored,
considered	as	informational,	or	treated	as	exceptions.	The	signals	in	the	decimal
module	are:	Clamped,	InvalidOperation,	DivisionByZero,
Inexact,	Rounded,	Subnormal,	Overflow,	and	Underflow.

For	each	signal	there	is	a	flag	and	a	trap	enabler.	When	a	signal	is	encountered,
its	flag	incremented	from	zero	and,	then,	if	the	trap	enabler	is	set	to	one,	an
exception	is	raised.	Flags	are	sticky,	so	the	user	needs	to	reset	them	before
monitoring	a	calculation.

See	Also:

IBM's	General	Decimal	Arithmetic	Specification,	The	General	Decimal
Arithmetic	Specification.

IEEE	standard	854-1987,	Unofficial	IEEE	854	Text.

http://www2.hursley.ibm.com/decimal/decarith.html
http://www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html

Subsections

5.6.1	Quick-start	Tutorial
5.6.2	Decimal	objects
5.6.3	Context	objects
5.6.4	Signals
5.6.5	Floating	Point	Notes
5.6.6	Working	with	threads
5.6.7	Recipes

Python	Library	Reference
Previous:	5.5	test.test_support	Up:	5.	Miscellaneous	Services	Next:	5.6.1
Quick-start	Tutorial

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.6	decimal	Up:	5.6	decimal	Next:	5.6.2	Decimal	objects

5.6.1	Quick-start	Tutorial
The	usual	start	to	using	decimals	is	importing	the	module,	viewing	the	current
context	with	getcontext()	and,	if	necessary,	setting	new	values	for
precision,	rounding,	or	enabled	traps:

>>>	from	decimal	import	*

>>>	getcontext()

Context(prec=28,	rounding=ROUND_HALF_EVEN,	Emin=-999999999,	Emax=999999999,

								capitals=1,	flags=[],	traps=[Overflow,	InvalidOperation,

								DivisionByZero])

>>>	getcontext().prec	=	7							#	Set	a	new	precision

Decimal	instances	can	be	constructed	from	integers,	strings	or	tuples.	To	create	a
Decimal	from	a	float,	first	convert	it	to	a	string.	This	serves	as	an	explicit
reminder	of	the	details	of	the	conversion	(including	representation	error).
Decimal	numbers	include	special	values	such	as	NaN	which	stands	for	``Not	a
number'',	positive	and	negative	Infinity,	and	-0.

>>>	Decimal(10)

Decimal("10")

>>>	Decimal("3.14")

Decimal("3.14")

>>>	Decimal((0,	(3,	1,	4),	-2))

Decimal("3.14")

>>>	Decimal(str(2.0	**	0.5))

Decimal("1.41421356237")

>>>	Decimal("NaN")

Decimal("NaN")

>>>	Decimal("-Infinity")

Decimal("-Infinity")

The	significance	of	a	new	Decimal	is	determined	solely	by	the	number	of	digits
input.	Context	precision	and	rounding	only	come	into	play	during	arithmetic
operations.

>>>	getcontext().prec	=	6

>>>	Decimal('3.0')

Decimal("3.0")

>>>	Decimal('3.1415926535')

Decimal("3.1415926535")

>>>	Decimal('3.1415926535')	+	Decimal('2.7182818285')

Decimal("5.85987")

>>>	getcontext().rounding	=	ROUND_UP

>>>	Decimal('3.1415926535')	+	Decimal('2.7182818285')

Decimal("5.85988")

Decimals	interact	well	with	much	of	the	rest	of	python.	Here	is	a	small	decimal
floating	point	flying	circus:

				

>>>	data	=	map(Decimal,	'1.34	1.87	3.45	2.35	1.00	0.03	9.25'.split())

>>>	max(data)

Decimal("9.25")

>>>	min(data)

Decimal("0.03")

>>>	sorted(data)

[Decimal("0.03"),	Decimal("1.00"),	Decimal("1.34"),	Decimal("1.87"),

	Decimal("2.35"),	Decimal("3.45"),	Decimal("9.25")]

>>>	sum(data)

Decimal("19.29")

>>>	a,b,c	=	data[:3]

>>>	str(a)

'1.34'

>>>	float(a)

1.3400000000000001

>>>	round(a,	1)					#	round()	first	converts	to	binary	floating	point

1.3

>>>	int(a)

1

>>>	a	*	5

Decimal("6.70")

>>>	a	*	b

Decimal("2.5058")

>>>	c	%	a

Decimal("0.77")

The	quantize()	method	rounds	a	number	to	a	fixed	exponent.	This	method	is
useful	for	monetary	applications	that	often	round	results	to	a	fixed	number	of
places:

	

>>>	Decimal('7.325').quantize(Decimal('.01'),	rounding=ROUND_DOWN)

Decimal("7.32")

>>>	Decimal('7.325').quantize(Decimal('1.'),	rounding=ROUND_UP)

Decimal("8")

As	shown	above,	the	getcontext()	function	accesses	the	current	context	and
allows	the	settings	to	be	changed.	This	approach	meets	the	needs	of	most
applications.

For	more	advanced	work,	it	may	be	useful	to	create	alternate	contexts	using	the

Context()	constructor.	To	make	an	alternate	active,	use	the	setcontext()
function.

In	accordance	with	the	standard,	the	Decimal	module	provides	two	ready	to
use	standard	contexts,	BasicContext	and	ExtendedContext.	The	former
is	especially	useful	for	debugging	because	many	of	the	traps	are	enabled:

>>>	myothercontext	=	Context(prec=60,	rounding=ROUND_HALF_DOWN)

>>>	setcontext(myothercontext)

>>>	Decimal(1)	/	Decimal(7)

Decimal("0.142857142857142857142857142857142857142857142857142857142857")

>>>	ExtendedContext

Context(prec=9,	rounding=ROUND_HALF_EVEN,	Emin=-999999999,	Emax=999999999,

								capitals=1,	flags=[],	traps=[])

>>>	setcontext(ExtendedContext)

>>>	Decimal(1)	/	Decimal(7)

Decimal("0.142857143")

>>>	Decimal(42)	/	Decimal(0)

Decimal("Infinity")

>>>	setcontext(BasicContext)

>>>	Decimal(42)	/	Decimal(0)

Traceback	(most	recent	call	last):

		File	"<pyshell#143>",	line	1,	in	-toplevel-

				Decimal(42)	/	Decimal(0)

DivisionByZero:	x	/	0

Contexts	also	have	signal	flags	for	monitoring	exceptional	conditions
encountered	during	computations.	The	flags	remain	set	until	explicitly	cleared,
so	it	is	best	to	clear	the	flags	before	each	set	of	monitored	computations	by	using
the	clear_flags()	method.

>>>	setcontext(ExtendedContext)

>>>	getcontext().clear_flags()

>>>	Decimal(355)	/	Decimal(113)

Decimal("3.14159292")

>>>	getcontext()

Context(prec=9,	rounding=ROUND_HALF_EVEN,	Emin=-999999999,	Emax=999999999,

								capitals=1,	flags=[Inexact,	Rounded],	traps=[])

The	flags	entry	shows	that	the	rational	approximation	to	Pi	was	rounded	(digits
beyond	the	context	precision	were	thrown	away)	and	that	the	result	is	inexact
(some	of	the	discarded	digits	were	non-zero).

Individual	traps	are	set	using	the	dictionary	in	the	traps	field	of	a	context:

>>>	Decimal(1)	/	Decimal(0)

Decimal("Infinity")

>>>	getcontext().traps[DivisionByZero]	=	1

>>>	Decimal(1)	/	Decimal(0)

Traceback	(most	recent	call	last):

		File	"<pyshell#112>",	line	1,	in	-toplevel-

				Decimal(1)	/	Decimal(0)

DivisionByZero:	x	/	0

Most	programs	adjust	the	current	context	only	once,	at	the	beginning	of	the
program.	And,	in	many	applications,	data	is	converted	to	Decimal	with	a
single	cast	inside	a	loop.	With	context	set	and	decimals	created,	the	bulk	of	the
program	manipulates	the	data	no	differently	than	with	other	Python	numeric
types.

Python	Library	Reference
Previous:	5.6	decimal	Up:	5.6	decimal	Next:	5.6.2	Decimal	objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.6.1	Quick-start	Tutorial	Up:	5.6	decimal	Next:	5.6.3	Context
objects

5.6.2	Decimal	objects

class	Decimal([value	[,	context]])
Constructs	a	new	Decimal	object	based	from	value.

value	can	be	an	integer,	string,	tuple,	or	another	Decimal	object.	If	no
value	is	given,	returns	Decimal("0").	If	value	is	a	string,	it	should
conform	to	the	decimal	numeric	string	syntax:

				sign											::=		'+'	|	'-'

				digit										::=		'0'	|	'1'	|	'2'	|	'3'	|	'4'	|	'5'	|	'6'	|	'7'	|	'8'	|	'9'

				indicator						::=		'e'	|	'E'

				digits									::=		digit	[digit]...

				decimal-part			::=		digits	'.'	[digits]	|	['.']	digits

				exponent-part		::=		indicator	[sign]	digits

				infinity							::=		'Infinity'	|	'Inf'

				nan												::=		'NaN'	[digits]	|	'sNaN'	[digits]

				numeric-value		::=		decimal-part	[exponent-part]	|	infinity

				numeric-string	::=		[sign]	numeric-value	|	[sign]	nan

If	value	is	a	tuple,	it	should	have	three	components,	a	sign	(0	for	positive
or	1	for	negative),	a	tuple	of	digits,	and	an	integer	exponent.	For
example,	"Decimal((0,	(1,	4,	1,	4),	-3))"	returns
Decimal("1.414").

The	context	precision	does	not	affect	how	many	digits	are	stored.	That	is
determined	exclusively	by	the	number	of	digits	in	value.	For	example,
"Decimal("3.00000")"	records	all	five	zeroes	even	if	the	context
precision	is	only	three.

The	purpose	of	the	context	argument	is	determining	what	to	do	if	value	is	a
malformed	string.	If	the	context	traps	InvalidOperation,	an	exception
is	raised;	otherwise,	the	constructor	returns	a	new	Decimal	with	the	value	of
NaN.

Once	constructed,	Decimal	objects	are	immutable.

Decimal	floating	point	objects	share	many	properties	with	the	other	builtin
numeric	types	such	as	float	and	int.	All	of	the	usual	math	operations	and
special	methods	apply.	Likewise,	decimal	objects	can	be	copied,	pickled,	printed,

used	as	dictionary	keys,	used	as	set	elements,	compared,	sorted,	and	coerced	to
another	type	(such	as	float	or	long).

In	addition	to	the	standard	numeric	properties,	decimal	floating	point	objects
also	have	a	number	of	specialized	methods:

adjusted()
Return	the	adjusted	exponent	after	shifting	out	the	coefficient's	rightmost
digits	until	only	the	lead	digit	remains:
Decimal("321e+5").adjusted()	returns	seven.	Used	for
determining	the	position	of	the	most	significant	digit	with	respect	to	the
decimal	point.

as_tuple()
Returns	a	tuple	representation	of	the	number:	"(sign,	digittuple,
exponent)".

compare(other[,	context])
Compares	like	__cmp__()	but	returns	a	decimal	instance:

								a	or	b	is	a	NaN	==>	Decimal("NaN")

								a	<	b											==>	Decimal("-1")

								a	==	b										==>	Decimal("0")

								a	>	b											==>	Decimal("1")

max(other[,	context])
Like	"max(self,	other)"	except	that	the	context	rounding	rule	is
applied	before	returning	and	that	NaN	values	are	either	signalled	or	ignored
(depending	on	the	context	and	whether	they	are	signaling	or	quiet).

min(other[,	context])
Like	"min(self,	other)"	except	that	the	context	rounding	rule	is
applied	before	returning	and	that	NaN	values	are	either	signalled	or	ignored
(depending	on	the	context	and	whether	they	are	signaling	or	quiet).

normalize([context])
Normalize	the	number	by	stripping	the	rightmost	trailing	zeroes	and
converting	any	result	equal	to	Decimal("0")	to	Decimal("0e0").

Used	for	producing	canonical	values	for	members	of	an	equivalence	class.
For	example,	Decimal("32.100")	and
Decimal("0.321000e+2")	both	normalize	to	the	equivalent	value
Decimal("32.1").

quantize(exp	[,	rounding[,	context[,	watchexp]]])
Quantize	makes	the	exponent	the	same	as	exp.	Searches	for	a	rounding
method	in	rounding,	then	in	context,	and	then	in	the	current	context.

If	watchexp	is	set	(default),	then	an	error	is	returned	whenever	the	resulting
exponent	is	greater	than	Emax	or	less	than	Etiny.

remainder_near(other[,	context])
Computes	the	modulo	as	either	a	positive	or	negative	value	depending	on
which	is	closest	to	zero.	For	instance,
"Decimal(10).remainder_near(6)"	returns	Decimal("-2")
which	is	closer	to	zero	than	Decimal("4").

If	both	are	equally	close,	the	one	chosen	will	have	the	same	sign	as	self.

same_quantum(other[,	context])
Test	whether	self	and	other	have	the	same	exponent	or	whether	both	are
NaN.

sqrt([context])
Return	the	square	root	to	full	precision.

to_eng_string([context])
Convert	to	an	engineering-type	string.

Engineering	notation	has	an	exponent	which	is	a	multiple	of	3,	so	there	are
up	to	3	digits	left	of	the	decimal	place.	For	example,	converts
Decimal('123E+1')	to	Decimal("1.23E+3")

to_integral([rounding[,	context]])
Rounds	to	the	nearest	integer	without	signaling	Inexact	or	Rounded.	If
given,	applies	rounding;	otherwise,	uses	the	rounding	method	in	either	the

supplied	context	or	the	current	context.

Python	Library	Reference
Previous:	5.6.1	Quick-start	Tutorial	Up:	5.6	decimal	Next:	5.6.3	Context
objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.6.2	Decimal	objects	Up:	5.6	decimal	Next:	5.6.4	Signals

5.6.3	Context	objects
Contexts	are	environments	for	arithmetic	operations.	They	govern	precision,	set
rules	for	rounding,	determine	which	signals	are	treated	as	exceptions,	and	limit
the	range	for	exponents.

Each	thread	has	its	own	current	context	which	is	accessed	or	changed	using	the
getcontext()	and	setcontext()	functions:

getcontext()
Return	the	current	context	for	the	active	thread.

setcontext(c)
Set	the	current	context	for	the	active	thread	to	c.

New	contexts	can	formed	using	the	Context	constructor	described	below.	In
addition,	the	module	provides	three	pre-made	contexts:

class	BasicContext
This	is	a	standard	context	defined	by	the	General	Decimal	Arithmetic
Specification.	Precision	is	set	to	nine.	Rounding	is	set	to
ROUND_HALF_UP.	All	flags	are	cleared.	All	traps	are	enabled	(treated	as
exceptions)	except	Inexact,	Rounded,	and	Subnormal.

Because	many	of	the	traps	are	enabled,	this	context	is	useful	for	debugging.

class	ExtendedContext
This	is	a	standard	context	defined	by	the	General	Decimal	Arithmetic
Specification.	Precision	is	set	to	nine.	Rounding	is	set	to
ROUND_HALF_EVEN.	All	flags	are	cleared.	No	traps	are	enabled	(so	that
exceptions	are	not	raised	during	computations).

Because	the	trapped	are	disabled,	this	context	is	useful	for	applications	that
prefer	to	have	result	value	of	NaN	or	Infinity	instead	of	raising
exceptions.	This	allows	an	application	to	complete	a	run	in	the	presence	of
conditions	that	would	otherwise	halt	the	program.

class	DefaultContext
This	context	is	used	by	the	Context	constructor	as	a	prototype	for	new
contexts.	Changing	a	field	(such	a	precision)	has	the	effect	of	changing	the
default	for	new	contexts	creating	by	the	Context	constructor.

This	context	is	most	useful	in	multi-threaded	environments.	Changing	one
of	the	fields	before	threads	are	started	has	the	effect	of	setting	system-wide
defaults.	Changing	the	fields	after	threads	have	started	is	not	recommended
as	it	would	require	thread	synchronization	to	prevent	race	conditions.

In	single	threaded	environments,	it	is	preferable	to	not	use	this	context	at
all.	Instead,	simply	create	contexts	explicitly	as	described	below.

The	default	values	are	precision=28,	rounding=ROUND_HALF_EVEN,
and	enabled	traps	for	Overflow,	InvalidOperation,	and	DivisionByZero.

In	addition	to	the	three	supplied	contexts,	new	contexts	can	be	created	with	the
Context	constructor.

class	Context(prec=None,	rounding=None,	traps=None,	flags=None,Emin=None,	Emax=None,	capitals=1)
Creates	a	new	context.	If	a	field	is	not	specified	or	is	None,	the	default
values	are	copied	from	the	DefaultContext.	If	the	flags	field	is	not
specified	or	is	None,	all	flags	are	cleared.

The	prec	field	is	a	positive	integer	that	sets	the	precision	for	arithmetic
operations	in	the	context.

The	rounding	option	is	one	of:	ROUND_CEILING	(towards	Infinity),
ROUND_DOWN	(towards	zero),	ROUND_FLOOR	(towards	-Infinity),
ROUND_HALF_DOWN	(towards	zero),	ROUND_HALF_EVEN,
ROUND_HALF_UP	(away	from	zero),	or	ROUND_UP	(away	from	zero).

The	traps	and	flags	fields	list	any	signals	to	be	set.	Generally,	new	contexts
should	only	set	traps	and	leave	the	flags	clear.

The	Emin	and	Emax	fields	are	integers	specifying	the	outer	limits	allowable
for	exponents.

The	capitals	field	is	either	0	or	1	(the	default).	If	set	to	1,	exponents	are
printed	with	a	capital	E;	otherwise,	a	lowercase	e	is	used:
Decimal('6.02e+23').

The	Context	class	defines	several	general	purpose	methods	as	well	as	a	large
number	of	methods	for	doing	arithmetic	directly	in	a	given	context.

clear_flags()
Sets	all	of	the	flags	to	0.

copy()
Returns	a	duplicate	of	the	context.

create_decimal(num)
Creates	a	new	Decimal	instance	from	num	but	using	self	as	context.	Unlike
the	Decimal	constructor,	the	context	precision,	rounding	method,	flags,
and	traps	are	applied	to	the	conversion.

This	is	useful	because	constants	are	often	given	to	a	greater	precision	than
is	needed	by	the	application.	Another	benefit	is	that	rounding	immediately
eliminates	unintended	effects	from	digits	beyond	the	current	precision.	In
the	following	example,	using	unrounded	inputs	means	that	adding	zero	to	a
sum	can	change	the	result:

				>>>	getcontext().prec	=	3

				>>>	Decimal("3.4445")	+	Decimal("1.0023")

				Decimal("4.45")

				>>>	Decimal("3.4445")	+	Decimal(0)	+	Decimal("1.0023")

				Decimal("4.44")

Etiny()
Returns	a	value	equal	to	"Emin	-	prec	+	1"	which	is	the	minimum
exponent	value	for	subnormal	results.	When	underflow	occurs,	the
exponent	is	set	to	Etiny.

Etop()
Returns	a	value	equal	to	"Emax	-	prec	+	1".

The	usual	approach	to	working	with	decimals	is	to	create	Decimal	instances

and	then	apply	arithmetic	operations	which	take	place	within	the	current	context
for	the	active	thread.	An	alternate	approach	is	to	use	context	methods	for
calculating	within	a	specific	context.	The	methods	are	similar	to	those	for	the
Decimal	class	and	are	only	briefly	recounted	here.

abs(x)
Returns	the	absolute	value	of	x.

add(x,	y)
Return	the	sum	of	x	and	y.

compare(x,	y)
Compares	values	numerically.

Like	__cmp__()	but	returns	a	decimal	instance:

								a	or	b	is	a	NaN	==>	Decimal("NaN")

								a	<	b											==>	Decimal("-1")

								a	==	b										==>	Decimal("0")

								a	>	b											==>	Decimal("1")

divide(x,	y)
Return	x	divided	by	y.

divmod(x,	y)
Divides	two	numbers	and	returns	the	integer	part	of	the	result.

max(x,	y)
Compare	two	values	numerically	and	return	the	maximum.

If	they	are	numerically	equal	then	the	left-hand	operand	is	chosen	as	the
result.

min(x,	y)
Compare	two	values	numerically	and	return	the	minimum.

If	they	are	numerically	equal	then	the	left-hand	operand	is	chosen	as	the
result.

minus(x)
Minus	corresponds	to	the	unary	prefix	minus	operator	in	Python.

multiply(x,	y)
Return	the	product	of	x	and	y.

normalize(x)
Normalize	reduces	an	operand	to	its	simplest	form.

Essentially	a	plus	operation	with	all	trailing	zeros	removed	from	the
result.

plus(x)
Plus	corresponds	to	the	unary	prefix	plus	operator	in	Python.	This	operation
applies	the	context	precision	and	rounding,	so	it	is	not	an	identity	operation.

power(x,	y[,	modulo])
Return	"x	**	y"	to	the	modulo	if	given.

The	right-hand	operand	must	be	a	whole	number	whose	integer	part	(after
any	exponent	has	been	applied)	has	no	more	than	9	digits	and	whose
fractional	part	(if	any)	is	all	zeros	before	any	rounding.	The	operand	may	be
positive,	negative,	or	zero;	if	negative,	the	absolute	value	of	the	power	is
used,	and	the	left-hand	operand	is	inverted	(divided	into	1)	before	use.

If	the	increased	precision	needed	for	the	intermediate	calculations	exceeds
the	capabilities	of	the	implementation	then	an	InvalidOperation
condition	is	signaled.

If,	when	raising	to	a	negative	power,	an	underflow	occurs	during	the
division	into	1,	the	operation	is	not	halted	at	that	point	but	continues.

quantize(x,	y)
Returns	a	value	equal	to	x	after	rounding	and	having	the	exponent	of	y.

Unlike	other	operations,	if	the	length	of	the	coefficient	after	the	quantize
operation	would	be	greater	than	precision,	then	an	InvalidOperation
is	signaled.	This	guarantees	that,	unless	there	is	an	error	condition,	the

quantized	exponent	is	always	equal	to	that	of	the	right-hand	operand.

Also	unlike	other	operations,	quantize	never	signals	Underflow,	even	if	the
result	is	subnormal	and	inexact.

remainder(x,	y)
Returns	the	remainder	from	integer	division.

The	sign	of	the	result,	if	non-zero,	is	the	same	as	that	of	the	original
dividend.

remainder_near(x,	y)
Computed	the	modulo	as	either	a	positive	or	negative	value	depending	on
which	is	closest	to	zero.	For	instance,
"Decimal(10).remainder_near(6)"	returns	Decimal("-2")
which	is	closer	to	zero	than	Decimal("4").

If	both	are	equally	close,	the	one	chosen	will	have	the	same	sign	as	self.

same_quantum(x,	y)
Test	whether	x	and	y	have	the	same	exponent	or	whether	both	are	NaN.

sqrt()
Return	the	square	root	to	full	precision.

substract(x,	y)
Return	the	difference	between	x	and	y.

to_eng_string()
Convert	to	engineering-type	string.

Engineering	notation	has	an	exponent	which	is	a	multiple	of	3,	so	there	are
up	to	3	digits	left	of	the	decimal	place.	For	example,	converts
Decimal('123E+1')	to	Decimal("1.23E+3")

to_integral(x)
Rounds	to	the	nearest	integer	without	signaling	Inexact	or	Rounded.

to_sci_string()
Converts	a	number	to	a	string	using	scientific	notation.

Python	Library	Reference
Previous:	5.6.2	Decimal	objects	Up:	5.6	decimal	Next:	5.6.4	Signals

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.6.3	Context	objects	Up:	5.6	decimal	Next:	5.6.5	Floating	Point
Notes

5.6.4	Signals
Signals	represent	conditions	that	arise	during	computation.	Each	corresponds	to
one	context	flag	and	one	context	trap	enabler.

The	context	flag	is	incremented	whenever	the	condition	is	encountered.	After	the
computation,	flags	may	be	checked	for	informational	purposes	(for	instance,	to
determine	whether	a	computation	was	exact).	After	checking	the	flags,	be	sure	to
clear	all	flags	before	starting	the	next	computation.

If	the	context's	trap	enabler	is	set	for	the	signal,	then	the	condition	causes	a
Python	exception	to	be	raised.	For	example,	if	the	DivisionByZero	trap	is
set,	then	a	DivisionByZero	exception	is	raised	upon	encountering	the
condition.

class	Clamped
Altered	an	exponent	to	fit	representation	constraints.

Typically,	clamping	occurs	when	an	exponent	falls	outside	the	context's
Emin	and	Emax	limits.	If	possible,	the	exponent	is	reduced	to	fit	by	adding
zeroes	to	the	coefficient.

class	DecimalException
Base	class	for	other	signals	and	is	a	subclass	of	ArithmeticError.

class	DivisionByZero
Signals	the	division	of	a	non-infinite	number	by	zero.

Can	occur	with	division,	modulo	division,	or	when	raising	a	number	to	a
negative	power.	If	this	signal	is	not	trapped,	returns	Infinity	or	-
Infinity	with	the	sign	determined	by	the	inputs	to	the	calculation.

class	Inexact
Indicates	that	rounding	occurred	and	the	result	is	not	exact.

Signals	when	non-zero	digits	were	discarded	during	rounding.	The	rounded
result	is	returned.	The	signal	flag	or	trap	is	used	to	detect	when	results	are
inexact.

class	InvalidOperation
An	invalid	operation	was	performed.

Indicates	that	an	operation	was	requested	that	does	not	make	sense.	If	not
trapped,	returns	NaN.	Possible	causes	include:

								Infinity	-	Infinity

								0	*	Infinity

								Infinity	/	Infinity

								x	%	0

								Infinity	%	x

								x._rescale(non-integer)

								sqrt(-x)	and	x	>	0

								0	**	0

								x	**	(non-integer)

								x	**	Infinity

class	Overflow
Numerical	overflow.

Indicates	the	exponent	is	larger	than	Emax	after	rounding	has	occurred.	If
not	trapped,	the	result	depends	on	the	rounding	mode,	either	pulling	inward
to	the	largest	representable	finite	number	or	rounding	outward	to
Infinity.	In	either	case,	Inexact	and	Rounded	are	also	signaled.

class	Rounded
Rounding	occurred	though	possibly	no	information	was	lost.

Signaled	whenever	rounding	discards	digits;	even	if	those	digits	are	zero
(such	as	rounding	5.00	to	5.0).	If	not	trapped,	returns	the	result
unchanged.	This	signal	is	used	to	detect	loss	of	significant	digits.

class	Subnormal
Exponent	was	lower	than	Emin	prior	to	rounding.

Occurs	when	an	operation	result	is	subnormal	(the	exponent	is	too	small).	If
not	trapped,	returns	the	result	unchanged.

class	Underflow
Numerical	underflow	with	result	rounded	to	zero.

Occurs	when	a	subnormal	result	is	pushed	to	zero	by	rounding.	Inexact

and	Subnormal	are	also	signaled.

The	following	table	summarizes	the	hierarchy	of	signals:

				

				exceptions.ArithmeticError(exceptions.StandardError)

								DecimalException

												Clamped

												DivisionByZero(DecimalException,	exceptions.ZeroDivisionError)

												Inexact

																Overflow(Inexact,	Rounded)

																Underflow(Inexact,	Rounded,	Subnormal)

												InvalidOperation

												Rounded

												Subnormal

Python	Library	Reference
Previous:	5.6.3	Context	objects	Up:	5.6	decimal	Next:	5.6.5	Floating	Point
Notes

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.6.4	Signals	Up:	5.6	decimal	Next:	5.6.6	Working	with	threads

5.6.5	Floating	Point	Notes
The	use	of	decimal	floating	point	eliminates	decimal	representation	error
(making	it	possible	to	represent	0.1	exactly);	however,	some	operations	can	still
incur	round-off	error	when	non-zero	digits	exceed	the	fixed	precision.

The	effects	of	round-off	error	can	be	amplified	by	the	addition	or	subtraction	of
nearly	offsetting	quantities	resulting	in	loss	of	significance.	Knuth	provides	two
instructive	examples	where	rounded	floating	point	arithmetic	with	insufficient
precision	causes	the	breakdown	of	the	associative	and	distributive	properties	of
addition:

#	Examples	from	Seminumerical	Algorithms,	Section	4.2.2.

>>>	from	decimal	import	*

>>>	getcontext().prec	=	8

>>>	u,	v,	w	=	Decimal(11111113),	Decimal(-11111111),	Decimal('7.51111111')

>>>	(u	+	v)	+	w

Decimal("9.5111111")

>>>	u	+	(v	+	w)

Decimal("10")

>>>	u,	v,	w	=	Decimal(20000),	Decimal(-6),	Decimal('6.0000003')

>>>	(u*v)	+	(u*w)

Decimal("0.01")

>>>	u	*	(v+w)

Decimal("0.0060000")

The	decimal	module	makes	it	possible	to	restore	the	identities	by	expanding
the	precision	sufficiently	to	avoid	loss	of	significance:

>>>	getcontext().prec	=	20

>>>	u,	v,	w	=	Decimal(11111113),	Decimal(-11111111),	Decimal('7.51111111')

>>>	(u	+	v)	+	w

Decimal("9.51111111")

>>>	u	+	(v	+	w)

Decimal("9.51111111")

>>>	

>>>	u,	v,	w	=	Decimal(20000),	Decimal(-6),	Decimal('6.0000003')

>>>	(u*v)	+	(u*w)

Decimal("0.0060000")

>>>	u	*	(v+w)

Decimal("0.0060000")

The	number	system	for	the	decimal	module	provides	special	values	including

NaN,	sNaN,	-Infinity,	Infinity,	and	two	zeroes,	+0	and	-0.

Infinities	can	be	constructed	directly	with:	Decimal('Infinity').	Also,
they	can	arise	from	dividing	by	zero	when	the	DivisionByZero	signal	is	not
trapped.	Likewise,	when	the	Overflow	signal	is	not	trapped,	infinity	can	result
from	rounding	beyond	the	limits	of	the	largest	representable	number.

The	infinities	are	signed	(affine)	and	can	be	used	in	arithmetic	operations	where
they	get	treated	as	very	large,	indeterminate	numbers.	For	instance,	adding	a
constant	to	infinity	gives	another	infinite	result.

Some	operations	are	indeterminate	and	return	NaN,	or	if	the
InvalidOperation	signal	is	trapped,	raise	an	exception.	For	example,	0/0
returns	NaN	which	means	``not	a	number''.	This	variety	of	NaN	is	quiet	and,
once	created,	will	flow	through	other	computations	always	resulting	in	another
NaN.	This	behavior	can	be	useful	for	a	series	of	computations	that	occasionally
have	missing	inputs	--	it	allows	the	calculation	to	proceed	while	flagging	specific
results	as	invalid.

A	variant	is	sNaN	which	signals	rather	than	remaining	quiet	after	every
operation.	This	is	a	useful	return	value	when	an	invalid	result	needs	to	interrupt	a
calculation	for	special	handling.

The	signed	zeros	can	result	from	calculations	that	underflow.	They	keep	the	sign
that	would	have	resulted	if	the	calculation	had	been	carried	out	to	greater
precision.	Since	their	magnitude	is	zero,	both	positive	and	negative	zeros	are
treated	as	equal	and	their	sign	is	informational.

In	addition	to	the	two	signed	zeros	which	are	distinct	yet	equal,	there	are	various
representations	of	zero	with	differing	precisions	yet	equivalent	in	value.	This
takes	a	bit	of	getting	used	to.	For	an	eye	accustomed	to	normalized	floating	point
representations,	it	is	not	immediately	obvious	that	the	following	calculation
returns	a	value	equal	to	zero:

>>>	1	/	Decimal('Infinity')

Decimal("0E-1000000026")

Python	Library	Reference
Previous:	5.6.4	Signals	Up:	5.6	decimal	Next:	5.6.6	Working	with	threads

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.6.5	Floating	Point	Notes	Up:	5.6	decimal	Next:	5.6.7	Recipes

5.6.6	Working	with	threads
The	getcontext()	function	accesses	a	different	Context	object	for	each
thread.	Having	separate	thread	contexts	means	that	threads	may	make	changes
(such	as	getcontext.prec=10)	without	interfering	with	other	threads.

Likewise,	the	setcontext()	function	automatically	assigns	its	target	to	the
current	thread.

If	setcontext()	has	not	been	called	before	getcontext(),	then
getcontext()	will	automatically	create	a	new	context	for	use	in	the	current
thread.

The	new	context	is	copied	from	a	prototype	context	called	DefaultContext.	To
control	the	defaults	so	that	each	thread	will	use	the	same	values	throughout	the
application,	directly	modify	the	DefaultContext	object.	This	should	be	done
before	any	threads	are	started	so	that	there	won't	be	a	race	condition	between
threads	calling	getcontext().	For	example:

#	Set	applicationwide	defaults	for	all	threads	about	to	be	launched

DefaultContext.prec	=	12

DefaultContext.rounding	=	ROUND_DOWN

DefaultContext.traps	=	ExtendedContext.traps.copy()

DefaultContext.traps[InvalidOperation]	=	1

setcontext(DefaultContext)

#	Afterwards,	the	threads	can	be	started

t1.start()

t2.start()

t3.start()

	.	.	.

Python	Library	Reference
Previous:	5.6.5	Floating	Point	Notes	Up:	5.6	decimal	Next:	5.6.7	Recipes

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.6.6	Working	with	threads	Up:	5.6	decimal	Next:	5.7	math

5.6.7	Recipes
Here	are	a	few	recipes	that	serve	as	utility	functions	and	that	demonstrate	ways
to	work	with	the	Decimal	class:

def	moneyfmt(value,	places=2,	curr='',	sep=',',	dp='.',

													pos='',	neg='-',	trailneg=''):

				"""Convert	Decimal	to	a	money	formatted	string.

				places:		required	number	of	places	after	the	decimal	point

				curr:				optional	currency	symbol	before	the	sign	(may	be	blank)

				sep:					optional	grouping	separator	(comma,	period,	space,	or	blank)

				dp:						decimal	point	indicator	(comma	or	period)

													only	specify	as	blank	when	places	is	zero

				pos:					optional	sign	for	positive	numbers:	'+',	space	or	blank

				neg:					optional	sign	for	negative	numbers:	'-',	'(',	space	or	blank

				trailneg:optional	trailing	minus	indicator:		'-',	')',	space	or	blank

				>>>	d	=	Decimal('-1234567.8901')

				>>>	moneyfmt(d,	curr='$')

				'-$1,234,567.89'

				>>>	moneyfmt(d,	places=0,	sep='.',	dp='',	neg='',	trailneg='-')

				'1.234.568-'

				>>>	moneyfmt(d,	curr='$',	neg='(',	trailneg=')')

				'($1,234,567.89)'

				>>>	moneyfmt(Decimal(123456789),	sep='	')

				'123	456	789.00'

				>>>	moneyfmt(Decimal('-0.02'),	neg='<',	trailneg='>')

				'<.02>'

				"""

				q	=	Decimal((0,	(1,),	-places))				#	2	places	-->	'0.01'

				sign,	digits,	exp	=	value.quantize(q).as_tuple()

				assert	exp	==	-places				

				result	=	[]

				digits	=	map(str,	digits)

				build,	next	=	result.append,	digits.pop

				if	sign:

								build(trailneg)

				for	i	in	range(places):

								if	digits:

												build(next())

								else:

												build('0')

				build(dp)

				i	=	0

				while	digits:

								build(next())

								i	+=	1

								if	i	==	3	and	digits:

												i	=	0

												build(sep)

				build(curr)

				if	sign:

								build(neg)

				else:

								build(pos)

				result.reverse()

				return	''.join(result)

def	pi():

				"""Compute	Pi	to	the	current	precision.

				>>>	print	pi()

				3.141592653589793238462643383

				

				"""

				getcontext().prec	+=	2		#	extra	digits	for	intermediate	steps

				three	=	Decimal(3)						#	substitute	"three=3.0"	for	regular	floats

				lasts,	t,	s,	n,	na,	d,	da	=	0,	three,	3,	1,	0,	0,	24

				while	s	!=	lasts:

								lasts	=	s

								n,	na	=	n+na,	na+8

								d,	da	=	d+da,	da+32

								t	=	(t	*	n)	/	d

								s	+=	t

				getcontext().prec	-=	2

				return	+s															#	unary	plus	applies	the	new	precision

def	exp(x):

				"""Return	e	raised	to	the	power	of	x.		Result	type	matches	input	type.

				>>>	print	exp(Decimal(1))

				2.718281828459045235360287471

				>>>	print	exp(Decimal(2))

				7.389056098930650227230427461

				>>>	print	exp(2.0)

				7.38905609893

				>>>	print	exp(2+0j)

				(7.38905609893+0j)

				

				"""

				getcontext().prec	+=	2

				i,	lasts,	s,	fact,	num	=	0,	0,	1,	1,	1

				while	s	!=	lasts:

								lasts	=	s				

								i	+=	1

								fact	*=	i

								num	*=	x					

								s	+=	num	/	fact			

				getcontext().prec	-=	2								

				return	+s

def	cos(x):

				"""Return	the	cosine	of	x	as	measured	in	radians.

				>>>	print	cos(Decimal('0.5'))

				0.8775825618903727161162815826

				>>>	print	cos(0.5)

				0.87758256189

				>>>	print	cos(0.5+0j)

				(0.87758256189+0j)

				

				"""

				getcontext().prec	+=	2

				i,	lasts,	s,	fact,	num,	sign	=	0,	0,	1,	1,	1,	1

				while	s	!=	lasts:

								lasts	=	s				

								i	+=	2

								fact	*=	i	*	(i-1)

								num	*=	x	*	x

								sign	*=	-1

								s	+=	num	/	fact	*	sign	

				getcontext().prec	-=	2								

				return	+s

def	sin(x):

				"""Return	the	sine	of	x	as	measured	in	radians.

				>>>	print	sin(Decimal('0.5'))

				0.4794255386042030002732879352

				>>>	print	sin(0.5)

				0.479425538604

				>>>	print	sin(0.5+0j)

				(0.479425538604+0j)

				

				"""

				getcontext().prec	+=	2

				i,	lasts,	s,	fact,	num,	sign	=	1,	0,	x,	1,	x,	1

				while	s	!=	lasts:

								lasts	=	s				

								i	+=	2

								fact	*=	i	*	(i-1)

								num	*=	x	*	x

								sign	*=	-1

								s	+=	num	/	fact	*	sign	

				getcontext().prec	-=	2								

				return	+s

Python	Library	Reference
Previous:	5.6.6	Working	with	threads	Up:	5.6	decimal	Next:	5.7	math

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.6.7	Recipes	Up:	5.	Miscellaneous	Services	Next:	5.8	cmath

5.7	math	--	Mathematical	functions
This	module	is	always	available.	It	provides	access	to	the	mathematical
functions	defined	by	the	C	standard.

These	functions	cannot	be	used	with	complex	numbers;	use	the	functions	of	the
same	name	from	the	cmath	module	if	you	require	support	for	complex
numbers.	The	distinction	between	functions	which	support	complex	numbers
and	those	which	don't	is	made	since	most	users	do	not	want	to	learn	quite	as
much	mathematics	as	required	to	understand	complex	numbers.	Receiving	an
exception	instead	of	a	complex	result	allows	earlier	detection	of	the	unexpected
complex	number	used	as	a	parameter,	so	that	the	programmer	can	determine	how
and	why	it	was	generated	in	the	first	place.

The	following	functions	are	provided	by	this	module.	Except	when	explicitly
noted	otherwise,	all	return	values	are	floats.

Number-theoretic	and	representation	functions:

ceil(x)
Return	the	ceiling	of	x	as	a	float,	the	smallest	integer	value	greater	than	or
equal	to	x.

fabs(x)
Return	the	absolute	value	of	x.

floor(x)
Return	the	floor	of	x	as	a	float,	the	largest	integer	value	less	than	or	equal	to
x.

fmod(x,	y)
Return	fmod(x,	y),	as	defined	by	the	platform	C	library.	Note	that	the
Python	expression	x	%	y	may	not	return	the	same	result.	The	intent	of	the
C	standard	is	that	fmod(x,	y)	be	exactly	(mathematically;	to	infinite
precision)	equal	to	x	-	n*y	for	some	integer	n	such	that	the	result	has	the
same	sign	as	x	and	magnitude	less	than	abs(y).	Python's	x	%	y	returns	a

result	with	the	sign	of	y	instead,	and	may	not	be	exactly	computable	for
float	arguments.	For	example,	fmod(-1e-100,	1e100)	is	-1e-100,
but	the	result	of	Python's	-1e-100	%	1e100	is	1e100-1e-100,
which	cannot	be	represented	exactly	as	a	float,	and	rounds	to	the	surprising
1e100.	For	this	reason,	function	fmod()	is	generally	preferred	when
working	with	floats,	while	Python's	x	%	y	is	preferred	when	working	with
integers.

frexp(x)
Return	the	mantissa	and	exponent	of	x	as	the	pair	(m,	e).	m	is	a	float	and
e	is	an	integer	such	that	x	==	m	*	2**e	exactly.	If	x	is	zero,	returns
(0.0,	0),	otherwise	0.5	<=	abs(m)	<	1.	This	is	used	to	"pick
apart"	the	internal	representation	of	a	float	in	a	portable	way.

ldexp(x,	i)
Return	x	*	(2**i).	This	is	essentially	the	inverse	of	function	frexp().

modf(x)
Return	the	fractional	and	integer	parts	of	x.	Both	results	carry	the	sign	of	x,
and	both	are	floats.

Note	that	frexp()	and	modf()	have	a	different	call/return	pattern	than	their
C	equivalents:	they	take	a	single	argument	and	return	a	pair	of	values,	rather	than
returning	their	second	return	value	through	an	`output	parameter'	(there	is	no
such	thing	in	Python).

For	the	ceil(),	floor(),	and	modf()	functions,	note	that	all	floating-point
numbers	of	sufficiently	large	magnitude	are	exact	integers.	Python	floats
typically	carry	no	more	than	53	bits	of	precision	(the	same	as	the	platform	C
double	type),	in	which	case	any	float	x	with	abs(x)	>=	2**52	necessarily
has	no	fractional	bits.

Power	and	logarithmic	functions:

exp(x)
Return	e**x.

log(x[,	base])

Return	the	logarithm	of	x	to	the	given	base.	If	the	base	is	not	specified,
return	the	natural	logarithm	of	x	(that	is,	the	logarithm	to	base	e).	Changed
in	version	2.3:	base	argument	added.

log10(x)
Return	the	base-10	logarithm	of	x.

pow(x,	y)
Return	x**y.

sqrt(x)
Return	the	square	root	of	x.

Trigonometric	functions:

acos(x)
Return	the	arc	cosine	of	x,	in	radians.

asin(x)
Return	the	arc	sine	of	x,	in	radians.

atan(x)
Return	the	arc	tangent	of	x,	in	radians.

atan2(y,	x)
Return	atan(y	/	x),	in	radians.	The	result	is	between	-pi	and	pi.	The
vector	in	the	plane	from	the	origin	to	point	(x,	y)	makes	this	angle	with
the	positive	X	axis.	The	point	of	atan2()	is	that	the	signs	of	both	inputs
are	known	to	it,	so	it	can	compute	the	correct	quadrant	for	the	angle.	For
example,	atan(1)	and	atan2(1,	1)	are	both	pi/4,	but	atan2(-1,
-1)	is	-3*pi/4.

cos(x)
Return	the	cosine	of	x	radians.

hypot(x,	y)
Return	the	Euclidean	norm,	sqrt(x*x	+	y*y).	This	is	the	length	of	the

vector	from	the	origin	to	point	(x,	y).

sin(x)
Return	the	sine	of	x	radians.

tan(x)
Return	the	tangent	of	x	radians.

Angular	conversion:

degrees(x)
Converts	angle	x	from	radians	to	degrees.

radians(x)
Converts	angle	x	from	degrees	to	radians.

Hyperbolic	functions:

cosh(x)
Return	the	hyperbolic	cosine	of	x.

sinh(x)
Return	the	hyperbolic	sine	of	x.

tanh(x)
Return	the	hyperbolic	tangent	of	x.

The	module	also	defines	two	mathematical	constants:

pi

The	mathematical	constant	pi.

e

The	mathematical	constant	e.

Note: 	The	math	module	consists	mostly	of	thin	wrappers
around	the	platform	C	math	library	functions.	Behavior	in

exceptional	cases	is	loosely	specified	by	the	C	standards,	and
Python	inherits	much	of	its	math-function	error-reporting
behavior	from	the	platform	C	implementation.	As	a	result,	the
specific	exceptions	raised	in	error	cases	(and	even	whether	some
arguments	are	considered	to	be	exceptional	at	all)	are	not	defined
in	any	useful	cross-platform	or	cross-release	way.	For	example,
whether	math.log(0)	returns	-Inf	or	raises	ValueError
or	OverflowError	isn't	defined,	and	in	cases	where
math.log(0)	raises	OverflowError,	math.log(0L)
may	raise	ValueError	instead.

See	Also:

Module	cmath:
Complex	number	versions	of	many	of	these	functions.

Python	Library	Reference
Previous:	5.6.7	Recipes	Up:	5.	Miscellaneous	Services	Next:	5.8	cmath

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.7	math	Up:	5.	Miscellaneous	Services	Next:	5.9	random

5.8	cmath	--	Mathematical	functions
for	complex	numbers
This	module	is	always	available.	It	provides	access	to	mathematical	functions	for
complex	numbers.	The	functions	are:

acos(x)
Return	the	arc	cosine	of	x.	There	are	two	branch	cuts:	One	extends	right
from	1	along	the	real	axis	to	∞,	continuous	from	below.	The	other	extends
left	from	-1	along	the	real	axis	to	-∞,	continuous	from	above.

acosh(x)
Return	the	hyperbolic	arc	cosine	of	x.	There	is	one	branch	cut,	extending
left	from	1	along	the	real	axis	to	-∞,	continuous	from	above.

asin(x)
Return	the	arc	sine	of	x.	This	has	the	same	branch	cuts	as	acos().

asinh(x)
Return	the	hyperbolic	arc	sine	of	x.	There	are	two	branch	cuts,	extending
left	from	±1j	to	±-∞j,	both	continuous	from	above.	These	branch	cuts
should	be	considered	a	bug	to	be	corrected	in	a	future	release.	The	correct
branch	cuts	should	extend	along	the	imaginary	axis,	one	from	1j	up	to	∞j
and	continuous	from	the	right,	and	one	from	-1j	down	to	-∞j	and
continuous	from	the	left.

atan(x)
Return	the	arc	tangent	of	x.	There	are	two	branch	cuts:	One	extends	from
1j	along	the	imaginary	axis	to	∞j,	continuous	from	the	left.	The	other
extends	from	-1j	along	the	imaginary	axis	to	-∞j,	continuous	from	the	left.
(This	should	probably	be	changed	so	the	upper	cut	becomes	continuous
from	the	other	side.)

atanh(x)

Return	the	hyperbolic	arc	tangent	of	x.	There	are	two	branch	cuts:	One
extends	from	1	along	the	real	axis	to	∞,	continuous	from	above.	The	other
extends	from	-1	along	the	real	axis	to	-∞,	continuous	from	above.	(This
should	probably	be	changed	so	the	right	cut	becomes	continuous	from	the
other	side.)

cos(x)
Return	the	cosine	of	x.

cosh(x)
Return	the	hyperbolic	cosine	of	x.

exp(x)
Return	the	exponential	value	e**x.

log(x[,	base])
Returns	the	logarithm	of	x	to	the	given	base.	If	the	base	is	not	specified,
returns	the	natural	logarithm	of	x.	There	is	one	branch	cut,	from	0	along	the
negative	real	axis	to	-∞,	continuous	from	above.	Changed	in	version	2.4:
base	argument	added.

log10(x)
Return	the	base-10	logarithm	of	x.	This	has	the	same	branch	cut	as	log().

sin(x)
Return	the	sine	of	x.

sinh(x)
Return	the	hyperbolic	sine	of	x.

sqrt(x)
Return	the	square	root	of	x.	This	has	the	same	branch	cut	as	log().

tan(x)
Return	the	tangent	of	x.

tanh(x)

Return	the	hyperbolic	tangent	of	x.

The	module	also	defines	two	mathematical	constants:

pi

The	mathematical	constant	pi,	as	a	real.

e

The	mathematical	constant	e,	as	a	real.

Note	that	the	selection	of	functions	is	similar,	but	not	identical,	to	that	in	module
math.	The	reason	for	having	two	modules	is	that	some	users	aren't	interested	in
complex	numbers,	and	perhaps	don't	even	know	what	they	are.	They	would
rather	have	math.sqrt(-1)	raise	an	exception	than	return	a	complex	number.
Also	note	that	the	functions	defined	in	cmath	always	return	a	complex	number,
even	if	the	answer	can	be	expressed	as	a	real	number	(in	which	case	the	complex
number	has	an	imaginary	part	of	zero).

A	note	on	branch	cuts:	They	are	curves	along	which	the	given	function	fails	to
be	continuous.	They	are	a	necessary	feature	of	many	complex	functions.	It	is
assumed	that	if	you	need	to	compute	with	complex	functions,	you	will
understand	about	branch	cuts.	Consult	almost	any	(not	too	elementary)	book	on
complex	variables	for	enlightenment.	For	information	of	the	proper	choice	of
branch	cuts	for	numerical	purposes,	a	good	reference	should	be	the	following:

See	Also:

Kahan,	W:	Branch	cuts	for	complex	elementary	functions;	or,	Much	ado
about	nothings's	sign	bit.	In	Iserles,	A.,	and	Powell,	M.	(eds.),	The	state	of
the	art	in	numerical	analysis.	Clarendon	Press	(1987)	pp165-211.

Python	Library	Reference
Previous:	5.7	math	Up:	5.	Miscellaneous	Services	Next:	5.9	random

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.8	cmath	Up:	5.	Miscellaneous	Services	Next:	5.10	whrandom

5.9	random	--	Generate	pseudo-
random	numbers
This	module	implements	pseudo-random	number	generators	for	various
distributions.

For	integers,	uniform	selection	from	a	range.	For	sequences,	uniform	selection	of
a	random	element,	a	function	to	generate	a	random	permutation	of	a	list	in-place,
and	a	function	for	random	sampling	without	replacement.

On	the	real	line,	there	are	functions	to	compute	uniform,	normal	(Gaussian),
lognormal,	negative	exponential,	gamma,	and	beta	distributions.	For	generating
distributions	of	angles,	the	von	Mises	distribution	is	available.

Almost	all	module	functions	depend	on	the	basic	function	random(),	which
generates	a	random	float	uniformly	in	the	semi-open	range	[0.0,	1.0).	Python
uses	the	Mersenne	Twister	as	the	core	generator.	It	produces	53-bit	precision
floats	and	has	a	period	of	2**19937-1.	The	underlying	implementation	in	C	is
both	fast	and	threadsafe.	The	Mersenne	Twister	is	one	of	the	most	extensively
tested	random	number	generators	in	existence.	However,	being	completely
deterministic,	it	is	not	suitable	for	all	purposes,	and	is	completely	unsuitable	for
cryptographic	purposes.

The	functions	supplied	by	this	module	are	actually	bound	methods	of	a	hidden
instance	of	the	random.Random	class.	You	can	instantiate	your	own	instances
of	Random	to	get	generators	that	don't	share	state.	This	is	especially	useful	for
multi-threaded	programs,	creating	a	different	instance	of	Random	for	each
thread,	and	using	the	jumpahead()	method	to	ensure	that	the	generated
sequences	seen	by	each	thread	don't	overlap.

Class	Random	can	also	be	subclassed	if	you	want	to	use	a	different	basic
generator	of	your	own	devising:	in	that	case,	override	the	random(),	seed(),
getstate(),	setstate()	and	jumpahead()	methods.	Optionally,	a	new
generator	can	supply	a	getrandombits()	method	--	this	allows
randrange()	to	produce	selections	over	an	arbitrarily	large	range.	New	in
version	2.4:	the	getrandombits()	method.

As	an	example	of	subclassing,	the	random	module	provides	the
WichmannHill	class	which	implements	an	alternative	generator	in	pure
Python.	The	class	provides	a	backward	compatible	way	to	reproduce	results
from	earlier	versions	of	Python	which	used	the	Wichmann-Hill	algorithm	as	the
core	generator.	Changed	in	version	2.3:	Substituted	MersenneTwister	for
Wichmann-Hill.

Bookkeeping	functions:

seed([x])
Initialize	the	basic	random	number	generator.	Optional	argument	x	can	be
any	hashable	object.	If	x	is	omitted	or	None,	current	system	time	is	used;
current	system	time	is	also	used	to	initialize	the	generator	when	the	module
is	first	imported.	If	randomness	sources	are	provided	by	the	operating
system,	they	are	used	instead	of	the	system	time	(see	the	os.urandom()
function	for	details	on	availability).	Changed	in	version	2.4:	formerly,
operating	system	resources	were	not	used.	If	x	is	not	None	or	an	int	or
long,	hash(x)	is	used	instead.	If	x	is	an	int	or	long,	x	is	used	directly.

getstate()
Return	an	object	capturing	the	current	internal	state	of	the	generator.	This
object	can	be	passed	to	setstate()	to	restore	the	state.	New	in	version
2.1.

setstate(state)
state	should	have	been	obtained	from	a	previous	call	to	getstate(),	and
setstate()	restores	the	internal	state	of	the	generator	to	what	it	was	at
the	time	setstate()	was	called.	New	in	version	2.1.

jumpahead(n)
Change	the	internal	state	to	one	different	from	and	likely	far	away	from	the
current	state.	n	is	a	non-negative	integer	which	is	used	to	scramble	the
current	state	vector.	This	is	most	useful	in	multi-threaded	programs,	in
conjuction	with	multiple	instances	of	the	Random	class:	setstate()	or
seed()	can	be	used	to	force	all	instances	into	the	same	internal	state,	and
then	jumpahead()	can	be	used	to	force	the	instances'	states	far	apart.
New	in	version	2.1.	Changed	in	version	2.3:	Instead	of	jumping	to	a

specific	state,	n	steps	ahead,	jumpahead(n)	jumps	to	another	state	likely
to	be	separated	by	many	steps..

getrandbits(k)
Returns	a	python	long	int	with	k	random	bits.	This	method	is	supplied
with	the	MersenneTwister	generator	and	some	other	generators	may	also
provide	it	as	an	optional	part	of	the	API.	When	available,
getrandbits()	enables	randrange()	to	handle	arbitrarily	large
ranges.	New	in	version	2.4.

Functions	for	integers:

randrange([start,]	stop[,	step])
Return	a	randomly	selected	element	from	range(start,	stop,	step).
This	is	equivalent	to	choice(range(start,	stop,	step)),	but	doesn't
actually	build	a	range	object.	New	in	version	1.5.2.

randint(a,	b)
Return	a	random	integer	N	such	that	a	<=	N	<=	b.

Functions	for	sequences:

choice(seq)
Return	a	random	element	from	the	non-empty	sequence	seq.	If	seq	is	empty,
raises	IndexError.

shuffle(x[,	random])
Shuffle	the	sequence	x	in	place.	The	optional	argument	random	is	a	0-
argument	function	returning	a	random	float	in	[0.0,	1.0);	by	default,	this	is
the	function	random().

Note	that	for	even	rather	small	len(x),	the	total	number	of	permutations
of	x	is	larger	than	the	period	of	most	random	number	generators;	this
implies	that	most	permutations	of	a	long	sequence	can	never	be	generated.

sample(population,	k)
Return	a	k	length	list	of	unique	elements	chosen	from	the	population

sequence.	Used	for	random	sampling	without	replacement.	New	in	version
2.3.

Returns	a	new	list	containing	elements	from	the	population	while	leaving
the	original	population	unchanged.	The	resulting	list	is	in	selection	order	so
that	all	sub-slices	will	also	be	valid	random	samples.	This	allows	raffle
winners	(the	sample)	to	be	partitioned	into	grand	prize	and	second	place
winners	(the	subslices).

Members	of	the	population	need	not	be	hashable	or	unique.	If	the
population	contains	repeats,	then	each	occurrence	is	a	possible	selection	in
the	sample.

To	choose	a	sample	from	a	range	of	integers,	use	xrange	as	an	argument.
This	is	especially	fast	and	space	efficient	for	sampling	from	a	large
population:	sample(xrange(10000000),	60).

The	following	functions	generate	specific	real-valued	distributions.	Function
parameters	are	named	after	the	corresponding	variables	in	the	distribution's
equation,	as	used	in	common	mathematical	practice;	most	of	these	equations	can
be	found	in	any	statistics	text.

random()
Return	the	next	random	floating	point	number	in	the	range	[0.0,	1.0).

uniform(a,	b)
Return	a	random	real	number	N	such	that	a	<=	N	<	b.

betavariate(alpha,	beta)
Beta	distribution.	Conditions	on	the	parameters	are	alpha	>	-1	and	beta
>	-1.	Returned	values	range	between	0	and	1.

expovariate(lambd)
Exponential	distribution.	lambd	is	1.0	divided	by	the	desired	mean.	(The
parameter	would	be	called	``lambda'',	but	that	is	a	reserved	word	in
Python.)	Returned	values	range	from	0	to	positive	infinity.

gammavariate(alpha,	beta)

Gamma	distribution.	(Not	the	gamma	function!)	Conditions	on	the
parameters	are	alpha	>	0	and	beta	>	0.

gauss(mu,	sigma)
Gaussian	distribution.	mu	is	the	mean,	and	sigma	is	the	standard	deviation.
This	is	slightly	faster	than	the	normalvariate()	function	defined
below.

lognormvariate(mu,	sigma)
Log	normal	distribution.	If	you	take	the	natural	logarithm	of	this
distribution,	you'll	get	a	normal	distribution	with	mean	mu	and	standard
deviation	sigma.	mu	can	have	any	value,	and	sigma	must	be	greater	than
zero.

normalvariate(mu,	sigma)
Normal	distribution.	mu	is	the	mean,	and	sigma	is	the	standard	deviation.

vonmisesvariate(mu,	kappa)
mu	is	the	mean	angle,	expressed	in	radians	between	0	and	2*pi,	and	kappa
is	the	concentration	parameter,	which	must	be	greater	than	or	equal	to	zero.
If	kappa	is	equal	to	zero,	this	distribution	reduces	to	a	uniform	random
angle	over	the	range	0	to	2*pi.

paretovariate(alpha)
Pareto	distribution.	alpha	is	the	shape	parameter.

weibullvariate(alpha,	beta)
Weibull	distribution.	alpha	is	the	scale	parameter	and	beta	is	the	shape
parameter.

Alternative	Generators

class	WichmannHill([seed])
Class	that	implements	the	Wichmann-Hill	algorithm	as	the	core	generator.
Has	all	of	the	same	methods	as	Random	plus	the	whseed	method
described	below.	Because	this	class	is	implemented	in	pure	Python,	it	is	not
threadsafe	and	may	require	locks	between	calls.	The	period	of	the	generator

is	6,953,607,871,644	which	is	small	enough	to	require	care	that	two
independent	random	sequences	do	not	overlap.

whseed([x])
This	is	obsolete,	supplied	for	bit-level	compatibility	with	versions	of
Python	prior	to	2.1.	See	seed	for	details.	whseed	does	not	guarantee	that
distinct	integer	arguments	yield	distinct	internal	states,	and	can	yield	no
more	than	about	2**24	distinct	internal	states	in	all.

class	SystemRandom([seed])
Class	that	uses	the	os.urandom()	function	for	generating	random
numbers	from	sources	provided	by	the	operating	system.	Not	available	on
all	systems.	Does	not	rely	on	software	state	and	sequences	are	not
reproducible.	Accordingly,	the	seed()	and	jumpahead()	methods	have
no	effect	and	are	ignored.	The	getstate()	and	setstate()	methods
raise	NotImplementedError	if	called.	New	in	version	2.4.

See	Also:

M.	Matsumoto	and	T.	Nishimura,	``Mersenne	Twister:	A	623-
dimensionally	equidistributed	uniform	pseudorandom	number	generator'',
ACM	Transactions	on	Modeling	and	Computer	Simulation	Vol.	8,	No.	1,
January	pp.3-30	1998.

Wichmann,	B.	A.	&	Hill,	I.	D.,	``Algorithm	AS	183:	An	efficient	and
portable	pseudo-random	number	generator'',	Applied	Statistics	31	(1982)
188-190.

Python	Library	Reference
Previous:	5.8	cmath	Up:	5.	Miscellaneous	Services	Next:	5.10	whrandom

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.9	random	Up:	5.	Miscellaneous	Services	Next:	5.11	bisect

5.10	whrandom	--	Pseudo-random
number	generator
Deprecated	since	release	2.1.	Use	random	instead.

Note:	This	module	was	an	implementation	detail	of	the	random	module	in
releases	of	Python	prior	to	2.1.	It	is	no	longer	used.	Please	do	not	use	this
module	directly;	use	random	instead.

This	module	implements	a	Wichmann-Hill	pseudo-random	number	generator
class	that	is	also	named	whrandom.	Instances	of	the	whrandom	class	conform
to	the	Random	Number	Generator	interface	described	in	section	.	They	also	offer
the	following	method,	specific	to	the	Wichmann-Hill	algorithm:

seed([x,	y,	z])
Initializes	the	random	number	generator	from	the	integers	x,	y	and	z.	When
the	module	is	first	imported,	the	random	number	is	initialized	using	values
derived	from	the	current	time.	If	x,	y,	and	z	are	either	omitted	or	0,	the	seed
will	be	computed	from	the	current	system	time.	If	one	or	two	of	the
parameters	are	0,	but	not	all	three,	the	zero	values	are	replaced	by	ones.
This	causes	some	apparently	different	seeds	to	be	equal,	with	the
corresponding	result	on	the	pseudo-random	series	produced	by	the
generator.

choice(seq)
Chooses	a	random	element	from	the	non-empty	sequence	seq	and	returns	it.

randint(a,	b)
Returns	a	random	integer	N	such	that	a<=N<=b.

random()
Returns	the	next	random	floating	point	number	in	the	range	[0.0	...	1.0).

seed(x,	y,	z)

Initializes	the	random	number	generator	from	the	integers	x,	y	and	z.	When
the	module	is	first	imported,	the	random	number	is	initialized	using	values
derived	from	the	current	time.

uniform(a,	b)
Returns	a	random	real	number	N	such	that	a<=N<b.

When	imported,	the	whrandom	module	also	creates	an	instance	of	the
whrandom	class,	and	makes	the	methods	of	that	instance	available	at	the
module	level.	Therefore	one	can	write	either	N	=	whrandom.random()	or:

generator	=	whrandom.whrandom()

N	=	generator.random()

Note	that	using	separate	instances	of	the	generator	leads	to	independent
sequences	of	pseudo-random	numbers.

See	Also:

Module	random:
Generators	for	various	random	distributions	and	documentation	for	the
Random	Number	Generator	interface.

Wichmann,	B.	A.	&	Hill,	I.	D.,	``Algorithm	AS	183:	An	efficient	and
portable	pseudo-random	number	generator'',	Applied	Statistics	31	(1982)
188-190.

Python	Library	Reference
Previous:	5.9	random	Up:	5.	Miscellaneous	Services	Next:	5.11	bisect

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.10	whrandom	Up:	5.	Miscellaneous	Services	Next:	5.11.1
Examples

5.11	bisect	--	Array	bisection
algorithm
This	module	provides	support	for	maintaining	a	list	in	sorted	order	without
having	to	sort	the	list	after	each	insertion.	For	long	lists	of	items	with	expensive
comparison	operations,	this	can	be	an	improvement	over	the	more	common
approach.	The	module	is	called	bisect	because	it	uses	a	basic	bisection
algorithm	to	do	its	work.	The	source	code	may	be	most	useful	as	a	working
example	of	the	algorithm	(the	boundary	conditions	are	already	right!).

The	following	functions	are	provided:

bisect_left(list,	item[,	lo[,	hi]])
Locate	the	proper	insertion	point	for	item	in	list	to	maintain	sorted	order.
The	parameters	lo	and	hi	may	be	used	to	specify	a	subset	of	the	list	which
should	be	considered;	by	default	the	entire	list	is	used.	If	item	is	already
present	in	list,	the	insertion	point	will	be	before	(to	the	left	of)	any	existing
entries.	The	return	value	is	suitable	for	use	as	the	first	parameter	to
list.insert().	This	assumes	that	list	is	already	sorted.	New	in	version
2.1.

bisect_right(list,	item[,	lo[,	hi]])
Similar	to	bisect_left(),	but	returns	an	insertion	point	which	comes
after	(to	the	right	of)	any	existing	entries	of	item	in	list.	New	in	version	2.1.

bisect(...)
Alias	for	bisect_right().

insort_left(list,	item[,	lo[,	hi]])
Insert	item	in	list	in	sorted	order.	This	is	equivalent	to
list.insert(bisect.bisect_left(list,	item,	lo,	hi),	item).
This	assumes	that	list	is	already	sorted.	New	in	version	2.1.

insort_right(list,	item[,	lo[,	hi]])

Similar	to	insort_left(),	but	inserting	item	in	list	after	any	existing
entries	of	item.	New	in	version	2.1.

insort(...)
Alias	for	insort_right().

Subsections

5.11.1	Examples

Python	Library	Reference
Previous:	5.10	whrandom	Up:	5.	Miscellaneous	Services	Next:	5.11.1
Examples

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.11	bisect	Up:	5.11	bisect	Next:	5.12	collections

5.11.1	Examples
The	bisect()	function	is	generally	useful	for	categorizing	numeric	data.	This
example	uses	bisect()	to	look	up	a	letter	grade	for	an	exam	total	(say)	based
on	a	set	of	ordered	numeric	breakpoints:	85	and	up	is	an	`A',	75..84	is	a	`B',	etc.

>>>	grades	=	"FEDCBA"

>>>	breakpoints	=	[30,	44,	66,	75,	85]

>>>	from	bisect	import	bisect

>>>	def	grade(total):

...											return	grades[bisect(breakpoints,	total)]

...

>>>	grade(66)

'C'

>>>	map(grade,	[33,	99,	77,	44,	12,	88])

['E',	'A',	'B',	'D',	'F',	'A']

Python	Library	Reference
Previous:	5.11	bisect	Up:	5.11	bisect	Next:	5.12	collections

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.11.1	Examples	Up:	5.	Miscellaneous	Services	Next:	5.12.1
Recipes

5.12	collections	--	High-
performance	container	datatypes
New	in	version	2.4.

This	module	implements	high-performance	container	datatypes.	Currently,	the
only	datatype	is	a	deque.	Future	additions	may	include	B-trees	and	Fibonacci
heaps.

deque([iterable])
Returns	a	new	deque	objected	initialized	left-to-right	(using	append())
with	data	from	iterable.	If	iterable	is	not	specified,	the	new	deque	is	empty.

Deques	are	a	generalization	of	stacks	and	queues	(the	name	is	pronounced
``deck''	and	is	short	for	``double-ended	queue'').	Deques	support	thread-
safe,	memory	efficient	appends	and	pops	from	either	side	of	the	deque	with
approximately	the	same	O(1)	performance	in	either	direction.

Though	list	objects	support	similar	operations,	they	are	optimized	for
fast	fixed-length	operations	and	incur	O(n)	memory	movement	costs	for
"pop(0)"	and	"insert(0,	v)"	operations	which	change	both	the	size
and	position	of	the	underlying	data	representation.	New	in	version	2.4.

Deque	objects	support	the	following	methods:

append(x)
Add	x	to	the	right	side	of	the	deque.

appendleft(x)
Add	x	to	the	left	side	of	the	deque.

clear()
Remove	all	elements	from	the	deque	leaving	it	with	length	0.

extend(iterable)

Extend	the	right	side	of	the	deque	by	appending	elements	from	the	iterable
argument.

extendleft(iterable)
Extend	the	left	side	of	the	deque	by	appending	elements	from	iterable.
Note,	the	series	of	left	appends	results	in	reversing	the	order	of	elements	in
the	iterable	argument.

pop()
Remove	and	return	an	element	from	the	right	side	of	the	deque.	If	no
elements	are	present,	raises	a	IndexError.

popleft()
Remove	and	return	an	element	from	the	left	side	of	the	deque.	If	no
elements	are	present,	raises	a	IndexError.

rotate(n)
Rotate	the	deque	n	steps	to	the	right.	If	n	is	negative,	rotate	to	the	left.
Rotating	one	step	to	the	right	is	equivalent	to:
"d.appendleft(d.pop())".

In	addition	to	the	above,	deques	support	iteration,	pickling,	"len(d)",
"reversed(d)",	"copy.copy(d)",	"copy.deepcopy(d)",	membership
testing	with	the	in	operator,	and	subscript	references	such	as	"d[-1]".

Example:

>>>	from	collections	import	deque

>>>	d	=	deque('ghi')																	#	make	a	new	deque	with	three	items

>>>	for	elem	in	d:																			#	iterate	over	the	deque's	elements

...					print	elem.upper()	

G

H

I

>>>	d.append('j')																				#	add	a	new	entry	to	the	right	side

>>>	d.appendleft('f')																#	add	a	new	entry	to	the	left	side

>>>	d																																#	show	the	representation	of	the	deque

deque(['f',	'g',	'h',	'i',	'j'])

>>>	d.pop()																										#	return	and	remove	the	rightmost	item

'j'

>>>	d.popleft()																						#	return	and	remove	the	leftmost	item

'f'

>>>	list(d)																										#	list	the	contents	of	the	deque

['g',	'h',	'i']

>>>	d[0]																													#	peek	at	leftmost	item

'g'

>>>	d[-1]																												#	peek	at	rightmost	item

'i'

>>>	list(reversed(d))																#	list	the	contents	of	a	deque	in	reverse

['i',	'h',	'g']

>>>	'h'	in	d																									#	search	the	deque

True

>>>	d.extend('jkl')																		#	add	multiple	elements	at	once

>>>	d

deque(['g',	'h',	'i',	'j',	'k',	'l'])

>>>	d.rotate(1)																						#	right	rotation

>>>	d

deque(['l',	'g',	'h',	'i',	'j',	'k'])

>>>	d.rotate(-1)																					#	left	rotation

>>>	d

deque(['g',	'h',	'i',	'j',	'k',	'l'])

>>>	deque(reversed(d))															#	make	a	new	deque	in	reverse	order

deque(['l',	'k',	'j',	'i',	'h',	'g'])

>>>	d.clear()																								#	empty	the	deque

>>>	d.pop()																										#	cannot	pop	from	an	empty	deque

Traceback	(most	recent	call	last):

		File	"<pyshell#6>",	line	1,	in	-toplevel-

				d.pop()

IndexError:	pop	from	an	empty	deque

>>>	d.extendleft('abc')														#	extendleft()	reverses	the	input	order

>>>	d

deque(['c',	'b',	'a'])

Subsections

5.12.1	Recipes

Python	Library	Reference
Previous:	5.11.1	Examples	Up:	5.	Miscellaneous	Services	Next:	5.12.1
Recipes

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.12	collections	Up:	5.12	collections	Next:	5.13	heapq

5.12.1	Recipes
This	section	shows	various	approaches	to	working	with	deques.

The	rotate()	method	provides	a	way	to	implement	deque	slicing	and
deletion.	For	example,	a	pure	python	implementation	of	del	d[n]	relies	on
the	rotate()	method	to	position	elements	to	be	popped:

def	delete_nth(d,	n):

				d.rotate(-n)

				d.popleft()

				d.rotate(n)

To	implement	deque	slicing,	use	a	similar	approach	applying	rotate()	to
bring	a	target	element	to	the	left	side	of	the	deque.	Remove	old	entries	with
popleft(),	add	new	entries	with	extend(),	and	then	reverse	the	rotation.

With	minor	variations	on	that	approach,	it	is	easy	to	implement	Forth	style	stack
manipulations	such	as	dup,	drop,	swap,	over,	pick,	rot,	and	roll.

A	roundrobin	task	server	can	be	built	from	a	deque	using	popleft()	to
select	the	current	task	and	append()	to	add	it	back	to	the	tasklist	if	the	input
stream	is	not	exhausted:

def	roundrobin(*iterables):

				pending	=	deque(iter(i)	for	i	in	iterables)

				while	pending:

								task	=	pending.popleft()

								try:

												yield	task.next()

								except	StopIteration:

												continue

								pending.append(task)

>>>	for	value	in	roundrobin('abc',	'd',	'efgh'):

...					print	value

a

d

e

b

f

c

g

h

Multi-pass	data	reduction	algorithms	can	be	succinctly	expressed	and	efficiently
coded	by	extracting	elements	with	multiple	calls	to	popleft(),	applying	the
reduction	function,	and	calling	append()	to	add	the	result	back	to	the	queue.

For	example,	building	a	balanced	binary	tree	of	nested	lists	entails	reducing	two
adjacent	nodes	into	one	by	grouping	them	in	a	list:

def	maketree(iterable):

				d	=	deque(iterable)

				while	len(d)	>	1:

								pair	=	[d.popleft(),	d.popleft()]

								d.append(pair)

				return	list(d)

>>>	print	maketree('abcdefgh')

[[[['a',	'b'],	['c',	'd']],	[['e',	'f'],	['g',	'h']]]]

Python	Library	Reference
Previous:	5.12	collections	Up:	5.12	collections	Next:	5.13	heapq

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.12.1	Recipes	Up:	5.	Miscellaneous	Services	Next:	5.13.1	Theory

5.13	heapq	--	Heap	queue	algorithm
New	in	version	2.3.

This	module	provides	an	implementation	of	the	heap	queue	algorithm,	also
known	as	the	priority	queue	algorithm.

Heaps	are	arrays	for	which	heap[k]	<=	heap[2*k+1]	and	heap[k]	<=
heap[2*k+2]	for	all	k,	counting	elements	from	zero.	For	the	sake	of
comparison,	non-existing	elements	are	considered	to	be	infinite.	The	interesting
property	of	a	heap	is	that	heap[0]	is	always	its	smallest	element.

The	API	below	differs	from	textbook	heap	algorithms	in	two	aspects:	(a)	We	use
zero-based	indexing.	This	makes	the	relationship	between	the	index	for	a	node
and	the	indexes	for	its	children	slightly	less	obvious,	but	is	more	suitable	since
Python	uses	zero-based	indexing.	(b)	Our	pop	method	returns	the	smallest	item,
not	the	largest	(called	a	"min	heap"	in	textbooks;	a	"max	heap"	is	more	common
in	texts	because	of	its	suitability	for	in-place	sorting).

These	two	make	it	possible	to	view	the	heap	as	a	regular	Python	list	without
surprises:	heap[0]	is	the	smallest	item,	and	heap.sort()	maintains	the	heap
invariant!

To	create	a	heap,	use	a	list	initialized	to	[],	or	you	can	transform	a	populated	list
into	a	heap	via	function	heapify().

The	following	functions	are	provided:

heappush(heap,	item)
Push	the	value	item	onto	the	heap,	maintaining	the	heap	invariant.

heappop(heap)
Pop	and	return	the	smallest	item	from	the	heap,	maintaining	the	heap
invariant.	If	the	heap	is	empty,	IndexError	is	raised.

heapify(x)

Transform	list	x	into	a	heap,	in-place,	in	linear	time.

heapreplace(heap,	item)
Pop	and	return	the	smallest	item	from	the	heap,	and	also	push	the	new	item.
The	heap	size	doesn't	change.	If	the	heap	is	empty,	IndexError	is	raised.
This	is	more	efficient	than	heappop()	followed	by	heappush(),	and
can	be	more	appropriate	when	using	a	fixed-size	heap.	Note	that	the	value
returned	may	be	larger	than	item!	That	constrains	reasonable	uses	of	this
routine	unless	written	as	part	of	a	conditional	replacement:

								if	item	>	heap[0]:

												item	=	heapreplace(heap,	item)

Example	of	use:

>>>	from	heapq	import	heappush,	heappop

>>>	heap	=	[]

>>>	data	=	[1,	3,	5,	7,	9,	2,	4,	6,	8,	0]

>>>	for	item	in	data:

...					heappush(heap,	item)

...

>>>	sorted	=	[]

>>>	while	heap:

...					sorted.append(heappop(heap))

...

>>>	print	sorted

[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

>>>	data.sort()

>>>	print	data	==	sorted

True

>>>

The	module	also	offers	two	general	purpose	functions	based	on	heaps.

nlargest(n,	iterable)
Return	a	list	with	the	n	largest	elements	from	the	dataset	defined	by
iterable.	Equivalent	to:	sorted(iterable,	reverse=True)[:n]
New	in	version	2.4.

nsmallest(n,	iterable)
Return	a	list	with	the	n	smallest	elements	from	the	dataset	defined	by
iterable.	Equivalent	to:	sorted(iterable)[:n]	New	in	version	2.4.

Both	functions	perform	best	for	smaller	values	of	n.	For	larger	values,	it	is	more

efficient	to	use	the	sorted()	function.	Also,	when	n==1,	it	is	more	efficient
to	use	the	builtin	min()	and	max()	functions.

Subsections

5.13.1	Theory

Python	Library	Reference
Previous:	5.12.1	Recipes	Up:	5.	Miscellaneous	Services	Next:	5.13.1	Theory

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.13	heapq	Up:	5.13	heapq	Next:	5.14	array

5.13.1	Theory
(This	explanation	is	due	to	François	Pinard.	The	Python	code	for	this	module
was	contributed	by	Kevin	O'Connor.)

Heaps	are	arrays	for	which	a[k]	<=	a[2*k+1]	and	a[k]	<=	a[2*k+2]
for	all	k,	counting	elements	from	0.	For	the	sake	of	comparison,	non-existing
elements	are	considered	to	be	infinite.	The	interesting	property	of	a	heap	is	that
a[0]	is	always	its	smallest	element.

The	strange	invariant	above	is	meant	to	be	an	efficient	memory	representation
for	a	tournament.	The	numbers	below	are	k,	not	a[k]:

																																			0

																		1																																	2

										3															4																5															6

						7							8							9							10						11						12						13						14

				15	16			17	18			19	20			21	22			23	24			25	26			27	28			29	30

In	the	tree	above,	each	cell	k	is	topping	2*k+1	and	2*k+2.	In	an	usual	binary
tournament	we	see	in	sports,	each	cell	is	the	winner	over	the	two	cells	it	tops,
and	we	can	trace	the	winner	down	the	tree	to	see	all	opponents	s/he	had.
However,	in	many	computer	applications	of	such	tournaments,	we	do	not	need	to
trace	the	history	of	a	winner.	To	be	more	memory	efficient,	when	a	winner	is
promoted,	we	try	to	replace	it	by	something	else	at	a	lower	level,	and	the	rule
becomes	that	a	cell	and	the	two	cells	it	tops	contain	three	different	items,	but	the
top	cell	"wins"	over	the	two	topped	cells.

If	this	heap	invariant	is	protected	at	all	time,	index	0	is	clearly	the	overall
winner.	The	simplest	algorithmic	way	to	remove	it	and	find	the	"next"	winner	is
to	move	some	loser	(let's	say	cell	30	in	the	diagram	above)	into	the	0	position,
and	then	percolate	this	new	0	down	the	tree,	exchanging	values,	until	the
invariant	is	re-established.	This	is	clearly	logarithmic	on	the	total	number	of
items	in	the	tree.	By	iterating	over	all	items,	you	get	an	O(n	log	n)	sort.

A	nice	feature	of	this	sort	is	that	you	can	efficiently	insert	new	items	while	the

sort	is	going	on,	provided	that	the	inserted	items	are	not	"better"	than	the	last	0'th
element	you	extracted.	This	is	especially	useful	in	simulation	contexts,	where	the
tree	holds	all	incoming	events,	and	the	"win"	condition	means	the	smallest
scheduled	time.	When	an	event	schedule	other	events	for	execution,	they	are
scheduled	into	the	future,	so	they	can	easily	go	into	the	heap.	So,	a	heap	is	a
good	structure	for	implementing	schedulers	(this	is	what	I	used	for	my	MIDI
sequencer	:-).

Various	structures	for	implementing	schedulers	have	been	extensively	studied,
and	heaps	are	good	for	this,	as	they	are	reasonably	speedy,	the	speed	is	almost
constant,	and	the	worst	case	is	not	much	different	than	the	average	case.
However,	there	are	other	representations	which	are	more	efficient	overall,	yet	the
worst	cases	might	be	terrible.

Heaps	are	also	very	useful	in	big	disk	sorts.	You	most	probably	all	know	that	a
big	sort	implies	producing	"runs"	(which	are	pre-sorted	sequences,	which	size	is
usually	related	to	the	amount	of	CPU	memory),	followed	by	a	merging	passes
for	these	runs,	which	merging	is	often	very	cleverly	organised5.1.	It	is	very
important	that	the	initial	sort	produces	the	longest	runs	possible.	Tournaments
are	a	good	way	to	that.	If,	using	all	the	memory	available	to	hold	a	tournament,
you	replace	and	percolate	items	that	happen	to	fit	the	current	run,	you'll	produce
runs	which	are	twice	the	size	of	the	memory	for	random	input,	and	much	better
for	input	fuzzily	ordered.

Moreover,	if	you	output	the	0'th	item	on	disk	and	get	an	input	which	may	not	fit
in	the	current	tournament	(because	the	value	"wins"	over	the	last	output	value),	it
cannot	fit	in	the	heap,	so	the	size	of	the	heap	decreases.	The	freed	memory	could
be	cleverly	reused	immediately	for	progressively	building	a	second	heap,	which
grows	at	exactly	the	same	rate	the	first	heap	is	melting.	When	the	first	heap
completely	vanishes,	you	switch	heaps	and	start	a	new	run.	Clever	and	quite
effective!

In	a	word,	heaps	are	useful	memory	structures	to	know.	I	use	them	in	a	few
applications,	and	I	think	it	is	good	to	keep	a	`heap'	module	around.	:-)	

Footnotes

...	organised5.1
The	disk	balancing	algorithms	which	are	current,	nowadays,	are	more
annoying	than	clever,	and	this	is	a	consequence	of	the	seeking	capabilities
of	the	disks.	On	devices	which	cannot	seek,	like	big	tape	drives,	the	story
was	quite	different,	and	one	had	to	be	very	clever	to	ensure	(far	in	advance)
that	each	tape	movement	will	be	the	most	effective	possible	(that	is,	will
best	participate	at	"progressing"	the	merge).	Some	tapes	were	even	able	to
read	backwards,	and	this	was	also	used	to	avoid	the	rewinding	time.	Believe
me,	real	good	tape	sorts	were	quite	spectacular	to	watch!	From	all	times,
sorting	has	always	been	a	Great	Art!	:-)

Python	Library	Reference
Previous:	5.13	heapq	Up:	5.13	heapq	Next:	5.14	array

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.13.1	Theory	Up:	5.	Miscellaneous	Services	Next:	5.15	sets

5.14	array	--	Efficient	arrays	of
numeric	values
This	module	defines	an	object	type	which	can	efficiently	represent	an	array	of
basic	values:	characters,	integers,	floating	point	numbers.	Arrays	are	sequence
types	and	behave	very	much	like	lists,	except	that	the	type	of	objects	stored	in
them	is	constrained.	The	type	is	specified	at	object	creation	time	by	using	a	type
code,	which	is	a	single	character.	The	following	type	codes	are	defined:

Type	code C	Type Python	Type Minimum	size	in	bytes
'c' char character 1
'b' signed	char int 1
'B' unsigned	char int 1
'u' Py_UNICODE Unicode	character 2
'h' signed	short int 2
'H' unsigned	short int 2
'i' signed	int int 2
'I' unsigned	int long 2
'l' signed	long int 4
'L' unsigned	long long 4
'f' float float 4
'd' double float 8

The	actual	representation	of	values	is	determined	by	the	machine	architecture
(strictly	speaking,	by	the	C	implementation).	The	actual	size	can	be	accessed
through	the	itemsize	attribute.	The	values	stored	for	'L'	and	'I'	items	will
be	represented	as	Python	long	integers	when	retrieved,	because	Python's	plain
integer	type	cannot	represent	the	full	range	of	C's	unsigned	(long)	integers.

The	module	defines	the	following	type:

array(typecode[,	initializer])
Return	a	new	array	whose	items	are	restricted	by	typecode,	and	initialized

from	the	optional	initializer	value,	which	must	be	a	list,	string,	or	iterable
over	elements	of	the	appropriate	type.	Changed	in	version	2.4:	Formerly,
only	lists	or	strings	were	accepted.	If	given	a	list	or	string,	the	initializer	is
passed	to	the	new	array's	fromlist(),	fromstring(),	or
fromunicode()	method	(see	below)	to	add	initial	items	to	the	array.
Otherwise,	the	iterable	initializer	is	passed	to	the	extend()	method.

ArrayType

Obsolete	alias	for	array.

Array	objects	support	the	ordinary	sequence	operations	of	indexing,	slicing,
concatenation,	and	multiplication.	When	using	slice	assignment,	the	assigned
value	must	be	an	array	object	with	the	same	type	code;	in	all	other	cases,
TypeError	is	raised.	Array	objects	also	implement	the	buffer	interface,	and
may	be	used	wherever	buffer	objects	are	supported.

The	following	data	items	and	methods	are	also	supported:

typecode

The	typecode	character	used	to	create	the	array.

itemsize

The	length	in	bytes	of	one	array	item	in	the	internal	representation.

append(x)
Append	a	new	item	with	value	x	to	the	end	of	the	array.

buffer_info()
Return	a	tuple	(address,	length)	giving	the	current	memory	address	and
the	length	in	elements	of	the	buffer	used	to	hold	array's	contents.	The	size
of	the	memory	buffer	in	bytes	can	be	computed	as
array.buffer_info()[1]	*	array.itemsize.	This	is	occasionally
useful	when	working	with	low-level	(and	inherently	unsafe)	I/O	interfaces
that	require	memory	addresses,	such	as	certain	ioctl()	operations.	The
returned	numbers	are	valid	as	long	as	the	array	exists	and	no	length-
changing	operations	are	applied	to	it.

Note:	When	using	array	objects	from	code	written	in	C	or	C++	(the	only
way	to	effectively	make	use	of	this	information),	it	makes	more	sense	to	use

the	buffer	interface	supported	by	array	objects.	This	method	is	maintained
for	backward	compatibility	and	should	be	avoided	in	new	code.	The	buffer
interface	is	documented	in	the	Python/C	API	Reference	Manual.

byteswap()
``Byteswap''	all	items	of	the	array.	This	is	only	supported	for	values	which
are	1,	2,	4,	or	8	bytes	in	size;	for	other	types	of	values,	RuntimeError	is
raised.	It	is	useful	when	reading	data	from	a	file	written	on	a	machine	with
a	different	byte	order.

count(x)
Return	the	number	of	occurrences	of	x	in	the	array.

extend(iterable)
Append	items	from	iterable	to	the	end	of	the	array.	If	iterable	is	another
array,	it	must	have	exactly	the	same	type	code;	if	not,	TypeError	will	be
raised.	If	iterable	is	not	an	array,	it	must	be	iterable	and	its	elements	must
be	the	right	type	to	be	appended	to	the	array.	Changed	in	version	2.4:
Formerly,	the	argument	could	only	be	another	array.

fromfile(f,	n)
Read	n	items	(as	machine	values)	from	the	file	object	f	and	append	them	to
the	end	of	the	array.	If	less	than	n	items	are	available,	EOFError	is	raised,
but	the	items	that	were	available	are	still	inserted	into	the	array.	f	must	be	a
real	built-in	file	object;	something	else	with	a	read()	method	won't	do.

fromlist(list)
Append	items	from	the	list.	This	is	equivalent	to	"for	x	in	list:
a.append(x)"except	that	if	there	is	a	type	error,	the	array	is	unchanged.

fromstring(s)
Appends	items	from	the	string,	interpreting	the	string	as	an	array	of
machine	values	(as	if	it	had	been	read	from	a	file	using	the	fromfile()
method).

fromunicode(s)
Extends	this	array	with	data	from	the	given	unicode	string.	The	array	must

be	a	type	'u'	array;	otherwise	a	ValueError	is	raised.	Use
"array.fromstring(ustr.decode(enc))"	to	append	Unicode
data	to	an	array	of	some	other	type.

index(x)
Return	the	smallest	i	such	that	i	is	the	index	of	the	first	occurrence	of	x	in
the	array.

insert(i,	x)
Insert	a	new	item	with	value	x	in	the	array	before	position	i.	Negative
values	are	treated	as	being	relative	to	the	end	of	the	array.

pop([i])
Removes	the	item	with	the	index	i	from	the	array	and	returns	it.	The
optional	argument	defaults	to	-1,	so	that	by	default	the	last	item	is	removed
and	returned.

read(f,	n)
Deprecated	since	release	1.5.1.	Use	the	fromfile()	method.

Read	n	items	(as	machine	values)	from	the	file	object	f	and	append	them	to
the	end	of	the	array.	If	less	than	n	items	are	available,	EOFError	is	raised,
but	the	items	that	were	available	are	still	inserted	into	the	array.	f	must	be	a
real	built-in	file	object;	something	else	with	a	read()	method	won't	do.

remove(x)
Remove	the	first	occurrence	of	x	from	the	array.

reverse()
Reverse	the	order	of	the	items	in	the	array.

tofile(f)
Write	all	items	(as	machine	values)	to	the	file	object	f.

tolist()
Convert	the	array	to	an	ordinary	list	with	the	same	items.

tostring()
Convert	the	array	to	an	array	of	machine	values	and	return	the	string
representation	(the	same	sequence	of	bytes	that	would	be	written	to	a	file	by
the	tofile()	method.)

tounicode()
Convert	the	array	to	a	unicode	string.	The	array	must	be	a	type	'u'	array;
otherwise	a	ValueError	is	raised.	Use	array.tostring().decode(enc)	to	obtain
a	unicode	string	from	an	array	of	some	other	type.

write(f)
Deprecated	since	release	1.5.1.	Use	the	tofile()	method.

Write	all	items	(as	machine	values)	to	the	file	object	f.

When	an	array	object	is	printed	or	converted	to	a	string,	it	is	represented	as
array(typecode,	initializer).	The	initializer	is	omitted	if	the	array	is	empty,
otherwise	it	is	a	string	if	the	typecode	is	'c',	otherwise	it	is	a	list	of	numbers.
The	string	is	guaranteed	to	be	able	to	be	converted	back	to	an	array	with	the
same	type	and	value	using	reverse	quotes	(``),	so	long	as	the	array()
function	has	been	imported	using	from	array	import	array.	Examples:

array('l')

array('c',	'hello	world')

array('u',	u'hello	\textbackslash	u2641')

array('l',	[1,	2,	3,	4,	5])

array('d',	[1.0,	2.0,	3.14])

See	Also:

Module	struct:
Packing	and	unpacking	of	heterogeneous	binary	data.

Module	xdrlib:
Packing	and	unpacking	of	External	Data	Representation	(XDR)	data
as	used	in	some	remote	procedure	call	systems.

The	Numerical	Python	Manual
The	Numeric	Python	extension	(NumPy)	defines	another	array	type;

http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm

see	http://numpy.sourceforge.net/	for	further	information	about
Numerical	Python.	(A	PDF	version	of	the	NumPy	manual	is	available
at	http://numpy.sourceforge.net/numdoc/numdoc.pdf).

Python	Library	Reference
Previous:	5.13.1	Theory	Up:	5.	Miscellaneous	Services	Next:	5.15	sets

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://numpy.sourceforge.net/
http://numpy.sourceforge.net/numdoc/numdoc.pdf

Previous:	5.14	array	Up:	5.	Miscellaneous	Services	Next:	5.15.1	Set	Objects

5.15	sets	--	Unordered	collections
of	unique	elements
New	in	version	2.3.

The	sets	module	provides	classes	for	constructing	and	manipulating	unordered
collections	of	unique	elements.	Common	uses	include	membership	testing,
removing	duplicates	from	a	sequence,	and	computing	standard	math	operations
on	sets	such	as	intersection,	union,	difference,	and	symmetric	difference.

Like	other	collections,	sets	support	x	in	set,	len(set),	and	for	x	in	set.
Being	an	unordered	collection,	sets	do	not	record	element	position	or	order	of
insertion.	Accordingly,	sets	do	not	support	indexing,	slicing,	or	other	sequence-
like	behavior.

Most	set	applications	use	the	Set	class	which	provides	every	set	method	except
for	__hash__().	For	advanced	applications	requiring	a	hash	method,	the
ImmutableSet	class	adds	a	__hash__()	method	but	omits	methods	which
alter	the	contents	of	the	set.	Both	Set	and	ImmutableSet	derive	from
BaseSet,	an	abstract	class	useful	for	determining	whether	something	is	a	set:
isinstance(obj,	BaseSet).

The	set	classes	are	implemented	using	dictionaries.	As	a	result,	sets	cannot
contain	mutable	elements	such	as	lists	or	dictionaries.	However,	they	can	contain
immutable	collections	such	as	tuples	or	instances	of	ImmutableSet.	For
convenience	in	implementing	sets	of	sets,	inner	sets	are	automatically	converted
to	immutable	form,	for	example,	Set([Set(['dog'])])	is	transformed	to
Set([ImmutableSet(['dog'])]).

class	Set([iterable])
Constructs	a	new	empty	Set	object.	If	the	optional	iterable	parameter	is
supplied,	updates	the	set	with	elements	obtained	from	iteration.	All	of	the
elements	in	iterable	should	be	immutable	or	be	transformable	to	an
immutable	using	the	protocol	described	in	section	5.15.3.

class	ImmutableSet([iterable])
Constructs	a	new	empty	ImmutableSet	object.	If	the	optional	iterable
parameter	is	supplied,	updates	the	set	with	elements	obtained	from	iteration.
All	of	the	elements	in	iterable	should	be	immutable	or	be	transformable	to
an	immutable	using	the	protocol	described	in	section	5.15.3.

Because	ImmutableSet	objects	provide	a	__hash__()	method,	they
can	be	used	as	set	elements	or	as	dictionary	keys.	ImmutableSet	objects
do	not	have	methods	for	adding	or	removing	elements,	so	all	of	the
elements	must	be	known	when	the	constructor	is	called.

Subsections

5.15.1	Set	Objects
5.15.2	Example
5.15.3	Protocol	for	automatic	conversion	to	immutable

Python	Library	Reference
Previous:	5.14	array	Up:	5.	Miscellaneous	Services	Next:	5.15.1	Set	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.15	sets	Up:	5.15	sets	Next:	5.15.2	Example

5.15.1	Set	Objects
Instances	of	Set	and	ImmutableSet	both	provide	the	following	operations:

Operation Equivalent Result
len(s) cardinality	of	set	s
x	in	s test	x	for	membership	in	s

x	not	in	s test	x	for	non-
membership	in	s

s.issubset(t) s	<=	t test	whether	every
element	in	s	is	in	t

s.issuperset(t) s	>=	t test	whether	every
element	in	t	is	in	s

s.union(t) s	|	t new	set	with	elements
from	both	s	and	t

s.intersection(t) s	&	t new	set	with	elements
common	to	s	and	t

s.difference(t) s	-	t new	set	with	elements	in
s	but	not	in	t

s.symmetric_difference(t) s	^	t new	set	with	elements	in
either	s	or	t	but	not	both

s.copy() new	set	with	a	shallow
copy	of	s

Note,	the	non-operator	versions	of	union(),	intersection(),
difference(),	and	symmetric_difference()	will	accept	any	iterable
as	an	argument.	In	contrast,	their	operator	based	counterparts	require	their
arguments	to	be	sets.	This	precludes	error-prone	constructions	like
Set('abc')	&	'cbs'	in	favor	of	the	more	readable
Set('abc').intersection('cbs').	Changed	in	version	2.3.1:
Formerly	all	arguments	were	required	to	be	sets.

In	addition,	both	Set	and	ImmutableSet	support	set	to	set	comparisons.	Two
sets	are	equal	if	and	only	if	every	element	of	each	set	is	contained	in	the	other
(each	is	a	subset	of	the	other).	A	set	is	less	than	another	set	if	and	only	if	the	first
set	is	a	proper	subset	of	the	second	set	(is	a	subset,	but	is	not	equal).	A	set	is

greater	than	another	set	if	and	only	if	the	first	set	is	a	proper	superset	of	the
second	set	(is	a	superset,	but	is	not	equal).

The	subset	and	equality	comparisons	do	not	generalize	to	a	complete	ordering
function.	For	example,	any	two	disjoint	sets	are	not	equal	and	are	not	subsets	of
each	other,	so	all	of	the	following	return	False:	a<b,	a==b,	or	a>b.
Accordingly,	sets	do	not	implement	the	__cmp__	method.

Since	sets	only	define	partial	ordering	(subset	relationships),	the	output	of	the
list.sort()	method	is	undefined	for	lists	of	sets.

The	following	table	lists	operations	available	in	ImmutableSet	but	not	found
in	Set:

Operation Result
hash(s) returns	a	hash	value	for	s

The	following	table	lists	operations	available	in	Set	but	not	found	in
ImmutableSet:

Operation Equivalent Result
s.union_update(t) s	|=	t return	set	s

with	elements
added	from	t

s.intersection_update(t) s	&=	t return	set	s
keeping	only
elements	also
found	in	t

s.difference_update(t) s	-=	t return	set	s
after	removing
elements	found
in	t

s.symmetric_difference_update(t) s	^=	t return	set	s
with	elements
from	s	or	t	but
not	both

s.add(x) add	element	x
to	set	s

s.remove(x) remove	x	from
set	s;	raises
KeyError	if	not
present

s.discard(x) removes	x
from	set	s	if
present

s.pop() remove	and
return	an
arbitrary
element	from
s;	raises
KeyError	if
empty

s.clear() remove	all
elements	from
set	s

Note,	the	non-operator	versions	of	union_update(),
intersection_update(),	difference_update(),	and
symmetric_difference_update()	will	accept	any	iterable	as	an
argument.	Changed	in	version	2.3.1:	Formerly	all	arguments	were	required	to	be
sets.

Python	Library	Reference
Previous:	5.15	sets	Up:	5.15	sets	Next:	5.15.2	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.15.1	Set	Objects	Up:	5.15	sets	Next:	5.15.3	Protocol	for	automatic

5.15.2	Example
>>>	from	sets	import	Set

>>>	engineers	=	Set(['John',	'Jane',	'Jack',	'Janice'])

>>>	programmers	=	Set(['Jack',	'Sam',	'Susan',	'Janice'])

>>>	managers	=	Set(['Jane',	'Jack',	'Susan',	'Zack'])

>>>	employees	=	engineers	|	programmers	|	managers											#	union

>>>	engineering_management	=	engineers	&	managers												#	intersection

>>>	fulltime_management	=	managers	-	engineers	-	programmers	#	difference

>>>	engineers.add('Marvin')																																		#	add	element

>>>	print	engineers

Set(['Jane',	'Marvin',	'Janice',	'John',	'Jack'])

>>>	employees.issuperset(engineers)											#	superset	test

False

>>>	employees.union_update(engineers)									#	update	from	another	set

>>>	employees.issuperset(engineers)

True

>>>	for	group	in	[engineers,	programmers,	managers,	employees]:

...					group.discard('Susan')																#	unconditionally	remove	element

...					print	group

...

Set(['Jane',	'Marvin',	'Janice',	'John',	'Jack'])

Set(['Janice',	'Jack',	'Sam'])

Set(['Jane',	'Zack',	'Jack'])

Set(['Jack',	'Sam',	'Jane',	'Marvin',	'Janice',	'John',	'Zack'])

Python	Library	Reference
Previous:	5.15.1	Set	Objects	Up:	5.15	sets	Next:	5.15.3	Protocol	for	automatic

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.15.2	Example	Up:	5.15	sets	Next:	5.16	itertools

5.15.3	Protocol	for	automatic	conversion	to
immutable
Sets	can	only	contain	immutable	elements.	For	convenience,	mutable	Set
objects	are	automatically	copied	to	an	ImmutableSet	before	being	added	as	a
set	element.

The	mechanism	is	to	always	add	a	hashable	element,	or	if	it	is	not	hashable,	the
element	is	checked	to	see	if	it	has	an	__as_immutable__()	method	which
returns	an	immutable	equivalent.

Since	Set	objects	have	a	__as_immutable__()	method	returning	an
instance	of	ImmutableSet,	it	is	possible	to	construct	sets	of	sets.

A	similar	mechanism	is	needed	by	the	__contains__()	and	remove()
methods	which	need	to	hash	an	element	to	check	for	membership	in	a	set.	Those
methods	check	an	element	for	hashability	and,	if	not,	check	for	a
__as_temporarily_immutable__()	method	which	returns	the	element
wrapped	by	a	class	that	provides	temporary	methods	for	__hash__(),
__eq__(),	and	__ne__().

The	alternate	mechanism	spares	the	need	to	build	a	separate	copy	of	the	original
mutable	object.

Set	objects	implement	the	__as_temporarily_immutable__()	method
which	returns	the	Set	object	wrapped	by	a	new	class
_TemporarilyImmutableSet.

The	two	mechanisms	for	adding	hashability	are	normally	invisible	to	the	user;
however,	a	conflict	can	arise	in	a	multi-threaded	environment	where	one	thread
is	updating	a	set	while	another	has	temporarily	wrapped	it	in
_TemporarilyImmutableSet.	In	other	words,	sets	of	mutable	sets	are	not
thread-safe.

Python	Library	Reference
Previous:	5.15.2	Example	Up:	5.15	sets	Next:	5.16	itertools

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.15.3	Protocol	for	automatic	Up:	5.	Miscellaneous	Services	Next:
5.16.1	Itertool	functions

5.16	itertools	--	Functions
creating	iterators	for	efficient
looping
New	in	version	2.3.

This	module	implements	a	number	of	iterator	building	blocks	inspired	by
constructs	from	the	Haskell	and	SML	programming	languages.	Each	has	been
recast	in	a	form	suitable	for	Python.

The	module	standardizes	a	core	set	of	fast,	memory	efficient	tools	that	are	useful
by	themselves	or	in	combination.	Standardization	helps	avoid	the	readability	and
reliability	problems	which	arise	when	many	different	individuals	create	their
own	slightly	varying	implementations,	each	with	their	own	quirks	and	naming
conventions.

The	tools	are	designed	to	combine	readily	with	one	another.	This	makes	it	easy
to	construct	more	specialized	tools	succinctly	and	efficiently	in	pure	Python.

For	instance,	SML	provides	a	tabulation	tool:	tabulate(f)	which	produces	a
sequence	f(0),	f(1),	This	toolbox	provides	imap()	and	count()
which	can	be	combined	to	form	imap(f,	count())	and	produce	an
equivalent	result.

Likewise,	the	functional	tools	are	designed	to	work	well	with	the	high-speed
functions	provided	by	the	operator	module.

The	module	author	welcomes	suggestions	for	other	basic	building	blocks	to	be
added	to	future	versions	of	the	module.

Whether	cast	in	pure	python	form	or	compiled	code,	tools	that	use	iterators	are
more	memory	efficient	(and	faster)	than	their	list	based	counterparts.	Adopting
the	principles	of	just-in-time	manufacturing,	they	create	data	when	and	where
needed	instead	of	consuming	memory	with	the	computer	equivalent	of
``inventory''.

The	performance	advantage	of	iterators	becomes	more	acute	as	the	number	of
elements	increases	-	at	some	point,	lists	grow	large	enough	to	severely	impact
memory	cache	performance	and	start	running	slowly.

See	Also:

The	Standard	ML	Basis	Library,	The	Standard	ML	Basis	Library.

Haskell,	A	Purely	Functional	Language,	Definition	of	Haskell	and	the
Standard	Libraries.

Subsections

5.16.1	Itertool	functions
5.16.2	Examples
5.16.3	Recipes

Python	Library	Reference
Previous:	5.15.3	Protocol	for	automatic	Up:	5.	Miscellaneous	Services	Next:
5.16.1	Itertool	functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.standardml.org/Basis/
http://www.haskell.org/definition/

Previous:	5.16	itertools	Up:	5.16	itertools	Next:	5.16.2	Examples

5.16.1	Itertool	functions
The	following	module	functions	all	construct	and	return	iterators.	Some	provide
streams	of	infinite	length,	so	they	should	only	be	accessed	by	functions	or	loops
that	truncate	the	stream.

chain(*iterables)
Make	an	iterator	that	returns	elements	from	the	first	iterable	until	it	is
exhausted,	then	proceeds	to	the	next	iterable,	until	all	of	the	iterables	are
exhausted.	Used	for	treating	consecutive	sequences	as	a	single	sequence.
Equivalent	to:

					def	chain(*iterables):

									for	it	in	iterables:

													for	element	in	it:

																	yield	element

count([n])
Make	an	iterator	that	returns	consecutive	integers	starting	with	n.	If	not
specified	n	defaults	to	zero.	Does	not	currently	support	python	long
integers.	Often	used	as	an	argument	to	imap()	to	generate	consecutive
data	points.	Also,	used	with	izip()	to	add	sequence	numbers.	Equivalent
to:

					def	count(n=0):

									while	True:

													yield	n

													n	+=	1

Note,	count()	does	not	check	for	overflow	and	will	return	negative
numbers	after	exceeding	sys.maxint.	This	behavior	may	change	in	the
future.

cycle(iterable)
Make	an	iterator	returning	elements	from	the	iterable	and	saving	a	copy	of
each.	When	the	iterable	is	exhausted,	return	elements	from	the	saved	copy.
Repeats	indefinitely.	Equivalent	to:

					def	cycle(iterable):

									saved	=	[]

									for	element	in	iterable:

													yield	element

													saved.append(element)

									while	saved:

													for	element	in	saved:

																			yield	element

Note,	this	member	of	the	toolkit	may	require	significant	auxiliary	storage
(depending	on	the	length	of	the	iterable).

dropwhile(predicate,	iterable)
Make	an	iterator	that	drops	elements	from	the	iterable	as	long	as	the
predicate	is	true;	afterwards,	returns	every	element.	Note,	the	iterator	does
not	produce	any	output	until	the	predicate	is	true,	so	it	may	have	a	lengthy
start-up	time.	Equivalent	to:

					def	dropwhile(predicate,	iterable):

									iterable	=	iter(iterable)

									for	x	in	iterable:

													if	not	predicate(x):

																	yield	x

																	break

									for	x	in	iterable:

													yield	x

groupby(iterable[,	key])
Make	an	iterator	that	returns	consecutive	keys	and	groups	from	the	iterable.
The	key	is	a	function	computing	a	key	value	for	each	element.	If	not
specified	or	is	None,	key	defaults	to	an	identity	function	and	returns	the
element	unchanged.	Generally,	the	iterable	needs	to	already	be	sorted	on	the
same	key	function.

The	returned	group	is	itself	an	iterator	that	shares	the	underlying	iterable
with	groupby().	Because	the	source	is	shared,	when	the	groupby
object	is	advanced,	the	previous	group	is	no	longer	visible.	So,	if	that	data
is	needed	later,	it	should	be	stored	as	a	list:

				groups	=	[]

				uniquekeys	=	[]

				for	k,	g	in	groupby(data,	keyfunc):

								groups.append(list(g))						#	Store	group	iterator	as	a	list

								uniquekeys.append(k)

groupby()	is	equivalent	to:

				class	groupby(object):

								def	__init__(self,	iterable,	key=None):

												if	key	is	None:

																key	=	lambda	x:	x

												self.keyfunc	=	key

												self.it	=	iter(iterable)

												self.tgtkey	=	self.currkey	=	self.currvalue	=	xrange(0)

								def	__iter__(self):

												return	self

								def	next(self):

												while	self.currkey	==	self.tgtkey:

																self.currvalue	=	self.it.next()	#	Exit	on	StopIteration

																self.currkey	=	self.keyfunc(self.currvalue)

												self.tgtkey	=	self.currkey

												return	(self.currkey,	self._grouper(self.tgtkey))

								def	_grouper(self,	tgtkey):

												while	self.currkey	==	tgtkey:

																yield	self.currvalue

																self.currvalue	=	self.it.next()	#	Exit	on	StopIteration

																self.currkey	=	self.keyfunc(self.currvalue)

New	in	version	2.4.

ifilter(predicate,	iterable)
Make	an	iterator	that	filters	elements	from	iterable	returning	only	those	for
which	the	predicate	is	True.	If	predicate	is	None,	return	the	items	that	are
true.	Equivalent	to:

					def	ifilter(predicate,	iterable):

									if	predicate	is	None:

													predicate	=	bool

									for	x	in	iterable:

													if	predicate(x):

																	yield	x

ifilterfalse(predicate,	iterable)
Make	an	iterator	that	filters	elements	from	iterable	returning	only	those	for
which	the	predicate	is	False.	If	predicate	is	None,	return	the	items	that
are	false.	Equivalent	to:

					def	ifilterfalse(predicate,	iterable):

									if	predicate	is	None:

													predicate	=	bool

									for	x	in	iterable:

													if	not	predicate(x):

																	yield	x

imap(function,	*iterables)
Make	an	iterator	that	computes	the	function	using	arguments	from	each	of
the	iterables.	If	function	is	set	to	None,	then	imap()	returns	the	arguments
as	a	tuple.	Like	map()	but	stops	when	the	shortest	iterable	is	exhausted
instead	of	filling	in	None	for	shorter	iterables.	The	reason	for	the	difference
is	that	infinite	iterator	arguments	are	typically	an	error	for	map()	(because
the	output	is	fully	evaluated)	but	represent	a	common	and	useful	way	of
supplying	arguments	to	imap().	Equivalent	to:

					def	imap(function,	*iterables):

									iterables	=	map(iter,	iterables)

									while	True:

													args	=	[i.next()	for	i	in	iterables]

													if	function	is	None:

																	yield	tuple(args)

													else:

																	yield	function(*args)

islice(iterable,	[start,]	stop	[,	step])
Make	an	iterator	that	returns	selected	elements	from	the	iterable.	If	start	is
non-zero,	then	elements	from	the	iterable	are	skipped	until	start	is	reached.
Afterward,	elements	are	returned	consecutively	unless	step	is	set	higher
than	one	which	results	in	items	being	skipped.	If	stop	is	None,	then
iteration	continues	until	the	iterator	is	exhausted,	if	at	all;	otherwise,	it	stops
at	the	specified	position.	Unlike	regular	slicing,	islice()	does	not
support	negative	values	for	start,	stop,	or	step.	Can	be	used	to	extract
related	fields	from	data	where	the	internal	structure	has	been	flattened	(for
example,	a	multi-line	report	may	list	a	name	field	on	every	third	line).
Equivalent	to:

					def	islice(iterable,	*args):

									s	=	slice(*args)

									next,	stop,	step	=	s.start	or	0,	s.stop,	s.step	or	1

									for	cnt,	element	in	enumerate(iterable):

													if	cnt	<	next:

																	continue

													if	stop	is	not	None	and	cnt	>=	stop:

																	break

													yield	element

													next	+=	step

izip(*iterables)
Make	an	iterator	that	aggregates	elements	from	each	of	the	iterables.	Like
zip()	except	that	it	returns	an	iterator	instead	of	a	list.	Used	for	lock-step
iteration	over	several	iterables	at	a	time.	Equivalent	to:

					def	izip(*iterables):

									iterables	=	map(iter,	iterables)

									while	iterables:

													result	=	[i.next()	for	i	in	iterables]

													yield	tuple(result)

Changed	in	version	2.4:	When	no	iterables	are	specified,	returns	a	zero
length	iterator	instead	of	raising	a	TypeError	exception.

repeat(object[,	times])
Make	an	iterator	that	returns	object	over	and	over	again.	Runs	indefinitely
unless	the	times	argument	is	specified.	Used	as	argument	to	imap()	for
invariant	parameters	to	the	called	function.	Also	used	with	izip()	to
create	an	invariant	part	of	a	tuple	record.	Equivalent	to:

					def	repeat(object,	times=None):

									if	times	is	None:

													while	True:

																	yield	object

									else:

													for	i	in	xrange(times):

																	yield	object

starmap(function,	iterable)
Make	an	iterator	that	computes	the	function	using	arguments	tuples
obtained	from	the	iterable.	Used	instead	of	imap()	when	argument
parameters	are	already	grouped	in	tuples	from	a	single	iterable	(the	data	has
been	``pre-zipped'').	The	difference	between	imap()	and	starmap()
parallels	the	distinction	between	function(a,b)	and	function(*c).
Equivalent	to:

					def	starmap(function,	iterable):

									iterable	=	iter(iterable)

									while	True:

													yield	function(*iterable.next())

takewhile(predicate,	iterable)

Make	an	iterator	that	returns	elements	from	the	iterable	as	long	as	the
predicate	is	true.	Equivalent	to:

					def	takewhile(predicate,	iterable):

									for	x	in	iterable:

													if	predicate(x):

																	yield	x

													else:

																	break

tee(iterable[,	n=2])
Return	n	independent	iterators	from	a	single	iterable.	The	case	where	n==2
is	equivalent	to:

					def	tee(iterable):

									def	gen(next,	data={},	cnt=[0]):

													for	i	in	count():

																	if	i	==	cnt[0]:

																					item	=	data[i]	=	next()

																					cnt[0]	+=	1

																	else:

																					item	=	data.pop(i)

																	yield	item

									it	=	iter(iterable)

									return	(gen(it.next),	gen(it.next))

Note,	once	tee()	has	made	a	split,	the	original	iterable	should	not	be	used
anywhere	else;	otherwise,	the	iterable	could	get	advanced	without	the	tee
objects	being	informed.

Note,	this	member	of	the	toolkit	may	require	significant	auxiliary	storage
(depending	on	how	much	temporary	data	needs	to	be	stored).	In	general,	if
one	iterator	is	going	to	use	most	or	all	of	the	data	before	the	other	iterator,	it
is	faster	to	use	list()	instead	of	tee().	New	in	version	2.4.

Python	Library	Reference
Previous:	5.16	itertools	Up:	5.16	itertools	Next:	5.16.2	Examples

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.16.1	Itertool	functions	Up:	5.16	itertools	Next:	5.16.3	Recipes

5.16.2	Examples
The	following	examples	show	common	uses	for	each	tool	and	demonstrate	ways
they	can	be	combined.

>>>	amounts	=	[120.15,	764.05,	823.14]

>>>	for	checknum,	amount	in	izip(count(1200),	amounts):

...					print	'Check	%d	is	for	$%.2f'	%	(checknum,	amount)

...

Check	1200	is	for	$120.15

Check	1201	is	for	$764.05

Check	1202	is	for	$823.14

>>>	import	operator

>>>	for	cube	in	imap(operator.pow,	xrange(1,5),	repeat(3)):

...				print	cube

...

1

8

27

64

>>>	reportlines	=	['EuroPython',	'Roster',	'',	'alex',	'',	'laura',

																		'',	'martin',	'',	'walter',	'',	'mark']

>>>	for	name	in	islice(reportlines,	3,	None,	2):

...				print	name.title()

...

Alex

Laura

Martin

Walter

Mark

#	Show	a	dictionary	sorted	and	grouped	by	value

>>>	from	operator	import	itemgetter

>>>	d	=	dict(a=1,	b=2,	c=1,	d=2,	e=1,	f=2,	g=3)

>>>	di	=	sorted(d.iteritems(),	key=itemgetter(1))

>>>	for	k,	g	in	groupby(di,	key=itemgetter(1)):

...					print	k,	map(itemgetter(0),	g)

...

1	['a',	'c',	'e']

2	['b',	'd',	'f']

3	['g']

#	Find	runs	of	consecutive	numbers	using	groupby.		The	key	to	the	solution

#	is	differencing	with	a	range	so	that	consecutive	numbers	all	appear	in

#	same	group.

>>>	data	=	[1,		4,5,6,	10,	15,16,17,18,	22,	25,26,27,28]

>>>	for	k,	g	in	groupby(enumerate(data),	lambda	(i,x):i-x):

...					print	map(operator.itemgetter(1),	g)

...	

[1]

[4,	5,	6]

[10]

[15,	16,	17,	18]

[22]

[25,	26,	27,	28]

Python	Library	Reference
Previous:	5.16.1	Itertool	functions	Up:	5.16	itertools	Next:	5.16.3	Recipes

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.16.2	Examples	Up:	5.16	itertools	Next:	5.17	ConfigParser

5.16.3	Recipes
This	section	shows	recipes	for	creating	an	extended	toolset	using	the	existing
itertools	as	building	blocks.

The	extended	tools	offer	the	same	high	performance	as	the	underlying	toolset.
The	superior	memory	performance	is	kept	by	processing	elements	one	at	a	time
rather	than	bringing	the	whole	iterable	into	memory	all	at	once.	Code	volume	is
kept	small	by	linking	the	tools	together	in	a	functional	style	which	helps
eliminate	temporary	variables.	High	speed	is	retained	by	preferring	``vectorized''
building	blocks	over	the	use	of	for-loops	and	generators	which	incur	interpreter
overhead.

def	take(n,	seq):

				return	list(islice(seq,	n))

def	enumerate(iterable):

				return	izip(count(),	iterable)

def	tabulate(function):

				"Return	function(0),	function(1),	..."

				return	imap(function,	count())

def	iteritems(mapping):

				return	izip(mapping.iterkeys(),	mapping.itervalues())

def	nth(iterable,	n):

				"Returns	the	nth	item"

				return	list(islice(iterable,	n,	n+1))

def	all(seq,	pred=bool):

				"Returns	True	if	pred(x)	is	True	for	every	element	in	the	iterable"

				for	elem	in	ifilterfalse(pred,	seq):

								return	False

				return	True

def	any(seq,	pred=bool):

				"Returns	True	if	pred(x)	is	True	for	at	least	one	element	in	the	iterable"

				for	elem	in	ifilter(pred,	seq):

								return	True

				return	False

def	no(seq,	pred=bool):

				"Returns	True	if	pred(x)	is	False	for	every	element	in	the	iterable"

				for	elem	in	ifilter(pred,	seq):

								return	False

				return	True

def	quantify(seq,	pred=bool):

				"Count	how	many	times	the	predicate	is	True	in	the	sequence"

				return	sum(imap(pred,	seq))

def	padnone(seq):

				"""Returns	the	sequence	elements	and	then	returns	None	indefinitely.

				Useful	for	emulating	the	behavior	of	the	built-in	map()	function.

				"""

				return	chain(seq,	repeat(None))

def	ncycles(seq,	n):

				"Returns	the	sequence	elements	n	times"

				return	chain(*repeat(seq,	n))

def	dotproduct(vec1,	vec2):

				return	sum(imap(operator.mul,	vec1,	vec2))

def	flatten(listOfLists):

				return	list(chain(*listOfLists))

def	repeatfunc(func,	times=None,	*args):

				"""Repeat	calls	to	func	with	specified	arguments.

				

				Example:		repeatfunc(random.random)

				"""

				if	times	is	None:

								return	starmap(func,	repeat(args))

				else:

								return	starmap(func,	repeat(args,	times))

def	pairwise(iterable):

				"s	->	(s0,s1),	(s1,s2),	(s2,	s3),	..."

				a,	b	=	tee(iterable)

				try:

								b.next()

				except	StopIteration:

								pass

				return	izip(a,	b)

Python	Library	Reference
Previous:	5.16.2	Examples	Up:	5.16	itertools	Next:	5.17	ConfigParser

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.16.3	Recipes	Up:	5.	Miscellaneous	Services	Next:	5.17.1
RawConfigParser	Objects

5.17	ConfigParser	--	Configuration
file	parser
This	module	defines	the	class	ConfigParser.	The	ConfigParser	class
implements	a	basic	configuration	file	parser	language	which	provides	a	structure
similar	to	what	you	would	find	on	Microsoft	Windows	INI	files.	You	can	use	this
to	write	Python	programs	which	can	be	customized	by	end	users	easily.

Warning: 	This	library	does	not	interpret	or	write	the	value-
type	prefixes	used	in	the	Windows	Registry	extended	version	of
INI	syntax.

The	configuration	file	consists	of	sections,	led	by	a	"[section]"	header	and
followed	by	"name:	value"	entries,	with	continuations	in	the	style	of	RFC
822;	"name=value"	is	also	accepted.	Note	that	leading	whitespace	is	removed
from	values.	The	optional	values	can	contain	format	strings	which	refer	to	other
values	in	the	same	section,	or	values	in	a	special	DEFAULT	section.	Additional
defaults	can	be	provided	on	initialization	and	retrieval.	Lines	beginning	with	"#"
or	";"	are	ignored	and	may	be	used	to	provide	comments.

For	example:

[My	Section]

foodir:	%(dir)s/whatever

dir=frob

would	resolve	the	"%(dir)s"	to	the	value	of	"dir"	("frob"	in	this	case).	All
reference	expansions	are	done	on	demand.

Default	values	can	be	specified	by	passing	them	into	the	ConfigParser
constructor	as	a	dictionary.	Additional	defaults	may	be	passed	into	the	get()
method	which	will	override	all	others.

class	RawConfigParser([defaults])

http://www.faqs.org/rfcs/rfc822.html

The	basic	configuration	object.	When	defaults	is	given,	it	is	initialized	into
the	dictionary	of	intrinsic	defaults.	This	class	does	not	support	the	magical
interpolation	behavior.	New	in	version	2.3.

class	ConfigParser([defaults])
Derived	class	of	RawConfigParser	that	implements	the	magical
interpolation	feature	and	adds	optional	arguments	to	the	get()	and
items()	methods.	The	values	in	defaults	must	be	appropriate	for	the	"%
()s"	string	interpolation.	Note	that	__name__	is	an	intrinsic	default;	its
value	is	the	section	name,	and	will	override	any	value	provided	in	defaults.

All	option	names	used	in	interpolation	will	be	passed	through	the
optionxform()	method	just	like	any	other	option	name	reference.	For
example,	using	the	default	implementation	of	optionxform()	(which
converts	option	names	to	lower	case),	the	values	"foo	%(bar)s"	and
"foo	%(BAR)s"	are	equivalent.

class	SafeConfigParser([defaults])
Derived	class	of	ConfigParser	that	implements	a	more-sane	variant	of
the	magical	interpolation	feature.	This	implementation	is	more	predictable
as	well.	New	applications	should	prefer	this	version	if	they	don't	need	to	be
compatible	with	older	versions	of	Python.	New	in	version	2.3.

exception	NoSectionError
Exception	raised	when	a	specified	section	is	not	found.

exception	DuplicateSectionError
Exception	raised	if	add_section()	is	called	with	the	name	of	a	section
that	is	already	present.

exception	NoOptionError
Exception	raised	when	a	specified	option	is	not	found	in	the	specified
section.

exception	InterpolationError
Base	class	for	exceptions	raised	when	problems	occur	performing	string
interpolation.

exception	InterpolationDepthError
Exception	raised	when	string	interpolation	cannot	be	completed	because	the
number	of	iterations	exceeds	MAX_INTERPOLATION_DEPTH.	Subclass
of	InterpolationError.

exception	InterpolationMissingOptionError
Exception	raised	when	an	option	referenced	from	a	value	does	not	exist.
Subclass	of	InterpolationError.	New	in	version	2.3.

exception	InterpolationSyntaxError
Exception	raised	when	the	source	text	into	which	substitutions	are	made
does	not	conform	to	the	required	syntax.	Subclass	of
InterpolationError.	New	in	version	2.3.

exception	MissingSectionHeaderError
Exception	raised	when	attempting	to	parse	a	file	which	has	no	section
headers.

exception	ParsingError
Exception	raised	when	errors	occur	attempting	to	parse	a	file.

MAX_INTERPOLATION_DEPTH

The	maximum	depth	for	recursive	interpolation	for	get()	when	the	raw
parameter	is	false.	This	is	relevant	only	for	the	ConfigParser	class.

See	Also:

Module	shlex:
Support	for	a	creating	UNIX	shell-like	mini-languages	which	can	be
used	as	an	alternate	format	for	application	configuration	files.

Subsections

5.17.1	RawConfigParser	Objects
5.17.2	ConfigParser	Objects
5.17.3	SafeConfigParser	Objects

Python	Library	Reference
Previous:	5.16.3	Recipes	Up:	5.	Miscellaneous	Services	Next:	5.17.1
RawConfigParser	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.17	ConfigParser	Up:	5.17	ConfigParser	Next:	5.17.2	ConfigParser
Objects

5.17.1	RawConfigParser	Objects
RawConfigParser	instances	have	the	following	methods:

defaults()
Return	a	dictionary	containing	the	instance-wide	defaults.

sections()
Return	a	list	of	the	sections	available;	DEFAULT	is	not	included	in	the	list.

add_section(section)
Add	a	section	named	section	to	the	instance.	If	a	section	by	the	given	name
already	exists,	DuplicateSectionError	is	raised.

has_section(section)
Indicates	whether	the	named	section	is	present	in	the	configuration.	The
DEFAULT	section	is	not	acknowledged.

options(section)
Returns	a	list	of	options	available	in	the	specified	section.

has_option(section,	option)
If	the	given	section	exists,	and	contains	the	given	option,	return	True;
otherwise	return	False.	New	in	version	1.6.

read(filenames)
Attempt	to	read	and	parse	a	list	of	filenames,	returning	a	list	of	filenames
which	were	successfully	parsed.	If	filenames	is	a	string	or	Unicode	string,	it
is	treated	as	a	single	filename.	If	a	file	named	in	filenames	cannot	be
opened,	that	file	will	be	ignored.	This	is	designed	so	that	you	can	specify	a
list	of	potential	configuration	file	locations	(for	example,	the	current
directory,	the	user's	home	directory,	and	some	system-wide	directory),	and
all	existing	configuration	files	in	the	list	will	be	read.	If	none	of	the	named
files	exist,	the	ConfigParser	instance	will	contain	an	empty	dataset.	An
application	which	requires	initial	values	to	be	loaded	from	a	file	should	load
the	required	file	or	files	using	readfp()	before	calling	read()	for	any

optional	files:

import	ConfigParser,	os

config	=	ConfigParser.ConfigParser()

config.readfp(open('defaults.cfg'))

config.read(['site.cfg',	os.path.expanduser('~/.myapp.cfg')])

Changed	in	version	2.4:	Returns	list	of	successfully	parsed	filenames.

readfp(fp[,	filename])
Read	and	parse	configuration	data	from	the	file	or	file-like	object	in	fp
(only	the	readline()	method	is	used).	If	filename	is	omitted	and	fp	has	a
name	attribute,	that	is	used	for	filename;	the	default	is	"<???>".

get(section,	option)
Get	an	option	value	for	the	named	section.

getint(section,	option)
A	convenience	method	which	coerces	the	option	in	the	specified	section	to
an	integer.

getfloat(section,	option)
A	convenience	method	which	coerces	the	option	in	the	specified	section	to
a	floating	point	number.

getboolean(section,	option)
A	convenience	method	which	coerces	the	option	in	the	specified	section	to
a	Boolean	value.	Note	that	the	accepted	values	for	the	option	are	"1",
"yes",	"true",	and	"on",	which	cause	this	method	to	return	True,	and
"0",	"no",	"false",	and	"off",	which	cause	it	to	return	False.
These	string	values	are	checked	in	a	case-insensitive	manner.	Any	other
value	will	cause	it	to	raise	ValueError.

items(section)
Return	a	list	of	(name,	value)	pairs	for	each	option	in	the	given	section.

set(section,	option,	value)
If	the	given	section	exists,	set	the	given	option	to	the	specified	value;

otherwise	raise	NoSectionError.	While	it	is	possible	to	use
RawConfigParser	(or	ConfigParser	with	raw	parameters	set	to
true)	for	internal	storage	of	non-string	values,	full	functionality	(including
interpolation	and	output	to	files)	can	only	be	achieved	using	string	values.
New	in	version	1.6.

write(fileobject)
Write	a	representation	of	the	configuration	to	the	specified	file	object.	This
representation	can	be	parsed	by	a	future	read()	call.	New	in	version	1.6.

remove_option(section,	option)
Remove	the	specified	option	from	the	specified	section.	If	the	section	does
not	exist,	raise	NoSectionError.	If	the	option	existed	to	be	removed,
return	True;	otherwise	return	False.	New	in	version	1.6.

remove_section(section)
Remove	the	specified	section	from	the	configuration.	If	the	section	in	fact
existed,	return	True.	Otherwise	return	False.

optionxform(option)
Transforms	the	option	name	option	as	found	in	an	input	file	or	as	passed	in
by	client	code	to	the	form	that	should	be	used	in	the	internal	structures.	The
default	implementation	returns	a	lower-case	version	of	option;	subclasses
may	override	this	or	client	code	can	set	an	attribute	of	this	name	on
instances	to	affect	this	behavior.	Setting	this	to	str(),	for	example,	would
make	option	names	case	sensitive.

Python	Library	Reference
Previous:	5.17	ConfigParser	Up:	5.17	ConfigParser	Next:	5.17.2	ConfigParser
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.17.1	RawConfigParser	Objects	Up:	5.17	ConfigParser	Next:
5.17.3	SafeConfigParser	Objects

5.17.2	ConfigParser	Objects
The	ConfigParser	class	extends	some	methods	of	the	RawConfigParser
interface,	adding	some	optional	arguments.

get(section,	option[,	raw[,	vars]])
Get	an	option	value	for	the	named	section.	All	the	"%"	interpolations	are
expanded	in	the	return	values,	based	on	the	defaults	passed	into	the
constructor,	as	well	as	the	options	vars	provided,	unless	the	raw	argument	is
true.

items(section[,	raw[,	vars]])
Return	a	list	of	(name,	value)	pairs	for	each	option	in	the	given	section.
Optional	arguments	have	the	same	meaning	as	for	the	get()	method.	New
in	version	2.3.

Python	Library	Reference
Previous:	5.17.1	RawConfigParser	Objects	Up:	5.17	ConfigParser	Next:
5.17.3	SafeConfigParser	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.17.2	ConfigParser	Objects	Up:	5.17	ConfigParser	Next:	5.18
fileinput

5.17.3	SafeConfigParser	Objects
The	SafeConfigParser	class	implements	the	same	extended	interface	as
ConfigParser,	with	the	following	addition:

set(section,	option,	value)
If	the	given	section	exists,	set	the	given	option	to	the	specified	value;
otherwise	raise	NoSectionError.	value	must	be	a	string	(str	or
unicode);	if	not,	TypeError	is	raised.	New	in	version	2.4.

Python	Library	Reference
Previous:	5.17.2	ConfigParser	Objects	Up:	5.17	ConfigParser	Next:	5.18
fileinput

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.17.3	SafeConfigParser	Objects	Up:	5.	Miscellaneous	Services
Next:	5.19	calendar

5.18	fileinput	--	Iterate	over	lines
from	multiple	input	streams
This	module	implements	a	helper	class	and	functions	to	quickly	write	a	loop
over	standard	input	or	a	list	of	files.

The	typical	use	is:

import	fileinput

for	line	in	fileinput.input():

				process(line)

This	iterates	over	the	lines	of	all	files	listed	in	sys.argv[1:],	defaulting	to
sys.stdin	if	the	list	is	empty.	If	a	filename	is	'-',	it	is	also	replaced	by
sys.stdin.	To	specify	an	alternative	list	of	filenames,	pass	it	as	the	first
argument	to	input().	A	single	file	name	is	also	allowed.

All	files	are	opened	in	text	mode.	If	an	I/O	error	occurs	during	opening	or
reading	a	file,	IOError	is	raised.

If	sys.stdin	is	used	more	than	once,	the	second	and	further	use	will	return	no
lines,	except	perhaps	for	interactive	use,	or	if	it	has	been	explicitly	reset	(e.g.
using	sys.stdin.seek(0)).

Empty	files	are	opened	and	immediately	closed;	the	only	time	their	presence	in
the	list	of	filenames	is	noticeable	at	all	is	when	the	last	file	opened	is	empty.

It	is	possible	that	the	last	line	of	a	file	does	not	end	in	a	newline	character;	lines
are	returned	including	the	trailing	newline	when	it	is	present.

The	following	function	is	the	primary	interface	of	this	module:

input([files[,	inplace[,	backup]]])
Create	an	instance	of	the	FileInput	class.	The	instance	will	be	used	as
global	state	for	the	functions	of	this	module,	and	is	also	returned	to	use
during	iteration.	The	parameters	to	this	function	will	be	passed	along	to	the
constructor	of	the	FileInput	class.

The	following	functions	use	the	global	state	created	by	input();	if	there	is	no
active	state,	RuntimeError	is	raised.

filename()
Return	the	name	of	the	file	currently	being	read.	Before	the	first	line	has
been	read,	returns	None.

lineno()
Return	the	cumulative	line	number	of	the	line	that	has	just	been	read.
Before	the	first	line	has	been	read,	returns	0.	After	the	last	line	of	the	last
file	has	been	read,	returns	the	line	number	of	that	line.

filelineno()
Return	the	line	number	in	the	current	file.	Before	the	first	line	has	been
read,	returns	0.	After	the	last	line	of	the	last	file	has	been	read,	returns	the
line	number	of	that	line	within	the	file.

isfirstline()
Returns	true	if	the	line	just	read	is	the	first	line	of	its	file,	otherwise	returns
false.

isstdin()
Returns	true	if	the	last	line	was	read	from	sys.stdin,	otherwise	returns
false.

nextfile()
Close	the	current	file	so	that	the	next	iteration	will	read	the	first	line	from
the	next	file	(if	any);	lines	not	read	from	the	file	will	not	count	towards	the
cumulative	line	count.	The	filename	is	not	changed	until	after	the	first	line
of	the	next	file	has	been	read.	Before	the	first	line	has	been	read,	this
function	has	no	effect;	it	cannot	be	used	to	skip	the	first	file.	After	the	last
line	of	the	last	file	has	been	read,	this	function	has	no	effect.

close()
Close	the	sequence.

The	class	which	implements	the	sequence	behavior	provided	by	the	module	is

available	for	subclassing	as	well:

class	FileInput([files[,	inplace[,	backup]]])
Class	FileInput	is	the	implementation;	its	methods	filename(),
lineno(),	fileline(),	isfirstline(),	isstdin(),
nextfile()	and	close()	correspond	to	the	functions	of	the	same
name	in	the	module.	In	addition	it	has	a	readline()	method	which
returns	the	next	input	line,	and	a	__getitem__()	method	which
implements	the	sequence	behavior.	The	sequence	must	be	accessed	in
strictly	sequential	order;	random	access	and	readline()	cannot	be
mixed.

Optional	in-place	filtering:	if	the	keyword	argument	inplace=1	is	passed	to
input()	or	to	the	FileInput	constructor,	the	file	is	moved	to	a	backup	file
and	standard	output	is	directed	to	the	input	file	(if	a	file	of	the	same	name	as	the
backup	file	already	exists,	it	will	be	replaced	silently).	This	makes	it	possible	to
write	a	filter	that	rewrites	its	input	file	in	place.	If	the	keyword	argument
backup='.<some	extension>'	is	also	given,	it	specifies	the	extension	for
the	backup	file,	and	the	backup	file	remains	around;	by	default,	the	extension	is
'.bak'	and	it	is	deleted	when	the	output	file	is	closed.	In-place	filtering	is
disabled	when	standard	input	is	read.

Caveat:	The	current	implementation	does	not	work	for	MS-DOS	8+3
filesystems.

Python	Library	Reference
Previous:	5.17.3	SafeConfigParser	Objects	Up:	5.	Miscellaneous	Services
Next:	5.19	calendar

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.18	fileinput	Up:	5.	Miscellaneous	Services	Next:	5.20	cmd

5.19	calendar	--	General	calendar-
related	functions
This	module	allows	you	to	output	calendars	like	the	UNIX	cal	program,	and
provides	additional	useful	functions	related	to	the	calendar.	By	default,	these
calendars	have	Monday	as	the	first	day	of	the	week,	and	Sunday	as	the	last	(the
European	convention).	Use	setfirstweekday()	to	set	the	first	day	of	the
week	to	Sunday	(6)	or	to	any	other	weekday.	Parameters	that	specify	dates	are
given	as	integers.

Most	of	these	functions	rely	on	the	datetime	module	which	uses	an	idealized
calendar,	the	current	Gregorian	calendar	indefinitely	extended	in	both	directions.
This	matches	the	definition	of	the	"proleptic	Gregorian"	calendar	in	Dershowitz
and	Reingold's	book	"Calendrical	Calculations",	where	it's	the	base	calendar	for
all	computations.

setfirstweekday(weekday)
Sets	the	weekday	(0	is	Monday,	6	is	Sunday)	to	start	each	week.	The	values
MONDAY,	TUESDAY,	WEDNESDAY,	THURSDAY,	FRIDAY,	SATURDAY,
and	SUNDAY	are	provided	for	convenience.	For	example,	to	set	the	first
weekday	to	Sunday:

import	calendar

calendar.setfirstweekday(calendar.SUNDAY)

New	in	version	2.0.

firstweekday()
Returns	the	current	setting	for	the	weekday	to	start	each	week.	New	in
version	2.0.

isleap(year)
Returns	True	if	year	is	a	leap	year,	otherwise	False.

leapdays(y1,	y2)
Returns	the	number	of	leap	years	in	the	range	[y1...y2),	where	y1	and	y2	are

years.	Changed	in	version	2.0:	This	function	didn't	work	for	ranges
spanning	a	century	change	in	Python	1.5.2.

weekday(year,	month,	day)
Returns	the	day	of	the	week	(0	is	Monday)	for	year	(1970-...),	month	(1-
12),	day	(1-31).

monthrange(year,	month)
Returns	weekday	of	first	day	of	the	month	and	number	of	days	in	month,
for	the	specified	year	and	month.

monthcalendar(year,	month)
Returns	a	matrix	representing	a	month's	calendar.	Each	row	represents	a
week;	days	outside	of	the	month	a	represented	by	zeros.	Each	week	begins
with	Monday	unless	set	by	setfirstweekday().

prmonth(theyear,	themonth[,	w[,	l]])
Prints	a	month's	calendar	as	returned	by	month().

month(theyear,	themonth[,	w[,	l]])
Returns	a	month's	calendar	in	a	multi-line	string.	If	w	is	provided,	it
specifies	the	width	of	the	date	columns,	which	are	centered.	If	l	is	given,	it
specifies	the	number	of	lines	that	each	week	will	use.	Depends	on	the	first
weekday	as	set	by	setfirstweekday().	New	in	version	2.0.

prcal(year[,	w[,	l[c]]])
Prints	the	calendar	for	an	entire	year	as	returned	by	calendar().

calendar(year[,	w[,	l[c]]])
Returns	a	3-column	calendar	for	an	entire	year	as	a	multi-line	string.
Optional	parameters	w,	l,	and	c	are	for	date	column	width,	lines	per	week,
and	number	of	spaces	between	month	columns,	respectively.	Depends	on
the	first	weekday	as	set	by	setfirstweekday().	The	earliest	year	for
which	a	calendar	can	be	generated	is	platform-dependent.	New	in	version
2.0.

timegm(tuple)

An	unrelated	but	handy	function	that	takes	a	time	tuple	such	as	returned	by
the	gmtime()	function	in	the	time	module,	and	returns	the
corresponding	UNIX	timestamp	value,	assuming	an	epoch	of	1970,	and	the
POSIX	encoding.	In	fact,	time.gmtime()	and	timegm()	are	each
others'	inverse.	New	in	version	2.0.

See	Also:

Module	datetime:
Object-oriented	interface	to	dates	and	times	with	similar	functionality
to	the	time	module.

Module	time:
Low-level	time	related	functions.

Python	Library	Reference
Previous:	5.18	fileinput	Up:	5.	Miscellaneous	Services	Next:	5.20	cmd

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.19	calendar	Up:	5.	Miscellaneous	Services	Next:	5.20.1	Cmd
Objects

5.20	cmd	--	Support	for	line-oriented
command	interpreters
The	Cmd	class	provides	a	simple	framework	for	writing	line-oriented	command
interpreters.	These	are	often	useful	for	test	harnesses,	administrative	tools,	and
prototypes	that	will	later	be	wrapped	in	a	more	sophisticated	interface.

class	Cmd([completekey[,	stdin[,	stdout]]])
A	Cmd	instance	or	subclass	instance	is	a	line-oriented	interpreter
framework.	There	is	no	good	reason	to	instantiate	Cmd	itself;	rather,	it's
useful	as	a	superclass	of	an	interpreter	class	you	define	yourself	in	order	to
inherit	Cmd's	methods	and	encapsulate	action	methods.

The	optional	argument	completekey	is	the	readline	name	of	a
completion	key;	it	defaults	to	Tab.	If	completekey	is	not	None	and
readline	is	available,	command	completion	is	done	automatically.

The	optional	arguments	stdin	and	stdout	specify	the	input	and	output	file
objects	that	the	Cmd	instance	or	subclass	instance	will	use	for	input	and
output.	If	not	specified,	they	will	default	to	sys.stdin	and	sys.stdout.

Changed	in	version	2.3:	The	stdin	and	stdout	parameters	were	added..

Subsections

5.20.1	Cmd	Objects

Python	Library	Reference
Previous:	5.19	calendar	Up:	5.	Miscellaneous	Services	Next:	5.20.1	Cmd
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.20	cmd	Up:	5.20	cmd	Next:	5.21	shlex

5.20.1	Cmd	Objects
A	Cmd	instance	has	the	following	methods:

cmdloop([intro])
Repeatedly	issue	a	prompt,	accept	input,	parse	an	initial	prefix	off	the
received	input,	and	dispatch	to	action	methods,	passing	them	the	remainder
of	the	line	as	argument.

The	optional	argument	is	a	banner	or	intro	string	to	be	issued	before	the
first	prompt	(this	overrides	the	intro	class	member).

If	the	readline	module	is	loaded,	input	will	automatically	inherit	bash-
like	history-list	editing	(e.g.	Control-P	scrolls	back	to	the	last	command,
Control-N	forward	to	the	next	one,	Control-F	moves	the	cursor	to	the	right
non-destructively,	Control-B	moves	the	cursor	to	the	left	non-destructively,
etc.).

An	end-of-file	on	input	is	passed	back	as	the	string	'EOF'.

An	interpreter	instance	will	recognize	a	command	name	"foo"	if	and	only
if	it	has	a	method	do_foo().	As	a	special	case,	a	line	beginning	with	the
character	"?"	is	dispatched	to	the	method	do_help().	As	another	special
case,	a	line	beginning	with	the	character	"!"	is	dispatched	to	the	method
do_shell()	(if	such	a	method	is	defined).

This	method	will	return	when	the	postcmd()	method	returns	a	true	value.
The	stop	argument	to	postcmd()	is	the	return	value	from	the	command's
corresponding	do_*()	method.

If	completion	is	enabled,	completing	commands	will	be	done	automatically,
and	completing	of	commands	args	is	done	by	calling	complete_foo()
with	arguments	text,	line,	begidx,	and	endidx.	text	is	the	string	prefix	we	are
attempting	to	match:	all	returned	matches	must	begin	with	it.	line	is	the
current	input	line	with	leading	whitespace	removed,	begidx	and	endidx	are
the	beginning	and	ending	indexes	of	the	prefix	text,	which	could	be	used	to
provide	different	completion	depending	upon	which	position	the	argument

is	in.

All	subclasses	of	Cmd	inherit	a	predefined	do_help().	This	method,
called	with	an	argument	'bar',	invokes	the	corresponding	method
help_bar().	With	no	argument,	do_help()	lists	all	available	help
topics	(that	is,	all	commands	with	corresponding	help_*()	methods),	and
also	lists	any	undocumented	commands.

onecmd(str)
Interpret	the	argument	as	though	it	had	been	typed	in	response	to	the
prompt.	This	may	be	overridden,	but	should	not	normally	need	to	be;	see
the	precmd()	and	postcmd()	methods	for	useful	execution	hooks.	The
return	value	is	a	flag	indicating	whether	interpretation	of	commands	by	the
interpreter	should	stop.	If	there	is	a	do_*()	method	for	the	command	str,
the	return	value	of	that	method	is	returned,	otherwise	the	return	value	from
the	default()	method	is	returned.

emptyline()
Method	called	when	an	empty	line	is	entered	in	response	to	the	prompt.	If
this	method	is	not	overridden,	it	repeats	the	last	nonempty	command
entered.

default(line)
Method	called	on	an	input	line	when	the	command	prefix	is	not	recognized.
If	this	method	is	not	overridden,	it	prints	an	error	message	and	returns.

completedefault(text,	line,	begidx,	endidx)
Method	called	to	complete	an	input	line	when	no	command-specific
complete_*()	method	is	available.	By	default,	it	returns	an	empty	list.

precmd(line)
Hook	method	executed	just	before	the	command	line	line	is	interpreted,	but
after	the	input	prompt	is	generated	and	issued.	This	method	is	a	stub	in
Cmd;	it	exists	to	be	overridden	by	subclasses.	The	return	value	is	used	as
the	command	which	will	be	executed	by	the	onecmd()	method;	the
precmd()	implementation	may	re-write	the	command	or	simply	return
line	unchanged.

postcmd(stop,	line)
Hook	method	executed	just	after	a	command	dispatch	is	finished.	This
method	is	a	stub	in	Cmd;	it	exists	to	be	overridden	by	subclasses.	line	is	the
command	line	which	was	executed,	and	stop	is	a	flag	which	indicates
whether	execution	will	be	terminated	after	the	call	to	postcmd();	this
will	be	the	return	value	of	the	onecmd()	method.	The	return	value	of	this
method	will	be	used	as	the	new	value	for	the	internal	flag	which
corresponds	to	stop;	returning	false	will	cause	interpretation	to	continue.

preloop()
Hook	method	executed	once	when	cmdloop()	is	called.	This	method	is	a
stub	in	Cmd;	it	exists	to	be	overridden	by	subclasses.

postloop()
Hook	method	executed	once	when	cmdloop()	is	about	to	return.	This
method	is	a	stub	in	Cmd;	it	exists	to	be	overridden	by	subclasses.

Instances	of	Cmd	subclasses	have	some	public	instance	variables:

prompt

The	prompt	issued	to	solicit	input.

identchars

The	string	of	characters	accepted	for	the	command	prefix.

lastcmd

The	last	nonempty	command	prefix	seen.

intro

A	string	to	issue	as	an	intro	or	banner.	May	be	overridden	by	giving	the
cmdloop()	method	an	argument.

doc_header

The	header	to	issue	if	the	help	output	has	a	section	for	documented
commands.

misc_header

The	header	to	issue	if	the	help	output	has	a	section	for	miscellaneous	help
topics	(that	is,	there	are	help_*()	methods	without	corresponding	do_*

()	methods).

undoc_header

The	header	to	issue	if	the	help	output	has	a	section	for	undocumented
commands	(that	is,	there	are	do_*()	methods	without	corresponding
help_*()	methods).

ruler

The	character	used	to	draw	separator	lines	under	the	help-message	headers.
If	empty,	no	ruler	line	is	drawn.	It	defaults	to	"=".

use_rawinput

A	flag,	defaulting	to	true.	If	true,	cmdloop()	uses	raw_input()	to
display	a	prompt	and	read	the	next	command;	if	false,
sys.stdout.write()	and	sys.stdin.readline()	are	used.
(This	means	that	by	importing	readline,	on	systems	that	support	it,	the
interpreter	will	automatically	support	Emacs-like	line	editing	and
command-history	keystrokes.)

Python	Library	Reference
Previous:	5.20	cmd	Up:	5.20	cmd	Next:	5.21	shlex

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.20.1	Cmd	Objects	Up:	5.	Miscellaneous	Services	Next:	5.21.1
shlex	Objects

5.21	shlex	--	Simple	lexical	analysis
New	in	version	1.5.2.

The	shlex	class	makes	it	easy	to	write	lexical	analyzers	for	simple	syntaxes
resembling	that	of	the	UNIX	shell.	This	will	often	be	useful	for	writing
minilanguages,	(for	example,	in	run	control	files	for	Python	applications)	or	for
parsing	quoted	strings.

The	shlex	module	defines	the	following	functions:

split(s[,	comments])
Split	the	string	s	using	shell-like	syntax.	If	comments	is	False	(the
default),	the	parsing	of	comments	in	the	given	string	will	be	disabled
(setting	the	commenters	member	of	the	shlex	instance	to	the	empty
string).	This	function	operates	in	POSIX	mode.	New	in	version	2.3.

The	shlex	module	defines	the	following	class:

class	shlex([instream[,	infile[,	posix]]])
A	shlex	instance	or	subclass	instance	is	a	lexical	analyzer	object.	The
initialization	argument,	if	present,	specifies	where	to	read	characters	from.
It	must	be	a	file-/stream-like	object	with	read()	and	readline()
methods,	or	a	string	(strings	are	accepted	since	Python	2.3).	If	no	argument
is	given,	input	will	be	taken	from	sys.stdin.	The	second	optional
argument	is	a	filename	string,	which	sets	the	initial	value	of	the	infile
member.	If	the	instream	argument	is	omitted	or	equal	to	sys.stdin,	this
second	argument	defaults	to	``stdin''.	The	posix	argument	was	introduced	in
Python	2.3,	and	defines	the	operational	mode.	When	posix	is	not	true
(default),	the	shlex	instance	will	operate	in	compatibility	mode.	When
operating	in	POSIX	mode,	shlex	will	try	to	be	as	close	as	possible	to	the
POSIX	shell	parsing	rules.	See	section	5.21.1.

See	Also:

Module	ConfigParser:
Parser	for	configuration	files	similar	to	the	Windows	.ini	files.

Subsections

5.21.1	shlex	Objects
5.21.2	Parsing	Rules

Python	Library	Reference
Previous:	5.20.1	Cmd	Objects	Up:	5.	Miscellaneous	Services	Next:	5.21.1
shlex	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.21	shlex	Up:	5.21	shlex	Next:	5.21.2	Parsing	Rules

5.21.1	shlex	Objects
A	shlex	instance	has	the	following	methods:

get_token()
Return	a	token.	If	tokens	have	been	stacked	using	push_token(),	pop	a
token	off	the	stack.	Otherwise,	read	one	from	the	input	stream.	If	reading
encounters	an	immediate	end-of-file,	self.eof	is	returned	(the	empty
string	('')	in	non-POSIX	mode,	and	None	in	POSIX	mode).

push_token(str)
Push	the	argument	onto	the	token	stack.

read_token()
Read	a	raw	token.	Ignore	the	pushback	stack,	and	do	not	interpret	source
requests.	(This	is	not	ordinarily	a	useful	entry	point,	and	is	documented	here
only	for	the	sake	of	completeness.)

sourcehook(filename)
When	shlex	detects	a	source	request	(see	source	below)	this	method	is
given	the	following	token	as	argument,	and	expected	to	return	a	tuple
consisting	of	a	filename	and	an	open	file-like	object.

Normally,	this	method	first	strips	any	quotes	off	the	argument.	If	the	result
is	an	absolute	pathname,	or	there	was	no	previous	source	request	in	effect,
or	the	previous	source	was	a	stream	(such	as	sys.stdin),	the	result	is	left
alone.	Otherwise,	if	the	result	is	a	relative	pathname,	the	directory	part	of
the	name	of	the	file	immediately	before	it	on	the	source	inclusion	stack	is
prepended	(this	behavior	is	like	the	way	the	C	preprocessor	handles
#include	"file.h").

The	result	of	the	manipulations	is	treated	as	a	filename,	and	returned	as	the
first	component	of	the	tuple,	with	open()	called	on	it	to	yield	the	second
component.	(Note:	this	is	the	reverse	of	the	order	of	arguments	in	instance
initialization!)

This	hook	is	exposed	so	that	you	can	use	it	to	implement	directory	search
paths,	addition	of	file	extensions,	and	other	namespace	hacks.	There	is	no
corresponding	`close'	hook,	but	a	shlex	instance	will	call	the	close()
method	of	the	sourced	input	stream	when	it	returns	EOF.

For	more	explicit	control	of	source	stacking,	use	the	push_source()
and	pop_source()	methods.

push_source(stream[,	filename])
Push	an	input	source	stream	onto	the	input	stack.	If	the	filename	argument
is	specified	it	will	later	be	available	for	use	in	error	messages.	This	is	the
same	method	used	internally	by	the	sourcehook	method.	New	in	version
2.1.

pop_source()
Pop	the	last-pushed	input	source	from	the	input	stack.	This	is	the	same
method	used	internally	when	the	lexer	reaches	EOF	on	a	stacked	input
stream.	New	in	version	2.1.

error_leader([file[,	line]])
This	method	generates	an	error	message	leader	in	the	format	of	a	UNIX	C
compiler	error	label;	the	format	is	'"%s",	line	%d:	',	where	the
"%s"	is	replaced	with	the	name	of	the	current	source	file	and	the	"%d"	with
the	current	input	line	number	(the	optional	arguments	can	be	used	to
override	these).

This	convenience	is	provided	to	encourage	shlex	users	to	generate	error
messages	in	the	standard,	parseable	format	understood	by	Emacs	and	other
UNIX	tools.

Instances	of	shlex	subclasses	have	some	public	instance	variables	which	either
control	lexical	analysis	or	can	be	used	for	debugging:

commenters

The	string	of	characters	that	are	recognized	as	comment	beginners.	All
characters	from	the	comment	beginner	to	end	of	line	are	ignored.	Includes
just	"#"	by	default.

wordchars

The	string	of	characters	that	will	accumulate	into	multi-character	tokens.
By	default,	includes	all	ASCII	alphanumerics	and	underscore.

whitespace

Characters	that	will	be	considered	whitespace	and	skipped.	Whitespace
bounds	tokens.	By	default,	includes	space,	tab,	linefeed	and	carriage-return.

escape

Characters	that	will	be	considered	as	escape.	This	will	be	only	used	in
POSIX	mode,	and	includes	just	"\"	by	default.	New	in	version	2.3.

quotes

Characters	that	will	be	considered	string	quotes.	The	token	accumulates
until	the	same	quote	is	encountered	again	(thus,	different	quote	types
protect	each	other	as	in	the	shell.)	By	default,	includes	ASCII	single	and
double	quotes.

escapedquotes

Characters	in	quotes	that	will	interpret	escape	characters	defined	in
escape.	This	is	only	used	in	POSIX	mode,	and	includes	just	"""	by
default.	New	in	version	2.3.

whitespace_split

If	True,	tokens	will	only	be	split	in	whitespaces.	This	is	useful,	for
example,	for	parsing	command	lines	with	shlex,	getting	tokens	in	a
similar	way	to	shell	arguments.	New	in	version	2.3.

infile

The	name	of	the	current	input	file,	as	initially	set	at	class	instantiation	time
or	stacked	by	later	source	requests.	It	may	be	useful	to	examine	this	when
constructing	error	messages.

instream

The	input	stream	from	which	this	shlex	instance	is	reading	characters.

source

This	member	is	None	by	default.	If	you	assign	a	string	to	it,	that	string	will
be	recognized	as	a	lexical-level	inclusion	request	similar	to	the	"source"

keyword	in	various	shells.	That	is,	the	immediately	following	token	will
opened	as	a	filename	and	input	taken	from	that	stream	until	EOF,	at	which
point	the	close()	method	of	that	stream	will	be	called	and	the	input
source	will	again	become	the	original	input	stream.	Source	requests	may	be
stacked	any	number	of	levels	deep.

debug

If	this	member	is	numeric	and	1	or	more,	a	shlex	instance	will	print
verbose	progress	output	on	its	behavior.	If	you	need	to	use	this,	you	can
read	the	module	source	code	to	learn	the	details.

lineno

Source	line	number	(count	of	newlines	seen	so	far	plus	one).

token

The	token	buffer.	It	may	be	useful	to	examine	this	when	catching
exceptions.

eof

Token	used	to	determine	end	of	file.	This	will	be	set	to	the	empty	string
(''),	in	non-POSIX	mode,	and	to	None	in	POSIX	mode.	New	in	version
2.3.

Python	Library	Reference
Previous:	5.21	shlex	Up:	5.21	shlex	Next:	5.21.2	Parsing	Rules

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.21.1	shlex	Objects	Up:	5.21	shlex	Next:	6.	Generic	Operating
System

5.21.2	Parsing	Rules
When	operating	in	non-POSIX	mode,	shlex	will	try	to	obey	to	the	following
rules.

Quote	characters	are	not	recognized	within	words	(Do"Not"Separate	is
parsed	as	the	single	word	Do"Not"Separate);
Escape	characters	are	not	recognized;
Enclosing	characters	in	quotes	preserve	the	literal	value	of	all	characters
within	the	quotes;
Closing	quotes	separate	words	("Do"Separate	is	parsed	as	"Do"	and
Separate);
If	whitespace_split	is	False,	any	character	not	declared	to	be	a
word	character,	whitespace,	or	a	quote	will	be	returned	as	a	single-character
token.	If	it	is	True,	shlex	will	only	split	words	in	whitespaces;
EOF	is	signaled	with	an	empty	string	('');
It's	not	possible	to	parse	empty	strings,	even	if	quoted.

When	operating	in	POSIX	mode,	shlex	will	try	to	obey	to	the	following
parsing	rules.

Quotes	are	stripped	out,	and	do	not	separate	words
("Do"Not"Separate"	is	parsed	as	the	single	word	DoNotSeparate);
Non-quoted	escape	characters	(e.g.	"\")	preserve	the	literal	value	of	the
next	character	that	follows;
Enclosing	characters	in	quotes	which	are	not	part	of	escapedquotes
(e.g.	"'")	preserve	the	literal	value	of	all	characters	within	the	quotes;
Enclosing	characters	in	quotes	which	are	part	of	escapedquotes	(e.g.
""")	preserves	the	literal	value	of	all	characters	within	the	quotes,	with	the
exception	of	the	characters	mentioned	in	escape.	The	escape	characters
retain	its	special	meaning	only	when	followed	by	the	quote	in	use,	or	the
escape	character	itself.	Otherwise	the	escape	character	will	be	considered	a
normal	character.
EOF	is	signaled	with	a	None	value;
Quoted	empty	strings	('')	are	allowed;

Python	Library	Reference
Previous:	5.21.1	shlex	Objects	Up:	5.21	shlex	Next:	6.	Generic	Operating
System

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.21.2	Parsing	Rules	Up:	Python	Library	Reference	Next:	6.1	os

6.	Generic	Operating	System
Services
The	modules	described	in	this	chapter	provide	interfaces	to	operating	system
features	that	are	available	on	(almost)	all	operating	systems,	such	as	files	and	a
clock.	The	interfaces	are	generally	modeled	after	the	UNIX	or	C	interfaces,	but
they	are	available	on	most	other	systems	as	well.	Here's	an	overview:

os 	 Miscellaneous	operating	system	interfaces.
os.path 	 Common	pathname	manipulations.
dircache 	 Return	directory	listing,	with	cache	mechanism.

stat 	 Utilities	for	interpreting	the	results	of	os.stat(),
os.lstat()	and	os.fstat().

statcache 	 Stat	files,	and	remember	results.
statvfs 	 Constants	for	interpreting	the	result	of	os.statvfs().
filecmp 	 Compare	files	efficiently.
subprocess 	 Subprocess	management.
popen2 	 Subprocesses	with	accessible	standard	I/O	streams.
datetime 	 Basic	date	and	time	types.
time 	 Time	access	and	conversions.
sched 	 General	purpose	event	scheduler.
mutex 	 Lock	and	queue	for	mutual	exclusion.
getpass 	 Portable	reading	of	passwords	and	retrieval	of	the	userid.

curses 	 An	interface	to	the	curses	library,	providing	portableterminal	handling.
curses.textpad 	 Emacs-like	input	editing	in	a	curses	window.
curses.wrapper 	 Terminal	configuration	wrapper	for	curses	programs.

curses.ascii 	 Constants	and	set-membership	functions	for	ASCIIcharacters.

curses.panel 	
A	panel	stack	extension	that	adds	depth	to	curses
windows.

getopt 	 Portable	parser	for	command	line	options;	support	both
short	and	long	option	names.

optparse 	 More	convenient,	flexible,	and	powerful	command-line
parsing	library.

tempfile 	 Generate	temporary	files	and	directories.
errno 	 Standard	errno	system	symbols.
glob 	 UNIX	shell	style	pathname	pattern	expansion.
fnmatch 	 UNIX	shell	style	filename	pattern	matching.
shutil 	 High-level	file	operations,	including	copying.
locale 	 Internationalization	services.
gettext 	 Multilingual	internationalization	services.
logging 	 Logging	module	for	Python	based	on	PEP	282.
platform 	 Retrieves	as	much	platform	identifying	data	as	possible.

Python	Library	Reference
Previous:	5.21.2	Parsing	Rules	Up:	Python	Library	Reference	Next:	6.1	os

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/peps/pep-0282.html

Previous:	6.	Generic	Operating	System	Up:	6.	Generic	Operating	System
Next:	6.1.1	Process	Parameters

6.1	os	--	Miscellaneous	operating
system	interfaces
This	module	provides	a	more	portable	way	of	using	operating	system	dependent
functionality	than	importing	a	operating	system	dependent	built-in	module	like
posix	or	nt.

This	module	searches	for	an	operating	system	dependent	built-in	module	like
mac	or	posix	and	exports	the	same	functions	and	data	as	found	there.	The
design	of	all	Python's	built-in	operating	system	dependent	modules	is	such	that
as	long	as	the	same	functionality	is	available,	it	uses	the	same	interface;	for
example,	the	function	os.stat(path)	returns	stat	information	about	path	in
the	same	format	(which	happens	to	have	originated	with	the	POSIX	interface).

Extensions	peculiar	to	a	particular	operating	system	are	also	available	through
the	os	module,	but	using	them	is	of	course	a	threat	to	portability!

Note	that	after	the	first	time	os	is	imported,	there	is	no	performance	penalty	in
using	functions	from	os	instead	of	directly	from	the	operating	system	dependent
built-in	module,	so	there	should	be	no	reason	not	to	use	os!

The	os	module	contains	many	functions	and	data	values.	The	items	below	and
in	the	following	sub-sections	are	all	available	directly	from	the	os	module.

exception	error
This	exception	is	raised	when	a	function	returns	a	system-related	error	(not
for	illegal	argument	types	or	other	incidental	errors).	This	is	also	known	as
the	built-in	exception	OSError.	The	accompanying	value	is	a	pair
containing	the	numeric	error	code	from	errno	and	the	corresponding
string,	as	would	be	printed	by	the	C	function	perror().	See	the	module
errno,	which	contains	names	for	the	error	codes	defined	by	the	underlying
operating	system.

When	exceptions	are	classes,	this	exception	carries	two	attributes,	errno
and	strerror.	The	first	holds	the	value	of	the	C	errno	variable,	and	the
latter	holds	the	corresponding	error	message	from	strerror().	For

exceptions	that	involve	a	file	system	path	(such	as	chdir()	or
unlink()),	the	exception	instance	will	contain	a	third	attribute,
filename,	which	is	the	file	name	passed	to	the	function.

name

The	name	of	the	operating	system	dependent	module	imported.	The
following	names	have	currently	been	registered:	'posix',	'nt',	'mac',
'os2',	'ce',	'java',	'riscos'.

path

The	corresponding	operating	system	dependent	standard	module	for
pathname	operations,	such	as	posixpath	or	macpath.	Thus,	given	the
proper	imports,	os.path.split(file)	is	equivalent	to	but	more	portable
than	posixpath.split(file).	Note	that	this	is	also	an	importable
module:	it	may	be	imported	directly	as	os.path.

Subsections

6.1.1	Process	Parameters
6.1.2	File	Object	Creation
6.1.3	File	Descriptor	Operations
6.1.4	Files	and	Directories
6.1.5	Process	Management
6.1.6	Miscellaneous	System	Information
6.1.7	Miscellaneous	Functions

Python	Library	Reference
Previous:	6.	Generic	Operating	System	Up:	6.	Generic	Operating	System
Next:	6.1.1	Process	Parameters

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.1	os	Up:	6.1	os	Next:	6.1.2	File	Object	Creation

6.1.1	Process	Parameters
These	functions	and	data	items	provide	information	and	operate	on	the	current
process	and	user.

environ

A	mapping	object	representing	the	string	environment.	For	example,
environ['HOME']	is	the	pathname	of	your	home	directory	(on	some
platforms),	and	is	equivalent	to	getenv("HOME")	in	C.

This	mapping	is	captured	the	first	time	the	os	module	is	imported,	typically
during	Python	startup	as	part	of	processing	site.py.	Changes	to	the
environment	made	after	this	time	are	not	reflected	in	os.environ,	except
for	changes	made	by	modifying	os.environ	directly.

If	the	platform	supports	the	putenv()	function,	this	mapping	may	be
used	to	modify	the	environment	as	well	as	query	the	environment.
putenv()	will	be	called	automatically	when	the	mapping	is	modified.
Note:	Calling	putenv()	directly	does	not	change	os.environ,	so	it's
better	to	modify	os.environ.	Note:	On	some	platforms,	including
FreeBSD	and	Mac	OS	X,	setting	environ	may	cause	memory	leaks.
Refer	to	the	system	documentation	for	putenv().

If	putenv()	is	not	provided,	this	mapping	may	be	passed	to	the
appropriate	process-creation	functions	to	cause	child	processes	to	use	a
modified	environment.

chdir(path)
fchdir(fd)
getcwd()

These	functions	are	described	in	``Files	and	Directories''	(section	6.1.4).

ctermid()
Return	the	filename	corresponding	to	the	controlling	terminal	of	the
process.	Availability:	UNIX.

getegid()
Return	the	effective	group	id	of	the	current	process.	This	corresponds	to	the
`set	id'	bit	on	the	file	being	executed	in	the	current	process.	Availability:
UNIX.

geteuid()
Return	the	current	process'	effective	user	id.	Availability:	UNIX.

getgid()
Return	the	real	group	id	of	the	current	process.	Availability:	UNIX.

getgroups()
Return	list	of	supplemental	group	ids	associated	with	the	current	process.
Availability:	UNIX.

getlogin()
Return	the	name	of	the	user	logged	in	on	the	controlling	terminal	of	the
process.	For	most	purposes,	it	is	more	useful	to	use	the	environment
variable	LOGNAME	to	find	out	who	the	user	is,	or
pwd.getpwuid(os.getuid())[0]	to	get	the	login	name	of	the
currently	effective	user	ID.	Availability:	UNIX.

getpgid(pid)
Return	the	process	group	id	of	the	process	with	process	id	pid.	If	pid	is	0,
the	process	group	id	of	the	current	process	is	returned.	Availability:	UNIX.
New	in	version	2.3.

getpgrp()
Return	the	id	of	the	current	process	group.	Availability:	UNIX.

getpid()
Return	the	current	process	id.	Availability:	UNIX,	Windows.

getppid()
Return	the	parent's	process	id.	Availability:	UNIX.

getuid()

Return	the	current	process'	user	id.	Availability:	UNIX.

getenv(varname[,	value])
Return	the	value	of	the	environment	variable	varname	if	it	exists,	or	value	if
it	doesn't.	value	defaults	to	None.	Availability:	most	flavors	of	UNIX,
Windows.

putenv(varname,	value)
Set	the	environment	variable	named	varname	to	the	string	value.	Such
changes	to	the	environment	affect	subprocesses	started	with
os.system(),	popen()	or	fork()	and	execv().	Availability:	most
flavors	of	UNIX,	Windows.

Note:	On	some	platforms,	including	FreeBSD	and	Mac	OS	X,	setting
environ	may	cause	memory	leaks.	Refer	to	the	system	documentation	for
putenv.

When	putenv()	is	supported,	assignments	to	items	in	os.environ	are
automatically	translated	into	corresponding	calls	to	putenv();	however,
calls	to	putenv()	don't	update	os.environ,	so	it	is	actually	preferable
to	assign	to	items	of	os.environ.

setegid(egid)
Set	the	current	process's	effective	group	id.	Availability:	UNIX.

seteuid(euid)
Set	the	current	process's	effective	user	id.	Availability:	UNIX.

setgid(gid)
Set	the	current	process'	group	id.	Availability:	UNIX.

setgroups(groups)
Set	the	list	of	supplemental	group	ids	associated	with	the	current	process	to
groups.	groups	must	be	a	sequence,	and	each	element	must	be	an	integer
identifying	a	group.	This	operation	is	typical	available	only	to	the
superuser.	Availability:	UNIX.	New	in	version	2.2.

setpgrp()
Calls	the	system	call	setpgrp()	or	setpgrp(0,	0)	depending	on
which	version	is	implemented	(if	any).	See	the	UNIX	manual	for	the
semantics.	Availability:	UNIX.

setpgid(pid,	pgrp)
Calls	the	system	call	setpgid()	to	set	the	process	group	id	of	the	process
with	id	pid	to	the	process	group	with	id	pgrp.	See	the	UNIX	manual	for	the
semantics.	Availability:	UNIX.

setreuid(ruid,	euid)
Set	the	current	process's	real	and	effective	user	ids.	Availability:	UNIX.

setregid(rgid,	egid)
Set	the	current	process's	real	and	effective	group	ids.	Availability:	UNIX.

getsid(pid)
Calls	the	system	call	getsid().	See	the	UNIX	manual	for	the	semantics.
Availability:	UNIX.	New	in	version	2.4.

setsid()
Calls	the	system	call	setsid().	See	the	UNIX	manual	for	the	semantics.
Availability:	UNIX.

setuid(uid)
Set	the	current	process'	user	id.	Availability:	UNIX.

strerror(code)
Return	the	error	message	corresponding	to	the	error	code	in	code.
Availability:	UNIX,	Windows.

umask(mask)
Set	the	current	numeric	umask	and	returns	the	previous	umask.	Availability:
UNIX,	Windows.

uname()
Return	a	5-tuple	containing	information	identifying	the	current	operating

system.	The	tuple	contains	5	strings:	(sysname,	nodename,	release,
version,	machine).	Some	systems	truncate	the	nodename	to	8	characters
or	to	the	leading	component;	a	better	way	to	get	the	hostname	is
socket.gethostname()	or	even
socket.gethostbyaddr(socket.gethostname()).
Availability:	recent	flavors	of	UNIX.

Python	Library	Reference
Previous:	6.1	os	Up:	6.1	os	Next:	6.1.2	File	Object	Creation

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.1.1	Process	Parameters	Up:	6.1	os	Next:	6.1.3	File	Descriptor
Operations

6.1.2	File	Object	Creation
These	functions	create	new	file	objects.

fdopen(fd[,	mode[,	bufsize]])
Return	an	open	file	object	connected	to	the	file	descriptor	fd.	The	mode	and
bufsize	arguments	have	the	same	meaning	as	the	corresponding	arguments
to	the	built-in	open()	function.	Availability:	Macintosh,	UNIX,	Windows.

Changed	in	version	2.3:	When	specified,	the	mode	argument	must	now	start
with	one	of	the	letters	"r",	"w",	or	"a",	otherwise	a	ValueError	is	raised.

popen(command[,	mode[,	bufsize]])
Open	a	pipe	to	or	from	command.	The	return	value	is	an	open	file	object
connected	to	the	pipe,	which	can	be	read	or	written	depending	on	whether
mode	is	'r'	(default)	or	'w'.	The	bufsize	argument	has	the	same	meaning
as	the	corresponding	argument	to	the	built-in	open()	function.	The	exit
status	of	the	command	(encoded	in	the	format	specified	for	wait())	is
available	as	the	return	value	of	the	close()	method	of	the	file	object,
except	that	when	the	exit	status	is	zero	(termination	without	errors),	None
is	returned.	Availability:	UNIX,	Windows.

Changed	in	version	2.0:	This	function	worked	unreliably	under	Windows	in
earlier	versions	of	Python.	This	was	due	to	the	use	of	the	_popen()
function	from	the	libraries	provided	with	Windows.	Newer	versions	of
Python	do	not	use	the	broken	implementation	from	the	Windows	libraries.

tmpfile()
Return	a	new	file	object	opened	in	update	mode	("w+b").	The	file	has	no
directory	entries	associated	with	it	and	will	be	automatically	deleted	once
there	are	no	file	descriptors	for	the	file.	Availability:	UNIX,	Windows.

For	each	of	these	popen()	variants,	if	bufsize	is	specified,	it	specifies	the
buffer	size	for	the	I/O	pipes.	mode,	if	provided,	should	be	the	string	'b'	or	't';
on	Windows	this	is	needed	to	determine	whether	the	file	objects	should	be
opened	in	binary	or	text	mode.	The	default	value	for	mode	is	't'.

Also,	for	each	of	these	variants,	on	UNIX,	cmd	may	be	a	sequence,	in	which	case
arguments	will	be	passed	directly	to	the	program	without	shell	intervention	(as
with	os.spawnv()).	If	cmd	is	a	string	it	will	be	passed	to	the	shell	(as	with
os.system()).

These	methods	do	not	make	it	possible	to	retrieve	the	return	code	from	the	child
processes.	The	only	way	to	control	the	input	and	output	streams	and	also	retrieve
the	return	codes	is	to	use	the	Popen3	and	Popen4	classes	from	the	popen2
module;	these	are	only	available	on	UNIX.

For	a	discussion	of	possible	deadlock	conditions	related	to	the	use	of	these
functions,	see	``Flow	Control	Issues''	(section	6.9.2).

popen2(cmd[,	mode[,	bufsize]])
Executes	cmd	as	a	sub-process.	Returns	the	file	objects	(child_stdin,
child_stdout).	Availability:	UNIX,	Windows.	New	in	version	2.0.

popen3(cmd[,	mode[,	bufsize]])
Executes	cmd	as	a	sub-process.	Returns	the	file	objects	(child_stdin,
child_stdout,	child_stderr).	Availability:	UNIX,	Windows.	New	in	version
2.0.

popen4(cmd[,	mode[,	bufsize]])
Executes	cmd	as	a	sub-process.	Returns	the	file	objects	(child_stdin,
child_stdout_and_stderr).	Availability:	UNIX,	Windows.	New	in	version
2.0.

(Note	that	child_stdin,	child_stdout,	and	child_stderr	are	named	from	the
point	of	view	of	the	child	process,	i.e.	child_stdin	is	the	child's	standard	input.)

This	functionality	is	also	available	in	the	popen2	module	using	functions	of	the
same	names,	but	the	return	values	of	those	functions	have	a	different	order.

Python	Library	Reference
Previous:	6.1.1	Process	Parameters	Up:	6.1	os	Next:	6.1.3	File	Descriptor
Operations

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.1.2	File	Object	Creation	Up:	6.1	os	Next:	6.1.4	Files	and
Directories

6.1.3	File	Descriptor	Operations
These	functions	operate	on	I/O	streams	referred	to	using	file	descriptors.

close(fd)
Close	file	descriptor	fd.	Availability:	Macintosh,	UNIX,	Windows.

Note: 	This	function	is	intended	for	low-level	I/O	and	must
be	applied	to	a	file	descriptor	as	returned	by	open()	or
pipe().	To	close	a	``file	object''	returned	by	the	built-in
function	open()	or	by	popen()	or	fdopen(),	use	its
close()	method.

dup(fd)
Return	a	duplicate	of	file	descriptor	fd.	Availability:	Macintosh,	UNIX,
Windows.

dup2(fd,	fd2)
Duplicate	file	descriptor	fd	to	fd2,	closing	the	latter	first	if	necessary.
Availability:	UNIX,	Windows.

fdatasync(fd)
Force	write	of	file	with	filedescriptor	fd	to	disk.	Does	not	force	update	of
metadata.	Availability:	UNIX.

fpathconf(fd,	name)
Return	system	configuration	information	relevant	to	an	open	file.	name
specifies	the	configuration	value	to	retrieve;	it	may	be	a	string	which	is	the
name	of	a	defined	system	value;	these	names	are	specified	in	a	number	of
standards	(POSIX.1,	UNIX	95,	UNIX	98,	and	others).	Some	platforms	define
additional	names	as	well.	The	names	known	to	the	host	operating	system
are	given	in	the	pathconf_names	dictionary.	For	configuration	variables
not	included	in	that	mapping,	passing	an	integer	for	name	is	also	accepted.
Availability:	UNIX.

If	name	is	a	string	and	is	not	known,	ValueError	is	raised.	If	a	specific
value	for	name	is	not	supported	by	the	host	system,	even	if	it	is	included	in
pathconf_names,	an	OSError	is	raised	with	errno.EINVAL	for	the
error	number.

fstat(fd)
Return	status	for	file	descriptor	fd,	like	stat().	Availability:	UNIX,
Windows.

fstatvfs(fd)
Return	information	about	the	filesystem	containing	the	file	associated	with
file	descriptor	fd,	like	statvfs().	Availability:	UNIX.

fsync(fd)
Force	write	of	file	with	filedescriptor	fd	to	disk.	On	UNIX,	this	calls	the
native	fsync()	function;	on	Windows,	the	MS	_commit()	function.

If	you're	starting	with	a	Python	file	object	f,	first	do	f.flush(),	and	then
do	os.fsync(f.fileno()),	to	ensure	that	all	internal	buffers
associated	with	f	are	written	to	disk.	Availability:	UNIX,	and	Windows
starting	in	2.2.3.

ftruncate(fd,	length)
Truncate	the	file	corresponding	to	file	descriptor	fd,	so	that	it	is	at	most
length	bytes	in	size.	Availability:	UNIX.

isatty(fd)
Return	True	if	the	file	descriptor	fd	is	open	and	connected	to	a	tty(-like)
device,	else	False.	Availability:	UNIX.

lseek(fd,	pos,	how)
Set	the	current	position	of	file	descriptor	fd	to	position	pos,	modified	by
how:	0	to	set	the	position	relative	to	the	beginning	of	the	file;	1	to	set	it
relative	to	the	current	position;	2	to	set	it	relative	to	the	end	of	the	file.
Availability:	Macintosh,	UNIX,	Windows.

open(file,	flags[,	mode])

Open	the	file	file	and	set	various	flags	according	to	flags	and	possibly	its
mode	according	to	mode.	The	default	mode	is	0777	(octal),	and	the	current
umask	value	is	first	masked	out.	Return	the	file	descriptor	for	the	newly
opened	file.	Availability:	Macintosh,	UNIX,	Windows.

For	a	description	of	the	flag	and	mode	values,	see	the	C	run-time
documentation;	flag	constants	(like	O_RDONLY	and	O_WRONLY)	are
defined	in	this	module	too	(see	below).

Note: 	This	function	is	intended	for	low-level	I/O.	For
normal	usage,	use	the	built-in	function	open(),	which
returns	a	``file	object''	with	read()	and	write()
methods	(and	many	more).

openpty()
Open	a	new	pseudo-terminal	pair.	Return	a	pair	of	file	descriptors	(master,
slave)	for	the	pty	and	the	tty,	respectively.	For	a	(slightly)	more	portable
approach,	use	the	pty	module.	Availability:	Some	flavors	of	UNIX.

pipe()
Create	a	pipe.	Return	a	pair	of	file	descriptors	(r,	w)	usable	for	reading
and	writing,	respectively.	Availability:	UNIX,	Windows.

read(fd,	n)
Read	at	most	n	bytes	from	file	descriptor	fd.	Return	a	string	containing	the
bytes	read.	If	the	end	of	the	file	referred	to	by	fd	has	been	reached,	an
empty	string	is	returned.	Availability:	Macintosh,	UNIX,	Windows.

Note: 	This	function	is	intended	for	low-level	I/O	and	must
be	applied	to	a	file	descriptor	as	returned	by	open()	or
pipe().	To	read	a	``file	object''	returned	by	the	built-in
function	open()	or	by	popen()	or	fdopen(),	or
sys.stdin,	use	its	read()	or	readline()	methods.

tcgetpgrp(fd)
Return	the	process	group	associated	with	the	terminal	given	by	fd	(an	open
file	descriptor	as	returned	by	open()).	Availability:	UNIX.

tcsetpgrp(fd,	pg)
Set	the	process	group	associated	with	the	terminal	given	by	fd	(an	open	file
descriptor	as	returned	by	open())	to	pg.	Availability:	UNIX.

ttyname(fd)
Return	a	string	which	specifies	the	terminal	device	associated	with	file-
descriptor	fd.	If	fd	is	not	associated	with	a	terminal	device,	an	exception	is
raised.	Availability:	UNIX.

write(fd,	str)
Write	the	string	str	to	file	descriptor	fd.	Return	the	number	of	bytes	actually
written.	Availability:	Macintosh,	UNIX,	Windows.

Note: 	This	function	is	intended	for	low-level	I/O	and	must
be	applied	to	a	file	descriptor	as	returned	by	open()	or
pipe().	To	write	a	``file	object''	returned	by	the	built-in
function	open()	or	by	popen()	or	fdopen(),	or
sys.stdout	or	sys.stderr,	use	its	write()	method.

The	following	data	items	are	available	for	use	in	constructing	the	flags	parameter
to	the	open()	function.

O_RDONLY

O_WRONLY

O_RDWR

O_APPEND

O_CREAT

O_EXCL

O_TRUNC

Options	for	the	flag	argument	to	the	open()	function.	These	can	be	bit-
wise	OR'd	together.	Availability:	Macintosh,	UNIX,	Windows.

O_DSYNC

O_RSYNC

O_SYNC

O_NDELAY

O_NONBLOCK

O_NOCTTY

More	options	for	the	flag	argument	to	the	open()	function.	Availability:
Macintosh,	UNIX.

O_BINARY

Option	for	the	flag	argument	to	the	open()	function.	This	can	be	bit-wise
OR'd	together	with	those	listed	above.	Availability:	Macintosh,	Windows.

O_NOINHERIT

O_SHORT_LIVED

O_TEMPORARY

O_RANDOM

O_SEQUENTIAL

O_TEXT

Options	for	the	flag	argument	to	the	open()	function.	These	can	be	bit-
wise	OR'd	together.	Availability:	Windows.

Python	Library	Reference
Previous:	6.1.2	File	Object	Creation	Up:	6.1	os	Next:	6.1.4	Files	and
Directories

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.1.3	File	Descriptor	Operations	Up:	6.1	os	Next:	6.1.5	Process
Management

6.1.4	Files	and	Directories

access(path,	mode)
Use	the	real	uid/gid	to	test	for	access	to	path.	Note	that	most	operations	will
use	the	effective	uid/gid,	therefore	this	routine	can	be	used	in	a	suid/sgid
environment	to	test	if	the	invoking	user	has	the	specified	access	to	path.
mode	should	be	F_OK	to	test	the	existence	of	path,	or	it	can	be	the	inclusive
OR	of	one	or	more	of	R_OK,	W_OK,	and	X_OK	to	test	permissions.	Return
True	if	access	is	allowed,	False	if	not.	See	the	UNIX	man	page	access(2)
for	more	information.	Availability:	UNIX,	Windows.

F_OK

Value	to	pass	as	the	mode	parameter	of	access()	to	test	the	existence	of
path.

R_OK

Value	to	include	in	the	mode	parameter	of	access()	to	test	the	readability
of	path.

W_OK

Value	to	include	in	the	mode	parameter	of	access()	to	test	the	writability
of	path.

X_OK

Value	to	include	in	the	mode	parameter	of	access()	to	determine	if	path
can	be	executed.

chdir(path)
Change	the	current	working	directory	to	path.	Availability:	Macintosh,
UNIX,	Windows.

fchdir(fd)
Change	the	current	working	directory	to	the	directory	represented	by	the
file	descriptor	fd.	The	descriptor	must	refer	to	an	opened	directory,	not	an
open	file.	Availability:	UNIX.	New	in	version	2.3.

getcwd()

Return	a	string	representing	the	current	working	directory.	Availability:
Macintosh,	UNIX,	Windows.

getcwdu()
Return	a	Unicode	object	representing	the	current	working	directory.
Availability:	UNIX,	Windows.	New	in	version	2.3.

chroot(path)
Change	the	root	directory	of	the	current	process	to	path.	Availability:	UNIX.
New	in	version	2.2.

chmod(path,	mode)
Change	the	mode	of	path	to	the	numeric	mode.	mode	may	take	one	of	the
following	values	(as	defined	in	the	stat	module):

S_ISUID

S_ISGID

S_ENFMT

S_ISVTX

S_IREAD

S_IWRITE

S_IEXEC

S_IRWXU

S_IRUSR

S_IWUSR

S_IXUSR

S_IRWXG

S_IRGRP

S_IWGRP

S_IXGRP

S_IRWXO

S_IROTH

S_IWOTH

S_IXOTH

Availability:	UNIX,	Windows.

chown(path,	uid,	gid)
Change	the	owner	and	group	id	of	path	to	the	numeric	uid	and	gid.

Availability:	UNIX.

lchown(path,	uid,	gid)
Change	the	owner	and	group	id	of	path	to	the	numeric	uid	and	gid.	This
function	will	not	follow	symbolic	links.	Availability:	UNIX.	New	in	version
2.3.

link(src,	dst)
Create	a	hard	link	pointing	to	src	named	dst.	Availability:	UNIX.

listdir(path)
Return	a	list	containing	the	names	of	the	entries	in	the	directory.	The	list	is
in	arbitrary	order.	It	does	not	include	the	special	entries	'.'	and	'..'
even	if	they	are	present	in	the	directory.	Availability:	Macintosh,	UNIX,
Windows.

Changed	in	version	2.3:	On	Windows	NT/2k/XP	and	Unix,	if	path	is	a
Unicode	object,	the	result	will	be	a	list	of	Unicode	objects..

lstat(path)
Like	stat(),	but	do	not	follow	symbolic	links.	Availability:	UNIX.

mkfifo(path[,	mode])
Create	a	FIFO	(a	named	pipe)	named	path	with	numeric	mode	mode.	The
default	mode	is	0666	(octal).	The	current	umask	value	is	first	masked	out
from	the	mode.	Availability:	UNIX.

FIFOs	are	pipes	that	can	be	accessed	like	regular	files.	FIFOs	exist	until
they	are	deleted	(for	example	with	os.unlink()).	Generally,	FIFOs	are
used	as	rendezvous	between	``client''	and	``server''	type	processes:	the
server	opens	the	FIFO	for	reading,	and	the	client	opens	it	for	writing.	Note
that	mkfifo()	doesn't	open	the	FIFO	--	it	just	creates	the	rendezvous
point.

mknod(path[,	mode=0600,	device])
Create	a	filesystem	node	(file,	device	special	file	or	named	pipe)	named
filename.	mode	specifies	both	the	permissions	to	use	and	the	type	of	node	to

be	created,	being	combined	(bitwise	OR)	with	one	of	S_IFREG,	S_IFCHR,
S_IFBLK,	and	S_IFIFO	(those	constants	are	available	in	stat).	For
S_IFCHR	and	S_IFBLK,	device	defines	the	newly	created	device	special
file	(probably	using	os.makedev()),	otherwise	it	is	ignored.	New	in
version	2.3.

major(device)
Extracts	a	device	major	number	from	a	raw	device	number.	New	in	version
2.3.

minor(device)
Extracts	a	device	minor	number	from	a	raw	device	number.	New	in	version
2.3.

makedev(major,	minor)
Composes	a	raw	device	number	from	the	major	and	minor	device	numbers.
New	in	version	2.3.

mkdir(path[,	mode])
Create	a	directory	named	path	with	numeric	mode	mode.	The	default	mode
is	0777	(octal).	On	some	systems,	mode	is	ignored.	Where	it	is	used,	the
current	umask	value	is	first	masked	out.	Availability:	Macintosh,	UNIX,
Windows.

makedirs(path[,	mode])
Recursive	directory	creation	function.	Like	mkdir(),	but	makes	all
intermediate-level	directories	needed	to	contain	the	leaf	directory.	Throws
an	error	exception	if	the	leaf	directory	already	exists	or	cannot	be
created.	The	default	mode	is	0777	(octal).	This	function	does	not	properly
handle	UNC	paths	(only	relevant	on	Windows	systems;	Universal	Naming
Convention	paths	are	those	that	use	the	`\\host\path'	syntax).	New	in
version	1.5.2.

pathconf(path,	name)
Return	system	configuration	information	relevant	to	a	named	file.	name
specifies	the	configuration	value	to	retrieve;	it	may	be	a	string	which	is	the
name	of	a	defined	system	value;	these	names	are	specified	in	a	number	of

standards	(POSIX.1,	UNIX	95,	UNIX	98,	and	others).	Some	platforms	define
additional	names	as	well.	The	names	known	to	the	host	operating	system
are	given	in	the	pathconf_names	dictionary.	For	configuration	variables
not	included	in	that	mapping,	passing	an	integer	for	name	is	also	accepted.
Availability:	UNIX.

If	name	is	a	string	and	is	not	known,	ValueError	is	raised.	If	a	specific
value	for	name	is	not	supported	by	the	host	system,	even	if	it	is	included	in
pathconf_names,	an	OSError	is	raised	with	errno.EINVAL	for	the
error	number.

pathconf_names

Dictionary	mapping	names	accepted	by	pathconf()	and
fpathconf()	to	the	integer	values	defined	for	those	names	by	the	host
operating	system.	This	can	be	used	to	determine	the	set	of	names	known	to
the	system.	Availability:	UNIX.

readlink(path)
Return	a	string	representing	the	path	to	which	the	symbolic	link	points.	The
result	may	be	either	an	absolute	or	relative	pathname;	if	it	is	relative,	it	may
be	converted	to	an	absolute	pathname	using
os.path.join(os.path.dirname(path),	result).	Availability:
UNIX.

remove(path)
Remove	the	file	path.	If	path	is	a	directory,	OSError	is	raised;	see
rmdir()	below	to	remove	a	directory.	This	is	identical	to	the	unlink()
function	documented	below.	On	Windows,	attempting	to	remove	a	file	that
is	in	use	causes	an	exception	to	be	raised;	on	UNIX,	the	directory	entry	is
removed	but	the	storage	allocated	to	the	file	is	not	made	available	until	the
original	file	is	no	longer	in	use.	Availability:	Macintosh,	UNIX,	Windows.

removedirs(path)
Removes	directories	recursively.	Works	like	rmdir()	except	that,	if	the
leaf	directory	is	successfully	removed,	directories	corresponding	to
rightmost	path	segments	will	be	pruned	way	until	either	the	whole	path	is
consumed	or	an	error	is	raised	(which	is	ignored,	because	it	generally
means	that	a	parent	directory	is	not	empty).	Throws	an	error	exception	if

the	leaf	directory	could	not	be	successfully	removed.	New	in	version	1.5.2.

rename(src,	dst)
Rename	the	file	or	directory	src	to	dst.	If	dst	is	a	directory,	OSError	will
be	raised.	On	UNIX,	if	dst	exists	and	is	a	file,	it	will	be	removed	silently	if
the	user	has	permission.	The	operation	may	fail	on	some	UNIX	flavors	if	src
and	dst	are	on	different	filesystems.	If	successful,	the	renaming	will	be	an
atomic	operation	(this	is	a	POSIX	requirement).	On	Windows,	if	dst	already
exists,	OSError	will	be	raised	even	if	it	is	a	file;	there	may	be	no	way	to
implement	an	atomic	rename	when	dst	names	an	existing	file.	Availability:
Macintosh,	UNIX,	Windows.

renames(old,	new)
Recursive	directory	or	file	renaming	function.	Works	like	rename(),
except	creation	of	any	intermediate	directories	needed	to	make	the	new
pathname	good	is	attempted	first.	After	the	rename,	directories
corresponding	to	rightmost	path	segments	of	the	old	name	will	be	pruned
away	using	removedirs().	New	in	version	1.5.2.

Note: 	This	function	can	fail	with	the	new	directory
structure	made	if	you	lack	permissions	needed	to	remove	the
leaf	directory	or	file.

rmdir(path)
Remove	the	directory	path.	Availability:	Macintosh,	UNIX,	Windows.

stat(path)
Perform	a	stat()	system	call	on	the	given	path.	The	return	value	is	an
object	whose	attributes	correspond	to	the	members	of	the	stat	structure,
namely:	st_mode	(protection	bits),	st_ino	(inode	number),	st_dev
(device),	st_nlink	(number	of	hard	links),	st_uid	(user	ID	of	owner),
st_gid	(group	ID	of	owner),	st_size	(size	of	file,	in	bytes),
st_atime	(time	of	most	recent	access),	st_mtime	(time	of	most	recent
content	modification),	st_ctime	(platform	dependent;	time	of	most
recent	metadata	change	on	UNIX,	or	the	time	of	creation	on	Windows).

Changed	in	version	2.3:	If	stat_float_times	returns	true,	the	time
values	are	floats,	measuring	seconds.	Fractions	of	a	second	may	be	reported
if	the	system	supports	that.	On	Mac	OS,	the	times	are	always	floats.	See
stat_float_times	for	further	discussion.	.

On	some	Unix	systems	(such	as	Linux),	the	following	attributes	may	also
be	available:	st_blocks	(number	of	blocks	allocated	for	file),
st_blksize	(filesystem	blocksize),	st_rdev	(type	of	device	if	an
inode	device).

On	Mac	OS	systems,	the	following	attributes	may	also	be	available:
st_rsize,	st_creator,	st_type.

On	RISCOS	systems,	the	following	attributes	are	also	available:
st_ftype	(file	type),	st_attrs	(attributes),	st_obtype	(object	type).

For	backward	compatibility,	the	return	value	of	stat()	is	also	accessible
as	a	tuple	of	at	least	10	integers	giving	the	most	important	(and	portable)
members	of	the	stat	structure,	in	the	order	st_mode,	st_ino,
st_dev,	st_nlink,	st_uid,	st_gid,	st_size,	st_atime,
st_mtime,	st_ctime.	More	items	may	be	added	at	the	end	by	some
implementations.	The	standard	module	stat	defines	functions	and
constants	that	are	useful	for	extracting	information	from	a	stat	structure.
(On	Windows,	some	items	are	filled	with	dummy	values.)

Note:	The	exact	meaning	and	resolution	of	the	st_atime,	st_mtime,
and	st_ctime	members	depends	on	the	operating	system	and	the	file
system.	For	example,	on	Windows	systems	using	the	FAT	or	FAT32	file
systems,	st_mtime	has	2-second	resolution,	and	st_atime	has	only	1-
day	resolution.	See	your	operating	system	documentation	for	details.

Availability:	Macintosh,	UNIX,	Windows.

Changed	in	version	2.2:	Added	access	to	values	as	attributes	of	the	returned
object.

stat_float_times([newvalue])
Determine	whether	stat_result	represents	time	stamps	as	float	objects.
If	newval	is	True,	future	calls	to	stat()	return	floats,	if	it	is	False,	future	calls

return	ints.	If	newval	is	omitted,	return	the	current	setting.

For	compatibility	with	older	Python	versions,	accessing	stat_result	as
a	tuple	always	returns	integers.	For	compatibility	with	Python	2.2,
accessing	the	time	stamps	by	field	name	also	returns	integers.	Applications
that	want	to	determine	the	fractions	of	a	second	in	a	time	stamp	can	use	this
function	to	have	time	stamps	represented	as	floats.	Whether	they	will
actually	observe	non-zero	fractions	depends	on	the	system.

Future	Python	releases	will	change	the	default	of	this	setting;	applications
that	cannot	deal	with	floating	point	time	stamps	can	then	use	this	function
to	turn	the	feature	off.

It	is	recommended	that	this	setting	is	only	changed	at	program	startup	time
in	the	__main__	module;	libraries	should	never	change	this	setting.	If	an
application	uses	a	library	that	works	incorrectly	if	floating	point	time
stamps	are	processed,	this	application	should	turn	the	feature	off	until	the
library	has	been	corrected.

statvfs(path)
Perform	a	statvfs()	system	call	on	the	given	path.	The	return	value	is
an	object	whose	attributes	describe	the	filesystem	on	the	given	path,	and
correspond	to	the	members	of	the	statvfs	structure,	namely:
f_frsize,	f_blocks,	f_bfree,	f_bavail,	f_files,	f_ffree,
f_favail,	f_flag,	f_namemax.	Availability:	UNIX.

For	backward	compatibility,	the	return	value	is	also	accessible	as	a	tuple
whose	values	correspond	to	the	attributes,	in	the	order	given	above.	The
standard	module	statvfs	defines	constants	that	are	useful	for	extracting
information	from	a	statvfs	structure	when	accessing	it	as	a	sequence;
this	remains	useful	when	writing	code	that	needs	to	work	with	versions	of
Python	that	don't	support	accessing	the	fields	as	attributes.

Changed	in	version	2.2:	Added	access	to	values	as	attributes	of	the	returned
object.

symlink(src,	dst)
Create	a	symbolic	link	pointing	to	src	named	dst.	Availability:	UNIX.

tempnam([dir[,	prefix]])
Return	a	unique	path	name	that	is	reasonable	for	creating	a	temporary	file.
This	will	be	an	absolute	path	that	names	a	potential	directory	entry	in	the
directory	dir	or	a	common	location	for	temporary	files	if	dir	is	omitted	or
None.	If	given	and	not	None,	prefix	is	used	to	provide	a	short	prefix	to	the
filename.	Applications	are	responsible	for	properly	creating	and	managing
files	created	using	paths	returned	by	tempnam();	no	automatic	cleanup	is
provided.	On	UNIX,	the	environment	variable	TMPDIR	overrides	dir,	while
on	Windows	the	TMP	is	used.	The	specific	behavior	of	this	function
depends	on	the	C	library	implementation;	some	aspects	are	underspecified
in	system	documentation.	Warning:	Use	of	tempnam()	is	vulnerable	to
symlink	attacks;	consider	using	tmpfile()	instead.	Availability:	UNIX,
Windows.

tmpnam()
Return	a	unique	path	name	that	is	reasonable	for	creating	a	temporary	file.
This	will	be	an	absolute	path	that	names	a	potential	directory	entry	in	a
common	location	for	temporary	files.	Applications	are	responsible	for
properly	creating	and	managing	files	created	using	paths	returned	by
tmpnam();	no	automatic	cleanup	is	provided.	Warning:	Use	of
tmpnam()	is	vulnerable	to	symlink	attacks;	consider	using	tmpfile()
instead.	Availability:	UNIX,	Windows.	This	function	probably	shouldn't	be
used	on	Windows,	though:	Microsoft's	implementation	of	tmpnam()
always	creates	a	name	in	the	root	directory	of	the	current	drive,	and	that's
generally	a	poor	location	for	a	temp	file	(depending	on	privileges,	you	may
not	even	be	able	to	open	a	file	using	this	name).

TMP_MAX

The	maximum	number	of	unique	names	that	tmpnam()	will	generate
before	reusing	names.

unlink(path)
Remove	the	file	path.	This	is	the	same	function	as	remove();	the
unlink()	name	is	its	traditional	UNIX	name.	Availability:	Macintosh,
UNIX,	Windows.

utime(path,	times)
Set	the	access	and	modified	times	of	the	file	specified	by	path.	If	times	is

None,	then	the	file's	access	and	modified	times	are	set	to	the	current	time.
Otherwise,	times	must	be	a	2-tuple	of	numbers,	of	the	form	(atime,
mtime)	which	is	used	to	set	the	access	and	modified	times,	respectively.
Whether	a	directory	can	be	given	for	path	depends	on	whether	the	operating
system	implements	directories	as	files	(for	example,	Windows	does	not).
Note	that	the	exact	times	you	set	here	may	not	be	returned	by	a	subsequent
stat()	call,	depending	on	the	resolution	with	which	your	operating
system	records	access	and	modification	times;	see	stat().	Changed	in
version	2.0:	Added	support	for	None	for	times.	Availability:	Macintosh,
UNIX,	Windows.

walk(top[,	topdown=True	[,	onerror=None]])
walk()	generates	the	file	names	in	a	directory	tree,	by	walking	the	tree
either	top	down	or	bottom	up.	For	each	directory	in	the	tree	rooted	at
directory	top	(including	top	itself),	it	yields	a	3-tuple	(dirpath,	dirnames,
filenames).

dirpath	is	a	string,	the	path	to	the	directory.	dirnames	is	a	list	of	the	names
of	the	subdirectories	in	dirpath	(excluding	'.'	and	'..').	filenames	is	a
list	of	the	names	of	the	non-directory	files	in	dirpath.	Note	that	the	names
in	the	lists	contain	no	path	components.	To	get	a	full	path	(which	begins
with	top)	to	a	file	or	directory	in	dirpath,	do	os.path.join(dirpath,
name).

If	optional	argument	topdown	is	true	or	not	specified,	the	triple	for	a
directory	is	generated	before	the	triples	for	any	of	its	subdirectories
(directories	are	generated	top	down).	If	topdown	is	false,	the	triple	for	a
directory	is	generated	after	the	triples	for	all	of	its	subdirectories
(directories	are	generated	bottom	up).

When	topdown	is	true,	the	caller	can	modify	the	dirnames	list	in-place
(perhaps	using	del	or	slice	assignment),	and	walk()	will	only	recurse
into	the	subdirectories	whose	names	remain	in	dirnames;	this	can	be	used	to
prune	the	search,	impose	a	specific	order	of	visiting,	or	even	to	inform
walk()	about	directories	the	caller	creates	or	renames	before	it	resumes
walk()	again.	Modifying	dirnames	when	topdown	is	false	is	ineffective,
because	in	bottom-up	mode	the	directories	in	dirnames	are	generated	before
dirnames	itself	is	generated.

By	default	errors	from	the	os.listdir()	call	are	ignored.	If	optional
argument	onerror	is	specified,	it	should	be	a	function;	it	will	be	called	with
one	argument,	an	os.error	instance.	It	can	report	the	error	to	continue	with
the	walk,	or	raise	the	exception	to	abort	the	walk.	Note	that	the	filename	is
available	as	the	filename	attribute	of	the	exception	object.

Note: 	If	you	pass	a	relative	pathname,	don't	change	the
current	working	directory	between	resumptions	of	walk().
walk()	never	changes	the	current	directory,	and	assumes
that	its	caller	doesn't	either.

Note: 	On	systems	that	support	symbolic	links,	links	to
subdirectories	appear	in	dirnames	lists,	but	walk()	will	not
visit	them	(infinite	loops	are	hard	to	avoid	when	following
symbolic	links).	To	visit	linked	directories,	you	can	identify
them	with	os.path.islink(path),	and	invoke
walk(path)	on	each	directly.

This	example	displays	the	number	of	bytes	taken	by	non-directory	files	in
each	directory	under	the	starting	directory,	except	that	it	doesn't	look	under
any	CVS	subdirectory:

import	os

from	os.path	import	join,	getsize

for	root,	dirs,	files	in	os.walk('python/Lib/email'):

				print	root,	"consumes",

				print	sum(getsize(join(root,	name))	for	name	in	files),

				print	"bytes	in",	len(files),	"non-directory	files"

				if	'CVS'	in	dirs:

								dirs.remove('CVS')		#	don't	visit	CVS	directories

In	the	next	example,	walking	the	tree	bottom	up	is	essential:	rmdir()
doesn't	allow	deleting	a	directory	before	the	directory	is	empty:

#	Delete	everything	reachable	from	the	directory	named	in	'top',

#	assuming	there	are	no	symbolic	links.

#	CAUTION:		This	is	dangerous!		For	example,	if	top	==	'/',	it

#	could	delete	all	your	disk	files.

import	os

for	root,	dirs,	files	in	os.walk(top,	topdown=False):

				for	name	in	files:

								os.remove(os.path.join(root,	name))

				for	name	in	dirs:

								os.rmdir(os.path.join(root,	name))

New	in	version	2.3.

Python	Library	Reference
Previous:	6.1.3	File	Descriptor	Operations	Up:	6.1	os	Next:	6.1.5	Process
Management

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.1.4	Files	and	Directories	Up:	6.1	os	Next:	6.1.6	Miscellaneous
System	Information

6.1.5	Process	Management
These	functions	may	be	used	to	create	and	manage	processes.

The	various	exec*()	functions	take	a	list	of	arguments	for	the	new	program
loaded	into	the	process.	In	each	case,	the	first	of	these	arguments	is	passed	to	the
new	program	as	its	own	name	rather	than	as	an	argument	a	user	may	have	typed
on	a	command	line.	For	the	C	programmer,	this	is	the	argv[0]	passed	to	a
program's	main().	For	example,	"os.execv('/bin/echo',	['foo',
'bar'])"	will	only	print	"bar"	on	standard	output;	"foo"will	seem	to	be
ignored.

abort()
Generate	a	SIGABRT	signal	to	the	current	process.	On	UNIX,	the	default
behavior	is	to	produce	a	core	dump;	on	Windows,	the	process	immediately
returns	an	exit	code	of	3.	Be	aware	that	programs	which	use
signal.signal()	to	register	a	handler	for	SIGABRT	will	behave
differently.	Availability:	UNIX,	Windows.

execl(path,	arg0,	arg1,	...)
execle(path,	arg0,	arg1,	...,	env)
execlp(file,	arg0,	arg1,	...)
execlpe(file,	arg0,	arg1,	...,	env)
execv(path,	args)
execve(path,	args,	env)
execvp(file,	args)
execvpe(file,	args,	env)

These	functions	all	execute	a	new	program,	replacing	the	current	process;
they	do	not	return.	On	UNIX,	the	new	executable	is	loaded	into	the	current
process,	and	will	have	the	same	process	ID	as	the	caller.	Errors	will	be
reported	as	OSError	exceptions.

The	"l"	and	"v"	variants	of	the	exec*()	functions	differ	in	how
command-line	arguments	are	passed.	The	"l"	variants	are	perhaps	the

easiest	to	work	with	if	the	number	of	parameters	is	fixed	when	the	code	is
written;	the	individual	parameters	simply	become	additional	parameters	to
the	execl*()	functions.	The	"v"	variants	are	good	when	the	number	of
parameters	is	variable,	with	the	arguments	being	passed	in	a	list	or	tuple	as
the	args	parameter.	In	either	case,	the	arguments	to	the	child	process	should
start	with	the	name	of	the	command	being	run,	but	this	is	not	enforced.

The	variants	which	include	a	"p"	near	the	end	(execlp(),	execlpe(),
execvp(),	and	execvpe())	will	use	the	PATH	environment	variable	to
locate	the	program	file.	When	the	environment	is	being	replaced	(using	one
of	the	exec*e()	variants,	discussed	in	the	next	paragraph),	the	new
environment	is	used	as	the	source	of	the	PATH	variable.	The	other	variants,
execl(),	execle(),	execv(),	and	execve(),	will	not	use	the	PATH
variable	to	locate	the	executable;	path	must	contain	an	appropriate	absolute
or	relative	path.

For	execle(),	execlpe(),	execve(),	and	execvpe()	(note	that
these	all	end	in	"e"),	the	env	parameter	must	be	a	mapping	which	is	used	to
define	the	environment	variables	for	the	new	process;	the	execl(),
execlp(),	execv(),	and	execvp()	all	cause	the	new	process	to
inherit	the	environment	of	the	current	process.	Availability:	UNIX,	Windows.

_exit(n)
Exit	to	the	system	with	status	n,	without	calling	cleanup	handlers,	flushing
stdio	buffers,	etc.	Availability:	UNIX,	Windows.

Note: 	The	standard	way	to	exit	is	sys.exit(n).
_exit()	should	normally	only	be	used	in	the	child	process
after	a	fork().

The	following	exit	codes	are	a	defined,	and	can	be	used	with	_exit(),
although	they	are	not	required.	These	are	typically	used	for	system	programs
written	in	Python,	such	as	a	mail	server's	external	command	delivery	program.

EX_OK

Exit	code	that	means	no	error	occurred.	Availability:	UNIX.	New	in	version
2.3.

EX_USAGE

Exit	code	that	means	the	command	was	used	incorrectly,	such	as	when	the
wrong	number	of	arguments	are	given.	Availability:	UNIX.	New	in	version
2.3.

EX_DATAERR

Exit	code	that	means	the	input	data	was	incorrect.	Availability:	UNIX.	New
in	version	2.3.

EX_NOINPUT

Exit	code	that	means	an	input	file	did	not	exist	or	was	not	readable.
Availability:	UNIX.	New	in	version	2.3.

EX_NOUSER

Exit	code	that	means	a	specified	user	did	not	exist.	Availability:	UNIX.	New
in	version	2.3.

EX_NOHOST

Exit	code	that	means	a	specified	host	did	not	exist.	Availability:	UNIX.	New
in	version	2.3.

EX_UNAVAILABLE

Exit	code	that	means	that	a	required	service	is	unavailable.	Availability:
UNIX.	New	in	version	2.3.

EX_SOFTWARE

Exit	code	that	means	an	internal	software	error	was	detected.	Availability:
UNIX.	New	in	version	2.3.

EX_OSERR

Exit	code	that	means	an	operating	system	error	was	detected,	such	as	the
inability	to	fork	or	create	a	pipe.	Availability:	UNIX.	New	in	version	2.3.

EX_OSFILE

Exit	code	that	means	some	system	file	did	not	exist,	could	not	be	opened,	or
had	some	other	kind	of	error.	Availability:	UNIX.	New	in	version	2.3.

EX_CANTCREAT

Exit	code	that	means	a	user	specified	output	file	could	not	be	created.
Availability:	UNIX.	New	in	version	2.3.

EX_IOERR

Exit	code	that	means	that	an	error	occurred	while	doing	I/O	on	some	file.
Availability:	UNIX.	New	in	version	2.3.

EX_TEMPFAIL

Exit	code	that	means	a	temporary	failure	occurred.	This	indicates
something	that	may	not	really	be	an	error,	such	as	a	network	connection	that
couldn't	be	made	during	a	retryable	operation.	Availability:	UNIX.	New	in
version	2.3.

EX_PROTOCOL

Exit	code	that	means	that	a	protocol	exchange	was	illegal,	invalid,	or	not
understood.	Availability:	UNIX.	New	in	version	2.3.

EX_NOPERM

Exit	code	that	means	that	there	were	insufficient	permissions	to	perform	the
operation	(but	not	intended	for	file	system	problems).	Availability:	UNIX.
New	in	version	2.3.

EX_CONFIG

Exit	code	that	means	that	some	kind	of	configuration	error	occurred.
Availability:	UNIX.	New	in	version	2.3.

EX_NOTFOUND

Exit	code	that	means	something	like	``an	entry	was	not	found''.	Availability:
UNIX.	New	in	version	2.3.

fork()
Fork	a	child	process.	Return	0	in	the	child,	the	child's	process	id	in	the
parent.	Availability:	UNIX.

forkpty()
Fork	a	child	process,	using	a	new	pseudo-terminal	as	the	child's	controlling
terminal.	Return	a	pair	of	(pid,	fd),	where	pid	is	0	in	the	child,	the	new
child's	process	id	in	the	parent,	and	fd	is	the	file	descriptor	of	the	master	end
of	the	pseudo-terminal.	For	a	more	portable	approach,	use	the	pty	module.
Availability:	Some	flavors	of	UNIX.

kill(pid,	sig)

Kill	the	process	pid	with	signal	sig.	Constants	for	the	specific	signals
available	on	the	host	platform	are	defined	in	the	signal	module.
Availability:	UNIX.

killpg(pgid,	sig)
Kill	the	process	group	pgid	with	the	signal	sig.	Availability:	UNIX.	New	in
version	2.3.

nice(increment)
Add	increment	to	the	process's	``niceness''.	Return	the	new	niceness.
Availability:	UNIX.

plock(op)
Lock	program	segments	into	memory.	The	value	of	op	(defined	in
<sys/lock.h>)	determines	which	segments	are	locked.	Availability:
UNIX.

popen(...)
popen2(...)
popen3(...)
popen4(...)

Run	child	processes,	returning	opened	pipes	for	communications.	These
functions	are	described	in	section	6.1.2.

spawnl(mode,	path,	...)
spawnle(mode,	path,	...,	env)
spawnlp(mode,	file,	...)
spawnlpe(mode,	file,	...,	env)
spawnv(mode,	path,	args)
spawnve(mode,	path,	args,	env)
spawnvp(mode,	file,	args)
spawnvpe(mode,	file,	args,	env)

Execute	the	program	path	in	a	new	process.	If	mode	is	P_NOWAIT,	this
function	returns	the	process	ID	of	the	new	process;	if	mode	is	P_WAIT,
returns	the	process's	exit	code	if	it	exits	normally,	or	-signal,	where	signal

is	the	signal	that	killed	the	process.	On	Windows,	the	process	ID	will
actually	be	the	process	handle,	so	can	be	used	with	the	waitpid()
function.

The	"l"	and	"v"	variants	of	the	spawn*()	functions	differ	in	how
command-line	arguments	are	passed.	The	"l"	variants	are	perhaps	the
easiest	to	work	with	if	the	number	of	parameters	is	fixed	when	the	code	is
written;	the	individual	parameters	simply	become	additional	parameters	to
the	spawnl*()	functions.	The	"v"	variants	are	good	when	the	number	of
parameters	is	variable,	with	the	arguments	being	passed	in	a	list	or	tuple	as
the	args	parameter.	In	either	case,	the	arguments	to	the	child	process	must
start	with	the	name	of	the	command	being	run.

The	variants	which	include	a	second	"p"	near	the	end	(spawnlp(),
spawnlpe(),	spawnvp(),	and	spawnvpe())	will	use	the	PATH
environment	variable	to	locate	the	program	file.	When	the	environment	is
being	replaced	(using	one	of	the	spawn*e()	variants,	discussed	in	the
next	paragraph),	the	new	environment	is	used	as	the	source	of	the	PATH
variable.	The	other	variants,	spawnl(),	spawnle(),	spawnv(),	and
spawnve(),	will	not	use	the	PATH	variable	to	locate	the	executable;	path
must	contain	an	appropriate	absolute	or	relative	path.

For	spawnle(),	spawnlpe(),	spawnve(),	and	spawnvpe()	(note
that	these	all	end	in	"e"),	the	env	parameter	must	be	a	mapping	which	is
used	to	define	the	environment	variables	for	the	new	process;	the
spawnl(),	spawnlp(),	spawnv(),	and	spawnvp()	all	cause	the
new	process	to	inherit	the	environment	of	the	current	process.

As	an	example,	the	following	calls	to	spawnlp()	and	spawnvpe()	are
equivalent:

import	os

os.spawnlp(os.P_WAIT,	'cp',	'cp',	'index.html',	'/dev/null')

L	=	['cp',	'index.html',	'/dev/null']

os.spawnvpe(os.P_WAIT,	'cp',	L,	os.environ)

Availability:	UNIX,	Windows.	spawnlp(),	spawnlpe(),	spawnvp()
and	spawnvpe()	are	not	available	on	Windows.	New	in	version	1.6.

P_NOWAIT

P_NOWAITO

Possible	values	for	the	mode	parameter	to	the	spawn*()	family	of
functions.	If	either	of	these	values	is	given,	the	spawn*()	functions	will
return	as	soon	as	the	new	process	has	been	created,	with	the	process	ID	as
the	return	value.	Availability:	UNIX,	Windows.	New	in	version	1.6.

P_WAIT

Possible	value	for	the	mode	parameter	to	the	spawn*()	family	of
functions.	If	this	is	given	as	mode,	the	spawn*()	functions	will	not	return
until	the	new	process	has	run	to	completion	and	will	return	the	exit	code	of
the	process	the	run	is	successful,	or	-signal	if	a	signal	kills	the	process.
Availability:	UNIX,	Windows.	New	in	version	1.6.

P_DETACH

P_OVERLAY

Possible	values	for	the	mode	parameter	to	the	spawn*()	family	of
functions.	These	are	less	portable	than	those	listed	above.	P_DETACH	is
similar	to	P_NOWAIT,	but	the	new	process	is	detached	from	the	console	of
the	calling	process.	If	P_OVERLAY	is	used,	the	current	process	will	be
replaced;	the	spawn*()	function	will	not	return.	Availability:	Windows.
New	in	version	1.6.

startfile(path)
Start	a	file	with	its	associated	application.	This	acts	like	double-clicking	the
file	in	Windows	Explorer,	or	giving	the	file	name	as	an	argument	to	the
start	command	from	the	interactive	command	shell:	the	file	is	opened	with
whatever	application	(if	any)	its	extension	is	associated.

startfile()	returns	as	soon	as	the	associated	application	is	launched.
There	is	no	option	to	wait	for	the	application	to	close,	and	no	way	to
retrieve	the	application's	exit	status.	The	path	parameter	is	relative	to	the
current	directory.	If	you	want	to	use	an	absolute	path,	make	sure	the	first
character	is	not	a	slash	("/");	the	underlying	Win32	ShellExecute()
function	doesn't	work	if	it	is.	Use	the	os.path.normpath()	function	to
ensure	that	the	path	is	properly	encoded	for	Win32.	Availability:	Windows.
New	in	version	2.0.

system(command)
Execute	the	command	(a	string)	in	a	subshell.	This	is	implemented	by
calling	the	Standard	C	function	system(),	and	has	the	same	limitations.
Changes	to	posix.environ,	sys.stdin,	etc.	are	not	reflected	in	the
environment	of	the	executed	command.

On	UNIX,	the	return	value	is	the	exit	status	of	the	process	encoded	in	the
format	specified	for	wait().	Note	that	POSIX	does	not	specify	the
meaning	of	the	return	value	of	the	C	system()	function,	so	the	return
value	of	the	Python	function	is	system-dependent.

On	Windows,	the	return	value	is	that	returned	by	the	system	shell	after
running	command,	given	by	the	Windows	environment	variable
COMSPEC:	on	command.com	systems	(Windows	95,	98	and	ME)	this	is
always	0;	on	cmd.exe	systems	(Windows	NT,	2000	and	XP)	this	is	the	exit
status	of	the	command	run;	on	systems	using	a	non-native	shell,	consult
your	shell	documentation.

Availability:	UNIX,	Windows.

times()
Return	a	5-tuple	of	floating	point	numbers	indicating	accumulated
(processor	or	other)	times,	in	seconds.	The	items	are:	user	time,	system
time,	children's	user	time,	children's	system	time,	and	elapsed	real	time
since	a	fixed	point	in	the	past,	in	that	order.	See	the	UNIX	manual	page
times(2)	or	the	corresponding	Windows	Platform	API	documentation.
Availability:	UNIX,	Windows.

wait()
Wait	for	completion	of	a	child	process,	and	return	a	tuple	containing	its	pid
and	exit	status	indication:	a	16-bit	number,	whose	low	byte	is	the	signal
number	that	killed	the	process,	and	whose	high	byte	is	the	exit	status	(if	the
signal	number	is	zero);	the	high	bit	of	the	low	byte	is	set	if	a	core	file	was
produced.	Availability:	UNIX.

waitpid(pid,	options)
The	details	of	this	function	differ	on	UNIX	and	Windows.

On	UNIX:	Wait	for	completion	of	a	child	process	given	by	process	id	pid,
and	return	a	tuple	containing	its	process	id	and	exit	status	indication
(encoded	as	for	wait()).	The	semantics	of	the	call	are	affected	by	the
value	of	the	integer	options,	which	should	be	0	for	normal	operation.

If	pid	is	greater	than	0,	waitpid()	requests	status	information	for	that
specific	process.	If	pid	is	0,	the	request	is	for	the	status	of	any	child	in	the
process	group	of	the	current	process.	If	pid	is	-1,	the	request	pertains	to
any	child	of	the	current	process.	If	pid	is	less	than	-1,	status	is	requested
for	any	process	in	the	process	group	-pid	(the	absolute	value	of	pid).

On	Windows:	Wait	for	completion	of	a	process	given	by	process	handle
pid,	and	return	a	tuple	containing	pid,	and	its	exit	status	shifted	left	by	8	bits
(shifting	makes	cross-platform	use	of	the	function	easier).	A	pid	less	than	or
equal	to	0	has	no	special	meaning	on	Windows,	and	raises	an	exception.
The	value	of	integer	options	has	no	effect.	pid	can	refer	to	any	process
whose	id	is	known,	not	necessarily	a	child	process.	The	spawn()
functions	called	with	P_NOWAIT	return	suitable	process	handles.

WNOHANG

The	option	for	waitpid()	to	avoid	hanging	if	no	child	process	status	is
available	immediately.	Availability:	UNIX.

WCONTINUED

This	option	causes	child	processes	to	be	reported	if	they	have	been
continued	from	a	job	control	stop	since	their	status	was	last	reported.
Availability:	Some	UNIX	systems.	New	in	version	2.3.

WUNTRACED

This	option	causes	child	processes	to	be	reported	if	they	have	been	stopped
but	their	current	state	has	not	been	reported	since	they	were	stopped.
Availability:	UNIX.	New	in	version	2.3.

The	following	functions	take	a	process	status	code	as	returned	by	system(),
wait(),	or	waitpid()	as	a	parameter.	They	may	be	used	to	determine	the
disposition	of	a	process.

WCOREDUMP(status)
Returns	True	if	a	core	dump	was	generated	for	the	process,	otherwise	it

returns	False.	Availability:	UNIX.	New	in	version	2.3.

WIFCONTINUED(status)
Returns	True	if	the	process	has	been	continued	from	a	job	control	stop,
otherwise	it	returns	False.	Availability:	UNIX.	New	in	version	2.3.

WIFSTOPPED(status)
Returns	True	if	the	process	has	been	stopped,	otherwise	it	returns	False.
Availability:	UNIX.

WIFSIGNALED(status)
Returns	True	if	the	process	exited	due	to	a	signal,	otherwise	it	returns
False.	Availability:	UNIX.

WIFEXITED(status)
Returns	True	if	the	process	exited	using	the	exit(2)	system	call,	otherwise
it	returns	False.	Availability:	UNIX.

WEXITSTATUS(status)
If	WIFEXITED(status)	is	true,	return	the	integer	parameter	to	the	exit(2)
system	call.	Otherwise,	the	return	value	is	meaningless.	Availability:	UNIX.

WSTOPSIG(status)
Return	the	signal	which	caused	the	process	to	stop.	Availability:	UNIX.

WTERMSIG(status)
Return	the	signal	which	caused	the	process	to	exit.	Availability:	UNIX.

Python	Library	Reference
Previous:	6.1.4	Files	and	Directories	Up:	6.1	os	Next:	6.1.6	Miscellaneous
System	Information

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.1.5	Process	Management	Up:	6.1	os	Next:	6.1.7	Miscellaneous
Functions

6.1.6	Miscellaneous	System	Information

confstr(name)
Return	string-valued	system	configuration	values.	name	specifies	the
configuration	value	to	retrieve;	it	may	be	a	string	which	is	the	name	of	a
defined	system	value;	these	names	are	specified	in	a	number	of	standards
(POSIX,	UNIX	95,	UNIX	98,	and	others).	Some	platforms	define	additional
names	as	well.	The	names	known	to	the	host	operating	system	are	given	in
the	confstr_names	dictionary.	For	configuration	variables	not	included
in	that	mapping,	passing	an	integer	for	name	is	also	accepted.	Availability:
UNIX.

If	the	configuration	value	specified	by	name	isn't	defined,	the	empty	string
is	returned.

If	name	is	a	string	and	is	not	known,	ValueError	is	raised.	If	a	specific
value	for	name	is	not	supported	by	the	host	system,	even	if	it	is	included	in
confstr_names,	an	OSError	is	raised	with	errno.EINVAL	for	the
error	number.

confstr_names

Dictionary	mapping	names	accepted	by	confstr()	to	the	integer	values
defined	for	those	names	by	the	host	operating	system.	This	can	be	used	to
determine	the	set	of	names	known	to	the	system.	Availability:	UNIX.

getloadavg()
Return	the	number	of	processes	in	the	system	run	queue	averaged	over	the
last	1,	5,	and	15	minutes	or	raises	OSError	if	the	load	average	was
unobtainable.

New	in	version	2.3.

sysconf(name)
Return	integer-valued	system	configuration	values.	If	the	configuration
value	specified	by	name	isn't	defined,	-1	is	returned.	The	comments
regarding	the	name	parameter	for	confstr()	apply	here	as	well;	the
dictionary	that	provides	information	on	the	known	names	is	given	by

sysconf_names.	Availability:	UNIX.

sysconf_names

Dictionary	mapping	names	accepted	by	sysconf()	to	the	integer	values
defined	for	those	names	by	the	host	operating	system.	This	can	be	used	to
determine	the	set	of	names	known	to	the	system.	Availability:	UNIX.

The	follow	data	values	are	used	to	support	path	manipulation	operations.	These
are	defined	for	all	platforms.

Higher-level	operations	on	pathnames	are	defined	in	the	os.path	module.

curdir

The	constant	string	used	by	the	operating	system	to	refer	to	the	current
directory.	For	example:	'.'	for	POSIX	or	':'	for	the	Macintosh.	Also
available	via	os.path.

pardir

The	constant	string	used	by	the	operating	system	to	refer	to	the	parent
directory.	For	example:	'..'	for	POSIX	or	'::'	for	the	Macintosh.	Also
available	via	os.path.

sep

The	character	used	by	the	operating	system	to	separate	pathname
components,	for	example,	"/"	for	POSIX	or	":"	for	the	Macintosh.	Note
that	knowing	this	is	not	sufficient	to	be	able	to	parse	or	concatenate
pathnames	--	use	os.path.split()	and	os.path.join()	--	but	it
is	occasionally	useful.	Also	available	via	os.path.

altsep

An	alternative	character	used	by	the	operating	system	to	separate	pathname
components,	or	None	if	only	one	separator	character	exists.	This	is	set	to
"/"	on	Windows	systems	where	sep	is	a	backslash.	Also	available	via
os.path.

extsep

The	character	which	separates	the	base	filename	from	the	extension;	for
example,	the	"."	in	os.py.	Also	available	via	os.path.	New	in	version
2.2.

pathsep

The	character	conventionally	used	by	the	operating	system	to	separate
search	patch	components	(as	in	PATH),	such	as	":"	for	POSIX	or	";"	for
Windows.	Also	available	via	os.path.

defpath

The	default	search	path	used	by	exec*p*()	and	spawn*p*()	if	the
environment	doesn't	have	a	'PATH'	key.	Also	available	via	os.path.

linesep

The	string	used	to	separate	(or,	rather,	terminate)	lines	on	the	current
platform.	This	may	be	a	single	character,	such	as	'\	n'	for	POSIX	or
'\r'	for	Mac	OS,	or	multiple	characters,	for	example,	'\r\n'	for
Windows.

devnull

The	file	path	of	the	null	device.	For	example:	'/dev/null'	for	POSIX
or	'Dev:Nul'	for	the	Macintosh.	Also	available	via	os.path.	New	in
version	2.4.

Python	Library	Reference
Previous:	6.1.5	Process	Management	Up:	6.1	os	Next:	6.1.7	Miscellaneous
Functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.1.6	Miscellaneous	System	Information	Up:	6.1	os	Next:	6.2
os.path

6.1.7	Miscellaneous	Functions

urandom(n)
Return	a	string	of	n	random	bytes	suitable	for	cryptographic	use.

This	function	returns	random	bytes	from	an	OS-specific	randomness
source.	The	returned	data	should	be	unpredictable	enough	for	cryptographic
applications,	though	its	exact	quality	depends	on	the	OS	implementation.
On	a	UNIX-like	system	this	will	query	/dev/urandom,	and	on	Windows	it
will	use	CryptGenRandom.	If	a	randomness	source	is	not	found,
NotImplementedError	will	be	raised.	New	in	version	2.4.

Python	Library	Reference
Previous:	6.1.6	Miscellaneous	System	Information	Up:	6.1	os	Next:	6.2
os.path

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.1.7	Miscellaneous	Functions	Up:	6.	Generic	Operating	System
Next:	6.3	dircache

6.2	os.path	--	Common	pathname
manipulations
This	module	implements	some	useful	functions	on	pathnames.

Warning:	On	Windows,	many	of	these	functions	do	not	properly	support	UNC
pathnames.	splitunc()	and	ismount()	do	handle	them	correctly.

abspath(path)
Return	a	normalized	absolutized	version	of	the	pathname	path.	On	most
platforms,	this	is	equivalent	to	normpath(join(os.getcwd(),
path)).	New	in	version	1.5.2.

basename(path)
Return	the	base	name	of	pathname	path.	This	is	the	second	half	of	the	pair
returned	by	split(path).	Note	that	the	result	of	this	function	is	different
from	the	UNIX	basename	program;	where	basename	for	'/foo/bar/'
returns	'bar',	the	basename()	function	returns	an	empty	string	('').

commonprefix(list)
Return	the	longest	path	prefix	(taken	character-by-character)	that	is	a	prefix
of	all	paths	in	list.	If	list	is	empty,	return	the	empty	string	('').	Note	that
this	may	return	invalid	paths	because	it	works	a	character	at	a	time.

dirname(path)
Return	the	directory	name	of	pathname	path.	This	is	the	first	half	of	the	pair
returned	by	split(path).

exists(path)
Return	True	if	path	refers	to	an	existing	path.	Returns	False	for	broken
symbolic	links.

lexists(path)
Return	True	if	path	refers	to	an	existing	path.	Returns	True	for	broken

symbolic	links.	Equivalent	to	exists()	on	platforms	lacking
os.lstat().	New	in	version	2.4.

expanduser(path)
Return	the	argument	with	an	initial	component	of	"~"	or	"~user"	replaced
by	that	user's	home	directory.	An	initial	"~"	is	replaced	by	the	environment
variable	HOME;	an	initial	"~user"	is	looked	up	in	the	password	directory
through	the	built-in	module	pwd.	If	the	expansion	fails,	or	if	the	path	does
not	begin	with	a	tilde,	the	path	is	returned	unchanged.	On	the	Macintosh,
this	always	returns	path	unchanged.

expandvars(path)
Return	the	argument	with	environment	variables	expanded.	Substrings	of
the	form	"$name"	or	"${name}"	are	replaced	by	the	value	of	environment
variable	name.	Malformed	variable	names	and	references	to	non-existing
variables	are	left	unchanged.	On	the	Macintosh,	this	always	returns	path
unchanged.

getatime(path)
Return	the	time	of	last	access	of	path.	The	return	value	is	a	number	giving
the	number	of	seconds	since	the	epoch	(see	the	time	module).	Raise
os.error	if	the	file	does	not	exist	or	is	inaccessible.	New	in	version
1.5.2.	Changed	in	version	2.3:	If	os.stat_float_times()	returns
True,	the	result	is	a	floating	point	number.

getmtime(path)
Return	the	time	of	last	modification	of	path.	The	return	value	is	a	number
giving	the	number	of	seconds	since	the	epoch	(see	the	time	module).
Raise	os.error	if	the	file	does	not	exist	or	is	inaccessible.	New	in
version	1.5.2.	Changed	in	version	2.3:	If	os.stat_float_times()
returns	True,	the	result	is	a	floating	point	number.

getctime(path)
Return	the	system's	ctime	which,	on	some	systems	(like	UNIX)	is	the	time	of
the	last	change,	and,	on	others	(like	Windows),	is	the	creation	time	for	path.
The	return	value	is	a	number	giving	the	number	of	seconds	since	the	epoch
(see	the	time	module).	Raise	os.error	if	the	file	does	not	exist	or	is

inaccessible.	New	in	version	2.3.

getsize(path)
Return	the	size,	in	bytes,	of	path.	Raise	os.error	if	the	file	does	not	exist
or	is	inaccessible.	New	in	version	1.5.2.

isabs(path)
Return	True	if	path	is	an	absolute	pathname	(begins	with	a	slash).

isfile(path)
Return	True	if	path	is	an	existing	regular	file.	This	follows	symbolic	links,
so	both	islink()	and	isfile()	can	be	true	for	the	same	path.

isdir(path)
Return	True	if	path	is	an	existing	directory.	This	follows	symbolic	links,
so	both	islink()	and	isdir()	can	be	true	for	the	same	path.

islink(path)
Return	True	if	path	refers	to	a	directory	entry	that	is	a	symbolic	link.
Always	False	if	symbolic	links	are	not	supported.

ismount(path)
Return	True	if	pathname	path	is	a	mount	point:	a	point	in	a	file	system
where	a	different	file	system	has	been	mounted.	The	function	checks
whether	path's	parent,	path/..,	is	on	a	different	device	than	path,	or	whether
path/..	and	path	point	to	the	same	i-node	on	the	same	device	--	this	should
detect	mount	points	for	all	UNIX	and	POSIX	variants.

join(path1[,	path2[,	...]])
Joins	one	or	more	path	components	intelligently.	If	any	component	is	an
absolute	path,	all	previous	components	are	thrown	away,	and	joining
continues.	The	return	value	is	the	concatenation	of	path1,	and	optionally
path2,	etc.,	with	exactly	one	directory	separator	(os.sep)	inserted
between	components,	unless	path2	is	empty.	Note	that	on	Windows,	since
there	is	a	current	directory	for	each	drive,	os.path.join("c:",
"foo")	represents	a	path	relative	to	the	current	directory	on	drive	C:
(c:foo),	not	c:\\foo.

normcase(path)
Normalize	the	case	of	a	pathname.	On	UNIX,	this	returns	the	path
unchanged;	on	case-insensitive	filesystems,	it	converts	the	path	to
lowercase.	On	Windows,	it	also	converts	forward	slashes	to	backward
slashes.

normpath(path)
Normalize	a	pathname.	This	collapses	redundant	separators	and	up-level
references,	e.g.	A//B,	A/./B	and	A/foo/../B	all	become	A/B.	It	does
not	normalize	the	case	(use	normcase()	for	that).	On	Windows,	it
converts	forward	slashes	to	backward	slashes.	It	should	be	understood	that
this	may	change	the	meaning	of	the	path	if	it	contains	symbolic	links!

realpath(path)
Return	the	canonical	path	of	the	specified	filename,	eliminating	any
symbolic	links	encountered	in	the	path.	Availability:	UNIX.	New	in	version
2.2.

samefile(path1,	path2)
Return	True	if	both	pathname	arguments	refer	to	the	same	file	or	directory
(as	indicated	by	device	number	and	i-node	number).	Raise	an	exception	if	a
os.stat()	call	on	either	pathname	fails.	Availability:	Macintosh,	UNIX.

sameopenfile(fp1,	fp2)
Return	True	if	the	file	objects	fp1	and	fp2	refer	to	the	same	file.	The	two
file	objects	may	represent	different	file	descriptors.	Availability:	Macintosh,
UNIX.

samestat(stat1,	stat2)
Return	True	if	the	stat	tuples	stat1	and	stat2	refer	to	the	same	file.	These
structures	may	have	been	returned	by	fstat(),	lstat(),	or	stat().
This	function	implements	the	underlying	comparison	used	by
samefile()	and	sameopenfile().	Availability:	Macintosh,	UNIX.

split(path)
Split	the	pathname	path	into	a	pair,	(head,	tail)	where	tail	is	the	last
pathname	component	and	head	is	everything	leading	up	to	that.	The	tail

part	will	never	contain	a	slash;	if	path	ends	in	a	slash,	tail	will	be	empty.	If
there	is	no	slash	in	path,	head	will	be	empty.	If	path	is	empty,	both	head
and	tail	are	empty.	Trailing	slashes	are	stripped	from	head	unless	it	is	the
root	(one	or	more	slashes	only).	In	nearly	all	cases,	join(head,	tail)
equals	path	(the	only	exception	being	when	there	were	multiple	slashes
separating	head	from	tail).

splitdrive(path)
Split	the	pathname	path	into	a	pair	(drive,	tail)	where	drive	is	either	a
drive	specification	or	the	empty	string.	On	systems	which	do	not	use	drive
specifications,	drive	will	always	be	the	empty	string.	In	all	cases,	drive	+
tail	will	be	the	same	as	path.	New	in	version	1.3.

splitext(path)
Split	the	pathname	path	into	a	pair	(root,	ext)	such	that	root	+	ext	==
path,	and	ext	is	empty	or	begins	with	a	period	and	contains	at	most	one
period.

walk(path,	visit,	arg)
Calls	the	function	visit	with	arguments	(arg,	dirname,	names)	for	each
directory	in	the	directory	tree	rooted	at	path	(including	path	itself,	if	it	is	a
directory).	The	argument	dirname	specifies	the	visited	directory,	the
argument	names	lists	the	files	in	the	directory	(gotten	from
os.listdir(dirname)).	The	visit	function	may	modify	names	to
influence	the	set	of	directories	visited	below	dirname,	e.g.,	to	avoid	visiting
certain	parts	of	the	tree.	(The	object	referred	to	by	names	must	be	modified
in	place,	using	del	or	slice	assignment.)

Note: 	Symbolic	links	to	directories	are	not	treated	as
subdirectories,	and	that	walk()	therefore	will	not	visit
them.	To	visit	linked	directories	you	must	identify	them	with
os.path.islink(file)	and	os.path.isdir(file),
and	invoke	walk()	as	necessary.

Note:	The	newer	os.walk()	generator	supplies	similar	functionality	and	can
be	easier	to	use.

supports_unicode_filenames

True	if	arbitrary	Unicode	strings	can	be	used	as	file	names	(within
limitations	imposed	by	the	file	system),	and	if	os.listdir()	returns
Unicode	strings	for	a	Unicode	argument.	New	in	version	2.3.

Python	Library	Reference
Previous:	6.1.7	Miscellaneous	Functions	Up:	6.	Generic	Operating	System
Next:	6.3	dircache

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.2	os.path	Up:	6.	Generic	Operating	System	Next:	6.4	stat

6.3	dircache	--	Cached	directory
listings
The	dircache	module	defines	a	function	for	reading	directory	listing	using	a
cache,	and	cache	invalidation	using	the	mtime	of	the	directory.	Additionally,	it
defines	a	function	to	annotate	directories	by	appending	a	slash.

The	dircache	module	defines	the	following	functions:

listdir(path)
Return	a	directory	listing	of	path,	as	gotten	from	os.listdir().	Note
that	unless	path	changes,	further	call	to	listdir()	will	not	re-read	the
directory	structure.

Note	that	the	list	returned	should	be	regarded	as	read-only.	(Perhaps	a	future
version	should	change	it	to	return	a	tuple?)

opendir(path)
Same	as	listdir().	Defined	for	backwards	compatibility.

annotate(head,	list)
Assume	list	is	a	list	of	paths	relative	to	head,	and	append,	in	place,	a	"/"	to
each	path	which	points	to	a	directory.

>>>	import	dircache

>>>	a	=	dircache.listdir('/')

>>>	a	=	a[:]	#	Copy	the	return	value	so	we	can	change	'a'

>>>	a

['bin',	'boot',	'cdrom',	'dev',	'etc',	'floppy',	'home',	'initrd',	'lib',	'lost+

found',	'mnt',	'proc',	'root',	'sbin',	'tmp',	'usr',	'var',	'vmlinuz']

>>>	dircache.annotate('/',	a)

>>>	a

['bin/',	'boot/',	'cdrom/',	'dev/',	'etc/',	'floppy/',	'home/',	'initrd/',	'lib/

',	'lost+found/',	'mnt/',	'proc/',	'root/',	'sbin/',	'tmp/',	'usr/',	'var/',	'vm

linuz']

Python	Library	Reference

Previous:	6.2	os.path	Up:	6.	Generic	Operating	System	Next:	6.4	stat

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.3	dircache	Up:	6.	Generic	Operating	System	Next:	6.5	statcache

6.4	stat	--	Interpreting	stat()
results
The	stat	module	defines	constants	and	functions	for	interpreting	the	results	of
os.stat(),	os.fstat()	and	os.lstat()	(if	they	exist).	For	complete
details	about	the	stat(),	fstat()	and	lstat()	calls,	consult	the
documentation	for	your	system.

The	stat	module	defines	the	following	functions	to	test	for	specific	file	types:

S_ISDIR(mode)
Return	non-zero	if	the	mode	is	from	a	directory.

S_ISCHR(mode)
Return	non-zero	if	the	mode	is	from	a	character	special	device	file.

S_ISBLK(mode)
Return	non-zero	if	the	mode	is	from	a	block	special	device	file.

S_ISREG(mode)
Return	non-zero	if	the	mode	is	from	a	regular	file.

S_ISFIFO(mode)
Return	non-zero	if	the	mode	is	from	a	FIFO	(named	pipe).

S_ISLNK(mode)
Return	non-zero	if	the	mode	is	from	a	symbolic	link.

S_ISSOCK(mode)
Return	non-zero	if	the	mode	is	from	a	socket.

Two	additional	functions	are	defined	for	more	general	manipulation	of	the	file's
mode:

S_IMODE(mode)
Return	the	portion	of	the	file's	mode	that	can	be	set	by	os.chmod()--that
is,	the	file's	permission	bits,	plus	the	sticky	bit,	set-group-id,	and	set-user-id
bits	(on	systems	that	support	them).

S_IFMT(mode)
Return	the	portion	of	the	file's	mode	that	describes	the	file	type	(used	by	the
S_IS*()	functions	above).

Normally,	you	would	use	the	os.path.is*()	functions	for	testing	the	type	of
a	file;	the	functions	here	are	useful	when	you	are	doing	multiple	tests	of	the
same	file	and	wish	to	avoid	the	overhead	of	the	stat()	system	call	for	each
test.	These	are	also	useful	when	checking	for	information	about	a	file	that	isn't
handled	by	os.path,	like	the	tests	for	block	and	character	devices.

All	the	variables	below	are	simply	symbolic	indexes	into	the	10-tuple	returned
by	os.stat(),	os.fstat()	or	os.lstat().

ST_MODE

Inode	protection	mode.

ST_INO

Inode	number.

ST_DEV

Device	inode	resides	on.

ST_NLINK

Number	of	links	to	the	inode.

ST_UID

User	id	of	the	owner.

ST_GID

Group	id	of	the	owner.

ST_SIZE

Size	in	bytes	of	a	plain	file;	amount	of	data	waiting	on	some	special	files.

ST_ATIME

Time	of	last	access.

ST_MTIME

Time	of	last	modification.

ST_CTIME

The	``ctime''	as	reported	by	the	operating	system.	On	some	systems	(like
UNIX)	is	the	time	of	the	last	metadata	change,	and,	on	others	(like
Windows),	is	the	creation	time	(see	platform	documentation	for	details).

The	interpretation	of	``file	size''	changes	according	to	the	file	type.	For	plain	files
this	is	the	size	of	the	file	in	bytes.	For	FIFOs	and	sockets	under	most	flavors	of
UNIX	(including	Linux	in	particular),	the	``size''	is	the	number	of	bytes	waiting	to
be	read	at	the	time	of	the	call	to	os.stat(),	os.fstat(),	or
os.lstat();	this	can	sometimes	be	useful,	especially	for	polling	one	of	these
special	files	after	a	non-blocking	open.	The	meaning	of	the	size	field	for	other
character	and	block	devices	varies	more,	depending	on	the	implementation	of	the
underlying	system	call.

Example:

import	os,	sys

from	stat	import	*

def	walktree(top,	callback):

				'''recursively	descend	the	directory	tree	rooted	at	top,

							calling	the	callback	function	for	each	regular	file'''

				for	f	in	os.listdir(top):

								pathname	=	os.path.join(top,	f)

								mode	=	os.stat(pathname)[ST_MODE]

								if	S_ISDIR(mode):

												#	It's	a	directory,	recurse	into	it

												walktree(pathname,	callback)

								elif	S_ISREG(mode):

												#	It's	a	file,	call	the	callback	function

												callback(pathname)

								else:

												#	Unknown	file	type,	print	a	message

												print	'Skipping	%s'	%	pathname

def	visitfile(file):

				print	'visiting',	file

if	__name__	==	'__main__':

				walktree(sys.argv[1],	visitfile)

Python	Library	Reference
Previous:	6.3	dircache	Up:	6.	Generic	Operating	System	Next:	6.5	statcache

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.4	stat	Up:	6.	Generic	Operating	System	Next:	6.6	statvfs

6.5	statcache	--	An	optimization	of
os.stat()

Deprecated	since	release	2.2.	Use	os.stat()	directly	instead	of	using	the	cache;
the	cache	introduces	a	very	high	level	of	fragility	in	applications	using	it	and
complicates	application	code	with	the	addition	of	cache	management	support.

The	statcache	module	provides	a	simple	optimization	to	os.stat():
remembering	the	values	of	previous	invocations.

The	statcache	module	defines	the	following	functions:

stat(path)
This	is	the	main	module	entry-point.	Identical	for	os.stat(),	except	for
remembering	the	result	for	future	invocations	of	the	function.

The	rest	of	the	functions	are	used	to	clear	the	cache,	or	parts	of	it.

reset()
Clear	the	cache:	forget	all	results	of	previous	stat()	calls.

forget(path)
Forget	the	result	of	stat(path),	if	any.

forget_prefix(prefix)
Forget	all	results	of	stat(path)	for	path	starting	with	prefix.

forget_dir(prefix)
Forget	all	results	of	stat(path)	for	path	a	file	in	the	directory	prefix,
including	stat(prefix).

forget_except_prefix(prefix)
Similar	to	forget_prefix(),	but	for	all	path	values	not	starting	with
prefix.

Example:

>>>	import	os,	statcache

>>>	statcache.stat('.')

(16893,	2049,	772,	18,	1000,	1000,	2048,	929609777,	929609777,	929609777)

>>>	os.stat('.')

(16893,	2049,	772,	18,	1000,	1000,	2048,	929609777,	929609777,	929609777)

Python	Library	Reference
Previous:	6.4	stat	Up:	6.	Generic	Operating	System	Next:	6.6	statvfs

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.5	statcache	Up:	6.	Generic	Operating	System	Next:	6.7	filecmp

6.6	statvfs	--	Constants	used	with
os.statvfs()

The	statvfs	module	defines	constants	so	interpreting	the	result	if
os.statvfs(),	which	returns	a	tuple,	can	be	made	without	remembering
``magic	numbers.''	Each	of	the	constants	defined	in	this	module	is	the	index	of
the	entry	in	the	tuple	returned	by	os.statvfs()	that	contains	the	specified
information.

F_BSIZE

Preferred	file	system	block	size.

F_FRSIZE

Fundamental	file	system	block	size.

F_BLOCKS

Total	number	of	blocks	in	the	filesystem.

F_BFREE

Total	number	of	free	blocks.

F_BAVAIL

Free	blocks	available	to	non-super	user.

F_FILES

Total	number	of	file	nodes.

F_FFREE

Total	number	of	free	file	nodes.

F_FAVAIL

Free	nodes	available	to	non-super	user.

F_FLAG

Flags.	System	dependent:	see	statvfs()	man	page.

F_NAMEMAX

Maximum	file	name	length.

Python	Library	Reference
Previous:	6.5	statcache	Up:	6.	Generic	Operating	System	Next:	6.7	filecmp

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.6	statvfs	Up:	6.	Generic	Operating	System	Next:	6.7.1	The	dircmp
class

6.7	filecmp	--	File	and	Directory
Comparisons
The	filecmp	module	defines	functions	to	compare	files	and	directories,	with
various	optional	time/correctness	trade-offs.

The	filecmp	module	defines	the	following	functions:

cmp(f1,	f2[,	shallow[,	use_statcache]])
Compare	the	files	named	f1	and	f2,	returning	True	if	they	seem	equal,
False	otherwise.

Unless	shallow	is	given	and	is	false,	files	with	identical	os.stat()
signatures	are	taken	to	be	equal.	Changed	in	version	2.3:	use_statcache	is
obsolete	and	ignored..

Files	that	were	compared	using	this	function	will	not	be	compared	again
unless	their	os.stat()	signature	changes.

Note	that	no	external	programs	are	called	from	this	function,	giving	it
portability	and	efficiency.

cmpfiles(dir1,	dir2,	common[,	shallow[,	use_statcache]])
Returns	three	lists	of	file	names:	match,	mismatch,	errors.	match	contains
the	list	of	files	match	in	both	directories,	mismatch	includes	the	names	of
those	that	don't,	and	errros	lists	the	names	of	files	which	could	not	be
compared.	Files	may	be	listed	in	errors	because	the	user	may	lack
permission	to	read	them	or	many	other	reasons,	but	always	that	the
comparison	could	not	be	done	for	some	reason.

The	common	parameter	is	a	list	of	file	names	found	in	both	directories.	The
shallow	and	use_statcache	parameters	have	the	same	meanings	and	default
values	as	for	filecmp.cmp().

Example:

>>>	import	filecmp

>>>	filecmp.cmp('libundoc.tex',	'libundoc.tex')

True

>>>	filecmp.cmp('libundoc.tex',	'lib.tex')

False

Subsections

6.7.1	The	dircmp	class

Python	Library	Reference
Previous:	6.6	statvfs	Up:	6.	Generic	Operating	System	Next:	6.7.1	The	dircmp
class

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.7	filecmp	Up:	6.7	filecmp	Next:	6.8	subprocess

6.7.1	The	dircmp	class

dircmp	instances	are	built	using	this	constructor:

class	dircmp(a,	b[,	ignore[,	hide]])
Construct	a	new	directory	comparison	object,	to	compare	the	directories	a
and	b.	ignore	is	a	list	of	names	to	ignore,	and	defaults	to	['RCS',
'CVS',	'tags'].	hide	is	a	list	of	names	to	hide,	and	defaults	to
[os.curdir,	os.pardir].

The	dircmp	class	provides	the	following	methods:

report()
Print	(to	sys.stdout)	a	comparison	between	a	and	b.

report_partial_closure()
Print	a	comparison	between	a	and	b	and	common	immediate	subdirctories.

report_full_closure()
Print	a	comparison	between	a	and	b	and	common	subdirctories
(recursively).

The	dircmp	offers	a	number	of	interesting	attributes	that	may	be	used	to	get
various	bits	of	information	about	the	directory	trees	being	compared.

Note	that	via	__getattr__()	hooks,	all	attributes	are	computed	lazilly,	so
there	is	no	speed	penalty	if	only	those	attributes	which	are	lightweight	to
compute	are	used.

left_list

Files	and	subdirectories	in	a,	filtered	by	hide	and	ignore.

right_list

Files	and	subdirectories	in	b,	filtered	by	hide	and	ignore.

common

Files	and	subdirectories	in	both	a	and	b.

left_only

Files	and	subdirectories	only	in	a.

right_only

Files	and	subdirectories	only	in	b.

common_dirs

Subdirectories	in	both	a	and	b.

common_files

Files	in	both	a	and	b

common_funny

Names	in	both	a	and	b,	such	that	the	type	differs	between	the	directories,	or
names	for	which	os.stat()	reports	an	error.

same_files

Files	which	are	identical	in	both	a	and	b.

diff_files

Files	which	are	in	both	a	and	b,	whose	contents	differ.

funny_files

Files	which	are	in	both	a	and	b,	but	could	not	be	compared.

subdirs

A	dictionary	mapping	names	in	common_dirs	to	dircmp	objects.

Python	Library	Reference
Previous:	6.7	filecmp	Up:	6.7	filecmp	Next:	6.8	subprocess

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.7.1	The	dircmp	class	Up:	6.	Generic	Operating	System	Next:	6.8.1
Using	the	subprocess

6.8	subprocess	--	Subprocess
management
New	in	version	2.4.

The	subprocess	module	allows	you	to	spawn	new	processes,	connect	to	their
input/output/error	pipes,	and	obtain	their	return	codes.	This	module	intends	to
replace	several	other,	older	modules	and	functions,	such	as:

os.system

os.spawn*

os.popen*

popen2.*

commands.*

Information	about	how	the	subprocess	module	can	be	used	to	replace	these
modules	and	functions	can	be	found	in	the	following	sections.

Subsections

6.8.1	Using	the	subprocess	Module
6.8.1.1	Convenience	Functions
6.8.1.2	Exceptions
6.8.1.3	Security

6.8.2	Popen	Objects
6.8.3	Replacing	Older	Functions	with	the	subprocess	Module

6.8.3.1	Replacing	/bin/sh	shell	backquote
6.8.3.2	Replacing	shell	pipe	line
6.8.3.3	Replacing	os.system()
6.8.3.4	Replacing	os.spawn*
6.8.3.5	Replacing	os.popen*
6.8.3.6	Replacing	popen2.*

Python	Library	Reference
Previous:	6.7.1	The	dircmp	class	Up:	6.	Generic	Operating	System	Next:	6.8.1
Using	the	subprocess

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.8	subprocess	Up:	6.8	subprocess	Next:	6.8.1.1	Convenience
Functions

6.8.1	Using	the	subprocess	Module
This	module	defines	one	class	called	Popen:

class	Popen(
args,	bufsize=0,	executable=None,	stdin=None,	stdout=None,
stderr=None,	preexec_fn=None,	close_fds=False,	shell=False,
cwd=None,	env=None,	universal_newlines=False,
startupinfo=None,	creationflags=0)

Arguments	are:

args	should	be	a	string,	or	a	sequence	of	program	arguments.	The	program
to	execute	is	normally	the	first	item	in	the	args	sequence	or	string,	but	can
be	explicitly	set	by	using	the	executable	argument.

On	UNIX,	with	shell=False	(default):	In	this	case,	the	Popen	class	uses
os.execvp()	to	execute	the	child	program.	args	should	normally	be	a
sequence.	A	string	will	be	treated	as	a	sequence	with	the	string	as	the	only
item	(the	program	to	execute).

On	UNIX,	with	shell=True:	If	args	is	a	string,	it	specifies	the	command
string	to	execute	through	the	shell.	If	args	is	a	sequence,	the	first	item
specifies	the	command	string,	and	any	additional	items	will	be	treated	as
additional	shell	arguments.

On	Windows:	the	Popen	class	uses	CreateProcess()	to	execute	the	child
program,	which	operates	on	strings.	If	args	is	a	sequence,	it	will	be
converted	to	a	string	using	the	list2cmdline	method.	Please	note	that
not	all	MS	Windows	applications	interpret	the	command	line	the	same	way:
list2cmdline	is	designed	for	applications	using	the	same	rules	as	the
MS	C	runtime.

bufsize,	if	given,	has	the	same	meaning	as	the	corresponding	argument	to
the	built-in	open()	function:	0	means	unbuffered,	1	means	line	buffered,
any	other	positive	value	means	use	a	buffer	of	(approximately)	that	size.	A
negative	bufsize	means	to	use	the	system	default,	which	usually	means	fully
buffered.	The	default	value	for	bufsize	is	0	(unbuffered).

The	executable	argument	specifies	the	program	to	execute.	It	is	very	seldom
needed:	Usually,	the	program	to	execute	is	defined	by	the	args	argument.	If
shell=True,	the	executable	argument	specifies	which	shell	to	use.	On	UNIX,
the	default	shell	is	/bin/sh.	On	Windows,	the	default	shell	is	specified	by	the
COMSPEC	environment	variable.

stdin,	stdout	and	stderr	specify	the	executed	programs'	standard	input,
standard	output	and	standard	error	file	handles,	respectively.	Valid	values
are	PIPE,	an	existing	file	descriptor	(a	positive	integer),	an	existing	file
object,	and	None.	PIPE	indicates	that	a	new	pipe	to	the	child	should	be
created.	With	None,	no	redirection	will	occur;	the	child's	file	handles	will
be	inherited	from	the	parent.	Additionally,	stderr	can	be	STDOUT,	which
indicates	that	the	stderr	data	from	the	applications	should	be	captured	into
the	same	file	handle	as	for	stdout.

If	preexec_fn	is	set	to	a	callable	object,	this	object	will	be	called	in	the	child
process	just	before	the	child	is	executed.

If	close_fds	is	true,	all	file	descriptors	except	0,	1	and	2	will	be	closed
before	the	child	process	is	executed.

If	shell	is	True,	the	specified	command	will	be	executed	through	the	shell.

If	cwd	is	not	None,	the	current	directory	will	be	changed	to	cwd	before	the
child	is	executed.

If	env	is	not	None,	it	defines	the	environment	variables	for	the	new
process.

If	universal_newlines	is	True,	the	file	objects	stdout	and	stderr	are	opened
as	a	text	files,	but	lines	may	be	terminated	by	any	of	'\n',	the	Unix	end-
of-line	convention,	'\r',	the	Macintosh	convention	or	'\r\n',	the
Windows	convention.	All	of	these	external	representations	are	seen	as
'\n'	by	the	Python	program.	Note:	This	feature	is	only	available	if	Python
is	built	with	universal	newline	support	(the	default).	Also,	the	newlines
attribute	of	the	file	objects	stdout,	stdin	and	stderr	are	not	updated
by	the	communicate()	method.

The	startupinfo	and	creationflags,	if	given,	will	be	passed	to	the	underlying

CreateProcess()	function.	They	can	specify	things	such	as	appearance	of	the
main	window	and	priority	for	the	new	process.	(Windows	only)

Subsections

6.8.1.1	Convenience	Functions
6.8.1.2	Exceptions
6.8.1.3	Security

Python	Library	Reference
Previous:	6.8	subprocess	Up:	6.8	subprocess	Next:	6.8.1.1	Convenience
Functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.8.1.3	Security	Up:	6.8	subprocess	Next:	6.8.3	Replacing	Older
Functions

6.8.2	Popen	Objects
Instances	of	the	Popen	class	have	the	following	methods:

poll()
Check	if	child	process	has	terminated.	Returns	returncode	attribute.

wait()
Wait	for	child	process	to	terminate.	Returns	returncode	attribute.

communicate(input=None)
Interact	with	process:	Send	data	to	stdin.	Read	data	from	stdout	and	stderr,
until	end-of-file	is	reached.	Wait	for	process	to	terminate.	The	optional	stdin
argument	should	be	a	string	to	be	sent	to	the	child	process,	or	None,	if	no
data	should	be	sent	to	the	child.

communicate()	returns	a	tuple	(stdout,	stderr).

Note:	The	data	read	is	buffered	in	memory,	so	do	not	use	this	method	if	the
data	size	is	large	or	unlimited.

The	following	attributes	are	also	available:

stdin

If	the	stdin	argument	is	PIPE,	this	attribute	is	a	file	object	that	provides
input	to	the	child	process.	Otherwise,	it	is	None.

stdout

If	the	stdout	argument	is	PIPE,	this	attribute	is	a	file	object	that	provides
output	from	the	child	process.	Otherwise,	it	is	None.

stderr

If	the	stderr	argument	is	PIPE,	this	attribute	is	file	object	that	provides
error	output	from	the	child	process.	Otherwise,	it	is	None.

pid

The	process	ID	of	the	child	process.

returncode

The	child	return	code.	A	None	value	indicates	that	the	process	hasn't
terminated	yet.	A	negative	value	-N	indicates	that	the	child	was	terminated
by	signal	N	(UNIX	only).

Python	Library	Reference
Previous:	6.8.1.3	Security	Up:	6.8	subprocess	Next:	6.8.3	Replacing	Older
Functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.8.2	Popen	Objects	Up:	6.8	subprocess	Next:	6.8.3.1	Replacing
/bin/sh	shell

6.8.3	Replacing	Older	Functions	with	the
subprocess	Module
In	this	section,	"a	==>	b"	means	that	b	can	be	used	as	a	replacement	for	a.

Note:	All	functions	in	this	section	fail	(more	or	less)	silently	if	the	executed
program	cannot	be	found;	this	module	raises	an	OSError	exception.

In	the	following	examples,	we	assume	that	the	subprocess	module	is	imported
with	"from	subprocess	import	*".

Subsections

6.8.3.1	Replacing	/bin/sh	shell	backquote
6.8.3.2	Replacing	shell	pipe	line
6.8.3.3	Replacing	os.system()
6.8.3.4	Replacing	os.spawn*
6.8.3.5	Replacing	os.popen*
6.8.3.6	Replacing	popen2.*

Python	Library	Reference
Previous:	6.8.2	Popen	Objects	Up:	6.8	subprocess	Next:	6.8.3.1	Replacing
/bin/sh	shell

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.8.3.6	Replacing	popen2.*	Up:	6.	Generic	Operating	System	Next:
6.9.1	Popen3	and	Popen4

6.9	popen2	--	Subprocesses	with
accessible	I/O	streams
Availability:	Unix,	Windows.

This	module	allows	you	to	spawn	processes	and	connect	to	their
input/output/error	pipes	and	obtain	their	return	codes	under	UNIX	and	Windows.

Note	that	starting	with	Python	2.0,	this	functionality	is	available	using	functions
from	the	os	module	which	have	the	same	names	as	the	factory	functions	here,
but	the	order	of	the	return	values	is	more	intuitive	in	the	os	module	variants.

The	primary	interface	offered	by	this	module	is	a	trio	of	factory	functions.	For
each	of	these,	if	bufsize	is	specified,	it	specifies	the	buffer	size	for	the	I/O	pipes.
mode,	if	provided,	should	be	the	string	'b'	or	't';	on	Windows	this	is	needed
to	determine	whether	the	file	objects	should	be	opened	in	binary	or	text	mode.
The	default	value	for	mode	is	't'.

On	UNIX,	cmd	may	be	a	sequence,	in	which	case	arguments	will	be	passed
directly	to	the	program	without	shell	intervention	(as	with	os.spawnv()).	If
cmd	is	a	string	it	will	be	passed	to	the	shell	(as	with	os.system()).

The	only	way	to	retrieve	the	return	codes	for	the	child	processes	is	by	using	the
poll()	or	wait()	methods	on	the	Popen3	and	Popen4	classes;	these	are
only	available	on	UNIX.	This	information	is	not	available	when	using	the
popen2(),	popen3(),	and	popen4()	functions,	or	the	equivalent	functions
in	the	os	module.	(Note	that	the	tuples	returned	by	the	os	module's	functions
are	in	a	different	order	from	the	ones	returned	by	the	popen2	module.)

popen2(cmd[,	bufsize[,	mode]])
Executes	cmd	as	a	sub-process.	Returns	the	file	objects	(child_stdout,
child_stdin).

popen3(cmd[,	bufsize[,	mode]])
Executes	cmd	as	a	sub-process.	Returns	the	file	objects	(child_stdout,

child_stdin,	child_stderr).

popen4(cmd[,	bufsize[,	mode]])
Executes	cmd	as	a	sub-process.	Returns	the	file	objects
(child_stdout_and_stderr,	child_stdin).	New	in	version	2.0.

On	UNIX,	a	class	defining	the	objects	returned	by	the	factory	functions	is	also
available.	These	are	not	used	for	the	Windows	implementation,	and	are	not
available	on	that	platform.

class	Popen3(cmd[,	capturestderr[,	bufsize]])
This	class	represents	a	child	process.	Normally,	Popen3	instances	are
created	using	the	popen2()	and	popen3()	factory	functions	described
above.

If	not	using	one	of	the	helper	functions	to	create	Popen3	objects,	the
parameter	cmd	is	the	shell	command	to	execute	in	a	sub-process.	The
capturestderr	flag,	if	true,	specifies	that	the	object	should	capture	standard
error	output	of	the	child	process.	The	default	is	false.	If	the	bufsize
parameter	is	specified,	it	specifies	the	size	of	the	I/O	buffers	to/from	the
child	process.

class	Popen4(cmd[,	bufsize])
Similar	to	Popen3,	but	always	captures	standard	error	into	the	same	file
object	as	standard	output.	These	are	typically	created	using	popen4().
New	in	version	2.0.

Subsections

6.9.1	Popen3	and	Popen4	Objects
6.9.2	Flow	Control	Issues

Python	Library	Reference
Previous:	6.8.3.6	Replacing	popen2.*	Up:	6.	Generic	Operating	System	Next:
6.9.1	Popen3	and	Popen4

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.9	popen2	Up:	6.9	popen2	Next:	6.9.2	Flow	Control	Issues

6.9.1	Popen3	and	Popen4	Objects
Instances	of	the	Popen3	and	Popen4	classes	have	the	following	methods:

poll()
Returns	-1	if	child	process	hasn't	completed	yet,	or	its	return	code
otherwise.

wait()
Waits	for	and	returns	the	status	code	of	the	child	process.	The	status	code
encodes	both	the	return	code	of	the	process	and	information	about	whether
it	exited	using	the	exit()	system	call	or	died	due	to	a	signal.	Functions	to
help	interpret	the	status	code	are	defined	in	the	os	module;	see	section
6.1.5	for	the	W*()	family	of	functions.

The	following	attributes	are	also	available:

fromchild

A	file	object	that	provides	output	from	the	child	process.	For	Popen4
instances,	this	will	provide	both	the	standard	output	and	standard	error
streams.

tochild

A	file	object	that	provides	input	to	the	child	process.

childerr

A	file	object	that	provides	error	output	from	the	child	process,	if
capturestderr	was	true	for	the	constructor,	otherwise	None.	This	will
always	be	None	for	Popen4	instances.

pid

The	process	ID	of	the	child	process.

Python	Library	Reference
Previous:	6.9	popen2	Up:	6.9	popen2	Next:	6.9.2	Flow	Control	Issues

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.9.1	Popen3	and	Popen4	Up:	6.9	popen2	Next:	6.10	datetime

6.9.2	Flow	Control	Issues
Any	time	you	are	working	with	any	form	of	inter-process	communication,
control	flow	needs	to	be	carefully	thought	out.	This	remains	the	case	with	the
file	objects	provided	by	this	module	(or	the	os	module	equivalents).

When	reading	output	from	a	child	process	that	writes	a	lot	of	data	to	standard
error	while	the	parent	is	reading	from	the	child's	standard	output,	a	deadlock	can
occur.	A	similar	situation	can	occur	with	other	combinations	of	reads	and	writes.
The	essential	factors	are	that	more	than	_PC_PIPE_BUF	bytes	are	being
written	by	one	process	in	a	blocking	fashion,	while	the	other	process	is	reading
from	the	other	process,	also	in	a	blocking	fashion.

There	are	several	ways	to	deal	with	this	situation.

The	simplest	application	change,	in	many	cases,	will	be	to	follow	this	model	in
the	parent	process:

import	popen2

r,	w,	e	=	popen2.popen3('python	slave.py')

e.readlines()

r.readlines()

r.close()

e.close()

w.close()

with	code	like	this	in	the	child:

import	os

import	sys

#	note	that	each	of	these	print	statements

#	writes	a	single	long	string

print	>>sys.stderr,	400	*	'this	is	a	test\n'

os.close(sys.stderr.fileno())

print	>>sys.stdout,	400	*	'this	is	another	test\n'

In	particular,	note	that	sys.stderr	must	be	closed	after	writing	all	data,	or
readlines()	won't	return.	Also	note	that	os.close()	must	be	used,	as
sys.stderr.close()	won't	close	stderr	(otherwise	assigning	to

sys.stderr	will	silently	close	it,	so	no	further	errors	can	be	printed).

Applications	which	need	to	support	a	more	general	approach	should	integrate
I/O	over	pipes	with	their	select()	loops,	or	use	separate	threads	to	read	each
of	the	individual	files	provided	by	whichever	popen*()	function	or	Popen*
class	was	used.

Python	Library	Reference
Previous:	6.9.1	Popen3	and	Popen4	Up:	6.9	popen2	Next:	6.10	datetime

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.9.2	Flow	Control	Issues	Up:	6.	Generic	Operating	System	Next:
6.10.1	Available	Types

6.10	datetime	--	Basic	date	and
time	types
New	in	version	2.3.

The	datetime	module	supplies	classes	for	manipulating	dates	and	times	in
both	simple	and	complex	ways.	While	date	and	time	arithmetic	is	supported,	the
focus	of	the	implementation	is	on	efficient	member	extraction	for	output
formatting	and	manipulation.

There	are	two	kinds	of	date	and	time	objects:	``naive''	and	``aware''.	This
distinction	refers	to	whether	the	object	has	any	notion	of	time	zone,	daylight
saving	time,	or	other	kind	of	algorithmic	or	political	time	adjustment.	Whether	a
naive	datetime	object	represents	Coordinated	Universal	Time	(UTC),	local
time,	or	time	in	some	other	timezone	is	purely	up	to	the	program,	just	like	it's	up
to	the	program	whether	a	particular	number	represents	meters,	miles,	or	mass.
Naive	datetime	objects	are	easy	to	understand	and	to	work	with,	at	the	cost	of
ignoring	some	aspects	of	reality.

For	applications	requiring	more,	datetime	and	time	objects	have	an	optional
time	zone	information	member,	tzinfo,	that	can	contain	an	instance	of	a
subclass	of	the	abstract	tzinfo	class.	These	tzinfo	objects	capture
information	about	the	offset	from	UTC	time,	the	time	zone	name,	and	whether
Daylight	Saving	Time	is	in	effect.	Note	that	no	concrete	tzinfo	classes	are
supplied	by	the	datetime	module.	Supporting	timezones	at	whatever	level	of
detail	is	required	is	up	to	the	application.	The	rules	for	time	adjustment	across
the	world	are	more	political	than	rational,	and	there	is	no	standard	suitable	for
every	application.

The	datetime	module	exports	the	following	constants:

MINYEAR

The	smallest	year	number	allowed	in	a	date	or	datetime	object.
MINYEAR	is	1.

MAXYEAR

The	largest	year	number	allowed	in	a	date	or	datetime	object.
MAXYEAR	is	9999.

See	Also:

Module	calendar:
General	calendar	related	functions.

Module	time:
Time	access	and	conversions.

Subsections

6.10.1	Available	Types
6.10.2	timedelta	Objects
6.10.3	date	Objects
6.10.4	datetime	Objects
6.10.5	time	Objects
6.10.6	tzinfo	Objects
6.10.7	strftime()	Behavior

Python	Library	Reference
Previous:	6.9.2	Flow	Control	Issues	Up:	6.	Generic	Operating	System	Next:
6.10.1	Available	Types

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.10	datetime	Up:	6.10	datetime	Next:	6.10.2	timedelta	Objects

6.10.1	Available	Types
class	date

An	idealized	naive	date,	assuming	the	current	Gregorian	calendar	always
was,	and	always	will	be,	in	effect.	Attributes:	year,	month,	and	day.

class	time
An	idealized	time,	independent	of	any	particular	day,	assuming	that	every
day	has	exactly	24*60*60	seconds	(there	is	no	notion	of	"leap	seconds"
here).	Attributes:	hour,	minute,	second,	microsecond,	and
tzinfo.

class	datetime
A	combination	of	a	date	and	a	time.	Attributes:	year,	month,	day,	hour,
minute,	second,	microsecond,	and	tzinfo.

class	timedelta
A	duration	expressing	the	difference	between	two	date,	time,	or
datetime	instances	to	microsecond	resolution.

class	tzinfo
An	abstract	base	class	for	time	zone	information	objects.	These	are	used	by
the	datetime	and	time	classes	to	provide	a	customizable	notion	of	time
adjustment	(for	example,	to	account	for	time	zone	and/or	daylight	saving
time).

Objects	of	these	types	are	immutable.

Objects	of	the	date	type	are	always	naive.

An	object	d	of	type	time	or	datetime	may	be	naive	or	aware.	d	is	aware	if
d.tzinfo	is	not	None	and	d.tzinfo.utcoffset(d)	does	not	return
None.	If	d.tzinfo	is	None,	or	if	d.tzinfo	is	not	None	but
d.tzinfo.utcoffset(d)	returns	None,	d	is	naive.

The	distinction	between	naive	and	aware	doesn't	apply	to	timedelta	objects.

Subclass	relationships:

object

				timedelta

				tzinfo

				time

				date

								datetime

Python	Library	Reference
Previous:	6.10	datetime	Up:	6.10	datetime	Next:	6.10.2	timedelta	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.10.1	Available	Types	Up:	6.10	datetime	Next:	6.10.3	date	Objects

6.10.2	timedelta	Objects

A	timedelta	object	represents	a	duration,	the	difference	between	two	dates	or
times.

class	timedelta([days[,	seconds[,	microseconds[,	milliseconds[,	minutes[,
hours[,	weeks]]]]]]])

All	arguments	are	optional	and	default	to	0.	Arguments	may	be	ints,	longs,
or	floats,	and	may	be	positive	or	negative.

Only	days,	seconds	and	microseconds	are	stored	internally.	Arguments	are
converted	to	those	units:

A	millisecond	is	converted	to	1000	microseconds.
A	minute	is	converted	to	60	seconds.
An	hour	is	converted	to	3600	seconds.
A	week	is	converted	to	7	days.

and	days,	seconds	and	microseconds	are	then	normalized	so	that	the
representation	is	unique,	with

0	<=	microseconds	<	1000000
0	<=	seconds	<	3600*24	(the	number	of	seconds	in	one	day)
-999999999	<=	days	<=	999999999

If	any	argument	is	a	float	and	there	are	fractional	microseconds,	the
fractional	microseconds	left	over	from	all	arguments	are	combined	and	their
sum	is	rounded	to	the	nearest	microsecond.	If	no	argument	is	a	float,	the
conversion	and	normalization	processes	are	exact	(no	information	is	lost).

If	the	normalized	value	of	days	lies	outside	the	indicated	range,
OverflowError	is	raised.

Note	that	normalization	of	negative	values	may	be	surprising	at	first.	For
example,

>>>	d	=	timedelta(microseconds=-1)

>>>	(d.days,	d.seconds,	d.microseconds)

(-1,	86399,	999999)

Class	attributes	are:

min

The	most	negative	timedelta	object,	timedelta(-999999999).

max

The	most	positive	timedelta	object,
timedelta(days=999999999,	hours=23,	minutes=59,

seconds=59,	microseconds=999999).

resolution

The	smallest	possible	difference	between	non-equal	timedelta	objects,
timedelta(microseconds=1).

Note	that,	because	of	normalization,	timedelta.max	>	-timedelta.min.
-timedelta.max	is	not	representable	as	a	timedelta	object.

Instance	attributes	(read-only):

Attribute Value
days Between	-999999999	and	999999999	inclusive

seconds Between	0	and	86399	inclusive
microseconds Between	0	and	999999	inclusive

Supported	operations:

Operation Result
t1	=	t2	+	t3 Sum	of	t2	and	t3.	Afterwards	t1-t2	==	t3	and	t1-t3	==	t2

are	true.	(1)
t1	=	t2	-	t3 Difference	of	t2	and	t3.	Afterwards	t1	==	t2	-	t3	and	t2

==	t1	+	t3	are	true.	(1)
t1	=	t2	*	i	or
t1	=	i	*	t2

Delta	multiplied	by	an	integer	or	long.	Afterwards	t1	//	i
==	t2	is	true,	provided	i	!=	0.
In	general,	t1	*	i	==	t1	*	(i-1)	+	t1	is	true.	(1)

t1	=	t2	//	i The	floor	is	computed	and	the	remainder	(if	any)	is
thrown	away.	(3)

+t1 Returns	a	timedelta	object	with	the	same	value.	(2)
-t1 equivalent	to	timedelta(-t1.days,	-t1.seconds,	-

t1.microseconds),	and	to	t1*	-1.	(1)(4)
abs(t) equivalent	to	+t	when	t.days	>=	0,	and	to	-t	when

t.days	<	0.	(2)
Notes:

(1)
This	is	exact,	but	may	overflow.

(2)
This	is	exact,	and	cannot	overflow.

(3)
Division	by	0	raises	ZeroDivisionError.

(4)
-timedelta.max	is	not	representable	as	a	timedelta	object.

In	addition	to	the	operations	listed	above	timedelta	objects	support	certain
additions	and	subtractions	with	date	and	datetime	objects	(see	below).

Comparisons	of	timedelta	objects	are	supported	with	the	timedelta
object	representing	the	smaller	duration	considered	to	be	the	smaller	timedelta.
In	order	to	stop	mixed-type	comparisons	from	falling	back	to	the	default
comparison	by	object	address,	when	a	timedelta	object	is	compared	to	an
object	of	a	different	type,	TypeError	is	raised	unless	the	comparison	is	==	or
!=.	The	latter	cases	return	False	or	True,	respectively.

timedelta	objects	are	hashable	(usable	as	dictionary	keys),	support	efficient
pickling,	and	in	Boolean	contexts,	a	timedelta	object	is	considered	to	be	true
if	and	only	if	it	isn't	equal	to	timedelta(0).

Python	Library	Reference
Previous:	6.10.1	Available	Types	Up:	6.10	datetime	Next:	6.10.3	date	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.10.2	timedelta	Objects	Up:	6.10	datetime	Next:	6.10.4	datetime
Objects

6.10.3	date	Objects

A	date	object	represents	a	date	(year,	month	and	day)	in	an	idealized	calendar,
the	current	Gregorian	calendar	indefinitely	extended	in	both	directions.	January
1	of	year	1	is	called	day	number	1,	January	2	of	year	1	is	called	day	number	2,
and	so	on.	This	matches	the	definition	of	the	"proleptic	Gregorian"	calendar	in
Dershowitz	and	Reingold's	book	Calendrical	Calculations,	where	it's	the	base
calendar	for	all	computations.	See	the	book	for	algorithms	for	converting
between	proleptic	Gregorian	ordinals	and	many	other	calendar	systems.

class	date(year,	month,	day)
All	arguments	are	required.	Arguments	may	be	ints	or	longs,	in	the
following	ranges:

MINYEAR	<=	year	<=	MAXYEAR
1	<=	month	<=	12
1	<=	day	<=	number	of	days	in	the	given	month
and	year

If	an	argument	outside	those	ranges	is	given,	ValueError	is	raised.

Other	constructors,	all	class	methods:

today()
Return	the	current	local	date.	This	is	equivalent	to
date.fromtimestamp(time.time()).

fromtimestamp(timestamp)
Return	the	local	date	corresponding	to	the	POSIX	timestamp,	such	as	is
returned	by	time.time().	This	may	raise	ValueError,	if	the
timestamp	is	out	of	the	range	of	values	supported	by	the	platform	C
localtime()	function.	It's	common	for	this	to	be	restricted	to	years	from
1970	through	2038.	Note	that	on	non-POSIX	systems	that	include	leap
seconds	in	their	notion	of	a	timestamp,	leap	seconds	are	ignored	by
fromtimestamp().

fromordinal(ordinal)
Return	the	date	corresponding	to	the	proleptic	Gregorian	ordinal,	where
January	1	of	year	1	has	ordinal	1.	ValueError	is	raised	unless	1	<=
ordinal	<=	date.max.toordinal().	For	any	date	d,
date.fromordinal(d.toordinal())	==	d.

Class	attributes:

min

The	earliest	representable	date,	date(MINYEAR,	1,	1).

max

The	latest	representable	date,	date(MAXYEAR,	12,	31).

resolution

The	smallest	possible	difference	between	non-equal	date	objects,
timedelta(days=1).

Instance	attributes	(read-only):

year

Between	MINYEAR	and	MAXYEAR	inclusive.

month

Between	1	and	12	inclusive.

day

Between	1	and	the	number	of	days	in	the	given	month	of	the	given	year.

Supported	operations:

Operation Result
date2	=	date1	+

timedelta
date2	is	timedelta.days	days	removed	from	date1.
(1)

date2	=	date1	-
timedelta

Computes	date2	such	that	date2	+	timedelta	==
date1.	(2)

timedelta	=	date1
-	date2

(3)

date1	<	date2 date1	is	considered	less	than	date2	when	date1

precedes	date2	in	time.	(4)

Notes:

(1)
date2	is	moved	forward	in	time	if	timedelta.days	>	0,	or	backward	if
timedelta.days	<	0.	Afterward	date2	-	date1	==	timedelta.days.
timedelta.seconds	and	timedelta.microseconds	are	ignored.
OverflowError	is	raised	if	date2.year	would	be	smaller	than
MINYEAR	or	larger	than	MAXYEAR.

(2)
This	isn't	quite	equivalent	to	date1	+	(-timedelta),	because	-timedelta	in
isolation	can	overflow	in	cases	where	date1	-	timedelta	does	not.
timedelta.seconds	and	timedelta.microseconds	are	ignored.

(3)
This	is	exact,	and	cannot	overflow.	timedelta.seconds	and
timedelta.microseconds	are	0,	and	date2	+	timedelta	==	date1	after.

(4)
In	other	words,	date1	<	date2	if	and	only	if	date1.toordinal()	<
date2.toordinal().	In	order	to	stop	comparison	from	falling	back	to
the	default	scheme	of	comparing	object	addresses,	date	comparison
normally	raises	TypeError	if	the	other	comparand	isn't	also	a	date
object.	However,	NotImplemented	is	returned	instead	if	the	other
comparand	has	a	timetuple	attribute.	This	hook	gives	other	kinds	of
date	objects	a	chance	at	implementing	mixed-type	comparison.	If	not,	when
a	date	object	is	compared	to	an	object	of	a	different	type,	TypeError	is
raised	unless	the	comparison	is	==	or	!=.	The	latter	cases	return	False	or
True,	respectively.

Dates	can	be	used	as	dictionary	keys.	In	Boolean	contexts,	all	date	objects	are
considered	to	be	true.

Instance	methods:

replace(year,	month,	day)
Return	a	date	with	the	same	value,	except	for	those	members	given	new

values	by	whichever	keyword	arguments	are	specified.	For	example,	if	d
==	date(2002,	12,	31),	then	d.replace(day=26)	==
date(2002,	12,	26).

timetuple()
Return	a	time.struct_time	such	as	returned	by
time.localtime().	The	hours,	minutes	and	seconds	are	0,	and	the
DST	flag	is	-1.	d.timetuple()	is	equivalent	to
time.struct_time((d.year,	d.month,	d.day,	0,	0,	0,
d.weekday(),	d.toordinal()	-	date(d.year,	1,
1).toordinal()	+	1,	-1))

toordinal()
Return	the	proleptic	Gregorian	ordinal	of	the	date,	where	January	1	of	year
1	has	ordinal	1.	For	any	date	object	d,
date.fromordinal(d.toordinal())	==	d.

weekday()
Return	the	day	of	the	week	as	an	integer,	where	Monday	is	0	and	Sunday	is
6.	For	example,	date(2002,	12,	4).weekday()	==	2,	a
Wednesday.	See	also	isoweekday().

isoweekday()
Return	the	day	of	the	week	as	an	integer,	where	Monday	is	1	and	Sunday	is
7.	For	example,	date(2002,	12,	4).isoweekday()	==	3,	a
Wednesday.	See	also	weekday(),	isocalendar().

isocalendar()
Return	a	3-tuple,	(ISO	year,	ISO	week	number,	ISO	weekday).

The	ISO	calendar	is	a	widely	used	variant	of	the	Gregorian	calendar.	See
http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm	for	a	good
explanation.

The	ISO	year	consists	of	52	or	53	full	weeks,	and	where	a	week	starts	on	a
Monday	and	ends	on	a	Sunday.	The	first	week	of	an	ISO	year	is	the	first
(Gregorian)	calendar	week	of	a	year	containing	a	Thursday.	This	is	called

http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm

week	number	1,	and	the	ISO	year	of	that	Thursday	is	the	same	as	its
Gregorian	year.

For	example,	2004	begins	on	a	Thursday,	so	the	first	week	of	ISO	year
2004	begins	on	Monday,	29	Dec	2003	and	ends	on	Sunday,	4	Jan	2004,	so
that	date(2003,	12,	29).isocalendar()	==	(2004,	1,
1)	and	date(2004,	1,	4).isocalendar()	==	(2004,	1,
7).

isoformat()
Return	a	string	representing	the	date	in	ISO	8601	format,	'YYYY-MM-DD'.
For	example,	date(2002,	12,	4).isoformat()	==	'2002-
12-04'.

__str__()
For	a	date	d,	str(d)	is	equivalent	to	d.isoformat().

ctime()
Return	a	string	representing	the	date,	for	example	date(2002,	12,	4).ctime()
==	'Wed	Dec	4	00:00:00	2002'.	d.ctime()	is	equivalent	to
time.ctime(time.mktime(d.timetuple()))	on	platforms
where	the	native	C	ctime()	function	(which	time.ctime()	invokes,
but	which	date.ctime()	does	not	invoke)	conforms	to	the	C	standard.

strftime(format)
Return	a	string	representing	the	date,	controlled	by	an	explicit	format	string.
Format	codes	referring	to	hours,	minutes	or	seconds	will	see	0	values.	See
the	section	on	strftime()	behavior.

Python	Library	Reference
Previous:	6.10.2	timedelta	Objects	Up:	6.10	datetime	Next:	6.10.4	datetime
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.10.3	date	Objects	Up:	6.10	datetime	Next:	6.10.5	time	Objects

6.10.4	datetime	Objects

A	datetime	object	is	a	single	object	containing	all	the	information	from	a
date	object	and	a	time	object.	Like	a	date	object,	datetime	assumes	the
current	Gregorian	calendar	extended	in	both	directions;	like	a	time	object,
datetime	assumes	there	are	exactly	3600*24	seconds	in	every	day.

Constructor:

class	datetime(year,	month,	day[,	hour[,	minute[,	second[,	microsecond[,
tzinfo]]]]])

The	year,	month	and	day	arguments	are	required.	tzinfo	may	be	None,	or	an
instance	of	a	tzinfo	subclass.	The	remaining	arguments	may	be	ints	or
longs,	in	the	following	ranges:

MINYEAR	<=	year	<=	MAXYEAR
1	<=	month	<=	12
1	<=	day	<=	number	of	days	in	the	given	month
and	year

0	<=	hour	<	24
0	<=	minute	<	60
0	<=	second	<	60
0	<=	microsecond	<	1000000

If	an	argument	outside	those	ranges	is	given,	ValueError	is	raised.

Other	constructors,	all	class	methods:

today()
Return	the	current	local	datetime,	with	tzinfo	None.	This	is	equivalent
to	datetime.fromtimestamp(time.time()).	See	also	now(),
fromtimestamp().

now([tz])
Return	the	current	local	date	and	time.	If	optional	argument	tz	is	None	or
not	specified,	this	is	like	today(),	but,	if	possible,	supplies	more

precision	than	can	be	gotten	from	going	through	a	time.time()
timestamp	(for	example,	this	may	be	possible	on	platforms	supplying	the	C
gettimeofday()	function).

Else	tz	must	be	an	instance	of	a	class	tzinfo	subclass,	and	the	current
date	and	time	are	converted	to	tz's	time	zone.	In	this	case	the	result	is
equivalent	to
tz.fromutc(datetime.utcnow().replace(tzinfo=tz)).	See
also	today(),	utcnow().

utcnow()
Return	the	current	UTC	date	and	time,	with	tzinfo	None.	This	is	like
now(),	but	returns	the	current	UTC	date	and	time,	as	a	naive	datetime
object.	See	also	now().

fromtimestamp(timestamp[,	tz])
Return	the	local	date	and	time	corresponding	to	the	POSIX	timestamp,	such
as	is	returned	by	time.time().	If	optional	argument	tz	is	None	or	not
specified,	the	timestamp	is	converted	to	the	platform's	local	date	and	time,
and	the	returned	datetime	object	is	naive.

Else	tz	must	be	an	instance	of	a	class	tzinfo	subclass,	and	the	timestamp
is	converted	to	tz's	time	zone.	In	this	case	the	result	is	equivalent	to
tz.fromutc(datetime.utcfromtimestamp(timestamp).replace(tzinfo=

fromtimestamp()	may	raise	ValueError,	if	the	timestamp	is	out	of
the	range	of	values	supported	by	the	platform	C	localtime()	or
gmtime()	functions.	It's	common	for	this	to	be	restricted	to	years	in	1970
through	2038.	Note	that	on	non-POSIX	systems	that	include	leap	seconds	in
their	notion	of	a	timestamp,	leap	seconds	are	ignored	by
fromtimestamp(),	and	then	it's	possible	to	have	two	timestamps
differing	by	a	second	that	yield	identical	datetime	objects.	See	also
utcfromtimestamp().

utcfromtimestamp(timestamp)
Return	the	UTC	datetime	corresponding	to	the	POSIX	timestamp,	with
tzinfo	None.	This	may	raise	ValueError,	if	the	timestamp	is	out	of

the	range	of	values	supported	by	the	platform	C	gmtime()	function.	It's
common	for	this	to	be	restricted	to	years	in	1970	through	2038.	See	also
fromtimestamp().

fromordinal(ordinal)
Return	the	datetime	corresponding	to	the	proleptic	Gregorian	ordinal,
where	January	1	of	year	1	has	ordinal	1.	ValueError	is	raised	unless	1
<=	ordinal	<=	datetime.max.toordinal().	The	hour,	minute,
second	and	microsecond	of	the	result	are	all	0,	and	tzinfo	is	None.

combine(date,	time)
Return	a	new	datetime	object	whose	date	members	are	equal	to	the
given	date	object's,	and	whose	time	and	tzinfo	members	are	equal	to
the	given	time	object's.	For	any	datetime	object	d,	d	==
datetime.combine(d.date(),	d.timetz()).	If	date	is	a
datetime	object,	its	time	and	tzinfo	members	are	ignored.

Class	attributes:

min

The	earliest	representable	datetime,	datetime(MINYEAR,	1,	1,
tzinfo=None).

max

The	latest	representable	datetime,	datetime(MAXYEAR,	12,	31,
23,	59,	59,	999999,	tzinfo=None).

resolution

The	smallest	possible	difference	between	non-equal	datetime	objects,
timedelta(microseconds=1).

Instance	attributes	(read-only):

year

Between	MINYEAR	and	MAXYEAR	inclusive.

month

Between	1	and	12	inclusive.

day

Between	1	and	the	number	of	days	in	the	given	month	of	the	given	year.

hour

In	range(24).

minute

In	range(60).

second

In	range(60).

microsecond

In	range(1000000).

tzinfo

The	object	passed	as	the	tzinfo	argument	to	the	datetime	constructor,	or
None	if	none	was	passed.

Supported	operations:

Operation Result
datetime2	=	datetime1	+

timedelta
(1)

datetime2	=	datetime1	-
timedelta

(2)

timedelta	=	datetime1	-
datetime2

(3)

datetime1	<	datetime2 Compares	datetime	to	datetime.
(4)

(1)

datetime2	is	a	duration	of	timedelta	removed	from	datetime1,	moving
forward	in	time	if	timedelta.days	>	0,	or	backward	if	timedelta.days	<
0.	The	result	has	the	same	tzinfo	member	as	the	input	datetime,	and
datetime2	-	datetime1	==	timedelta	after.	OverflowError	is	raised	if
datetime2.year	would	be	smaller	than	MINYEAR	or	larger	than	MAXYEAR.

Note	that	no	time	zone	adjustments	are	done	even	if	the	input	is	an	aware
object.

(2)
Computes	the	datetime2	such	that	datetime2	+	timedelta	==	datetime1.	As
for	addition,	the	result	has	the	same	tzinfo	member	as	the	input	datetime,
and	no	time	zone	adjustments	are	done	even	if	the	input	is	aware.	This	isn't
quite	equivalent	to	datetime1	+	(-timedelta),	because	-timedelta	in	isolation
can	overflow	in	cases	where	datetime1	-	timedelta	does	not.

(3)
Subtraction	of	a	datetime	from	a	datetime	is	defined	only	if	both
operands	are	naive,	or	if	both	are	aware.	If	one	is	aware	and	the	other	is
naive,	TypeError	is	raised.

If	both	are	naive,	or	both	are	aware	and	have	the	same	tzinfo	member,
the	tzinfo	members	are	ignored,	and	the	result	is	a	timedelta	object	t
such	that	datetime2	+	t	==	datetime1.	No	time	zone	adjustments	are
done	in	this	case.

If	both	are	aware	and	have	different	tzinfo	members,	a-b	acts	as	if	a
and	b	were	first	converted	to	naive	UTC	datetimes	first.	The	result	is
(a.replace(tzinfo=None)	-	a.utcoffset())	-
(b.replace(tzinfo=None)	-	b.utcoffset())	except	that	the
implementation	never	overflows.

(4)

datetime1	is	considered	less	than	datetime2	when	datetime1	precedes
datetime2	in	time.

If	one	comparand	is	naive	and	the	other	is	aware,	TypeError	is	raised.	If
both	comparands	are	aware,	and	have	the	same	tzinfo	member,	the
common	tzinfo	member	is	ignored	and	the	base	datetimes	are	compared.
If	both	comparands	are	aware	and	have	different	tzinfo	members,	the
comparands	are	first	adjusted	by	subtracting	their	UTC	offsets	(obtained
from	self.utcoffset()).	Note:	In	order	to	stop	comparison	from
falling	back	to	the	default	scheme	of	comparing	object	addresses,	datetime
comparison	normally	raises	TypeError	if	the	other	comparand	isn't	also	a

datetime	object.	However,	NotImplemented	is	returned	instead	if	the
other	comparand	has	a	timetuple	attribute.	This	hook	gives	other	kinds
of	date	objects	a	chance	at	implementing	mixed-type	comparison.	If	not,
when	a	datetime	object	is	compared	to	an	object	of	a	different	type,
TypeError	is	raised	unless	the	comparison	is	==	or	!=.	The	latter	cases
return	False	or	True,	respectively.

datetime	objects	can	be	used	as	dictionary	keys.	In	Boolean	contexts,	all
datetime	objects	are	considered	to	be	true.

Instance	methods:

date()
Return	date	object	with	same	year,	month	and	day.

time()
Return	time	object	with	same	hour,	minute,	second	and	microsecond.
tzinfo	is	None.	See	also	method	timetz().

timetz()
Return	time	object	with	same	hour,	minute,	second,	microsecond,	and
tzinfo	members.	See	also	method	time().

replace([year[,	month[,	day[,	hour[,	minute[,	second[,	microsecond[,
tzinfo]]]]]]]])

Return	a	datetime	with	the	same	members,	except	for	those	members	given
new	values	by	whichever	keyword	arguments	are	specified.	Note	that
tzinfo=None	can	be	specified	to	create	a	naive	datetime	from	an	aware
datetime	with	no	conversion	of	date	and	time	members.

astimezone(tz)
Return	a	datetime	object	with	new	tzinfo	member	tz,	adjusting	the
date	and	time	members	so	the	result	is	the	same	UTC	time	as	self,	but	in	tz's
local	time.

tz	must	be	an	instance	of	a	tzinfo	subclass,	and	its	utcoffset()	and
dst()	methods	must	not	return	None.	self	must	be	aware	(self.tzinfo

must	not	be	None,	and	self.utcoffset()	must	not	return	None).

If	self.tzinfo	is	tz,	self.astimezone(tz)	is	equal	to	self:	no
adjustment	of	date	or	time	members	is	performed.	Else	the	result	is	local
time	in	time	zone	tz,	representing	the	same	UTC	time	as	self:	after	astz	=
dt.astimezone(tz),	astz	-	astz.utcoffset()	will	usually	have	the
same	date	and	time	members	as	dt	-	dt.utcoffset().	The	discussion
of	class	tzinfo	explains	the	cases	at	Daylight	Saving	Time	transition
boundaries	where	this	cannot	be	achieved	(an	issue	only	if	tz	models	both
standard	and	daylight	time).

If	you	merely	want	to	attach	a	time	zone	object	tz	to	a	datetime	dt	without
adjustment	of	date	and	time	members,	use	dt.replace(tzinfo=tz).	If
you	merely	want	to	remove	the	time	zone	object	from	an	aware	datetime	dt
without	conversion	of	date	and	time	members,	use
dt.replace(tzinfo=None).

Note	that	the	default	tzinfo.fromutc()	method	can	be	overridden	in	a
tzinfo	subclass	to	affect	the	result	returned	by	astimezone().
Ignoring	error	cases,	astimezone()	acts	like:

		def	astimezone(self,	tz):

						if	self.tzinfo	is	tz:

										return	self

						#	Convert	self	to	UTC,	and	attach	the	new	time	zone	object.

						utc	=	(self	-	self.utcoffset()).replace(tzinfo=tz)

						#	Convert	from	UTC	to	tz's	local	time.

						return	tz.fromutc(utc)

utcoffset()
If	tzinfo	is	None,	returns	None,	else	returns
self.tzinfo.utcoffset(self),	and	raises	an	exception	if	the	latter
doesn't	return	None,	or	a	timedelta	object	representing	a	whole	number
of	minutes	with	magnitude	less	than	one	day.

dst()
If	tzinfo	is	None,	returns	None,	else	returns	self.tzinfo.dst(self),
and	raises	an	exception	if	the	latter	doesn't	return	None,	or	a	timedelta
object	representing	a	whole	number	of	minutes	with	magnitude	less	than
one	day.

tzname()
If	tzinfo	is	None,	returns	None,	else	returns
self.tzinfo.tzname(self),	raises	an	exception	if	the	latter	doesn't
return	None	or	a	string	object,

timetuple()
Return	a	time.struct_time	such	as	returned	by
time.localtime().	d.timetuple()	is	equivalent	to
time.struct_time((d.year,	d.month,	d.day,	d.hour,
d.minute,	d.second,	d.weekday(),	d.toordinal()	-
date(d.year,	1,	1).toordinal()	+	1,	dst))	The
tm_isdst	flag	of	the	result	is	set	according	to	the	dst()	method:
tzinfo	is	None	or	dst()	returns	None,	tm_isdst	is	set	to	-1;	else	if
dst()	returns	a	non-zero	value,	tm_isdst	is	set	to	1;	else	tm_isdst	is
set	to	0.

utctimetuple()
If	datetime	instance	d	is	naive,	this	is	the	same	as	d.timetuple()
except	that	tm_isdst	is	forced	to	0	regardless	of	what	d.dst()	returns.
DST	is	never	in	effect	for	a	UTC	time.

If	d	is	aware,	d	is	normalized	to	UTC	time,	by	subtracting
d.utcoffset(),	and	a	time.struct_time	for	the	normalized	time
is	returned.	tm_isdst	is	forced	to	0.	Note	that	the	result's	tm_year
member	may	be	MINYEAR-1	or	MAXYEAR+1,	if	d.year	was	MINYEAR	or
MAXYEAR	and	UTC	adjustment	spills	over	a	year	boundary.

toordinal()
Return	the	proleptic	Gregorian	ordinal	of	the	date.	The	same	as
self.date().toordinal().

weekday()
Return	the	day	of	the	week	as	an	integer,	where	Monday	is	0	and	Sunday	is
6.	The	same	as	self.date().weekday().	See	also	isoweekday().

isoweekday()
Return	the	day	of	the	week	as	an	integer,	where	Monday	is	1	and	Sunday	is

7.	The	same	as	self.date().isoweekday().	See	also	weekday(),
isocalendar().

isocalendar()
Return	a	3-tuple,	(ISO	year,	ISO	week	number,	ISO	weekday).	The	same	as
self.date().isocalendar().

isoformat([sep])
Return	a	string	representing	the	date	and	time	in	ISO	8601	format,	YYYY-
MM-DDTHH:MM:SS.mmmmmm	or,	if	microsecond	is	0,	YYYY-MM-
DDTHH:MM:SS

If	utcoffset()	does	not	return	None,	a	6-character	string	is	appended,
giving	the	UTC	offset	in	(signed)	hours	and	minutes:	YYYY-MM-
DDTHH:MM:SS.mmmmmm+HH:MM	or,	if	microsecond	is	0	YYYY-
MM-DDTHH:MM:SS+HH:MM

The	optional	argument	sep	(default	'T')	is	a	one-character	separator,
placed	between	the	date	and	time	portions	of	the	result.	For	example,

>>>	from	datetime	import	tzinfo,	timedelta,	datetime

>>>	class	TZ(tzinfo):

...					def	utcoffset(self,	dt):	return	timedelta(minutes=-399)

...

>>>	datetime(2002,	12,	25,	tzinfo=TZ()).isoformat('	')

'2002-12-25	00:00:00-06:39'

__str__()
For	a	datetime	instance	d,	str(d)	is	equivalent	to	d.isoformat('
').

ctime()
Return	a	string	representing	the	date	and	time,	for	example
datetime(2002,	12,	4,	20,	30,	40).ctime()	==	'Wed

Dec	4	20:30:40	2002'.	d.ctime()	is	equivalent	to
time.ctime(time.mktime(d.timetuple()))	on	platforms
where	the	native	C	ctime()	function	(which	time.ctime()	invokes,
but	which	datetime.ctime()	does	not	invoke)	conforms	to	the	C
standard.

strftime(format)
Return	a	string	representing	the	date	and	time,	controlled	by	an	explicit
format	string.	See	the	section	on	strftime()	behavior.

Python	Library	Reference
Previous:	6.10.3	date	Objects	Up:	6.10	datetime	Next:	6.10.5	time	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.10.4	datetime	Objects	Up:	6.10	datetime	Next:	6.10.6	tzinfo
Objects

6.10.5	time	Objects

A	time	object	represents	a	(local)	time	of	day,	independent	of	any	particular	day,
and	subject	to	adjustment	via	a	tzinfo	object.

class	time(hour[,	minute[,	second[,	microsecond[,	tzinfo]]]])
All	arguments	are	optional.	tzinfo	may	be	None,	or	an	instance	of	a
tzinfo	subclass.	The	remaining	arguments	may	be	ints	or	longs,	in	the
following	ranges:

0	<=	hour	<	24
0	<=	minute	<	60
0	<=	second	<	60
0	<=	microsecond	<	1000000.

If	an	argument	outside	those	ranges	is	given,	ValueError	is	raised.	All
default	to	0	except	tzinfo,	which	defaults	to	None.

Class	attributes:

min

The	earliest	representable	time,	time(0,	0,	0,	0).

max

The	latest	representable	time,	time(23,	59,	59,	999999).

resolution

The	smallest	possible	difference	between	non-equal	time	objects,
timedelta(microseconds=1),	although	note	that	arithmetic	on
time	objects	is	not	supported.

Instance	attributes	(read-only):

hour

In	range(24).

minute

In	range(60).

second

In	range(60).

microsecond

In	range(1000000).

tzinfo

The	object	passed	as	the	tzinfo	argument	to	the	time	constructor,	or	None
if	none	was	passed.

Supported	operations:

comparison	of	time	to	time,	where	a	is	considered	less	than	b	when	a
precedes	b	in	time.	If	one	comparand	is	naive	and	the	other	is	aware,
TypeError	is	raised.	If	both	comparands	are	aware,	and	have	the	same
tzinfo	member,	the	common	tzinfo	member	is	ignored	and	the	base
times	are	compared.	If	both	comparands	are	aware	and	have	different
tzinfo	members,	the	comparands	are	first	adjusted	by	subtracting	their
UTC	offsets	(obtained	from	self.utcoffset()).	In	order	to	stop
mixed-type	comparisons	from	falling	back	to	the	default	comparison	by
object	address,	when	a	time	object	is	compared	to	an	object	of	a	different
type,	TypeError	is	raised	unless	the	comparison	is	==	or	!=.	The	latter
cases	return	False	or	True,	respectively.

hash,	use	as	dict	key

efficient	pickling

in	Boolean	contexts,	a	time	object	is	considered	to	be	true	if	and	only	if,
after	converting	it	to	minutes	and	subtracting	utcoffset()	(or	0	if	that's
None),	the	result	is	non-zero.

Instance	methods:

replace([hour[,	minute[,	second[,	microsecond[,	tzinfo]]]]])
Return	a	time	with	the	same	value,	except	for	those	members	given	new
values	by	whichever	keyword	arguments	are	specified.	Note	that

tzinfo=None	can	be	specified	to	create	a	naive	time	from	an	aware
time,	without	conversion	of	the	time	members.

isoformat()
Return	a	string	representing	the	time	in	ISO	8601	format,
HH:MM:SS.mmmmmm	or,	if	self.microsecond	is	0,	HH:MM:SS	If
utcoffset()	does	not	return	None,	a	6-character	string	is	appended,
giving	the	UTC	offset	in	(signed)	hours	and	minutes:
HH:MM:SS.mmmmmm+HH:MM	or,	if	self.microsecond	is	0,
HH:MM:SS+HH:MM

__str__()
For	a	time	t,	str(t)	is	equivalent	to	t.isoformat().

strftime(format)
Return	a	string	representing	the	time,	controlled	by	an	explicit	format
string.	See	the	section	on	strftime()	behavior.

utcoffset()
If	tzinfo	is	None,	returns	None,	else	returns
self.tzinfo.utcoffset(None),	and	raises	an	exception	if	the	latter
doesn't	return	None	or	a	timedelta	object	representing	a	whole	number
of	minutes	with	magnitude	less	than	one	day.

dst()
If	tzinfo	is	None,	returns	None,	else	returns
self.tzinfo.dst(None),	and	raises	an	exception	if	the	latter	doesn't
return	None,	or	a	timedelta	object	representing	a	whole	number	of
minutes	with	magnitude	less	than	one	day.

tzname()
If	tzinfo	is	None,	returns	None,	else	returns
self.tzinfo.tzname(None),	or	raises	an	exception	if	the	latter	doesn't
return	None	or	a	string	object.

Python	Library	Reference

Previous:	6.10.4	datetime	Objects	Up:	6.10	datetime	Next:	6.10.6	tzinfo
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.10.5	time	Objects	Up:	6.10	datetime	Next:	6.10.7	strftime()
Behavior

6.10.6	tzinfo	Objects

tzinfo	is	an	abstract	base	clase,	meaning	that	this	class	should	not	be
instantiated	directly.	You	need	to	derive	a	concrete	subclass,	and	(at	least)	supply
implementations	of	the	standard	tzinfo	methods	needed	by	the	datetime
methods	you	use.	The	datetime	module	does	not	supply	any	concrete
subclasses	of	tzinfo.

An	instance	of	(a	concrete	subclass	of)	tzinfo	can	be	passed	to	the
constructors	for	datetime	and	time	objects.	The	latter	objects	view	their
members	as	being	in	local	time,	and	the	tzinfo	object	supports	methods
revealing	offset	of	local	time	from	UTC,	the	name	of	the	time	zone,	and	DST
offset,	all	relative	to	a	date	or	time	object	passed	to	them.

Special	requirement	for	pickling:	A	tzinfo	subclass	must	have	an	__init__
method	that	can	be	called	with	no	arguments,	else	it	can	be	pickled	but	possibly
not	unpickled	again.	This	is	a	technical	requirement	that	may	be	relaxed	in	the
future.

A	concrete	subclass	of	tzinfo	may	need	to	implement	the	following	methods.
Exactly	which	methods	are	needed	depends	on	the	uses	made	of	aware
datetime	objects.	If	in	doubt,	simply	implement	all	of	them.

utcoffset(self,	dt)
Return	offset	of	local	time	from	UTC,	in	minutes	east	of	UTC.	If	local	time
is	west	of	UTC,	this	should	be	negative.	Note	that	this	is	intended	to	be	the
total	offset	from	UTC;	for	example,	if	a	tzinfo	object	represents	both
time	zone	and	DST	adjustments,	utcoffset()	should	return	their	sum.
If	the	UTC	offset	isn't	known,	return	None.	Else	the	value	returned	must	be
a	timedelta	object	specifying	a	whole	number	of	minutes	in	the	range
-1439	to	1439	inclusive	(1440	=	24*60;	the	magnitude	of	the	offset	must	be
less	than	one	day).	Most	implementations	of	utcoffset()	will	probably
look	like	one	of	these	two:

				return	CONSTANT																	#	fixed-offset	class

				return	CONSTANT	+	self.dst(dt)		#	daylight-aware	class

If	utcoffset()	does	not	return	None,	dst()	should	not	return	None
either.

The	default	implementation	of	utcoffset()	raises
NotImplementedError.

dst(self,	dt)
Return	the	daylight	saving	time	(DST)	adjustment,	in	minutes	east	of	UTC,
or	None	if	DST	information	isn't	known.	Return	timedelta(0)	if	DST
is	not	in	effect.	If	DST	is	in	effect,	return	the	offset	as	a	timedelta	object
(see	utcoffset()	for	details).	Note	that	DST	offset,	if	applicable,	has
already	been	added	to	the	UTC	offset	returned	by	utcoffset(),	so
there's	no	need	to	consult	dst()	unless	you're	interested	in	obtaining	DST
info	separately.	For	example,	datetime.timetuple()	calls	its
tzinfo	member's	dst()	method	to	determine	how	the	tm_isdst	flag
should	be	set,	and	tzinfo.fromutc()	calls	dst()	to	account	for	DST
changes	when	crossing	time	zones.

An	instance	tz	of	a	tzinfo	subclass	that	models	both	standard	and
daylight	times	must	be	consistent	in	this	sense:

tz.utcoffset(dt)	-	tz.dst(dt)

must	return	the	same	result	for	every	datetime	dt	with	dt.tzinfo	==
tz	For	sane	tzinfo	subclasses,	this	expression	yields	the	time	zone's
"standard	offset",	which	should	not	depend	on	the	date	or	the	time,	but	only
on	geographic	location.	The	implementation	of
datetime.astimezone()	relies	on	this,	but	cannot	detect	violations;
it's	the	programmer's	responsibility	to	ensure	it.	If	a	tzinfo	subclass
cannot	guarantee	this,	it	may	be	able	to	override	the	default	implementation
of	tzinfo.fromutc()	to	work	correctly	with	astimezone()
regardless.

Most	implementations	of	dst()	will	probably	look	like	one	of	these	two:

				def	dst(self):

								#	a	fixed-offset	class:		doesn't	account	for	DST

								return	timedelta(0)

or

				def	dst(self):

								#	Code	to	set	dston	and	dstoff	to	the	time	zone's	DST

								#	transition	times	based	on	the	input	dt.year,	and	expressed

								#	in	standard	local	time.		Then

								if	dston	<=	dt.replace(tzinfo=None)	<	dstoff:

												return	timedelta(hours=1)

								else:

												return	timedelta(0)

The	default	implementation	of	dst()	raises	NotImplementedError.

tzname(self,	dt)
Return	the	time	zone	name	corresponding	to	the	datetime	object	dt,	as	a
string.	Nothing	about	string	names	is	defined	by	the	datetime	module,
and	there's	no	requirement	that	it	mean	anything	in	particular.	For	example,
"GMT",	"UTC",	"-500",	"-5:00",	"EDT",	"US/Eastern",	"America/New
York"	are	all	valid	replies.	Return	None	if	a	string	name	isn't	known.	Note
that	this	is	a	method	rather	than	a	fixed	string	primarily	because	some
tzinfo	subclasses	will	wish	to	return	different	names	depending	on	the
specific	value	of	dt	passed,	especially	if	the	tzinfo	class	is	accounting	for
daylight	time.

The	default	implementation	of	tzname()	raises
NotImplementedError.

These	methods	are	called	by	a	datetime	or	time	object,	in	response	to	their
methods	of	the	same	names.	A	datetime	object	passes	itself	as	the	argument,
and	a	time	object	passes	None	as	the	argument.	A	tzinfo	subclass's	methods
should	therefore	be	prepared	to	accept	a	dt	argument	of	None,	or	of	class
datetime.

When	None	is	passed,	it's	up	to	the	class	designer	to	decide	the	best	response.
For	example,	returning	None	is	appropriate	if	the	class	wishes	to	say	that	time
objects	don't	participate	in	the	tzinfo	protocols.	It	may	be	more	useful	for
utcoffset(None)	to	return	the	standard	UTC	offset,	as	there	is	no	other
convention	for	discovering	the	standard	offset.

When	a	datetime	object	is	passed	in	response	to	a	datetime	method,

dt.tzinfo	is	the	same	object	as	self.	tzinfo	methods	can	rely	on	this,
unless	user	code	calls	tzinfo	methods	directly.	The	intent	is	that	the	tzinfo
methods	interpret	dt	as	being	in	local	time,	and	not	need	worry	about	objects	in
other	timezones.

There	is	one	more	tzinfo	method	that	a	subclass	may	wish	to	override:

fromutc(self,	dt)
This	is	called	from	the	default	datetime.astimezone()
implementation.	When	called	from	that,	dt.tzinfo	is	self,	and	dt's	date
and	time	members	are	to	be	viewed	as	expressing	a	UTC	time.	The	purpose
of	fromutc()	is	to	adjust	the	date	and	time	members,	returning	an
equivalent	datetime	in	self's	local	time.

Most	tzinfo	subclasses	should	be	able	to	inherit	the	default	fromutc()
implementation	without	problems.	It's	strong	enough	to	handle	fixed-offset
time	zones,	and	time	zones	accounting	for	both	standard	and	daylight	time,
and	the	latter	even	if	the	DST	transition	times	differ	in	different	years.	An
example	of	a	time	zone	the	default	fromutc()	implementation	may	not
handle	correctly	in	all	cases	is	one	where	the	standard	offset	(from	UTC)
depends	on	the	specific	date	and	time	passed,	which	can	happen	for
political	reasons.	The	default	implementations	of	astimezone()	and
fromutc()	may	not	produce	the	result	you	want	if	the	result	is	one	of	the
hours	straddling	the	moment	the	standard	offset	changes.

Skipping	code	for	error	cases,	the	default	fromutc()	implementation	acts
like:

		def	fromutc(self,	dt):

						#	raise	ValueError	error	if	dt.tzinfo	is	not	self

						dtoff	=	dt.utcoffset()

						dtdst	=	dt.dst()

						#	raise	ValueError	if	dtoff	is	None	or	dtdst	is	None

						delta	=	dtoff	-	dtdst		#	this	is	self's	standard	offset

						if	delta:

										dt	+=	delta			#	convert	to	standard	local	time

										dtdst	=	dt.dst()

										#	raise	ValueError	if	dtdst	is	None

						if	dtdst:

										return	dt	+	dtdst

						else:

										return	dt

Example	tzinfo	classes:

from	datetime	import	tzinfo,	timedelta,	datetime

ZERO	=	timedelta(0)

HOUR	=	timedelta(hours=1)

#	A	UTC	class.

class	UTC(tzinfo):

				"""UTC"""

				def	utcoffset(self,	dt):

								return	ZERO

				def	tzname(self,	dt):

								return	"UTC"

				def	dst(self,	dt):

								return	ZERO

utc	=	UTC()

#	A	class	building	tzinfo	objects	for	fixed-offset	time	zones.

#	Note	that	FixedOffset(0,	"UTC")	is	a	different	way	to	build	a

#	UTC	tzinfo	object.

class	FixedOffset(tzinfo):

				"""Fixed	offset	in	minutes	east	from	UTC."""

				def	__init__(self,	offset,	name):

								self.__offset	=	timedelta(minutes	=	offset)

								self.__name	=	name

				def	utcoffset(self,	dt):

								return	self.__offset

				def	tzname(self,	dt):

								return	self.__name

				def	dst(self,	dt):

								return	ZERO

#	A	class	capturing	the	platform's	idea	of	local	time.

import	time	as	_time

STDOFFSET	=	timedelta(seconds	=	-_time.timezone)

if	_time.daylight:

				DSTOFFSET	=	timedelta(seconds	=	-_time.altzone)

else:

				DSTOFFSET	=	STDOFFSET

DSTDIFF	=	DSTOFFSET	-	STDOFFSET

class	LocalTimezone(tzinfo):

				def	utcoffset(self,	dt):

								if	self._isdst(dt):

												return	DSTOFFSET

								else:

												return	STDOFFSET

				def	dst(self,	dt):

								if	self._isdst(dt):

												return	DSTDIFF

								else:

												return	ZERO

				def	tzname(self,	dt):

								return	_time.tzname[self._isdst(dt)]

				def	_isdst(self,	dt):

								tt	=	(dt.year,	dt.month,	dt.day,

														dt.hour,	dt.minute,	dt.second,

														dt.weekday(),	0,	-1)

								stamp	=	_time.mktime(tt)

								tt	=	_time.localtime(stamp)

								return	tt.tm_isdst	>	0

Local	=	LocalTimezone()

#	A	complete	implementation	of	current	DST	rules	for	major	US	time	zones.

def	first_sunday_on_or_after(dt):

				days_to_go	=	6	-	dt.weekday()

				if	days_to_go:

								dt	+=	timedelta(days_to_go)

				return	dt

#	In	the	US,	DST	starts	at	2am	(standard	time)	on	the	first	Sunday	in	April.

DSTSTART	=	datetime(1,	4,	1,	2)

#	and	ends	at	2am	(DST	time;	1am	standard	time)	on	the	last	Sunday	of	Oct.

#	which	is	the	first	Sunday	on	or	after	Oct	25.

DSTEND	=	datetime(1,	10,	25,	1)

class	USTimeZone(tzinfo):

				def	__init__(self,	hours,	reprname,	stdname,	dstname):

								self.stdoffset	=	timedelta(hours=hours)

								self.reprname	=	reprname

								self.stdname	=	stdname

								self.dstname	=	dstname

				def	__repr__(self):

								return	self.reprname

				def	tzname(self,	dt):

								if	self.dst(dt):

												return	self.dstname

								else:

												return	self.stdname

				def	utcoffset(self,	dt):

								return	self.stdoffset	+	self.dst(dt)

				def	dst(self,	dt):

								if	dt	is	None	or	dt.tzinfo	is	None:

												#	An	exception	may	be	sensible	here,	in	one	or	both	cases.

												#	It	depends	on	how	you	want	to	treat	them.		The	default

												#	fromutc()	implementation	(called	by	the	default	astimezone()

												#	implementation)	passes	a	datetime	with	dt.tzinfo	is	self.

												return	ZERO

								assert	dt.tzinfo	is	self

								#	Find	first	Sunday	in	April	&	the	last	in	October.

								start	=	first_sunday_on_or_after(DSTSTART.replace(year=dt.year))

								end	=	first_sunday_on_or_after(DSTEND.replace(year=dt.year))

								#	Can't	compare	naive	to	aware	objects,	so	strip	the	timezone	from

								#	dt	first.

								if	start	<=	dt.replace(tzinfo=None)	<	end:

												return	HOUR

								else:

												return	ZERO

Eastern		=	USTimeZone(-5,	"Eastern",		"EST",	"EDT")

Central		=	USTimeZone(-6,	"Central",		"CST",	"CDT")

Mountain	=	USTimeZone(-7,	"Mountain",	"MST",	"MDT")

Pacific		=	USTimeZone(-8,	"Pacific",		"PST",	"PDT")

Download	as	text	(original	file	name:	tzinfo-examples.py).

Note	that	there	are	unavoidable	subtleties	twice	per	year	in	a	tzinfo	subclass
accounting	for	both	standard	and	daylight	time,	at	the	DST	transition	points.	For
concreteness,	consider	US	Eastern	(UTC	-0500),	where	EDT	begins	the	minute
after	1:59	(EST)	on	the	first	Sunday	in	April,	and	ends	the	minute	after	1:59
(EDT)	on	the	last	Sunday	in	October:

				UTC			3:MM		4:MM		5:MM		6:MM		7:MM		8:MM

				EST		22:MM	23:MM		0:MM		1:MM		2:MM		3:MM

				EDT		23:MM		0:MM		1:MM		2:MM		3:MM		4:MM

		start		22:MM	23:MM		0:MM		1:MM		3:MM		4:MM

				end		23:MM		0:MM		1:MM		1:MM		2:MM		3:MM

When	DST	starts	(the	"start"	line),	the	local	wall	clock	leaps	from	1:59	to	3:00.
A	wall	time	of	the	form	2:MM	doesn't	really	make	sense	on	that	day,	so
astimezone(Eastern)	won't	deliver	a	result	with	hour	==	2	on	the	day
DST	begins.	In	order	for	astimezone()	to	make	this	guarantee,	the
rzinfo.dst()	method	must	consider	times	in	the	"missing	hour"	(2:MM	for
Eastern)	to	be	in	daylight	time.

When	DST	ends	(the	"end"	line),	there's	a	potentially	worse	problem:	there's	an
hour	that	can't	be	spelled	unambiguously	in	local	wall	time:	the	last	hour	of
daylight	time.	In	Eastern,	that's	times	of	the	form	5:MM	UTC	on	the	day
daylight	time	ends.	The	local	wall	clock	leaps	from	1:59	(daylight	time)	back	to
1:00	(standard	time)	again.	Local	times	of	the	form	1:MM	are	ambiguous.
astimezone()	mimics	the	local	clock's	behavior	by	mapping	two	adjacent
UTC	hours	into	the	same	local	hour	then.	In	the	Eastern	example,	UTC	times	of
the	form	5:MM	and	6:MM	both	map	to	1:MM	when	converted	to	Eastern.	In
order	for	astimezone()	to	make	this	guarantee,	the	tzinfo.dst()
method	must	consider	times	in	the	"repeated	hour"	to	be	in	standard	time.	This	is
easily	arranged,	as	in	the	example,	by	expressing	DST	switch	times	in	the	time
zone's	standard	local	time.

Applications	that	can't	bear	such	ambiguities	should	avoid	using	hybrid	tzinfo
subclasses;	there	are	no	ambiguities	when	using	UTC,	or	any	other	fixed-offset
tzinfo	subclass	(such	as	a	class	representing	only	EST	(fixed	offset	-5	hours),
or	only	EDT	(fixed	offset	-4	hours)).

Python	Library	Reference
Previous:	6.10.5	time	Objects	Up:	6.10	datetime	Next:	6.10.7	strftime()
Behavior

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.10.6	tzinfo	Objects	Up:	6.10	datetime	Next:	6.11	time

6.10.7	strftime()	Behavior

date,	datetime,	and	time	objects	all	support	a	strftime(format)
method,	to	create	a	string	representing	the	time	under	the	control	of	an	explicit
format	string.	Broadly	speaking,	d.strftime(fmt)	acts	like	the	time
module's	time.strftime(fmt,	d.timetuple())	although	not	all
objects	support	a	timetuple()	method.

For	time	objects,	the	format	codes	for	year,	month,	and	day	should	not	be	used,
as	time	objects	have	no	such	values.	If	they're	used	anyway,	1900	is	substituted
for	the	year,	and	0	for	the	month	and	day.

For	date	objects,	the	format	codes	for	hours,	minutes,	and	seconds	should	not
be	used,	as	date	objects	have	no	such	values.	If	they're	used	anyway,	0	is
substituted	for	them.

For	a	naive	object,	the	%z	and	%Z	format	codes	are	replaced	by	empty	strings.

For	an	aware	object:

%z

utcoffset()	is	transformed	into	a	5-character	string	of	the	form
+HHMM	or	-HHMM,	where	HH	is	a	2-digit	string	giving	the	number	of
UTC	offset	hours,	and	MM	is	a	2-digit	string	giving	the	number	of	UTC
offset	minutes.	For	example,	if	utcoffset()	returns
timedelta(hours=-3,	minutes=-30),	%z	is	replaced	with	the
string	'-0330'.

%Z

If	tzname()	returns	None,	%Z	is	replaced	by	an	empty	string.	Otherwise
%Z	is	replaced	by	the	returned	value,	which	must	be	a	string.

The	full	set	of	format	codes	supported	varies	across	platforms,	because	Python
calls	the	platform	C	library's	strftime()	function,	and	platform	variations
are	common.	The	documentation	for	Python's	time	module	lists	the	format
codes	that	the	C	standard	(1989	version)	requires,	and	those	work	on	all
platforms	with	a	standard	C	implementation.	Note	that	the	1999	version	of	the	C

standard	added	additional	format	codes.

The	exact	range	of	years	for	which	strftime()	works	also	varies	across
platforms.	Regardless	of	platform,	years	before	1900	cannot	be	used.

Python	Library	Reference
Previous:	6.10.6	tzinfo	Objects	Up:	6.10	datetime	Next:	6.11	time

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.10.7	strftime()	Behavior	Up:	6.	Generic	Operating	System	Next:
6.12	sched

6.11	time	--	Time	access	and
conversions
This	module	provides	various	time-related	functions.	It	is	always	available,	but
not	all	functions	are	available	on	all	platforms.	Most	of	the	functions	defined	in
this	module	call	platform	C	library	functions	with	the	same	name.	It	may
sometimes	be	helpful	to	consult	the	platform	documentation,	because	the
semantics	of	these	functions	varies	among	platforms.

An	explanation	of	some	terminology	and	conventions	is	in	order.

The	epoch	is	the	point	where	the	time	starts.	On	January	1st	of	that	year,	at
0	hours,	the	``time	since	the	epoch''	is	zero.	For	UNIX,	the	epoch	is	1970.	To
find	out	what	the	epoch	is,	look	at	gmtime(0).

The	functions	in	this	module	do	not	handle	dates	and	times	before	the
epoch	or	far	in	the	future.	The	cut-off	point	in	the	future	is	determined	by
the	C	library;	for	UNIX,	it	is	typically	in	2038.

Year	2000	(Y2K)	issues:	Python	depends	on	the	platform's	C	library,	which
generally	doesn't	have	year	2000	issues,	since	all	dates	and	times	are
represented	internally	as	seconds	since	the	epoch.	Functions	accepting	a
struct_time	(see	below)	generally	require	a	4-digit	year.	For	backward
compatibility,	2-digit	years	are	supported	if	the	module	variable
accept2dyear	is	a	non-zero	integer;	this	variable	is	initialized	to	1
unless	the	environment	variable	PYTHONY2K	is	set	to	a	non-empty	string,
in	which	case	it	is	initialized	to	0.	Thus,	you	can	set	PYTHONY2K	to	a
non-empty	string	in	the	environment	to	require	4-digit	years	for	all	year
input.	When	2-digit	years	are	accepted,	they	are	converted	according	to	the
POSIX	or	X/Open	standard:	values	69-99	are	mapped	to	1969-1999,	and
values	0-68	are	mapped	to	2000-2068.	Values	100-1899	are	always	illegal.
Note	that	this	is	new	as	of	Python	1.5.2(a2);	earlier	versions,	up	to	Python
1.5.1	and	1.5.2a1,	would	add	1900	to	year	values	below	1900.

UTC	is	Coordinated	Universal	Time	(formerly	known	as	Greenwich	Mean
Time,	or	GMT).	The	acronym	UTC	is	not	a	mistake	but	a	compromise

between	English	and	French.

DST	is	Daylight	Saving	Time,	an	adjustment	of	the	timezone	by	(usually)
one	hour	during	part	of	the	year.	DST	rules	are	magic	(determined	by	local
law)	and	can	change	from	year	to	year.	The	C	library	has	a	table	containing
the	local	rules	(often	it	is	read	from	a	system	file	for	flexibility)	and	is	the
only	source	of	True	Wisdom	in	this	respect.

The	precision	of	the	various	real-time	functions	may	be	less	than	suggested
by	the	units	in	which	their	value	or	argument	is	expressed.	E.g.	on	most
UNIX	systems,	the	clock	``ticks''	only	50	or	100	times	a	second,	and	on	the
Mac,	times	are	only	accurate	to	whole	seconds.

On	the	other	hand,	the	precision	of	time()	and	sleep()	is	better	than
their	UNIX	equivalents:	times	are	expressed	as	floating	point	numbers,
time()	returns	the	most	accurate	time	available	(using	UNIX

gettimeofday()	where	available),	and	sleep()	will	accept	a	time
with	a	nonzero	fraction	(UNIX	select()	is	used	to	implement	this,	where
available).

The	time	value	as	returned	by	gmtime(),	localtime(),	and
strptime(),	and	accepted	by	asctime(),	mktime()	and
strftime(),	is	a	sequence	of	9	integers.	The	return	values	of
gmtime(),	localtime(),	and	strptime()	also	offer	attribute
names	for	individual	fields.

Index Attribute Values
0 tm_year (for	example,	1993)
1 tm_mon range	[1,12]
2 tm_mday range	[1,31]
3 tm_hour range	[0,23]
4 tm_min range	[0,59]
5 tm_sec range	[0,61];	see	(1)	in	strftime()	description
6 tm_wday range	[0,6],	Monday	is	0
7 tm_yday range	[1,366]
8 tm_isdst 0,	1	or	-1;	see	below

Note	that	unlike	the	C	structure,	the	month	value	is	a	range	of	1-12,	not	0-
11.	A	year	value	will	be	handled	as	described	under	``Year	2000	(Y2K)
issues''	above.	A	-1	argument	as	the	daylight	savings	flag,	passed	to
mktime()	will	usually	result	in	the	correct	daylight	savings	state	to	be
filled	in.

When	a	tuple	with	an	incorrect	length	is	passed	to	a	function	expecting	a
struct_time,	or	having	elements	of	the	wrong	type,	a	TypeError	is
raised.

Changed	in	version	2.2:	The	time	value	sequence	was	changed	from	a	tuple
to	a	struct_time,	with	the	addition	of	attribute	names	for	the	fields.

The	module	defines	the	following	functions	and	data	items:

accept2dyear

Boolean	value	indicating	whether	two-digit	year	values	will	be	accepted.
This	is	true	by	default,	but	will	be	set	to	false	if	the	environment	variable
PYTHONY2K	has	been	set	to	a	non-empty	string.	It	may	also	be	modified
at	run	time.

altzone

The	offset	of	the	local	DST	timezone,	in	seconds	west	of	UTC,	if	one	is
defined.	This	is	negative	if	the	local	DST	timezone	is	east	of	UTC	(as	in
Western	Europe,	including	the	UK).	Only	use	this	if	daylight	is	nonzero.

asctime([t])
Convert	a	tuple	or	struct_time	representing	a	time	as	returned	by
gmtime()	or	localtime()	to	a	24-character	string	of	the	following
form:	'Sun	Jun	20	23:21:05	1993'.	If	t	is	not	provided,	the
current	time	as	returned	by	localtime()	is	used.	Locale	information	is
not	used	by	asctime().	Note:	Unlike	the	C	function	of	the	same	name,
there	is	no	trailing	newline.	Changed	in	version	2.1:	Allowed	t	to	be
omitted.

clock()
On	UNIX,	return	the	current	processor	time	as	a	floating	point	number
expressed	in	seconds.	The	precision,	and	in	fact	the	very	definition	of	the

meaning	of	``processor	time'',	depends	on	that	of	the	C	function	of	the	same
name,	but	in	any	case,	this	is	the	function	to	use	for	benchmarking	Python
or	timing	algorithms.

On	Windows,	this	function	returns	wall-clock	seconds	elapsed	since	the
first	call	to	this	function,	as	a	floating	point	number,	based	on	the	Win32
function	QueryPerformanceCounter().	The	resolution	is	typically
better	than	one	microsecond.

ctime([secs])
Convert	a	time	expressed	in	seconds	since	the	epoch	to	a	string	representing
local	time.	If	secs	is	not	provided	or	None,	the	current	time	as	returned	by
time()	is	used.	ctime(secs)	is	equivalent	to
asctime(localtime(secs)).	Locale	information	is	not	used	by
ctime().	Changed	in	version	2.1:	Allowed	secs	to	be	omitted.	Changed	in
version	2.4:	If	secs	is	None,	the	current	time	is	used.

daylight

Nonzero	if	a	DST	timezone	is	defined.

gmtime([secs])
Convert	a	time	expressed	in	seconds	since	the	epoch	to	a	struct_time
in	UTC	in	which	the	dst	flag	is	always	zero.	If	secs	is	not	provided	or
None,	the	current	time	as	returned	by	time()	is	used.	Fractions	of	a
second	are	ignored.	See	above	for	a	description	of	the	struct_time
object.	See	calendar.timegm()	for	the	inverse	of	this	function.
Changed	in	version	2.1:	Allowed	secs	to	be	omitted.	Changed	in	version
2.4:	If	secs	is	None,	the	current	time	is	used.

localtime([secs])
Like	gmtime()	but	converts	to	local	time.	If	secs	is	not	provided	or
None,	the	current	time	as	returned	by	time()	is	used.	The	dst	flag	is	set
to	1	when	DST	applies	to	the	given	time.	Changed	in	version	2.1:	Allowed
secs	to	be	omitted.	Changed	in	version	2.4:	If	secs	is	None,	the	current	time
is	used.

mktime(t)

This	is	the	inverse	function	of	localtime().	Its	argument	is	the
struct_time	or	full	9-tuple	(since	the	dst	flag	is	needed;	use	-1	as	the
dst	flag	if	it	is	unknown)	which	expresses	the	time	in	local	time,	not	UTC.
It	returns	a	floating	point	number,	for	compatibility	with	time().	If	the
input	value	cannot	be	represented	as	a	valid	time,	either	OverflowError
or	ValueError	will	be	raised	(which	depends	on	whether	the	invalid
value	is	caught	by	Python	or	the	underlying	C	libraries).	The	earliest	date
for	which	it	can	generate	a	time	is	platform-dependent.

sleep(secs)
Suspend	execution	for	the	given	number	of	seconds.	The	argument	may	be
a	floating	point	number	to	indicate	a	more	precise	sleep	time.	The	actual
suspension	time	may	be	less	than	that	requested	because	any	caught	signal
will	terminate	the	sleep()	following	execution	of	that	signal's	catching
routine.	Also,	the	suspension	time	may	be	longer	than	requested	by	an
arbitrary	amount	because	of	the	scheduling	of	other	activity	in	the	system.

strftime(format[,	t])
Convert	a	tuple	or	struct_time	representing	a	time	as	returned	by
gmtime()	or	localtime()	to	a	string	as	specified	by	the	format
argument.	If	t	is	not	provided,	the	current	time	as	returned	by
localtime()	is	used.	format	must	be	a	string.	ValueError	is	raised	if
any	field	in	t	is	outside	of	the	allowed	range.	Changed	in	version	2.1:
Allowed	t	to	be	omitted.	Changed	in	version	2.4:	ValueError	raised	if	a
field	in	t	is	out	of	range..

The	following	directives	can	be	embedded	in	the	format	string.	They	are
shown	without	the	optional	field	width	and	precision	specification,	and	are
replaced	by	the	indicated	characters	in	the	strftime()	result:

Directive Meaning Notes
%a Locale's	abbreviated	weekday	name.
%A Locale's	full	weekday	name.
%b Locale's	abbreviated	month	name.
%B Locale's	full	month	name.
%c Locale's	appropriate	date	and	time	representation.
%d Day	of	the	month	as	a	decimal	number	[01,31].

%H Hour	(24-hour	clock)	as	a	decimal	number	[00,23].
%I Hour	(12-hour	clock)	as	a	decimal	number	[01,12].
%j Day	of	the	year	as	a	decimal	number	[001,366].
%m Month	as	a	decimal	number	[01,12].
%M Minute	as	a	decimal	number	[00,59].
%p Locale's	equivalent	of	either	AM	or	PM. (1)
%S Second	as	a	decimal	number	[00,61]. (2)
%U Week	number	of	the	year	(Sunday	as	the	first	day	of

the	week)	as	a	decimal	number	[00,53].	All	days	in
a	new	year	preceding	the	first	Sunday	are
considered	to	be	in	week	0.

(3)

%w Weekday	as	a	decimal	number	[0(Sunday),6].
%W Week	number	of	the	year	(Monday	as	the	first	day

of	the	week)	as	a	decimal	number	[00,53].	All	days
in	a	new	year	preceding	the	first	Monday	are
considered	to	be	in	week	0.

(3)

%x Locale's	appropriate	date	representation.
%X Locale's	appropriate	time	representation.
%y Year	without	century	as	a	decimal	number	[00,99].
%Y Year	with	century	as	a	decimal	number.
%Z Time	zone	name	(no	characters	if	no	time	zone

exists).
%% A	literal	"%"	character.

Notes:

(1)
When	used	with	the	strptime()	function,	the	%p	directive	only
affects	the	output	hour	field	if	the	%I	directive	is	used	to	parse	the
hour.

(2)
The	range	really	is	0	to	61;	this	accounts	for	leap	seconds	and	the
(very	rare)	double	leap	seconds.

(3)
When	used	with	the	strptime()	function,	%U	and	%W	are	only	used
in	calculations	when	the	day	of	the	week	and	the	year	are	specified.

Here	is	an	example,	a	format	for	dates	compatible	with	that	specified	in	the
RFC	2822	Internet	email	standard.	6.1

>>>	from	time	import	gmtime,	strftime

>>>	strftime("%a,	%d	%b	%Y	%H:%M:%S	+0000",	gmtime())

'Thu,	28	Jun	2001	14:17:15	+0000'

Additional	directives	may	be	supported	on	certain	platforms,	but	only	the
ones	listed	here	have	a	meaning	standardized	by	ANSI	C.

On	some	platforms,	an	optional	field	width	and	precision	specification	can
immediately	follow	the	initial	"%"	of	a	directive	in	the	following	order;	this
is	also	not	portable.	The	field	width	is	normally	2	except	for	%j	where	it	is
3.

strptime(string[,	format])
Parse	a	string	representing	a	time	according	to	a	format.	The	return	value	is
a	struct_time	as	returned	by	gmtime()	or	localtime().	The
format	parameter	uses	the	same	directives	as	those	used	by	strftime();
it	defaults	to	"%a	%b	%d	%H:%M:%S	%Y"	which	matches	the
formatting	returned	by	ctime().	If	string	cannot	be	parsed	according	to
format,	ValueError	is	raised.	If	the	string	to	be	parsed	has	excess	data
after	parsing,	ValueError	is	raised.	The	default	values	used	to	fill	in	any
missing	data	are	(1900,	1,	1,	0,	0,	0,	0,	1,	-1)	.

Support	for	the	%Z	directive	is	based	on	the	values	contained	in	tzname
and	whether	daylight	is	true.	Because	of	this,	it	is	platform-specific
except	for	recognizing	UTC	and	GMT	which	are	always	known	(and	are
considered	to	be	non-daylight	savings	timezones).

struct_time

The	type	of	the	time	value	sequence	returned	by	gmtime(),
localtime(),	and	strptime().	New	in	version	2.2.

time()
Return	the	time	as	a	floating	point	number	expressed	in	seconds	since	the
epoch,	in	UTC.	Note	that	even	though	the	time	is	always	returned	as	a
floating	point	number,	not	all	systems	provide	time	with	a	better	precision
than	1	second.	While	this	function	normally	returns	non-decreasing	values,

http://www.faqs.org/rfcs/rfc2822.html

it	can	return	a	lower	value	than	a	previous	call	if	the	system	clock	has	been
set	back	between	the	two	calls.

timezone

The	offset	of	the	local	(non-DST)	timezone,	in	seconds	west	of	UTC
(negative	in	most	of	Western	Europe,	positive	in	the	US,	zero	in	the	UK).

tzname

A	tuple	of	two	strings:	the	first	is	the	name	of	the	local	non-DST	timezone,
the	second	is	the	name	of	the	local	DST	timezone.	If	no	DST	timezone	is
defined,	the	second	string	should	not	be	used.

tzset()
Resets	the	time	conversion	rules	used	by	the	library	routines.	The
environment	variable	TZ	specifies	how	this	is	done.	New	in	version	2.3.

Availability:	UNIX.

Note: 	Although	in	many	cases,	changing	the	TZ
environment	variable	may	affect	the	output	of	functions	like
localtime	without	calling	tzset,	this	behavior	should
not	be	relied	on.

The	TZ	environment	variable	should	contain	no	whitespace.

The	standard	format	of	the	TZ	environment	variable	is:	(whitespace	added
for	clarity)

std	offset	[dst	[offset]	[,start[/time],	end[/time]
]]

Where:

std	and	dst
Three	or	more	alphanumerics	giving	the	timezone	abbreviations.
These	will	be	propogated	into	time.tzname

offset
The	offset	has	the	form:	±	hh[:mm[:ss]].	This	indicates	the	value	added
the	local	time	to	arrive	at	UTC.	If	preceded	by	a	'-',	the	timezone	is
east	of	the	Prime	Meridian;	otherwise,	it	is	west.	If	no	offset	follows
dst,	summmer	time	is	assumed	to	be	one	hour	ahead	of	standard	time.

start[/time],end[/time]
Indicates	when	to	change	to	and	back	from	DST.	The	format	of	the
start	and	end	dates	are	one	of	the	following:

Jn
The	Julian	day	n	(1	<=	n	<=	365).	Leap	days	are	not	counted,	so
in	all	years	February	28	is	day	59	and	March	1	is	day	60.

n
The	zero-based	Julian	day	(0	<=	n	<=	365).	Leap	days	are
counted,	and	it	is	possible	to	refer	to	February	29.

Mm.n.d
The	d'th	day	(0	<=	d	<=	6)	or	week	n	of	month	m	of	the	year	(1
<=	n	<=	5,	1	<=	m	<=	12,	where	week	5	means	"the	last	d	day	in
month	m"	which	may	occur	in	either	the	fourth	or	the	fifth	week).
Week	1	is	the	first	week	in	which	the	d'th	day	occurs.	Day	zero	is
Sunday.

time	has	the	same	format	as	offset	except	that	no	leading	sign	('-'	or	'+')
is	allowed.	The	default,	if	time	is	not	given,	is	02:00:00.

>>>	os.environ['TZ']	=	'EST+05EDT,M4.1.0,M10.5.0'

>>>	time.tzset()

>>>	time.strftime('%X	%x	%Z')

'02:07:36	05/08/03	EDT'

>>>	os.environ['TZ']	=	'AEST-10AEDT-11,M10.5.0,M3.5.0'

>>>	time.tzset()

>>>	time.strftime('%X	%x	%Z')

'16:08:12	05/08/03	AEST'

On	many	Unix	systems	(including	*BSD,	Linux,	Solaris,	and	Darwin),	it	is
more	convenient	to	use	the	system's	zoneinfo	(tzfile(5))	database	to	specify
the	timezone	rules.	To	do	this,	set	the	TZ	environment	variable	to	the	path
of	the	required	timezone	datafile,	relative	to	the	root	of	the	systems
'zoneinfo'	timezone	database,	usually	located	at	/usr/share/zoneinfo.	For

example,	'US/Eastern',	'Australia/Melbourne',	'Egypt'	or
'Europe/Amsterdam'.

>>>	os.environ['TZ']	=	'US/Eastern'

>>>	time.tzset()

>>>	time.tzname

('EST',	'EDT')

>>>	os.environ['TZ']	=	'Egypt'

>>>	time.tzset()

>>>	time.tzname

('EET',	'EEST')

See	Also:

Module	datetime:
More	object-oriented	interface	to	dates	and	times.

Module	locale:
Internationalization	services.	The	locale	settings	can	affect	the	return
values	for	some	of	the	functions	in	the	time	module.

Module	calendar:
General	calendar-related	functions.	timegm()	is	the	inverse	of
gmtime()	from	this	module.

Footnotes

...	standard.6.1
The	use	of	%Z	is	now	deprecated,	but	the	%z	escape	that	expands	to	the
preferred	hour/minute	offset	is	not	supported	by	all	ANSI	C	libraries.	Also,
a	strict	reading	of	the	original	1982	RFC	822	standard	calls	for	a	two-digit
year	(%y	rather	than	%Y),	but	practice	moved	to	4-digit	years	long	before
the	year	2000.	The	4-digit	year	has	been	mandated	by	RFC	2822,	which
obsoletes	RFC	822.

Python	Library	Reference

http://www.faqs.org/rfcs/rfc822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc822.html

Previous:	6.10.7	strftime()	Behavior	Up:	6.	Generic	Operating	System	Next:
6.12	sched

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.11	time	Up:	6.	Generic	Operating	System	Next:	6.12.1	Scheduler
Objects

6.12	sched	--	Event	scheduler
The	sched	module	defines	a	class	which	implements	a	general	purpose	event
scheduler:

class	scheduler(timefunc,	delayfunc)
The	scheduler	class	defines	a	generic	interface	to	scheduling	events.	It
needs	two	functions	to	actually	deal	with	the	``outside	world''	--	timefunc
should	be	callable	without	arguments,	and	return	a	number	(the	``time'',	in
any	units	whatsoever).	The	delayfunc	function	should	be	callable	with	one
argument,	compatible	with	the	output	of	timefunc,	and	should	delay	that
many	time	units.	delayfunc	will	also	be	called	with	the	argument	0	after
each	event	is	run	to	allow	other	threads	an	opportunity	to	run	in	multi-
threaded	applications.

Example:

>>>	import	sched,	time

>>>	s=sched.scheduler(time.time,	time.sleep)

>>>	def	print_time():	print	"From	print_time",	time.time()

...

>>>	def	print_some_times():

...					print	time.time()

...					s.enter(5,	1,	print_time,	())

...					s.enter(10,	1,	print_time,	())

...					s.run()

...					print	time.time()

...

>>>	print_some_times()

930343690.257

From	print_time	930343695.274

From	print_time	930343700.273

930343700.276

Subsections

6.12.1	Scheduler	Objects

Python	Library	Reference

Previous:	6.11	time	Up:	6.	Generic	Operating	System	Next:	6.12.1	Scheduler
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.12	sched	Up:	6.12	sched	Next:	6.13	mutex

6.12.1	Scheduler	Objects
scheduler	instances	have	the	following	methods:

enterabs(time,	priority,	action,	argument)
Schedule	a	new	event.	The	time	argument	should	be	a	numeric	type
compatible	with	the	return	value	of	the	timefunc	function	passed	to	the
constructor.	Events	scheduled	for	the	same	time	will	be	executed	in	the
order	of	their	priority.

Executing	the	event	means	executing	action(*argument).	argument	must
be	a	sequence	holding	the	parameters	for	action.

Return	value	is	an	event	which	may	be	used	for	later	cancellation	of	the
event	(see	cancel()).

enter(delay,	priority,	action,	argument)
Schedule	an	event	for	delay	more	time	units.	Other	then	the	relative	time,
the	other	arguments,	the	effect	and	the	return	value	are	the	same	as	those	for
enterabs().

cancel(event)
Remove	the	event	from	the	queue.	If	event	is	not	an	event	currently	in	the
queue,	this	method	will	raise	a	RuntimeError.

empty()
Return	true	if	the	event	queue	is	empty.

run()
Run	all	scheduled	events.	This	function	will	wait	(using	the	delayfunc
function	passed	to	the	constructor)	for	the	next	event,	then	execute	it	and	so
on	until	there	are	no	more	scheduled	events.

Either	action	or	delayfunc	can	raise	an	exception.	In	either	case,	the
scheduler	will	maintain	a	consistent	state	and	propagate	the	exception.	If	an
exception	is	raised	by	action,	the	event	will	not	be	attempted	in	future	calls

to	run().

If	a	sequence	of	events	takes	longer	to	run	than	the	time	available	before	the
next	event,	the	scheduler	will	simply	fall	behind.	No	events	will	be
dropped;	the	calling	code	is	responsible	for	canceling	events	which	are	no
longer	pertinent.

Python	Library	Reference
Previous:	6.12	sched	Up:	6.12	sched	Next:	6.13	mutex

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.12.1	Scheduler	Objects	Up:	6.	Generic	Operating	System	Next:
6.13.1	Mutex	Objects

6.13	mutex	--	Mutual	exclusion
support
The	mutex	module	defines	a	class	that	allows	mutual-exclusion	via	acquiring
and	releasing	locks.	It	does	not	require	(or	imply)	threading	or	multi-tasking,
though	it	could	be	useful	for	those	purposes.

The	mutex	module	defines	the	following	class:

class	mutex()
Create	a	new	(unlocked)	mutex.

A	mutex	has	two	pieces	of	state	--	a	``locked''	bit	and	a	queue.	When	the
mutex	is	not	locked,	the	queue	is	empty.	Otherwise,	the	queue	contains	zero
or	more	(function,	argument)	pairs	representing	functions	(or	methods)
waiting	to	acquire	the	lock.	When	the	mutex	is	unlocked	while	the	queue	is
not	empty,	the	first	queue	entry	is	removed	and	its	function(argument)	pair
called,	implying	it	now	has	the	lock.

Of	course,	no	multi-threading	is	implied	-	hence	the	funny	interface	for
lock(),	where	a	function	is	called	once	the	lock	is	acquired.

Subsections

6.13.1	Mutex	Objects

Python	Library	Reference
Previous:	6.12.1	Scheduler	Objects	Up:	6.	Generic	Operating	System	Next:
6.13.1	Mutex	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.13	mutex	Up:	6.13	mutex	Next:	6.14	getpass

6.13.1	Mutex	Objects
mutex	objects	have	following	methods:

test()
Check	whether	the	mutex	is	locked.

testandset()
``Atomic''	test-and-set,	grab	the	lock	if	it	is	not	set,	and	return	True,
otherwise,	return	False.

lock(function,	argument)
Execute	function(argument),	unless	the	mutex	is	locked.	In	the	case	it	is
locked,	place	the	function	and	argument	on	the	queue.	See	unlock	for
explanation	of	when	function(argument)	is	executed	in	that	case.

unlock()
Unlock	the	mutex	if	queue	is	empty,	otherwise	execute	the	first	element	in
the	queue.

Python	Library	Reference
Previous:	6.13	mutex	Up:	6.13	mutex	Next:	6.14	getpass

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.13.1	Mutex	Objects	Up:	6.	Generic	Operating	System	Next:	6.15
curses

6.14	getpass	--	Portable	password
input
The	getpass	module	provides	two	functions:

getpass([prompt])
Prompt	the	user	for	a	password	without	echoing.	The	user	is	prompted
using	the	string	prompt,	which	defaults	to	'Password:	'.	Availability:
Macintosh,	UNIX,	Windows.

getuser()
Return	the	``login	name''	of	the	user.	Availability:	UNIX,	Windows.

This	function	checks	the	environment	variables	LOGNAME,	USER,
LNAME	and	USERNAME,	in	order,	and	returns	the	value	of	the	first	one
which	is	set	to	a	non-empty	string.	If	none	are	set,	the	login	name	from	the
password	database	is	returned	on	systems	which	support	the	pwd	module,
otherwise,	an	exception	is	raised.

Python	Library	Reference
Previous:	6.13.1	Mutex	Objects	Up:	6.	Generic	Operating	System	Next:	6.15
curses

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.14	getpass	Up:	6.	Generic	Operating	System	Next:	6.15.1
Functions

6.15	curses	--	Terminal	handling	for
character-cell	displays
Changed	in	version	1.6:	Added	support	for	the	ncurses	library	and	converted
to	a	package.

The	curses	module	provides	an	interface	to	the	curses	library,	the	de-facto
standard	for	portable	advanced	terminal	handling.

While	curses	is	most	widely	used	in	the	UNIX	environment,	versions	are
available	for	DOS,	OS/2,	and	possibly	other	systems	as	well.	This	extension
module	is	designed	to	match	the	API	of	ncurses,	an	open-source	curses	library
hosted	on	Linux	and	the	BSD	variants	of	UNIX.

See	Also:

Module	curses.ascii:
Utilities	for	working	with	ASCII	characters,	regardless	of	your	locale
settings.

Module	curses.panel:
A	panel	stack	extension	that	adds	depth	to	curses	windows.

Module	curses.textpad:
Editable	text	widget	for	curses	supporting	Emacs-like	bindings.

Module	curses.wrapper:
Convenience	function	to	ensure	proper	terminal	setup	and	resetting	on
application	entry	and	exit.

Curses	Programming	with	Python
Tutorial	material	on	using	curses	with	Python,	by	Andrew	Kuchling
and	Eric	Raymond,	is	available	on	the	Python	Web	site.

The	Demo/curses/	directory	in	the	Python	source	distribution	contains

http://www.python.org/doc/howto/curses/curses.html

some	example	programs	using	the	curses	bindings	provided	by	this	module.

Subsections

6.15.1	Functions
6.15.2	Window	Objects
6.15.3	Constants

Python	Library	Reference
Previous:	6.14	getpass	Up:	6.	Generic	Operating	System	Next:	6.15.1
Functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.15	curses	Up:	6.15	curses	Next:	6.15.2	Window	Objects

6.15.1	Functions
The	module	curses	defines	the	following	exception:

exception	error
Exception	raised	when	a	curses	library	function	returns	an	error.

Note:	Whenever	x	or	y	arguments	to	a	function	or	a	method	are	optional,	they
default	to	the	current	cursor	location.	Whenever	attr	is	optional,	it	defaults	to
A_NORMAL.

The	module	curses	defines	the	following	functions:

baudrate()
Returns	the	output	speed	of	the	terminal	in	bits	per	second.	On	software
terminal	emulators	it	will	have	a	fixed	high	value.	Included	for	historical
reasons;	in	former	times,	it	was	used	to	write	output	loops	for	time	delays
and	occasionally	to	change	interfaces	depending	on	the	line	speed.

beep()
Emit	a	short	attention	sound.

can_change_color()
Returns	true	or	false,	depending	on	whether	the	programmer	can	change	the
colors	displayed	by	the	terminal.

cbreak()
Enter	cbreak	mode.	In	cbreak	mode	(sometimes	called	``rare''	mode)	normal
tty	line	buffering	is	turned	off	and	characters	are	available	to	be	read	one	by
one.	However,	unlike	raw	mode,	special	characters	(interrupt,	quit,	suspend,
and	flow	control)	retain	their	effects	on	the	tty	driver	and	calling	program.
Calling	first	raw()	then	cbreak()	leaves	the	terminal	in	cbreak	mode.

color_content(color_number)
Returns	the	intensity	of	the	red,	green,	and	blue	(RGB)	components	in	the
color	color_number,	which	must	be	between	0	and	COLORS.	A	3-tuple	is

returned,	containing	the	R,G,B	values	for	the	given	color,	which	will	be
between	0	(no	component)	and	1000	(maximum	amount	of	component).

color_pair(color_number)
Returns	the	attribute	value	for	displaying	text	in	the	specified	color.	This
attribute	value	can	be	combined	with	A_STANDOUT,	A_REVERSE,	and	the
other	A_*	attributes.	pair_number()	is	the	counterpart	to	this	function.

curs_set(visibility)
Sets	the	cursor	state.	visibility	can	be	set	to	0,	1,	or	2,	for	invisible,	normal,
or	very	visible.	If	the	terminal	supports	the	visibility	requested,	the	previous
cursor	state	is	returned;	otherwise,	an	exception	is	raised.	On	many
terminals,	the	``visible''	mode	is	an	underline	cursor	and	the	``very	visible''
mode	is	a	block	cursor.

def_prog_mode()
Saves	the	current	terminal	mode	as	the	``program''	mode,	the	mode	when
the	running	program	is	using	curses.	(Its	counterpart	is	the	``shell''	mode,
for	when	the	program	is	not	in	curses.)	Subsequent	calls	to
reset_prog_mode()	will	restore	this	mode.

def_shell_mode()
Saves	the	current	terminal	mode	as	the	``shell''	mode,	the	mode	when	the
running	program	is	not	using	curses.	(Its	counterpart	is	the	``program''
mode,	when	the	program	is	using	curses	capabilities.)	Subsequent	calls	to
reset_shell_mode()	will	restore	this	mode.

delay_output(ms)
Inserts	an	ms	millisecond	pause	in	output.

doupdate()
Update	the	physical	screen.	The	curses	library	keeps	two	data	structures,
one	representing	the	current	physical	screen	contents	and	a	virtual	screen
representing	the	desired	next	state.	The	doupdate()	ground	updates	the
physical	screen	to	match	the	virtual	screen.

The	virtual	screen	may	be	updated	by	a	noutrefresh()	call	after	write

operations	such	as	addstr()	have	been	performed	on	a	window.	The
normal	refresh()	call	is	simply	noutrefresh()	followed	by
doupdate();	if	you	have	to	update	multiple	windows,	you	can	speed
performance	and	perhaps	reduce	screen	flicker	by	issuing
noutrefresh()	calls	on	all	windows,	followed	by	a	single
doupdate().

echo()
Enter	echo	mode.	In	echo	mode,	each	character	input	is	echoed	to	the
screen	as	it	is	entered.

endwin()
De-initialize	the	library,	and	return	terminal	to	normal	status.

erasechar()
Returns	the	user's	current	erase	character.	Under	UNIX	operating	systems
this	is	a	property	of	the	controlling	tty	of	the	curses	program,	and	is	not	set
by	the	curses	library	itself.

filter()
The	filter()	routine,	if	used,	must	be	called	before	initscr()	is
called.	The	effect	is	that,	during	those	calls,	LINES	is	set	to	1;	the
capabilities	clear,	cup,	cud,	cud1,	cuu1,	cuu,	vpa	are	disabled;	and	the	home
string	is	set	to	the	value	of	cr.	The	effect	is	that	the	cursor	is	confined	to	the
current	line,	and	so	are	screen	updates.	This	may	be	used	for	enabling
cgaracter-at-a-time	line	editing	without	touching	the	rest	of	the	screen.

flash()
Flash	the	screen.	That	is,	change	it	to	reverse-video	and	then	change	it	back
in	a	short	interval.	Some	people	prefer	such	as	`visible	bell'	to	the	audible
attention	signal	produced	by	beep().

flushinp()
Flush	all	input	buffers.	This	throws	away	any	typeahead	that	has	been	typed
by	the	user	and	has	not	yet	been	processed	by	the	program.

getmouse()

After	getch()	returns	KEY_MOUSE	to	signal	a	mouse	event,	this	method
should	be	call	to	retrieve	the	queued	mouse	event,	represented	as	a	5-tuple
(id,	x,	y,	z,	bstate).	id	is	an	ID	value	used	to	distinguish	multiple
devices,	and	x,	y,	z	are	the	event's	coordinates.	(z	is	currently	unused.).
bstate	is	an	integer	value	whose	bits	will	be	set	to	indicate	the	type	of	event,
and	will	be	the	bitwise	OR	of	one	or	more	of	the	following	constants,	where
n	is	the	button	number	from	1	to	4:	BUTTONn_PRESSED,
BUTTONn_RELEASED,	BUTTONn_CLICKED,
BUTTONn_DOUBLE_CLICKED,	BUTTONn_TRIPLE_CLICKED,
BUTTON_SHIFT,	BUTTON_CTRL,	BUTTON_ALT.

getsyx()
Returns	the	current	coordinates	of	the	virtual	screen	cursor	in	y	and	x.	If
leaveok	is	currently	true,	then	-1,-1	is	returned.

getwin(file)
Reads	window	related	data	stored	in	the	file	by	an	earlier	putwin()	call.
The	routine	then	creates	and	initializes	a	new	window	using	that	data,
returning	the	new	window	object.

has_colors()
Returns	true	if	the	terminal	can	display	colors;	otherwise,	it	returns	false.

has_ic()
Returns	true	if	the	terminal	has	insert-	and	delete-	character	capabilities.
This	function	is	included	for	historical	reasons	only,	as	all	modern	software
terminal	emulators	have	such	capabilities.

has_il()
Returns	true	if	the	terminal	has	insert-	and	delete-line	capabilities,	or	can
simulate	them	using	scrolling	regions.	This	function	is	included	for
historical	reasons	only,	as	all	modern	software	terminal	emulators	have	such
capabilities.

has_key(ch)
Takes	a	key	value	ch,	and	returns	true	if	the	current	terminal	type
recognizes	a	key	with	that	value.

halfdelay(tenths)
Used	for	half-delay	mode,	which	is	similar	to	cbreak	mode	in	that
characters	typed	by	the	user	are	immediately	available	to	the	program.
However,	after	blocking	for	tenths	tenths	of	seconds,	an	exception	is	raised
if	nothing	has	been	typed.	The	value	of	tenths	must	be	a	number	between	1
and	255.	Use	nocbreak()	to	leave	half-delay	mode.

init_color(color_number,	r,	g,	b)
Changes	the	definition	of	a	color,	taking	the	number	of	the	color	to	be
changed	followed	by	three	RGB	values	(for	the	amounts	of	red,	green,	and
blue	components).	The	value	of	color_number	must	be	between	0	and
COLORS.	Each	of	r,	g,	b,	must	be	a	value	between	0	and	1000.	When
init_color()	is	used,	all	occurrences	of	that	color	on	the	screen
immediately	change	to	the	new	definition.	This	function	is	a	no-op	on	most
terminals;	it	is	active	only	if	can_change_color()	returns	1.

init_pair(pair_number,	fg,	bg)
Changes	the	definition	of	a	color-pair.	It	takes	three	arguments:	the	number
of	the	color-pair	to	be	changed,	the	foreground	color	number,	and	the
background	color	number.	The	value	of	pair_number	must	be	between	1
and	COLOR_PAIRS	-	1	(the	0	color	pair	is	wired	to	white	on	black	and
cannot	be	changed).	The	value	of	fg	and	bg	arguments	must	be	between	0
and	COLORS.	If	the	color-pair	was	previously	initialized,	the	screen	is
refreshed	and	all	occurrences	of	that	color-pair	are	changed	to	the	new
definition.

initscr()
Initialize	the	library.	Returns	a	WindowObject	which	represents	the
whole	screen.	Note:	If	there	is	an	error	opening	the	terminal,	the	underlying
curses	library	may	cause	the	interpreter	to	exit.

isendwin()
Returns	true	if	endwin()	has	been	called	(that	is,	the	curses	library	has
been	deinitialized).

keyname(k)
Return	the	name	of	the	key	numbered	k.	The	name	of	a	key	generating

printable	ASCII	character	is	the	key's	character.	The	name	of	a	control-key
combination	is	a	two-character	string	consisting	of	a	caret	followed	by	the
corresponding	printable	ASCII	character.	The	name	of	an	alt-key
combination	(128-255)	is	a	string	consisting	of	the	prefix	`M-'	followed	by
the	name	of	the	corresponding	ASCII	character.

killchar()
Returns	the	user's	current	line	kill	character.	Under	UNIX	operating	systems
this	is	a	property	of	the	controlling	tty	of	the	curses	program,	and	is	not	set
by	the	curses	library	itself.

longname()
Returns	a	string	containing	the	terminfo	long	name	field	describing	the
current	terminal.	The	maximum	length	of	a	verbose	description	is	128
characters.	It	is	defined	only	after	the	call	to	initscr().

meta(yes)
If	yes	is	1,	allow	8-bit	characters	to	be	input.	If	yes	is	0,	allow	only	7-bit
chars.

mouseinterval(interval)
Sets	the	maximum	time	in	milliseconds	that	can	elapse	between	press	and
release	events	in	order	for	them	to	be	recognized	as	a	click,	and	returns	the
previous	interval	value.	The	default	value	is	200	msec,	or	one	fifth	of	a
second.

mousemask(mousemask)
Sets	the	mouse	events	to	be	reported,	and	returns	a	tuple	(availmask,
oldmask).	availmask	indicates	which	of	the	specified	mouse	events	can	be
reported;	on	complete	failure	it	returns	0.	oldmask	is	the	previous	value	of
the	given	window's	mouse	event	mask.	If	this	function	is	never	called,	no
mouse	events	are	ever	reported.

napms(ms)
Sleep	for	ms	milliseconds.

newpad(nlines,	ncols)

Creates	and	returns	a	pointer	to	a	new	pad	data	structure	with	the	given
number	of	lines	and	columns.	A	pad	is	returned	as	a	window	object.

A	pad	is	like	a	window,	except	that	it	is	not	restricted	by	the	screen	size,	and
is	not	necessarily	associated	with	a	particular	part	of	the	screen.	Pads	can	be
used	when	a	large	window	is	needed,	and	only	a	part	of	the	window	will	be
on	the	screen	at	one	time.	Automatic	refreshes	of	pads	(such	as	from
scrolling	or	echoing	of	input)	do	not	occur.	The	refresh()	and
noutrefresh()	methods	of	a	pad	require	6	arguments	to	specify	the
part	of	the	pad	to	be	displayed	and	the	location	on	the	screen	to	be	used	for
the	display.	The	arguments	are	pminrow,	pmincol,	sminrow,	smincol,
smaxrow,	smaxcol;	the	p	arguments	refer	to	the	upper	left	corner	of	the	pad
region	to	be	displayed	and	the	s	arguments	define	a	clipping	box	on	the
screen	within	which	the	pad	region	is	to	be	displayed.

newwin([nlines,	ncols,]	begin_y,	begin_x)
Return	a	new	window,	whose	left-upper	corner	is	at	(begin_y,	begin_x),
and	whose	height/width	is	nlines/ncols.

By	default,	the	window	will	extend	from	the	specified	position	to	the	lower
right	corner	of	the	screen.

nl()
Enter	newline	mode.	This	mode	translates	the	return	key	into	newline	on
input,	and	translates	newline	into	return	and	line-feed	on	output.	Newline
mode	is	initially	on.

nocbreak()
Leave	cbreak	mode.	Return	to	normal	``cooked''	mode	with	line	buffering.

noecho()
Leave	echo	mode.	Echoing	of	input	characters	is	turned	off.

nonl()
Leave	newline	mode.	Disable	translation	of	return	into	newline	on	input,
and	disable	low-level	translation	of	newline	into	newline/return	on	output
(but	this	does	not	change	the	behavior	of	addch('\n'),	which	always
does	the	equivalent	of	return	and	line	feed	on	the	virtual	screen).	With

translation	off,	curses	can	sometimes	speed	up	vertical	motion	a	little;	also,
it	will	be	able	to	detect	the	return	key	on	input.

noqiflush()
When	the	noqiflush	routine	is	used,	normal	flush	of	input	and	output	queues
associated	with	the	INTR,	QUIT	and	SUSP	characters	will	not	be	done.
You	may	want	to	call	noqiflush()	in	a	signal	handler	if	you	want
output	to	continue	as	though	the	interrupt	had	not	occurred,	after	the
handler	exits.

noraw()
Leave	raw	mode.	Return	to	normal	``cooked''	mode	with	line	buffering.

pair_content(pair_number)
Returns	a	tuple	(fg,	bg)	containing	the	colors	for	the	requested	color	pair.
The	value	of	pair_number	must	be	between	0	and	COLOR_PAIRS	-	1.

pair_number(attr)
Returns	the	number	of	the	color-pair	set	by	the	attribute	value	attr.
color_pair()	is	the	counterpart	to	this	function.

putp(string)
Equivalent	to	tputs(str,	1,	putchar);	emits	the	value	of	a
specified	terminfo	capability	for	the	current	terminal.	Note	that	the	output
of	putp	always	goes	to	standard	output.

qiflush([flag])
If	flag	is	false,	the	effect	is	the	same	as	calling	noqiflush().	If	flag	is
true,	or	no	argument	is	provided,	the	queues	will	be	flushed	when	these
control	characters	are	read.

raw()
Enter	raw	mode.	In	raw	mode,	normal	line	buffering	and	processing	of
interrupt,	quit,	suspend,	and	flow	control	keys	are	turned	off;	characters	are
presented	to	curses	input	functions	one	by	one.

reset_prog_mode()

Restores	the	terminal	to	``program''	mode,	as	previously	saved	by
def_prog_mode().

reset_shell_mode()
Restores	the	terminal	to	``shell''	mode,	as	previously	saved	by
def_shell_mode().

setsyx(y,	x)
Sets	the	virtual	screen	cursor	to	y,	x.	If	y	and	x	are	both	-1,	then	leaveok	is
set.

setupterm([termstr,	fd])
Initializes	the	terminal.	termstr	is	a	string	giving	the	terminal	name;	if
omitted,	the	value	of	the	TERM	environment	variable	will	be	used.	fd	is	the
file	descriptor	to	which	any	initialization	sequences	will	be	sent;	if	not
supplied,	the	file	descriptor	for	sys.stdout	will	be	used.

start_color()
Must	be	called	if	the	programmer	wants	to	use	colors,	and	before	any	other
color	manipulation	routine	is	called.	It	is	good	practice	to	call	this	routine
right	after	initscr().

start_color()	initializes	eight	basic	colors	(black,	red,	green,	yellow,
blue,	magenta,	cyan,	and	white),	and	two	global	variables	in	the	curses
module,	COLORS	and	COLOR_PAIRS,	containing	the	maximum	number
of	colors	and	color-pairs	the	terminal	can	support.	It	also	restores	the	colors
on	the	terminal	to	the	values	they	had	when	the	terminal	was	just	turned	on.

termattrs()
Returns	a	logical	OR	of	all	video	attributes	supported	by	the	terminal.	This
information	is	useful	when	a	curses	program	needs	complete	control	over
the	appearance	of	the	screen.

termname()
Returns	the	value	of	the	environment	variable	TERM,	truncated	to	14
characters.

tigetflag(capname)
Returns	the	value	of	the	Boolean	capability	corresponding	to	the	terminfo
capability	name	capname.	The	value	-1	is	returned	if	capname	is	not	a
Boolean	capability,	or	0	if	it	is	canceled	or	absent	from	the	terminal
description.

tigetnum(capname)
Returns	the	value	of	the	numeric	capability	corresponding	to	the	terminfo
capability	name	capname.	The	value	-2	is	returned	if	capname	is	not	a
numeric	capability,	or	-1	if	it	is	canceled	or	absent	from	the	terminal
description.

tigetstr(capname)
Returns	the	value	of	the	string	capability	corresponding	to	the	terminfo
capability	name	capname.	None	is	returned	if	capname	is	not	a	string
capability,	or	is	canceled	or	absent	from	the	terminal	description.

tparm(str[,...])
Instantiates	the	string	str	with	the	supplied	parameters,	where	str	should	be
a	parameterized	string	obtained	from	the	terminfo	database.	E.g.
tparm(tigetstr("cup"),	5,	3)	could	result	in	'\033[6;4H',
the	exact	result	depending	on	terminal	type.

typeahead(fd)
Specifies	that	the	file	descriptor	fd	be	used	for	typeahead	checking.	If	fd	is
-1,	then	no	typeahead	checking	is	done.

The	curses	library	does	``line-breakout	optimization''	by	looking	for
typeahead	periodically	while	updating	the	screen.	If	input	is	found,	and	it	is
coming	from	a	tty,	the	current	update	is	postponed	until	refresh	or	doupdate
is	called	again,	allowing	faster	response	to	commands	typed	in	advance.
This	function	allows	specifying	a	different	file	descriptor	for	typeahead
checking.

unctrl(ch)
Returns	a	string	which	is	a	printable	representation	of	the	character	ch.
Control	characters	are	displayed	as	a	caret	followed	by	the	character,	for

example	as	^C.	Printing	characters	are	left	as	they	are.

ungetch(ch)
Push	ch	so	the	next	getch()	will	return	it.	Note:	Only	one	ch	can	be
pushed	before	getch()	is	called.

ungetmouse(id,	x,	y,	z,	bstate)
Push	a	KEY_MOUSE	event	onto	the	input	queue,	associating	the	given	state
data	with	it.

use_env(flag)
If	used,	this	function	should	be	called	before	initscr()	or	newterm	are
called.	When	flag	is	false,	the	values	of	lines	and	columns	specified	in	the
terminfo	database	will	be	used,	even	if	environment	variables	LINES	and
COLUMNS	(used	by	default)	are	set,	or	if	curses	is	running	in	a	window
(in	which	case	default	behavior	would	be	to	use	the	window	size	if	LINES
and	COLUMNS	are	not	set).

use_default_colors()
Allow	use	of	default	values	for	colors	on	terminals	supporting	this	feature.
Use	this	to	support	transparency	in	your	application.	The	default	color	is
assigned	to	the	color	number	-1.	After	calling	this	function,
init_pair(x,	curses.COLOR_RED,	-1)	initializes,	for	instance,
color	pair	x	to	a	red	foreground	color	on	the	default	background.

Python	Library	Reference
Previous:	6.15	curses	Up:	6.15	curses	Next:	6.15.2	Window	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.15.1	Functions	Up:	6.15	curses	Next:	6.15.3	Constants

6.15.2	Window	Objects
Window	objects,	as	returned	by	initscr()	and	newwin()	above,	have	the
following	methods:

addch([y,	x,]	ch[,	attr])
Note:	A	character	means	a	C	character	(an	ASCII	code),	rather	then	a
Python	character	(a	string	of	length	1).	(This	note	is	true	whenever	the
documentation	mentions	a	character.)	The	builtin	ord()	is	handy	for
conveying	strings	to	codes.

Paint	character	ch	at	(y,	x)	with	attributes	attr,	overwriting	any	character
previously	painter	at	that	location.	By	default,	the	character	position	and
attributes	are	the	current	settings	for	the	window	object.

addnstr([y,	x,]	str,	n[,	attr])
Paint	at	most	n	characters	of	the	string	str	at	(y,	x)	with	attributes	attr,
overwriting	anything	previously	on	the	display.

addstr([y,	x,]	str[,	attr])
Paint	the	string	str	at	(y,	x)	with	attributes	attr,	overwriting	anything
previously	on	the	display.

attroff(attr)
Remove	attribute	attr	from	the	``background''	set	applied	to	all	writes	to	the
current	window.

attron(attr)
Add	attribute	attr	from	the	``background''	set	applied	to	all	writes	to	the
current	window.

attrset(attr)
Set	the	``background''	set	of	attributes	to	attr.	This	set	is	initially	0	(no
attributes).

bkgd(

ch[,	attr])
Sets	the	background	property	of	the	window	to	the	character	ch,	with
attributes	attr.	The	change	is	then	applied	to	every	character	position	in	that
window:

The	attribute	of	every	character	in	the	window	is	changed	to	the	new
background	attribute.
Wherever	the	former	background	character	appears,	it	is	changed	to
the	new	background	character.

bkgdset(ch[,	attr])
Sets	the	window's	background.	A	window's	background	consists	of	a
character	and	any	combination	of	attributes.	The	attribute	part	of	the
background	is	combined	(OR'ed)	with	all	non-blank	characters	that	are
written	into	the	window.	Both	the	character	and	attribute	parts	of	the
background	are	combined	with	the	blank	characters.	The	background
becomes	a	property	of	the	character	and	moves	with	the	character	through
any	scrolling	and	insert/delete	line/character	operations.

border([ls[,	rs[,	ts[,	bs[,	tl[,	tr[,	bl[,	br]]]]]]]])
Draw	a	border	around	the	edges	of	the	window.	Each	parameter	specifies
the	character	to	use	for	a	specific	part	of	the	border;	see	the	table	below	for
more	details.	The	characters	can	be	specified	as	integers	or	as	one-character
strings.

Note:	A	0	value	for	any	parameter	will	cause	the	default	character	to	be
used	for	that	parameter.	Keyword	parameters	can	not	be	used.	The	defaults
are	listed	in	this	table:

Parameter Description Default	value
ls Left	side ACS_VLINE

rs Right	side ACS_VLINE

ts Top ACS_HLINE

bs Bottom ACS_HLINE

tl Upper-left	corner ACS_ULCORNER

tr Upper-right	corner ACS_URCORNER

bl Bottom-left	corner ACS_BLCORNER

br Bottom-right	corner ACS_BRCORNER

box([vertch,	horch])
Similar	to	border(),	but	both	ls	and	rs	are	vertch	and	both	ts	and	bs	are
horch.	The	default	corner	characters	are	always	used	by	this	function.

clear()
Like	erase(),	but	also	causes	the	whole	window	to	be	repainted	upon
next	call	to	refresh().

clearok(yes)
If	yes	is	1,	the	next	call	to	refresh()	will	clear	the	window	completely.

clrtobot()
Erase	from	cursor	to	the	end	of	the	window:	all	lines	below	the	cursor	are
deleted,	and	then	the	equivalent	of	clrtoeol()	is	performed.

clrtoeol()
Erase	from	cursor	to	the	end	of	the	line.

cursyncup()
Updates	the	current	cursor	position	of	all	the	ancestors	of	the	window	to
reflect	the	current	cursor	position	of	the	window.

delch([y,	x])
Delete	any	character	at	(y,	x).

deleteln()
Delete	the	line	under	the	cursor.	All	following	lines	are	moved	up	by	1	line.

derwin([nlines,	ncols,]	begin_y,	begin_x)
An	abbreviation	for	``derive	window'',	derwin()	is	the	same	as	calling
subwin(),	except	that	begin_y	and	begin_x	are	relative	to	the	origin	of
the	window,	rather	than	relative	to	the	entire	screen.	Returns	a	window
object	for	the	derived	window.

echochar(ch[,	attr])

Add	character	ch	with	attribute	attr,	and	immediately	call	refresh()	on
the	window.

enclose(y,	x)
Tests	whether	the	given	pair	of	screen-relative	character-cell	coordinates	are
enclosed	by	the	given	window,	returning	true	or	false.	It	is	useful	for
determining	what	subset	of	the	screen	windows	enclose	the	location	of	a
mouse	event.

erase()
Clear	the	window.

getbegyx()
Return	a	tuple	(y,	x)	of	co-ordinates	of	upper-left	corner.

getch([y,	x])
Get	a	character.	Note	that	the	integer	returned	does	not	have	to	be	in	ASCII
range:	function	keys,	keypad	keys	and	so	on	return	numbers	higher	than
256.	In	no-delay	mode,	-1	is	returned	if	there	is	no	input.

getkey([y,	x])
Get	a	character,	returning	a	string	instead	of	an	integer,	as	getch()	does.
Function	keys,	keypad	keys	and	so	on	return	a	multibyte	string	containing
the	key	name.	In	no-delay	mode,	an	exception	is	raised	if	there	is	no	input.

getmaxyx()
Return	a	tuple	(y,	x)	of	the	height	and	width	of	the	window.

getparyx()
Returns	the	beginning	coordinates	of	this	window	relative	to	its	parent
window	into	two	integer	variables	y	and	x.	Returns	-1,-1	if	this	window
has	no	parent.

getstr([y,	x])
Read	a	string	from	the	user,	with	primitive	line	editing	capacity.

getyx()

Return	a	tuple	(y,	x)	of	current	cursor	position	relative	to	the	window's
upper-left	corner.

hline([y,	x,]	ch,	n)
Display	a	horizontal	line	starting	at	(y,	x)	with	length	n	consisting	of	the
character	ch.

idcok(flag)
If	flag	is	false,	curses	no	longer	considers	using	the	hardware	insert/delete
character	feature	of	the	terminal;	if	flag	is	true,	use	of	character	insertion
and	deletion	is	enabled.	When	curses	is	first	initialized,	use	of	character
insert/delete	is	enabled	by	default.

idlok(yes)
If	called	with	yes	equal	to	1,	curses	will	try	and	use	hardware	line	editing
facilities.	Otherwise,	line	insertion/deletion	are	disabled.

immedok(flag)
If	flag	is	true,	any	change	in	the	window	image	automatically	causes	the
window	to	be	refreshed;	you	no	longer	have	to	call	refresh()	yourself.
However,	it	may	degrade	performance	considerably,	due	to	repeated	calls	to
wrefresh.	This	option	is	disabled	by	default.

inch([y,	x])
Return	the	character	at	the	given	position	in	the	window.	The	bottom	8	bits
are	the	character	proper,	and	upper	bits	are	the	attributes.

insch([y,	x,]	ch[,	attr])
Paint	character	ch	at	(y,	x)	with	attributes	attr,	moving	the	line	from
position	x	right	by	one	character.

insdelln(nlines)
Inserts	nlines	lines	into	the	specified	window	above	the	current	line.	The
nlines	bottom	lines	are	lost.	For	negative	nlines,	delete	nlines	lines	starting
with	the	one	under	the	cursor,	and	move	the	remaining	lines	up.	The	bottom
nlines	lines	are	cleared.	The	current	cursor	position	remains	the	same.

insertln()
Insert	a	blank	line	under	the	cursor.	All	following	lines	are	moved	down	by
1	line.

insnstr([y,	x,]	str,	n	[,	attr])
Insert	a	character	string	(as	many	characters	as	will	fit	on	the	line)	before
the	character	under	the	cursor,	up	to	n	characters.	If	n	is	zero	or	negative,
the	entire	string	is	inserted.	All	characters	to	the	right	of	the	cursor	are
shifted	right,	with	the	rightmost	characters	on	the	line	being	lost.	The	cursor
position	does	not	change	(after	moving	to	y,	x,	if	specified).

insstr([y,	x,]	str	[,	attr])
Insert	a	character	string	(as	many	characters	as	will	fit	on	the	line)	before
the	character	under	the	cursor.	All	characters	to	the	right	of	the	cursor	are
shifted	right,	with	the	rightmost	characters	on	the	line	being	lost.	The	cursor
position	does	not	change	(after	moving	to	y,	x,	if	specified).

instr([y,	x]	[,	n])
Returns	a	string	of	characters,	extracted	from	the	window	starting	at	the
current	cursor	position,	or	at	y,	x	if	specified.	Attributes	are	stripped	from
the	characters.	If	n	is	specified,	instr()	returns	return	a	string	at	most	n
characters	long	(exclusive	of	the	trailing	NUL).

is_linetouched(line)
Returns	true	if	the	specified	line	was	modified	since	the	last	call	to
refresh();	otherwise	returns	false.	Raises	a	curses.error	exception
if	line	is	not	valid	for	the	given	window.

is_wintouched()
Returns	true	if	the	specified	window	was	modified	since	the	last	call	to
refresh();	otherwise	returns	false.

keypad(yes)
If	yes	is	1,	escape	sequences	generated	by	some	keys	(keypad,	function
keys)	will	be	interpreted	by	curses.	If	yes	is	0,	escape	sequences	will	be
left	as	is	in	the	input	stream.

leaveok(yes)
If	yes	is	1,	cursor	is	left	where	it	is	on	update,	instead	of	being	at	``cursor
position.''	This	reduces	cursor	movement	where	possible.	If	possible	the
cursor	will	be	made	invisible.

If	yes	is	0,	cursor	will	always	be	at	``cursor	position''	after	an	update.

move(new_y,	new_x)
Move	cursor	to	(new_y,	new_x).

mvderwin(y,	x)
Moves	the	window	inside	its	parent	window.	The	screen-relative	parameters
of	the	window	are	not	changed.	This	routine	is	used	to	display	different
parts	of	the	parent	window	at	the	same	physical	position	on	the	screen.

mvwin(new_y,	new_x)
Move	the	window	so	its	upper-left	corner	is	at	(new_y,	new_x).

nodelay(yes)
If	yes	is	1,	getch()	will	be	non-blocking.

notimeout(yes)
If	yes	is	1,	escape	sequences	will	not	be	timed	out.

If	yes	is	0,	after	a	few	milliseconds,	an	escape	sequence	will	not	be
interpreted,	and	will	be	left	in	the	input	stream	as	is.

noutrefresh()
Mark	for	refresh	but	wait.	This	function	updates	the	data	structure
representing	the	desired	state	of	the	window,	but	does	not	force	an	update	of
the	physical	screen.	To	accomplish	that,	call	doupdate().

overlay(destwin[,	sminrow,	smincol,	dminrow,	dmincol,	dmaxrow,	dmaxcol])
Overlay	the	window	on	top	of	destwin.	The	windows	need	not	be	the	same
size,	only	the	overlapping	region	is	copied.	This	copy	is	non-destructive,
which	means	that	the	current	background	character	does	not	overwrite	the
old	contents	of	destwin.

To	get	fine-grained	control	over	the	copied	region,	the	second	form	of
overlay()	can	be	used.	sminrow	and	smincol	are	the	upper-left
coordinates	of	the	source	window,	and	the	other	variables	mark	a	rectangle
in	the	destination	window.

overwrite(destwin[,	sminrow,	smincol,	dminrow,	dmincol,	dmaxrow,
dmaxcol])

Overwrite	the	window	on	top	of	destwin.	The	windows	need	not	be	the
same	size,	in	which	case	only	the	overlapping	region	is	copied.	This	copy	is
destructive,	which	means	that	the	current	background	character	overwrites
the	old	contents	of	destwin.

To	get	fine-grained	control	over	the	copied	region,	the	second	form	of
overwrite()	can	be	used.	sminrow	and	smincol	are	the	upper-left
coordinates	of	the	source	window,	the	other	variables	mark	a	rectangle	in
the	destination	window.

putwin(file)
Writes	all	data	associated	with	the	window	into	the	provided	file	object.
This	information	can	be	later	retrieved	using	the	getwin()	function.

redrawln(beg,	num)
Indicates	that	the	num	screen	lines,	starting	at	line	beg,	are	corrupted	and
should	be	completely	redrawn	on	the	next	refresh()	call.

redrawwin()
Touches	the	entire	window,	causing	it	to	be	completely	redrawn	on	the	next
refresh()	call.

refresh([pminrow,	pmincol,	sminrow,	smincol,	smaxrow,	smaxcol])
Update	the	display	immediately	(sync	actual	screen	with	previous
drawing/deleting	methods).

The	6	optional	arguments	can	only	be	specified	when	the	window	is	a	pad
created	with	newpad().	The	additional	parameters	are	needed	to	indicate
what	part	of	the	pad	and	screen	are	involved.	pminrow	and	pmincol	specify
the	upper	left-hand	corner	of	the	rectangle	to	be	displayed	in	the	pad.

sminrow,	smincol,	smaxrow,	and	smaxcol	specify	the	edges	of	the	rectangle
to	be	displayed	on	the	screen.	The	lower	right-hand	corner	of	the	rectangle
to	be	displayed	in	the	pad	is	calculated	from	the	screen	coordinates,	since
the	rectangles	must	be	the	same	size.	Both	rectangles	must	be	entirely
contained	within	their	respective	structures.	Negative	values	of	pminrow,
pmincol,	sminrow,	or	smincol	are	treated	as	if	they	were	zero.

scroll([lines	=	1])
Scroll	the	screen	or	scrolling	region	upward	by	lines	lines.

scrollok(flag)
Controls	what	happens	when	the	cursor	of	a	window	is	moved	off	the	edge
of	the	window	or	scrolling	region,	either	as	a	result	of	a	newline	action	on
the	bottom	line,	or	typing	the	last	character	of	the	last	line.	If	flag	is	false,
the	cursor	is	left	on	the	bottom	line.	If	flag	is	true,	the	window	is	scrolled	up
one	line.	Note	that	in	order	to	get	the	physical	scrolling	effect	on	the
terminal,	it	is	also	necessary	to	call	idlok().

setscrreg(top,	bottom)
Set	the	scrolling	region	from	line	top	to	line	bottom.	All	scrolling	actions
will	take	place	in	this	region.

standend()
Turn	off	the	standout	attribute.	On	some	terminals	this	has	the	side	effect	of
turning	off	all	attributes.

standout()
Turn	on	attribute	A_STANDOUT.

subpad([nlines,	ncols,]	begin_y,	begin_x)
Return	a	sub-window,	whose	upper-left	corner	is	at	(begin_y,	begin_x),
and	whose	width/height	is	ncols/nlines.

subwin([nlines,	ncols,]	begin_y,	begin_x)
Return	a	sub-window,	whose	upper-left	corner	is	at	(begin_y,	begin_x),
and	whose	width/height	is	ncols/nlines.

By	default,	the	sub-window	will	extend	from	the	specified	position	to	the
lower	right	corner	of	the	window.

syncdown()
Touches	each	location	in	the	window	that	has	been	touched	in	any	of	its
ancestor	windows.	This	routine	is	called	by	refresh(),	so	it	should
almost	never	be	necessary	to	call	it	manually.

syncok(flag)
If	called	with	flag	set	to	true,	then	syncup()	is	called	automatically
whenever	there	is	a	change	in	the	window.

syncup()
Touches	all	locations	in	ancestors	of	the	window	that	have	been	changed	in
the	window.

timeout(delay)
Sets	blocking	or	non-blocking	read	behavior	for	the	window.	If	delay	is
negative,	blocking	read	is	used	(which	will	wait	indefinitely	for	input).	If
delay	is	zero,	then	non-blocking	read	is	used,	and	-1	will	be	returned	by
getch()	if	no	input	is	waiting.	If	delay	is	positive,	then	getch()	will
block	for	delay	milliseconds,	and	return	-1	if	there	is	still	no	input	at	the	end
of	that	time.

touchline(start,	count)
Pretend	count	lines	have	been	changed,	starting	with	line	start.

touchwin()
Pretend	the	whole	window	has	been	changed,	for	purposes	of	drawing
optimizations.

untouchwin()
Marks	all	lines	in	the	window	as	unchanged	since	the	last	call	to
refresh().

vline([y,	x,]	ch,	n)
Display	a	vertical	line	starting	at	(y,	x)	with	length	n	consisting	of	the

character	ch.

Python	Library	Reference
Previous:	6.15.1	Functions	Up:	6.15	curses	Next:	6.15.3	Constants

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.15.2	Window	Objects	Up:	6.15	curses	Next:	6.16	curses.textpad

6.15.3	Constants
The	curses	module	defines	the	following	data	members:

ERR

Some	curses	routines	that	return	an	integer,	such	as	getch(),	return	ERR
upon	failure.

OK

Some	curses	routines	that	return	an	integer,	such	as	napms(),	return	OK
upon	success.

version

A	string	representing	the	current	version	of	the	module.	Also	available	as
__version__.

Several	constants	are	available	to	specify	character	cell	attributes:

Attribute Meaning
A_ALTCHARSET Alternate	character	set	mode.
A_BLINK Blink	mode.
A_BOLD Bold	mode.
A_DIM Dim	mode.
A_NORMAL Normal	attribute.
A_STANDOUT Standout	mode.
A_UNDERLINE Underline	mode.

Keys	are	referred	to	by	integer	constants	with	names	starting	with	"KEY_".	The
exact	keycaps	available	are	system	dependent.

Key	constant Key
KEY_MIN Minimum	key	value
KEY_BREAK Break	key	(unreliable)
KEY_DOWN Down-arrow
KEY_UP Up-arrow

KEY_LEFT Left-arrow
KEY_RIGHT Right-arrow
KEY_HOME Home	key	(upward+left	arrow)
KEY_BACKSPACE Backspace	(unreliable)
KEY_F0 Function	keys.	Up	to	64	function	keys	are	supported.
KEY_Fn Value	of	function	key	n
KEY_DL Delete	line
KEY_IL Insert	line
KEY_DC Delete	character
KEY_IC Insert	char	or	enter	insert	mode
KEY_EIC Exit	insert	char	mode
KEY_CLEAR Clear	screen
KEY_EOS Clear	to	end	of	screen
KEY_EOL Clear	to	end	of	line
KEY_SF Scroll	1	line	forward
KEY_SR Scroll	1	line	backward	(reverse)
KEY_NPAGE Next	page
KEY_PPAGE Previous	page
KEY_STAB Set	tab
KEY_CTAB Clear	tab
KEY_CATAB Clear	all	tabs
KEY_ENTER Enter	or	send	(unreliable)
KEY_SRESET Soft	(partial)	reset	(unreliable)
KEY_RESET Reset	or	hard	reset	(unreliable)
KEY_PRINT Print
KEY_LL Home	down	or	bottom	(lower	left)
KEY_A1 Upper	left	of	keypad
KEY_A3 Upper	right	of	keypad
KEY_B2 Center	of	keypad
KEY_C1 Lower	left	of	keypad
KEY_C3 Lower	right	of	keypad
KEY_BTAB Back	tab
KEY_BEG Beg	(beginning)

KEY_CANCEL Cancel
KEY_CLOSE Close
KEY_COMMAND Cmd	(command)
KEY_COPY Copy
KEY_CREATE Create
KEY_END End
KEY_EXIT Exit
KEY_FIND Find
KEY_HELP Help
KEY_MARK Mark
KEY_MESSAGE Message
KEY_MOVE Move
KEY_NEXT Next
KEY_OPEN Open
KEY_OPTIONS Options
KEY_PREVIOUS Prev	(previous)
KEY_REDO Redo
KEY_REFERENCE Ref	(reference)
KEY_REFRESH Refresh
KEY_REPLACE Replace
KEY_RESTART Restart
KEY_RESUME Resume
KEY_SAVE Save
KEY_SBEG Shifted	Beg	(beginning)
KEY_SCANCEL Shifted	Cancel
KEY_SCOMMAND Shifted	Command
KEY_SCOPY Shifted	Copy
KEY_SCREATE Shifted	Create
KEY_SDC Shifted	Delete	char
KEY_SDL Shifted	Delete	line
KEY_SELECT Select
KEY_SEND Shifted	End
KEY_SEOL Shifted	Clear	line

KEY_SEXIT Shifted	Dxit
KEY_SFIND Shifted	Find
KEY_SHELP Shifted	Help
KEY_SHOME Shifted	Home
KEY_SIC Shifted	Input
KEY_SLEFT Shifted	Left	arrow
KEY_SMESSAGE Shifted	Message
KEY_SMOVE Shifted	Move
KEY_SNEXT Shifted	Next
KEY_SOPTIONS Shifted	Options
KEY_SPREVIOUS Shifted	Prev
KEY_SPRINT Shifted	Print
KEY_SREDO Shifted	Redo
KEY_SREPLACE Shifted	Replace
KEY_SRIGHT Shifted	Right	arrow
KEY_SRSUME Shifted	Resume
KEY_SSAVE Shifted	Save
KEY_SSUSPEND Shifted	Suspend
KEY_SUNDO Shifted	Undo
KEY_SUSPEND Suspend
KEY_UNDO Undo
KEY_MOUSE Mouse	event	has	occurred
KEY_RESIZE Terminal	resize	event
KEY_MAX Maximum	key	value

On	VT100s	and	their	software	emulations,	such	as	X	terminal	emulators,	there
are	normally	at	least	four	function	keys	(KEY_F1,	KEY_F2,	KEY_F3,
KEY_F4)	available,	and	the	arrow	keys	mapped	to	KEY_UP,	KEY_DOWN,
KEY_LEFT	and	KEY_RIGHT	in	the	obvious	way.	If	your	machine	has	a	PC
keybboard,	it	is	safe	to	expect	arrow	keys	and	twelve	function	keys	(older	PC
keyboards	may	have	only	ten	function	keys);	also,	the	following	keypad
mappings	are	standard:

Keycap Constant

Insert KEY_IC
Delete KEY_DC
Home KEY_HOME
End KEY_END
Page	Up KEY_NPAGE
Page	Down KEY_PPAGE

The	following	table	lists	characters	from	the	alternate	character	set.	These	are
inherited	from	the	VT100	terminal,	and	will	generally	be	available	on	software
emulations	such	as	X	terminals.	When	there	is	no	graphic	available,	curses	falls
back	on	a	crude	printable	ASCII	approximation.	Note:	These	are	available	only
after	initscr()	has	been	called.

ACS	code Meaning
ACS_BBSS alternate	name	for	upper	right	corner
ACS_BLOCK solid	square	block
ACS_BOARD board	of	squares
ACS_BSBS alternate	name	for	horizontal	line
ACS_BSSB alternate	name	for	upper	left	corner
ACS_BSSS alternate	name	for	top	tee
ACS_BTEE bottom	tee
ACS_BULLET bullet
ACS_CKBOARD checker	board	(stipple)
ACS_DARROW arrow	pointing	down
ACS_DEGREE degree	symbol
ACS_DIAMOND diamond
ACS_GEQUAL greater-than-or-equal-to
ACS_HLINE horizontal	line
ACS_LANTERN lantern	symbol
ACS_LARROW left	arrow
ACS_LEQUAL less-than-or-equal-to
ACS_LLCORNER lower	left-hand	corner
ACS_LRCORNER lower	right-hand	corner
ACS_LTEE left	tee

ACS_NEQUAL not-equal	sign
ACS_PI letter	pi
ACS_PLMINUS plus-or-minus	sign
ACS_PLUS big	plus	sign
ACS_RARROW right	arrow
ACS_RTEE right	tee
ACS_S1 scan	line	1
ACS_S3 scan	line	3
ACS_S7 scan	line	7
ACS_S9 scan	line	9
ACS_SBBS alternate	name	for	lower	right	corner
ACS_SBSB alternate	name	for	vertical	line
ACS_SBSS alternate	name	for	right	tee
ACS_SSBB alternate	name	for	lower	left	corner
ACS_SSBS alternate	name	for	bottom	tee
ACS_SSSB alternate	name	for	left	tee
ACS_SSSS alternate	name	for	crossover	or	big	plus
ACS_STERLING pound	sterling
ACS_TTEE top	tee
ACS_UARROW up	arrow
ACS_ULCORNER upper	left	corner
ACS_URCORNER upper	right	corner
ACS_VLINE vertical	line

The	following	table	lists	the	predefined	colors:

Constant Color
COLOR_BLACK Black
COLOR_BLUE Blue
COLOR_CYAN Cyan	(light	greenish	blue)
COLOR_GREEN Green
COLOR_MAGENTA Magenta	(purplish	red)
COLOR_RED Red
COLOR_WHITE White

COLOR_YELLOW Yellow

Python	Library	Reference
Previous:	6.15.2	Window	Objects	Up:	6.15	curses	Next:	6.16	curses.textpad

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.15.3	Constants	Up:	6.	Generic	Operating	System	Next:	6.16.1
Textbox	objects

6.16	curses.textpad	--	Text	input
widget	for	curses	programs
New	in	version	1.6.

The	curses.textpad	module	provides	a	Textbox	class	that	handles
elementary	text	editing	in	a	curses	window,	supporting	a	set	of	keybindings
resembling	those	of	Emacs	(thus,	also	of	Netscape	Navigator,	BBedit	6.x,
FrameMaker,	and	many	other	programs).	The	module	also	provides	a	rectangle-
drawing	function	useful	for	framing	text	boxes	or	for	other	purposes.

The	module	curses.textpad	defines	the	following	function:

rectangle(win,	uly,	ulx,	lry,	lrx)
Draw	a	rectangle.	The	first	argument	must	be	a	window	object;	the
remaining	arguments	are	coordinates	relative	to	that	window.	The	second
and	third	arguments	are	the	y	and	x	coordinates	of	the	upper	left	hand
corner	of	the	rectangle	to	be	drawn;	the	fourth	and	fifth	arguments	are	the	y
and	x	coordinates	of	the	lower	right	hand	corner.	The	rectangle	will	be
drawn	using	VT100/IBM	PC	forms	characters	on	terminals	that	make	this
possible	(including	xterm	and	most	other	software	terminal	emulators).
Otherwise	it	will	be	drawn	with	ASCII	dashes,	vertical	bars,	and	plus	signs.

Subsections

6.16.1	Textbox	objects

Python	Library	Reference
Previous:	6.15.3	Constants	Up:	6.	Generic	Operating	System	Next:	6.16.1
Textbox	objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.16	curses.textpad	Up:	6.16	curses.textpad	Next:	6.17
curses.wrapper

6.16.1	Textbox	objects
You	can	instantiate	a	Textbox	object	as	follows:

class	Textbox(win)
Return	a	textbox	widget	object.	The	win	argument	should	be	a	curses
WindowObject	in	which	the	textbox	is	to	be	contained.	The	edit	cursor
of	the	textbox	is	initially	located	at	the	upper	left	hand	corner	of	the
containing	window,	with	coordinates	(0,	0).	The	instance's
stripspaces	flag	is	initially	on.

Textbox	objects	have	the	following	methods:

edit([validator])
This	is	the	entry	point	you	will	normally	use.	It	accepts	editing	keystrokes
until	one	of	the	termination	keystrokes	is	entered.	If	validator	is	supplied,	it
must	be	a	function.	It	will	be	called	for	each	keystroke	entered	with	the
keystroke	as	a	parameter;	command	dispatch	is	done	on	the	result.	This
method	returns	the	window	contents	as	a	string;	whether	blanks	in	the
window	are	included	is	affected	by	the	stripspaces	member.

do_command(ch)
Process	a	single	command	keystroke.	Here	are	the	supported	special
keystrokes:

Keystroke Action
Control-

A

Go	to	left	edge	of	window.

Control-

B

Cursor	left,	wrapping	to	previous	line	if	appropriate.

Control-

D

Delete	character	under	cursor.

Control-

E

Go	to	right	edge	(stripspaces	off)	or	end	of	line	(stripspaces
on).

Control-

F

Cursor	right,	wrapping	to	next	line	when	appropriate.

Control-

G

Terminate,	returning	the	window	contents.

Control-

H

Delete	character	backward.

Control-

J

Terminate	if	the	window	is	1	line,	otherwise	insert	newline.

Control-

K

If	line	is	blank,	delete	it,	otherwise	clear	to	end	of	line.

Control-

L

Refresh	screen.

Control-

N

Cursor	down;	move	down	one	line.

Control-

O

Insert	a	blank	line	at	cursor	location.

Control-

P

Cursor	up;	move	up	one	line.

Move	operations	do	nothing	if	the	cursor	is	at	an	edge	where	the	movement
is	not	possible.	The	following	synonyms	are	supported	where	possible:

Constant Keystroke
KEY_LEFT Control-B

KEY_RIGHT Control-F

KEY_UP Control-P

KEY_DOWN Control-N

KEY_BACKSPACE Control-h

All	other	keystrokes	are	treated	as	a	command	to	insert	the	given	character
and	move	right	(with	line	wrapping).

gather()
This	method	returns	the	window	contents	as	a	string;	whether	blanks	in	the
window	are	included	is	affected	by	the	stripspaces	member.

stripspaces

This	data	member	is	a	flag	which	controls	the	interpretation	of	blanks	in	the
window.	When	it	is	on,	trailing	blanks	on	each	line	are	ignored;	any	cursor

motion	that	would	land	the	cursor	on	a	trailing	blank	goes	to	the	end	of	that
line	instead,	and	trailing	blanks	are	stripped	when	the	window	contents	are
gathered.

Python	Library	Reference
Previous:	6.16	curses.textpad	Up:	6.16	curses.textpad	Next:	6.17
curses.wrapper

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.16.1	Textbox	objects	Up:	6.	Generic	Operating	System	Next:	6.18
curses.ascii

6.17	curses.wrapper	--	Terminal
handler	for	curses	programs
New	in	version	1.6.

This	module	supplies	one	function,	wrapper(),	which	runs	another	function
which	should	be	the	rest	of	your	curses-using	application.	If	the	application
raises	an	exception,	wrapper()	will	restore	the	terminal	to	a	sane	state	before
re-raising	the	exception	and	generating	a	traceback.

wrapper(func,	...)
Wrapper	function	that	initializes	curses	and	calls	another	function,	func,
restoring	normal	keyboard/screen	behavior	on	error.	The	callable	object
func	is	then	passed	the	main	window	'stdscr'	as	its	first	argument,	followed
by	any	other	arguments	passed	to	wrapper().

Before	calling	the	hook	function,	wrapper()	turns	on	cbreak	mode,	turns	off
echo,	enables	the	terminal	keypad,	and	initializes	colors	if	the	terminal	has	color
support.	On	exit	(whether	normally	or	by	exception)	it	restores	cooked	mode,
turns	on	echo,	and	disables	the	terminal	keypad.

Python	Library	Reference
Previous:	6.16.1	Textbox	objects	Up:	6.	Generic	Operating	System	Next:	6.18
curses.ascii

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.17	curses.wrapper	Up:	6.	Generic	Operating	System	Next:	6.19
curses.panel

6.18	curses.ascii	--	Utilities	for
ASCII	characters
New	in	version	1.6.

The	curses.ascii	module	supplies	name	constants	for	ASCII	characters	and
functions	to	test	membership	in	various	ASCII	character	classes.	The	constants
supplied	are	names	for	control	characters	as	follows:

Name Meaning
NUL

SOH Start	of	heading,	console	interrupt
STX Start	of	text
ETX End	of	text
EOT End	of	transmission
ENQ Enquiry,	goes	with	ACK	flow	control
ACK Acknowledgement
BEL Bell
BS Backspace
TAB Tab
HT Alias	for	TAB:	``Horizontal	tab''
LF Line	feed
NL Alias	for	LF:	``New	line''
VT Vertical	tab
FF Form	feed
CR Carriage	return
SO Shift-out,	begin	alternate	character	set
SI Shift-in,	resume	default	character	set
DLE Data-link	escape
DC1 XON,	for	flow	control
DC2 Device	control	2,	block-mode	flow	control
DC3 XOFF,	for	flow	control

DC4 Device	control	4
NAK Negative	acknowledgement
SYN Synchronous	idle
ETB End	transmission	block
CAN Cancel
EM End	of	medium
SUB Substitute
ESC Escape
FS File	separator
GS Group	separator
RS Record	separator,	block-mode	terminator
US Unit	separator
SP Space
DEL Delete

Note	that	many	of	these	have	little	practical	significance	in	modern	usage.	The
mnemonics	derive	from	teleprinter	conventions	that	predate	digital	computers.

The	module	supplies	the	following	functions,	patterned	on	those	in	the	standard
C	library:

isalnum(c)
Checks	for	an	ASCII	alphanumeric	character;	it	is	equivalent	to
"isalpha(c)	or	isdigit(c)".

isalpha(c)
Checks	for	an	ASCII	alphabetic	character;	it	is	equivalent	to
"isupper(c)	or	islower(c)".

isascii(c)
Checks	for	a	character	value	that	fits	in	the	7-bit	ASCII	set.

isblank(c)
Checks	for	an	ASCII	whitespace	character.

iscntrl(c)

Checks	for	an	ASCII	control	character	(in	the	range	0x00	to	0x1f).

isdigit(c)
Checks	for	an	ASCII	decimal	digit,	"0"	through	"9".	This	is	equivalent	to
"c	in	string.digits".

isgraph(c)
Checks	for	ASCII	any	printable	character	except	space.

islower(c)
Checks	for	an	ASCII	lower-case	character.

isprint(c)
Checks	for	any	ASCII	printable	character	including	space.

ispunct(c)
Checks	for	any	printable	ASCII	character	which	is	not	a	space	or	an
alphanumeric	character.

isspace(c)
Checks	for	ASCII	white-space	characters;	space,	line	feed,	carriage	return,
form	feed,	horizontal	tab,	vertical	tab.

isupper(c)
Checks	for	an	ASCII	uppercase	letter.

isxdigit(c)
Checks	for	an	ASCII	hexadecimal	digit.	This	is	equivalent	to	"c	in
string.hexdigits".

isctrl(c)
Checks	for	an	ASCII	control	character	(ordinal	values	0	to	31).

ismeta(c)
Checks	for	a	non-ASCII	character	(ordinal	values	0x80	and	above).

These	functions	accept	either	integers	or	strings;	when	the	argument	is	a	string,	it

is	first	converted	using	the	built-in	function	ord().

Note	that	all	these	functions	check	ordinal	bit	values	derived	from	the	first
character	of	the	string	you	pass	in;	they	do	not	actually	know	anything	about	the
host	machine's	character	encoding.	For	functions	that	know	about	the	character
encoding	(and	handle	internationalization	properly)	see	the	string	module.

The	following	two	functions	take	either	a	single-character	string	or	integer	byte
value;	they	return	a	value	of	the	same	type.

ascii(c)
Return	the	ASCII	value	corresponding	to	the	low	7	bits	of	c.

ctrl(c)
Return	the	control	character	corresponding	to	the	given	character	(the
character	bit	value	is	bitwise-anded	with	0x1f).

alt(c)
Return	the	8-bit	character	corresponding	to	the	given	ASCII	character	(the
character	bit	value	is	bitwise-ored	with	0x80).

The	following	function	takes	either	a	single-character	string	or	integer	value;	it
returns	a	string.

unctrl(c)
Return	a	string	representation	of	the	ASCII	character	c.	If	c	is	printable,	this
string	is	the	character	itself.	If	the	character	is	a	control	character	(0x00-
0x1f)	the	string	consists	of	a	caret	("^")	followed	by	the	corresponding
uppercase	letter.	If	the	character	is	an	ASCII	delete	(0x7f)	the	string	is
'^?'.	If	the	character	has	its	meta	bit	(0x80)	set,	the	meta	bit	is	stripped,
the	preceding	rules	applied,	and	"!"	prepended	to	the	result.

controlnames

A	33-element	string	array	that	contains	the	ASCII	mnemonics	for	the	thirty-
two	ASCII	control	characters	from	0	(NUL)	to	0x1f	(US),	in	order,	plus	the
mnemonic	"SP"	for	the	space	character.

Python	Library	Reference
Previous:	6.17	curses.wrapper	Up:	6.	Generic	Operating	System	Next:	6.19
curses.panel

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.18	curses.ascii	Up:	6.	Generic	Operating	System	Next:	6.19.1
Functions

6.19	curses.panel	--	A	panel	stack
extension	for	curses.
Panels	are	windows	with	the	added	feature	of	depth,	so	they	can	be	stacked	on
top	of	each	other,	and	only	the	visible	portions	of	each	window	will	be
displayed.	Panels	can	be	added,	moved	up	or	down	in	the	stack,	and	removed.

Subsections

6.19.1	Functions
6.19.2	Panel	Objects

Python	Library	Reference
Previous:	6.18	curses.ascii	Up:	6.	Generic	Operating	System	Next:	6.19.1
Functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.19	curses.panel	Up:	6.19	curses.panel	Next:	6.19.2	Panel	Objects

6.19.1	Functions
The	module	curses.panel	defines	the	following	functions:

bottom_panel()
Returns	the	bottom	panel	in	the	panel	stack.

new_panel(win)
Returns	a	panel	object,	associating	it	with	the	given	window	win.

top_panel()
Returns	the	top	panel	in	the	panel	stack.

update_panels()
Updates	the	virtual	screen	after	changes	in	the	panel	stack.	This	does	not
call	curses.doupdate(),	so	you'll	have	to	do	this	yourself.

Python	Library	Reference
Previous:	6.19	curses.panel	Up:	6.19	curses.panel	Next:	6.19.2	Panel	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.19.1	Functions	Up:	6.19	curses.panel	Next:	6.20	getopt

6.19.2	Panel	Objects
Panel	objects,	as	returned	by	new_panel()	above,	are	windows	with	a
stacking	order.	There's	always	a	window	associated	with	a	panel	which
determines	the	content,	while	the	panel	methods	are	responsible	for	the	window's
depth	in	the	panel	stack.

Panel	objects	have	the	following	methods:

above()
Returns	the	panel	above	the	current	panel.

below()
Returns	the	panel	below	the	current	panel.

bottom()
Push	the	panel	to	the	bottom	of	the	stack.

hidden()
Returns	true	if	the	panel	is	hidden	(not	visible),	false	otherwise.

hide()
Hide	the	panel.	This	does	not	delete	the	object,	it	just	makes	the	window	on
screen	invisible.

move(y,	x)
Move	the	panel	to	the	screen	coordinates	(y,	x).

replace(win)
Change	the	window	associated	with	the	panel	to	the	window	win.

set_userptr(obj)
Set	the	panel's	user	pointer	to	obj.	This	is	used	to	associate	an	arbitrary
piece	of	data	with	the	panel,	and	can	be	any	Python	object.

show()

Display	the	panel	(which	might	have	been	hidden).

top()
Push	panel	to	the	top	of	the	stack.

userptr()
Returns	the	user	pointer	for	the	panel.	This	might	be	any	Python	object.

window()
Returns	the	window	object	associated	with	the	panel.

Python	Library	Reference
Previous:	6.19.1	Functions	Up:	6.19	curses.panel	Next:	6.20	getopt

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.19.2	Panel	Objects	Up:	6.	Generic	Operating	System	Next:	6.21
optparse

6.20	getopt	--	Parser	for	command
line	options
This	module	helps	scripts	to	parse	the	command	line	arguments	in	sys.argv.
It	supports	the	same	conventions	as	the	UNIX	getopt()	function	(including	the
special	meanings	of	arguments	of	the	form	`-'	and	`--').	Long	options	similar	to
those	supported	by	GNU	software	may	be	used	as	well	via	an	optional	third
argument.	This	module	provides	a	single	function	and	an	exception:

getopt(args,	options[,	long_options])
Parses	command	line	options	and	parameter	list.	args	is	the	argument	list	to
be	parsed,	without	the	leading	reference	to	the	running	program.	Typically,
this	means	"sys.argv[1:]".	options	is	the	string	of	option	letters	that
the	script	wants	to	recognize,	with	options	that	require	an	argument
followed	by	a	colon	(":";	i.e.,	the	same	format	that	UNIX	getopt()	uses).

Note:	Unlike	GNU	getopt(),	after	a	non-option	argument,	all	further
arguments	are	considered	also	non-options.	This	is	similar	to	the	way	non-
GNU	UNIX	systems	work.

long_options,	if	specified,	must	be	a	list	of	strings	with	the	names	of	the
long	options	which	should	be	supported.	The	leading	'--'	characters
should	not	be	included	in	the	option	name.	Long	options	which	require	an
argument	should	be	followed	by	an	equal	sign	("=").	To	accept	only	long
options,	options	should	be	an	empty	string.	Long	options	on	the	command
line	can	be	recognized	so	long	as	they	provide	a	prefix	of	the	option	name
that	matches	exactly	one	of	the	accepted	options.	For	example,	if
long_options	is	['foo',	'frob'],	the	option	--fo	will	match	as	--foo,
but	--f	will	not	match	uniquely,	so	GetoptError	will	be	raised.

The	return	value	consists	of	two	elements:	the	first	is	a	list	of	(option,
value)	pairs;	the	second	is	the	list	of	program	arguments	left	after	the
option	list	was	stripped	(this	is	a	trailing	slice	of	args).	Each	option-and-
value	pair	returned	has	the	option	as	its	first	element,	prefixed	with	a
hyphen	for	short	options	(e.g.,	'-x')	or	two	hyphens	for	long	options	(e.g.,

'--long-option'),	and	the	option	argument	as	its	second	element,	or
an	empty	string	if	the	option	has	no	argument.	The	options	occur	in	the	list
in	the	same	order	in	which	they	were	found,	thus	allowing	multiple
occurrences.	Long	and	short	options	may	be	mixed.

gnu_getopt(args,	options[,	long_options])
This	function	works	like	getopt(),	except	that	GNU	style	scanning
mode	is	used	by	default.	This	means	that	option	and	non-option	arguments
may	be	intermixed.	The	getopt()	function	stops	processing	options	as
soon	as	a	non-option	argument	is	encountered.

If	the	first	character	of	the	option	string	is	`+',	or	if	the	environment	variable
POSIXLY_CORRECT	is	set,	then	option	processing	stops	as	soon	as	a	non-
option	argument	is	encountered.

exception	GetoptError
This	is	raised	when	an	unrecognized	option	is	found	in	the	argument	list	or
when	an	option	requiring	an	argument	is	given	none.	The	argument	to	the
exception	is	a	string	indicating	the	cause	of	the	error.	For	long	options,	an
argument	given	to	an	option	which	does	not	require	one	will	also	cause	this
exception	to	be	raised.	The	attributes	msg	and	opt	give	the	error	message
and	related	option;	if	there	is	no	specific	option	to	which	the	exception
relates,	opt	is	an	empty	string.

Changed	in	version	1.6:	Introduced	GetoptError	as	a	synonym	for
error.

exception	error
Alias	for	GetoptError;	for	backward	compatibility.

An	example	using	only	UNIX	style	options:

>>>	import	getopt

>>>	args	=	'-a	-b	-cfoo	-d	bar	a1	a2'.split()

>>>	args

['-a',	'-b',	'-cfoo',	'-d',	'bar',	'a1',	'a2']

>>>	optlist,	args	=	getopt.getopt(args,	'abc:d:')

>>>	optlist

[('-a',	''),	('-b',	''),	('-c',	'foo'),	('-d',	'bar')]

>>>	args

['a1',	'a2']

Using	long	option	names	is	equally	easy:

>>>	s	=	'--condition=foo	--testing	--output-file	abc.def	-x	a1	a2'

>>>	args	=	s.split()

>>>	args

['--condition=foo',	'--testing',	'--output-file',	'abc.def',	'-x',	'a1',	'a2']

>>>	optlist,	args	=	getopt.getopt(args,	'x',	[

...					'condition=',	'output-file=',	'testing'])

>>>	optlist

[('--condition',	'foo'),	('--testing',	''),	('--output-file',	'abc.def'),	('-x',

	'')]

>>>	args

['a1',	'a2']

In	a	script,	typical	usage	is	something	like	this:

import	getopt,	sys

def	main():

				try:

								opts,	args	=	getopt.getopt(sys.argv[1:],	"ho:v",	["help",	"output="])

				except	getopt.GetoptError:

								#	print	help	information	and	exit:

								usage()

								sys.exit(2)

				output	=	None

				verbose	=	False

				for	o,	a	in	opts:

								if	o	==	"-v":

												verbose	=	True

								if	o	in	("-h",	"--help"):

												usage()

												sys.exit()

								if	o	in	("-o",	"--output"):

												output	=	a

				#	...

if	__name__	==	"__main__":

				main()

See	Also:

Module	optparse:
More	object-oriented	command	line	option	parsing.

Python	Library	Reference
Previous:	6.19.2	Panel	Objects	Up:	6.	Generic	Operating	System	Next:	6.21
optparse

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.20	getopt	Up:	6.	Generic	Operating	System	Next:	6.21.1
Background

6.21	optparse	--	More	powerful
command	line	option	parser
New	in	version	2.3.

optparse	is	a	more	convenient,	flexible,	and	powerful	library	for	parsing
command-line	options	than	getopt.	optparse	uses	a	more	declarative	style
of	command-line	parsing:	you	create	an	instance	of	OptionParser,	populate
it	with	options,	and	parse	the	command	line.	optparse	allows	users	to	specify
options	in	the	conventional	GNU/POSIX	syntax,	and	additionally	generates
usage	and	help	messages	for	you.

Here's	an	example	of	using	optparse	in	a	simple	script:

from	optparse	import	OptionParser

[...]

parser	=	OptionParser()

parser.add_option("-f",	"--file",	dest="filename",

																		help="write	report	to	FILE",	metavar="FILE")

parser.add_option("-q",	"--quiet",

																		action="store_false",	dest="verbose",	default=True,

																		help="don't	print	status	messages	to	stdout")

(options,	args)	=	parser.parse_args()

With	these	few	lines	of	code,	users	of	your	script	can	now	do	the	``usual	thing''
on	the	command-line,	for	example:

<yourscript>	--file=outfile	-q

As	it	parses	the	command	line,	optparse	sets	attributes	of	the	options	object
returned	by	parse_args()	based	on	user-supplied	command-line	values.
When	parse_args()	returns	from	parsing	this	command	line,
options.filename	will	be	"outfile"	and	options.verbose	will	be
False.	optparse	supports	both	long	and	short	options,	allows	short	options
to	be	merged	together,	and	allows	options	to	be	associated	with	their	arguments
in	a	variety	of	ways.	Thus,	the	following	command	lines	are	all	equivalent	to	the
above	example:

<yourscript>	-f	outfile	--quiet

<yourscript>	--quiet	--file	outfile

<yourscript>	-q	-foutfile

<yourscript>	-qfoutfile

Additionally,	users	can	run	one	of

<yourscript>	-h

<yourscript>	--help

and	optparse	will	print	out	a	brief	summary	of	your	script's	options:

usage:	<yourscript>	[options]

options:

		-h,	--help												show	this	help	message	and	exit

		-f	FILE,	--file=FILE		write	report	to	FILE

		-q,	--quiet											don't	print	status	messages	to	stdout

where	the	value	of	yourscript	is	determined	at	runtime	(normally	from
sys.argv[0]).

Subsections

6.21.1	Background
6.21.1.1	Terminology
6.21.1.2	What	are	options	for?
6.21.1.3	What	are	positional	arguments	for?

6.21.2	Tutorial
6.21.2.1	Understanding	option	actions
6.21.2.2	The	store	action
6.21.2.3	Handling	boolean	(flag)	options
6.21.2.4	Other	actions
6.21.2.5	Default	values
6.21.2.6	Generating	help
6.21.2.7	Printing	a	version	string
6.21.2.8	How	optparse	handles	errors
6.21.2.9	Putting	it	all	together

6.21.3	Reference	Guide
6.21.3.1	Populating	the	parser
6.21.3.2	Defining	options
6.21.3.3	Standard	option	actions

6.21.3.4	Standard	option	types
6.21.3.5	Querying	and	manipulating	your	option	parser
6.21.3.6	Conflicts	between	options

6.21.4	Option	Callbacks
6.21.4.1	Defining	a	callback	option
6.21.4.2	How	callbacks	are	called
6.21.4.3	Raising	errors	in	a	callback
6.21.4.4	Callback	example	1:	trivial	callback
6.21.4.5	Callback	example	2:	check	option	order
6.21.4.6	Callback	example	3:	check	option	order	(generalized)
6.21.4.7	Callback	example	4:	check	arbitrary	condition
6.21.4.8	Callback	example	5:	fixed	arguments
6.21.4.9	Callback	example	6:	variable	arguments

Python	Library	Reference
Previous:	6.20	getopt	Up:	6.	Generic	Operating	System	Next:	6.21.1
Background

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21	optparse	Up:	6.21	optparse	Next:	6.21.1.1	Terminology

6.21.1	Background
optparse	was	explicitly	designed	to	encourage	the	creation	of	programs	with
straightforward,	conventional	command-line	interfaces.	To	that	end,	it	supports
only	the	most	common	command-line	syntax	and	semantics	conventionally	used
under	UNIX.	If	you	are	unfamiliar	with	these	conventions,	read	this	section	to
acquaint	yourself	with	them.

Subsections

6.21.1.1	Terminology
6.21.1.2	What	are	options	for?
6.21.1.3	What	are	positional	arguments	for?

Python	Library	Reference
Previous:	6.21	optparse	Up:	6.21	optparse	Next:	6.21.1.1	Terminology

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.1.3	What	are	positional	Up:	6.21	optparse	Next:	6.21.2.1
Understanding	option	actions

6.21.2	Tutorial
While	optparse	is	quite	flexible	and	powerful,	it's	also	straightforward	to	use
in	most	cases.	This	section	covers	the	code	patterns	that	are	common	to	any
optparse-based	program.

First,	you	need	to	import	the	OptionParser	class;	then,	early	in	the	main	program,
create	an	OptionParser	instance:

from	optparse	import	OptionParser

[...]

parser	=	OptionParser()

Then	you	can	start	defining	options.	The	basic	syntax	is:

parser.add_option(opt_str,	...,

																		attr=value,	...)

Each	option	has	one	or	more	option	strings,	such	as	"-f"	or	"-file",	and
several	option	attributes	that	tell	optparse	what	to	expect	and	what	to	do
when	it	encounters	that	option	on	the	command	line.

Typically,	each	option	will	have	one	short	option	string	and	one	long	option
string,	e.g.:

parser.add_option("-f",	"--file",	...)

You're	free	to	define	as	many	short	option	strings	and	as	many	long	option
strings	as	you	like	(including	zero),	as	long	as	there	is	at	least	one	option	string
overall.

The	option	strings	passed	to	add_option()	are	effectively	labels	for	the
option	defined	by	that	call.	For	brevity,	we	will	frequently	refer	to	encountering
an	option	on	the	command	line;	in	reality,	optparse	encounters	option	strings
and	looks	up	options	from	them.

Once	all	of	your	options	are	defined,	instruct	optparse	to	parse	your
program's	command	line:

(options,	args)	=	parser.parse_args()

(If	you	like,	you	can	pass	a	custom	argument	list	to	parse_args(),	but	that's
rarely	necessary:	by	default	it	uses	sys.argv[1:].)

parse_args()	returns	two	values:

options,	an	object	containing	values	for	all	of	your	options--e.g.	if	"-
file"	takes	a	single	string	argument,	then	options.file	will	be	the	filename
supplied	by	the	user,	or	None	if	the	user	did	not	supply	that	option

args,	the	list	of	positional	arguments	leftover	after	parsing	options

This	tutorial	section	only	covers	the	four	most	important	option	attributes:
action,	type,	dest	(destination),	and	help.	Of	these,	action	is	the	most
fundamental.

Subsections

6.21.2.1	Understanding	option	actions
6.21.2.2	The	store	action
6.21.2.3	Handling	boolean	(flag)	options
6.21.2.4	Other	actions
6.21.2.5	Default	values
6.21.2.6	Generating	help
6.21.2.7	Printing	a	version	string
6.21.2.8	How	optparse	handles	errors
6.21.2.9	Putting	it	all	together

Python	Library	Reference
Previous:	6.21.1.3	What	are	positional	Up:	6.21	optparse	Next:	6.21.2.1
Understanding	option	actions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.2.9	Putting	it	all	Up:	6.21	optparse	Next:	6.21.3.1	Populating
the	parser

6.21.3	Reference	Guide

Subsections

6.21.3.1	Populating	the	parser
6.21.3.2	Defining	options
6.21.3.3	Standard	option	actions
6.21.3.4	Standard	option	types
6.21.3.5	Querying	and	manipulating	your	option	parser
6.21.3.6	Conflicts	between	options

Python	Library	Reference
Previous:	6.21.2.9	Putting	it	all	Up:	6.21	optparse	Next:	6.21.3.1	Populating
the	parser

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.3.6	Conflicts	between	options	Up:	6.21	optparse	Next:	6.21.4.1
Defining	a	callback

6.21.4	Option	Callbacks
When	optparse's	built-in	actions	and	types	aren't	quite	enough	for	your	needs,
you	have	two	choices:	extend	optparse	or	define	a	callback	option.	Extending
optparse	is	more	general,	but	overkill	for	a	lot	of	simple	cases.	Quite	often	a
simple	callback	is	all	you	need.

There	are	two	steps	to	defining	a	callback	option:

define	the	option	itself	using	the	callback	action

write	the	callback;	this	is	a	function	(or	method)	that	takes	at	least	four
arguments,	as	described	below

Subsections

6.21.4.1	Defining	a	callback	option
6.21.4.2	How	callbacks	are	called
6.21.4.3	Raising	errors	in	a	callback
6.21.4.4	Callback	example	1:	trivial	callback
6.21.4.5	Callback	example	2:	check	option	order
6.21.4.6	Callback	example	3:	check	option	order	(generalized)
6.21.4.7	Callback	example	4:	check	arbitrary	condition
6.21.4.8	Callback	example	5:	fixed	arguments
6.21.4.9	Callback	example	6:	variable	arguments

Python	Library	Reference
Previous:	6.21.3.6	Conflicts	between	options	Up:	6.21	optparse	Next:	6.21.4.1
Defining	a	callback

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.4.9	Callback	example	6:	Up:	6.	Generic	Operating	System
Next:	6.23	errno

6.22	tempfile	--	Generate
temporary	files	and	directories
This	module	generates	temporary	files	and	directories.	It	works	on	all	supported
platforms.

In	version	2.3	of	Python,	this	module	was	overhauled	for	enhanced	security.	It
now	provides	three	new	functions,	NamedTemporaryFile(),	mkstemp(),
and	mkdtemp(),	which	should	eliminate	all	remaining	need	to	use	the	insecure
mktemp()	function.	Temporary	file	names	created	by	this	module	no	longer
contain	the	process	ID;	instead	a	string	of	six	random	characters	is	used.

Also,	all	the	user-callable	functions	now	take	additional	arguments	which	allow
direct	control	over	the	location	and	name	of	temporary	files.	It	is	no	longer
necessary	to	use	the	global	tempdir	and	template	variables.	To	maintain
backward	compatibility,	the	argument	order	is	somewhat	odd;	it	is	recommended
to	use	keyword	arguments	for	clarity.

The	module	defines	the	following	user-callable	functions:

TemporaryFile([mode='w+b'[,	bufsize=-1[,	suffix[,	prefix[,	dir]]]]])
Return	a	file	(or	file-like)	object	that	can	be	used	as	a	temporary	storage
area.	The	file	is	created	using	mkstemp.	It	will	be	destroyed	as	soon	as	it	is
closed	(including	an	implicit	close	when	the	object	is	garbage	collected).
Under	UNIX,	the	directory	entry	for	the	file	is	removed	immediately	after
the	file	is	created.	Other	platforms	do	not	support	this;	your	code	should	not
rely	on	a	temporary	file	created	using	this	function	having	or	not	having	a
visible	name	in	the	file	system.

The	mode	parameter	defaults	to	'w+b'	so	that	the	file	created	can	be	read
and	written	without	being	closed.	Binary	mode	is	used	so	that	it	behaves
consistently	on	all	platforms	without	regard	for	the	data	that	is	stored.
bufsize	defaults	to	-1,	meaning	that	the	operating	system	default	is	used.

The	dir,	prefix	and	suffix	parameters	are	passed	to	mkstemp().

NamedTemporaryFile([mode='w+b'[,	bufsize=-1[,	suffix[,	prefix[,
dir]]]]])

This	function	operates	exactly	as	TemporaryFile()	does,	except	that
the	file	is	guaranteed	to	have	a	visible	name	in	the	file	system	(on	UNIX,	the
directory	entry	is	not	unlinked).	That	name	can	be	retrieved	from	the	name
member	of	the	file	object.	Whether	the	name	can	be	used	to	open	the	file	a
second	time,	while	the	named	temporary	file	is	still	open,	varies	across
platforms	(it	can	be	so	used	on	UNIX;	it	cannot	on	Windows	NT	or	later).
New	in	version	2.3.

mkstemp([suffix[,	prefix[,	dir[,	text]]]])
Creates	a	temporary	file	in	the	most	secure	manner	possible.	There	are	no
race	conditions	in	the	file's	creation,	assuming	that	the	platform	properly
implements	the	O_EXCL	flag	for	os.open().	The	file	is	readable	and
writable	only	by	the	creating	user	ID.	If	the	platform	uses	permission	bits	to
indicate	whether	a	file	is	executable,	the	file	is	executable	by	no	one.	The
file	descriptor	is	not	inherited	by	child	processes.

Unlike	TemporaryFile(),	the	user	of	mkstemp()	is	responsible	for
deleting	the	temporary	file	when	done	with	it.

If	suffix	is	specified,	the	file	name	will	end	with	that	suffix,	otherwise	there
will	be	no	suffix.	mkstemp()	does	not	put	a	dot	between	the	file	name
and	the	suffix;	if	you	need	one,	put	it	at	the	beginning	of	suffix.

If	prefix	is	specified,	the	file	name	will	begin	with	that	prefix;	otherwise,	a
default	prefix	is	used.

If	dir	is	specified,	the	file	will	be	created	in	that	directory;	otherwise,	a
default	directory	is	used.

If	text	is	specified,	it	indicates	whether	to	open	the	file	in	binary	mode	(the
default)	or	text	mode.	On	some	platforms,	this	makes	no	difference.

mkstemp()	returns	a	tuple	containing	an	OS-level	handle	to	an	open	file
(as	would	be	returned	by	os.open())	and	the	absolute	pathname	of	that
file,	in	that	order.	New	in	version	2.3.

mkdtemp([suffix[,	prefix[,	dir]]])
Creates	a	temporary	directory	in	the	most	secure	manner	possible.	There	are
no	race	conditions	in	the	directory's	creation.	The	directory	is	readable,
writable,	and	searchable	only	by	the	creating	user	ID.

The	user	of	mkdtemp()	is	responsible	for	deleting	the	temporary	directory
and	its	contents	when	done	with	it.

The	prefix,	suffix,	and	dir	arguments	are	the	same	as	for	mkstemp().

mkdtemp()	returns	the	absolute	pathname	of	the	new	directory.	New	in
version	2.3.

mktemp([suffix[,	prefix[,	dir]]])
Deprecated	since	release	2.3.	Use	mkstemp()	instead.

Return	an	absolute	pathname	of	a	file	that	did	not	exist	at	the	time	the	call	is
made.	The	prefix,	suffix,	and	dir	arguments	are	the	same	as	for
mkstemp().

Warning:	Use	of	this	function	may	introduce	a	security	hole	in	your
program.	By	the	time	you	get	around	to	doing	anything	with	the	file	name	it
returns,	someone	else	may	have	beaten	you	to	the	punch.

The	module	uses	two	global	variables	that	tell	it	how	to	construct	a	temporary
name.	They	are	initialized	at	the	first	call	to	any	of	the	functions	above.	The
caller	may	change	them,	but	this	is	discouraged;	use	the	appropriate	function
arguments,	instead.

tempdir

When	set	to	a	value	other	than	None,	this	variable	defines	the	default	value
for	the	dir	argument	to	all	the	functions	defined	in	this	module.

If	tempdir	is	unset	or	None	at	any	call	to	any	of	the	above	functions,
Python	searches	a	standard	list	of	directories	and	sets	tempdir	to	the	first
one	which	the	calling	user	can	create	files	in.	The	list	is:

1.	 The	directory	named	by	the	TMPDIR	environment	variable.
2.	 The	directory	named	by	the	TEMP	environment	variable.

3.	 The	directory	named	by	the	TMP	environment	variable.
4.	 A	platform-specific	location:

On	Macintosh,	the	Temporary	Items	folder.
On	RiscOS,	the	directory	named	by	the	Wimp$ScrapDir
environment	variable.

On	Windows,	the	directories	C: TEMP,	C: TMP,	 TEMP,	and

TMP,	in	that	order.
On	all	other	platforms,	the	directories	/tmp,	/var/tmp,	and
/usr/tmp,	in	that	order.

5.	 As	a	last	resort,	the	current	working	directory.

gettempdir()
Return	the	directory	currently	selected	to	create	temporary	files	in.	If
tempdir	is	not	None,	this	simply	returns	its	contents;	otherwise,	the
search	described	above	is	performed,	and	the	result	returned.

template

Deprecated	since	release	2.0.	Use	gettempprefix()	instead.

When	set	to	a	value	other	than	None,	this	variable	defines	the	prefix	of	the
final	component	of	the	filenames	returned	by	mktemp().	A	string	of	six
random	letters	and	digits	is	appended	to	the	prefix	to	make	the	filename
unique.	On	Windows,	the	default	prefix	is	~T;	on	all	other	systems	it	is
tmp.

Older	versions	of	this	module	used	to	require	that	template	be	set	to
None	after	a	call	to	os.fork();	this	has	not	been	necessary	since	version
1.5.2.

gettempprefix()
Return	the	filename	prefix	used	to	create	temporary	files.	This	does	not
contain	the	directory	component.	Using	this	function	is	preferred	over
reading	the	template	variable	directly.	New	in	version	1.5.2.

Python	Library	Reference
Previous:	6.21.4.9	Callback	example	6:	Up:	6.	Generic	Operating	System

Next:	6.23	errno

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.22	tempfile	Up:	6.	Generic	Operating	System	Next:	6.24	glob

6.23	errno	--	Standard	errno	system
symbols
This	module	makes	available	standard	errno	system	symbols.	The	value	of
each	symbol	is	the	corresponding	integer	value.	The	names	and	descriptions	are
borrowed	from	linux/include/errno.h,	which	should	be	pretty	all-inclusive.

errorcode

Dictionary	providing	a	mapping	from	the	errno	value	to	the	string	name	in
the	underlying	system.	For	instance,
errno.errorcode[errno.EPERM]	maps	to	'EPERM'.

To	translate	a	numeric	error	code	to	an	error	message,	use	os.strerror().

Of	the	following	list,	symbols	that	are	not	used	on	the	current	platform	are	not
defined	by	the	module.	The	specific	list	of	defined	symbols	is	available	as
errno.errorcode.keys().	Symbols	available	can	include:

EPERM

Operation	not	permitted

ENOENT

No	such	file	or	directory

ESRCH

No	such	process

EINTR

Interrupted	system	call

EIO

I/O	error

ENXIO

No	such	device	or	address

E2BIG

Arg	list	too	long

ENOEXEC

Exec	format	error

EBADF

Bad	file	number

ECHILD

No	child	processes

EAGAIN

Try	again

ENOMEM

Out	of	memory

EACCES

Permission	denied

EFAULT

Bad	address

ENOTBLK

Block	device	required

EBUSY

Device	or	resource	busy

EEXIST

File	exists

EXDEV

Cross-device	link

ENODEV

No	such	device

ENOTDIR

Not	a	directory

EISDIR

Is	a	directory

EINVAL

Invalid	argument

ENFILE

File	table	overflow

EMFILE

Too	many	open	files

ENOTTY

Not	a	typewriter

ETXTBSY

Text	file	busy

EFBIG

File	too	large

ENOSPC

No	space	left	on	device

ESPIPE

Illegal	seek

EROFS

Read-only	file	system

EMLINK

Too	many	links

EPIPE

Broken	pipe

EDOM

Math	argument	out	of	domain	of	func

ERANGE

Math	result	not	representable

EDEADLK

Resource	deadlock	would	occur

ENAMETOOLONG

File	name	too	long

ENOLCK

No	record	locks	available

ENOSYS

Function	not	implemented

ENOTEMPTY

Directory	not	empty

ELOOP

Too	many	symbolic	links	encountered

EWOULDBLOCK

Operation	would	block

ENOMSG

No	message	of	desired	type

EIDRM

Identifier	removed

ECHRNG

Channel	number	out	of	range

EL2NSYNC

Level	2	not	synchronized

EL3HLT

Level	3	halted

EL3RST

Level	3	reset

ELNRNG

Link	number	out	of	range

EUNATCH

Protocol	driver	not	attached

ENOCSI

No	CSI	structure	available

EL2HLT

Level	2	halted

EBADE

Invalid	exchange

EBADR

Invalid	request	descriptor

EXFULL

Exchange	full

ENOANO

No	anode

EBADRQC

Invalid	request	code

EBADSLT

Invalid	slot

EDEADLOCK

File	locking	deadlock	error

EBFONT

Bad	font	file	format

ENOSTR

Device	not	a	stream

ENODATA

No	data	available

ETIME

Timer	expired

ENOSR

Out	of	streams	resources

ENONET

Machine	is	not	on	the	network

ENOPKG

Package	not	installed

EREMOTE

Object	is	remote

ENOLINK

Link	has	been	severed

EADV

Advertise	error

ESRMNT

Srmount	error

ECOMM

Communication	error	on	send

EPROTO

Protocol	error

EMULTIHOP

Multihop	attempted

EDOTDOT

RFS	specific	error

EBADMSG

Not	a	data	message

EOVERFLOW

Value	too	large	for	defined	data	type

ENOTUNIQ

Name	not	unique	on	network

EBADFD

File	descriptor	in	bad	state

EREMCHG

Remote	address	changed

ELIBACC

Can	not	access	a	needed	shared	library

ELIBBAD

Accessing	a	corrupted	shared	library

ELIBSCN

.lib	section	in	a.out	corrupted

ELIBMAX

Attempting	to	link	in	too	many	shared	libraries

ELIBEXEC

Cannot	exec	a	shared	library	directly

EILSEQ

Illegal	byte	sequence

ERESTART

Interrupted	system	call	should	be	restarted

ESTRPIPE

Streams	pipe	error

EUSERS

Too	many	users

ENOTSOCK

Socket	operation	on	non-socket

EDESTADDRREQ

Destination	address	required

EMSGSIZE

Message	too	long

EPROTOTYPE

Protocol	wrong	type	for	socket

ENOPROTOOPT

Protocol	not	available

EPROTONOSUPPORT

Protocol	not	supported

ESOCKTNOSUPPORT

Socket	type	not	supported

EOPNOTSUPP

Operation	not	supported	on	transport	endpoint

EPFNOSUPPORT

Protocol	family	not	supported

EAFNOSUPPORT

Address	family	not	supported	by	protocol

EADDRINUSE

Address	already	in	use

EADDRNOTAVAIL

Cannot	assign	requested	address

ENETDOWN

Network	is	down

ENETUNREACH

Network	is	unreachable

ENETRESET

Network	dropped	connection	because	of	reset

ECONNABORTED

Software	caused	connection	abort

ECONNRESET

Connection	reset	by	peer

ENOBUFS

No	buffer	space	available

EISCONN

Transport	endpoint	is	already	connected

ENOTCONN

Transport	endpoint	is	not	connected

ESHUTDOWN

Cannot	send	after	transport	endpoint	shutdown

ETOOMANYREFS

Too	many	references:	cannot	splice

ETIMEDOUT

Connection	timed	out

ECONNREFUSED

Connection	refused

EHOSTDOWN

Host	is	down

EHOSTUNREACH

No	route	to	host

EALREADY

Operation	already	in	progress

EINPROGRESS

Operation	now	in	progress

ESTALE

Stale	NFS	file	handle

EUCLEAN

Structure	needs	cleaning

ENOTNAM

Not	a	XENIX	named	type	file

ENAVAIL

No	XENIX	semaphores	available

EISNAM

Is	a	named	type	file

EREMOTEIO

Remote	I/O	error

EDQUOT

Quota	exceeded

Python	Library	Reference
Previous:	6.22	tempfile	Up:	6.	Generic	Operating	System	Next:	6.24	glob

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.23	errno	Up:	6.	Generic	Operating	System	Next:	6.25	fnmatch

6.24	glob	--	UNIX	style	pathname
pattern	expansion
The	glob	module	finds	all	the	pathnames	matching	a	specified	pattern
according	to	the	rules	used	by	the	UNIX	shell.	No	tilde	expansion	is	done,	but	*,
?,	and	character	ranges	expressed	with	[]	will	be	correctly	matched.	This	is
done	by	using	the	os.listdir()	and	fnmatch.fnmatch()	functions	in
concert,	and	not	by	actually	invoking	a	subshell.	(For	tilde	and	shell	variable
expansion,	use	os.path.expanduser()	and
os.path.expandvars().)

glob(pathname)
Returns	a	possibly-empty	list	of	path	names	that	match	pathname,	which
must	be	a	string	containing	a	path	specification.	pathname	can	be	either
absolute	(like	/usr/src/Python-1.5/Makefile)	or	relative	(like
../../Tools/*/*.gif),	and	can	contain	shell-style	wildcards.	Broken	symlinks
are	included	in	the	results	(as	in	the	shell).

For	example,	consider	a	directory	containing	only	the	following	files:	1.gif,
2.txt,	and	card.gif.	glob()	will	produce	the	following	results.	Notice	how	any
leading	components	of	the	path	are	preserved.

>>>	import	glob

>>>	glob.glob('./[0-9].*')

['./1.gif',	'./2.txt']

>>>	glob.glob('*.gif')

['1.gif',	'card.gif']

>>>	glob.glob('?.gif')

['1.gif']

See	Also:

Module	fnmatch:
Shell-style	filename	(not	path)	expansion.

Python	Library	Reference
Previous:	6.23	errno	Up:	6.	Generic	Operating	System	Next:	6.25	fnmatch

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.24	glob	Up:	6.	Generic	Operating	System	Next:	6.26	shutil

6.25	fnmatch	--	UNIX	filename	pattern
matching
This	module	provides	support	for	UNIX	shell-style	wildcards,	which	are	not	the
same	as	regular	expressions	(which	are	documented	in	the	re	module).	The
special	characters	used	in	shell-style	wildcards	are:

Pattern Meaning
* matches	everything
? matches	any	single	character

[seq] matches	any	character	in	seq
[!seq] matches	any	character	not	in	seq

Note	that	the	filename	separator	('/'	on	UNIX)	is	not	special	to	this	module.	See
module	glob	for	pathname	expansion	(glob	uses	fnmatch()	to	match
pathname	segments).	Similarly,	filenames	starting	with	a	period	are	not	special
for	this	module,	and	are	matched	by	the	*	and	?	patterns.

fnmatch(filename,	pattern)
Test	whether	the	filename	string	matches	the	pattern	string,	returning	true
or	false.	If	the	operating	system	is	case-insensitive,	then	both	parameters
will	be	normalized	to	all	lower-	or	upper-case	before	the	comparison	is
performed.	If	you	require	a	case-sensitive	comparison	regardless	of	whether
that's	standard	for	your	operating	system,	use	fnmatchcase()	instead.

fnmatchcase(filename,	pattern)
Test	whether	filename	matches	pattern,	returning	true	or	false;	the
comparison	is	case-sensitive.

filter(names,	pattern)
Return	the	subset	of	the	list	of	names	that	match	pattern.	It	is	the	same	as
[n	for	n	in	names	if	fnmatch(n,	pattern)],	but
implemented	more	efficiently.	New	in	version	2.2.

See	Also:

Module	glob:
UNIX	shell-style	path	expansion.

Python	Library	Reference
Previous:	6.24	glob	Up:	6.	Generic	Operating	System	Next:	6.26	shutil

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.25	fnmatch	Up:	6.	Generic	Operating	System	Next:	6.26.1
Example

6.26	shutil	--	High-level	file
operations
The	shutil	module	offers	a	number	of	high-level	operations	on	files	and
collections	of	files.	In	particular,	functions	are	provided	which	support	file
copying	and	removal.

Caveat:	On	MacOS,	the	resource	fork	and	other	metadata	are	not	used.	For	file
copies,	this	means	that	resources	will	be	lost	and	file	type	and	creator	codes	will
not	be	correct.

copyfile(src,	dst)
Copy	the	contents	of	the	file	named	src	to	a	file	named	dst.	The	destination
location	must	be	writable;	otherwise,	an	IOError	exception	will	be	raised.
If	dst	already	exists,	it	will	be	replaced.	Special	files	such	as	character	or
block	devices	and	pipes	cannot	be	copied	with	this	function.	src	and	dst	are
path	names	given	as	strings.

copyfileobj(fsrc,	fdst[,	length])
Copy	the	contents	of	the	file-like	object	fsrc	to	the	file-like	object	fdst.	The
integer	length,	if	given,	is	the	buffer	size.	In	particular,	a	negative	length
value	means	to	copy	the	data	without	looping	over	the	source	data	in
chunks;	by	default	the	data	is	read	in	chunks	to	avoid	uncontrolled	memory
consumption.

copymode(src,	dst)
Copy	the	permission	bits	from	src	to	dst.	The	file	contents,	owner,	and
group	are	unaffected.	src	and	dst	are	path	names	given	as	strings.

copystat(src,	dst)
Copy	the	permission	bits,	last	access	time,	and	last	modification	time	from
src	to	dst.	The	file	contents,	owner,	and	group	are	unaffected.	src	and	dst
are	path	names	given	as	strings.

copy(src,	dst)

Copy	the	file	src	to	the	file	or	directory	dst.	If	dst	is	a	directory,	a	file	with
the	same	basename	as	src	is	created	(or	overwritten)	in	the	directory
specified.	Permission	bits	are	copied.	src	and	dst	are	path	names	given	as
strings.

copy2(src,	dst)
Similar	to	copy(),	but	last	access	time	and	last	modification	time	are
copied	as	well.	This	is	similar	to	the	UNIX	command	cp	-p.

copytree(src,	dst[,	symlinks])
Recursively	copy	an	entire	directory	tree	rooted	at	src.	The	destination
directory,	named	by	dst,	must	not	already	exist;	it	will	be	created.	Individual
files	are	copied	using	copy2().	If	symlinks	is	true,	symbolic	links	in	the
source	tree	are	represented	as	symbolic	links	in	the	new	tree;	if	false	or
omitted,	the	contents	of	the	linked	files	are	copied	to	the	new	tree.	If
exception(s)	occur,	an	Error	is	raised	with	a	list	of	reasons.

The	source	code	for	this	should	be	considered	an	example	rather	than	a	tool.
Changed	in	version	2.3:	Error	is	raised	if	any	exceptions	occur	during
copying,	rather	than	printing	a	message.

rmtree(path[,	ignore_errors[,	onerror]])
Delete	an	entire	directory	tree.	If	ignore_errors	is	true,	errors	resulting	from
failed	removals	will	be	ignored;	if	false	or	omitted,	such	errors	are	handled
by	calling	a	handler	specified	by	onerror	or,	if	that	is	omitted,	they	raise	an
exception.

If	onerror	is	provided,	it	must	be	a	callable	that	accepts	three	parameters:
function,	path,	and	excinfo.	The	first	parameter,	function,	is	the	function
which	raised	the	exception;	it	will	be	os.listdir(),	os.remove()	or
os.rmdir().	The	second	parameter,	path,	will	be	the	path	name	passed
to	function.	The	third	parameter,	excinfo,	will	be	the	exception	information
return	by	sys.exc_info().	Exceptions	raised	by	onerror	will	not	be
caught.

move(src,	dst)
Recursively	move	a	file	or	directory	to	another	location.

If	the	destination	is	on	our	current	filesystem,	then	simply	use	rename.
Otherwise,	copy	src	to	the	dst	and	then	remove	src.

New	in	version	2.3.

exception	Error
This	exception	collects	exceptions	that	raised	during	a	mult-file	operation.
For	copytree,	the	exception	argument	is	a	list	of	3-tuples	(srcname,
dstname,	exception).

New	in	version	2.3.

Subsections

6.26.1	Example

Python	Library	Reference
Previous:	6.25	fnmatch	Up:	6.	Generic	Operating	System	Next:	6.26.1
Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.26	shutil	Up:	6.26	shutil	Next:	6.27	locale

6.26.1	Example
This	example	is	the	implementation	of	the	copytree()	function,	described
above,	with	the	docstring	omitted.	It	demonstrates	many	of	the	other	functions
provided	by	this	module.

def	copytree(src,	dst,	symlinks=0):

				names	=	os.listdir(src)

				os.mkdir(dst)

				for	name	in	names:

								srcname	=	os.path.join(src,	name)

								dstname	=	os.path.join(dst,	name)

								try:

												if	symlinks	and	os.path.islink(srcname):

																linkto	=	os.readlink(srcname)

																os.symlink(linkto,	dstname)

												elif	os.path.isdir(srcname):

																copytree(srcname,	dstname,	symlinks)

												else:

																copy2(srcname,	dstname)

								except	(IOError,	os.error),	why:

												print	"Can't	copy	%s	to	%s:	%s"	%	(`srcname`,	`dstname`,	str(why))

Python	Library	Reference
Previous:	6.26	shutil	Up:	6.26	shutil	Next:	6.27	locale

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.26.1	Example	Up:	6.	Generic	Operating	System	Next:	6.27.1
Background,	details,	hints,

6.27	locale	--	Internationalization
services
The	locale	module	opens	access	to	the	POSIX	locale	database	and
functionality.	The	POSIX	locale	mechanism	allows	programmers	to	deal	with
certain	cultural	issues	in	an	application,	without	requiring	the	programmer	to
know	all	the	specifics	of	each	country	where	the	software	is	executed.

The	locale	module	is	implemented	on	top	of	the	_locale	module,	which	in
turn	uses	an	ANSI	C	locale	implementation	if	available.

The	locale	module	defines	the	following	exception	and	functions:

exception	Error
Exception	raised	when	setlocale()	fails.

setlocale(category[,	locale])
If	locale	is	specified,	it	may	be	a	string,	a	tuple	of	the	form	(language
code,	encoding),	or	None.	If	it	is	a	tuple,	it	is	converted	to	a	string	using
the	locale	aliasing	engine.	If	locale	is	given	and	not	None,	setlocale()
modifies	the	locale	setting	for	the	category.	The	available	categories	are
listed	in	the	data	description	below.	The	value	is	the	name	of	a	locale.	An
empty	string	specifies	the	user's	default	settings.	If	the	modification	of	the
locale	fails,	the	exception	Error	is	raised.	If	successful,	the	new	locale
setting	is	returned.

If	locale	is	omitted	or	None,	the	current	setting	for	category	is	returned.

setlocale()	is	not	thread	safe	on	most	systems.	Applications	typically
start	with	a	call	of

import	locale

locale.setlocale(locale.LC_ALL,	'')

This	sets	the	locale	for	all	categories	to	the	user's	default	setting	(typically
specified	in	the	LANG	environment	variable).	If	the	locale	is	not	changed

thereafter,	using	multithreading	should	not	cause	problems.

Changed	in	version	2.0:	Added	support	for	tuple	values	of	the	locale
parameter.

localeconv()
Returns	the	database	of	the	local	conventions	as	a	dictionary.	This
dictionary	has	the	following	strings	as	keys:

Key Category Meaning
LC_NUMERIC 'decimal_point' Decimal	point	character.

'grouping' Sequence	of	numbers
specifying	which
relative	positions	the
'thousands_sep'	is
expected.	If	the
sequence	is	terminated
with	CHAR_MAX,	no
further	grouping	is
performed.	If	the
sequence	terminates
with	a	0,	the	last	group
size	is	repeatedly	used.

'thousands_sep' Character	used	between
groups.

LC_MONETARY 'int_curr_symbol' International	currency
symbol.

'currency_symbol' Local	currency	symbol.
'mon_decimal_point' Decimal	point	used	for

monetary	values.
'mon_thousands_sep' Group	separator	used	for

monetary	values.
'mon_grouping' Equivalent	to

'grouping',	used	for
monetary	values.

'positive_sign' Symbol	used	to	annotate
a	positive	monetary

value.
'negative_sign' Symbol	used	to	annotate

a	negative	monetary
value.

'frac_digits' Number	of	fractional
digits	used	in	local
formatting	of	monetary
values.

'int_frac_digits' Number	of	fractional
digits	used	in
international	formatting
of	monetary	values.

The	possible	values	for	'p_sign_posn'	and	'n_sign_posn'	are
given	below.

Value Explanation
0 Currency	and	value	are	surrounded	by	parentheses.
1 The	sign	should	precede	the	value	and	currency	symbol.
2 The	sign	should	follow	the	value	and	currency	symbol.
3 The	sign	should	immediately	precede	the	value.
4 The	sign	should	immediately	follow	the	value.

LC_MAX Nothing	is	specified	in	this	locale.

nl_langinfo(option)

Return	some	locale-specific	information	as	a	string.	This	function	is	not
available	on	all	systems,	and	the	set	of	possible	options	might	also	vary
across	platforms.	The	possible	argument	values	are	numbers,	for	which
symbolic	constants	are	available	in	the	locale	module.

getdefaultlocale([envvars])
Tries	to	determine	the	default	locale	settings	and	returns	them	as	a	tuple	of
the	form	(language	code,	encoding).

According	to	POSIX,	a	program	which	has	not	called
setlocale(LC_ALL,	'')	runs	using	the	portable	'C'	locale.	Calling

setlocale(LC_ALL,	'')	lets	it	use	the	default	locale	as	defined	by
the	LANG	variable.	Since	we	do	not	want	to	interfere	with	the	current
locale	setting	we	thus	emulate	the	behavior	in	the	way	described	above.

To	maintain	compatibility	with	other	platforms,	not	only	the	LANG
variable	is	tested,	but	a	list	of	variables	given	as	envvars	parameter.	The
first	found	to	be	defined	will	be	used.	envvars	defaults	to	the	search	path
used	in	GNU	gettext;	it	must	always	contain	the	variable	name	"LANG".
The	GNU	gettext	search	path	contains	'LANGUAGE',	'LC_ALL',
'LC_CTYPE',	and	'LANG',	in	that	order.

Except	for	the	code	'C',	the	language	code	corresponds	to	RFC	1766.
language	code	and	encoding	may	be	None	if	their	values	cannot	be
determined.	New	in	version	2.0.

getlocale([category])
Returns	the	current	setting	for	the	given	locale	category	as	sequence
containing	language	code,	encoding.	category	may	be	one	of	the	LC_*
values	except	LC_ALL.	It	defaults	to	LC_CTYPE.

Except	for	the	code	'C',	the	language	code	corresponds	to	RFC	1766.
language	code	and	encoding	may	be	None	if	their	values	cannot	be
determined.	New	in	version	2.0.

getpreferredencoding([do_setlocale])
Return	the	encoding	used	for	text	data,	according	to	user	preferences.	User
preferences	are	expressed	differently	on	different	systems,	and	might	not	be
available	programmatically	on	some	systems,	so	this	function	only	returns	a
guess.

On	some	systems,	it	is	necessary	to	invoke	setlocale	to	obtain	the	user
preferences,	so	this	function	is	not	thread-safe.	If	invoking	setlocale	is	not
necessary	or	desired,	do_setlocale	should	be	set	to	False.

New	in	version	2.3.

normalize(localename)
Returns	a	normalized	locale	code	for	the	given	locale	name.	The	returned

http://www.faqs.org/rfcs/rfc1766.html
http://www.faqs.org/rfcs/rfc1766.html

locale	code	is	formatted	for	use	with	setlocale().	If	normalization
fails,	the	original	name	is	returned	unchanged.

If	the	given	encoding	is	not	known,	the	function	defaults	to	the	default
encoding	for	the	locale	code	just	like	setlocale().	New	in	version	2.0.

resetlocale([category])
Sets	the	locale	for	category	to	the	default	setting.

The	default	setting	is	determined	by	calling	getdefaultlocale().
category	defaults	to	LC_ALL.	New	in	version	2.0.

strcoll(string1,	string2)
Compares	two	strings	according	to	the	current	LC_COLLATE	setting.	As
any	other	compare	function,	returns	a	negative,	or	a	positive	value,	or	0,
depending	on	whether	string1	collates	before	or	after	string2	or	is	equal	to
it.

strxfrm(string)
Transforms	a	string	to	one	that	can	be	used	for	the	built-in	function	cmp(),
and	still	returns	locale-aware	results.	This	function	can	be	used	when	the
same	string	is	compared	repeatedly,	e.g.	when	collating	a	sequence	of
strings.

format(format,	val[,	grouping])
Formats	a	number	val	according	to	the	current	LC_NUMERIC	setting.	The
format	follows	the	conventions	of	the	%	operator.	For	floating	point	values,
the	decimal	point	is	modified	if	appropriate.	If	grouping	is	true,	also	takes
the	grouping	into	account.

str(float)
Formats	a	floating	point	number	using	the	same	format	as	the	built-in
function	str(float),	but	takes	the	decimal	point	into	account.

atof(string)
Converts	a	string	to	a	floating	point	number,	following	the	LC_NUMERIC
settings.

atoi(string)
Converts	a	string	to	an	integer,	following	the	LC_NUMERIC	conventions.

LC_CTYPE

Locale	category	for	the	character	type	functions.	Depending	on	the	settings
of	this	category,	the	functions	of	module	string	dealing	with	case	change
their	behaviour.

LC_COLLATE

Locale	category	for	sorting	strings.	The	functions	strcoll()	and
strxfrm()	of	the	locale	module	are	affected.

LC_TIME

Locale	category	for	the	formatting	of	time.	The	function
time.strftime()	follows	these	conventions.

LC_MONETARY

Locale	category	for	formatting	of	monetary	values.	The	available	options
are	available	from	the	localeconv()	function.

LC_MESSAGES

Locale	category	for	message	display.	Python	currently	does	not	support
application	specific	locale-aware	messages.	Messages	displayed	by	the
operating	system,	like	those	returned	by	os.strerror()	might	be
affected	by	this	category.

LC_NUMERIC

Locale	category	for	formatting	numbers.	The	functions	format(),
atoi(),	atof()	and	str()	of	the	locale	module	are	affected	by	that
category.	All	other	numeric	formatting	operations	are	not	affected.

LC_ALL

Combination	of	all	locale	settings.	If	this	flag	is	used	when	the	locale	is
changed,	setting	the	locale	for	all	categories	is	attempted.	If	that	fails	for
any	category,	no	category	is	changed	at	all.	When	the	locale	is	retrieved
using	this	flag,	a	string	indicating	the	setting	for	all	categories	is	returned.
This	string	can	be	later	used	to	restore	the	settings.

CHAR_MAX

This	is	a	symbolic	constant	used	for	different	values	returned	by
localeconv().

The	nl_langinfo	function	accepts	one	of	the	following	keys.	Most
descriptions	are	taken	from	the	corresponding	description	in	the	GNU	C	library.

CODESET

Return	a	string	with	the	name	of	the	character	encoding	used	in	the	selected
locale.

D_T_FMT

Return	a	string	that	can	be	used	as	a	format	string	for	strftime(3)	to
represent	time	and	date	in	a	locale-specific	way.

D_FMT

Return	a	string	that	can	be	used	as	a	format	string	for	strftime(3)	to
represent	a	date	in	a	locale-specific	way.

T_FMT

Return	a	string	that	can	be	used	as	a	format	string	for	strftime(3)	to
represent	a	time	in	a	locale-specific	way.

T_FMT_AMPM

The	return	value	can	be	used	as	a	format	string	for	`strftime'	to	represent
time	in	the	am/pm	format.

DAY_1	...	DAY_7

Return	name	of	the	n-th	day	of	the	week.	Warning:	This	follows	the	US
convention	of	DAY_1	being	Sunday,	not	the	international	convention	(ISO
8601)	that	Monday	is	the	first	day	of	the	week.

ABDAY_1	...	ABDAY_7

Return	abbreviated	name	of	the	n-th	day	of	the	week.

MON_1	...	MON_12

Return	name	of	the	n-th	month.

ABMON_1	...	ABMON_12

Return	abbreviated	name	of	the	n-th	month.

RADIXCHAR

Return	radix	character	(decimal	dot,	decimal	comma,	etc.)

THOUSEP

Return	separator	character	for	thousands	(groups	of	three	digits).

YESEXPR

Return	a	regular	expression	that	can	be	used	with	the	regex	function	to
recognize	a	positive	response	to	a	yes/no	question.	Warning:	The
expression	is	in	the	syntax	suitable	for	the	regex()	function	from	the	C
library,	which	might	differ	from	the	syntax	used	in	re.

NOEXPR

Return	a	regular	expression	that	can	be	used	with	the	regex(3)	function	to
recognize	a	negative	response	to	a	yes/no	question.

CRNCYSTR

Return	the	currency	symbol,	preceded	by	"-"	if	the	symbol	should	appear
before	the	value,	"+"	if	the	symbol	should	appear	after	the	value,	or	"."	if
the	symbol	should	replace	the	radix	character.

ERA

The	return	value	represents	the	era	used	in	the	current	locale.

Most	locales	do	not	define	this	value.	An	example	of	a	locale	which	does
define	this	value	is	the	Japanese	one.	In	Japan,	the	traditional	representation
of	dates	includes	the	name	of	the	era	corresponding	to	the	then-emperor's
reign.

Normally	it	should	not	be	necessary	to	use	this	value	directly.	Specifying
the	E	modifier	in	their	format	strings	causes	the	strftime	function	to	use
this	information.	The	format	of	the	returned	string	is	not	specified,	and
therefore	you	should	not	assume	knowledge	of	it	on	different	systems.

ERA_YEAR

The	return	value	gives	the	year	in	the	relevant	era	of	the	locale.

ERA_D_T_FMT

This	return	value	can	be	used	as	a	format	string	for	strftime	to	represent
dates	and	times	in	a	locale-specific	era-based	way.

ERA_D_FMT

This	return	value	can	be	used	as	a	format	string	for	strftime	to	represent
time	in	a	locale-specific	era-based	way.

ALT_DIGITS

The	return	value	is	a	representation	of	up	to	100	values	used	to	represent
the	values	0	to	99.

Example:

>>>	import	locale

>>>	loc	=	locale.getlocale(locale.LC_ALL)	#	get	current	locale

>>>	locale.setlocale(locale.LC_ALL,	'de_DE')	#	use	German	locale;	name	might	vary	with	platform

>>>	locale.strcoll('f\xe4n',	'foo')	#	compare	a	string	containing	an	umlaut	

>>>	locale.setlocale(locale.LC_ALL,	'')	#	use	user's	preferred	locale

>>>	locale.setlocale(locale.LC_ALL,	'C')	#	use	default	(C)	locale

>>>	locale.setlocale(locale.LC_ALL,	loc)	#	restore	saved	locale

Subsections

6.27.1	Background,	details,	hints,	tips	and	caveats
6.27.2	For	extension	writers	and	programs	that	embed	Python
6.27.3	Access	to	message	catalogs

Python	Library	Reference
Previous:	6.26.1	Example	Up:	6.	Generic	Operating	System	Next:	6.27.1
Background,	details,	hints,

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.27	locale	Up:	6.27	locale	Next:	6.27.2	For	extension	writers

6.27.1	Background,	details,	hints,	tips	and
caveats
The	C	standard	defines	the	locale	as	a	program-wide	property	that	may	be
relatively	expensive	to	change.	On	top	of	that,	some	implementation	are	broken
in	such	a	way	that	frequent	locale	changes	may	cause	core	dumps.	This	makes
the	locale	somewhat	painful	to	use	correctly.

Initially,	when	a	program	is	started,	the	locale	is	the	"C"	locale,	no	matter	what
the	user's	preferred	locale	is.	The	program	must	explicitly	say	that	it	wants	the
user's	preferred	locale	settings	by	calling	setlocale(LC_ALL,	'').

It	is	generally	a	bad	idea	to	call	setlocale()	in	some	library	routine,	since	as
a	side	effect	it	affects	the	entire	program.	Saving	and	restoring	it	is	almost	as
bad:	it	is	expensive	and	affects	other	threads	that	happen	to	run	before	the
settings	have	been	restored.

If,	when	coding	a	module	for	general	use,	you	need	a	locale	independent	version
of	an	operation	that	is	affected	by	the	locale	(such	as	string.lower(),	or
certain	formats	used	with	time.strftime()),	you	will	have	to	find	a	way	to
do	it	without	using	the	standard	library	routine.	Even	better	is	convincing
yourself	that	using	locale	settings	is	okay.	Only	as	a	last	resort	should	you
document	that	your	module	is	not	compatible	with	non-"C"	locale	settings.

The	case	conversion	functions	in	the	string	module	are	affected	by	the	locale
settings.	When	a	call	to	the	setlocale()	function	changes	the	LC_CTYPE
settings,	the	variables	string.lowercase,	string.uppercase	and
string.letters	are	recalculated.	Note	that	this	code	that	uses	these	variable
through	`from	...	import	...',	e.g.	from	string	import	letters,	is
not	affected	by	subsequent	setlocale()	calls.

The	only	way	to	perform	numeric	operations	according	to	the	locale	is	to	use	the
special	functions	defined	by	this	module:	atof(),	atoi(),	format(),
str().

Python	Library	Reference

Previous:	6.27	locale	Up:	6.27	locale	Next:	6.27.2	For	extension	writers

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.27.1	Background,	details,	hints,	Up:	6.27	locale	Next:	6.27.3
Access	to	message

6.27.2	For	extension	writers	and	programs	that
embed	Python
Extension	modules	should	never	call	setlocale(),	except	to	find	out	what
the	current	locale	is.	But	since	the	return	value	can	only	be	used	portably	to
restore	it,	that	is	not	very	useful	(except	perhaps	to	find	out	whether	or	not	the
locale	is	"C").

When	Python	code	uses	the	locale	module	to	change	the	locale,	this	also
affects	the	embedding	application.	If	the	embedding	application	doesn't	want	this
to	happen,	it	should	remove	the	_locale	extension	module	(which	does	all	the
work)	from	the	table	of	built-in	modules	in	the	config.c	file,	and	make	sure	that
the	_locale	module	is	not	accessible	as	a	shared	library.

Python	Library	Reference
Previous:	6.27.1	Background,	details,	hints,	Up:	6.27	locale	Next:	6.27.3
Access	to	message

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.27.2	For	extension	writers	Up:	6.27	locale	Next:	6.28	gettext

6.27.3	Access	to	message	catalogs
The	locale	module	exposes	the	C	library's	gettext	interface	on	systems	that
provide	this	interface.	It	consists	of	the	functions	gettext(),	dgettext(),
dcgettext(),	textdomain(),	bindtextdomain(),	and
bind_textdomain_codeset().	These	are	similar	to	the	same	functions	in
the	gettext	module,	but	use	the	C	library's	binary	format	for	message
catalogs,	and	the	C	library's	search	algorithms	for	locating	message	catalogs.

Python	applications	should	normally	find	no	need	to	invoke	these	functions,	and
should	use	gettext	instead.	A	known	exception	to	this	rule	are	applications
that	link	use	additional	C	libraries	which	internally	invoke	gettext()	or
dcgettext().	For	these	applications,	it	may	be	necessary	to	bind	the	text
domain,	so	that	the	libraries	can	properly	locate	their	message	catalogs.

Python	Library	Reference
Previous:	6.27.2	For	extension	writers	Up:	6.27	locale	Next:	6.28	gettext

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.27.3	Access	to	message	Up:	6.	Generic	Operating	System	Next:
6.28.1	GNU	gettext	API

6.28	gettext	--	Multilingual
internationalization	services
The	gettext	module	provides	internationalization	(I18N)	and	localization
(L10N)	services	for	your	Python	modules	and	applications.	It	supports	both	the
GNU	gettext	message	catalog	API	and	a	higher	level,	class-based	API	that
may	be	more	appropriate	for	Python	files.	The	interface	described	below	allows
you	to	write	your	module	and	application	messages	in	one	natural	language,	and
provide	a	catalog	of	translated	messages	for	running	under	different	natural
languages.

Some	hints	on	localizing	your	Python	modules	and	applications	are	also	given.

Subsections

6.28.1	GNU	gettext	API
6.28.2	Class-based	API

6.28.2.1	The	NullTranslations	class
6.28.2.2	The	GNUTranslations	class
6.28.2.3	Solaris	message	catalog	support
6.28.2.4	The	Catalog	constructor

6.28.3	Internationalizing	your	programs	and	modules
6.28.3.1	Localizing	your	module
6.28.3.2	Localizing	your	application
6.28.3.3	Changing	languages	on	the	fly
6.28.3.4	Deferred	translations
6.28.3.5	gettext()	vs.	lgettext()

6.28.4	Acknowledgements

Python	Library	Reference
Previous:	6.27.3	Access	to	message	Up:	6.	Generic	Operating	System	Next:
6.28.1	GNU	gettext	API

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.28	gettext	Up:	6.28	gettext	Next:	6.28.2	Class-based	API

6.28.1	GNU	gettext	API
The	gettext	module	defines	the	following	API,	which	is	very	similar	to	the
GNU	gettext	API.	If	you	use	this	API	you	will	affect	the	translation	of	your
entire	application	globally.	Often	this	is	what	you	want	if	your	application	is
monolingual,	with	the	choice	of	language	dependent	on	the	locale	of	your	user.
If	you	are	localizing	a	Python	module,	or	if	your	application	needs	to	switch
languages	on	the	fly,	you	probably	want	to	use	the	class-based	API	instead.

bindtextdomain(domain[,	localedir])
Bind	the	domain	to	the	locale	directory	localedir.	More	concretely,
gettext	will	look	for	binary	.mo	files	for	the	given	domain	using	the
path	(on	UNIX):	localedir/language/LC_MESSAGES/domain.mo,	where
languages	is	searched	for	in	the	environment	variables	LANGUAGE,
LC_ALL,	LC_MESSAGES,	and	LANG	respectively.

If	localedir	is	omitted	or	None,	then	the	current	binding	for	domain	is
returned.6.2

bind_textdomain_codeset(domain[,	codeset])
Bind	the	domain	to	codeset,	changing	the	encoding	of	strings	returned	by
the	gettext()	family	of	functions.	If	codeset	is	omitted,	then	the	current
binding	is	returned.

New	in	version	2.4.

textdomain([domain])
Change	or	query	the	current	global	domain.	If	domain	is	None,	then	the
current	global	domain	is	returned,	otherwise	the	global	domain	is	set	to
domain,	which	is	returned.

gettext(message)
Return	the	localized	translation	of	message,	based	on	the	current	global
domain,	language,	and	locale	directory.	This	function	is	usually	aliased	as	_
in	the	local	namespace	(see	examples	below).

lgettext(message)
Equivalent	to	gettext(),	but	the	translation	is	returned	in	the	preferred
system	encoding,	if	no	other	encoding	was	explicitly	set	with
bind_textdomain_codeset().

New	in	version	2.4.

dgettext(domain,	message)
Like	gettext(),	but	look	the	message	up	in	the	specified	domain.

ldgettext(domain,	message)
Equivalent	to	dgettext(),	but	the	translation	is	returned	in	the	preferred
system	encoding,	if	no	other	encoding	was	explicitly	set	with
bind_textdomain_codeset().

New	in	version	2.4.

ngettext(singular,	plural,	n)

Like	gettext(),	but	consider	plural	forms.	If	a	translation	is	found,
apply	the	plural	formula	to	n,	and	return	the	resulting	message	(some
languages	have	more	than	two	plural	forms).	If	no	translation	is	found,
return	singular	if	n	is	1;	return	plural	otherwise.

The	Plural	formula	is	taken	from	the	catalog	header.	It	is	a	C	or	Python
expression	that	has	a	free	variable	n;	the	expression	evaluates	to	the	index
of	the	plural	in	the	catalog.	See	the	GNU	gettext	documentation	for	the
precise	syntax	to	be	used	in	.po	files,	and	the	formulas	for	a	variety	of
languages.

New	in	version	2.3.

lngettext(singular,	plural,	n)
Equivalent	to	ngettext(),	but	the	translation	is	returned	in	the	preferred
system	encoding,	if	no	other	encoding	was	explicitly	set	with
bind_textdomain_codeset().

New	in	version	2.4.

dngettext(domain,	singular,	plural,	n)
Like	ngettext(),	but	look	the	message	up	in	the	specified	domain.

New	in	version	2.3.

ldngettext(domain,	singular,	plural,	n)
Equivalent	to	dngettext(),	but	the	translation	is	returned	in	the
preferred	system	encoding,	if	no	other	encoding	was	explicitly	set	with
bind_textdomain_codeset().

New	in	version	2.4.

Note	that	GNU	gettext	also	defines	a	dcgettext()	method,	but	this	was
deemed	not	useful	and	so	it	is	currently	unimplemented.

Here's	an	example	of	typical	usage	for	this	API:

import	gettext

gettext.bindtextdomain('myapplication',	'/path/to/my/language/directory')

gettext.textdomain('myapplication')

_	=	gettext.gettext

#	...

print	_('This	is	a	translatable	string.')

Footnotes

...	returned.6.2
The	default	locale	directory	is	system	dependent;	for	example,	on	RedHat
Linux	it	is	/usr/share/locale,	but	on	Solaris	it	is	/usr/lib/locale.	The
gettext	module	does	not	try	to	support	these	system	dependent	defaults;
instead	its	default	is	sys.prefix/share/locale.	For	this	reason,	it	is
always	best	to	call	bindtextdomain()	with	an	explicit	absolute	path	at
the	start	of	your	application.

Python	Library	Reference
Previous:	6.28	gettext	Up:	6.28	gettext	Next:	6.28.2	Class-based	API

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.28.1	GNU	gettext	API	Up:	6.28	gettext	Next:	6.28.2.1	The
NullTranslations	class

6.28.2	Class-based	API
The	class-based	API	of	the	gettext	module	gives	you	more	flexibility	and
greater	convenience	than	the	GNU	gettext	API.	It	is	the	recommended	way	of
localizing	your	Python	applications	and	modules.	gettext	defines	a
``translations''	class	which	implements	the	parsing	of	GNU	.mo	format	files,	and
has	methods	for	returning	either	standard	8-bit	strings	or	Unicode	strings.
Instances	of	this	``translations''	class	can	also	install	themselves	in	the	built-in
namespace	as	the	function	_().

find(domain[,	localedir[,	languages[,	all]]])
This	function	implements	the	standard	.mo	file	search	algorithm.	It	takes	a
domain,	identical	to	what	textdomain()	takes.	Optional	localedir	is	as
in	bindtextdomain()	Optional	languages	is	a	list	of	strings,	where
each	string	is	a	language	code.

If	localedir	is	not	given,	then	the	default	system	locale	directory	is	used.6.3
If	languages	is	not	given,	then	the	following	environment	variables	are
searched:	LANGUAGE,	LC_ALL,	LC_MESSAGES,	and	LANG.	The	first
one	returning	a	non-empty	value	is	used	for	the	languages	variable.	The
environment	variables	should	contain	a	colon	separated	list	of	languages,
which	will	be	split	on	the	colon	to	produce	the	expected	list	of	language
code	strings.

find()	then	expands	and	normalizes	the	languages,	and	then	iterates
through	them,	searching	for	an	existing	file	built	of	these	components:

localedir/language/LC_MESSAGES/domain.mo

The	first	such	file	name	that	exists	is	returned	by	find().	If	no	such	file	is
found,	then	None	is	returned.	If	all	is	given,	it	returns	a	list	of	all	file
names,	in	the	order	in	which	they	appear	in	the	languages	list	or	the
environment	variables.

translation(domain[,	localedir[,	languages[,	class_[,	fallback[,
codeset]]]]])

Return	a	Translations	instance	based	on	the	domain,	localedir,	and
languages,	which	are	first	passed	to	find()	to	get	a	list	of	the	associated
.mo	file	paths.	Instances	with	identical	.mo	file	names	are	cached.	The
actual	class	instantiated	is	either	class_	if	provided,	otherwise
GNUTranslations.	The	class's	constructor	must	take	a	single	file	object
argument.	If	provided,	codeset	will	change	the	charset	used	to	encode
translated	strings.

If	multiple	files	are	found,	later	files	are	used	as	fallbacks	for	earlier	ones.
To	allow	setting	the	fallback,	copy.copy	is	used	to	clone	each	translation
object	from	the	cache;	the	actual	instance	data	is	still	shared	with	the	cache.

If	no	.mo	file	is	found,	this	function	raises	IOError	if	fallback	is	false
(which	is	the	default),	and	returns	a	NullTranslations	instance	if
fallback	is	true.

Changed	in	version	2.4:	Added	the	codeset	parameter.

install(domain[,	localedir[,	unicode	[,	codeset]]])
This	installs	the	function	_	in	Python's	builtin	namespace,	based	on	domain,
localedir,	and	codeset	which	are	passed	to	the	function	translation().
The	unicode	flag	is	passed	to	the	resulting	translation	object's	install
method.

As	seen	below,	you	usually	mark	the	strings	in	your	application	that	are
candidates	for	translation,	by	wrapping	them	in	a	call	to	the	_()	function,
like	this:

print	_('This	string	will	be	translated.')

For	convenience,	you	want	the	_()	function	to	be	installed	in	Python's
builtin	namespace,	so	it	is	easily	accessible	in	all	modules	of	your
application.

Changed	in	version	2.4:	Added	the	codeset	parameter.

Footnotes

...	used.6.3
See	the	footnote	for	bindtextdomain()	above.

Subsections

6.28.2.1	The	NullTranslations	class
6.28.2.2	The	GNUTranslations	class
6.28.2.3	Solaris	message	catalog	support
6.28.2.4	The	Catalog	constructor

Python	Library	Reference
Previous:	6.28.1	GNU	gettext	API	Up:	6.28	gettext	Next:	6.28.2.1	The
NullTranslations	class

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.28.2.4	The	Catalog	constructor	Up:	6.28	gettext	Next:	6.28.3.1
Localizing	your	module

6.28.3	Internationalizing	your	programs	and
modules
Internationalization	(I18N)	refers	to	the	operation	by	which	a	program	is	made
aware	of	multiple	languages.	Localization	(L10N)	refers	to	the	adaptation	of
your	program,	once	internationalized,	to	the	local	language	and	cultural	habits.
In	order	to	provide	multilingual	messages	for	your	Python	programs,	you	need	to
take	the	following	steps:

1.	 prepare	your	program	or	module	by	specially	marking	translatable	strings
2.	 run	a	suite	of	tools	over	your	marked	files	to	generate	raw	messages

catalogs
3.	 create	language	specific	translations	of	the	message	catalogs
4.	 use	the	gettext	module	so	that	message	strings	are	properly	translated

In	order	to	prepare	your	code	for	I18N,	you	need	to	look	at	all	the	strings	in	your
files.	Any	string	that	needs	to	be	translated	should	be	marked	by	wrapping	it	in
_('...')	--	that	is,	a	call	to	the	function	_().	For	example:

filename	=	'mylog.txt'

message	=	_('writing	a	log	message')

fp	=	open(filename,	'w')

fp.write(message)

fp.close()

In	this	example,	the	string	'writing	a	log	message'	is	marked	as	a
candidate	for	translation,	while	the	strings	'mylog.txt'	and	'w'	are	not.

The	Python	distribution	comes	with	two	tools	which	help	you	generate	the
message	catalogs	once	you've	prepared	your	source	code.	These	may	or	may	not
be	available	from	a	binary	distribution,	but	they	can	be	found	in	a	source
distribution,	in	the	Tools/i18n	directory.

The	pygettext6.4	program	scans	all	your	Python	source	code	looking	for	the
strings	you	previously	marked	as	translatable.	It	is	similar	to	the	GNU	gettext
program	except	that	it	understands	all	the	intricacies	of	Python	source	code,	but
knows	nothing	about	C	or	C++	source	code.	You	don't	need	GNU	gettext
unless	you're	also	going	to	be	translating	C	code	(such	as	C	extension	modules).

pygettext	generates	textual	Uniforum-style	human	readable	message	catalog
.pot	files,	essentially	structured	human	readable	files	which	contain	every
marked	string	in	the	source	code,	along	with	a	placeholder	for	the	translation
strings.	pygettext	is	a	command	line	script	that	supports	a	similar	command	line
interface	as	xgettext;	for	details	on	its	use,	run:

pygettext.py	--help

Copies	of	these	.pot	files	are	then	handed	over	to	the	individual	human
translators	who	write	language-specific	versions	for	every	supported	natural
language.	They	send	you	back	the	filled	in	language-specific	versions	as	a	.po
file.	Using	the	msgfmt.py6.5	program	(in	the	Tools/i18n	directory),	you	take	the
.po	files	from	your	translators	and	generate	the	machine-readable	.mo	binary
catalog	files.	The	.mo	files	are	what	the	gettext	module	uses	for	the	actual
translation	processing	during	run-time.

How	you	use	the	gettext	module	in	your	code	depends	on	whether	you	are
internationalizing	your	entire	application	or	a	single	module.

Footnotes

...pygettext6.4
François	Pinard	has	written	a	program	called	xpot	which	does	a	similar	job.
It	is	available	as	part	of	his	po-utils	package	at
http://www.iro.umontreal.ca/contrib/po-utils/HTML/.

...msgfmt.py6.5
msgfmt.py	is	binary	compatible	with	GNU	msgfmt	except	that	it	provides
a	simpler,	all-Python	implementation.	With	this	and	pygettext.py,	you
generally	won't	need	to	install	the	GNU	gettext	package	to	internationalize
your	Python	applications.

Subsections

6.28.3.1	Localizing	your	module
6.28.3.2	Localizing	your	application

http://www.iro.umontreal.ca/contrib/po-utils/HTML/

6.28.3.3	Changing	languages	on	the	fly
6.28.3.4	Deferred	translations
6.28.3.5	gettext()	vs.	lgettext()

Python	Library	Reference
Previous:	6.28.2.4	The	Catalog	constructor	Up:	6.28	gettext	Next:	6.28.3.1
Localizing	your	module

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.28.3.5	gettext()	vs.	lgettext()	Up:	6.28	gettext	Next:	6.29	logging

6.28.4	Acknowledgements
The	following	people	contributed	code,	feedback,	design	suggestions,	previous
implementations,	and	valuable	experience	to	the	creation	of	this	module:

Peter	Funk
James	Henstridge
Juan	David	Ibáñez	Palomar
Marc-André	Lemburg
Martin	von	Löwis
François	Pinard
Barry	Warsaw
Gustavo	Niemeyer

Python	Library	Reference
Previous:	6.28.3.5	gettext()	vs.	lgettext()	Up:	6.28	gettext	Next:	6.29	logging

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.28.4	Acknowledgements	Up:	6.	Generic	Operating	System	Next:
6.29.1	Logger	Objects

6.29	logging	--	Logging	facility	for
Python
New	in	version	2.3.	This	module	defines	functions	and	classes	which	implement
a	flexible	error	logging	system	for	applications.

Logging	is	performed	by	calling	methods	on	instances	of	the	Logger	class
(hereafter	called	loggers).	Each	instance	has	a	name,	and	they	are	conceptually
arranged	in	a	name	space	hierarchy	using	dots	(periods)	as	separators.	For
example,	a	logger	named	"scan"	is	the	parent	of	loggers	"scan.text",	"scan.html"
and	"scan.pdf".	Logger	names	can	be	anything	you	want,	and	indicate	the	area	of
an	application	in	which	a	logged	message	originates.

Logged	messages	also	have	levels	of	importance	associated	with	them.	The
default	levels	provided	are	DEBUG,	INFO,	WARNING,	ERROR	and	CRITICAL.
As	a	convenience,	you	indicate	the	importance	of	a	logged	message	by	calling	an
appropriate	method	of	Logger.	The	methods	are	debug(),	info(),
warning(),	error()	and	critical(),	which	mirror	the	default	levels.
You	are	not	constrained	to	use	these	levels:	you	can	specify	your	own	and	use	a
more	general	Logger	method,	log(),	which	takes	an	explicit	level	argument.

Levels	can	also	be	associated	with	loggers,	being	set	either	by	the	developer	or
through	loading	a	saved	logging	configuration.	When	a	logging	method	is	called
on	a	logger,	the	logger	compares	its	own	level	with	the	level	associated	with	the
method	call.	If	the	logger's	level	is	higher	than	the	method	call's,	no	logging
message	is	actually	generated.	This	is	the	basic	mechanism	controlling	the
verbosity	of	logging	output.

Logging	messages	are	encoded	as	instances	of	the	LogRecord	class.	When	a
logger	decides	to	actually	log	an	event,	an	LogRecord	instance	is	created	from
the	logging	message.

Logging	messages	are	subjected	to	a	dispatch	mechanism	through	the	use	of
handlers,	which	are	instances	of	subclasses	of	the	Handler	class.	Handlers	are
responsible	for	ensuring	that	a	logged	message	(in	the	form	of	a	LogRecord)
ends	up	in	a	particular	location	(or	set	of	locations)	which	is	useful	for	the	target

audience	for	that	message	(such	as	end	users,	support	desk	staff,	system
administrators,	developers).	Handlers	are	passed	LogRecord	instances
intended	for	particular	destinations.	Each	logger	can	have	zero,	one	or	more
handlers	associated	with	it	(via	the	addHandler()	method	of	Logger).	In
addition	to	any	handlers	directly	associated	with	a	logger,	all	handlers
associated	with	all	ancestors	of	the	logger	are	called	to	dispatch	the	message.

Just	as	for	loggers,	handlers	can	have	levels	associated	with	them.	A	handler's
level	acts	as	a	filter	in	the	same	way	as	a	logger's	level	does.	If	a	handler	decides
to	actually	dispatch	an	event,	the	emit()	method	is	used	to	send	the	message	to
its	destination.	Most	user-defined	subclasses	of	Handler	will	need	to	override
this	emit().

In	addition	to	the	base	Handler	class,	many	useful	subclasses	are	provided:

1.	 StreamHandler	instances	send	error	messages	to	streams	(file-like
objects).

2.	 FileHandler	instances	send	error	messages	to	disk	files.

3.	 BaseRotatingHandler	is	tha	base	class	for	handlers	that	rotate	log
files	at	a	certain	point.	It	is	not	meant	to	be	instantiated	directly.	Instead,	use
RotatingFileHandler	or	TimedRotatingFileHandler.

4.	 RotatingFileHandler	instances	send	error	messages	to	disk	files,
with	support	for	maximum	log	file	sizes	and	log	file	rotation.

5.	 TimedRotatingFileHandler	instances	send	error	messages	to	disk
files	rotating	the	log	file	at	certain	timed	intervals.

6.	 SocketHandler	instances	send	error	messages	to	TCP/IP	sockets.

7.	 DatagramHandler	instances	send	error	messages	to	UDP	sockets.

8.	 SMTPHandler	instances	send	error	messages	to	a	designated	email
address.

9.	 SysLogHandler	instances	send	error	messages	to	a	UNIX	syslog	daemon,
possibly	on	a	remote	machine.

10.	 NTEventLogHandler	instances	send	error	messages	to	a	Windows
NT/2000/XP	event	log.

11.	 MemoryHandler	instances	send	error	messages	to	a	buffer	in	memory,
which	is	flushed	whenever	specific	criteria	are	met.

12.	 HTTPHandler	instances	send	error	messages	to	an	HTTP	server	using
either	"GET"	or	"POST"	semantics.

The	StreamHandler	and	FileHandler	classes	are	defined	in	the	core
logging	package.	The	other	handlers	are	defined	in	a	sub-	module,
logging.handlers.	(There	is	also	another	sub-module,
logging.config,	for	configuration	functionality.)

Logged	messages	are	formatted	for	presentation	through	instances	of	the
Formatter	class.	They	are	initialized	with	a	format	string	suitable	for	use	with
the	%	operator	and	a	dictionary.

For	formatting	multiple	messages	in	a	batch,	instances	of
BufferingFormatter	can	be	used.	In	addition	to	the	format	string	(which	is
applied	to	each	message	in	the	batch),	there	is	provision	for	header	and	trailer
format	strings.

When	filtering	based	on	logger	level	and/or	handler	level	is	not	enough,
instances	of	Filter	can	be	added	to	both	Logger	and	Handler	instances
(through	their	addFilter()	method).	Before	deciding	to	process	a	message
further,	both	loggers	and	handlers	consult	all	their	filters	for	permission.	If	any
filter	returns	a	false	value,	the	message	is	not	processed	further.

The	basic	Filter	functionality	allows	filtering	by	specific	logger	name.	If	this
feature	is	used,	messages	sent	to	the	named	logger	and	its	children	are	allowed
through	the	filter,	and	all	others	dropped.

In	addition	to	the	classes	described	above,	there	are	a	number	of	module-	level
functions.

getLogger([name])
Return	a	logger	with	the	specified	name	or,	if	no	name	is	specified,	return	a
logger	which	is	the	root	logger	of	the	hierarchy.	If	specified,	the	name	is

typically	a	dot-separated	hierarchical	name	like	"a",	"a.b"	or	"a.b.c.d".
Choice	of	these	names	is	entirely	up	to	the	developer	who	is	using	logging.

All	calls	to	this	function	with	a	given	name	return	the	same	logger	instance.
This	means	that	logger	instances	never	need	to	be	passed	between	different
parts	of	an	application.

getLoggerClass()
Return	either	the	standard	Logger	class,	or	the	last	class	passed	to
setLoggerClass().	This	function	may	be	called	from	within	a	new
class	definition,	to	ensure	that	installing	a	customised	Logger	class	will
not	undo	customisations	already	applied	by	other	code.	For	example:

	class	MyLogger(logging.getLoggerClass()):

					#	...	override	behaviour	here

debug(msg[,	*args[,	**kwargs]])
Logs	a	message	with	level	DEBUG	on	the	root	logger.	The	msg	is	the
message	format	string,	and	the	args	are	the	arguments	which	are	merged
into	msg.	The	only	keyword	argument	in	kwargs	which	is	inspected	is
exc_info	which,	if	it	does	not	evaluate	as	false,	causes	exception
information	to	be	added	to	the	logging	message.	If	an	exception	tuple	(in
the	format	returned	by	sys.exc_info())	is	provided,	it	is	used;
otherwise,	sys.exc_info()	is	called	to	get	the	exception	information.

info(msg[,	*args[,	**kwargs]])
Logs	a	message	with	level	INFO	on	the	root	logger.	The	arguments	are
interpreted	as	for	debug().

warning(msg[,	*args[,	**kwargs]])
Logs	a	message	with	level	WARNING	on	the	root	logger.	The	arguments	are
interpreted	as	for	debug().

error(msg[,	*args[,	**kwargs]])
Logs	a	message	with	level	ERROR	on	the	root	logger.	The	arguments	are
interpreted	as	for	debug().

critical(msg[,	*args[,	**kwargs]])
Logs	a	message	with	level	CRITICAL	on	the	root	logger.	The	arguments
are	interpreted	as	for	debug().

exception(msg[,	*args])
Logs	a	message	with	level	ERROR	on	the	root	logger.	The	arguments	are
interpreted	as	for	debug().	Exception	info	is	added	to	the	logging
message.	This	function	should	only	be	called	from	an	exception	handler.

log(level,	msg[,	*args[,	**kwargs]])
Logs	a	message	with	level	level	on	the	root	logger.	The	other	arguments	are
interpreted	as	for	debug().

disable(lvl)
Provides	an	overriding	level	lvl	for	all	loggers	which	takes	precedence	over
the	logger's	own	level.	When	the	need	arises	to	temporarily	throttle	logging
output	down	across	the	whole	application,	this	function	can	be	useful.

addLevelName(lvl,	levelName)
Associates	level	lvl	with	text	levelName	in	an	internal	dictionary,	which	is
used	to	map	numeric	levels	to	a	textual	representation,	for	example	when	a
Formatter	formats	a	message.	This	function	can	also	be	used	to	define
your	own	levels.	The	only	constraints	are	that	all	levels	used	must	be
registered	using	this	function,	levels	should	be	positive	integers	and	they
should	increase	in	increasing	order	of	severity.

getLevelName(lvl)
Returns	the	textual	representation	of	logging	level	lvl.	If	the	level	is	one	of
the	predefined	levels	CRITICAL,	ERROR,	WARNING,	INFO	or	DEBUG
then	you	get	the	corresponding	string.	If	you	have	associated	levels	with
names	using	addLevelName()	then	the	name	you	have	associated	with
lvl	is	returned.	If	a	numeric	value	corresponding	to	one	of	the	defined	levels
is	passed	in,	the	corresponding	string	representation	is	returned.	Otherwise,
the	string	"Level	%s"	%	lvl	is	returned.

makeLogRecord(attrdict)
Creates	and	returns	a	new	LogRecord	instance	whose	attributes	are

defined	by	attrdict.	This	function	is	useful	for	taking	a	pickled
LogRecord	attribute	dictionary,	sent	over	a	socket,	and	reconstituting	it	as
a	LogRecord	instance	at	the	receiving	end.

basicConfig()
Does	basic	configuration	for	the	logging	system	by	creating	a
StreamHandler	with	a	default	Formatter	and	adding	it	to	the	root
logger.	The	functions	debug(),	info(),	warning(),	error()	and
critical()	will	call	basicConfig()	automatically	if	no	handlers	are
defined	for	the	root	logger.

shutdown()
Informs	the	logging	system	to	perform	an	orderly	shutdown	by	flushing	and
closing	all	handlers.

setLoggerClass(klass)
Tells	the	logging	system	to	use	the	class	klass	when	instantiating	a	logger.
The	class	should	define	__init__()	such	that	only	a	name	argument	is
required,	and	the	__init__()	should	call	Logger.__init__().	This
function	is	typically	called	before	any	loggers	are	instantiated	by
applications	which	need	to	use	custom	logger	behavior.

See	Also:

PEP	282,	A	Logging	System
The	proposal	which	described	this	feature	for	inclusion	in	the	Python
standard	library.

Original	Python	logging	package
This	is	the	original	source	for	the	logging	package.	The	version	of
the	package	available	from	this	site	is	suitable	for	use	with	Python
1.5.2,	2.1.x	and	2.2.x,	which	do	not	include	the	logging	package	in
the	standard	library.

Subsections

http://www.python.org/peps/pep-0282.html
http://www.red-dove.com/python_logging.html

6.29.1	Logger	Objects
6.29.2	Basic	example
6.29.3	Logging	to	multiple	destinations
6.29.4	Sending	and	receiving	logging	events	across	a	network
6.29.5	Handler	Objects

6.29.5.1	StreamHandler
6.29.5.2	FileHandler
6.29.5.3	RotatingFileHandler
6.29.5.4	TimedRotatingFileHandler
6.29.5.5	SocketHandler
6.29.5.6	DatagramHandler
6.29.5.7	SysLogHandler
6.29.5.8	NTEventLogHandler
6.29.5.9	SMTPHandler
6.29.5.10	MemoryHandler
6.29.5.11	HTTPHandler

6.29.6	Formatter	Objects
6.29.7	Filter	Objects
6.29.8	LogRecord	Objects
6.29.9	Thread	Safety
6.29.10	Configuration

6.29.10.1	Configuration	functions
6.29.10.2	Configuration	file	format

Python	Library	Reference
Previous:	6.28.4	Acknowledgements	Up:	6.	Generic	Operating	System	Next:
6.29.1	Logger	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29	logging	Up:	6.29	logging	Next:	6.29.2	Basic	example

6.29.1	Logger	Objects
Loggers	have	the	following	attributes	and	methods.	Note	that	Loggers	are	never
instantiated	directly,	but	always	through	the	module-level	function
logging.getLogger(name).

propagate

If	this	evaluates	to	false,	logging	messages	are	not	passed	by	this	logger	or
by	child	loggers	to	higher	level	(ancestor)	loggers.	The	constructor	sets	this
attribute	to	1.

setLevel(lvl)
Sets	the	threshold	for	this	logger	to	lvl.	Logging	messages	which	are	less
severe	than	lvl	will	be	ignored.	When	a	logger	is	created,	the	level	is	set	to
NOTSET	(which	causes	all	messages	to	be	processed	in	the	root	logger,	or
delegation	to	the	parent	in	non-root	loggers).

isEnabledFor(lvl)
Indicates	if	a	message	of	severity	lvl	would	be	processed	by	this	logger.
This	method	checks	first	the	module-level	level	set	by
logging.disable(lvl)	and	then	the	logger's	effective	level	as
determined	by	getEffectiveLevel().

getEffectiveLevel()
Indicates	the	effective	level	for	this	logger.	If	a	value	other	than	NOTSET
has	been	set	using	setLevel(),	it	is	returned.	Otherwise,	the	hierarchy	is
traversed	towards	the	root	until	a	value	other	than	NOTSET	is	found,	and
that	value	is	returned.

debug(msg[,	*args[,	**kwargs]])
Logs	a	message	with	level	DEBUG	on	this	logger.	The	msg	is	the	message
format	string,	and	the	args	are	the	arguments	which	are	merged	into	msg.
The	only	keyword	argument	in	kwargs	which	is	inspected	is	exc_info
which,	if	it	does	not	evaluate	as	false,	causes	exception	information	to	be
added	to	the	logging	message.	If	an	exception	tuple	(as	provided	by
sys.exc_info())	is	provided,	it	is	used;	otherwise,

sys.exc_info()	is	called	to	get	the	exception	information.

info(msg[,	*args[,	**kwargs]])
Logs	a	message	with	level	INFO	on	this	logger.	The	arguments	are
interpreted	as	for	debug().

warning(msg[,	*args[,	**kwargs]])
Logs	a	message	with	level	WARNING	on	this	logger.	The	arguments	are
interpreted	as	for	debug().

error(msg[,	*args[,	**kwargs]])
Logs	a	message	with	level	ERROR	on	this	logger.	The	arguments	are
interpreted	as	for	debug().

critical(msg[,	*args[,	**kwargs]])
Logs	a	message	with	level	CRITICAL	on	this	logger.	The	arguments	are
interpreted	as	for	debug().

log(lvl,	msg[,	*args[,	**kwargs]])
Logs	a	message	with	integer	level	lvl	on	this	logger.	The	other	arguments
are	interpreted	as	for	debug().

exception(msg[,	*args])
Logs	a	message	with	level	ERROR	on	this	logger.	The	arguments	are
interpreted	as	for	debug().	Exception	info	is	added	to	the	logging
message.	This	method	should	only	be	called	from	an	exception	handler.

addFilter(filt)
Adds	the	specified	filter	filt	to	this	logger.

removeFilter(filt)
Removes	the	specified	filter	filt	from	this	logger.

filter(record)
Applies	this	logger's	filters	to	the	record	and	returns	a	true	value	if	the
record	is	to	be	processed.

addHandler(hdlr)
Adds	the	specified	handler	hdlr	to	this	logger.

removeHandler(hdlr)
Removes	the	specified	handler	hdlr	from	this	logger.

findCaller()
Finds	the	caller's	source	filename	and	line	number.	Returns	the	filename
and	line	number	as	a	2-element	tuple.

handle(record)
Handles	a	record	by	passing	it	to	all	handlers	associated	with	this	logger
and	its	ancestors	(until	a	false	value	of	propagate	is	found).	This	method	is
used	for	unpickled	records	received	from	a	socket,	as	well	as	those	created
locally.	Logger-level	filtering	is	applied	using	filter().

makeRecord(name,	lvl,	fn,	lno,	msg,	args,	exc_info)
This	is	a	factory	method	which	can	be	overridden	in	subclasses	to	create
specialized	LogRecord	instances.

Python	Library	Reference
Previous:	6.29	logging	Up:	6.29	logging	Next:	6.29.2	Basic	example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.1	Logger	Objects	Up:	6.29	logging	Next:	6.29.3	Logging	to
multiple

6.29.2	Basic	example
The	logging	package	provides	a	lot	of	flexibility,	and	its	configuration	can
appear	daunting.	This	section	demonstrates	that	simple	use	of	the	logging
package	is	possible.

The	simplest	example	shows	logging	to	the	console:

import	logging

logging.debug('A	debug	message')

logging.info('Some	information')

logging.warning('A	shot	across	the	bows')

If	you	run	the	above	script,	you'll	see	this:

WARNING:root:A	shot	across	the	bows

Because	no	particular	logger	was	specified,	the	system	used	the	root	logger.	The
debug	and	info	messages	didn't	appear	because	by	default,	the	root	logger	is
configured	to	only	handle	messages	with	a	severity	of	WARNING	or	above.	The
message	format	is	also	a	configuration	default,	as	is	the	output	destination	of	the
messages	-	sys.stderr.	The	severity	level,	the	message	format	and
destination	can	be	easily	changed,	as	shown	in	the	example	below:

import	logging

logging.basicConfig(level=logging.DEBUG,

																				format='%(asctime)s	%(levelname)s	%(message)s',

																				filename='/tmp/myapp.log',

																				filemode='w')

logging.debug('A	debug	message')

logging.info('Some	information')

logging.warning('A	shot	across	the	bows')

The	basicConfig()	method	is	used	to	change	the	configuration	defaults,
which	results	in	output	(written	to	/tmp/myapp.log)	which	should	look
something	like	the	following:

2004-07-02	13:00:08,743	DEBUG	A	debug	message

2004-07-02	13:00:08,743	INFO	Some	information

2004-07-02	13:00:08,743	WARNING	A	shot	across	the	bows

This	time,	all	messages	with	a	severity	of	DEBUG	or	above	were	handled,	and
the	format	of	the	messages	was	also	changed,	and	output	went	to	the	specified
file	rather	than	the	console.

Formatting	uses	standard	Python	string	formatting	-	see	section	2.3.6.	The
format	string	takes	the	following	common	specifiers.	For	a	complete	list	of
specifiers,	consult	the	Formatter	documentation.

Format Description
%(name)s Name	of	the	logger	(logging	channel).
%

(levelname)s

Text	logging	level	for	the	message	('DEBUG',	'INFO',
'WARNING',	'ERROR',	'CRITICAL').

%(asctime)s Human-readable	time	when	the	LogRecord	was	created.
By	default	this	is	of	the	form	``2003-07-08	16:49:45,896''
(the	numbers	after	the	comma	are	millisecond	portion	of
the	time).

%(message)s The	logged	message.

To	change	the	date/time	format,	you	can	pass	an	additional	keyword	parameter,
datefmt,	as	in	the	following:

import	logging

logging.basicConfig(level=logging.DEBUG,

																				format='%(asctime)s	%(levelname)-8s	%(message)s',

																				datefmt='%a,	%d	%b	%Y	%H:%M:%S',

																				filename='/temp/myapp.log',

																				filemode='w')

logging.debug('A	debug	message')

logging.info('Some	information')

logging.warning('A	shot	across	the	bows')

which	would	result	in	output	like

Fri,	02	Jul	2004	13:06:18	DEBUG				A	debug	message

Fri,	02	Jul	2004	13:06:18	INFO					Some	information

Fri,	02	Jul	2004	13:06:18	WARNING		A	shot	across	the	bows

The	date	format	string	follows	the	requirements	of	strftime()	-	see	the
documentation	for	the	time	module.

If,	instead	of	sending	logging	output	to	the	console	or	a	file,	you'd	rather	use	a

file-like	object	which	you	have	created	separately,	you	can	pass	it	to
basicConfig()	using	the	stream	keyword	argument.	Note	that	if	both	stream
and	filename	keyword	arguments	are	passed,	the	stream	argument	is	ignored.

Of	course,	you	can	put	variable	information	in	your	output.	To	do	this,	simply
have	the	message	be	a	format	string	and	pass	in	additional	arguments	containing
the	variable	information,	as	in	the	following	example:

import	logging

logging.basicConfig(level=logging.DEBUG,

																				format='%(asctime)s	%(levelname)-8s	%(message)s',

																				datefmt='%a,	%d	%b	%Y	%H:%M:%S',

																				filename='/temp/myapp.log',

																				filemode='w')

logging.error('Pack	my	box	with	%d	dozen	%s',	5,	'liquor	jugs')

which	would	result	in

Wed,	21	Jul	2004	15:35:16	ERROR				Pack	my	box	with	5	dozen	liquor	jugs

Python	Library	Reference
Previous:	6.29.1	Logger	Objects	Up:	6.29	logging	Next:	6.29.3	Logging	to
multiple

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.2	Basic	example	Up:	6.29	logging	Next:	6.29.4	Sending	and
receiving

6.29.3	Logging	to	multiple	destinations
Let's	say	you	want	to	log	to	console	and	file	with	different	message	formats	and
in	differing	circumstances.	Say	you	want	to	log	messages	with	levels	of	DEBUG
and	higher	to	file,	and	those	messages	at	level	INFO	and	higher	to	the	console.
Let's	also	assume	that	the	file	should	contain	timestamps,	but	the	console
messages	should	not.	Here's	how	you	can	achieve	this:

import	logging

#	set	up	logging	to	file	-	see	previous	section	for	more	details

logging.basicConfig(level=logging.DEBUG,

																				format='%(asctime)s	%(name)-12s	%(levelname)-8s	%(message)s',

																				datefmt='%m-%d	%H:%M',

																				filename='/temp/myapp.log',

																				filemode='w')

#	define	a	Handler	which	writes	INFO	messages	or	higher	to	the	sys.stderr

console	=	logging.StreamHandler()

console.setLevel(logging.INFO)

#	set	a	format	which	is	simpler	for	console	use

formatter	=	logging.Formatter('%(name)-12s:	%(levelname)-8s	%(message)s')

#	tell	the	handler	to	use	this	format

console.setFormatter(formatter)

#	add	the	handler	to	the	root	logger

logging.getLogger('').addHandler(console)

#	Now,	we	can	log	to	the	root	logger,	or	any	other	logger.	First	the	root...

logging.info('Jackdaws	love	my	big	sphinx	of	quartz.')

#	Now,	define	a	couple	of	other	loggers	which	might	represent	areas	in	your

#	application:

logger1	=	logging.getLogger('myapp.area1')

logger2	=	logging.getLogger('myapp.area2')

logger1.debug('Quick	zephyrs	blow,	vexing	daft	Jim.')

logger1.info('How	quickly	daft	jumping	zebras	vex.')

logger2.warning('Jail	zesty	vixen	who	grabbed	pay	from	quack.')

logger2.error('The	five	boxing	wizards	jump	quickly.')

When	you	run	this,	on	the	console	you	will	see

root								:	INFO					Jackdaws	love	my	big	sphinx	of	quartz.

myapp.area1	:	INFO					How	quickly	daft	jumping	zebras	vex.

myapp.area2	:	WARNING		Jail	zesty	vixen	who	grabbed	pay	from	quack.

myapp.area2	:	ERROR				The	five	boxing	wizards	jump	quickly.

and	in	the	file	you	will	see	something	like

10-22	22:19	root									INFO					Jackdaws	love	my	big	sphinx	of	quartz.

10-22	22:19	myapp.area1		DEBUG				Quick	zephyrs	blow,	vexing	daft	Jim.

10-22	22:19	myapp.area1		INFO					How	quickly	daft	jumping	zebras	vex.

10-22	22:19	myapp.area2		WARNING		Jail	zesty	vixen	who	grabbed	pay	from	quack.

10-22	22:19	myapp.area2		ERROR				The	five	boxing	wizards	jump	quickly.

As	you	can	see,	the	DEBUG	message	only	shows	up	in	the	file.	The	other
messages	are	sent	to	both	destinations.

This	example	uses	console	and	file	handlers,	but	you	can	use	any	number	and
combination	of	handlers	you	choose.

Python	Library	Reference
Previous:	6.29.2	Basic	example	Up:	6.29	logging	Next:	6.29.4	Sending	and
receiving

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.3	Logging	to	multiple	Up:	6.29	logging	Next:	6.29.5	Handler
Objects

6.29.4	Sending	and	receiving	logging	events
across	a	network
Let's	say	you	want	to	send	logging	events	across	a	network,	and	handle	them	at
the	receiving	end.	A	simple	way	of	doing	this	is	attaching	a	SocketHandler
instance	to	the	root	logger	at	the	sending	end:

import	logging,	logging.handlers

rootLogger	=	logging.getLogger('')

rootLogger.setLevel(logging.DEBUG)

socketHandler	=	logging.handlers.SocketHandler('localhost',

																				logging.handlers.DEFAULT_TCP_LOGGING_PORT)

#	don't	bother	with	a	formatter,	since	a	socket	handler	sends	the	event	as

#	an	unformatted	pickle

rootLogger.addHandler(socketHandler)

#	Now,	we	can	log	to	the	root	logger,	or	any	other	logger.	First	the	root...

logging.info('Jackdaws	love	my	big	sphinx	of	quartz.')

#	Now,	define	a	couple	of	other	loggers	which	might	represent	areas	in	your

#	application:

logger1	=	logging.getLogger('myapp.area1')

logger2	=	logging.getLogger('myapp.area2')

logger1.debug('Quick	zephyrs	blow,	vexing	daft	Jim.')

logger1.info('How	quickly	daft	jumping	zebras	vex.')

logger2.warning('Jail	zesty	vixen	who	grabbed	pay	from	quack.')

logger2.error('The	five	boxing	wizards	jump	quickly.')

At	the	receiving	end,	you	can	set	up	a	receiver	using	the	SocketServer
module.	Here	is	a	basic	working	example:

import	cPickle

import	logging

import	logging.handlers

import	SocketServer

import	struct

class	LogRecordStreamHandler(SocketServer.StreamRequestHandler):

				"""Handler	for	a	streaming	logging	request.

				This	basically	logs	the	record	using	whatever	logging	policy	is

				configured	locally.

				"""

				def	handle(self):

								"""

								Handle	multiple	requests	-	each	expected	to	be	a	4-byte	length,

								followed	by	the	LogRecord	in	pickle	format.	Logs	the	record

								according	to	whatever	policy	is	configured	locally.

								"""

								while	1:

												chunk	=	self.connection.recv(4)

												if	len(chunk)	<	4:

																break

												slen	=	struct.unpack(">L",	chunk)[0]

												chunk	=	self.connection.recv(slen)

												while	len(chunk)	<	slen:

																chunk	=	chunk	+	self.connection.recv(slen	-	len(chunk))

												obj	=	self.unPickle(chunk)

												record	=	logging.makeLogRecord(obj)

												self.handleLogRecord(record)

				def	unPickle(self,	data):

								return	cPickle.loads(data)

				def	handleLogRecord(self,	record):

								#	if	a	name	is	specified,	we	use	the	named	logger	rather	than	the	one

								#	implied	by	the	record.

								if	self.server.logname	is	not	None:

												name	=	self.server.logname

								else:

												name	=	record.name

								logger	=	logging.getLogger(name)

								#	N.B.	EVERY	record	gets	logged.	This	is	because	Logger.handle

								#	is	normally	called	AFTER	logger-level	filtering.	If	you	want

								#	to	do	filtering,	do	it	at	the	client	end	to	save	wasting

								#	cycles	and	network	bandwidth!

								logger.handle(record)

class	LogRecordSocketReceiver(SocketServer.ThreadingTCPServer):

				"""simple	TCP	socket-based	logging	receiver	suitable	for	testing.

				"""

				allow_reuse_address	=	1

				def	__init__(self,	host='localhost',

																	port=logging.handlers.DEFAULT_TCP_LOGGING_PORT,

																	handler=LogRecordStreamHandler):

								SocketServer.ThreadingTCPServer.__init__(self,	(host,	port),	handler)

								self.abort	=	0

								self.timeout	=	1

								self.logname	=	None

				def	serve_until_stopped(self):

								import	select

								abort	=	0

								while	not	abort:

												rd,	wr,	ex	=	select.select([self.socket.fileno()],

																																							[],	[],

																																							self.timeout)

												if	rd:

																self.handle_request()

												abort	=	self.abort

def	main():

				logging.basicConfig(

								format="%(relativeCreated)5d	%(name)-15s	%(levelname)-8s	%(message)s")

				tcpserver	=	LogRecordSocketReceiver()

				print	"About	to	start	TCP	server..."

				tcpserver.serve_until_stopped()

if	__name__	==	"__main__":

				main()

First	run	the	server,	and	then	the	client.	On	the	client	side,	nothing	is	printed	on
the	console;	on	the	server	side,	you	should	see	something	like:

About	to	start	TCP	server...

			59	root												INFO					Jackdaws	love	my	big	sphinx	of	quartz.

			59	myapp.area1					DEBUG				Quick	zephyrs	blow,	vexing	daft	Jim.

			69	myapp.area1					INFO					How	quickly	daft	jumping	zebras	vex.

			69	myapp.area2					WARNING		Jail	zesty	vixen	who	grabbed	pay	from	quack.

			69	myapp.area2					ERROR				The	five	boxing	wizards	jump	quickly.

Python	Library	Reference
Previous:	6.29.3	Logging	to	multiple	Up:	6.29	logging	Next:	6.29.5	Handler
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.4	Sending	and	receiving	Up:	6.29	logging	Next:	6.29.5.1
StreamHandler

6.29.5	Handler	Objects
Handlers	have	the	following	attributes	and	methods.	Note	that	Handler	is
never	instantiated	directly;	this	class	acts	as	a	base	for	more	useful	subclasses.
However,	the	__init__()	method	in	subclasses	needs	to	call
Handler.__init__().

__init__(level=NOTSET)
Initializes	the	Handler	instance	by	setting	its	level,	setting	the	list	of
filters	to	the	empty	list	and	creating	a	lock	(using	createLock())	for
serializing	access	to	an	I/O	mechanism.

createLock()
Initializes	a	thread	lock	which	can	be	used	to	serialize	access	to	underlying
I/O	functionality	which	may	not	be	threadsafe.

acquire()
Acquires	the	thread	lock	created	with	createLock().

release()
Releases	the	thread	lock	acquired	with	acquire().

setLevel(lvl)
Sets	the	threshold	for	this	handler	to	lvl.	Logging	messages	which	are	less
severe	than	lvl	will	be	ignored.	When	a	handler	is	created,	the	level	is	set	to
NOTSET	(which	causes	all	messages	to	be	processed).

setFormatter(form)
Sets	the	Formatter	for	this	handler	to	form.

addFilter(filt)
Adds	the	specified	filter	filt	to	this	handler.

removeFilter(filt)
Removes	the	specified	filter	filt	from	this	handler.

filter(record)
Applies	this	handler's	filters	to	the	record	and	returns	a	true	value	if	the
record	is	to	be	processed.

flush()
Ensure	all	logging	output	has	been	flushed.	This	version	does	nothing	and
is	intended	to	be	implemented	by	subclasses.

close()
Tidy	up	any	resources	used	by	the	handler.	This	version	does	nothing	and	is
intended	to	be	implemented	by	subclasses.

handle(record)
Conditionally	emits	the	specified	logging	record,	depending	on	filters
which	may	have	been	added	to	the	handler.	Wraps	the	actual	emission	of
the	record	with	acquisition/release	of	the	I/O	thread	lock.

handleError(record)
This	method	should	be	called	from	handlers	when	an	exception	is
encountered	during	an	emit()	call.	By	default	it	does	nothing,	which
means	that	exceptions	get	silently	ignored.	This	is	what	is	mostly	wanted
for	a	logging	system	-	most	users	will	not	care	about	errors	in	the	logging
system,	they	are	more	interested	in	application	errors.	You	could,	however,
replace	this	with	a	custom	handler	if	you	wish.	The	specified	record	is	the
one	which	was	being	processed	when	the	exception	occurred.

format(record)
Do	formatting	for	a	record	-	if	a	formatter	is	set,	use	it.	Otherwise,	use	the
default	formatter	for	the	module.

emit(record)
Do	whatever	it	takes	to	actually	log	the	specified	logging	record.	This
version	is	intended	to	be	implemented	by	subclasses	and	so	raises	a
NotImplementedError.

Subsections

6.29.5.1	StreamHandler
6.29.5.2	FileHandler
6.29.5.3	RotatingFileHandler
6.29.5.4	TimedRotatingFileHandler
6.29.5.5	SocketHandler
6.29.5.6	DatagramHandler
6.29.5.7	SysLogHandler
6.29.5.8	NTEventLogHandler
6.29.5.9	SMTPHandler
6.29.5.10	MemoryHandler
6.29.5.11	HTTPHandler

Python	Library	Reference
Previous:	6.29.4	Sending	and	receiving	Up:	6.29	logging	Next:	6.29.5.1
StreamHandler

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.5.11	HTTPHandler	Up:	6.29	logging	Next:	6.29.7	Filter	Objects

6.29.6	Formatter	Objects
Formatters	have	the	following	attributes	and	methods.	They	are	responsible
for	converting	a	LogRecord	to	(usually)	a	string	which	can	be	interpreted	by
either	a	human	or	an	external	system.	The	base	Formatter	allows	a	formatting
string	to	be	specified.	If	none	is	supplied,	the	default	value	of	'%
(message)s'	is	used.

A	Formatter	can	be	initialized	with	a	format	string	which	makes	use	of
knowledge	of	the	LogRecord	attributes	-	such	as	the	default	value	mentioned
above	making	use	of	the	fact	that	the	user's	message	and	arguments	are	pre-
formatted	into	a	LogRecord's	message	attribute.	This	format	string	contains
standard	python	%-style	mapping	keys.	See	section	2.3.6,	``String	Formatting
Operations,''	for	more	information	on	string	formatting.

Currently,	the	useful	mapping	keys	in	a	LogRecord	are:

Format Description
%(name)s Name	of	the	logger	(logging	channel).
%(levelno)s Numeric	logging	level	for	the	message	(DEBUG,	INFO,

WARNING,	ERROR,	CRITICAL).
%

(levelname)s

Text	logging	level	for	the	message	('DEBUG',	'INFO',
'WARNING',	'ERROR',	'CRITICAL').

%(pathname)s Full	pathname	of	the	source	file	where	the	logging	call
was	issued	(if	available).

%(filename)s Filename	portion	of	pathname.
%(module)s Module	(name	portion	of	filename).
%(lineno)d Source	line	number	where	the	logging	call	was	issued	(if

available).
%(created)f Time	when	the	LogRecord	was	created	(as	returned	by

time.time()).
%(asctime)s Human-readable	time	when	the	LogRecord	was	created.

By	default	this	is	of	the	form	``2003-07-08	16:49:45,896''
(the	numbers	after	the	comma	are	millisecond	portion	of
the	time).

%(msecs)d Millisecond	portion	of	the	time	when	the	LogRecord
was	created.

%(thread)d Thread	ID	(if	available).
%(process)d Process	ID	(if	available).
%(message)s The	logged	message,	computed	as	msg	%	args.

class	Formatter([fmt[,	datefmt]])
Returns	a	new	instance	of	the	Formatter	class.	The	instance	is	initialized
with	a	format	string	for	the	message	as	a	whole,	as	well	as	a	format	string
for	the	date/time	portion	of	a	message.	If	no	fmt	is	specified,	'%
(message)s'	is	used.	If	no	datefmt	is	specified,	the	ISO8601	date	format
is	used.

format(record)
The	record's	attribute	dictionary	is	used	as	the	operand	to	a	string
formatting	operation.	Returns	the	resulting	string.	Before	formatting	the
dictionary,	a	couple	of	preparatory	steps	are	carried	out.	The	message
attribute	of	the	record	is	computed	using	msg	%	args.	If	the	formatting
string	contains	'(asctime)',	formatTime()	is	called	to	format	the
event	time.	If	there	is	exception	information,	it	is	formatted	using
formatException()	and	appended	to	the	message.

formatTime(record[,	datefmt])
This	method	should	be	called	from	format()	by	a	formatter	which	wants
to	make	use	of	a	formatted	time.	This	method	can	be	overridden	in
formatters	to	provide	for	any	specific	requirement,	but	the	basic	behavior	is
as	follows:	if	datefmt	(a	string)	is	specified,	it	is	used	with
time.strftime()	to	format	the	creation	time	of	the	record.	Otherwise,
the	ISO8601	format	is	used.	The	resulting	string	is	returned.

formatException(exc_info)
Formats	the	specified	exception	information	(a	standard	exception	tuple	as
returned	by	sys.exc_info())	as	a	string.	This	default	implementation
just	uses	traceback.print_exception().	The	resulting	string	is
returned.

Python	Library	Reference
Previous:	6.29.5.11	HTTPHandler	Up:	6.29	logging	Next:	6.29.7	Filter	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.6	Formatter	Objects	Up:	6.29	logging	Next:	6.29.8	LogRecord
Objects

6.29.7	Filter	Objects
Filters	can	be	used	by	Handlers	and	Loggers	for	more	sophisticated
filtering	than	is	provided	by	levels.	The	base	filter	class	only	allows	events
which	are	below	a	certain	point	in	the	logger	hierarchy.	For	example,	a	filter
initialized	with	"A.B"	will	allow	events	logged	by	loggers	"A.B",	"A.B.C",
"A.B.C.D",	"A.B.D"	etc.	but	not	"A.BB",	"B.A.B"	etc.	If	initialized	with	the
empty	string,	all	events	are	passed.

class	Filter([name])
Returns	an	instance	of	the	Filter	class.	If	name	is	specified,	it	names	a
logger	which,	together	with	its	children,	will	have	its	events	allowed
through	the	filter.	If	no	name	is	specified,	allows	every	event.

filter(record)
Is	the	specified	record	to	be	logged?	Returns	zero	for	no,	nonzero	for	yes.	If
deemed	appropriate,	the	record	may	be	modified	in-place	by	this	method.

Python	Library	Reference
Previous:	6.29.6	Formatter	Objects	Up:	6.29	logging	Next:	6.29.8	LogRecord
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.7	Filter	Objects	Up:	6.29	logging	Next:	6.29.9	Thread	Safety

6.29.8	LogRecord	Objects
LogRecord	instances	are	created	every	time	something	is	logged.	They	contain
all	the	information	pertinent	to	the	event	being	logged.	The	main	information
passed	in	is	in	msg	and	args,	which	are	combined	using	msg	%	args	to	create	the
message	field	of	the	record.	The	record	also	includes	information	such	as	when
the	record	was	created,	the	source	line	where	the	logging	call	was	made,	and	any
exception	information	to	be	logged.

LogRecord	has	no	methods;	it's	just	a	repository	for	information	about	the
logging	event.	The	only	reason	it's	a	class	rather	than	a	dictionary	is	to	facilitate
extension.

class	LogRecord(name,	lvl,	pathname,	lineno,	msg,	args,	exc_info)
Returns	an	instance	of	LogRecord	initialized	with	interesting
information.	The	name	is	the	logger	name;	lvl	is	the	numeric	level;
pathname	is	the	absolute	pathname	of	the	source	file	in	which	the	logging
call	was	made;	lineno	is	the	line	number	in	that	file	where	the	logging	call
is	found;	msg	is	the	user-supplied	message	(a	format	string);	args	is	the
tuple	which,	together	with	msg,	makes	up	the	user	message;	and	exc_info	is
the	exception	tuple	obtained	by	calling	sys.exc_info()	(or	None,	if
no	exception	information	is	available).

Python	Library	Reference
Previous:	6.29.7	Filter	Objects	Up:	6.29	logging	Next:	6.29.9	Thread	Safety

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.8	LogRecord	Objects	Up:	6.29	logging	Next:	6.29.10
Configuration

6.29.9	Thread	Safety
The	logging	module	is	intended	to	be	thread-safe	without	any	special	work
needing	to	be	done	by	its	clients.	It	achieves	this	though	using	threading	locks;
there	is	one	lock	to	serialize	access	to	the	module's	shared	data,	and	each	handler
also	creates	a	lock	to	serialize	access	to	its	underlying	I/O.

Python	Library	Reference
Previous:	6.29.8	LogRecord	Objects	Up:	6.29	logging	Next:	6.29.10
Configuration

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.9	Thread	Safety	Up:	6.29	logging	Next:	6.29.10.1	Configuration
functions

6.29.10	Configuration

Subsections

6.29.10.1	Configuration	functions
6.29.10.2	Configuration	file	format

Python	Library	Reference
Previous:	6.29.9	Thread	Safety	Up:	6.29	logging	Next:	6.29.10.1	Configuration
functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.10.2	Configuration	file	format	Up:	6.	Generic	Operating
System	Next:	6.30.1	Cross	Platform

6.30	platform	--	Access	to
underlying	platform's	identifying
data.
New	in	version	2.3.

Note: 	Specific	platforms	listed	alphabetically,	with	Linux
included	in	the	UNIX	section.

Subsections

6.30.1	Cross	Platform
6.30.2	Java	Platform
6.30.3	Windows	Platform

6.30.3.1	Win95/98	specific
6.30.4	Mac	OS	Platform
6.30.5	UNIX	Platforms

Python	Library	Reference
Previous:	6.29.10.2	Configuration	file	format	Up:	6.	Generic	Operating
System	Next:	6.30.1	Cross	Platform

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.30	platform	Up:	6.30	platform	Next:	6.30.2	Java	Platform

6.30.1	Cross	Platform

architecture(executable=sys.executable,	bits='',	linkage='')
Queries	the	given	executable	(defaults	to	the	Python	interpreter	binary)	for
various	architecture	informations.

Returns	a	tuple	(bits,	linkage)	which	contain	information	about	the
bit	architecture	and	the	linkage	format	used	for	the	executable.	Both	values
are	returned	as	strings.

Values	that	cannot	be	determined	are	returned	as	given	by	the	parameter
presets.	If	bits	is	given	as	'',	the	sizeof(pointer)	(or
sizeof(long)	on	Python	version	<	1.5.2)	is	used	as	indicator	for	the
supported	pointer	size.

The	function	relies	on	the	system's	file	command	to	do	the	actual	work.
This	is	available	on	most	if	not	all	UNIX	platforms	and	some	non-UNIX

platforms	and	then	only	if	the	executable	points	to	the	Python	interpreter.
Reasonable	defaults	are	used	when	the	above	needs	are	not	met.

machine()
Returns	the	machine	type,	e.g.	'i386'.	An	empty	string	is	returned	if	the
value	cannot	be	determined.

node()
Returns	the	computer's	network	name	(may	not	be	fully	qualified!).	An
empty	string	is	returned	if	the	value	cannot	be	determined.

platform(aliased=0,	terse=0)
Returns	a	single	string	identifying	the	underlying	platform	with	as	much
useful	information	as	possible.

The	output	is	intended	to	be	human	readable	rather	than	machine	parseable.
It	may	look	different	on	different	platforms	and	this	is	intended.

If	aliased	is	true,	the	function	will	use	aliases	for	various	platforms	that
report	system	names	which	differ	from	their	common	names,	for	example

SunOS	will	be	reported	as	Solaris.	The	system_alias()	function	is
used	to	implement	this.

Setting	terse	to	true	causes	the	function	to	return	only	the	absolute
minimum	information	needed	to	identify	the	platform.

processor()
Returns	the	(real)	processor	name,	e.g.	'amdk6'.

An	empty	string	is	returned	if	the	value	cannot	be	determined.	Note	that
many	platforms	do	not	provide	this	information	or	simply	return	the	same
value	as	for	machine().	NetBSD	does	this.

python_build()
Returns	a	tuple	(buildno,	builddate)	stating	the	Python	build	number	and
date	as	strings.

python_compiler()
Returns	a	string	identifying	the	compiler	used	for	compiling	Python.

python_version()
Returns	the	Python	version	as	string	'major.minor.patchlevel'

Note	that	unlike	the	Python	sys.version,	the	returned	value	will	always
include	the	patchlevel	(it	defaults	to	0).

python_version_tuple()
Returns	the	Python	version	as	tuple	(major,	minor,	patchlevel)	of
strings.

Note	that	unlike	the	Python	sys.version,	the	returned	value	will	always
include	the	patchlevel	(it	defaults	to	'0').

release()
Returns	the	system's	release,	e.g.	'2.2.0'	or	'NT'	An	empty	string	is
returned	if	the	value	cannot	be	determined.

system()

Returns	the	system/OS	name,	e.g.	'Linux',	'Windows',	or	'Java'.
An	empty	string	is	returned	if	the	value	cannot	be	determined.

system_alias(system,	release,	version)
Returns	(system,	release,	version)	aliased	to	common	marketing	names
used	for	some	systems.	It	also	does	some	reordering	of	the	information	in
some	cases	where	it	would	otherwise	cause	confusion.

version()
Returns	the	system's	release	version,	e.g.	'#3	on	degas'.	An	empty
string	is	returned	if	the	value	cannot	be	determined.

uname()
Fairly	portable	uname	interface.	Returns	a	tuple	of	strings	(system,	node,
release,	version,	machine,	processor)	identifying	the	underlying
platform.

Note	that	unlike	the	os.uname()	function	this	also	returns	possible
processor	information	as	additional	tuple	entry.

Entries	which	cannot	be	determined	are	set	to	''.

Python	Library	Reference
Previous:	6.30	platform	Up:	6.30	platform	Next:	6.30.2	Java	Platform

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.30.1	Cross	Platform	Up:	6.30	platform	Next:	6.30.3	Windows
Platform

6.30.2	Java	Platform

java_ver(release='',	vendor='',	vminfo=('','',''),	osinfo=('','',''))
Version	interface	for	JPython.

Returns	a	tuple	(release,	vendor,	vminfo,	osinfo)	with	vminfo	being	a
tuple	(vm_name,	vm_release,	vm_vendor)	and	osinfo	being	a	tuple
(os_name,	os_version,	os_arch).	Values	which	cannot	be	determined
are	set	to	the	defaults	given	as	parameters	(which	all	default	to	'').

Python	Library	Reference
Previous:	6.30.1	Cross	Platform	Up:	6.30	platform	Next:	6.30.3	Windows
Platform

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.30.2	Java	Platform	Up:	6.30	platform	Next:	6.30.3.1	Win95/98
specific

6.30.3	Windows	Platform

win32_ver(release='',	version='',	csd='',	ptype='')
Get	additional	version	information	from	the	Windows	Registry	and	return	a
tuple	(version,	csd,	ptype)	referring	to	version	number,	CSD	level	and
OS	type	(multi/single	processor).

As	a	hint:	ptype	is	'Uniprocessor	Free'	on	single	processor	NT
machines	and	'Multiprocessor	Free'	on	multi	processor	machines.
The	'Free'	refers	to	the	OS	version	being	free	of	debugging	code.	It	could
also	state	'Checked'	which	means	the	OS	version	uses	debugging	code,	i.e.
code	that	checks	arguments,	ranges,	etc.

Note: 	This	function	only	works	if	Mark	Hammond's
win32all	package	is	installed	and	(obviously)	only	runs
on	Win32	compatible	platforms.

Subsections

6.30.3.1	Win95/98	specific

Python	Library	Reference
Previous:	6.30.2	Java	Platform	Up:	6.30	platform	Next:	6.30.3.1	Win95/98
specific

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.30.3.1	Win95/98	specific	Up:	6.30	platform	Next:	6.30.5	Unix
Platforms

6.30.4	Mac	OS	Platform

mac_ver(release='',	versioninfo=('','',''),	machine='')
Get	Mac	OS	version	information	and	return	it	as	tuple	(release,
versioninfo,	machine)	with	versioninfo	being	a	tuple	(version,
dev_stage,	non_release_version).

Entries	which	cannot	be	determined	are	set	to	''.	All	tuple	entries	are
strings.

Documentation	for	the	underlying	gestalt()	API	is	available	online	at
http://www.rgaros.nl/gestalt/.

Python	Library	Reference
Previous:	6.30.3.1	Win95/98	specific	Up:	6.30	platform	Next:	6.30.5	Unix
Platforms

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.rgaros.nl/gestalt/

Previous:	6.30.4	Mac	OS	Platform	Up:	6.30	platform	Next:	7.	Optional
Operating	System

6.30.5	UNIX	Platforms

dist(distname='',	version='',	id='',	supported_dists=('SuSE','debian','redhat','mandrake'))
Tries	to	determine	the	name	of	the	OS	distribution	name	Returns	a	tuple
(distname,	version,	id)	which	defaults	to	the	args	given	as	parameters.

libc_ver(executable=sys.executable,	lib='',	version='',	chunksize=2048)
Tries	to	determine	the	libc	version	against	which	the	file	executable
(defaults	to	the	Python	interpreter)	is	linked.	Returns	a	tuple	of	strings
(lib,	version)	which	default	to	the	given	parameters	in	case	the	lookup
fails.

Note	that	this	function	has	intimate	knowledge	of	how	different	libc
versions	add	symbols	to	the	executable	is	probably	only	useable	for
executables	compiled	using	gcc.

The	file	is	read	and	scanned	in	chunks	of	chunksize	bytes.

Python	Library	Reference
Previous:	6.30.4	Mac	OS	Platform	Up:	6.30	platform	Next:	7.	Optional
Operating	System

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.30.5	Unix	Platforms	Up:	Python	Library	Reference	Next:	7.1	signal

7.	Optional	Operating	System
Services
The	modules	described	in	this	chapter	provide	interfaces	to	operating	system
features	that	are	available	on	selected	operating	systems	only.	The	interfaces	are
generally	modeled	after	the	UNIX	or	C	interfaces	but	they	are	available	on	some
other	systems	as	well	(e.g.	Windows	or	NT).	Here's	an	overview:

signal 	 Set	handlers	for	asynchronous	events.
socket 	 Low-level	networking	interface.
select 	 Wait	for	I/O	completion	on	multiple	streams.

thread 	 Create	multiple	threads	of	control	within	oneinterpreter.
threading 	 Higher-level	threading	interface.
dummy_thread 	 Drop-in	replacement	for	the	thread	module.
dummy_threading 	 Drop-in	replacement	for	the	threading	module.
Queue 	 A	synchronized	queue	class.

mmap 	 Interface	to	memory-mapped	files	for	UNIX	and
Windows.

anydbm 	 Generic	interface	to	DBM-style	database	modules.
dbhash 	 DBM-style	interface	to	the	BSD	database	library.

whichdb 	 Guess	which	DBM-style	module	created	a	given
database.

bsddb 	 Interface	to	Berkeley	DB	database	library
dumbdbm 	 Portable	implementation	of	the	simple	DBM	interface.

zlib 	 Low-level	interface	to	compression	and	decompressionroutines	compatible	with	gzip.

gzip 	 Interfaces	for	gzip	compression	and	decompressionusing	file	objects.

bz2 	 Interface	to	compression	and	decompression	routinescompatible	with	bzip2.
zipfile 	 Read	and	write	ZIP-format	archive	files.

tarfile 	 Read	and	write	tar-format	archive	files.
readline 	 GNU	readline	support	for	Python.

rlcompleter 	 Python	identifier	completion	for	the	GNU	readlinelibrary.

Python	Library	Reference
Previous:	6.30.5	Unix	Platforms	Up:	Python	Library	Reference	Next:	7.1	signal

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.	Optional	Operating	System	Up:	7.	Optional	Operating	System
Next:	7.1.1	Example

7.1	signal	--	Set	handlers	for
asynchronous	events
This	module	provides	mechanisms	to	use	signal	handlers	in	Python.	Some
general	rules	for	working	with	signals	and	their	handlers:

A	handler	for	a	particular	signal,	once	set,	remains	installed	until	it	is
explicitly	reset	(Python	emulates	the	BSD	style	interface	regardless	of	the
underlying	implementation),	with	the	exception	of	the	handler	for
SIGCHLD,	which	follows	the	underlying	implementation.

There	is	no	way	to	``block''	signals	temporarily	from	critical	sections	(since
this	is	not	supported	by	all	UNIX	flavors).

Although	Python	signal	handlers	are	called	asynchronously	as	far	as	the
Python	user	is	concerned,	they	can	only	occur	between	the	``atomic''
instructions	of	the	Python	interpreter.	This	means	that	signals	arriving
during	long	calculations	implemented	purely	in	C	(such	as	regular
expression	matches	on	large	bodies	of	text)	may	be	delayed	for	an	arbitrary
amount	of	time.

When	a	signal	arrives	during	an	I/O	operation,	it	is	possible	that	the	I/O
operation	raises	an	exception	after	the	signal	handler	returns.	This	is
dependent	on	the	underlying	UNIX	system's	semantics	regarding	interrupted
system	calls.

Because	the	C	signal	handler	always	returns,	it	makes	little	sense	to	catch
synchronous	errors	like	SIGFPE	or	SIGSEGV.

Python	installs	a	small	number	of	signal	handlers	by	default:	SIGPIPE	is
ignored	(so	write	errors	on	pipes	and	sockets	can	be	reported	as	ordinary
Python	exceptions)	and	SIGINT	is	translated	into	a
KeyboardInterrupt	exception.	All	of	these	can	be	overridden.

Some	care	must	be	taken	if	both	signals	and	threads	are	used	in	the	same
program.	The	fundamental	thing	to	remember	in	using	signals	and	threads

simultaneously	is:	always	perform	signal()	operations	in	the	main
thread	of	execution.	Any	thread	can	perform	an	alarm(),
getsignal(),	or	pause();	only	the	main	thread	can	set	a	new	signal
handler,	and	the	main	thread	will	be	the	only	one	to	receive	signals	(this	is
enforced	by	the	Python	signal	module,	even	if	the	underlying	thread
implementation	supports	sending	signals	to	individual	threads).	This	means
that	signals	can't	be	used	as	a	means	of	inter-thread	communication.	Use
locks	instead.

The	variables	defined	in	the	signal	module	are:

SIG_DFL

This	is	one	of	two	standard	signal	handling	options;	it	will	simply	perform
the	default	function	for	the	signal.	For	example,	on	most	systems	the	default
action	for	SIGQUIT	is	to	dump	core	and	exit,	while	the	default	action	for
SIGCLD	is	to	simply	ignore	it.

SIG_IGN

This	is	another	standard	signal	handler,	which	will	simply	ignore	the	given
signal.

SIG*

All	the	signal	numbers	are	defined	symbolically.	For	example,	the	hangup
signal	is	defined	as	signal.SIGHUP;	the	variable	names	are	identical	to
the	names	used	in	C	programs,	as	found	in	<signal.h>.	The	UNIX	man
page	for	`signal()'	lists	the	existing	signals	(on	some	systems	this	is
signal(2),	on	others	the	list	is	in	signal(7)).	Note	that	not	all	systems	define
the	same	set	of	signal	names;	only	those	names	defined	by	the	system	are
defined	by	this	module.

NSIG

One	more	than	the	number	of	the	highest	signal	number.

The	signal	module	defines	the	following	functions:

alarm(time)
If	time	is	non-zero,	this	function	requests	that	a	SIGALRM	signal	be	sent	to
the	process	in	time	seconds.	Any	previously	scheduled	alarm	is	canceled
(only	one	alarm	can	be	scheduled	at	any	time).	The	returned	value	is	then

the	number	of	seconds	before	any	previously	set	alarm	was	to	have	been
delivered.	If	time	is	zero,	no	alarm	id	scheduled,	and	any	scheduled	alarm	is
canceled.	The	return	value	is	the	number	of	seconds	remaining	before	a
previously	scheduled	alarm.	If	the	return	value	is	zero,	no	alarm	is	currently
scheduled.	(See	the	UNIX	man	page	alarm(2).)	Availability:	UNIX.

getsignal(signalnum)
Return	the	current	signal	handler	for	the	signal	signalnum.	The	returned
value	may	be	a	callable	Python	object,	or	one	of	the	special	values
signal.SIG_IGN,	signal.SIG_DFL	or	None.	Here,
signal.SIG_IGN	means	that	the	signal	was	previously	ignored,
signal.SIG_DFL	means	that	the	default	way	of	handling	the	signal	was
previously	in	use,	and	None	means	that	the	previous	signal	handler	was	not
installed	from	Python.

pause()
Cause	the	process	to	sleep	until	a	signal	is	received;	the	appropriate	handler
will	then	be	called.	Returns	nothing.	Not	on	Windows.	(See	the	UNIX	man
page	signal(2).)

signal(signalnum,	handler)
Set	the	handler	for	signal	signalnum	to	the	function	handler.	handler	can	be
a	callable	Python	object	taking	two	arguments	(see	below),	or	one	of	the
special	values	signal.SIG_IGN	or	signal.SIG_DFL.	The	previous
signal	handler	will	be	returned	(see	the	description	of	getsignal()
above).	(See	the	UNIX	man	page	signal(2).)

When	threads	are	enabled,	this	function	can	only	be	called	from	the	main
thread;	attempting	to	call	it	from	other	threads	will	cause	a	ValueError
exception	to	be	raised.

The	handler	is	called	with	two	arguments:	the	signal	number	and	the
current	stack	frame	(None	or	a	frame	object;	for	a	description	of	frame
objects,	see	the	reference	manual	section	on	the	standard	type	hierarchy	or
see	the	attribute	descriptions	in	the	inspect	module).

Subsections

7.1.1	Example

Python	Library	Reference
Previous:	7.	Optional	Operating	System	Up:	7.	Optional	Operating	System
Next:	7.1.1	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.1	signal	Up:	7.1	signal	Next:	7.2	socket

7.1.1	Example
Here	is	a	minimal	example	program.	It	uses	the	alarm()	function	to	limit	the
time	spent	waiting	to	open	a	file;	this	is	useful	if	the	file	is	for	a	serial	device	that
may	not	be	turned	on,	which	would	normally	cause	the	os.open()	to	hang
indefinitely.	The	solution	is	to	set	a	5-second	alarm	before	opening	the	file;	if	the
operation	takes	too	long,	the	alarm	signal	will	be	sent,	and	the	handler	raises	an
exception.

import	signal,	os

def	handler(signum,	frame):

				print	'Signal	handler	called	with	signal',	signum

				raise	IOError,	"Couldn't	open	device!"

#	Set	the	signal	handler	and	a	5-second	alarm

signal.signal(signal.SIGALRM,	handler)

signal.alarm(5)

#	This	open()	may	hang	indefinitely

fd	=	os.open('/dev/ttyS0',	os.O_RDWR)		

signal.alarm(0)										#	Disable	the	alarm

Python	Library	Reference
Previous:	7.1	signal	Up:	7.1	signal	Next:	7.2	socket

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.1.1	Example	Up:	7.	Optional	Operating	System	Next:	7.2.1	Socket
Objects

7.2	socket	--	Low-level	networking
interface
This	module	provides	access	to	the	BSD	socket	interface.	It	is	available	on	all
modern	UNIX	systems,	Windows,	MacOS,	BeOS,	OS/2,	and	probably	additional
platforms.

For	an	introduction	to	socket	programming	(in	C),	see	the	following	papers:	An
Introductory	4.3BSD	Interprocess	Communication	Tutorial,	by	Stuart	Sechrest
and	An	Advanced	4.3BSD	Interprocess	Communication	Tutorial,	by	Samuel	J.
Leffler	et	al,	both	in	the	UNIX	Programmer's	Manual,	Supplementary	Documents
1	(sections	PS1:7	and	PS1:8).	The	platform-specific	reference	material	for	the
various	socket-related	system	calls	are	also	a	valuable	source	of	information	on
the	details	of	socket	semantics.	For	UNIX,	refer	to	the	manual	pages;	for
Windows,	see	the	WinSock	(or	Winsock	2)	specification.	For	IPv6-ready	APIs,
readers	may	want	to	refer	to	RFC	2553	titled	Basic	Socket	Interface	Extensions
for	IPv6.

The	Python	interface	is	a	straightforward	transliteration	of	the	UNIX	system	call
and	library	interface	for	sockets	to	Python's	object-oriented	style:	the
socket()	function	returns	a	socket	object	whose	methods	implement	the
various	socket	system	calls.	Parameter	types	are	somewhat	higher-level	than	in
the	C	interface:	as	with	read()	and	write()	operations	on	Python	files,
buffer	allocation	on	receive	operations	is	automatic,	and	buffer	length	is	implicit
on	send	operations.

Socket	addresses	are	represented	as	follows:	A	single	string	is	used	for	the
AF_UNIX	address	family.	A	pair	(host,	port)	is	used	for	the	AF_INET
address	family,	where	host	is	a	string	representing	either	a	hostname	in	Internet
domain	notation	like	'daring.cwi.nl'	or	an	IPv4	address	like
'100.50.200.5',	and	port	is	an	integral	port	number.	For	AF_INET6
address	family,	a	four-tuple	(host,	port,	flowinfo,	scopeid)	is	used,	where
flowinfo	and	scopeid	represents	sin6_flowinfo	and	sin6_scope_id
member	in	struct	sockaddr_in6	in	C.	For	socket	module	methods,
flowinfo	and	scopeid	can	be	omitted	just	for	backward	compatibility.	Note,
however,	omission	of	scopeid	can	cause	problems	in	manipulating	scoped	IPv6

http://www.faqs.org/rfcs/rfc2553.html

addresses.	Other	address	families	are	currently	not	supported.	The	address
format	required	by	a	particular	socket	object	is	automatically	selected	based	on
the	address	family	specified	when	the	socket	object	was	created.

For	IPv4	addresses,	two	special	forms	are	accepted	instead	of	a	host	address:	the
empty	string	represents	INADDR_ANY,	and	the	string	'<broadcast>'
represents	INADDR_BROADCAST.	The	behavior	is	not	available	for	IPv6	for
backward	compatibility,	therefore,	you	may	want	to	avoid	these	if	you	intend	to
support	IPv6	with	your	Python	programs.

If	you	use	a	hostname	in	the	host	portion	of	IPv4/v6	socket	address,	the	program
may	show	a	nondeterministic	behavior,	as	Python	uses	the	first	address	returned
from	the	DNS	resolution.	The	socket	address	will	be	resolved	differently	into	an
actual	IPv4/v6	address,	depending	on	the	results	from	DNS	resolution	and/or	the
host	configuration.	For	deterministic	behavior	use	a	numeric	address	in	host
portion.

All	errors	raise	exceptions.	The	normal	exceptions	for	invalid	argument	types
and	out-of-memory	conditions	can	be	raised;	errors	related	to	socket	or	address
semantics	raise	the	error	socket.error.

Non-blocking	mode	is	supported	through	setblocking().	A	generalization
of	this	based	on	timeouts	is	supported	through	settimeout().

The	module	socket	exports	the	following	constants	and	functions:

exception	error
This	exception	is	raised	for	socket-related	errors.	The	accompanying	value
is	either	a	string	telling	what	went	wrong	or	a	pair	(errno,	string)
representing	an	error	returned	by	a	system	call,	similar	to	the	value
accompanying	os.error.	See	the	module	errno,	which	contains	names
for	the	error	codes	defined	by	the	underlying	operating	system.

exception	herror
This	exception	is	raised	for	address-related	errors,	i.e.	for	functions	that	use
h_errno	in	the	C	API,	including	gethostbyname_ex()	and
gethostbyaddr().

The	accompanying	value	is	a	pair	(h_errno,	string)	representing	an	error

returned	by	a	library	call.	string	represents	the	description	of	h_errno,	as
returned	by	the	hstrerror()	C	function.

exception	gaierror
This	exception	is	raised	for	address-related	errors,	for	getaddrinfo()
and	getnameinfo().	The	accompanying	value	is	a	pair	(error,
string)	representing	an	error	returned	by	a	library	call.	string	represents	the
description	of	error,	as	returned	by	the	gai_strerror()	C	function.
The	error	value	will	match	one	of	the	EAI_*	constants	defined	in	this
module.

exception	timeout
This	exception	is	raised	when	a	timeout	occurs	on	a	socket	which	has	had
timeouts	enabled	via	a	prior	call	to	settimeout().	The	accompanying
value	is	a	string	whose	value	is	currently	always	``timed	out''.	New	in
version	2.3.

AF_UNIX

AF_INET

AF_INET6

These	constants	represent	the	address	(and	protocol)	families,	used	for	the
first	argument	to	socket().	If	the	AF_UNIX	constant	is	not	defined	then
this	protocol	is	unsupported.

SOCK_STREAM

SOCK_DGRAM

SOCK_RAW

SOCK_RDM

SOCK_SEQPACKET

These	constants	represent	the	socket	types,	used	for	the	second	argument	to
socket().	(Only	SOCK_STREAM	and	SOCK_DGRAM	appear	to	be
generally	useful.)

SO_*

SOMAXCONN

MSG_*

SOL_*

IPPROTO_*

IPPORT_*

INADDR_*

IP_*

IPV6_*

EAI_*

AI_*

NI_*

TCP_*

Many	constants	of	these	forms,	documented	in	the	UNIX	documentation	on
sockets	and/or	the	IP	protocol,	are	also	defined	in	the	socket	module.	They
are	generally	used	in	arguments	to	the	setsockopt()	and
getsockopt()	methods	of	socket	objects.	In	most	cases,	only	those
symbols	that	are	defined	in	the	UNIX	header	files	are	defined;	for	a	few
symbols,	default	values	are	provided.

has_ipv6

This	constant	contains	a	boolean	value	which	indicates	if	IPv6	is	supported
on	this	platform.	New	in	version	2.3.

getaddrinfo(host,	port[,	family[,	socktype[,	proto[,	flags]]]])
Resolves	the	host/port	argument,	into	a	sequence	of	5-tuples	that	contain	all
the	necessary	argument	for	the	sockets	manipulation.	host	is	a	domain
name,	a	string	representation	of	IPv4/v6	address	or	None.	port	is	a	string
service	name	(like	'http'),	a	numeric	port	number	or	None.

The	rest	of	the	arguments	are	optional	and	must	be	numeric	if	specified.	For
host	and	port,	by	passing	either	an	empty	string	or	None,	you	can	pass
NULL	to	the	C	API.	The	getaddrinfo()	function	returns	a	list	of	5-
tuples	with	the	following	structure:

(family,	socktype,	proto,	canonname,	sockaddr)

family,	socktype,	proto	are	all	integer	and	are	meant	to	be	passed	to	the
socket()	function.	canonname	is	a	string	representing	the	canonical
name	of	the	host.	It	can	be	a	numeric	IPv4/v6	address	when
AI_CANONNAME	is	specified	for	a	numeric	host.	sockaddr	is	a	tuple
describing	a	socket	address,	as	described	above.	See	the	source	for	the
httplib	and	other	library	modules	for	a	typical	usage	of	the	function.
New	in	version	2.2.

getfqdn([name])
Return	a	fully	qualified	domain	name	for	name.	If	name	is	omitted	or
empty,	it	is	interpreted	as	the	local	host.	To	find	the	fully	qualified	name,
the	hostname	returned	by	gethostbyaddr()	is	checked,	then	aliases	for
the	host,	if	available.	The	first	name	which	includes	a	period	is	selected.	In
case	no	fully	qualified	domain	name	is	available,	the	hostname	is	returned.
New	in	version	2.0.

gethostbyname(hostname)
Translate	a	host	name	to	IPv4	address	format.	The	IPv4	address	is	returned
as	a	string,	such	as	'100.50.200.5'.	If	the	host	name	is	an	IPv4
address	itself	it	is	returned	unchanged.	See	gethostbyname_ex()	for	a
more	complete	interface.	gethostbyname()	does	not	support	IPv6
name	resolution,	and	getaddrinfo()	should	be	used	instead	for
IPv4/v6	dual	stack	support.

gethostbyname_ex(hostname)
Translate	a	host	name	to	IPv4	address	format,	extended	interface.	Return	a
triple	(hostname,	aliaslist,	ipaddrlist)	where	hostname	is	the	primary
host	name	responding	to	the	given	ip_address,	aliaslist	is	a	(possibly
empty)	list	of	alternative	host	names	for	the	same	address,	and	ipaddrlist	is
a	list	of	IPv4	addresses	for	the	same	interface	on	the	same	host	(often	but
not	always	a	single	address).	gethostbyname_ex()	does	not	support
IPv6	name	resolution,	and	getaddrinfo()	should	be	used	instead	for
IPv4/v6	dual	stack	support.

gethostname()
Return	a	string	containing	the	hostname	of	the	machine	where	the	Python
interpreter	is	currently	executing.	If	you	want	to	know	the	current	machine's
IP	address,	you	may	want	to	use	gethostbyname(gethostname()).
This	operation	assumes	that	there	is	a	valid	address-to-host	mapping	for	the
host,	and	the	assumption	does	not	always	hold.	Note:	gethostname()
doesn't	always	return	the	fully	qualified	domain	name;	use
gethostbyaddr(gethostname())	(see	below).

gethostbyaddr(ip_address)
Return	a	triple	(hostname,	aliaslist,	ipaddrlist)	where	hostname	is	the

primary	host	name	responding	to	the	given	ip_address,	aliaslist	is	a
(possibly	empty)	list	of	alternative	host	names	for	the	same	address,	and
ipaddrlist	is	a	list	of	IPv4/v6	addresses	for	the	same	interface	on	the	same
host	(most	likely	containing	only	a	single	address).	To	find	the	fully
qualified	domain	name,	use	the	function	getfqdn().	gethostbyaddr
supports	both	IPv4	and	IPv6.

getnameinfo(sockaddr,	flags)
Translate	a	socket	address	sockaddr	into	a	2-tuple	(host,	port).
Depending	on	the	settings	of	flags,	the	result	can	contain	a	fully-qualified
domain	name	or	numeric	address	representation	in	host.	Similarly,	port	can
contain	a	string	port	name	or	a	numeric	port	number.	New	in	version	2.2.

getprotobyname(protocolname)
Translate	an	Internet	protocol	name	(for	example,	'icmp')	to	a	constant
suitable	for	passing	as	the	(optional)	third	argument	to	the	socket()
function.	This	is	usually	only	needed	for	sockets	opened	in	``raw''	mode
(SOCK_RAW);	for	the	normal	socket	modes,	the	correct	protocol	is	chosen
automatically	if	the	protocol	is	omitted	or	zero.

getservbyname(servicename[,	protocolname])
Translate	an	Internet	service	name	and	protocol	name	to	a	port	number	for
that	service.	The	optional	protocol	name,	if	given,	should	be	'tcp'	or
'udp',	otherwise	any	protocol	will	match.

getservbyport(port[,	protocolname])
Translate	an	Internet	port	number	and	protocol	name	to	a	service	name	for
that	service.	The	optional	protocol	name,	if	given,	should	be	'tcp'	or
'udp',	otherwise	any	protocol	will	match.

socket([family[,	type[,	proto]]])
Create	a	new	socket	using	the	given	address	family,	socket	type	and
protocol	number.	The	address	family	should	be	AF_INET	(the	default),
AF_INET6	or	AF_UNIX.	The	socket	type	should	be	SOCK_STREAM	(the
default),	SOCK_DGRAM	or	perhaps	one	of	the	other	"SOCK_"	constants.
The	protocol	number	is	usually	zero	and	may	be	omitted	in	that	case.

ssl(sock[,	keyfile,	certfile])
Initiate	a	SSL	connection	over	the	socket	sock.	keyfile	is	the	name	of	a	PEM
formatted	file	that	contains	your	private	key.	certfile	is	a	PEM	formatted
certificate	chain	file.	On	success,	a	new	SSLObject	is	returned.

Warning:	This	does	not	do	any	certificate	verification!

socketpair([family[,	type[,	proto]]])
Build	a	pair	of	connected	socket	objects	using	the	given	address	family,
socket	type,	and	protocol	number.	Address	family,	socket	type,	and	protocol
number	are	as	for	the	socket()	function	above.	The	default	family	is
AF_UNIX	if	defined	on	the	platform;	otherwise,	the	default	is	AF_INET.
Availability:	UNIX.	New	in	version	2.4.

fromfd(fd,	family,	type[,	proto])
Build	a	socket	object	from	an	existing	file	descriptor	(an	integer	as	returned
by	a	file	object's	fileno()	method).	Address	family,	socket	type	and
protocol	number	are	as	for	the	socket()	function	above.	The	file
descriptor	should	refer	to	a	socket,	but	this	is	not	checked	--	subsequent
operations	on	the	object	may	fail	if	the	file	descriptor	is	invalid.	This
function	is	rarely	needed,	but	can	be	used	to	get	or	set	socket	options	on	a
socket	passed	to	a	program	as	standard	input	or	output	(such	as	a	server
started	by	the	UNIX	inet	daemon).	The	socket	is	assumed	to	be	in	blocking
mode.	Availability:	UNIX.

ntohl(x)
Convert	32-bit	integers	from	network	to	host	byte	order.	On	machines
where	the	host	byte	order	is	the	same	as	network	byte	order,	this	is	a	no-op;
otherwise,	it	performs	a	4-byte	swap	operation.

ntohs(x)
Convert	16-bit	integers	from	network	to	host	byte	order.	On	machines
where	the	host	byte	order	is	the	same	as	network	byte	order,	this	is	a	no-op;
otherwise,	it	performs	a	2-byte	swap	operation.

htonl(x)
Convert	32-bit	integers	from	host	to	network	byte	order.	On	machines

where	the	host	byte	order	is	the	same	as	network	byte	order,	this	is	a	no-op;
otherwise,	it	performs	a	4-byte	swap	operation.

htons(x)
Convert	16-bit	integers	from	host	to	network	byte	order.	On	machines
where	the	host	byte	order	is	the	same	as	network	byte	order,	this	is	a	no-op;
otherwise,	it	performs	a	2-byte	swap	operation.

inet_aton(ip_string)
Convert	an	IPv4	address	from	dotted-quad	string	format	(for	example,
'123.45.67.89')	to	32-bit	packed	binary	format,	as	a	string	four	characters	in
length.	This	is	useful	when	conversing	with	a	program	that	uses	the
standard	C	library	and	needs	objects	of	type	struct	in_addr,	which	is
the	C	type	for	the	32-bit	packed	binary	this	function	returns.

If	the	IPv4	address	string	passed	to	this	function	is	invalid,
socket.error	will	be	raised.	Note	that	exactly	what	is	valid	depends	on
the	underlying	C	implementation	of	inet_aton().

inet_aton()	does	not	support	IPv6,	and	getnameinfo()	should	be
used	instead	for	IPv4/v6	dual	stack	support.

inet_ntoa(packed_ip)
Convert	a	32-bit	packed	IPv4	address	(a	string	four	characters	in	length)	to
its	standard	dotted-quad	string	representation	(for	example,	'123.45.67.89').
This	is	useful	when	conversing	with	a	program	that	uses	the	standard	C
library	and	needs	objects	of	type	struct	in_addr,	which	is	the	C	type
for	the	32-bit	packed	binary	data	this	function	takes	as	an	argument.

If	the	string	passed	to	this	function	is	not	exactly	4	bytes	in	length,
socket.error	will	be	raised.	inet_ntoa()	does	not	support	IPv6,
and	getnameinfo()	should	be	used	instead	for	IPv4/v6	dual	stack
support.

inet_pton(address_family,	ip_string)
Convert	an	IP	address	from	its	family-specific	string	format	to	a	packed,
binary	format.	inet_pton()	is	useful	when	a	library	or	network	protocol
calls	for	an	object	of	type	struct	in_addr	(similar	to	inet_aton())

or	struct	in6_addr.

Supported	values	for	address_family	are	currently	AF_INET	and
AF_INET6.	If	the	IP	address	string	ip_string	is	invalid,	socket.error
will	be	raised.	Note	that	exactly	what	is	valid	depends	on	both	the	value	of
address_family	and	the	underlying	implementation	of	inet_pton().

Availability:	UNIX	(maybe	not	all	platforms).	New	in	version	2.3.

inet_ntop(address_family,	packed_ip)
Convert	a	packed	IP	address	(a	string	of	some	number	of	characters)	to	its
standard,	family-specific	string	representation	(for	example,	'7.10.0.5'
or	'5aef:2b::8')	inet_ntop()	is	useful	when	a	library	or	network
protocol	returns	an	object	of	type	struct	in_addr	(similar	to
inet_ntoa())	or	struct	in6_addr.

Supported	values	for	address_family	are	currently	AF_INET	and
AF_INET6.	If	the	string	packed_ip	is	not	the	correct	length	for	the
specified	address	family,	ValueError	will	be	raised.	A	socket.error
is	raised	for	errors	from	the	call	to	inet_ntop().

Availability:	UNIX	(maybe	not	all	platforms).	New	in	version	2.3.

getdefaulttimeout()
Return	the	default	timeout	in	floating	seconds	for	new	socket	objects.	A
value	of	None	indicates	that	new	socket	objects	have	no	timeout.	When	the
socket	module	is	first	imported,	the	default	is	None.	New	in	version	2.3.

setdefaulttimeout(timeout)
Set	the	default	timeout	in	floating	seconds	for	new	socket	objects.	A	value
of	None	indicates	that	new	socket	objects	have	no	timeout.	When	the
socket	module	is	first	imported,	the	default	is	None.	New	in	version	2.3.

SocketType

This	is	a	Python	type	object	that	represents	the	socket	object	type.	It	is	the
same	as	type(socket(...)).

See	Also:

Module	SocketServer:
Classes	that	simplify	writing	network	servers.

Subsections

7.2.1	Socket	Objects
7.2.2	SSL	Objects
7.2.3	Example

Python	Library	Reference
Previous:	7.1.1	Example	Up:	7.	Optional	Operating	System	Next:	7.2.1	Socket
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.2	socket	Up:	7.2	socket	Next:	7.2.2	SSL	Objects

7.2.1	Socket	Objects
Socket	objects	have	the	following	methods.	Except	for	makefile()	these
correspond	to	UNIX	system	calls	applicable	to	sockets.

accept()
Accept	a	connection.	The	socket	must	be	bound	to	an	address	and	listening
for	connections.	The	return	value	is	a	pair	(conn,	address)	where	conn	is
a	new	socket	object	usable	to	send	and	receive	data	on	the	connection,	and
address	is	the	address	bound	to	the	socket	on	the	other	end	of	the
connection.

bind(address)
Bind	the	socket	to	address.	The	socket	must	not	already	be	bound.	(The
format	of	address	depends	on	the	address	family	--	see	above.)	Note:	This
method	has	historically	accepted	a	pair	of	parameters	for	AF_INET
addresses	instead	of	only	a	tuple.	This	was	never	intentional	and	is	no
longer	available	in	Python	2.0	and	later.

close()
Close	the	socket.	All	future	operations	on	the	socket	object	will	fail.	The
remote	end	will	receive	no	more	data	(after	queued	data	is	flushed).	Sockets
are	automatically	closed	when	they	are	garbage-collected.

connect(address)
Connect	to	a	remote	socket	at	address.	(The	format	of	address	depends	on
the	address	family	--	see	above.)	Note:	This	method	has	historically
accepted	a	pair	of	parameters	for	AF_INET	addresses	instead	of	only	a
tuple.	This	was	never	intentional	and	is	no	longer	available	in	Python	2.0
and	later.

connect_ex(address)
Like	connect(address),	but	return	an	error	indicator	instead	of	raising	an
exception	for	errors	returned	by	the	C-level	connect()	call	(other
problems,	such	as	``host	not	found,''	can	still	raise	exceptions).	The	error
indicator	is	0	if	the	operation	succeeded,	otherwise	the	value	of	the	errno

variable.	This	is	useful	to	support,	for	example,	asynchronous	connects.
Note:	This	method	has	historically	accepted	a	pair	of	parameters	for
AF_INET	addresses	instead	of	only	a	tuple.	This	was	never	intentional	and
is	no	longer	available	in	Python	2.0	and	later.

fileno()
Return	the	socket's	file	descriptor	(a	small	integer).	This	is	useful	with
select.select().

Under	Windows	the	small	integer	returned	by	this	method	cannot	be	used
where	a	file	descriptor	can	be	used	(such	as	os.fdopen()).	UNIX	does
not	have	this	limitation.

getpeername()
Return	the	remote	address	to	which	the	socket	is	connected.	This	is	useful
to	find	out	the	port	number	of	a	remote	IPv4/v6	socket,	for	instance.	(The
format	of	the	address	returned	depends	on	the	address	family	--	see	above.)
On	some	systems	this	function	is	not	supported.

getsockname()
Return	the	socket's	own	address.	This	is	useful	to	find	out	the	port	number
of	an	IPv4/v6	socket,	for	instance.	(The	format	of	the	address	returned
depends	on	the	address	family	--	see	above.)

getsockopt(level,	optname[,	buflen])
Return	the	value	of	the	given	socket	option	(see	the	UNIX	man	page
getsockopt(2)).	The	needed	symbolic	constants	(SO_*	etc.)	are	defined	in
this	module.	If	buflen	is	absent,	an	integer	option	is	assumed	and	its	integer
value	is	returned	by	the	function.	If	buflen	is	present,	it	specifies	the
maximum	length	of	the	buffer	used	to	receive	the	option	in,	and	this	buffer
is	returned	as	a	string.	It	is	up	to	the	caller	to	decode	the	contents	of	the
buffer	(see	the	optional	built-in	module	struct	for	a	way	to	decode	C
structures	encoded	as	strings).

listen(backlog)
Listen	for	connections	made	to	the	socket.	The	backlog	argument	specifies
the	maximum	number	of	queued	connections	and	should	be	at	least	1;	the
maximum	value	is	system-dependent	(usually	5).

makefile([mode[,	bufsize]])
Return	a	file	object	associated	with	the	socket.	(File	objects	are	described	in
2.3.9,	``File	Objects.'')	The	file	object	references	a	dup()ped	version	of
the	socket	file	descriptor,	so	the	file	object	and	socket	object	may	be	closed
or	garbage-collected	independently.	The	socket	should	be	in	blocking	mode.
The	optional	mode	and	bufsize	arguments	are	interpreted	the	same	way	as
by	the	built-in	file()	function;	see	``Built-in	Functions''	(section	2.1)	for
more	information.

recv(bufsize[,	flags])
Receive	data	from	the	socket.	The	return	value	is	a	string	representing	the
data	received.	The	maximum	amount	of	data	to	be	received	at	once	is
specified	by	bufsize.	See	the	UNIX	manual	page	recv(2)	for	the	meaning	of
the	optional	argument	flags;	it	defaults	to	zero.

recvfrom(bufsize[,	flags])
Receive	data	from	the	socket.	The	return	value	is	a	pair	(string,	address)
where	string	is	a	string	representing	the	data	received	and	address	is	the
address	of	the	socket	sending	the	data.	The	optional	flags	argument	has	the
same	meaning	as	for	recv()	above.	(The	format	of	address	depends	on
the	address	family	--	see	above.)

send(string[,	flags])
Send	data	to	the	socket.	The	socket	must	be	connected	to	a	remote	socket.
The	optional	flags	argument	has	the	same	meaning	as	for	recv()	above.
Returns	the	number	of	bytes	sent.	Applications	are	responsible	for	checking
that	all	data	has	been	sent;	if	only	some	of	the	data	was	transmitted,	the
application	needs	to	attempt	delivery	of	the	remaining	data.

sendall(string[,	flags])
Send	data	to	the	socket.	The	socket	must	be	connected	to	a	remote	socket.
The	optional	flags	argument	has	the	same	meaning	as	for	recv()	above.
Unlike	send(),	this	method	continues	to	send	data	from	string	until	either
all	data	has	been	sent	or	an	error	occurs.	None	is	returned	on	success.	On
error,	an	exception	is	raised,	and	there	is	no	way	to	determine	how	much
data,	if	any,	was	successfully	sent.

sendto(string[,	flags],	address)
Send	data	to	the	socket.	The	socket	should	not	be	connected	to	a	remote
socket,	since	the	destination	socket	is	specified	by	address.	The	optional
flags	argument	has	the	same	meaning	as	for	recv()	above.	Return	the
number	of	bytes	sent.	(The	format	of	address	depends	on	the	address	family
--	see	above.)

setblocking(flag)
Set	blocking	or	non-blocking	mode	of	the	socket:	if	flag	is	0,	the	socket	is
set	to	non-blocking,	else	to	blocking	mode.	Initially	all	sockets	are	in
blocking	mode.	In	non-blocking	mode,	if	a	recv()	call	doesn't	find	any
data,	or	if	a	send()	call	can't	immediately	dispose	of	the	data,	a	error
exception	is	raised;	in	blocking	mode,	the	calls	block	until	they	can
proceed.	s.setblocking(0)	is	equivalent	to	s.settimeout(0);
s.setblocking(1)	is	equivalent	to	s.settimeout(None).

settimeout(value)
Set	a	timeout	on	blocking	socket	operations.	The	value	argument	can	be	a
nonnegative	float	expressing	seconds,	or	None.	If	a	float	is	given,
subsequent	socket	operations	will	raise	an	timeout	exception	if	the
timeout	period	value	has	elapsed	before	the	operation	has	completed.
Setting	a	timeout	of	None	disables	timeouts	on	socket	operations.
s.settimeout(0.0)	is	equivalent	to	s.setblocking(0);
s.settimeout(None)	is	equivalent	to	s.setblocking(1).	New	in
version	2.3.

gettimeout()
Returns	the	timeout	in	floating	seconds	associated	with	socket	operations,
or	None	if	no	timeout	is	set.	This	reflects	the	last	call	to
setblocking()	or	settimeout().	New	in	version	2.3.

Some	notes	on	socket	blocking	and	timeouts:	A	socket	object	can	be	in	one	of
three	modes:	blocking,	non-blocking,	or	timeout.	Sockets	are	always	created	in
blocking	mode.	In	blocking	mode,	operations	block	until	complete.	In	non-
blocking	mode,	operations	fail	(with	an	error	that	is	unfortunately	system-
dependent)	if	they	cannot	be	completed	immediately.	In	timeout	mode,
operations	fail	if	they	cannot	be	completed	within	the	timeout	specified	for	the

socket.	The	setblocking()	method	is	simply	a	shorthand	for	certain
settimeout()	calls.

Timeout	mode	internally	sets	the	socket	in	non-blocking	mode.	The	blocking
and	timeout	modes	are	shared	between	file	descriptors	and	socket	objects	that
refer	to	the	same	network	endpoint.	A	consequence	of	this	is	that	file	objects
returned	by	the	makefile()	method	should	only	be	used	when	the	socket	is	in
blocking	mode;	in	timeout	or	non-blocking	mode	file	operations	that	cannot	be
completed	immediately	will	fail.

Note	that	the	connect()	operation	is	subject	to	the	timeout	setting,	and	in
general	it	is	recommended	to	call	settimeout()	before	calling	connect().

setsockopt(level,	optname,	value)
Set	the	value	of	the	given	socket	option	(see	the	UNIX	manual	page
setsockopt(2)).	The	needed	symbolic	constants	are	defined	in	the	socket
module	(SO_*	etc.).	The	value	can	be	an	integer	or	a	string	representing	a
buffer.	In	the	latter	case	it	is	up	to	the	caller	to	ensure	that	the	string
contains	the	proper	bits	(see	the	optional	built-in	module	struct	for	a
way	to	encode	C	structures	as	strings).

shutdown(how)
Shut	down	one	or	both	halves	of	the	connection.	If	how	is	SHUT_RD,
further	receives	are	disallowed.	If	how	is	SHUT_WR,	further	sends	are
disallowed.	If	how	is	SHUT_RDWR,	further	sends	and	receives	are
disallowed.

Note	that	there	are	no	methods	read()	or	write();	use	recv()	and
send()	without	flags	argument	instead.

Python	Library	Reference
Previous:	7.2	socket	Up:	7.2	socket	Next:	7.2.2	SSL	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.2.1	Socket	Objects	Up:	7.2	socket	Next:	7.2.3	Example

7.2.2	SSL	Objects
SSL	objects	have	the	following	methods.

write(s)
Writes	the	string	s	to	the	on	the	object's	SSL	connection.	The	return	value	is
the	number	of	bytes	written.

read([n])
If	n	is	provided,	read	n	bytes	from	the	SSL	connection,	otherwise	read	until
EOF.	The	return	value	is	a	string	of	the	bytes	read.

Python	Library	Reference
Previous:	7.2.1	Socket	Objects	Up:	7.2	socket	Next:	7.2.3	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.2.2	SSL	Objects	Up:	7.2	socket	Next:	7.3	select

7.2.3	Example
Here	are	four	minimal	example	programs	using	the	TCP/IP	protocol:	a	server
that	echoes	all	data	that	it	receives	back	(servicing	only	one	client),	and	a	client
using	it.	Note	that	a	server	must	perform	the	sequence	socket(),	bind(),
listen(),	accept()	(possibly	repeating	the	accept()	to	service	more
than	one	client),	while	a	client	only	needs	the	sequence	socket(),
connect().	Also	note	that	the	server	does	not	send()/recv()	on	the
socket	it	is	listening	on	but	on	the	new	socket	returned	by	accept().

The	first	two	examples	support	IPv4	only.

#	Echo	server	program

import	socket

HOST	=	''																	#	Symbolic	name	meaning	the	local	host

PORT	=	50007														#	Arbitrary	non-privileged	port

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

s.bind((HOST,	PORT))

s.listen(1)

conn,	addr	=	s.accept()

print	'Connected	by',	addr

while	1:

				data	=	conn.recv(1024)

				if	not	data:	break

				conn.send(data)

conn.close()

#	Echo	client	program

import	socket

HOST	=	'daring.cwi.nl'				#	The	remote	host

PORT	=	50007														#	The	same	port	as	used	by	the	server

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

s.connect((HOST,	PORT))

s.send('Hello,	world')

data	=	s.recv(1024)

s.close()

print	'Received',	repr(data)

The	next	two	examples	are	identical	to	the	above	two,	but	support	both	IPv4	and
IPv6.	The	server	side	will	listen	to	the	first	address	family	available	(it	should
listen	to	both	instead).	On	most	of	IPv6-ready	systems,	IPv6	will	take
precedence	and	the	server	may	not	accept	IPv4	traffic.	The	client	side	will	try	to

connect	to	the	all	addresses	returned	as	a	result	of	the	name	resolution,	and	sends
traffic	to	the	first	one	connected	successfully.

#	Echo	server	program

import	socket

import	sys

HOST	=	''																	#	Symbolic	name	meaning	the	local	host

PORT	=	50007														#	Arbitrary	non-privileged	port

s	=	None

for	res	in	socket.getaddrinfo(HOST,	PORT,	socket.AF_UNSPEC,	socket.SOCK_STREAM,	0,	socket.AI_PASSIVE):

				af,	socktype,	proto,	canonname,	sa	=	res

				try:

	 s	=	socket.socket(af,	socktype,	proto)

				except	socket.error,	msg:

	 s	=	None

	 continue

				try:

	 s.bind(sa)

	 s.listen(1)

				except	socket.error,	msg:

	 s.close()

	 s	=	None

	 continue

				break

if	s	is	None:

				print	'could	not	open	socket'

				sys.exit(1)

conn,	addr	=	s.accept()

print	'Connected	by',	addr

while	1:

				data	=	conn.recv(1024)

				if	not	data:	break

				conn.send(data)

conn.close()

#	Echo	client	program

import	socket

import	sys

HOST	=	'daring.cwi.nl'				#	The	remote	host

PORT	=	50007														#	The	same	port	as	used	by	the	server

s	=	None

for	res	in	socket.getaddrinfo(HOST,	PORT,	socket.AF_UNSPEC,	socket.SOCK_STREAM):

				af,	socktype,	proto,	canonname,	sa	=	res

				try:

	 s	=	socket.socket(af,	socktype,	proto)

				except	socket.error,	msg:

	 s	=	None

	 continue

				try:

	 s.connect(sa)

				except	socket.error,	msg:

	 s.close()

	 s	=	None

	 continue

				break

if	s	is	None:

				print	'could	not	open	socket'

				sys.exit(1)

s.send('Hello,	world')

data	=	s.recv(1024)

s.close()

print	'Received',	repr(data)

Python	Library	Reference
Previous:	7.2.2	SSL	Objects	Up:	7.2	socket	Next:	7.3	select

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.2.3	Example	Up:	7.	Optional	Operating	System	Next:	7.3.1	Polling
Objects

7.3	select	--	Waiting	for	I/O
completion
This	module	provides	access	to	the	select()	and	poll()	functions	available
in	most	operating	systems.	Note	that	on	Windows,	it	only	works	for	sockets;	on
other	operating	systems,	it	also	works	for	other	file	types	(in	particular,	on	UNIX,
it	works	on	pipes).	It	cannot	be	used	on	regular	files	to	determine	whether	a	file
has	grown	since	it	was	last	read.

The	module	defines	the	following:

exception	error
The	exception	raised	when	an	error	occurs.	The	accompanying	value	is	a
pair	containing	the	numeric	error	code	from	errno	and	the	corresponding
string,	as	would	be	printed	by	the	C	function	perror().

poll()
(Not	supported	by	all	operating	systems.)	Returns	a	polling	object,	which
supports	registering	and	unregistering	file	descriptors,	and	then	polling
them	for	I/O	events;	see	section	7.3.1	below	for	the	methods	supported	by
polling	objects.

select(iwtd,	owtd,	ewtd[,	timeout])
This	is	a	straightforward	interface	to	the	UNIX	select()	system	call.	The
first	three	arguments	are	sequences	of	`waitable	objects':	either	integers
representing	file	descriptors	or	objects	with	a	parameterless	method	named
fileno()	returning	such	an	integer.	The	three	sequences	of	waitable
objects	are	for	input,	output	and	`exceptional	conditions',	respectively.
Empty	sequences	are	allowed,	but	acceptance	of	three	empty	sequences	is
platform-dependent.	(It	is	known	to	work	on	UNIX	but	not	on	Windows.)
The	optional	timeout	argument	specifies	a	time-out	as	a	floating	point
number	in	seconds.	When	the	timeout	argument	is	omitted	the	function
blocks	until	at	least	one	file	descriptor	is	ready.	A	time-out	value	of	zero
specifies	a	poll	and	never	blocks.

The	return	value	is	a	triple	of	lists	of	objects	that	are	ready:	subsets	of	the
first	three	arguments.	When	the	time-out	is	reached	without	a	file	descriptor
becoming	ready,	three	empty	lists	are	returned.

Among	the	acceptable	object	types	in	the	sequences	are	Python	file	objects
(e.g.	sys.stdin,	or	objects	returned	by	open()	or	os.popen()),
socket	objects	returned	by	socket.socket().You	may	also	define	a
wrapper	class	yourself,	as	long	as	it	has	an	appropriate	fileno()	method
(that	really	returns	a	file	descriptor,	not	just	a	random	integer).	Note:	File
objects	on	Windows	are	not	acceptable,	but	sockets	are.	On	Windows,	the
underlying	select()	function	is	provided	by	the	WinSock	library,	and
does	not	handle	file	desciptors	that	don't	originate	from	WinSock.

Subsections

7.3.1	Polling	Objects

Python	Library	Reference
Previous:	7.2.3	Example	Up:	7.	Optional	Operating	System	Next:	7.3.1	Polling
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.3	select	Up:	7.3	select	Next:	7.4	thread

7.3.1	Polling	Objects
The	poll()	system	call,	supported	on	most	UNIX	systems,	provides	better
scalability	for	network	servers	that	service	many,	many	clients	at	the	same	time.
poll()	scales	better	because	the	system	call	only	requires	listing	the	file
descriptors	of	interest,	while	select()	builds	a	bitmap,	turns	on	bits	for	the
fds	of	interest,	and	then	afterward	the	whole	bitmap	has	to	be	linearly	scanned
again.	select()	is	O(highest	file	descriptor),	while	poll()	is	O(number	of
file	descriptors).

register(fd[,	eventmask])
Register	a	file	descriptor	with	the	polling	object.	Future	calls	to	the
poll()	method	will	then	check	whether	the	file	descriptor	has	any
pending	I/O	events.	fd	can	be	either	an	integer,	or	an	object	with	a
fileno()	method	that	returns	an	integer.	File	objects	implement
fileno(),	so	they	can	also	be	used	as	the	argument.

eventmask	is	an	optional	bitmask	describing	the	type	of	events	you	want	to
check	for,	and	can	be	a	combination	of	the	constants	POLLIN,	POLLPRI,
and	POLLOUT,	described	in	the	table	below.	If	not	specified,	the	default
value	used	will	check	for	all	3	types	of	events.

Constant Meaning
POLLIN There	is	data	to	read
POLLPRI There	is	urgent	data	to	read
POLLOUT Ready	for	output:	writing	will	not	block
POLLERR Error	condition	of	some	sort
POLLHUP Hung	up
POLLNVAL Invalid	request:	descriptor	not	open

Registering	a	file	descriptor	that's	already	registered	is	not	an	error,	and	has
the	same	effect	as	registering	the	descriptor	exactly	once.

unregister(fd)
Remove	a	file	descriptor	being	tracked	by	a	polling	object.	Just	like	the

register()	method,	fd	can	be	an	integer	or	an	object	with	a	fileno()
method	that	returns	an	integer.

Attempting	to	remove	a	file	descriptor	that	was	never	registered	causes	a
KeyError	exception	to	be	raised.

poll([timeout])
Polls	the	set	of	registered	file	descriptors,	and	returns	a	possibly-empty	list
containing	(fd,	event)	2-tuples	for	the	descriptors	that	have	events	or
errors	to	report.	fd	is	the	file	descriptor,	and	event	is	a	bitmask	with	bits	set
for	the	reported	events	for	that	descriptor	--	POLLIN	for	waiting	input,
POLLOUT	to	indicate	that	the	descriptor	can	be	written	to,	and	so	forth.	An
empty	list	indicates	that	the	call	timed	out	and	no	file	descriptors	had	any
events	to	report.	If	timeout	is	given,	it	specifies	the	length	of	time	in
milliseconds	which	the	system	will	wait	for	events	before	returning.	If
timeout	is	omitted,	negative,	or	None,	the	call	will	block	until	there	is	an
event	for	this	poll	object.

Python	Library	Reference
Previous:	7.3	select	Up:	7.3	select	Next:	7.4	thread

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.3.1	Polling	Objects	Up:	7.	Optional	Operating	System	Next:	7.5
threading

7.4	thread	--	Multiple	threads	of
control
This	module	provides	low-level	primitives	for	working	with	multiple	threads
(a.k.a.	light-weight	processes	or	tasks)	--	multiple	threads	of	control	sharing	their
global	data	space.	For	synchronization,	simple	locks	(a.k.a.	mutexes	or	binary
semaphores)	are	provided.

The	module	is	optional.	It	is	supported	on	Windows,	Linux,	SGI	IRIX,	Solaris
2.x,	as	well	as	on	systems	that	have	a	POSIX	thread	(a.k.a.	``pthread'')
implementation.	For	systems	lacking	the	thread	module,	the
dummy_thread	module	is	available.	It	duplicates	this	module's	interface	and
can	be	used	as	a	drop-in	replacement.

It	defines	the	following	constant	and	functions:

exception	error
Raised	on	thread-specific	errors.

LockType

This	is	the	type	of	lock	objects.

start_new_thread(function,	args[,	kwargs])
Start	a	new	thread	and	return	its	identifier.	The	thread	executes	the	function
function	with	the	argument	list	args	(which	must	be	a	tuple).	The	optional
kwargs	argument	specifies	a	dictionary	of	keyword	arguments.	When	the
function	returns,	the	thread	silently	exits.	When	the	function	terminates
with	an	unhandled	exception,	a	stack	trace	is	printed	and	then	the	thread
exits	(but	other	threads	continue	to	run).

interrupt_main()
Raise	a	KeyboardInterrupt	in	the	main	thread.	A	subthread	can	use	this
function	to	interrupt	the	main	thread.	New	in	version	2.3.

exit()

Raise	the	SystemExit	exception.	When	not	caught,	this	will	cause	the
thread	to	exit	silently.

allocate_lock()
Return	a	new	lock	object.	Methods	of	locks	are	described	below.	The	lock
is	initially	unlocked.

get_ident()
Return	the	`thread	identifier'	of	the	current	thread.	This	is	a	nonzero	integer.
Its	value	has	no	direct	meaning;	it	is	intended	as	a	magic	cookie	to	be	used
e.g.	to	index	a	dictionary	of	thread-specific	data.	Thread	identifiers	may	be
recycled	when	a	thread	exits	and	another	thread	is	created.

Lock	objects	have	the	following	methods:

acquire([waitflag])
Without	the	optional	argument,	this	method	acquires	the	lock
unconditionally,	if	necessary	waiting	until	it	is	released	by	another	thread
(only	one	thread	at	a	time	can	acquire	a	lock	--	that's	their	reason	for
existence),	and	returns	None.	If	the	integer	waitflag	argument	is	present,
the	action	depends	on	its	value:	if	it	is	zero,	the	lock	is	only	acquired	if	it
can	be	acquired	immediately	without	waiting,	while	if	it	is	nonzero,	the
lock	is	acquired	unconditionally	as	before.	If	an	argument	is	present,	the
return	value	is	True	if	the	lock	is	acquired	successfully,	False	if	not.

release()
Releases	the	lock.	The	lock	must	have	been	acquired	earlier,	but	not
necessarily	by	the	same	thread.

locked()
Return	the	status	of	the	lock:	True	if	it	has	been	acquired	by	some	thread,
False	if	not.

Caveats:

Threads	interact	strangely	with	interrupts:	the	KeyboardInterrupt
exception	will	be	received	by	an	arbitrary	thread.	(When	the	signal
module	is	available,	interrupts	always	go	to	the	main	thread.)

Calling	sys.exit()	or	raising	the	SystemExit	exception	is	equivalent
to	calling	exit().

Not	all	built-in	functions	that	may	block	waiting	for	I/O	allow	other	threads
to	run.	(The	most	popular	ones	(time.sleep(),	file.read(),
select.select())	work	as	expected.)

It	is	not	possible	to	interrupt	the	acquire()	method	on	a	lock	--	the
KeyboardInterrupt	exception	will	happen	after	the	lock	has	been
acquired.

When	the	main	thread	exits,	it	is	system	defined	whether	the	other	threads
survive.	On	SGI	IRIX	using	the	native	thread	implementation,	they	survive.
On	most	other	systems,	they	are	killed	without	executing	try	...	finally
clauses	or	executing	object	destructors.

When	the	main	thread	exits,	it	does	not	do	any	of	its	usual	cleanup	(except
that	try	...	finally	clauses	are	honored),	and	the	standard	I/O	files	are
not	flushed.

Python	Library	Reference
Previous:	7.3.1	Polling	Objects	Up:	7.	Optional	Operating	System	Next:	7.5
threading

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.4	thread	Up:	7.	Optional	Operating	System	Next:	7.5.1	Lock
Objects

7.5	threading	--	Higher-level
threading	interface
This	module	constructs	higher-level	threading	interfaces	on	top	of	the	lower
level	thread	module.

The	dummy_threading	module	is	provided	for	situations	where
threading	cannot	be	used	because	thread	is	missing.

This	module	defines	the	following	functions	and	objects:

activeCount()
Return	the	number	of	currently	active	Thread	objects.	The	returned	count
is	equal	to	the	length	of	the	list	returned	by	enumerate().	A	function
that	returns	the	number	of	currently	active	threads.

Condition()
A	factory	function	that	returns	a	new	condition	variable	object.	A	condition
variable	allows	one	or	more	threads	to	wait	until	they	are	notified	by
another	thread.

currentThread()
Return	the	current	Thread	object,	corresponding	to	the	caller's	thread	of
control.	If	the	caller's	thread	of	control	was	not	created	through	the
threading	module,	a	dummy	thread	object	with	limited	functionality	is
returned.

enumerate()
Return	a	list	of	all	currently	active	Thread	objects.	The	list	includes
daemonic	threads,	dummy	thread	objects	created	by	currentThread(),
and	the	main	thread.	It	excludes	terminated	threads	and	threads	that	have
not	yet	been	started.

Event()
A	factory	function	that	returns	a	new	event	object.	An	event	manages	a	flag

that	can	be	set	to	true	with	the	set()	method	and	reset	to	false	with	the
clear()	method.	The	wait()	method	blocks	until	the	flag	is	true.

class	local
A	class	that	represents	thread-local	data.	Thread-local	data	are	data	whose
values	are	thread	specific.	To	manage	thread-local	data,	just	create	an
instance	of	local	(or	a	subclass)	and	store	attributes	on	it:

mydata	=	threading.local()

mydata.x	=	1

The	instance's	values	will	be	different	for	separate	threads.

For	more	details	and	extensive	examples,	see	the	documentation	string	of
the	_threading_local	module.

New	in	version	2.4.

Lock()
A	factory	function	that	returns	a	new	primitive	lock	object.	Once	a	thread
has	acquired	it,	subsequent	attempts	to	acquire	it	block,	until	it	is	released;
any	thread	may	release	it.

RLock()
A	factory	function	that	returns	a	new	reentrant	lock	object.	A	reentrant	lock
must	be	released	by	the	thread	that	acquired	it.	Once	a	thread	has	acquired	a
reentrant	lock,	the	same	thread	may	acquire	it	again	without	blocking;	the
thread	must	release	it	once	for	each	time	it	has	acquired	it.

Semaphore([value])
A	factory	function	that	returns	a	new	semaphore	object.	A	semaphore
manages	a	counter	representing	the	number	of	release()	calls	minus	the
number	of	acquire()	calls,	plus	an	initial	value.	The	acquire()
method	blocks	if	necessary	until	it	can	return	without	making	the	counter
negative.	If	not	given,	value	defaults	to	1.

BoundedSemaphore([value])
A	factory	function	that	returns	a	new	bounded	semaphore	object.	A
bounded	semaphore	checks	to	make	sure	its	current	value	doesn't	exceed	its

initial	value.	If	it	does,	ValueError	is	raised.	In	most	situations
semaphores	are	used	to	guard	resources	with	limited	capacity.	If	the
semaphore	is	released	too	many	times	it's	a	sign	of	a	bug.	If	not	given,
value	defaults	to	1.

class	Thread
A	class	that	represents	a	thread	of	control.	This	class	can	be	safely
subclassed	in	a	limited	fashion.

class	Timer
A	thread	that	executes	a	function	after	a	specified	interval	has	passed.

settrace(func)
Set	a	trace	function	for	all	threads	started	from	the	threading	module.
The	func	will	be	passed	to	sys.settrace()	for	each	thread,	before	its
run()	method	is	called.	New	in	version	2.3.

setprofile(func)
Set	a	profile	function	for	all	threads	started	from	the	threading	module.
The	func	will	be	passed	to	sys.setprofile()	for	each	thread,	before
its	run()	method	is	called.	New	in	version	2.3.

Detailed	interfaces	for	the	objects	are	documented	below.

The	design	of	this	module	is	loosely	based	on	Java's	threading	model.	However,
where	Java	makes	locks	and	condition	variables	basic	behavior	of	every	object,
they	are	separate	objects	in	Python.	Python's	Thread	class	supports	a	subset	of
the	behavior	of	Java's	Thread	class;	currently,	there	are	no	priorities,	no	thread
groups,	and	threads	cannot	be	destroyed,	stopped,	suspended,	resumed,	or
interrupted.	The	static	methods	of	Java's	Thread	class,	when	implemented,	are
mapped	to	module-level	functions.

All	of	the	methods	described	below	are	executed	atomically.

Subsections

7.5.1	Lock	Objects
7.5.2	RLock	Objects

7.5.3	Condition	Objects
7.5.4	Semaphore	Objects

7.5.4.1	Semaphore	Example
7.5.5	Event	Objects
7.5.6	Thread	Objects
7.5.7	Timer	Objects

Python	Library	Reference
Previous:	7.4	thread	Up:	7.	Optional	Operating	System	Next:	7.5.1	Lock
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5	threading	Up:	7.5	threading	Next:	7.5.2	RLock	Objects

7.5.1	Lock	Objects
A	primitive	lock	is	a	synchronization	primitive	that	is	not	owned	by	a	particular
thread	when	locked.	In	Python,	it	is	currently	the	lowest	level	synchronization
primitive	available,	implemented	directly	by	the	thread	extension	module.

A	primitive	lock	is	in	one	of	two	states,	``locked''	or	``unlocked''.	It	is	created	in
the	unlocked	state.	It	has	two	basic	methods,	acquire()	and	release().
When	the	state	is	unlocked,	acquire()	changes	the	state	to	locked	and	returns
immediately.	When	the	state	is	locked,	acquire()	blocks	until	a	call	to
release()	in	another	thread	changes	it	to	unlocked,	then	the	acquire()
call	resets	it	to	locked	and	returns.	The	release()	method	should	only	be
called	in	the	locked	state;	it	changes	the	state	to	unlocked	and	returns
immediately.	When	more	than	one	thread	is	blocked	in	acquire()	waiting	for
the	state	to	turn	to	unlocked,	only	one	thread	proceeds	when	a	release()	call
resets	the	state	to	unlocked;	which	one	of	the	waiting	threads	proceeds	is	not
defined,	and	may	vary	across	implementations.

All	methods	are	executed	atomically.

acquire([blocking	=	1])
Acquire	a	lock,	blocking	or	non-blocking.

When	invoked	without	arguments,	block	until	the	lock	is	unlocked,	then	set
it	to	locked,	and	return.	There	is	no	return	value	in	this	case.

When	invoked	with	the	blocking	argument	set	to	true,	do	the	same	thing	as
when	called	without	arguments,	and	return	true.

When	invoked	with	the	blocking	argument	set	to	false,	do	not	block.	If	a
call	without	an	argument	would	block,	return	false	immediately;	otherwise,
do	the	same	thing	as	when	called	without	arguments,	and	return	true.

release()
Release	a	lock.

When	the	lock	is	locked,	reset	it	to	unlocked,	and	return.	If	any	other

threads	are	blocked	waiting	for	the	lock	to	become	unlocked,	allow	exactly
one	of	them	to	proceed.

Do	not	call	this	method	when	the	lock	is	unlocked.

There	is	no	return	value.

Python	Library	Reference
Previous:	7.5	threading	Up:	7.5	threading	Next:	7.5.2	RLock	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.1	Lock	Objects	Up:	7.5	threading	Next:	7.5.3	Condition	Objects

7.5.2	RLock	Objects
A	reentrant	lock	is	a	synchronization	primitive	that	may	be	acquired	multiple
times	by	the	same	thread.	Internally,	it	uses	the	concepts	of	``owning	thread''	and
``recursion	level''	in	addition	to	the	locked/unlocked	state	used	by	primitive
locks.	In	the	locked	state,	some	thread	owns	the	lock;	in	the	unlocked	state,	no
thread	owns	it.

To	lock	the	lock,	a	thread	calls	its	acquire()	method;	this	returns	once	the
thread	owns	the	lock.	To	unlock	the	lock,	a	thread	calls	its	release()	method.
acquire()/release()	call	pairs	may	be	nested;	only	the	final	release()
(the	release()	of	the	outermost	pair)	resets	the	lock	to	unlocked	and	allows
another	thread	blocked	in	acquire()	to	proceed.

acquire([blocking	=	1])
Acquire	a	lock,	blocking	or	non-blocking.

When	invoked	without	arguments:	if	this	thread	already	owns	the	lock,
increment	the	recursion	level	by	one,	and	return	immediately.	Otherwise,	if
another	thread	owns	the	lock,	block	until	the	lock	is	unlocked.	Once	the
lock	is	unlocked	(not	owned	by	any	thread),	then	grab	ownership,	set	the
recursion	level	to	one,	and	return.	If	more	than	one	thread	is	blocked
waiting	until	the	lock	is	unlocked,	only	one	at	a	time	will	be	able	to	grab
ownership	of	the	lock.	There	is	no	return	value	in	this	case.

When	invoked	with	the	blocking	argument	set	to	true,	do	the	same	thing	as
when	called	without	arguments,	and	return	true.

When	invoked	with	the	blocking	argument	set	to	false,	do	not	block.	If	a
call	without	an	argument	would	block,	return	false	immediately;	otherwise,
do	the	same	thing	as	when	called	without	arguments,	and	return	true.

release()
Release	a	lock,	decrementing	the	recursion	level.	If	after	the	decrement	it	is
zero,	reset	the	lock	to	unlocked	(not	owned	by	any	thread),	and	if	any	other
threads	are	blocked	waiting	for	the	lock	to	become	unlocked,	allow	exactly
one	of	them	to	proceed.	If	after	the	decrement	the	recursion	level	is	still

nonzero,	the	lock	remains	locked	and	owned	by	the	calling	thread.

Only	call	this	method	when	the	calling	thread	owns	the	lock.	Do	not	call
this	method	when	the	lock	is	unlocked.

There	is	no	return	value.

Python	Library	Reference
Previous:	7.5.1	Lock	Objects	Up:	7.5	threading	Next:	7.5.3	Condition	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.2	RLock	Objects	Up:	7.5	threading	Next:	7.5.4	Semaphore
Objects

7.5.3	Condition	Objects
A	condition	variable	is	always	associated	with	some	kind	of	lock;	this	can	be
passed	in	or	one	will	be	created	by	default.	(Passing	one	in	is	useful	when
several	condition	variables	must	share	the	same	lock.)

A	condition	variable	has	acquire()	and	release()	methods	that	call	the
corresponding	methods	of	the	associated	lock.	It	also	has	a	wait()	method,
and	notify()	and	notifyAll()	methods.	These	three	must	only	be	called
when	the	calling	thread	has	acquired	the	lock.

The	wait()	method	releases	the	lock,	and	then	blocks	until	it	is	awakened	by	a
notify()	or	notifyAll()	call	for	the	same	condition	variable	in	another
thread.	Once	awakened,	it	re-acquires	the	lock	and	returns.	It	is	also	possible	to
specify	a	timeout.

The	notify()	method	wakes	up	one	of	the	threads	waiting	for	the	condition
variable,	if	any	are	waiting.	The	notifyAll()	method	wakes	up	all	threads
waiting	for	the	condition	variable.

Note:	the	notify()	and	notifyAll()	methods	don't	release	the	lock;	this
means	that	the	thread	or	threads	awakened	will	not	return	from	their	wait()
call	immediately,	but	only	when	the	thread	that	called	notify()	or
notifyAll()	finally	relinquishes	ownership	of	the	lock.

Tip:	the	typical	programming	style	using	condition	variables	uses	the	lock	to
synchronize	access	to	some	shared	state;	threads	that	are	interested	in	a
particular	change	of	state	call	wait()	repeatedly	until	they	see	the	desired
state,	while	threads	that	modify	the	state	call	notify()	or	notifyAll()
when	they	change	the	state	in	such	a	way	that	it	could	possibly	be	a	desired	state
for	one	of	the	waiters.	For	example,	the	following	code	is	a	generic	producer-
consumer	situation	with	unlimited	buffer	capacity:

#	Consume	one	item

cv.acquire()

while	not	an_item_is_available():

				cv.wait()

get_an_available_item()

cv.release()

#	Produce	one	item

cv.acquire()

make_an_item_available()

cv.notify()

cv.release()

To	choose	between	notify()	and	notifyAll(),	consider	whether	one	state
change	can	be	interesting	for	only	one	or	several	waiting	threads.	E.g.	in	a
typical	producer-consumer	situation,	adding	one	item	to	the	buffer	only	needs	to
wake	up	one	consumer	thread.

class	Condition([lock])
If	the	lock	argument	is	given	and	not	None,	it	must	be	a	Lock	or	RLock
object,	and	it	is	used	as	the	underlying	lock.	Otherwise,	a	new	RLock
object	is	created	and	used	as	the	underlying	lock.

acquire(*args)
Acquire	the	underlying	lock.	This	method	calls	the	corresponding	method
on	the	underlying	lock;	the	return	value	is	whatever	that	method	returns.

release()
Release	the	underlying	lock.	This	method	calls	the	corresponding	method
on	the	underlying	lock;	there	is	no	return	value.

wait([timeout])
Wait	until	notified	or	until	a	timeout	occurs.	This	must	only	be	called	when
the	calling	thread	has	acquired	the	lock.

This	method	releases	the	underlying	lock,	and	then	blocks	until	it	is
awakened	by	a	notify()	or	notifyAll()	call	for	the	same	condition
variable	in	another	thread,	or	until	the	optional	timeout	occurs.	Once
awakened	or	timed	out,	it	re-acquires	the	lock	and	returns.

When	the	timeout	argument	is	present	and	not	None,	it	should	be	a	floating
point	number	specifying	a	timeout	for	the	operation	in	seconds	(or	fractions
thereof).

When	the	underlying	lock	is	an	RLock,	it	is	not	released	using	its

release()	method,	since	this	may	not	actually	unlock	the	lock	when	it
was	acquired	multiple	times	recursively.	Instead,	an	internal	interface	of	the
RLock	class	is	used,	which	really	unlocks	it	even	when	it	has	been
recursively	acquired	several	times.	Another	internal	interface	is	then	used	to
restore	the	recursion	level	when	the	lock	is	reacquired.

notify()
Wake	up	a	thread	waiting	on	this	condition,	if	any.	This	must	only	be	called
when	the	calling	thread	has	acquired	the	lock.

This	method	wakes	up	one	of	the	threads	waiting	for	the	condition	variable,
if	any	are	waiting;	it	is	a	no-op	if	no	threads	are	waiting.

The	current	implementation	wakes	up	exactly	one	thread,	if	any	are
waiting.	However,	it's	not	safe	to	rely	on	this	behavior.	A	future,	optimized
implementation	may	occasionally	wake	up	more	than	one	thread.

Note:	the	awakened	thread	does	not	actually	return	from	its	wait()	call
until	it	can	reacquire	the	lock.	Since	notify()	does	not	release	the	lock,
its	caller	should.

notifyAll()
Wake	up	all	threads	waiting	on	this	condition.	This	method	acts	like
notify(),	but	wakes	up	all	waiting	threads	instead	of	one.

Python	Library	Reference
Previous:	7.5.2	RLock	Objects	Up:	7.5	threading	Next:	7.5.4	Semaphore
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.3	Condition	Objects	Up:	7.5	threading	Next:	7.5.4.1	Semaphore
Example

7.5.4	Semaphore	Objects
This	is	one	of	the	oldest	synchronization	primitives	in	the	history	of	computer
science,	invented	by	the	early	Dutch	computer	scientist	Edsger	W.	Dijkstra	(he
used	P()	and	V()	instead	of	acquire()	and	release()).

A	semaphore	manages	an	internal	counter	which	is	decremented	by	each
acquire()	call	and	incremented	by	each	release()	call.	The	counter	can
never	go	below	zero;	when	acquire()	finds	that	it	is	zero,	it	blocks,	waiting
until	some	other	thread	calls	release().

class	Semaphore([value])
The	optional	argument	gives	the	initial	value	for	the	internal	counter;	it
defaults	to	1.

acquire([blocking])
Acquire	a	semaphore.

When	invoked	without	arguments:	if	the	internal	counter	is	larger	than	zero
on	entry,	decrement	it	by	one	and	return	immediately.	If	it	is	zero	on	entry,
block,	waiting	until	some	other	thread	has	called	release()	to	make	it
larger	than	zero.	This	is	done	with	proper	interlocking	so	that	if	multiple
acquire()	calls	are	blocked,	release()	will	wake	exactly	one	of
them	up.	The	implementation	may	pick	one	at	random,	so	the	order	in
which	blocked	threads	are	awakened	should	not	be	relied	on.	There	is	no
return	value	in	this	case.

When	invoked	with	blocking	set	to	true,	do	the	same	thing	as	when	called
without	arguments,	and	return	true.

When	invoked	with	blocking	set	to	false,	do	not	block.	If	a	call	without	an
argument	would	block,	return	false	immediately;	otherwise,	do	the	same
thing	as	when	called	without	arguments,	and	return	true.

release()
Release	a	semaphore,	incrementing	the	internal	counter	by	one.	When	it
was	zero	on	entry	and	another	thread	is	waiting	for	it	to	become	larger	than

zero	again,	wake	up	that	thread.

Subsections

7.5.4.1	Semaphore	Example

Python	Library	Reference
Previous:	7.5.3	Condition	Objects	Up:	7.5	threading	Next:	7.5.4.1	Semaphore
Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.4.1	Semaphore	Example	Up:	7.5	threading	Next:	7.5.6	Thread
Objects

7.5.5	Event	Objects
This	is	one	of	the	simplest	mechanisms	for	communication	between	threads:	one
thread	signals	an	event	and	other	threads	wait	for	it.

An	event	object	manages	an	internal	flag	that	can	be	set	to	true	with	the	set()
method	and	reset	to	false	with	the	clear()	method.	The	wait()	method
blocks	until	the	flag	is	true.

class	Event()
The	internal	flag	is	initially	false.

isSet()
Return	true	if	and	only	if	the	internal	flag	is	true.

set()
Set	the	internal	flag	to	true.	All	threads	waiting	for	it	to	become	true	are
awakened.	Threads	that	call	wait()	once	the	flag	is	true	will	not	block	at
all.

clear()
Reset	the	internal	flag	to	false.	Subsequently,	threads	calling	wait()	will
block	until	set()	is	called	to	set	the	internal	flag	to	true	again.

wait([timeout])
Block	until	the	internal	flag	is	true.	If	the	internal	flag	is	true	on	entry,
return	immediately.	Otherwise,	block	until	another	thread	calls	set()	to
set	the	flag	to	true,	or	until	the	optional	timeout	occurs.

When	the	timeout	argument	is	present	and	not	None,	it	should	be	a	floating
point	number	specifying	a	timeout	for	the	operation	in	seconds	(or	fractions
thereof).

Python	Library	Reference
Previous:	7.5.4.1	Semaphore	Example	Up:	7.5	threading	Next:	7.5.6	Thread

Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.5	Event	Objects	Up:	7.5	threading	Next:	7.5.7	Timer	Objects

7.5.6	Thread	Objects
This	class	represents	an	activity	that	is	run	in	a	separate	thread	of	control.	There
are	two	ways	to	specify	the	activity:	by	passing	a	callable	object	to	the
constructor,	or	by	overriding	the	run()	method	in	a	subclass.	No	other	methods
(except	for	the	constructor)	should	be	overridden	in	a	subclass.	In	other	words,
only	override	the	__init__()	and	run()	methods	of	this	class.

Once	a	thread	object	is	created,	its	activity	must	be	started	by	calling	the	thread's
start()	method.	This	invokes	the	run()	method	in	a	separate	thread	of
control.

Once	the	thread's	activity	is	started,	the	thread	is	considered	'alive'	and	'active'
(these	concepts	are	almost,	but	not	quite	exactly,	the	same;	their	definition	is
intentionally	somewhat	vague).	It	stops	being	alive	and	active	when	its	run()
method	terminates	-	either	normally,	or	by	raising	an	unhandled	exception.	The
isAlive()	method	tests	whether	the	thread	is	alive.

Other	threads	can	call	a	thread's	join()	method.	This	blocks	the	calling	thread
until	the	thread	whose	join()	method	is	called	is	terminated.

A	thread	has	a	name.	The	name	can	be	passed	to	the	constructor,	set	with	the
setName()	method,	and	retrieved	with	the	getName()	method.

A	thread	can	be	flagged	as	a	``daemon	thread''.	The	significance	of	this	flag	is
that	the	entire	Python	program	exits	when	only	daemon	threads	are	left.	The
initial	value	is	inherited	from	the	creating	thread.	The	flag	can	be	set	with	the
setDaemon()	method	and	retrieved	with	the	isDaemon()	method.

There	is	a	``main	thread''	object;	this	corresponds	to	the	initial	thread	of	control
in	the	Python	program.	It	is	not	a	daemon	thread.

There	is	the	possibility	that	``dummy	thread	objects''	are	created.	These	are
thread	objects	corresponding	to	``alien	threads''.	These	are	threads	of	control
started	outside	the	threading	module,	such	as	directly	from	C	code.	Dummy
thread	objects	have	limited	functionality;	they	are	always	considered	alive,
active,	and	daemonic,	and	cannot	be	join()ed.	They	are	never	deleted,	since	it
is	impossible	to	detect	the	termination	of	alien	threads.

class	Thread(group=None,	target=None,	name=None,	args=(),	kwargs={})
This	constructor	should	always	be	called	with	keyword	arguments.
Arguments	are:

group	should	be	None;	reserved	for	future	extension	when	a
ThreadGroup	class	is	implemented.

target	is	the	callable	object	to	be	invoked	by	the	run()	method.	Defaults
to	None,	meaning	nothing	is	called.

name	is	the	thread	name.	By	default,	a	unique	name	is	constructed	of	the
form	``Thread-N''	where	N	is	a	small	decimal	number.

args	is	the	argument	tuple	for	the	target	invocation.	Defaults	to	().

kwargs	is	a	dictionary	of	keyword	arguments	for	the	target	invocation.
Defaults	to	{}.

If	the	subclass	overrides	the	constructor,	it	must	make	sure	to	invoke	the
base	class	constructor	(Thread.__init__())	before	doing	anything
else	to	the	thread.

start()
Start	the	thread's	activity.

This	must	be	called	at	most	once	per	thread	object.	It	arranges	for	the
object's	run()	method	to	be	invoked	in	a	separate	thread	of	control.

run()
Method	representing	the	thread's	activity.

You	may	override	this	method	in	a	subclass.	The	standard	run()	method
invokes	the	callable	object	passed	to	the	object's	constructor	as	the	target
argument,	if	any,	with	sequential	and	keyword	arguments	taken	from	the
args	and	kwargs	arguments,	respectively.

join([timeout])
Wait	until	the	thread	terminates.	This	blocks	the	calling	thread	until	the

thread	whose	join()	method	is	called	terminates	-	either	normally	or
through	an	unhandled	exception	-	or	until	the	optional	timeout	occurs.

When	the	timeout	argument	is	present	and	not	None,	it	should	be	a	floating
point	number	specifying	a	timeout	for	the	operation	in	seconds	(or	fractions
thereof).

A	thread	can	be	join()ed	many	times.

A	thread	cannot	join	itself	because	this	would	cause	a	deadlock.

It	is	an	error	to	attempt	to	join()	a	thread	before	it	has	been	started.

getName()
Return	the	thread's	name.

setName(name)
Set	the	thread's	name.

The	name	is	a	string	used	for	identification	purposes	only.	It	has	no
semantics.	Multiple	threads	may	be	given	the	same	name.	The	initial	name
is	set	by	the	constructor.

isAlive()
Return	whether	the	thread	is	alive.

Roughly,	a	thread	is	alive	from	the	moment	the	start()	method	returns
until	its	run()	method	terminates.

isDaemon()
Return	the	thread's	daemon	flag.

setDaemon(daemonic)
Set	the	thread's	daemon	flag	to	the	Boolean	value	daemonic.	This	must	be
called	before	start()	is	called.

The	initial	value	is	inherited	from	the	creating	thread.

The	entire	Python	program	exits	when	no	active	non-daemon	threads	are

left.

Python	Library	Reference
Previous:	7.5.5	Event	Objects	Up:	7.5	threading	Next:	7.5.7	Timer	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.6	Thread	Objects	Up:	7.5	threading	Next:	7.6	dummy_thread

7.5.7	Timer	Objects
This	class	represents	an	action	that	should	be	run	only	after	a	certain	amount	of
time	has	passed	--	a	timer.	Timer	is	a	subclass	of	Thread	and	as	such	also
functions	as	an	example	of	creating	custom	threads.

Timers	are	started,	as	with	threads,	by	calling	their	start()	method.	The	timer
can	be	stopped	(before	its	action	has	begun)	by	calling	the	cancel()	method.
The	interval	the	timer	will	wait	before	executing	its	action	may	not	be	exactly
the	same	as	the	interval	specified	by	the	user.

For	example:

def	hello():

				print	"hello,	world"

t	=	Timer(30.0,	hello)

t.start()	#	after	30	seconds,	"hello,	world"	will	be	printed

class	Timer(interval,	function,	args=[],	kwargs={})
Create	a	timer	that	will	run	function	with	arguments	args	and	keyword
arguments	kwargs,	after	interval	seconds	have	passed.

cancel()
Stop	the	timer,	and	cancel	the	execution	of	the	timer's	action.	This	will	only
work	if	the	timer	is	still	in	its	waiting	stage.

Python	Library	Reference
Previous:	7.5.6	Thread	Objects	Up:	7.5	threading	Next:	7.6	dummy_thread

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.7	Timer	Objects	Up:	7.	Optional	Operating	System	Next:	7.7
dummy_threading

7.6	dummy_thread	--	Drop-in
replacement	for	the	thread	module
This	module	provides	a	duplicate	interface	to	the	thread	module.	It	is	meant	to
be	imported	when	the	thread	module	is	not	provided	on	a	platform.

Suggested	usage	is:

try:

				import	thread	as	_thread

except	ImportError:

				import	dummy_thread	as	_thread

Be	careful	to	not	use	this	module	where	deadlock	might	occur	from	a	thread
being	created	that	blocks	waiting	for	another	thread	to	be	created.	This	often
occurs	with	blocking	I/O.

Python	Library	Reference
Previous:	7.5.7	Timer	Objects	Up:	7.	Optional	Operating	System	Next:	7.7
dummy_threading

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.6	dummy_thread	Up:	7.	Optional	Operating	System	Next:	7.8
Queue

7.7	dummy_threading	--	Drop-in
replacement	for	the	threading
module
This	module	provides	a	duplicate	interface	to	the	threading	module.	It	is
meant	to	be	imported	when	the	thread	module	is	not	provided	on	a	platform.

Suggested	usage	is:

try:

				import	threading	as	_threading

except	ImportError:

				import	dummy_threading	as	_threading

Be	careful	to	not	use	this	module	where	deadlock	might	occur	from	a	thread
being	created	that	blocks	waiting	for	another	thread	to	be	created.	This	often
occurs	with	blocking	I/O.

Python	Library	Reference
Previous:	7.6	dummy_thread	Up:	7.	Optional	Operating	System	Next:	7.8
Queue

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.7	dummy_threading	Up:	7.	Optional	Operating	System	Next:	7.8.1
Queue	Objects

7.8	Queue	--	A	synchronized	queue
class
The	Queue	module	implements	a	multi-producer,	multi-consumer	FIFO	queue.
It	is	especially	useful	in	threads	programming	when	information	must	be
exchanged	safely	between	multiple	threads.	The	Queue	class	in	this	module
implements	all	the	required	locking	semantics.	It	depends	on	the	availability	of
thread	support	in	Python.

The	Queue	module	defines	the	following	class	and	exception:

class	Queue(maxsize)
Constructor	for	the	class.	maxsize	is	an	integer	that	sets	the	upperbound
limit	on	the	number	of	items	that	can	be	placed	in	the	queue.	Insertion	will
block	once	this	size	has	been	reached,	until	queue	items	are	consumed.	If
maxsize	is	less	than	or	equal	to	zero,	the	queue	size	is	infinite.

exception	Empty
Exception	raised	when	non-blocking	get()	(or	get_nowait())	is
called	on	a	Queue	object	which	is	empty.

exception	Full
Exception	raised	when	non-blocking	put()	(or	put_nowait())	is
called	on	a	Queue	object	which	is	full.

Subsections

7.8.1	Queue	Objects

Python	Library	Reference
Previous:	7.7	dummy_threading	Up:	7.	Optional	Operating	System	Next:	7.8.1
Queue	Objects

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.8	Queue	Up:	7.8	Queue	Next:	7.9	mmap

7.8.1	Queue	Objects
Class	Queue	implements	queue	objects	and	has	the	methods	described	below.
This	class	can	be	derived	from	in	order	to	implement	other	queue	organizations
(e.g.	stack)	but	the	inheritable	interface	is	not	described	here.	See	the	source
code	for	details.	The	public	methods	are:

qsize()
Return	the	approximate	size	of	the	queue.	Because	of	multithreading
semantics,	this	number	is	not	reliable.

empty()
Return	True	if	the	queue	is	empty,	False	otherwise.	Because	of
multithreading	semantics,	this	is	not	reliable.

full()
Return	True	if	the	queue	is	full,	False	otherwise.	Because	of
multithreading	semantics,	this	is	not	reliable.

put(item[,	block[,	timeout]])
Put	item	into	the	queue.	If	optional	args	block	is	true	and	timeout	is	None
(the	default),	block	if	necessary	until	a	free	slot	is	available.	If	timeout	is	a
positive	number,	it	blocks	at	most	timeout	seconds	and	raises	the	Full
exception	if	no	free	slot	was	available	within	that	time.	Otherwise	(block	is
false),	put	an	item	on	the	queue	if	a	free	slot	is	immediately	available,	else
raise	the	Full	exception	(timeout	is	ignored	in	that	case).

New	in	version	2.3:	the	timeout	parameter.

put_nowait(item)
Equivalent	to	put(item,	False).

get([block[,	timeout]])
Remove	and	return	an	item	from	the	queue.	If	optional	args	block	is	true
and	timeout	is	None	(the	default),	block	if	necessary	until	an	item	is
available.	If	timeout	is	a	positive	number,	it	blocks	at	most	timeout	seconds

and	raises	the	Empty	exception	if	no	item	was	available	within	that	time.
Otherwise	(block	is	false),	return	an	item	if	one	is	immediately	available,
else	raise	the	Empty	exception	(timeout	is	ignored	in	that	case).

New	in	version	2.3:	the	timeout	parameter.

get_nowait()
Equivalent	to	get(False).

Python	Library	Reference
Previous:	7.8	Queue	Up:	7.8	Queue	Next:	7.9	mmap

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.8.1	Queue	Objects	Up:	7.	Optional	Operating	System	Next:	7.10
anydbm

7.9	mmap	--	Memory-mapped	file
support
Memory-mapped	file	objects	behave	like	both	strings	and	like	file	objects.
Unlike	normal	string	objects,	however,	these	are	mutable.	You	can	use	mmap
objects	in	most	places	where	strings	are	expected;	for	example,	you	can	use	the
re	module	to	search	through	a	memory-mapped	file.	Since	they're	mutable,	you
can	change	a	single	character	by	doing	obj[index]	=	'a',	or	change	a
substring	by	assigning	to	a	slice:	obj[i1:i2]	=	'...'.	You	can	also	read
and	write	data	starting	at	the	current	file	position,	and	seek()	through	the	file
to	different	positions.

A	memory-mapped	file	is	created	by	the	mmap()	function,	which	is	different	on
UNIX	and	on	Windows.	In	either	case	you	must	provide	a	file	descriptor	for	a	file
opened	for	update.	If	you	wish	to	map	an	existing	Python	file	object,	use	its
fileno()	method	to	obtain	the	correct	value	for	the	fileno	parameter.
Otherwise,	you	can	open	the	file	using	the	os.open()	function,	which	returns
a	file	descriptor	directly	(the	file	still	needs	to	be	closed	when	done).

For	both	the	UNIX	and	Windows	versions	of	the	function,	access	may	be
specified	as	an	optional	keyword	parameter.	access	accepts	one	of	three	values:
ACCESS_READ,	ACCESS_WRITE,	or	ACCESS_COPY	to	specify	readonly,
write-through	or	copy-on-write	memory	respectively.	access	can	be	used	on	both
UNIX	and	Windows.	If	access	is	not	specified,	Windows	mmap	returns	a	write-
through	mapping.	The	initial	memory	values	for	all	three	access	types	are	taken
from	the	specified	file.	Assignment	to	an	ACCESS_READ	memory	map	raises	a
TypeError	exception.	Assignment	to	an	ACCESS_WRITE	memory	map
affects	both	memory	and	the	underlying	file.	Assigment	to	an	ACCESS_COPY
memory	map	affects	memory	but	does	not	update	the	underlying	file.

mmap(fileno,	length[,	tagname[,	access]])
(Windows	version)	Maps	length	bytes	from	the	file	specified	by	the	file
handle	fileno,	and	returns	a	mmap	object.	If	length	is	larger	than	the	current
size	of	the	file,	the	file	is	extended	to	contain	length	bytes.	If	length	is	0,	the
maximum	length	of	the	map	is	the	current	size	of	the	file,	except	that	if	the

file	is	empty	Windows	raises	an	exception	(you	cannot	create	an	empty
mapping	on	Windows).

tagname,	if	specified	and	not	None,	is	a	string	giving	a	tag	name	for	the
mapping.	Windows	allows	you	to	have	many	different	mappings	against	the
same	file.	If	you	specify	the	name	of	an	existing	tag,	that	tag	is	opened,
otherwise	a	new	tag	of	this	name	is	created.	If	this	parameter	is	omitted	or
None,	the	mapping	is	created	without	a	name.	Avoiding	the	use	of	the	tag
parameter	will	assist	in	keeping	your	code	portable	between	UNIX	and
Windows.

mmap(fileno,	length[,	flags[,	prot[,	access]]])
(UNIX	version)	Maps	length	bytes	from	the	file	specified	by	the	file
descriptor	fileno,	and	returns	a	mmap	object.

flags	specifies	the	nature	of	the	mapping.	MAP_PRIVATE	creates	a	private
copy-on-write	mapping,	so	changes	to	the	contents	of	the	mmap	object	will
be	private	to	this	process,	and	MAP_SHARED	creates	a	mapping	that's
shared	with	all	other	processes	mapping	the	same	areas	of	the	file.	The
default	value	is	MAP_SHARED.

prot,	if	specified,	gives	the	desired	memory	protection;	the	two	most	useful
values	are	PROT_READ	and	PROT_WRITE,	to	specify	that	the	pages	may
be	read	or	written.	prot	defaults	to	PROT_READ	|	PROT_WRITE.

access	may	be	specified	in	lieu	of	flags	and	prot	as	an	optional	keyword
parameter.	It	is	an	error	to	specify	both	flags,	prot	and	access.	See	the
description	of	access	above	for	information	on	how	to	use	this	parameter.

Memory-mapped	file	objects	support	the	following	methods:

close()
Close	the	file.	Subsequent	calls	to	other	methods	of	the	object	will	result	in
an	exception	being	raised.

find(string[,	start])
Returns	the	lowest	index	in	the	object	where	the	substring	string	is	found.
Returns	-1	on	failure.	start	is	the	index	at	which	the	search	begins,	and

defaults	to	zero.

flush([offset,	size])
Flushes	changes	made	to	the	in-memory	copy	of	a	file	back	to	disk.	Without
use	of	this	call	there	is	no	guarantee	that	changes	are	written	back	before
the	object	is	destroyed.	If	offset	and	size	are	specified,	only	changes	to	the
given	range	of	bytes	will	be	flushed	to	disk;	otherwise,	the	whole	extent	of
the	mapping	is	flushed.

move(dest,	src,	count)
Copy	the	count	bytes	starting	at	offset	src	to	the	destination	index	dest.	If
the	mmap	was	created	with	ACCESS_READ,	then	calls	to	move	will	throw
a	TypeError	exception.

read(num)
Return	a	string	containing	up	to	num	bytes	starting	from	the	current	file
position;	the	file	position	is	updated	to	point	after	the	bytes	that	were
returned.

read_byte()
Returns	a	string	of	length	1	containing	the	character	at	the	current	file
position,	and	advances	the	file	position	by	1.

readline()
Returns	a	single	line,	starting	at	the	current	file	position	and	up	to	the	next
newline.

resize(newsize)
If	the	mmap	was	created	with	ACCESS_READ	or	ACCESS_COPY,	resizing
the	map	will	throw	a	TypeError	exception.

seek(pos[,	whence])
Set	the	file's	current	position.	whence	argument	is	optional	and	defaults	to	0
(absolute	file	positioning);	other	values	are	1	(seek	relative	to	the	current
position)	and	2	(seek	relative	to	the	file's	end).

size()

Return	the	length	of	the	file,	which	can	be	larger	than	the	size	of	the
memory-mapped	area.

tell()
Returns	the	current	position	of	the	file	pointer.

write(string)
Write	the	bytes	in	string	into	memory	at	the	current	position	of	the	file
pointer;	the	file	position	is	updated	to	point	after	the	bytes	that	were	written.
If	the	mmap	was	created	with	ACCESS_READ,	then	writing	to	it	will	throw
a	TypeError	exception.

write_byte(byte)
Write	the	single-character	string	byte	into	memory	at	the	current	position	of
the	file	pointer;	the	file	position	is	advanced	by	1.If	the	mmap	was	created
with	ACCESS_READ,	then	writing	to	it	will	throw	a	TypeError
exception.

Python	Library	Reference
Previous:	7.8.1	Queue	Objects	Up:	7.	Optional	Operating	System	Next:	7.10
anydbm

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.9	mmap	Up:	7.	Optional	Operating	System	Next:	7.11	dbhash

7.10	anydbm	--	Generic	access	to
DBM-style	databases
anydbm	is	a	generic	interface	to	variants	of	the	DBM	database	--	dbhash
(requires	bsddb),	gdbm,	or	dbm.	If	none	of	these	modules	is	installed,	the
slow-but-simple	implementation	in	module	dumbdbm	will	be	used.

open(filename[,	flag[,	mode]])
Open	the	database	file	filename	and	return	a	corresponding	object.

If	the	database	file	already	exists,	the	whichdb	module	is	used	to
determine	its	type	and	the	appropriate	module	is	used;	if	it	does	not	exist,
the	first	module	listed	above	that	can	be	imported	is	used.

The	optional	flag	argument	can	be	'r'	to	open	an	existing	database	for
reading	only,	'w'	to	open	an	existing	database	for	reading	and	writing,
'c'	to	create	the	database	if	it	doesn't	exist,	or	'n',	which	will	always
create	a	new	empty	database.	If	not	specified,	the	default	value	is	'r'.

The	optional	mode	argument	is	the	UNIX	mode	of	the	file,	used	only	when
the	database	has	to	be	created.	It	defaults	to	octal	0666	(and	will	be
modified	by	the	prevailing	umask).

exception	error
A	tuple	containing	the	exceptions	that	can	be	raised	by	each	of	the
supported	modules,	with	a	unique	exception	anydbm.error	as	the	first
item	--	the	latter	is	used	when	anydbm.error	is	raised.

The	object	returned	by	open()	supports	most	of	the	same	functionality	as
dictionaries;	keys	and	their	corresponding	values	can	be	stored,	retrieved,	and
deleted,	and	the	has_key()	and	keys()	methods	are	available.	Keys	and
values	must	always	be	strings.

See	Also:

Module	dbhash:
BSD	db	database	interface.

Module	dbm:
Standard	UNIX	database	interface.

Module	dumbdbm:
Portable	implementation	of	the	dbm	interface.

Module	gdbm:
GNU	database	interface,	based	on	the	dbm	interface.

Module	shelve:
General	object	persistence	built	on	top	of	the	Python	dbm	interface.

Module	whichdb:
Utility	module	used	to	determine	the	type	of	an	existing	database.

Python	Library	Reference
Previous:	7.9	mmap	Up:	7.	Optional	Operating	System	Next:	7.11	dbhash

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.10	anydbm	Up:	7.	Optional	Operating	System	Next:	7.11.1
Database	Objects

7.11	dbhash	--	DBM-style	interface	to
the	BSD	database	library
Availability:	Unix,	Windows.

The	dbhash	module	provides	a	function	to	open	databases	using	the	BSD	db
library.	This	module	mirrors	the	interface	of	the	other	Python	database	modules
that	provide	access	to	DBM-style	databases.	The	bsddb	module	is	required	to
use	dbhash.

This	module	provides	an	exception	and	a	function:

exception	error
Exception	raised	on	database	errors	other	than	KeyError.	It	is	a	synonym
for	bsddb.error.

open(path[,	flag[,	mode]])
Open	a	db	database	and	return	the	database	object.	The	path	argument	is
the	name	of	the	database	file.

The	flag	argument	can	be	'r'	(the	default),	'w',	'c'	(which	creates	the
database	if	it	doesn't	exist),	or	'n'	(which	always	creates	a	new	empty
database).	For	platforms	on	which	the	BSD	db	library	supports	locking,	an
"l"	can	be	appended	to	indicate	that	locking	should	be	used.

The	optional	mode	parameter	is	used	to	indicate	the	UNIX	permission	bits
that	should	be	set	if	a	new	database	must	be	created;	this	will	be	masked	by
the	current	umask	value	for	the	process.

See	Also:

Module	anydbm:
Generic	interface	to	dbm-style	databases.

Module	bsddb:
Lower-level	interface	to	the	BSD	db	library.

Module	whichdb:
Utility	module	used	to	determine	the	type	of	an	existing	database.

Subsections

7.11.1	Database	Objects

Python	Library	Reference
Previous:	7.10	anydbm	Up:	7.	Optional	Operating	System	Next:	7.11.1
Database	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.11	dbhash	Up:	7.11	dbhash	Next:	7.12	whichdb

7.11.1	Database	Objects
The	database	objects	returned	by	open()	provide	the	methods	common	to	all
the	DBM-style	databases	and	mapping	objects.	The	following	methods	are
available	in	addition	to	the	standard	methods.

first()
It's	possible	to	loop	over	every	key/value	pair	in	the	database	using	this
method	and	the	next()	method.	The	traversal	is	ordered	by	the	databases
internal	hash	values,	and	won't	be	sorted	by	the	key	values.	This	method
returns	the	starting	key.

last()
Return	the	last	key/value	pair	in	a	database	traversal.	This	may	be	used	to
begin	a	reverse-order	traversal;	see	previous().

next()
Returns	the	key	next	key/value	pair	in	a	database	traversal.	The	following
code	prints	every	key	in	the	database	db,	without	having	to	create	a	list	in
memory	that	contains	them	all:

print	db.first()

for	i	in	xrange(1,	len(db)):

				print	db.next()

previous()
Returns	the	previous	key/value	pair	in	a	forward-traversal	of	the	database.
In	conjunction	with	last(),	this	may	be	used	to	implement	a	reverse-
order	traversal.

sync()
This	method	forces	any	unwritten	data	to	be	written	to	the	disk.

Python	Library	Reference
Previous:	7.11	dbhash	Up:	7.11	dbhash	Next:	7.12	whichdb

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.11.1	Database	Objects	Up:	7.	Optional	Operating	System	Next:
7.13	bsddb

7.12	whichdb	--	Guess	which	DBM
module	created	a	database
The	single	function	in	this	module	attempts	to	guess	which	of	the	several	simple
database	modules	available-dbm,	gdbm,	or	dbhash-should	be	used	to	open	a
given	file.

whichdb(filename)
Returns	one	of	the	following	values:	None	if	the	file	can't	be	opened
because	it's	unreadable	or	doesn't	exist;	the	empty	string	('')	if	the	file's
format	can't	be	guessed;	or	a	string	containing	the	required	module	name,
such	as	'dbm'	or	'gdbm'.

Python	Library	Reference
Previous:	7.11.1	Database	Objects	Up:	7.	Optional	Operating	System	Next:
7.13	bsddb

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.12	whichdb	Up:	7.	Optional	Operating	System	Next:	7.13.1	Hash,
BTree	and

7.13	bsddb	--	Interface	to	Berkeley
DB	library
Availability:	Unix,	Windows.

The	bsddb	module	provides	an	interface	to	the	Berkeley	DB	library.	Users	can
create	hash,	btree	or	record	based	library	files	using	the	appropriate	open	call.
Bsddb	objects	behave	generally	like	dictionaries.	Keys	and	values	must	be
strings,	however,	so	to	use	other	objects	as	keys	or	to	store	other	kinds	of	objects
the	user	must	serialize	them	somehow,	typically	using	marshal.dumps	or
pickle.dumps.

Starting	with	Python	2.3	the	bsddb	module	requires	the	Berkeley	DB	library
version	3.2	or	later	(it	is	known	to	work	with	3.2	thru	4.2	at	the	time	of	this
writing).

See	Also:

http://pybsddb.sourceforge.net/
Website	with	documentation	for	the	new	python	Berkeley	DB
interface	that	closely	mirrors	the	sleepycat	object	oriented	interface
provided	in	Berkeley	DB	3	and	4.

http://www.sleepycat.com/
Sleepycat	Software	produces	the	modern	Berkeley	DB	library.

The	following	is	a	description	of	the	legacy	bsddb	interface	compatible	with
the	old	python	bsddb	module.	For	details	about	the	more	modern	Db	and	DbEnv
object	oriented	interface	see	the	above	mentioned	pybsddb	URL.

The	bsddb	module	defines	the	following	functions	that	create	objects	that
access	the	appropriate	type	of	Berkeley	DB	file.	The	first	two	arguments	of	each
function	are	the	same.	For	ease	of	portability,	only	the	first	two	arguments
should	be	used	in	most	instances.

http://pybsddb.sourceforge.net/
http://www.sleepycat.com/

hashopen(filename[,	flag[,	mode[,	bsize[,	ffactor[,	nelem[,	cachesize[,	hash[,
lorder]]]]]]]])

Open	the	hash	format	file	named	filename.	Files	never	intended	to	be
preserved	on	disk	may	be	created	by	passing	None	as	the	filename.	The
optional	flag	identifies	the	mode	used	to	open	the	file.	It	may	be	"r"	(read
only),	"w"	(read-write)	,	"c"	(read-write	-	create	if	necessary;	the	default)	or
"n"	(read-write	-	truncate	to	zero	length).	The	other	arguments	are	rarely
used	and	are	just	passed	to	the	low-level	dbopen()	function.	Consult	the
Berkeley	DB	documentation	for	their	use	and	interpretation.

btopen(filename[,	flag[,	mode[,	btflags[,	cachesize[,	maxkeypage[,
minkeypage[,	psize[,	lorder]]]]]]]])

Open	the	btree	format	file	named	filename.	Files	never	intended	to	be
preserved	on	disk	may	be	created	by	passing	None	as	the	filename.	The
optional	flag	identifies	the	mode	used	to	open	the	file.	It	may	be	"r"	(read
only),	"w"	(read-write),	"c"	(read-write	-	create	if	necessary;	the	default)	or
"n"	(read-write	-	truncate	to	zero	length).	The	other	arguments	are	rarely
used	and	are	just	passed	to	the	low-level	dbopen	function.	Consult	the
Berkeley	DB	documentation	for	their	use	and	interpretation.

rnopen(filename[,	flag[,	mode[,	rnflags[,	cachesize[,	psize[,	lorder[,	reclen[,
bval[,	bfname]]]]]]]]])

Open	a	DB	record	format	file	named	filename.	Files	never	intended	to	be
preserved	on	disk	may	be	created	by	passing	None	as	the	filename.	The
optional	flag	identifies	the	mode	used	to	open	the	file.	It	may	be	"r"	(read
only),	"w"	(read-write),	"c"	(read-write	-	create	if	necessary;	the	default)	or
"n"	(read-write	-	truncate	to	zero	length).	The	other	arguments	are	rarely
used	and	are	just	passed	to	the	low-level	dbopen	function.	Consult	the
Berkeley	DB	documentation	for	their	use	and	interpretation.

Note: 	Beginning	in	2.3	some	Unix	versions	of	Python	may
have	a	bsddb185	module.	This	is	present	only	to	allow
backwards	compatibility	with	systems	which	ship	with	the	old
Berkeley	DB	1.85	database	library.	The	bsddb185	module

should	never	be	used	directly	in	new	code.

See	Also:

Module	dbhash:
DBM-style	interface	to	the	bsddb.

Subsections

7.13.1	Hash,	BTree	and	Record	Objects

Python	Library	Reference
Previous:	7.12	whichdb	Up:	7.	Optional	Operating	System	Next:	7.13.1	Hash,
BTree	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.13	bsddb	Up:	7.13	bsddb	Next:	7.14	dumbdbm

7.13.1	Hash,	BTree	and	Record	Objects
Once	instantiated,	hash,	btree	and	record	objects	support	the	same	methods	as
dictionaries.	In	addition,	they	support	the	methods	listed	below.	Changed	in
version	2.3.1:	Added	dictionary	methods.

close()
Close	the	underlying	file.	The	object	can	no	longer	be	accessed.	Since	there
is	no	open	open	method	for	these	objects,	to	open	the	file	again	a	new
bsddb	module	open	function	must	be	called.

keys()
Return	the	list	of	keys	contained	in	the	DB	file.	The	order	of	the	list	is
unspecified	and	should	not	be	relied	on.	In	particular,	the	order	of	the	list
returned	is	different	for	different	file	formats.

has_key(key)
Return	1	if	the	DB	file	contains	the	argument	as	a	key.

set_location(key)
Set	the	cursor	to	the	item	indicated	by	key	and	return	a	tuple	containing	the
key	and	its	value.	For	binary	tree	databases	(opened	using	btopen()),	if
key	does	not	actually	exist	in	the	database,	the	cursor	will	point	to	the	next
item	in	sorted	order	and	return	that	key	and	value.	For	other	databases,
KeyError	will	be	raised	if	key	is	not	found	in	the	database.

first()
Set	the	cursor	to	the	first	item	in	the	DB	file	and	return	it.	The	order	of	keys
in	the	file	is	unspecified,	except	in	the	case	of	B-Tree	databases.	This
method	raises	bsddb.error	if	the	database	is	empty.

next()
Set	the	cursor	to	the	next	item	in	the	DB	file	and	return	it.	The	order	of	keys
in	the	file	is	unspecified,	except	in	the	case	of	B-Tree	databases.

previous()

Set	the	cursor	to	the	previous	item	in	the	DB	file	and	return	it.	The	order	of
keys	in	the	file	is	unspecified,	except	in	the	case	of	B-Tree	databases.	This
is	not	supported	on	hashtable	databases	(those	opened	with	hashopen()).

last()
Set	the	cursor	to	the	last	item	in	the	DB	file	and	return	it.	The	order	of	keys
in	the	file	is	unspecified.	This	is	not	supported	on	hashtable	databases
(those	opened	with	hashopen()).	This	method	raises	bsddb.error	if
the	database	is	empty.

sync()
Synchronize	the	database	on	disk.

Example:

>>>	import	bsddb

>>>	db	=	bsddb.btopen('/tmp/spam.db',	'c')

>>>	for	i	in	range(10):	db['%d'%i]	=	'%d'%	(i*i)

...	

>>>	db['3']

'9'

>>>	db.keys()

['0',	'1',	'2',	'3',	'4',	'5',	'6',	'7',	'8',	'9']

>>>	db.first()

('0',	'0')

>>>	db.next()

('1',	'1')

>>>	db.last()

('9',	'81')

>>>	db.set_location('2')

('2',	'4')

>>>	db.previous()	

('1',	'1')

>>>	for	k,	v	in	db.iteritems():

...					print	k,	v

0	0

1	1

2	4

3	9

4	16

5	25

6	36

7	49

8	64

9	81

>>>	'8'	in	db

True

>>>	db.sync()

0

Python	Library	Reference
Previous:	7.13	bsddb	Up:	7.13	bsddb	Next:	7.14	dumbdbm

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.13.1	Hash,	BTree	and	Up:	7.	Optional	Operating	System	Next:
7.14.1	Dumbdbm	Objects

7.14	dumbdbm	--	Portable	DBM
implementation

Note: 	The	dumbdbm	module	is	intended	as	a	last	resort
fallback	for	the	anydbm	module	when	no	more	robust	module	is
available.	The	dumbdbm	module	is	not	written	for	speed	and	is
not	nearly	as	heavily	used	as	the	other	database	modules.

The	dumbdbm	module	provides	a	persistent	dictionary-like	interface	which	is
written	entirely	in	Python.	Unlike	other	modules	such	as	gdbm	and	bsddb,	no
external	library	is	required.	As	with	other	persistent	mappings,	the	keys	and
values	must	always	be	strings.

The	module	defines	the	following:

exception	error
Raised	on	dumbdbm-specific	errors,	such	as	I/O	errors.	KeyError	is
raised	for	general	mapping	errors	like	specifying	an	incorrect	key.

open(filename[,	flag[,	mode]])
Open	a	dumbdbm	database	and	return	a	dumbdbm	object.	The	filename
argument	is	the	basename	of	the	database	file	(without	any	specific
extensions).	When	a	dumbdbm	database	is	created,	files	with	.dat	and	.dir
extensions	are	created.

The	optional	flag	argument	is	currently	ignored;	the	database	is	always
opened	for	update,	and	will	be	created	if	it	does	not	exist.

The	optional	mode	argument	is	the	UNIX	mode	of	the	file,	used	only	when
the	database	has	to	be	created.	It	defaults	to	octal	0666	(and	will	be
modified	by	the	prevailing	umask).	Changed	in	version	2.2:	The	mode
argument	was	ignored	in	earlier	versions.

See	Also:

Module	anydbm:
Generic	interface	to	dbm-style	databases.

Module	dbm:
Similar	interface	to	the	DBM/NDBM	library.

Module	gdbm:
Similar	interface	to	the	GNU	GDBM	library.

Module	shelve:
Persistence	module	which	stores	non-string	data.

Module	whichdb:
Utility	module	used	to	determine	the	type	of	an	existing	database.

Subsections

7.14.1	Dumbdbm	Objects

Python	Library	Reference
Previous:	7.13.1	Hash,	BTree	and	Up:	7.	Optional	Operating	System	Next:
7.14.1	Dumbdbm	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.14	dumbdbm	Up:	7.14	dumbdbm	Next:	7.15	zlib

7.14.1	Dumbdbm	Objects
In	addition	to	the	methods	provided	by	the	UserDict.DictMixin	class,
dumbdbm	objects	provide	the	following	methods.

sync()
Synchronize	the	on-disk	directory	and	data	files.	This	method	is	called	by
the	sync	method	of	Shelve	objects.

Python	Library	Reference
Previous:	7.14	dumbdbm	Up:	7.14	dumbdbm	Next:	7.15	zlib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.14.1	Dumbdbm	Objects	Up:	7.	Optional	Operating	System	Next:
7.16	gzip

7.15	zlib	--	Compression
compatible	with	gzip
For	applications	that	require	data	compression,	the	functions	in	this	module
allow	compression	and	decompression,	using	the	zlib	library.	The	zlib	library	has
its	own	home	page	at	http://www.gzip.org/zlib/.	There	are	known
incompatibilities	between	the	Python	module	and	versions	of	the	zlib	library
earlier	than	1.1.3;	1.1.3	has	a	security	vulnerability,	so	we	recommend	using
1.1.4	or	later.

The	available	exception	and	functions	in	this	module	are:

exception	error
Exception	raised	on	compression	and	decompression	errors.

adler32(string[,	value])
Computes	a	Adler-32	checksum	of	string.	(An	Adler-32	checksum	is	almost
as	reliable	as	a	CRC32	but	can	be	computed	much	more	quickly.)	If	value	is
present,	it	is	used	as	the	starting	value	of	the	checksum;	otherwise,	a	fixed
default	value	is	used.	This	allows	computing	a	running	checksum	over	the
concatenation	of	several	input	strings.	The	algorithm	is	not
cryptographically	strong,	and	should	not	be	used	for	authentication	or
digital	signatures.	Since	the	algorithm	is	designed	for	use	as	a	checksum
algorithm,	it	is	not	suitable	for	use	as	a	general	hash	algorithm.

compress(string[,	level])
Compresses	the	data	in	string,	returning	a	string	contained	compressed	data.
level	is	an	integer	from	1	to	9	controlling	the	level	of	compression;	1	is
fastest	and	produces	the	least	compression,	9	is	slowest	and	produces	the
most.	The	default	value	is	6.	Raises	the	error	exception	if	any	error
occurs.

compressobj([level])
Returns	a	compression	object,	to	be	used	for	compressing	data	streams	that
won't	fit	into	memory	at	once.	level	is	an	integer	from	1	to	9	controlling	the

http://www.gzip.org/zlib/

level	of	compression;	1	is	fastest	and	produces	the	least	compression,	9	is
slowest	and	produces	the	most.	The	default	value	is	6.

crc32(string[,	value])
Computes	a	CRC	(Cyclic	Redundancy	Check)	checksum	of	string.	If	value
is	present,	it	is	used	as	the	starting	value	of	the	checksum;	otherwise,	a
fixed	default	value	is	used.	This	allows	computing	a	running	checksum	over
the	concatenation	of	several	input	strings.	The	algorithm	is	not
cryptographically	strong,	and	should	not	be	used	for	authentication	or
digital	signatures.	Since	the	algorithm	is	designed	for	use	as	a	checksum
algorithm,	it	is	not	suitable	for	use	as	a	general	hash	algorithm.

decompress(string[,	wbits[,	bufsize]])
Decompresses	the	data	in	string,	returning	a	string	containing	the
uncompressed	data.	The	wbits	parameter	controls	the	size	of	the	window
buffer.	If	bufsize	is	given,	it	is	used	as	the	initial	size	of	the	output	buffer.
Raises	the	error	exception	if	any	error	occurs.

The	absolute	value	of	wbits	is	the	base	two	logarithm	of	the	size	of	the
history	buffer	(the	``window	size'')	used	when	compressing	data.	Its
absolute	value	should	be	between	8	and	15	for	the	most	recent	versions	of
the	zlib	library,	larger	values	resulting	in	better	compression	at	the	expense
of	greater	memory	usage.	The	default	value	is	15.	When	wbits	is	negative,
the	standard	gzip	header	is	suppressed;	this	is	an	undocumented	feature	of
the	zlib	library,	used	for	compatibility	with	unzip's	compression	file	format.

bufsize	is	the	initial	size	of	the	buffer	used	to	hold	decompressed	data.	If
more	space	is	required,	the	buffer	size	will	be	increased	as	needed,	so	you
don't	have	to	get	this	value	exactly	right;	tuning	it	will	only	save	a	few	calls
to	malloc().	The	default	size	is	16384.

decompressobj([wbits])
Returns	a	decompression	object,	to	be	used	for	decompressing	data	streams
that	won't	fit	into	memory	at	once.	The	wbits	parameter	controls	the	size	of
the	window	buffer.

Compression	objects	support	the	following	methods:

compress(string)
Compress	string,	returning	a	string	containing	compressed	data	for	at	least
part	of	the	data	in	string.	This	data	should	be	concatenated	to	the	output
produced	by	any	preceding	calls	to	the	compress()	method.	Some	input
may	be	kept	in	internal	buffers	for	later	processing.

flush([mode])
All	pending	input	is	processed,	and	a	string	containing	the	remaining
compressed	output	is	returned.	mode	can	be	selected	from	the	constants
Z_SYNC_FLUSH,	Z_FULL_FLUSH,	or	Z_FINISH,	defaulting	to
Z_FINISH.	Z_SYNC_FLUSH	and	Z_FULL_FLUSH	allow	compressing
further	strings	of	data	and	are	used	to	allow	partial	error	recovery	on
decompression,	while	Z_FINISH	finishes	the	compressed	stream	and
prevents	compressing	any	more	data.	After	calling	flush()	with	mode	set
to	Z_FINISH,	the	compress()	method	cannot	be	called	again;	the	only
realistic	action	is	to	delete	the	object.

Decompression	objects	support	the	following	methods,	and	two	attributes:

unused_data

A	string	which	contains	any	bytes	past	the	end	of	the	compressed	data.	That
is,	this	remains	""	until	the	last	byte	that	contains	compression	data	is
available.	If	the	whole	string	turned	out	to	contain	compressed	data,	this	is
"",	the	empty	string.

The	only	way	to	determine	where	a	string	of	compressed	data	ends	is	by
actually	decompressing	it.	This	means	that	when	compressed	data	is
contained	part	of	a	larger	file,	you	can	only	find	the	end	of	it	by	reading
data	and	feeding	it	followed	by	some	non-empty	string	into	a
decompression	object's	decompress	method	until	the	unused_data
attribute	is	no	longer	the	empty	string.

unconsumed_tail

A	string	that	contains	any	data	that	was	not	consumed	by	the	last
decompress	call	because	it	exceeded	the	limit	for	the	uncompressed	data
buffer.	This	data	has	not	yet	been	seen	by	the	zlib	machinery,	so	you	must
feed	it	(possibly	with	further	data	concatenated	to	it)	back	to	a	subsequent
decompress	method	call	in	order	to	get	correct	output.

decompress(string)
[max_length]	Decompress	string,	returning	a	string	containing	the
uncompressed	data	corresponding	to	at	least	part	of	the	data	in	string.	This
data	should	be	concatenated	to	the	output	produced	by	any	preceding	calls
to	the	decompress()	method.	Some	of	the	input	data	may	be	preserved
in	internal	buffers	for	later	processing.

If	the	optional	parameter	max_length	is	supplied	then	the	return	value	will
be	no	longer	than	max_length.	This	may	mean	that	not	all	of	the
compressed	input	can	be	processed;	and	unconsumed	data	will	be	stored	in
the	attribute	unconsumed_tail.	This	string	must	be	passed	to	a
subsequent	call	to	decompress()	if	decompression	is	to	continue.	If
max_length	is	not	supplied	then	the	whole	input	is	decompressed,	and
unconsumed_tail	is	an	empty	string.

flush()
All	pending	input	is	processed,	and	a	string	containing	the	remaining
uncompressed	output	is	returned.	After	calling	flush(),	the
decompress()	method	cannot	be	called	again;	the	only	realistic	action	is
to	delete	the	object.

See	Also:

Module	gzip:
Reading	and	writing	gzip-format	files.

http://www.gzip.org/zlib/
The	zlib	library	home	page.

Python	Library	Reference
Previous:	7.14.1	Dumbdbm	Objects	Up:	7.	Optional	Operating	System	Next:
7.16	gzip

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.gzip.org/zlib/

Previous:	7.15	zlib	Up:	7.	Optional	Operating	System	Next:	7.17	bz2

7.16	gzip	--	Support	for	gzip	files
The	data	compression	provided	by	the	zlib	module	is	compatible	with	that
used	by	the	GNU	compression	program	gzip.	Accordingly,	the	gzip	module
provides	the	GzipFile	class	to	read	and	write	gzip-format	files,	automatically
compressing	or	decompressing	the	data	so	it	looks	like	an	ordinary	file	object.
Note	that	additional	file	formats	which	can	be	decompressed	by	the	gzip	and
gunzip	programs,	such	as	those	produced	by	compress	and	pack,	are	not
supported	by	this	module.

The	module	defines	the	following	items:

class	GzipFile([filename[,	mode[,	compresslevel[,	fileobj]]]])
Constructor	for	the	GzipFile	class,	which	simulates	most	of	the	methods
of	a	file	object,	with	the	exception	of	the	readinto()	and	truncate()
methods.	At	least	one	of	fileobj	and	filename	must	be	given	a	non-trivial
value.

The	new	class	instance	is	based	on	fileobj,	which	can	be	a	regular	file,	a
StringIO	object,	or	any	other	object	which	simulates	a	file.	It	defaults	to
None,	in	which	case	filename	is	opened	to	provide	a	file	object.

When	fileobj	is	not	None,	the	filename	argument	is	only	used	to	be
included	in	the	gzip	file	header,	which	may	includes	the	original	filename
of	the	uncompressed	file.	It	defaults	to	the	filename	of	fileobj,	if
discernible;	otherwise,	it	defaults	to	the	empty	string,	and	in	this	case	the
original	filename	is	not	included	in	the	header.

The	mode	argument	can	be	any	of	'r',	'rb',	'a',	'ab',	'w',	or	'wb',
depending	on	whether	the	file	will	be	read	or	written.	The	default	is	the
mode	of	fileobj	if	discernible;	otherwise,	the	default	is	'rb'.	If	not	given,
the	'b'	flag	will	be	added	to	the	mode	to	ensure	the	file	is	opened	in	binary
mode	for	cross-platform	portability.

The	compresslevel	argument	is	an	integer	from	1	to	9	controlling	the	level
of	compression;	1	is	fastest	and	produces	the	least	compression,	and	9	is

slowest	and	produces	the	most	compression.	The	default	is	9.

Calling	a	GzipFile	object's	close()	method	does	not	close	fileobj,
since	you	might	wish	to	append	more	material	after	the	compressed	data.
This	also	allows	you	to	pass	a	StringIO	object	opened	for	writing	as
fileobj,	and	retrieve	the	resulting	memory	buffer	using	the	StringIO
object's	getvalue()	method.

open(filename[,	mode[,	compresslevel]])
This	is	a	shorthand	for	GzipFile(filename,	mode,	compresslevel).	The
filename	argument	is	required;	mode	defaults	to	'rb'	and	compresslevel
defaults	to	9.

See	Also:

Module	zlib:
The	basic	data	compression	module	needed	to	support	the	gzip	file
format.

Python	Library	Reference
Previous:	7.15	zlib	Up:	7.	Optional	Operating	System	Next:	7.17	bz2

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.16	gzip	Up:	7.	Optional	Operating	System	Next:	7.17.1
(De)compression	of	files

7.17	bz2	--	Compression	compatible
with	bzip2
New	in	version	2.3.

This	module	provides	a	comprehensive	interface	for	the	bz2	compression	library.
It	implements	a	complete	file	interface,	one-shot	(de)compression	functions,	and
types	for	sequential	(de)compression.

Here	is	a	resume	of	the	features	offered	by	the	bz2	module:

BZ2File	class	implements	a	complete	file	interface,	including
readline(),	readlines(),	writelines(),	seek(),	etc;
BZ2File	class	implements	emulated	seek()	support;
BZ2File	class	implements	universal	newline	support;
BZ2File	class	offers	an	optimized	line	iteration	using	the	readahead
algorithm	borrowed	from	file	objects;
Sequential	(de)compression	supported	by	BZ2Compressor	and
BZ2Decompressor	classes;
One-shot	(de)compression	supported	by	compress()	and
decompress()	functions;
Thread	safety	uses	individual	locking	mechanism;
Complete	inline	documentation;

Subsections

7.17.1	(De)compression	of	files
7.17.2	Sequential	(de)compression
7.17.3	One-shot	(de)compression

Python	Library	Reference
Previous:	7.16	gzip	Up:	7.	Optional	Operating	System	Next:	7.17.1
(De)compression	of	files

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.17	bz2	Up:	7.17	bz2	Next:	7.17.2	Sequential	(de)compression

7.17.1	(De)compression	of	files
Handling	of	compressed	files	is	offered	by	the	BZ2File	class.

class	BZ2File(filename[,	mode[,	buffering[,	compresslevel]]])
Open	a	bz2	file.	Mode	can	be	either	'r'	or	'w',	for	reading	(default)	or
writing.	When	opened	for	writing,	the	file	will	be	created	if	it	doesn't	exist,
and	truncated	otherwise.	If	buffering	is	given,	0	means	unbuffered,	and
larger	numbers	specify	the	buffer	size;	the	default	is	0.	If	compresslevel	is
given,	it	must	be	a	number	between	1	and	9;	the	default	is	9.	Add	a	"U"	to
mode	to	open	the	file	for	input	with	universal	newline	support.	Any	line
ending	in	the	input	file	will	be	seen	as	a	"\n"	in	Python.	Also,	a	file	so
opened	gains	the	attribute	newlines;	the	value	for	this	attribute	is	one	of
None	(no	newline	read	yet),	'\r',	'\n',	'\r\n'	or	a	tuple	containing
all	the	newline	types	seen.	Universal	newlines	are	available	only	when
reading.	Instances	support	iteration	in	the	same	way	as	normal	file
instances.

close()
Close	the	file.	Sets	data	attribute	closed	to	true.	A	closed	file	cannot	be
used	for	further	I/O	operations.	close()	may	be	called	more	than	once
without	error.

read([size])
Read	at	most	size	uncompressed	bytes,	returned	as	a	string.	If	the	size
argument	is	negative	or	omitted,	read	until	EOF	is	reached.

readline([size])
Return	the	next	line	from	the	file,	as	a	string,	retaining	newline.	A	non-
negative	size	argument	limits	the	maximum	number	of	bytes	to	return	(an
incomplete	line	may	be	returned	then).	Return	an	empty	string	at	EOF.

readlines([size])
Return	a	list	of	lines	read.	The	optional	size	argument,	if	given,	is	an
approximate	bound	on	the	total	number	of	bytes	in	the	lines	returned.

xreadlines()
For	backward	compatibility.	BZ2File	objects	now	include	the
performance	optimizations	previously	implemented	in	the	xreadlines
module.
Deprecated	since	release	2.3.	This	exists	only	for	compatibility	with	the
method	by	this	name	on	file	objects,	which	is	deprecated.	Use	for
line	in	file	instead.

seek(offset[,	whence])
Move	to	new	file	position.	Argument	offset	is	a	byte	count.	Optional
argument	whence	defaults	to	0	(offset	from	start	of	file,	offset	should	be	>=
0);	other	values	are	1	(move	relative	to	current	position,	positive	or
negative),	and	2	(move	relative	to	end	of	file,	usually	negative,	although
many	platforms	allow	seeking	beyond	the	end	of	a	file).

Note	that	seeking	of	bz2	files	is	emulated,	and	depending	on	the	parameters
the	operation	may	be	extremely	slow.

tell()
Return	the	current	file	position,	an	integer	(may	be	a	long	integer).

write(data)
Write	string	data	to	file.	Note	that	due	to	buffering,	close()	may	be
needed	before	the	file	on	disk	reflects	the	data	written.

writelines(sequence_of_strings)
Write	the	sequence	of	strings	to	the	file.	Note	that	newlines	are	not	added.
The	sequence	can	be	any	iterable	object	producing	strings.	This	is
equivalent	to	calling	write()	for	each	string.

Python	Library	Reference
Previous:	7.17	bz2	Up:	7.17	bz2	Next:	7.17.2	Sequential	(de)compression

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.17.1	(De)compression	of	files	Up:	7.17	bz2	Next:	7.17.3	One-shot
(de)compression

7.17.2	Sequential	(de)compression
Sequential	compression	and	decompression	is	done	using	the	classes
BZ2Compressor	and	BZ2Decompressor.

class	BZ2Compressor([compresslevel])
Create	a	new	compressor	object.	This	object	may	be	used	to	compress	data
sequentially.	If	you	want	to	compress	data	in	one	shot,	use	the
compress()	function	instead.	The	compresslevel	parameter,	if	given,
must	be	a	number	between	1	and	9;	the	default	is	9.

compress(data)
Provide	more	data	to	the	compressor	object.	It	will	return	chunks	of
compressed	data	whenever	possible.	When	you've	finished	providing	data
to	compress,	call	the	flush()	method	to	finish	the	compression	process,
and	return	what	is	left	in	internal	buffers.

flush()
Finish	the	compression	process	and	return	what	is	left	in	internal	buffers.
You	must	not	use	the	compressor	object	after	calling	this	method.

class	BZ2Decompressor()
Create	a	new	decompressor	object.	This	object	may	be	used	to	decompress
data	sequentially.	If	you	want	to	decompress	data	in	one	shot,	use	the
decompress()	function	instead.

decompress(data)
Provide	more	data	to	the	decompressor	object.	It	will	return	chunks	of
decompressed	data	whenever	possible.	If	you	try	to	decompress	data	after
the	end	of	stream	is	found,	EOFError	will	be	raised.	If	any	data	was
found	after	the	end	of	stream,	it'll	be	ignored	and	saved	in	unused_data
attribute.

Python	Library	Reference
Previous:	7.17.1	(De)compression	of	files	Up:	7.17	bz2	Next:	7.17.3	One-shot

(de)compression

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.17.2	Sequential	(de)compression	Up:	7.17	bz2	Next:	7.18	zipfile

7.17.3	One-shot	(de)compression
One-shot	compression	and	decompression	is	provided	through	the
compress()	and	decompress()	functions.

compress(data[,	compresslevel])
Compress	data	in	one	shot.	If	you	want	to	compress	data	sequentially,	use
an	instance	of	BZ2Compressor	instead.	The	compresslevel	parameter,	if
given,	must	be	a	number	between	1	and	9;	the	default	is	9.

decompress(data)
Decompress	data	in	one	shot.	If	you	want	to	decompress	data	sequentially,
use	an	instance	of	BZ2Decompressor	instead.

Python	Library	Reference
Previous:	7.17.2	Sequential	(de)compression	Up:	7.17	bz2	Next:	7.18	zipfile

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.17.3	One-shot	(de)compression	Up:	7.	Optional	Operating
System	Next:	7.18.1	ZipFile	Objects

7.18	zipfile	--	Work	with	ZIP
archives
New	in	version	1.6.

The	ZIP	file	format	is	a	common	archive	and	compression	standard.	This	module
provides	tools	to	create,	read,	write,	append,	and	list	a	ZIP	file.	Any	advanced
use	of	this	module	will	require	an	understanding	of	the	format,	as	defined	in
PKZIP	Application	Note.

This	module	does	not	currently	handle	ZIP	files	which	have	appended
comments,	or	multi-disk	ZIP	files.

The	available	attributes	of	this	module	are:

exception	error
The	error	raised	for	bad	ZIP	files.

class	ZipFile
The	class	for	reading	and	writing	ZIP	files.	See	``ZipFile	Objects''	(section
7.18.1)	for	constructor	details.

class	PyZipFile
Class	for	creating	ZIP	archives	containing	Python	libraries.

class	ZipInfo([filename[,	date_time]])
Class	used	the	represent	infomation	about	a	member	of	an	archive.
Instances	of	this	class	are	returned	by	the	getinfo()	and	infolist()
methods	of	ZipFile	objects.	Most	users	of	the	zipfile	module	will	not
need	to	create	these,	but	only	use	those	created	by	this	module.	filename
should	be	the	full	name	of	the	archive	member,	and	date_time	should	be	a
tuple	containing	six	fields	which	describe	the	time	of	the	last	modification
to	the	file;	the	fields	are	described	in	section	7.18.3,	``ZipInfo	Objects.''

is_zipfile(filename)
Returns	True	if	filename	is	a	valid	ZIP	file	based	on	its	magic	number,

http://www.pkware.com/appnote.html

otherwise	returns	False.	This	module	does	not	currently	handle	ZIP	files
which	have	appended	comments.

ZIP_STORED

The	numeric	constant	for	an	uncompressed	archive	member.

ZIP_DEFLATED

The	numeric	constant	for	the	usual	ZIP	compression	method.	This	requires
the	zlib	module.	No	other	compression	methods	are	currently	supported.

See	Also:

PKZIP	Application	Note
Documentation	on	the	ZIP	file	format	by	Phil	Katz,	the	creator	of	the
format	and	algorithms	used.

Info-ZIP	Home	Page
Information	about	the	Info-ZIP	project's	ZIP	archive	programs	and
development	libraries.

Subsections

7.18.1	ZipFile	Objects
7.18.2	PyZipFile	Objects
7.18.3	ZipInfo	Objects

Python	Library	Reference
Previous:	7.17.3	One-shot	(de)compression	Up:	7.	Optional	Operating
System	Next:	7.18.1	ZipFile	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.pkware.com/appnote.html
http://www.info-zip.org/pub/infozip/

Previous:	7.18	zipfile	Up:	7.18	zipfile	Next:	7.18.2	PyZipFile	Objects

7.18.1	ZipFile	Objects

class	ZipFile(file[,	mode[,	compression]])
Open	a	ZIP	file,	where	file	can	be	either	a	path	to	a	file	(a	string)	or	a	file-
like	object.	The	mode	parameter	should	be	'r'	to	read	an	existing	file,
'w'	to	truncate	and	write	a	new	file,	or	'a'	to	append	to	an	existing	file.
For	mode	is	'a'	and	file	refers	to	an	existing	ZIP	file,	then	additional	files
are	added	to	it.	If	file	does	not	refer	to	a	ZIP	file,	then	a	new	ZIP	archive	is
appended	to	the	file.	This	is	meant	for	adding	a	ZIP	archive	to	another	file,
such	as	python.exe.	Using

cat	myzip.zip	>>	python.exe

also	works,	and	at	least	WinZip	can	read	such	files.	compression	is	the	ZIP
compression	method	to	use	when	writing	the	archive,	and	should	be
ZIP_STORED	or	ZIP_DEFLATED;	unrecognized	values	will	cause
RuntimeError	to	be	raised.	If	ZIP_DEFLATED	is	specified	but	the
zlib	module	is	not	available,	RuntimeError	is	also	raised.	The	default
is	ZIP_STORED.

close()
Close	the	archive	file.	You	must	call	close()	before	exiting	your
program	or	essential	records	will	not	be	written.

getinfo(name)
Return	a	ZipInfo	object	with	information	about	the	archive	member
name.

infolist()
Return	a	list	containing	a	ZipInfo	object	for	each	member	of	the	archive.
The	objects	are	in	the	same	order	as	their	entries	in	the	actual	ZIP	file	on
disk	if	an	existing	archive	was	opened.

namelist()
Return	a	list	of	archive	members	by	name.

printdir()
Print	a	table	of	contents	for	the	archive	to	sys.stdout.

read(name)
Return	the	bytes	of	the	file	in	the	archive.	The	archive	must	be	open	for
read	or	append.

testzip()
Read	all	the	files	in	the	archive	and	check	their	CRC's.	Return	the	name	of
the	first	bad	file,	or	else	return	None.

write(filename[,	arcname[,	compress_type]])
Write	the	file	named	filename	to	the	archive,	giving	it	the	archive	name
arcname	(by	default,	this	will	be	the	same	as	filename).	If	given,
compress_type	overrides	the	value	given	for	the	compression	parameter	to
the	constructor	for	the	new	entry.	The	archive	must	be	open	with	mode	'w'
or	'a'.

writestr(zinfo_or_arcname,	bytes)
Write	the	string	bytes	to	the	archive;	zinfo_or_arcname	is	either	the	file
name	it	will	be	given	in	the	archive,	or	a	ZipInfo	instance.	If	it's	an
instance,	at	least	the	filename,	date,	and	time	must	be	given.	If	it's	a	name,
the	date	and	time	is	set	to	the	current	date	and	time.	The	archive	must	be
opened	with	mode	'w'	or	'a'.

The	following	data	attribute	is	also	available:

debug

The	level	of	debug	output	to	use.	This	may	be	set	from	0	(the	default,	no
output)	to	3	(the	most	output).	Debugging	information	is	written	to
sys.stdout.

Python	Library	Reference
Previous:	7.18	zipfile	Up:	7.18	zipfile	Next:	7.18.2	PyZipFile	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.18.1	ZipFile	Objects	Up:	7.18	zipfile	Next:	7.18.3	ZipInfo	Objects

7.18.2	PyZipFile	Objects
The	PyZipFile	constructor	takes	the	same	parameters	as	the	ZipFile
constructor.	Instances	have	one	method	in	addition	to	those	of	ZipFile
objects.

writepy(pathname[,	basename])
Search	for	files	*.py	and	add	the	corresponding	file	to	the	archive.	The
corresponding	file	is	a	*.pyo	file	if	available,	else	a	*.pyc	file,	compiling	if
necessary.	If	the	pathname	is	a	file,	the	filename	must	end	with	.py,	and	just
the	(corresponding	*.py[co])	file	is	added	at	the	top	level	(no	path
information).	If	it	is	a	directory,	and	the	directory	is	not	a	package	directory,
then	all	the	files	*.py[co]	are	added	at	the	top	level.	If	the	directory	is	a
package	directory,	then	all	*.py[oc]	are	added	under	the	package	name	as	a
file	path,	and	if	any	subdirectories	are	package	directories,	all	of	these	are
added	recursively.	basename	is	intended	for	internal	use	only.	The
writepy()	method	makes	archives	with	file	names	like	this:

				string.pyc																																#	Top	level	name	

				test/__init__.pyc																									#	Package	directory	

				test/testall.pyc																										#	Module	test.testall

				test/bogus/__init__.pyc																			#	Subpackage	directory	

				test/bogus/myfile.pyc																					#	Submodule	test.bogus.myfile

Python	Library	Reference
Previous:	7.18.1	ZipFile	Objects	Up:	7.18	zipfile	Next:	7.18.3	ZipInfo	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.18.2	PyZipFile	Objects	Up:	7.18	zipfile	Next:	7.19	tarfile

7.18.3	ZipInfo	Objects
Instances	of	the	ZipInfo	class	are	returned	by	the	getinfo()	and
infolist()	methods	of	ZipFile	objects.	Each	object	stores	information
about	a	single	member	of	the	ZIP	archive.

Instances	have	the	following	attributes:

filename

Name	of	the	file	in	the	archive.

date_time

The	time	and	date	of	the	last	modification	to	the	archive	member.	This	is	a
tuple	of	six	values:

Index Value
0 Year
1 Month	(one-based)
2 Day	of	month	(one-based)
3 Hours	(zero-based)
4 Minutes	(zero-based)
5 Seconds	(zero-based)

compress_type

Type	of	compression	for	the	archive	member.

comment

Comment	for	the	individual	archive	member.

extra

Expansion	field	data.	The	PKZIP	Application	Note	contains	some
comments	on	the	internal	structure	of	the	data	contained	in	this	string.

create_system

System	which	created	ZIP	archive.

create_version

http://www.pkware.com/appnote.html

PKZIP	version	which	created	ZIP	archive.

extract_version

PKZIP	version	needed	to	extract	archive.

reserved

Must	be	zero.

flag_bits

ZIP	flag	bits.

volume

Volume	number	of	file	header.

internal_attr

Internal	attributes.

external_attr

External	file	attributes.

header_offset

Byte	offset	to	the	file	header.

file_offset

Byte	offset	to	the	start	of	the	file	data.

CRC

CRC-32	of	the	uncompressed	file.

compress_size

Size	of	the	compressed	data.

file_size

Size	of	the	uncompressed	file.

Python	Library	Reference
Previous:	7.18.2	PyZipFile	Objects	Up:	7.18	zipfile	Next:	7.19	tarfile

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.18.3	ZipInfo	Objects	Up:	7.	Optional	Operating	System	Next:
7.19.1	TarFile	Objects

7.19	tarfile	--	Read	and	write	tar
archive	files
New	in	version	2.3.

The	tarfile	module	makes	it	possible	to	read	and	create	tar	archives.	Some
facts	and	figures:

reads	and	writes	gzip	and	bzip2	compressed	archives.
creates	POSIX	1003.1-1990	compliant	or	GNU	tar	compatible	archives.
reads	GNU	tar	extensions	longname,	longlink	and	sparse.
stores	pathnames	of	unlimited	length	using	GNU	tar	extensions.
handles	directories,	regular	files,	hardlinks,	symbolic	links,	fifos,	character
devices	and	block	devices	and	is	able	to	acquire	and	restore	file	information
like	timestamp,	access	permissions	and	owner.
can	handle	tape	devices.

open([name[,	mode	[,	fileobj[,	bufsize]]]])
Return	a	TarFile	object	for	the	pathname	name.	For	detailed	information
on	TarFile	objects,	see	TarFile	Objects	(section	7.19.1).

mode	has	to	be	a	string	of	the	form	'filemode[:compression]',	it
defaults	to	'r'.	Here	is	a	full	list	of	mode	combinations:

mode action
'r' Open	for	reading	with	transparent	compression

(recommended).
'r:' Open	for	reading	exclusively	without	compression.
'r:gz' Open	for	reading	with	gzip	compression.
'r:bz2' Open	for	reading	with	bzip2	compression.
'a'	or

'a:'

Open	for	appending	with	no	compression.

'w'	or

'w:'

Open	for	uncompressed	writing.

'w:gz' Open	for	gzip	compressed	writing.
'w:bz2' Open	for	bzip2	compressed	writing.

Note	that	'a:gz'	or	'a:bz2'	is	not	possible.	If	mode	is	not	suitable	to
open	a	certain	(compressed)	file	for	reading,	ReadError	is	raised.	Use
mode	'r'	to	avoid	this.	If	a	compression	method	is	not	supported,
CompressionError	is	raised.

If	fileobj	is	specified,	it	is	used	as	an	alternative	to	a	file	object	opened	for
name.

For	special	purposes,	there	is	a	second	format	for	mode:	'filemode|
[compression]'.	open()	will	return	a	TarFile	object	that
processes	its	data	as	a	stream	of	blocks.	No	random	seeking	will	be	done	on
the	file.	If	given,	fileobj	may	be	any	object	that	has	a	read()	or	write()
method	(depending	on	the	mode).	bufsize	specifies	the	blocksize	and
defaults	to	20	*	512	bytes.	Use	this	variant	in	combination	with	e.g.
sys.stdin,	a	socket	file	object	or	a	tape	device.	However,	such	a
TarFile	object	is	limited	in	that	it	does	not	allow	to	be	accessed
randomly,	see	``Examples''	(section	7.19.3).	The	currently	possible	modes:

Mode Action
'r|' Open	a	stream	of	uncompressed	tar	blocks	for	reading.
'r|gz' Open	a	gzip	compressed	stream	for	reading.
'r|bz2' Open	a	bzip2	compressed	stream	for	reading.
'w|' Open	an	uncompressed	stream	for	writing.
'w|gz' Open	an	gzip	compressed	stream	for	writing.
'w|bz2' Open	an	bzip2	compressed	stream	for	writing.

class	TarFile
Class	for	reading	and	writing	tar	archives.	Do	not	use	this	class	directly,
better	use	open()	instead.	See	``TarFile	Objects''	(section	7.19.1).

is_tarfile(name)
Return	True	if	name	is	a	tar	archive	file,	that	the	tarfile	module	can
read.

class	TarFileCompat(filename[,	mode[,	compression]])
Class	for	limited	access	to	tar	archives	with	a	zipfile-like	interface.
Please	consult	the	documentation	of	the	zipfile	module	for	more	details.
compression	must	be	one	of	the	following	constants:
TAR_PLAIN

Constant	for	an	uncompressed	tar	archive.
TAR_GZIPPED

Constant	for	a	gzip	compressed	tar	archive.

exception	TarError
Base	class	for	all	tarfile	exceptions.

exception	ReadError
Is	raised	when	a	tar	archive	is	opened,	that	either	cannot	be	handled	by	the
tarfile	module	or	is	somehow	invalid.

exception	CompressionError
Is	raised	when	a	compression	method	is	not	supported	or	when	the	data
cannot	be	decoded	properly.

exception	StreamError
Is	raised	for	the	limitations	that	are	typical	for	stream-like	TarFile
objects.

exception	ExtractError
Is	raised	for	non-fatal	errors	when	using	extract(),	but	only	if
TarFile.errorlevel	==	2.

See	Also:

Module	zipfile:
Documentation	of	the	zipfile	standard	module.

GNU	tar	manual,	Standard	Section
Documentation	for	tar	archive	files,	including	GNU	tar	extensions.

http://www.gnu.org/manual/tar/html_chapter/tar_8.html#SEC118

Subsections

7.19.1	TarFile	Objects
7.19.2	TarInfo	Objects
7.19.3	Examples

Python	Library	Reference
Previous:	7.18.3	ZipInfo	Objects	Up:	7.	Optional	Operating	System	Next:
7.19.1	TarFile	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.19	tarfile	Up:	7.19	tarfile	Next:	7.19.2	TarInfo	Objects

7.19.1	TarFile	Objects
The	TarFile	object	provides	an	interface	to	a	tar	archive.	A	tar	archive	is	a
sequence	of	blocks.	An	archive	member	(a	stored	file)	is	made	up	of	a	header
block	followed	by	data	blocks.	It	is	possible,	to	store	a	file	in	a	tar	archive
several	times.	Each	archive	member	is	represented	by	a	TarInfo	object,	see
TarInfo	Objects	(section	7.19.2)	for	details.

class	TarFile([name	[,	mode[,	fileobj]]])
Open	an	(uncompressed)	tar	archive	name.	mode	is	either	'r'	to	read	from
an	existing	archive,	'a'	to	append	data	to	an	existing	file	or	'w'	to	create
a	new	file	overwriting	an	existing	one.	mode	defaults	to	'r'.

If	fileobj	is	given,	it	is	used	for	reading	or	writing	data.	If	it	can	be
determined,	mode	is	overridden	by	fileobj's	mode.

Note: 	fileobj	is	not	closed,	when	TarFile	is	closed.

open(...)
Alternative	constructor.	The	open()	function	on	module	level	is	actually	a
shortcut	to	this	classmethod.	See	section	7.19	for	details.

getmember(name)
Return	a	TarInfo	object	for	member	name.	If	name	can	not	be	found	in
the	archive,	KeyError	is	raised.

Note: 	If	a	member	occurs	more	than	once	in	the	archive,
its	last	occurrence	is	assumed	to	be	the	most	up-to-date
version.

getmembers()
Return	the	members	of	the	archive	as	a	list	of	TarInfo	objects.	The	list
has	the	same	order	as	the	members	in	the	archive.

getnames()
Return	the	members	as	a	list	of	their	names.	It	has	the	same	order	as	the	list
returned	by	getmembers().

list(verbose=True)
Print	a	table	of	contents	to	sys.stdout.	If	verbose	is	False,	only	the
names	of	the	members	are	printed.	If	it	is	True,	output	similar	to	that	of	ls
-l	is	produced.

next()
Return	the	next	member	of	the	archive	as	a	TarInfo	object,	when
TarFile	is	opened	for	reading.	Return	None	if	there	is	no	more	available.

extract(member[,	path])
Extract	a	member	from	the	archive	to	the	current	working	directory,	using
its	full	name.	Its	file	information	is	extracted	as	accurately	as	possible.
member	may	be	a	filename	or	a	TarInfo	object.	You	can	specify	a
different	directory	using	path.

extractfile(member)
Extract	a	member	from	the	archive	as	a	file	object.	member	may	be	a
filename	or	a	TarInfo	object.	If	member	is	a	regular	file,	a	file-like	object
is	returned.	If	member	is	a	link,	a	file-like	object	is	constructed	from	the
link's	target.	If	member	is	none	of	the	above,	None	is	returned.

Note: 	The	file-like	object	is	read-only	and	provides	the
following	methods:	read(),	readline(),
readlines(),	seek(),	tell().

add(name[,	arcname[,	recursive]])
Add	the	file	name	to	the	archive.	name	may	be	any	type	of	file	(directory,
fifo,	symbolic	link,	etc.).	If	given,	arcname	specifies	an	alternative	name	for
the	file	in	the	archive.	Directories	are	added	recursively	by	default.	This	can
be	avoided	by	setting	recursive	to	False;	the	default	is	True.

addfile(tarinfo[,	fileobj])

Add	the	TarInfo	object	tarinfo	to	the	archive.	If	fileobj	is	given,
tarinfo.size	bytes	are	read	from	it	and	added	to	the	archive.	You	can
create	TarInfo	objects	using	gettarinfo().

Note: 	On	Windows	platforms,	fileobj	should	always	be
opened	with	mode	'rb'	to	avoid	irritation	about	the	file
size.

gettarinfo([name[,	arcname[,	fileobj]]])
Create	a	TarInfo	object	for	either	the	file	name	or	the	file	object	fileobj
(using	os.fstat()	on	its	file	descriptor).	You	can	modify	some	of	the
TarInfo's	attributes	before	you	add	it	using	addfile().	If	given,
arcname	specifies	an	alternative	name	for	the	file	in	the	archive.

close()
Close	the	TarFile.	In	write	mode,	two	finishing	zero	blocks	are	appended
to	the	archive.

posix

If	true,	create	a	POSIX	1003.1-1990	compliant	archive.	GNU	extensions
are	not	used,	because	they	are	not	part	of	the	POSIX	standard.	This	limits
the	length	of	filenames	to	at	most	256,	link	names	to	100	characters	and	the
maximum	file	size	to	8	gigabytes.	A	ValueError	is	raised	if	a	file
exceeds	this	limit.	If	false,	create	a	GNU	tar	compatible	archive.	It	will	not
be	POSIX	compliant,	but	can	store	files	without	any	of	the	above
restrictions.	Changed	in	version	2.4:	posix	defaults	to	False.

dereference

If	false,	add	symbolic	and	hard	links	to	archive.	If	true,	add	the	content	of
the	target	files	to	the	archive.	This	has	no	effect	on	systems	that	do	not
support	symbolic	links.

ignore_zeros

If	false,	treat	an	empty	block	as	the	end	of	the	archive.	If	true,	skip	empty
(and	invalid)	blocks	and	try	to	get	as	many	members	as	possible.	This	is
only	useful	for	concatenated	or	damaged	archives.

debug=0

To	be	set	from	0	(no	debug	messages;	the	default)	up	to	3	(all	debug
messages).	The	messages	are	written	to	sys.stdout.

errorlevel

If	0	(the	default),	all	errors	are	ignored	when	using	extract().
Nevertheless,	they	appear	as	error	messages	in	the	debug	output,	when
debugging	is	enabled.	If	1,	all	fatal	errors	are	raised	as	OSError	or
IOError	exceptions.	If	2,	all	non-fatal	errors	are	raised	as	TarError
exceptions	as	well.

Python	Library	Reference
Previous:	7.19	tarfile	Up:	7.19	tarfile	Next:	7.19.2	TarInfo	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.19.1	TarFile	Objects	Up:	7.19	tarfile	Next:	7.19.3	Examples

7.19.2	TarInfo	Objects
A	TarInfo	object	represents	one	member	in	a	TarFile.	Aside	from	storing
all	required	attributes	of	a	file	(like	file	type,	size,	time,	permissions,	owner	etc.),
it	provides	some	useful	methods	to	determine	its	type.	It	does	not	contain	the
file's	data	itself.

TarInfo	objects	are	returned	by	TarFile's	methods	getmember(),
getmembers()	and	gettarinfo().

class	TarInfo([name])
Create	a	TarInfo	object.

frombuf()
Create	and	return	a	TarInfo	object	from	a	string	buffer.

tobuf()
Create	a	string	buffer	from	a	TarInfo	object.

A	TarInfo	object	has	the	following	public	data	attributes:

name

Name	of	the	archive	member.

size

Size	in	bytes.

mtime

Time	of	last	modification.

mode

Permission	bits.

type

File	type.	type	is	usually	one	of	these	constants:	REGTYPE,	AREGTYPE,
LNKTYPE,	SYMTYPE,	DIRTYPE,	FIFOTYPE,	CONTTYPE,	CHRTYPE,
BLKTYPE,	GNUTYPE_SPARSE.	To	determine	the	type	of	a	TarInfo

object	more	conveniently,	use	the	is_*()	methods	below.

linkname

Name	of	the	target	file	name,	which	is	only	present	in	TarInfo	objects	of
type	LNKTYPE	and	SYMTYPE.

uid

User	ID	of	the	user	who	originally	stored	this	member.

gid

Group	ID	of	the	user	who	originally	stored	this	member.

uname

User	name.

gname

Group	name.

A	TarInfo	object	also	provides	some	convenient	query	methods:

isfile()
Return	True	if	the	Tarinfo	object	is	a	regular	file.

isreg()
Same	as	isfile().

isdir()
Return	True	if	it	is	a	directory.

issym()
Return	True	if	it	is	a	symbolic	link.

islnk()
Return	True	if	it	is	a	hard	link.

ischr()
Return	True	if	it	is	a	character	device.

isblk()
Return	True	if	it	is	a	block	device.

isfifo()
Return	True	if	it	is	a	FIFO.

isdev()
Return	True	if	it	is	one	of	character	device,	block	device	or	FIFO.

Python	Library	Reference
Previous:	7.19.1	TarFile	Objects	Up:	7.19	tarfile	Next:	7.19.3	Examples

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.19.2	TarInfo	Objects	Up:	7.19	tarfile	Next:	7.20	readline

7.19.3	Examples
How	to	create	an	uncompressed	tar	archive	from	a	list	of	filenames:

import	tarfile

tar	=	tarfile.open("sample.tar",	"w")

for	name	in	["foo",	"bar",	"quux"]:

				tar.add(name)

tar.close()

How	to	read	a	gzip	compressed	tar	archive	and	display	some	member
information:

import	tarfile

tar	=	tarfile.open("sample.tar.gz",	"r:gz")

for	tarinfo	in	tar:

				print	tarinfo.name,	"is",	tarinfo.size,	"bytes	in	size	and	is",

				if	tarinfo.isreg():

								print	"a	regular	file."

				elif	tarinfo.isdir():

								print	"a	directory."

				else:

								print	"something	else."

tar.close()

How	to	create	a	tar	archive	with	faked	information:

import	tarfile

tar	=	tarfile.open("sample.tar.gz",	"w:gz")

for	name	in	namelist:

				tarinfo	=	tar.gettarinfo(name,	"fakeproj-1.0/"	+	name)

				tarinfo.uid	=	123

				tarinfo.gid	=	456

				tarinfo.uname	=	"johndoe"

				tarinfo.gname	=	"fake"

				tar.addfile(tarinfo,	file(name))

tar.close()

The	only	way	to	extract	an	uncompressed	tar	stream	from	sys.stdin:

import	sys

import	tarfile

tar	=	tarfile.open(mode="r|",	fileobj=sys.stdin)

for	tarinfo	in	tar:

				tar.extract(tarinfo)

tar.close()

Python	Library	Reference
Previous:	7.19.2	TarInfo	Objects	Up:	7.19	tarfile	Next:	7.20	readline

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.19.3	Examples	Up:	7.	Optional	Operating	System	Next:	7.20.1
Example

7.20	readline	--	GNU	readline
interface
Availability:	Unix.

The	readline	module	defines	a	number	of	functions	used	either	directly	or
from	the	rlcompleter	module	to	facilitate	completion	and	history	file	read
and	write	from	the	Python	interpreter.

The	readline	module	defines	the	following	functions:

parse_and_bind(string)
Parse	and	execute	single	line	of	a	readline	init	file.

get_line_buffer()
Return	the	current	contents	of	the	line	buffer.

insert_text(string)
Insert	text	into	the	command	line.

read_init_file([filename])
Parse	a	readline	initialization	file.	The	default	filename	is	the	last	filename
used.

read_history_file([filename])
Load	a	readline	history	file.	The	default	filename	is	~/.history.

write_history_file([filename])
Save	a	readline	history	file.	The	default	filename	is	~/.history.

clear_history()
Clear	the	current	history.	(Note:	this	function	is	not	available	if	the	installed
version	of	GNU	readline	doesn't	support	it.)	New	in	version	2.4.

get_history_length()
Return	the	desired	length	of	the	history	file.	Negative	values	imply
unlimited	history	file	size.

set_history_length(length)
Set	the	number	of	lines	to	save	in	the	history	file.
write_history_file()	uses	this	value	to	truncate	the	history	file
when	saving.	Negative	values	imply	unlimited	history	file	size.

get_current_history_length()
Return	the	number	of	lines	currently	in	the	history.	(This	is	different	from
get_history_length(),	which	returns	the	maximum	number	of	lines
that	will	be	written	to	a	history	file.)	New	in	version	2.3.

get_history_item(index)
Return	the	current	contents	of	history	item	at	index.	New	in	version	2.3.

remove_history_item(pos)
Remove	history	item	specified	by	its	position	from	the	history.	New	in
version	2.4.

replace_history_item(pos,	line)
Replace	history	item	specified	by	its	position	with	the	given	line.	New	in
version	2.4.

redisplay()
Change	what's	displayed	on	the	screen	to	reflect	the	current	contents	of	the
line	buffer.	New	in	version	2.3.

set_startup_hook([function])
Set	or	remove	the	startup_hook	function.	If	function	is	specified,	it	will	be
used	as	the	new	startup_hook	function;	if	omitted	or	None,	any	hook
function	already	installed	is	removed.	The	startup_hook	function	is	called
with	no	arguments	just	before	readline	prints	the	first	prompt.

set_pre_input_hook([function])
Set	or	remove	the	pre_input_hook	function.	If	function	is	specified,	it	will

be	used	as	the	new	pre_input_hook	function;	if	omitted	or	None,	any	hook
function	already	installed	is	removed.	The	pre_input_hook	function	is
called	with	no	arguments	after	the	first	prompt	has	been	printed	and	just
before	readline	starts	reading	input	characters.

set_completer([function])
Set	or	remove	the	completer	function.	If	function	is	specified,	it	will	be
used	as	the	new	completer	function;	if	omitted	or	None,	any	completer
function	already	installed	is	removed.	The	completer	function	is	called	as
function(text,	state),	for	state	in	0,	1,	2,	...,	until	it	returns	a	non-string
value.	It	should	return	the	next	possible	completion	starting	with	text.

get_completer()
Get	the	completer	function,	or	None	if	no	completer	function	has	been	set.
New	in	version	2.3.

get_begidx()
Get	the	beginning	index	of	the	readline	tab-completion	scope.

get_endidx()
Get	the	ending	index	of	the	readline	tab-completion	scope.

set_completer_delims(string)
Set	the	readline	word	delimiters	for	tab-completion.

get_completer_delims()
Get	the	readline	word	delimiters	for	tab-completion.

add_history(line)
Append	a	line	to	the	history	buffer,	as	if	it	was	the	last	line	typed.

See	Also:

Module	rlcompleter:
Completion	of	Python	identifiers	at	the	interactive	prompt.

Subsections

7.20.1	Example

Python	Library	Reference
Previous:	7.19.3	Examples	Up:	7.	Optional	Operating	System	Next:	7.20.1
Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.20	readline	Up:	7.20	readline	Next:	7.21	rlcompleter

7.20.1	Example
The	following	example	demonstrates	how	to	use	the	readline	module's
history	reading	and	writing	functions	to	automatically	load	and	save	a	history
file	named	.pyhist	from	the	user's	home	directory.	The	code	below	would
normally	be	executed	automatically	during	interactive	sessions	from	the	user's
PYTHONSTARTUP	file.

import	os

histfile	=	os.path.join(os.environ["HOME"],	".pyhist")

try:

				readline.read_history_file(histfile)

except	IOError:

				pass

import	atexit

atexit.register(readline.write_history_file,	histfile)

del	os,	histfile

The	following	example	extends	the	code.InteractiveConsole	class	to
support	history	save/restore.

import	code

import	readline

import	atexit

import	os

class	HistoryConsole(code.InteractiveConsole):

				def	__init__(self,	locals=None,	filename="<console>",

																	histfile=os.path.expanduser("~/.console-history")):

								code.InteractiveConsole.__init__(self)

								self.init_history(histfile)

				def	init_history(self,	histfile):

								readline.parse_and_bind("tab:	complete")

								if	hasattr(readline,	"read_history_file"):

												try:

																readline.read_history_file(histfile)

												except	IOError:

																pass

												atexit.register(self.save_history,	histfile)

				def	save_history(self,	histfile):

								readline.write_history_file(histfile)

Python	Library	Reference

Previous:	7.20	readline	Up:	7.20	readline	Next:	7.21	rlcompleter

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.20.1	Example	Up:	7.	Optional	Operating	System	Next:	7.21.1
Completer	Objects

7.21	rlcompleter	--	Completion
function	for	GNU	readline
Availability:	Unix.

The	rlcompleter	module	defines	a	completion	function	for	the	readline
module	by	completing	valid	Python	identifiers	and	keywords.

This	module	is	UNIX-specific	due	to	its	dependence	on	the	readline	module.

The	rlcompleter	module	defines	the	Completer	class.

Example:

>>>	import	rlcompleter

>>>	import	readline

>>>	readline.parse_and_bind("tab:	complete")

>>>	readline.	<TAB	PRESSED>

readline.__doc__										readline.get_line_buffer		readline.read_init_file

readline.__file__									readline.insert_text						readline.set_completer

readline.__name__									readline.parse_and_bind

>>>	readline.

The	rlcompleter	module	is	designed	for	use	with	Python's	interactive	mode.
A	user	can	add	the	following	lines	to	his	or	her	initialization	file	(identified	by
the	PYTHONSTARTUP	environment	variable)	to	get	automatic	Tab	completion:

try:

				import	readline

except	ImportError:

				print	"Module	readline	not	available."

else:

				import	rlcompleter

				readline.parse_and_bind("tab:	complete")

Subsections

7.21.1	Completer	Objects

Python	Library	Reference
Previous:	7.20.1	Example	Up:	7.	Optional	Operating	System	Next:	7.21.1
Completer	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.21	rlcompleter	Up:	7.21	rlcompleter	Next:	8.	Unix	Specific
Services

7.21.1	Completer	Objects
Completer	objects	have	the	following	method:

complete(text,	state)
Return	the	stateth	completion	for	text.

If	called	for	text	that	doesn't	include	a	period	character	("."),	it	will
complete	from	names	currently	defined	in	__main__,	__builtin__
and	keywords	(as	defined	by	the	keyword	module).

If	called	for	a	dotted	name,	it	will	try	to	evaluate	anything	without	obvious
side-effects	(functions	will	not	be	evaluated,	but	it	can	generate	calls	to
__getattr__())	up	to	the	last	part,	and	find	matches	for	the	rest	via	the
dir()	function.

Python	Library	Reference
Previous:	7.21	rlcompleter	Up:	7.21	rlcompleter	Next:	8.	Unix	Specific
Services

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.21.1	Completer	Objects	Up:	Python	Library	Reference	Next:	8.1
posix

8.	Unix	Specific	Services
The	modules	described	in	this	chapter	provide	interfaces	to	features	that	are
unique	to	the	UNIX	operating	system,	or	in	some	cases	to	some	or	many	variants
of	it.	Here's	an	overview:

posix 	 The	most	common	POSIX	system	calls	(normally	used	viamodule	os).
pwd 	 The	password	database	(getpwnam()	and	friends).
grp 	 The	group	database	(getgrnam()	and	friends).
crypt 	 The	crypt()	function	used	to	check	UNIX	passwords.
dl 	 Call	C	functions	in	shared	objects.
dbm 	 The	standard	``database''	interface,	based	on	ndbm.
gdbm 	 GNU's	reinterpretation	of	dbm.
termios 	 POSIX	style	tty	control.

tty 	 Utility	functions	that	perform	common	terminal	controloperations.
pty 	 Pseudo-Terminal	Handling	for	SGI	and	Linux.
fcntl 	 The	fcntl()	and	ioctl()	system	calls.
pipes 	 A	Python	interface	to	UNIX	shell	pipelines.
posixfile 	 A	file-like	object	with	support	for	locking.

resource 	 An	interface	to	provide	resource	usage	information	on	thecurrent	process.
nis 	 Interface	to	Sun's	NIS	(Yellow	Pages)	library.
syslog 	 An	interface	to	the	UNIX	syslog	library	routines.
commands 	 Utility	functions	for	running	external	commands.

Python	Library	Reference
Previous:	7.21.1	Completer	Objects	Up:	Python	Library	Reference	Next:	8.1
posix

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.	Unix	Specific	Services	Up:	8.	Unix	Specific	Services	Next:	8.1.1
Large	File	Support

8.1	posix	--	The	most	common
POSIX	system	calls
Availability:	Unix.

This	module	provides	access	to	operating	system	functionality	that	is
standardized	by	the	C	Standard	and	the	POSIX	standard	(a	thinly	disguised	UNIX

interface).

Do	not	import	this	module	directly.	Instead,	import	the	module	os,	which
provides	a	portable	version	of	this	interface.	On	UNIX,	the	os	module	provides	a
superset	of	the	posix	interface.	On	non-UNIX	operating	systems	the	posix
module	is	not	available,	but	a	subset	is	always	available	through	the	os
interface.	Once	os	is	imported,	there	is	no	performance	penalty	in	using	it
instead	of	posix.	In	addition,	os	provides	some	additional	functionality,	such
as	automatically	calling	putenv()	when	an	entry	in	os.environ	is	changed.

The	descriptions	below	are	very	terse;	refer	to	the	corresponding	UNIX	manual
(or	POSIX	documentation)	entry	for	more	information.	Arguments	called	path
refer	to	a	pathname	given	as	a	string.

Errors	are	reported	as	exceptions;	the	usual	exceptions	are	given	for	type	errors,
while	errors	reported	by	the	system	calls	raise	error	(a	synonym	for	the
standard	exception	OSError),	described	below.

Subsections

8.1.1	Large	File	Support
8.1.2	Module	Contents

Python	Library	Reference
Previous:	8.	Unix	Specific	Services	Up:	8.	Unix	Specific	Services	Next:	8.1.1
Large	File	Support

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.1	posix	Up:	8.1	posix	Next:	8.1.2	Module	Contents

8.1.1	Large	File	Support
Several	operating	systems	(including	AIX,	HPUX,	Irix	and	Solaris)	provide
support	for	files	that	are	larger	than	2	Gb	from	a	C	programming	model	where
int	and	long	are	32-bit	values.	This	is	typically	accomplished	by	defining	the
relevant	size	and	offset	types	as	64-bit	values.	Such	files	are	sometimes	referred
to	as	large	files.

Large	file	support	is	enabled	in	Python	when	the	size	of	an	off_t	is	larger	than
a	long	and	the	long	long	type	is	available	and	is	at	least	as	large	as	an
off_t.	Python	longs	are	then	used	to	represent	file	sizes,	offsets	and	other
values	that	can	exceed	the	range	of	a	Python	int.	It	may	be	necessary	to
configure	and	compile	Python	with	certain	compiler	flags	to	enable	this	mode.
For	example,	it	is	enabled	by	default	with	recent	versions	of	Irix,	but	with
Solaris	2.6	and	2.7	you	need	to	do	something	like:

CFLAGS="`getconf	LFS_CFLAGS`"	OPT="-g	-O2	$CFLAGS"	\

								./configure

On	large-file-capable	Linux	systems,	this	might	work:

CFLAGS='-D_LARGEFILE64_SOURCE	-D_FILE_OFFSET_BITS=64'	OPT="-g	-O2	$CFLAGS"	\

								./configure

Python	Library	Reference
Previous:	8.1	posix	Up:	8.1	posix	Next:	8.1.2	Module	Contents

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.1.1	Large	File	Support	Up:	8.1	posix	Next:	8.2	pwd

8.1.2	Module	Contents
Module	posix	defines	the	following	data	item:

environ

A	dictionary	representing	the	string	environment	at	the	time	the	interpreter
was	started.	For	example,	environ['HOME']	is	the	pathname	of	your
home	directory,	equivalent	to	getenv("HOME")	in	C.

Modifying	this	dictionary	does	not	affect	the	string	environment	passed	on
by	execv(),	popen()	or	system();	if	you	need	to	change	the
environment,	pass	environ	to	execve()	or	add	variable	assignments
and	export	statements	to	the	command	string	for	system()	or	popen().

Note:	The	os	module	provides	an	alternate	implementation	of	environ
which	updates	the	environment	on	modification.	Note	also	that	updating
os.environ	will	render	this	dictionary	obsolete.	Use	of	the	os	module
version	of	this	is	recommended	over	direct	access	to	the	posix	module.

Additional	contents	of	this	module	should	only	be	accessed	via	the	os	module;
refer	to	the	documentation	for	that	module	for	further	information.

Python	Library	Reference
Previous:	8.1.1	Large	File	Support	Up:	8.1	posix	Next:	8.2	pwd

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.1.2	Module	Contents	Up:	8.	Unix	Specific	Services	Next:	8.3	grp

8.2	pwd	--	The	password	database
Availability:	Unix.

This	module	provides	access	to	the	UNIX	user	account	and	password	database.	It
is	available	on	all	UNIX	versions.

Password	database	entries	are	reported	as	a	tuple-like	object,	whose	attributes
correspond	to	the	members	of	the	passwd	structure	(Attribute	field	below,	see
<pwd.h>):

Index Attribute Meaning
0 pw_name Login	name
1 pw_passwd Optional	encrypted	password
2 pw_uid Numerical	user	ID
3 pw_gid Numerical	group	ID
4 pw_gecos User	name	or	comment	field
5 pw_dir User	home	directory
6 pw_shell User	command	interpreter

The	uid	and	gid	items	are	integers,	all	others	are	strings.	KeyError	is	raised	if
the	entry	asked	for	cannot	be	found.

Note:	In	traditional	UNIX	the	field	pw_passwd	usually	contains	a	password
encrypted	with	a	DES	derived	algorithm	(see	module	crypt).	However	most
modern	unices	use	a	so-called	shadow	password	system.	On	those	unices	the
field	pw_passwd	only	contains	a	asterisk	('*')	or	the	letter	"x"	where	the
encrypted	password	is	stored	in	a	file	/etc/shadow	which	is	not	world	readable.

It	defines	the	following	items:

getpwuid(uid)
Return	the	password	database	entry	for	the	given	numeric	user	ID.

getpwnam(name)

Return	the	password	database	entry	for	the	given	user	name.

getpwall()
Return	a	list	of	all	available	password	database	entries,	in	arbitrary	order.

See	Also:

Module	grp:
An	interface	to	the	group	database,	similar	to	this.

Python	Library	Reference
Previous:	8.1.2	Module	Contents	Up:	8.	Unix	Specific	Services	Next:	8.3	grp

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.2	pwd	Up:	8.	Unix	Specific	Services	Next:	8.4	crypt

8.3	grp	--	The	group	database
Availability:	Unix.

This	module	provides	access	to	the	UNIX	group	database.	It	is	available	on	all
UNIX	versions.

Group	database	entries	are	reported	as	a	tuple-like	object,	whose	attributes
correspond	to	the	members	of	the	group	structure	(Attribute	field	below,	see
<pwd.h>):

Index Attribute Meaning
0 gr_name the	name	of	the	group
1 gr_passwd the	(encrypted)	group	password;	often	empty
2 gr_gid the	numerical	group	ID
3 gr_mem all	the	group	member's	user	names

The	gid	is	an	integer,	name	and	password	are	strings,	and	the	member	list	is	a	list
of	strings.	(Note	that	most	users	are	not	explicitly	listed	as	members	of	the	group
they	are	in	according	to	the	password	database.	Check	both	databases	to	get
complete	membership	information.)

It	defines	the	following	items:

getgrgid(gid)
Return	the	group	database	entry	for	the	given	numeric	group	ID.
KeyError	is	raised	if	the	entry	asked	for	cannot	be	found.

getgrnam(name)
Return	the	group	database	entry	for	the	given	group	name.	KeyError	is
raised	if	the	entry	asked	for	cannot	be	found.

getgrall()
Return	a	list	of	all	available	group	entries,	in	arbitrary	order.

See	Also:

Module	pwd:
An	interface	to	the	user	database,	similar	to	this.

Python	Library	Reference
Previous:	8.2	pwd	Up:	8.	Unix	Specific	Services	Next:	8.4	crypt

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.3	grp	Up:	8.	Unix	Specific	Services	Next:	8.5	dl

8.4	crypt	--	Function	to	check	UNIX

passwords
Availability:	Unix.

This	module	implements	an	interface	to	the	crypt(3)	routine,	which	is	a	one-way
hash	function	based	upon	a	modified	DES	algorithm;	see	the	UNIX	man	page	for
further	details.	Possible	uses	include	allowing	Python	scripts	to	accept	typed
passwords	from	the	user,	or	attempting	to	crack	UNIX	passwords	with	a
dictionary.

Notice	that	the	behavior	of	this	module	depends	on	the	actual	implementation	of
the	crypt(3)	routine	in	the	running	system.	Therefore,	any	extensions	available
on	the	current	implementation	will	also	be	available	on	this	module.

crypt(word,	salt)
word	will	usually	be	a	user's	password	as	typed	at	a	prompt	or	in	a	graphical
interface.	salt	is	usually	a	random	two-character	string	which	will	be	used
to	perturb	the	DES	algorithm	in	one	of	4096	ways.	The	characters	in	salt
must	be	in	the	set	[./a-zA-Z0-9].	Returns	the	hashed	password	as	a
string,	which	will	be	composed	of	characters	from	the	same	alphabet	as	the
salt	(the	first	two	characters	represent	the	salt	itself).

Since	a	few	crypt(3)	extensions	allow	different	values,	with	different	sizes
in	the	salt,	it	is	recommended	to	use	the	full	crypted	password	as	salt	when
checking	for	a	password.

A	simple	example	illustrating	typical	use:

import	crypt,	getpass,	pwd

def	login():

				username	=	raw_input('Python	login:')

				cryptedpasswd	=	pwd.getpwnam(username)[1]

				if	cryptedpasswd:

								if	cryptedpasswd	==	'x'	or	cryptedpasswd	==	'*':	

												raise	"Sorry,	currently	no	support	for	shadow	passwords"

								cleartext	=	getpass.getpass()

								return	crypt.crypt(cleartext,	cryptedpasswd)	==	cryptedpasswd

				else:

								return	1

Python	Library	Reference
Previous:	8.3	grp	Up:	8.	Unix	Specific	Services	Next:	8.5	dl

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.4	crypt	Up:	8.	Unix	Specific	Services	Next:	8.5.1	Dl	Objects

8.5	dl	--	Call	C	functions	in	shared
objects
Availability:	Unix.

The	dl	module	defines	an	interface	to	the	dlopen()	function,	which	is	the
most	common	interface	on	UNIX	platforms	for	handling	dynamically	linked
libraries.	It	allows	the	program	to	call	arbitrary	functions	in	such	a	library.

Note:	This	module	will	not	work	unless	sizeof(int)	==	sizeof(long)
==	sizeof(char	*)	If	this	is	not	the	case,	SystemError	will	be	raised
on	import.

The	dl	module	defines	the	following	function:

open(name[,	mode	=	RTLD_LAZY])
Open	a	shared	object	file,	and	return	a	handle.	Mode	signifies	late	binding
(RTLD_LAZY)	or	immediate	binding	(RTLD_NOW).	Default	is
RTLD_LAZY.	Note	that	some	systems	do	not	support	RTLD_NOW.

Return	value	is	a	dlobject.

The	dl	module	defines	the	following	constants:

RTLD_LAZY

Useful	as	an	argument	to	open().

RTLD_NOW

Useful	as	an	argument	to	open().	Note	that	on	systems	which	do	not
support	immediate	binding,	this	constant	will	not	appear	in	the	module.	For
maximum	portability,	use	hasattr()	to	determine	if	the	system	supports
immediate	binding.

The	dl	module	defines	the	following	exception:

exception	error

Exception	raised	when	an	error	has	occurred	inside	the	dynamic	loading
and	linking	routines.

Example:

>>>	import	dl,	time

>>>	a=dl.open('/lib/libc.so.6')

>>>	a.call('time'),	time.time()

(929723914,	929723914.498)

This	example	was	tried	on	a	Debian	GNU/Linux	system,	and	is	a	good	example
of	the	fact	that	using	this	module	is	usually	a	bad	alternative.

Subsections

8.5.1	Dl	Objects

Python	Library	Reference
Previous:	8.4	crypt	Up:	8.	Unix	Specific	Services	Next:	8.5.1	Dl	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.5	dl	Up:	8.5	dl	Next:	8.6	dbm

8.5.1	Dl	Objects
Dl	objects,	as	returned	by	open()	above,	have	the	following	methods:

close()
Free	all	resources,	except	the	memory.

sym(name)
Return	the	pointer	for	the	function	named	name,	as	a	number,	if	it	exists	in
the	referenced	shared	object,	otherwise	None.	This	is	useful	in	code	like:

>>>	if	a.sym('time'):	

...					a.call('time')

...	else:	

...					time.time()

(Note	that	this	function	will	return	a	non-zero	number,	as	zero	is	the	NULL
pointer)

call(name[,	arg1[,	arg2...]])
Call	the	function	named	name	in	the	referenced	shared	object.	The
arguments	must	be	either	Python	integers,	which	will	be	passed	as	is,
Python	strings,	to	which	a	pointer	will	be	passed,	or	None,	which	will	be
passed	as	NULL.	Note	that	strings	should	only	be	passed	to	functions	as
const	char*,	as	Python	will	not	like	its	string	mutated.

There	must	be	at	most	10	arguments,	and	arguments	not	given	will	be
treated	as	None.	The	function's	return	value	must	be	a	C	long,	which	is	a
Python	integer.

Python	Library	Reference
Previous:	8.5	dl	Up:	8.5	dl	Next:	8.6	dbm

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.5.1	Dl	Objects	Up:	8.	Unix	Specific	Services	Next:	8.7	gdbm

8.6	dbm	--	Simple	``database''
interface
Availability:	Unix.

The	dbm	module	provides	an	interface	to	the	UNIX	(n)dbm	library.	Dbm	objects
behave	like	mappings	(dictionaries),	except	that	keys	and	values	are	always
strings.	Printing	a	dbm	object	doesn't	print	the	keys	and	values,	and	the
items()	and	values()	methods	are	not	supported.

This	module	can	be	used	with	the	``classic''	ndbm	interface,	the	BSD	DB
compatibility	interface,	or	the	GNU	GDBM	compatibility	interface.	On	UNIX,
the	configure	script	will	attempt	to	locate	the	appropriate	header	file	to	simplify
building	this	module.

The	module	defines	the	following:

exception	error
Raised	on	dbm-specific	errors,	such	as	I/O	errors.	KeyError	is	raised	for
general	mapping	errors	like	specifying	an	incorrect	key.

library

Name	of	the	ndbm	implementation	library	used.

open(filename[,	flag[,	mode]])
Open	a	dbm	database	and	return	a	dbm	object.	The	filename	argument	is	the
name	of	the	database	file	(without	the	.dir	or	.pag	extensions;	note	that	the
BSD	DB	implementation	of	the	interface	will	append	the	extension	.db	and
only	create	one	file).

The	optional	flag	argument	must	be	one	of	these	values:

Value Meaning
'r' Open	existing	database	for	reading	only	(default)
'w' Open	existing	database	for	reading	and	writing

'c' Open	database	for	reading	and	writing,	creating	it	if	it	doesn't
exist

'n' Always	create	a	new,	empty	database,	open	for	reading	and
writing

The	optional	mode	argument	is	the	UNIX	mode	of	the	file,	used	only	when
the	database	has	to	be	created.	It	defaults	to	octal	0666.

See	Also:

Module	anydbm:
Generic	interface	to	dbm-style	databases.

Module	gdbm:
Similar	interface	to	the	GNU	GDBM	library.

Module	whichdb:
Utility	module	used	to	determine	the	type	of	an	existing	database.

Python	Library	Reference
Previous:	8.5.1	Dl	Objects	Up:	8.	Unix	Specific	Services	Next:	8.7	gdbm

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.6	dbm	Up:	8.	Unix	Specific	Services	Next:	8.8	termios

8.7	gdbm	--	GNU's	reinterpretation	of
dbm
Availability:	Unix.

This	module	is	quite	similar	to	the	dbm	module,	but	uses	gdbm	instead	to
provide	some	additional	functionality.	Please	note	that	the	file	formats	created	by
gdbm	and	dbm	are	incompatible.

The	gdbm	module	provides	an	interface	to	the	GNU	DBM	library.	gdbm	objects
behave	like	mappings	(dictionaries),	except	that	keys	and	values	are	always
strings.	Printing	a	gdbm	object	doesn't	print	the	keys	and	values,	and	the
items()	and	values()	methods	are	not	supported.

The	module	defines	the	following	constant	and	functions:

exception	error
Raised	on	gdbm-specific	errors,	such	as	I/O	errors.	KeyError	is	raised	for
general	mapping	errors	like	specifying	an	incorrect	key.

open(filename,	[flag,	[mode]])
Open	a	gdbm	database	and	return	a	gdbm	object.	The	filename	argument	is
the	name	of	the	database	file.

The	optional	flag	argument	can	be	'r'	(to	open	an	existing	database	for
reading	only	--	default),	'w'	(to	open	an	existing	database	for	reading	and
writing),	'c'	(which	creates	the	database	if	it	doesn't	exist),	or	'n'	(which
always	creates	a	new	empty	database).

The	following	additional	characters	may	be	appended	to	the	flag	to	control
how	the	database	is	opened:

'f'	--	Open	the	database	in	fast	mode.	Writes	to	the	database	will	not
be	syncronized.
's'	--	Synchronized	mode.	This	will	cause	changes	to	the	database
will	be	immediately	written	to	the	file.

'u'	--	Do	not	lock	database.

Not	all	flags	are	valid	for	all	versions	of	gdbm.	The	module	constant
open_flags	is	a	string	of	supported	flag	characters.	The	exception
error	is	raised	if	an	invalid	flag	is	specified.

The	optional	mode	argument	is	the	UNIX	mode	of	the	file,	used	only	when
the	database	has	to	be	created.	It	defaults	to	octal	0666.

In	addition	to	the	dictionary-like	methods,	gdbm	objects	have	the	following
methods:

firstkey()
It's	possible	to	loop	over	every	key	in	the	database	using	this	method	and
the	nextkey()	method.	The	traversal	is	ordered	by	gdbm's	internal	hash
values,	and	won't	be	sorted	by	the	key	values.	This	method	returns	the
starting	key.

nextkey(key)
Returns	the	key	that	follows	key	in	the	traversal.	The	following	code	prints
every	key	in	the	database	db,	without	having	to	create	a	list	in	memory	that
contains	them	all:

k	=	db.firstkey()

while	k	!=	None:

				print	k

				k	=	db.nextkey(k)

reorganize()
If	you	have	carried	out	a	lot	of	deletions	and	would	like	to	shrink	the	space
used	by	the	gdbm	file,	this	routine	will	reorganize	the	database.	gdbm	will
not	shorten	the	length	of	a	database	file	except	by	using	this	reorganization;
otherwise,	deleted	file	space	will	be	kept	and	reused	as	new	(key,	value)
pairs	are	added.

sync()
When	the	database	has	been	opened	in	fast	mode,	this	method	forces	any
unwritten	data	to	be	written	to	the	disk.

See	Also:

Module	anydbm:
Generic	interface	to	dbm-style	databases.

Module	whichdb:
Utility	module	used	to	determine	the	type	of	an	existing	database.

Python	Library	Reference
Previous:	8.6	dbm	Up:	8.	Unix	Specific	Services	Next:	8.8	termios

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.7	gdbm	Up:	8.	Unix	Specific	Services	Next:	8.8.1	Example

8.8	termios	--	POSIX	style	tty
control
Availability:	Unix.

This	module	provides	an	interface	to	the	POSIX	calls	for	tty	I/O	control.	For	a
complete	description	of	these	calls,	see	the	POSIX	or	UNIX	manual	pages.	It	is
only	available	for	those	UNIX	versions	that	support	POSIX	termios	style	tty	I/O
control	(and	then	only	if	configured	at	installation	time).

All	functions	in	this	module	take	a	file	descriptor	fd	as	their	first	argument.	This
can	be	an	integer	file	descriptor,	such	as	returned	by	sys.stdin.fileno(),
or	a	file	object,	such	as	sys.stdin	itself.

This	module	also	defines	all	the	constants	needed	to	work	with	the	functions
provided	here;	these	have	the	same	name	as	their	counterparts	in	C.	Please	refer
to	your	system	documentation	for	more	information	on	using	these	terminal
control	interfaces.

The	module	defines	the	following	functions:

tcgetattr(fd)
Return	a	list	containing	the	tty	attributes	for	file	descriptor	fd,	as	follows:
[iflag,	oflag,	cflag,	lflag,	ispeed,	ospeed,	cc]	where	cc	is	a	list	of	the	tty
special	characters	(each	a	string	of	length	1,	except	the	items	with	indices
VMIN	and	VTIME,	which	are	integers	when	these	fields	are	defined).	The
interpretation	of	the	flags	and	the	speeds	as	well	as	the	indexing	in	the	cc
array	must	be	done	using	the	symbolic	constants	defined	in	the	termios
module.

tcsetattr(fd,	when,	attributes)
Set	the	tty	attributes	for	file	descriptor	fd	from	the	attributes,	which	is	a	list
like	the	one	returned	by	tcgetattr().	The	when	argument	determines
when	the	attributes	are	changed:	TCSANOW	to	change	immediately,
TCSADRAIN	to	change	after	transmitting	all	queued	output,	or

TCSAFLUSH	to	change	after	transmitting	all	queued	output	and	discarding
all	queued	input.

tcsendbreak(fd,	duration)
Send	a	break	on	file	descriptor	fd.	A	zero	duration	sends	a	break	for	0.25-
0.5	seconds;	a	nonzero	duration	has	a	system	dependent	meaning.

tcdrain(fd)
Wait	until	all	output	written	to	file	descriptor	fd	has	been	transmitted.

tcflush(fd,	queue)
Discard	queued	data	on	file	descriptor	fd.	The	queue	selector	specifies
which	queue:	TCIFLUSH	for	the	input	queue,	TCOFLUSH	for	the	output
queue,	or	TCIOFLUSH	for	both	queues.

tcflow(fd,	action)
Suspend	or	resume	input	or	output	on	file	descriptor	fd.	The	action
argument	can	be	TCOOFF	to	suspend	output,	TCOON	to	restart	output,
TCIOFF	to	suspend	input,	or	TCION	to	restart	input.

See	Also:

Module	tty:
Convenience	functions	for	common	terminal	control	operations.

Subsections

8.8.1	Example

Python	Library	Reference
Previous:	8.7	gdbm	Up:	8.	Unix	Specific	Services	Next:	8.8.1	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.8	termios	Up:	8.8	termios	Next:	8.9	tty

8.8.1	Example
Here's	a	function	that	prompts	for	a	password	with	echoing	turned	off.	Note	the
technique	using	a	separate	tcgetattr()	call	and	a	try	...	finally
statement	to	ensure	that	the	old	tty	attributes	are	restored	exactly	no	matter	what
happens:

def	getpass(prompt	=	"Password:	"):

				import	termios,	sys

				fd	=	sys.stdin.fileno()

				old	=	termios.tcgetattr(fd)

				new	=	termios.tcgetattr(fd)

				new[3]	=	new[3]	&	~termios.ECHO										#	lflags

				try:

								termios.tcsetattr(fd,	termios.TCSADRAIN,	new)

								passwd	=	raw_input(prompt)

				finally:

								termios.tcsetattr(fd,	termios.TCSADRAIN,	old)

				return	passwd

Python	Library	Reference
Previous:	8.8	termios	Up:	8.8	termios	Next:	8.9	tty

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.8.1	Example	Up:	8.	Unix	Specific	Services	Next:	8.10	pty

8.9	tty	--	Terminal	control	functions
Availability:	Unix.

The	tty	module	defines	functions	for	putting	the	tty	into	cbreak	and	raw
modes.

Because	it	requires	the	termios	module,	it	will	work	only	on	UNIX.

The	tty	module	defines	the	following	functions:

setraw(fd[,	when])
Change	the	mode	of	the	file	descriptor	fd	to	raw.	If	when	is	omitted,	it
defaults	to	termios.TCSAFLUSH,	and	is	passed	to
termios.tcsetattr().

setcbreak(fd[,	when])
Change	the	mode	of	file	descriptor	fd	to	cbreak.	If	when	is	omitted,	it
defaults	to	termios.TCSAFLUSH,	and	is	passed	to
termios.tcsetattr().

See	Also:

Module	termios:
Low-level	terminal	control	interface.

Python	Library	Reference
Previous:	8.8.1	Example	Up:	8.	Unix	Specific	Services	Next:	8.10	pty

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.9	tty	Up:	8.	Unix	Specific	Services	Next:	8.11	fcntl

8.10	pty	--	Pseudo-terminal	utilities
Availability:	IRIX,	Linux.

The	pty	module	defines	operations	for	handling	the	pseudo-terminal	concept:
starting	another	process	and	being	able	to	write	to	and	read	from	its	controlling
terminal	programmatically.

Because	pseudo-terminal	handling	is	highly	platform	dependant,	there	is	code	to
do	it	only	for	SGI	and	Linux.	(The	Linux	code	is	supposed	to	work	on	other
platforms,	but	hasn't	been	tested	yet.)

The	pty	module	defines	the	following	functions:

fork()
Fork.	Connect	the	child's	controlling	terminal	to	a	pseudo-terminal.	Return
value	is	(pid,	fd).	Note	that	the	child	gets	pid	0,	and	the	fd	is	invalid.	The
parent's	return	value	is	the	pid	of	the	child,	and	fd	is	a	file	descriptor
connected	to	the	child's	controlling	terminal	(and	also	to	the	child's	standard
input	and	output).

openpty()
Open	a	new	pseudo-terminal	pair,	using	os.openpty()	if	possible,	or
emulation	code	for	SGI	and	generic	UNIX	systems.	Return	a	pair	of	file
descriptors	(master,	slave),	for	the	master	and	the	slave	end,
respectively.

spawn(argv[,	master_read[,	stdin_read]])
Spawn	a	process,	and	connect	its	controlling	terminal	with	the	current
process's	standard	io.	This	is	often	used	to	baffle	programs	which	insist	on
reading	from	the	controlling	terminal.

The	functions	master_read	and	stdin_read	should	be	functions	which	read
from	a	file-descriptor.	The	defaults	try	to	read	1024	bytes	each	time	they	are
called.

Python	Library	Reference
Previous:	8.9	tty	Up:	8.	Unix	Specific	Services	Next:	8.11	fcntl

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.10	pty	Up:	8.	Unix	Specific	Services	Next:	8.12	pipes

8.11	fcntl	--	The	fcntl()	and
ioctl()	system	calls
Availability:	Unix.

This	module	performs	file	control	and	I/O	control	on	file	descriptors.	It	is	an
interface	to	the	fcntl()	and	ioctl()	UNIX	routines.

All	functions	in	this	module	take	a	file	descriptor	fd	as	their	first	argument.	This
can	be	an	integer	file	descriptor,	such	as	returned	by	sys.stdin.fileno(),
or	a	file	object,	such	as	sys.stdin	itself,	which	provides	a	fileno()	which
returns	a	genuine	file	descriptor.

The	module	defines	the	following	functions:

fcntl(fd,	op[,	arg])
Perform	the	requested	operation	on	file	descriptor	fd	(file	objects	providing
a	fileno()	method	are	accepted	as	well).	The	operation	is	defined	by	op
and	is	operating	system	dependent.	These	codes	are	also	found	in	the
fcntl	module.	The	argument	arg	is	optional,	and	defaults	to	the	integer
value	0.	When	present,	it	can	either	be	an	integer	value,	or	a	string.	With
the	argument	missing	or	an	integer	value,	the	return	value	of	this	function	is
the	integer	return	value	of	the	C	fcntl()	call.	When	the	argument	is	a
string	it	represents	a	binary	structure,	e.g.	created	by	struct.pack().	The
binary	data	is	copied	to	a	buffer	whose	address	is	passed	to	the	C	fcntl()
call.	The	return	value	after	a	successful	call	is	the	contents	of	the	buffer,
converted	to	a	string	object.	The	length	of	the	returned	string	will	be	the
same	as	the	length	of	the	arg	argument.	This	is	limited	to	1024	bytes.	If	the
information	returned	in	the	buffer	by	the	operating	system	is	larger	than
1024	bytes,	this	is	most	likely	to	result	in	a	segmentation	violation	or	a
more	subtle	data	corruption.

If	the	fcntl()	fails,	an	IOError	is	raised.

ioctl(fd,	op[,	arg[,	mutate_flag]])

This	function	is	identical	to	the	fcntl()	function,	except	that	the
operations	are	typically	defined	in	the	library	module	termios	and	the
argument	handling	is	even	more	complicated.

The	parameter	arg	can	be	one	of	an	integer,	absent	(treated	identically	to
the	integer	0),	an	object	supporting	the	read-only	buffer	interface	(most
likely	a	plain	Python	string)	or	an	object	supporting	the	read-write	buffer
interface.

In	all	but	the	last	case,	behaviour	is	as	for	the	fcntl()	function.

If	a	mutable	buffer	is	passed,	then	the	behaviour	is	determined	by	the	value
of	the	mutate_flag	parameter.

If	it	is	false,	the	buffer's	mutability	is	ignored	and	behaviour	is	as	for	a	read-
only	buffer,	except	that	the	1024	byte	limit	mentioned	above	is	avoided	-	so
long	as	the	buffer	you	pass	is	longer	than	what	the	operating	system	wants
to	put	there,	things	should	work.

If	mutate_flag	is	true,	then	the	buffer	is	(in	effect)	passed	to	the	underlying
ioctl()	system	call,	the	latter's	return	code	is	passed	back	to	the	calling
Python,	and	the	buffer's	new	contents	reflect	the	action	of	the	ioctl().
This	is	a	slight	simplification,	because	if	the	supplied	buffer	is	less	than
1024	bytes	long	it	is	first	copied	into	a	static	buffer	1024	bytes	long	which
is	then	passed	to	ioctl()	and	copied	back	into	the	supplied	buffer.

If	mutate_flag	is	not	supplied,	then	in	2.3	it	defaults	to	false.	This	is
planned	to	change	over	the	next	few	Python	versions:	in	2.4	failing	to
supply	mutate_flag	will	get	a	warning	but	the	same	behavior	and	in
versions	later	than	2.5	it	will	default	to	true.

An	example:

>>>	import	array,	fcntl,	struct,	termios,	os

>>>	os.getpgrp()

13341

>>>	struct.unpack('h',	fcntl.ioctl(0,	termios.TIOCGPGRP,	"		"))[0]

13341

>>>	buf	=	array.array('h',	[0])

>>>	fcntl.ioctl(0,	termios.TIOCGPGRP,	buf,	1)

0

>>>	buf

array('h',	[13341])

flock(fd,	op)
Perform	the	lock	operation	op	on	file	descriptor	fd	(file	objects	providing	a
fileno()	method	are	accepted	as	well).	See	the	UNIX	manual	flock(3)	for
details.	(On	some	systems,	this	function	is	emulated	using	fcntl().)

lockf(fd,	operation,	[length,	[start,	[whence]]])
This	is	essentially	a	wrapper	around	the	fcntl()	locking	calls.	fd	is	the
file	descriptor	of	the	file	to	lock	or	unlock,	and	operation	is	one	of	the
following	values:

LOCK_UN	-	unlock
LOCK_SH	-	acquire	a	shared	lock
LOCK_EX	-	acquire	an	exclusive	lock

When	operation	is	LOCK_SH	or	LOCK_EX,	it	can	also	be	bit-wise	OR'd
with	LOCK_NB	to	avoid	blocking	on	lock	acquisition.	If	LOCK_NB	is	used
and	the	lock	cannot	be	acquired,	an	IOError	will	be	raised	and	the
exception	will	have	an	errno	attribute	set	to	EACCES	or	EAGAIN
(depending	on	the	operating	system;	for	portability,	check	for	both	values).
On	at	least	some	systems,	LOCK_EX	can	only	be	used	if	the	file	descriptor
refers	to	a	file	opened	for	writing.

length	is	the	number	of	bytes	to	lock,	start	is	the	byte	offset	at	which	the
lock	starts,	relative	to	whence,	and	whence	is	as	with	fileobj.seek(),
specifically:

0	-	relative	to	the	start	of	the	file	(SEEK_SET)
1	-	relative	to	the	current	buffer	position	(SEEK_CUR)
2	-	relative	to	the	end	of	the	file	(SEEK_END)

The	default	for	start	is	0,	which	means	to	start	at	the	beginning	of	the	file.
The	default	for	length	is	0	which	means	to	lock	to	the	end	of	the	file.	The
default	for	whence	is	also	0.

Examples	(all	on	a	SVR4	compliant	system):

import	struct,	fcntl,	os

f	=	open(...)

rv	=	fcntl.fcntl(f,	fcntl.F_SETFL,	os.O_NDELAY)

lockdata	=	struct.pack('hhllhh',	fcntl.F_WRLCK,	0,	0,	0,	0,	0)

rv	=	fcntl.fcntl(f,	fcntl.F_SETLKW,	lockdata)

Note	that	in	the	first	example	the	return	value	variable	rv	will	hold	an	integer
value;	in	the	second	example	it	will	hold	a	string	value.	The	structure	lay-out	for
the	lockdata	variable	is	system	dependent	--	therefore	using	the	flock()	call
may	be	better.

See	Also:

Module	os:
The	os.open()	function	supports	locking	flags	and	is	available	on	a
wider	variety	of	platforms	than	the	lockf()	and	flock()
functions,	providing	a	more	platform-independent	file	locking	facility.

Python	Library	Reference
Previous:	8.10	pty	Up:	8.	Unix	Specific	Services	Next:	8.12	pipes

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.11	fcntl	Up:	8.	Unix	Specific	Services	Next:	8.12.1	Template
Objects

8.12	pipes	--	Interface	to	shell
pipelines
Availability:	Unix.

The	pipes	module	defines	a	class	to	abstract	the	concept	of	a	pipeline	--	a
sequence	of	convertors	from	one	file	to	another.

Because	the	module	uses	/bin/sh	command	lines,	a	POSIX	or	compatible	shell
for	os.system()	and	os.popen()	is	required.

The	pipes	module	defines	the	following	class:

class	Template()
An	abstraction	of	a	pipeline.

Example:

>>>	import	pipes

>>>	t=pipes.Template()

>>>	t.append('tr	a-z	A-Z',	'--')

>>>	f=t.open('/tmp/1',	'w')

>>>	f.write('hello	world')

>>>	f.close()

>>>	open('/tmp/1').read()

'HELLO	WORLD'

Subsections

8.12.1	Template	Objects

Python	Library	Reference
Previous:	8.11	fcntl	Up:	8.	Unix	Specific	Services	Next:	8.12.1	Template
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.12	pipes	Up:	8.12	pipes	Next:	8.13	posixfile

8.12.1	Template	Objects
Template	objects	following	methods:

reset()
Restore	a	pipeline	template	to	its	initial	state.

clone()
Return	a	new,	equivalent,	pipeline	template.

debug(flag)
If	flag	is	true,	turn	debugging	on.	Otherwise,	turn	debugging	off.	When
debugging	is	on,	commands	to	be	executed	are	printed,	and	the	shell	is
given	set	-x	command	to	be	more	verbose.

append(cmd,	kind)
Append	a	new	action	at	the	end.	The	cmd	variable	must	be	a	valid	bourne
shell	command.	The	kind	variable	consists	of	two	letters.

The	first	letter	can	be	either	of	'-'	(which	means	the	command	reads	its
standard	input),	'f'	(which	means	the	commands	reads	a	given	file	on	the
command	line)	or	'.'	(which	means	the	commands	reads	no	input,	and
hence	must	be	first.)

Similarly,	the	second	letter	can	be	either	of	'-'	(which	means	the
command	writes	to	standard	output),	'f'	(which	means	the	command
writes	a	file	on	the	command	line)	or	'.'	(which	means	the	command	does
not	write	anything,	and	hence	must	be	last.)

prepend(cmd,	kind)
Add	a	new	action	at	the	beginning.	See	append()	for	explanations	of	the
arguments.

open(file,	mode)
Return	a	file-like	object,	open	to	file,	but	read	from	or	written	to	by	the
pipeline.	Note	that	only	one	of	'r',	'w'	may	be	given.

copy(infile,	outfile)
Copy	infile	to	outfile	through	the	pipe.

Python	Library	Reference
Previous:	8.12	pipes	Up:	8.12	pipes	Next:	8.13	posixfile

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.12.1	Template	Objects	Up:	8.	Unix	Specific	Services	Next:	8.14
resource

8.13	posixfile	--	File-like	objects
with	locking	support
Availability:	Unix.

Deprecated	since	release	1.5.	The	locking	operation	that	this	module	provides
is	done	better	and	more	portably	by	the	fcntl.lockf()	call.

This	module	implements	some	additional	functionality	over	the	built-in	file
objects.	In	particular,	it	implements	file	locking,	control	over	the	file	flags,	and
an	easy	interface	to	duplicate	the	file	object.	The	module	defines	a	new	file
object,	the	posixfile	object.	It	has	all	the	standard	file	object	methods	and	adds
the	methods	described	below.	This	module	only	works	for	certain	flavors	of
UNIX,	since	it	uses	fcntl.fcntl()	for	file	locking.

To	instantiate	a	posixfile	object,	use	the	open()	function	in	the	posixfile
module.	The	resulting	object	looks	and	feels	roughly	the	same	as	a	standard	file
object.

The	posixfile	module	defines	the	following	constants:

SEEK_SET

Offset	is	calculated	from	the	start	of	the	file.

SEEK_CUR

Offset	is	calculated	from	the	current	position	in	the	file.

SEEK_END

Offset	is	calculated	from	the	end	of	the	file.

The	posixfile	module	defines	the	following	functions:

open(filename[,	mode[,	bufsize]])
Create	a	new	posixfile	object	with	the	given	filename	and	mode.	The
filename,	mode	and	bufsize	arguments	are	interpreted	the	same	way	as	by
the	built-in	open()	function.

fileopen(fileobject)
Create	a	new	posixfile	object	with	the	given	standard	file	object.	The
resulting	object	has	the	same	filename	and	mode	as	the	original	file	object.

The	posixfile	object	defines	the	following	additional	methods:

lock(fmt,	[len[,	start[,	whence]]])
Lock	the	specified	section	of	the	file	that	the	file	object	is	referring	to.	The
format	is	explained	below	in	a	table.	The	len	argument	specifies	the	length
of	the	section	that	should	be	locked.	The	default	is	0.	start	specifies	the
starting	offset	of	the	section,	where	the	default	is	0.	The	whence	argument
specifies	where	the	offset	is	relative	to.	It	accepts	one	of	the	constants
SEEK_SET,	SEEK_CUR	or	SEEK_END.	The	default	is	SEEK_SET.	For
more	information	about	the	arguments	refer	to	the	fcntl(2)	manual	page	on
your	system.

flags([flags])
Set	the	specified	flags	for	the	file	that	the	file	object	is	referring	to.	The	new
flags	are	ORed	with	the	old	flags,	unless	specified	otherwise.	The	format	is
explained	below	in	a	table.	Without	the	flags	argument	a	string	indicating
the	current	flags	is	returned	(this	is	the	same	as	the	"?"	modifier).	For	more
information	about	the	flags	refer	to	the	fcntl(2)	manual	page	on	your
system.

dup()
Duplicate	the	file	object	and	the	underlying	file	pointer	and	file	descriptor.
The	resulting	object	behaves	as	if	it	were	newly	opened.

dup2(fd)
Duplicate	the	file	object	and	the	underlying	file	pointer	and	file	descriptor.
The	new	object	will	have	the	given	file	descriptor.	Otherwise	the	resulting
object	behaves	as	if	it	were	newly	opened.

file()
Return	the	standard	file	object	that	the	posixfile	object	is	based	on.	This	is
sometimes	necessary	for	functions	that	insist	on	a	standard	file	object.

All	methods	raise	IOError	when	the	request	fails.

Format	characters	for	the	lock()	method	have	the	following	meaning:

Format Meaning
u unlock	the	specified	region
r request	a	read	lock	for	the	specified	section
w request	a	write	lock	for	the	specified	section

In	addition	the	following	modifiers	can	be	added	to	the	format:

Modifier Meaning Notes
| wait	until	the	lock	has	been	granted
? return	the	first	lock	conflicting	with	the	requested	lock,	or

None	if	there	is	no	conflict.
(1)

Note:

(1)
The	lock	returned	is	in	the	format	(mode,	len,	start,	whence,	pid)
where	mode	is	a	character	representing	the	type	of	lock	('r'	or	'w').	This
modifier	prevents	a	request	from	being	granted;	it	is	for	query	purposes
only.

Format	characters	for	the	flags()	method	have	the	following	meanings:

Format Meaning
a append	only	flag
c close	on	exec	flag
n no	delay	flag	(also	called	non-blocking	flag)
s synchronization	flag

In	addition	the	following	modifiers	can	be	added	to	the	format:

Modifier Meaning Notes
! turn	the	specified	flags	'off',	instead	of	the	default	'on' (1)
= replace	the	flags,	instead	of	the	default	'OR'	operation (1)

? return	a	string	in	which	the	characters	represent	the	flags
that	are	set.

(2)

Notes:

(1)
The	"!"	and	"="	modifiers	are	mutually	exclusive.

(2)
This	string	represents	the	flags	after	they	may	have	been	altered	by	the
same	call.

Examples:

import	posixfile

file	=	posixfile.open('/tmp/test',	'w')

file.lock('w|')

...

file.lock('u')

file.close()

Python	Library	Reference
Previous:	8.12.1	Template	Objects	Up:	8.	Unix	Specific	Services	Next:	8.14
resource

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.13	posixfile	Up:	8.	Unix	Specific	Services	Next:	8.14.1	Resource
Limits

8.14	resource	--	Resource	usage
information
Availability:	Unix.

This	module	provides	basic	mechanisms	for	measuring	and	controlling	system
resources	utilized	by	a	program.

Symbolic	constants	are	used	to	specify	particular	system	resources	and	to
request	usage	information	about	either	the	current	process	or	its	children.

A	single	exception	is	defined	for	errors:

exception	error
The	functions	described	below	may	raise	this	error	if	the	underlying	system
call	failures	unexpectedly.

Subsections

8.14.1	Resource	Limits
8.14.2	Resource	Usage

Python	Library	Reference
Previous:	8.13	posixfile	Up:	8.	Unix	Specific	Services	Next:	8.14.1	Resource
Limits

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.14	resource	Up:	8.14	resource	Next:	8.14.2	Resource	Usage

8.14.1	Resource	Limits
Resources	usage	can	be	limited	using	the	setrlimit()	function	described
below.	Each	resource	is	controlled	by	a	pair	of	limits:	a	soft	limit	and	a	hard
limit.	The	soft	limit	is	the	current	limit,	and	may	be	lowered	or	raised	by	a
process	over	time.	The	soft	limit	can	never	exceed	the	hard	limit.	The	hard	limit
can	be	lowered	to	any	value	greater	than	the	soft	limit,	but	not	raised.	(Only
processes	with	the	effective	UID	of	the	super-user	can	raise	a	hard	limit.)

The	specific	resources	that	can	be	limited	are	system	dependent.	They	are
described	in	the	getrlimit(2)	man	page.	The	resources	listed	below	are	supported
when	the	underlying	operating	system	supports	them;	resources	which	cannot	be
checked	or	controlled	by	the	operating	system	are	not	defined	in	this	module	for
those	platforms.

getrlimit(resource)
Returns	a	tuple	(soft,	hard)	with	the	current	soft	and	hard	limits	of
resource.	Raises	ValueError	if	an	invalid	resource	is	specified,	or
error	if	the	underyling	system	call	fails	unexpectedly.

setrlimit(resource,	limits)
Sets	new	limits	of	consumption	of	resource.	The	limits	argument	must	be	a
tuple	(soft,	hard)	of	two	integers	describing	the	new	limits.	A	value	of
-1	can	be	used	to	specify	the	maximum	possible	upper	limit.

Raises	ValueError	if	an	invalid	resource	is	specified,	if	the	new	soft
limit	exceeds	the	hard	limit,	or	if	a	process	tries	to	raise	its	hard	limit
(unless	the	process	has	an	effective	UID	of	super-user).	Can	also	raise
error	if	the	underyling	system	call	fails.

These	symbols	define	resources	whose	consumption	can	be	controlled	using	the
setrlimit()	and	getrlimit()	functions	described	below.	The	values	of
these	symbols	are	exactly	the	constants	used	by	C	programs.

The	UNIX	man	page	for	getrlimit(2)	lists	the	available	resources.	Note	that	not	all
systems	use	the	same	symbol	or	same	value	to	denote	the	same	resource.	This
module	does	not	attempt	to	mask	platform	differences	--	symbols	not	defined	for

a	platform	will	not	be	available	from	this	module	on	that	platform.

RLIMIT_CORE

The	maximum	size	(in	bytes)	of	a	core	file	that	the	current	process	can
create.	This	may	result	in	the	creation	of	a	partial	core	file	if	a	larger	core
would	be	required	to	contain	the	entire	process	image.

RLIMIT_CPU

The	maximum	amount	of	processor	time	(in	seconds)	that	a	process	can
use.	If	this	limit	is	exceeded,	a	SIGXCPU	signal	is	sent	to	the	process.	(See
the	signal	module	documentation	for	information	about	how	to	catch	this
signal	and	do	something	useful,	e.g.	flush	open	files	to	disk.)

RLIMIT_FSIZE

The	maximum	size	of	a	file	which	the	process	may	create.	This	only	affects
the	stack	of	the	main	thread	in	a	multi-threaded	process.

RLIMIT_DATA

The	maximum	size	(in	bytes)	of	the	process's	heap.

RLIMIT_STACK

The	maximum	size	(in	bytes)	of	the	call	stack	for	the	current	process.

RLIMIT_RSS

The	maximum	resident	set	size	that	should	be	made	available	to	the
process.

RLIMIT_NPROC

The	maximum	number	of	processes	the	current	process	may	create.

RLIMIT_NOFILE

The	maximum	number	of	open	file	descriptors	for	the	current	process.

RLIMIT_OFILE

The	BSD	name	for	RLIMIT_NOFILE.

RLIMIT_MEMLOCK

The	maximum	address	space	which	may	be	locked	in	memory.

RLIMIT_VMEM

The	largest	area	of	mapped	memory	which	the	process	may	occupy.

RLIMIT_AS

The	maximum	area	(in	bytes)	of	address	space	which	may	be	taken	by	the
process.

Python	Library	Reference
Previous:	8.14	resource	Up:	8.14	resource	Next:	8.14.2	Resource	Usage

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.14.1	Resource	Limits	Up:	8.14	resource	Next:	8.15	nis

8.14.2	Resource	Usage
These	functions	are	used	to	retrieve	resource	usage	information:

getrusage(who)
This	function	returns	an	object	that	describes	the	resources	consumed	by
either	the	current	process	or	its	children,	as	specified	by	the	who	parameter.
The	who	parameter	should	be	specified	using	one	of	the	RUSAGE_*
constants	described	below.

The	fields	of	the	return	value	each	describe	how	a	particular	system
resource	has	been	used,	e.g.	amount	of	time	spent	running	is	user	mode	or
number	of	times	the	process	was	swapped	out	of	main	memory.	Some
values	are	dependent	on	the	clock	tick	internal,	e.g.	the	amount	of	memory
the	process	is	using.

For	backward	compatibility,	the	return	value	is	also	accessible	as	a	tuple	of
16	elements.

The	fields	ru_utime	and	ru_stime	of	the	return	value	are	floating
point	values	representing	the	amount	of	time	spent	executing	in	user	mode
and	the	amount	of	time	spent	executing	in	system	mode,	respectively.	The
remaining	values	are	integers.	Consult	the	getrusage(2)	man	page	for
detailed	information	about	these	values.	A	brief	summary	is	presented	here:

Index Field Resource
0 ru_utime time	in	user	mode	(float)
1 ru_stime time	in	system	mode	(float)
2 ru_maxrss maximum	resident	set	size
3 ru_ixrss shared	memory	size
4 ru_idrss unshared	memory	size
5 ru_isrss unshared	stack	size
6 ru_minflt page	faults	not	requiring	I/O
7 ru_majflt page	faults	requiring	I/O
8 ru_nswap number	of	swap	outs
9 ru_inblock block	input	operations

10 ru_oublock block	output	operations
11 ru_msgsnd messages	sent
12 ru_msgrcv messages	received
13 ru_nsignals signals	received
14 ru_nvcsw voluntary	context	switches
15 ru_nivcsw involuntary	context	switches

This	function	will	raise	a	ValueError	if	an	invalid	who	parameter	is
specified.	It	may	also	raise	error	exception	in	unusual	circumstances.

Changed	in	version	2.3:	Added	access	to	values	as	attributes	of	the	returned
object.

getpagesize()
Returns	the	number	of	bytes	in	a	system	page.	(This	need	not	be	the	same
as	the	hardware	page	size.)	This	function	is	useful	for	determining	the
number	of	bytes	of	memory	a	process	is	using.	The	third	element	of	the
tuple	returned	by	getrusage()	describes	memory	usage	in	pages;
multiplying	by	page	size	produces	number	of	bytes.

The	following	RUSAGE_*	symbols	are	passed	to	the	getrusage()	function
to	specify	which	processes	information	should	be	provided	for.

RUSAGE_SELF

RUSAGE_SELF	should	be	used	to	request	information	pertaining	only	to
the	process	itself.

RUSAGE_CHILDREN

Pass	to	getrusage()	to	request	resource	information	for	child	processes
of	the	calling	process.

RUSAGE_BOTH

Pass	to	getrusage()	to	request	resources	consumed	by	both	the	current
process	and	child	processes.	May	not	be	available	on	all	systems.

Python	Library	Reference
Previous:	8.14.1	Resource	Limits	Up:	8.14	resource	Next:	8.15	nis

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.14.2	Resource	Usage	Up:	8.	Unix	Specific	Services	Next:	8.16
syslog

8.15	nis	--	Interface	to	Sun's	NIS
(Yellow	Pages)
Availability:	UNIX.

The	nis	module	gives	a	thin	wrapper	around	the	NIS	library,	useful	for	central
administration	of	several	hosts.

Because	NIS	exists	only	on	UNIX	systems,	this	module	is	only	available	for	UNIX.

The	nis	module	defines	the	following	functions:

match(key,	mapname)
Return	the	match	for	key	in	map	mapname,	or	raise	an	error	(nis.error)
if	there	is	none.	Both	should	be	strings,	key	is	8-bit	clean.	Return	value	is	an
arbitrary	array	of	bytes	(may	contain	NULL	and	other	joys).

Note	that	mapname	is	first	checked	if	it	is	an	alias	to	another	name.

cat(mapname)
Return	a	dictionary	mapping	key	to	value	such	that	match(key,
mapname)==value.	Note	that	both	keys	and	values	of	the	dictionary	are
arbitrary	arrays	of	bytes.

Note	that	mapname	is	first	checked	if	it	is	an	alias	to	another	name.

maps()
Return	a	list	of	all	valid	maps.

The	nis	module	defines	the	following	exception:

exception	error
An	error	raised	when	a	NIS	function	returns	an	error	code.

Python	Library	Reference

Previous:	8.14.2	Resource	Usage	Up:	8.	Unix	Specific	Services	Next:	8.16
syslog

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.15	nis	Up:	8.	Unix	Specific	Services	Next:	8.17	commands

8.16	syslog	--	UNIX	syslog	library
routines
Availability:	Unix.

This	module	provides	an	interface	to	the	UNIX	syslog	library	routines.	Refer	to
the	UNIX	manual	pages	for	a	detailed	description	of	the	syslog	facility.

The	module	defines	the	following	functions:

syslog([priority,]	message)
Send	the	string	message	to	the	system	logger.	A	trailing	newline	is	added	if
necessary.	Each	message	is	tagged	with	a	priority	composed	of	a	facility
and	a	level.	The	optional	priority	argument,	which	defaults	to	LOG_INFO,
determines	the	message	priority.	If	the	facility	is	not	encoded	in	priority
using	logical-or	(LOG_INFO	|	LOG_USER),	the	value	given	in	the
openlog()	call	is	used.

openlog(ident[,	logopt[,	facility]])
Logging	options	other	than	the	defaults	can	be	set	by	explicitly	opening	the
log	file	with	openlog()	prior	to	calling	syslog().	The	defaults	are
(usually)	ident	=	'syslog',	logopt	=	0,	facility	=	LOG_USER.	The	ident
argument	is	a	string	which	is	prepended	to	every	message.	The	optional
logopt	argument	is	a	bit	field	-	see	below	for	possible	values	to	combine.
The	optional	facility	argument	sets	the	default	facility	for	messages	which
do	not	have	a	facility	explicitly	encoded.

closelog()
Close	the	log	file.

setlogmask(maskpri)
Set	the	priority	mask	to	maskpri	and	return	the	previous	mask	value.	Calls
to	syslog()	with	a	priority	level	not	set	in	maskpri	are	ignored.	The
default	is	to	log	all	priorities.	The	function	LOG_MASK(pri)	calculates	the

mask	for	the	individual	priority	pri.	The	function	LOG_UPTO(pri)
calculates	the	mask	for	all	priorities	up	to	and	including	pri.

The	module	defines	the	following	constants:

Priority	levels	(high	to	low):

LOG_EMERG,	LOG_ALERT,	LOG_CRIT,	LOG_ERR,	LOG_WARNING,
LOG_NOTICE,	LOG_INFO,	LOG_DEBUG.

Facilities:

LOG_KERN,	LOG_USER,	LOG_MAIL,	LOG_DAEMON,	LOG_AUTH,
LOG_LPR,	LOG_NEWS,	LOG_UUCP,	LOG_CRON	and	LOG_LOCAL0	to
LOG_LOCAL7.

Log	options:

LOG_PID,	LOG_CONS,	LOG_NDELAY,	LOG_NOWAIT	and	LOG_PERROR
if	defined	in	<syslog.h>.

Python	Library	Reference
Previous:	8.15	nis	Up:	8.	Unix	Specific	Services	Next:	8.17	commands

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.16	syslog	Up:	8.	Unix	Specific	Services	Next:	9.	The	Python
Debugger

8.17	commands	--	Utilities	for	running
commands
Availability:	Unix.

The	commands	module	contains	wrapper	functions	for	os.popen()	which
take	a	system	command	as	a	string	and	return	any	output	generated	by	the
command	and,	optionally,	the	exit	status.

The	commands	module	defines	the	following	functions:

getstatusoutput(cmd)
Execute	the	string	cmd	in	a	shell	with	os.popen()	and	return	a	2-tuple
(status,	output).	cmd	is	actually	run	as	{	cmd	;	}	2>&1,	so	that	the
returned	output	will	contain	output	or	error	messages.	A	trailing	newline	is
stripped	from	the	output.	The	exit	status	for	the	command	can	be
interpreted	according	to	the	rules	for	the	C	function	wait().

getoutput(cmd)
Like	getstatusoutput(),	except	the	exit	status	is	ignored	and	the
return	value	is	a	string	containing	the	command's	output.

getstatus(file)
Return	the	output	of	"ls	-ld	file"	as	a	string.	This	function	uses	the
getoutput()	function,	and	properly	escapes	backslashes	and	dollar
signs	in	the	argument.

Example:

>>>	import	commands

>>>	commands.getstatusoutput('ls	/bin/ls')

(0,	'/bin/ls')

>>>	commands.getstatusoutput('cat	/bin/junk')

(256,	'cat:	/bin/junk:	No	such	file	or	directory')

>>>	commands.getstatusoutput('/bin/junk')

(256,	'sh:	/bin/junk:	not	found')

>>>	commands.getoutput('ls	/bin/ls')

'/bin/ls'

>>>	commands.getstatus('/bin/ls')

'-rwxr-xr-x		1	root								13352	Oct	14		1994	/bin/ls'

Python	Library	Reference
Previous:	8.16	syslog	Up:	8.	Unix	Specific	Services	Next:	9.	The	Python
Debugger

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.17	commands	Up:	Python	Library	Reference	Next:	9.1	Debugger
Commands

9.	The	Python	Debugger
The	module	pdb	defines	an	interactive	source	code	debugger	for	Python
programs.	It	supports	setting	(conditional)	breakpoints	and	single	stepping	at	the
source	line	level,	inspection	of	stack	frames,	source	code	listing,	and	evaluation
of	arbitrary	Python	code	in	the	context	of	any	stack	frame.	It	also	supports	post-
mortem	debugging	and	can	be	called	under	program	control.

The	debugger	is	extensible	--	it	is	actually	defined	as	the	class	Pdb.	This	is
currently	undocumented	but	easily	understood	by	reading	the	source.	The
extension	interface	uses	the	modules	bdb	(undocumented)	and	cmd.

The	debugger's	prompt	is	"(Pdb)	".	Typical	usage	to	run	a	program	under
control	of	the	debugger	is:

>>>	import	pdb

>>>	import	mymodule

>>>	pdb.run('mymodule.test()')

>	<string>(0)?()

(Pdb)	continue

>	<string>(1)?()

(Pdb)	continue

NameError:	'spam'

>	<string>(1)?()

(Pdb)

pdb.py	can	also	be	invoked	as	a	script	to	debug	other	scripts.	For	example:

python	-m	pdb	myscript.py

When	invoked	as	a	script,	pdb	will	automatically	enter	post-mortem	debugging
if	the	program	being	debugged	exits	abnormally.	After	post-mortem	debugging
(or	after	normal	exit	of	the	program),	pdb	will	restart	the	program.	Automatic
restarting	preserves	pdb's	state	(such	as	breakpoints)	and	in	most	cases	is	more
useful	than	quitting	the	debugger	upon	program's	exit.	New	in	version	2.4:
Restarting	post-mortem	behavior	added.

Typical	usage	to	inspect	a	crashed	program	is:

>>>	import	pdb

>>>	import	mymodule

>>>	mymodule.test()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

		File	"./mymodule.py",	line	4,	in	test

				test2()

		File	"./mymodule.py",	line	3,	in	test2

				print	spam

NameError:	spam

>>>	pdb.pm()

>	./mymodule.py(3)test2()

->	print	spam

(Pdb)

The	module	defines	the	following	functions;	each	enters	the	debugger	in	a
slightly	different	way:

run(statement[,	globals[,	locals]])
Execute	the	statement	(given	as	a	string)	under	debugger	control.	The
debugger	prompt	appears	before	any	code	is	executed;	you	can	set
breakpoints	and	type	"continue",	or	you	can	step	through	the	statement
using	"step"	or	"next"	(all	these	commands	are	explained	below).	The
optional	globals	and	locals	arguments	specify	the	environment	in	which	the
code	is	executed;	by	default	the	dictionary	of	the	module	__main__	is
used.	(See	the	explanation	of	the	exec	statement	or	the	eval()	built-in
function.)

runeval(expression[,	globals[,	locals]])
Evaluate	the	expression	(given	as	a	string)	under	debugger	control.	When
runeval()	returns,	it	returns	the	value	of	the	expression.	Otherwise	this
function	is	similar	to	run().

runcall(function[,	argument,	...])
Call	the	function	(a	function	or	method	object,	not	a	string)	with	the	given
arguments.	When	runcall()	returns,	it	returns	whatever	the	function	call
returned.	The	debugger	prompt	appears	as	soon	as	the	function	is	entered.

set_trace()
Enter	the	debugger	at	the	calling	stack	frame.	This	is	useful	to	hard-code	a
breakpoint	at	a	given	point	in	a	program,	even	if	the	code	is	not	otherwise
being	debugged	(e.g.	when	an	assertion	fails).

post_mortem(traceback)
Enter	post-mortem	debugging	of	the	given	traceback	object.

pm()
Enter	post-mortem	debugging	of	the	traceback	found	in
sys.last_traceback.

Subsections

9.1	Debugger	Commands
9.2	How	It	Works

Python	Library	Reference
Previous:	8.17	commands	Up:	Python	Library	Reference	Next:	9.1	Debugger
Commands

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	9.	The	Python	Debugger	Up:	9.	The	Python	Debugger	Next:	9.2
How	It	Works

9.1	Debugger	Commands
The	debugger	recognizes	the	following	commands.	Most	commands	can	be
abbreviated	to	one	or	two	letters;	e.g.	"h(elp)"	means	that	either	"h"	or
"help"	can	be	used	to	enter	the	help	command	(but	not	"he"	or	"hel",	nor	"H"
or	"Help"	or	"HELP").	Arguments	to	commands	must	be	separated	by
whitespace	(spaces	or	tabs).	Optional	arguments	are	enclosed	in	square	brackets
("[]")	in	the	command	syntax;	the	square	brackets	must	not	be	typed.
Alternatives	in	the	command	syntax	are	separated	by	a	vertical	bar	("|").

Entering	a	blank	line	repeats	the	last	command	entered.	Exception:	if	the	last
command	was	a	"list"	command,	the	next	11	lines	are	listed.

Commands	that	the	debugger	doesn't	recognize	are	assumed	to	be	Python
statements	and	are	executed	in	the	context	of	the	program	being	debugged.
Python	statements	can	also	be	prefixed	with	an	exclamation	point	("!").	This	is	a
powerful	way	to	inspect	the	program	being	debugged;	it	is	even	possible	to
change	a	variable	or	call	a	function.	When	an	exception	occurs	in	such	a
statement,	the	exception	name	is	printed	but	the	debugger's	state	is	not	changed.

Multiple	commands	may	be	entered	on	a	single	line,	separated	by	";;".	(A
single	";"	is	not	used	as	it	is	the	separator	for	multiple	commands	in	a	line	that	is
passed	to	the	Python	parser.)	No	intelligence	is	applied	to	separating	the
commands;	the	input	is	split	at	the	first	";;"	pair,	even	if	it	is	in	the	middle	of	a
quoted	string.

The	debugger	supports	aliases.	Aliases	can	have	parameters	which	allows	one	a
certain	level	of	adaptability	to	the	context	under	examination.

If	a	file	.pdbrc	exists	in	the	user's	home	directory	or	in	the	current	directory,	it	is
read	in	and	executed	as	if	it	had	been	typed	at	the	debugger	prompt.	This	is
particularly	useful	for	aliases.	If	both	files	exist,	the	one	in	the	home	directory	is
read	first	and	aliases	defined	there	can	be	overridden	by	the	local	file.

h(elp)	[command]

Without	argument,	print	the	list	of	available	commands.	With	a	command	as

argument,	print	help	about	that	command.	"help	pdb"	displays	the	full
documentation	file;	if	the	environment	variable	PAGER	is	defined,	the	file
is	piped	through	that	command	instead.	Since	the	command	argument	must
be	an	identifier,	"help	exec"	must	be	entered	to	get	help	on	the	"!"
command.

w(here)

Print	a	stack	trace,	with	the	most	recent	frame	at	the	bottom.	An	arrow
indicates	the	current	frame,	which	determines	the	context	of	most
commands.

d(own)

Move	the	current	frame	one	level	down	in	the	stack	trace	(to	an	newer
frame).

u(p)

Move	the	current	frame	one	level	up	in	the	stack	trace	(to	a	older	frame).

b(reak)	[[filename:]lineno|function[,	condition]]

With	a	lineno	argument,	set	a	break	there	in	the	current	file.	With	a	function
argument,	set	a	break	at	the	first	executable	statement	within	that	function.
The	line	number	may	be	prefixed	with	a	filename	and	a	colon,	to	specify	a
breakpoint	in	another	file	(probably	one	that	hasn't	been	loaded	yet).	The
file	is	searched	on	sys.path.	Note	that	each	breakpoint	is	assigned	a
number	to	which	all	the	other	breakpoint	commands	refer.

If	a	second	argument	is	present,	it	is	an	expression	which	must	evaluate	to
true	before	the	breakpoint	is	honored.

Without	argument,	list	all	breaks,	including	for	each	breakpoint,	the	number
of	times	that	breakpoint	has	been	hit,	the	current	ignore	count,	and	the
associated	condition	if	any.

tbreak	[[filename:]lineno|function[,	condition]]

Temporary	breakpoint,	which	is	removed	automatically	when	it	is	first	hit.

The	arguments	are	the	same	as	break.

cl(ear)	[bpnumber	[bpnumber	...]]

With	a	space	separated	list	of	breakpoint	numbers,	clear	those	breakpoints.
Without	argument,	clear	all	breaks	(but	first	ask	confirmation).

disable	[bpnumber	[bpnumber	...]]

Disables	the	breakpoints	given	as	a	space	separated	list	of	breakpoint
numbers.	Disabling	a	breakpoint	means	it	cannot	cause	the	program	to	stop
execution,	but	unlike	clearing	a	breakpoint,	it	remains	in	the	list	of
breakpoints	and	can	be	(re-)enabled.

enable	[bpnumber	[bpnumber	...]]

Enables	the	breakpoints	specified.

ignore	bpnumber	[count]

Sets	the	ignore	count	for	the	given	breakpoint	number.	If	count	is	omitted,
the	ignore	count	is	set	to	0.	A	breakpoint	becomes	active	when	the	ignore
count	is	zero.	When	non-zero,	the	count	is	decremented	each	time	the
breakpoint	is	reached	and	the	breakpoint	is	not	disabled	and	any	associated
condition	evaluates	to	true.

condition	bpnumber	[condition]

Condition	is	an	expression	which	must	evaluate	to	true	before	the
breakpoint	is	honored.	If	condition	is	absent,	any	existing	condition	is
removed;	i.e.,	the	breakpoint	is	made	unconditional.

s(tep)

Execute	the	current	line,	stop	at	the	first	possible	occasion	(either	in	a
function	that	is	called	or	on	the	next	line	in	the	current	function).

n(ext)

Continue	execution	until	the	next	line	in	the	current	function	is	reached	or	it

returns.	(The	difference	between	"next"	and	"step"	is	that	"step"	stops
inside	a	called	function,	while	"next"	executes	called	functions	at	(nearly)
full	speed,	only	stopping	at	the	next	line	in	the	current	function.)

r(eturn)

Continue	execution	until	the	current	function	returns.

c(ont(inue))

Continue	execution,	only	stop	when	a	breakpoint	is	encountered.

j(ump)	lineno

Set	the	next	line	that	will	be	executed.	Only	available	in	the	bottom-most
frame.	This	lets	you	jump	back	and	execute	code	again,	or	jump	forward	to
skip	code	that	you	don't	want	to	run.

It	should	be	noted	that	not	all	jumps	are	allowed	--	for	instance	it	is	not
possible	to	jump	into	the	middle	of	a	for	loop	or	out	of	a	finally
clause.

l(ist)	[first[,	last]]

List	source	code	for	the	current	file.	Without	arguments,	list	11	lines	around
the	current	line	or	continue	the	previous	listing.	With	one	argument,	list	11
lines	around	at	that	line.	With	two	arguments,	list	the	given	range;	if	the
second	argument	is	less	than	the	first,	it	is	interpreted	as	a	count.

a(rgs)

Print	the	argument	list	of	the	current	function.

p	expression

Evaluate	the	expression	in	the	current	context	and	print	its	value.	Note:
"print"	can	also	be	used,	but	is	not	a	debugger	command	--	this	executes
the	Python	print	statement.

pp	expression

Like	the	"p"	command,	except	the	value	of	the	expression	is	pretty-printed
using	the	pprint	module.

alias	[name	[command]]

Creates	an	alias	called	name	that	executes	command.	The	command	must
not	be	enclosed	in	quotes.	Replaceable	parameters	can	be	indicated	by
"%1",	"%2",	and	so	on,	while	"%*"	is	replaced	by	all	the	parameters.	If	no
command	is	given,	the	current	alias	for	name	is	shown.	If	no	arguments	are
given,	all	aliases	are	listed.

Aliases	may	be	nested	and	can	contain	anything	that	can	be	legally	typed	at
the	pdb	prompt.	Note	that	internal	pdb	commands	can	be	overridden	by
aliases.	Such	a	command	is	then	hidden	until	the	alias	is	removed.	Aliasing
is	recursively	applied	to	the	first	word	of	the	command	line;	all	other	words
in	the	line	are	left	alone.

As	an	example,	here	are	two	useful	aliases	(especially	when	placed	in	the
.pdbrc	file):

#Print	instance	variables	(usage	"pi	classInst")

alias	pi	for	k	in	%1.__dict__.keys():	print	"%1.",k,"=",%1.__dict__[k]

#Print	instance	variables	in	self

alias	ps	pi	self

unalias	name

Deletes	the	specified	alias.

[!]statement

Execute	the	(one-line)	statement	in	the	context	of	the	current	stack	frame.
The	exclamation	point	can	be	omitted	unless	the	first	word	of	the	statement
resembles	a	debugger	command.	To	set	a	global	variable,	you	can	prefix	the
assignment	command	with	a	"global"	command	on	the	same	line,	e.g.:

(Pdb)	global	list_options;	list_options	=	['-l']

(Pdb)

q(uit)

Quit	from	the	debugger.	The	program	being	executed	is	aborted.

Python	Library	Reference
Previous:	9.	The	Python	Debugger	Up:	9.	The	Python	Debugger	Next:	9.2
How	It	Works

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	9.1	Debugger	Commands	Up:	9.	The	Python	Debugger	Next:	10.
The	Python	Profiler

9.2	How	It	Works
Some	changes	were	made	to	the	interpreter:

sys.settrace(func)	sets	the	global	trace	function
there	can	also	a	local	trace	function	(see	later)

Trace	functions	have	three	arguments:	frame,	event,	and	arg.	frame	is	the	current
stack	frame.	event	is	a	string:	'call',	'line',	'return',	'exception',
'c_call',	'c_return',	or	'c_exception'.	arg	depends	on	the	event
type.

The	global	trace	function	is	invoked	(with	event	set	to	'call')	whenever	a	new
local	scope	is	entered;	it	should	return	a	reference	to	the	local	trace	function	to
be	used	that	scope,	or	None	if	the	scope	shouldn't	be	traced.

The	local	trace	function	should	return	a	reference	to	itself	(or	to	another	function
for	further	tracing	in	that	scope),	or	None	to	turn	off	tracing	in	that	scope.

Instance	methods	are	accepted	(and	very	useful!)	as	trace	functions.

The	events	have	the	following	meaning:

'call'

A	function	is	called	(or	some	other	code	block	entered).	The	global	trace
function	is	called;	arg	is	None;	the	return	value	specifies	the	local	trace
function.

'line'

The	interpreter	is	about	to	execute	a	new	line	of	code	(sometimes	multiple
line	events	on	one	line	exist).	The	local	trace	function	is	called;	arg	is
None;	the	return	value	specifies	the	new	local	trace	function.

'return'

A	function	(or	other	code	block)	is	about	to	return.	The	local	trace	function
is	called;	arg	is	the	value	that	will	be	returned.	The	trace	function's	return
value	is	ignored.

'exception'

An	exception	has	occurred.	The	local	trace	function	is	called;	arg	is	a	triple
(exception,	value,	traceback);	the	return	value	specifies	the	new	local
trace	function.

'c_call'

A	C	function	is	about	to	be	called.	This	may	be	an	extension	function	or	a
builtin.	arg	is	the	C	function	object.

'c_return'

A	C	function	has	returned.	arg	is	None.

'c_exception'

A	C	function	has	thrown	an	exception.	arg	is	None.

Note	that	as	an	exception	is	propagated	down	the	chain	of	callers,	an
'exception'	event	is	generated	at	each	level.

For	more	information	on	code	and	frame	objects,	refer	to	the	Python	Reference
Manual.

Python	Library	Reference
Previous:	9.1	Debugger	Commands	Up:	9.	The	Python	Debugger	Next:	10.
The	Python	Profiler

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	9.2	How	It	Works	Up:	Python	Library	Reference	Next:	10.1
Introduction	to	the

10.	The	Python	Profiler
Copyright	©	1994,	by	InfoSeek	Corporation,	all	rights	reserved.

Written	by	James	Roskind.10.1

Permission	to	use,	copy,	modify,	and	distribute	this	Python	software	and	its
associated	documentation	for	any	purpose	(subject	to	the	restriction	in	the
following	sentence)	without	fee	is	hereby	granted,	provided	that	the	above
copyright	notice	appears	in	all	copies,	and	that	both	that	copyright	notice	and
this	permission	notice	appear	in	supporting	documentation,	and	that	the	name	of
InfoSeek	not	be	used	in	advertising	or	publicity	pertaining	to	distribution	of	the
software	without	specific,	written	prior	permission.	This	permission	is	explicitly
restricted	to	the	copying	and	modification	of	the	software	to	remain	in	Python,
compiled	Python,	or	other	languages	(such	as	C)	wherein	the	modified	or
derived	code	is	exclusively	imported	into	a	Python	module.

INFOSEEK	CORPORATION	DISCLAIMS	ALL	WARRANTIES	WITH
REGARD	TO	THIS	SOFTWARE,	INCLUDING	ALL	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS.	IN	NO	EVENT
SHALL	INFOSEEK	CORPORATION	BE	LIABLE	FOR	ANY	SPECIAL,
INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES
WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,
WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER
TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE
USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

The	profiler	was	written	after	only	programming	in	Python	for	3	weeks.	As	a
result,	it	is	probably	clumsy	code,	but	I	don't	know	for	sure	yet	'cause	I'm	a
beginner	:-).	I	did	work	hard	to	make	the	code	run	fast,	so	that	profiling	would
be	a	reasonable	thing	to	do.	I	tried	not	to	repeat	code	fragments,	but	I'm	sure	I
did	some	stuff	in	really	awkward	ways	at	times.	Please	send	suggestions	for
improvements	to:	jar@netscape.com.	I	won't	promise	any	support.	...but	I'd
appreciate	the	feedback.

Footnotes

...	Roskind.10.1
Updated	and	converted	to	LaTeX	by	Guido	van	Rossum.	The	references	to
the	old	profiler	are	left	in	the	text,	although	it	no	longer	exists.

Subsections

10.1	Introduction	to	the	profiler
10.2	How	Is	This	Profiler	Different	From	The	Old	Profiler?
10.3	Instant	Users	Manual
10.4	What	Is	Deterministic	Profiling?
10.5	Reference	Manual

10.5.1	The	Stats	Class
10.6	Limitations
10.7	Calibration
10.8	Extensions	--	Deriving	Better	Profilers
10.9	hotshot	--	High	performance	logging	profiler

10.9.1	Profile	Objects
10.9.2	Using	hotshot	data
10.9.3	Example	Usage

10.10	timeit	--	Measure	execution	time	of	small	code	snippets
10.10.1	Command	Line	Interface
10.10.2	Examples

Python	Library	Reference
Previous:	9.2	How	It	Works	Up:	Python	Library	Reference	Next:	10.1
Introduction	to	the

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.	The	Python	Profiler	Up:	10.	The	Python	Profiler	Next:	10.2	How
Is	This

10.1	Introduction	to	the	profiler
A	profiler	is	a	program	that	describes	the	run	time	performance	of	a	program,
providing	a	variety	of	statistics.	This	documentation	describes	the	profiler
functionality	provided	in	the	modules	profile	and	pstats.	This	profiler
provides	deterministic	profiling	of	any	Python	programs.	It	also	provides	a	series
of	report	generation	tools	to	allow	users	to	rapidly	examine	the	results	of	a
profile	operation.

Python	Library	Reference
Previous:	10.	The	Python	Profiler	Up:	10.	The	Python	Profiler	Next:	10.2	How
Is	This

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.1	Introduction	to	the	Up:	10.	The	Python	Profiler	Next:	10.3
Instant	Users	Manual

10.2	How	Is	This	Profiler	Different
From	The	Old	Profiler?
(This	section	is	of	historical	importance	only;	the	old	profiler	discussed	here	was
last	seen	in	Python	1.1.)

The	big	changes	from	old	profiling	module	are	that	you	get	more	information,
and	you	pay	less	CPU	time.	It's	not	a	trade-off,	it's	a	trade-up.

To	be	specific:

Bugs	removed:
Local	stack	frame	is	no	longer	molested,	execution	time	is	now	charged	to
correct	functions.

Accuracy	increased:
Profiler	execution	time	is	no	longer	charged	to	user's	code,	calibration	for
platform	is	supported,	file	reads	are	not	done	by	profiler	during	profiling
(and	charged	to	user's	code!).

Speed	increased:
Overhead	CPU	cost	was	reduced	by	more	than	a	factor	of	two	(perhaps	a
factor	of	five),	lightweight	profiler	module	is	all	that	must	be	loaded,	and
the	report	generating	module	(pstats)	is	not	needed	during	profiling.

Recursive	functions	support:
Cumulative	times	in	recursive	functions	are	correctly	calculated;	recursive
entries	are	counted.

Large	growth	in	report	generating	UI:
Distinct	profiles	runs	can	be	added	together	forming	a	comprehensive
report;	functions	that	import	statistics	take	arbitrary	lists	of	files;	sorting
criteria	is	now	based	on	keywords	(instead	of	4	integer	options);	reports
shows	what	functions	were	profiled	as	well	as	what	profile	file	was
referenced;	output	format	has	been	improved.

Python	Library	Reference
Previous:	10.1	Introduction	to	the	Up:	10.	The	Python	Profiler	Next:	10.3
Instant	Users	Manual

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.2	How	Is	This	Up:	10.	The	Python	Profiler	Next:	10.4	What	Is
Deterministic

10.3	Instant	Users	Manual
This	section	is	provided	for	users	that	``don't	want	to	read	the	manual.''	It
provides	a	very	brief	overview,	and	allows	a	user	to	rapidly	perform	profiling	on
an	existing	application.

To	profile	an	application	with	a	main	entry	point	of	foo(),	you	would	add	the
following	to	your	module:

import	profile

profile.run('foo()')

The	above	action	would	cause	foo()	to	be	run,	and	a	series	of	informative	lines
(the	profile)	to	be	printed.	The	above	approach	is	most	useful	when	working
with	the	interpreter.	If	you	would	like	to	save	the	results	of	a	profile	into	a	file
for	later	examination,	you	can	supply	a	file	name	as	the	second	argument	to	the
run()	function:

import	profile

profile.run('foo()',	'fooprof')

The	file	profile.py	can	also	be	invoked	as	a	script	to	profile	another	script.	For
example:

python	-m	profile	myscript.py

profile.py	accepts	two	optional	arguments	on	the	command	line:

profile.py	[-o	output_file]	[-s	sort_order]

-s	only	applies	to	standard	output	(-o	is	not	supplied).	Look	in	the	Stats
documentation	for	valid	sort	values.

When	you	wish	to	review	the	profile,	you	should	use	the	methods	in	the
pstats	module.	Typically	you	would	load	the	statistics	data	as	follows:

import	pstats

p	=	pstats.Stats('fooprof')

The	class	Stats	(the	above	code	just	created	an	instance	of	this	class)	has	a

variety	of	methods	for	manipulating	and	printing	the	data	that	was	just	read	into
p.	When	you	ran	profile.run()	above,	what	was	printed	was	the	result	of
three	method	calls:

p.strip_dirs().sort_stats(-1).print_stats()

The	first	method	removed	the	extraneous	path	from	all	the	module	names.	The
second	method	sorted	all	the	entries	according	to	the	standard	module/line/name
string	that	is	printed	(this	is	to	comply	with	the	semantics	of	the	old	profiler).
The	third	method	printed	out	all	the	statistics.	You	might	try	the	following	sort
calls:

p.sort_stats('name')

p.print_stats()

The	first	call	will	actually	sort	the	list	by	function	name,	and	the	second	call	will
print	out	the	statistics.	The	following	are	some	interesting	calls	to	experiment
with:

p.sort_stats('cumulative').print_stats(10)

This	sorts	the	profile	by	cumulative	time	in	a	function,	and	then	only	prints	the
ten	most	significant	lines.	If	you	want	to	understand	what	algorithms	are	taking
time,	the	above	line	is	what	you	would	use.

If	you	were	looking	to	see	what	functions	were	looping	a	lot,	and	taking	a	lot	of
time,	you	would	do:

p.sort_stats('time').print_stats(10)

to	sort	according	to	time	spent	within	each	function,	and	then	print	the	statistics
for	the	top	ten	functions.

You	might	also	try:

p.sort_stats('file').print_stats('__init__')

This	will	sort	all	the	statistics	by	file	name,	and	then	print	out	statistics	for	only
the	class	init	methods	(since	they	are	spelled	with	__init__	in	them).	As	one
final	example,	you	could	try:

p.sort_stats('time',	'cum').print_stats(.5,	'init')

This	line	sorts	statistics	with	a	primary	key	of	time,	and	a	secondary	key	of
cumulative	time,	and	then	prints	out	some	of	the	statistics.	To	be	specific,	the	list
is	first	culled	down	to	50%	(re:	".5")	of	its	original	size,	then	only	lines
containing	init	are	maintained,	and	that	sub-sub-list	is	printed.

If	you	wondered	what	functions	called	the	above	functions,	you	could	now	(p	is
still	sorted	according	to	the	last	criteria)	do:

p.print_callers(.5,	'init')

and	you	would	get	a	list	of	callers	for	each	of	the	listed	functions.

If	you	want	more	functionality,	you're	going	to	have	to	read	the	manual,	or	guess
what	the	following	functions	do:

p.print_callees()

p.add('fooprof')

Invoked	as	a	script,	the	pstats	module	is	a	statistics	browser	for	reading	and
examining	profile	dumps.	It	has	a	simple	line-oriented	interface	(implemented
using	cmd)	and	interactive	help.

Python	Library	Reference
Previous:	10.2	How	Is	This	Up:	10.	The	Python	Profiler	Next:	10.4	What	Is
Deterministic

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.3	Instant	Users	Manual	Up:	10.	The	Python	Profiler	Next:	10.5
Reference	Manual

10.4	What	Is	Deterministic	Profiling?
Deterministic	profiling	is	meant	to	reflect	the	fact	that	all	function	call,	function
return,	and	exception	events	are	monitored,	and	precise	timings	are	made	for	the
intervals	between	these	events	(during	which	time	the	user's	code	is	executing).
In	contrast,	statistical	profiling	(which	is	not	done	by	this	module)	randomly
samples	the	effective	instruction	pointer,	and	deduces	where	time	is	being	spent.
The	latter	technique	traditionally	involves	less	overhead	(as	the	code	does	not
need	to	be	instrumented),	but	provides	only	relative	indications	of	where	time	is
being	spent.

In	Python,	since	there	is	an	interpreter	active	during	execution,	the	presence	of
instrumented	code	is	not	required	to	do	deterministic	profiling.	Python
automatically	provides	a	hook	(optional	callback)	for	each	event.	In	addition,	the
interpreted	nature	of	Python	tends	to	add	so	much	overhead	to	execution,	that
deterministic	profiling	tends	to	only	add	small	processing	overhead	in	typical
applications.	The	result	is	that	deterministic	profiling	is	not	that	expensive,	yet
provides	extensive	run	time	statistics	about	the	execution	of	a	Python	program.

Call	count	statistics	can	be	used	to	identify	bugs	in	code	(surprising	counts),	and
to	identify	possible	inline-expansion	points	(high	call	counts).	Internal	time
statistics	can	be	used	to	identify	``hot	loops''	that	should	be	carefully	optimized.
Cumulative	time	statistics	should	be	used	to	identify	high	level	errors	in	the
selection	of	algorithms.	Note	that	the	unusual	handling	of	cumulative	times	in
this	profiler	allows	statistics	for	recursive	implementations	of	algorithms	to	be
directly	compared	to	iterative	implementations.

Python	Library	Reference
Previous:	10.3	Instant	Users	Manual	Up:	10.	The	Python	Profiler	Next:	10.5
Reference	Manual

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.4	What	Is	Deterministic	Up:	10.	The	Python	Profiler	Next:	10.5.1
The	Stats	Class

10.5	Reference	Manual
The	primary	entry	point	for	the	profiler	is	the	global	function
profile.run().	It	is	typically	used	to	create	any	profile	information.	The
reports	are	formatted	and	printed	using	methods	of	the	class	pstats.Stats.
The	following	is	a	description	of	all	of	these	standard	entry	points	and	functions.
For	a	more	in-depth	view	of	some	of	the	code,	consider	reading	the	later	section
on	Profiler	Extensions,	which	includes	discussion	of	how	to	derive	``better''
profilers	from	the	classes	presented,	or	reading	the	source	code	for	these
modules.

run(command[,	filename])

This	function	takes	a	single	argument	that	has	can	be	passed	to	the	exec
statement,	and	an	optional	file	name.	In	all	cases	this	routine	attempts	to
exec	its	first	argument,	and	gather	profiling	statistics	from	the	execution.
If	no	file	name	is	present,	then	this	function	automatically	prints	a	simple
profiling	report,	sorted	by	the	standard	name	string	(file/line/function-
name)	that	is	presented	in	each	line.	The	following	is	a	typical	output	from
such	a	call:

						main()

						2706	function	calls	(2004	primitive	calls)	in	4.504	CPU	seconds

Ordered	by:	standard	name

ncalls		tottime		percall		cumtime		percall	filename:lineno(function)

					2				0.006				0.003				0.953				0.477	pobject.py:75(save_objects)

		43/3				0.533				0.012				0.749				0.250	pobject.py:99(evaluate)

	...

The	first	line	indicates	that	this	profile	was	generated	by	the	call:	
profile.run('main()'),	and	hence	the	exec'ed	string	is
'main()'.	The	second	line	indicates	that	2706	calls	were	monitored.	Of
those	calls,	2004	were	primitive.	We	define	primitive	to	mean	that	the	call
was	not	induced	via	recursion.	The	next	line:	Ordered	by:	standard
name,	indicates	that	the	text	string	in	the	far	right	column	was	used	to	sort
the	output.	The	column	headings	include:

ncalls
for	the	number	of	calls,

tottime
for	the	total	time	spent	in	the	given	function	(and	excluding	time	made
in	calls	to	sub-functions),

percall
is	the	quotient	of	tottime	divided	by	ncalls

cumtime
is	the	total	time	spent	in	this	and	all	subfunctions	(from	invocation	till
exit).	This	figure	is	accurate	even	for	recursive	functions.

percall
is	the	quotient	of	cumtime	divided	by	primitive	calls

filename:lineno(function)
provides	the	respective	data	of	each	function

When	there	are	two	numbers	in	the	first	column	(for	example,	"43/3"),
then	the	latter	is	the	number	of	primitive	calls,	and	the	former	is	the	actual
number	of	calls.	Note	that	when	the	function	does	not	recurse,	these	two
values	are	the	same,	and	only	the	single	figure	is	printed.

runctx(command,	globals,	locals[,	filename])
This	function	is	similar	to	profile.run(),	with	added	arguments	to
supply	the	globals	and	locals	dictionaries	for	the	command	string.

Analysis	of	the	profiler	data	is	done	using	this	class	from	the	pstats	module:

class	Stats(filename[,	...])
This	class	constructor	creates	an	instance	of	a	``statistics	object''	from	a
filename	(or	set	of	filenames).	Stats	objects	are	manipulated	by	methods,
in	order	to	print	useful	reports.

The	file	selected	by	the	above	constructor	must	have	been	created	by	the
corresponding	version	of	profile.	To	be	specific,	there	is	no	file
compatibility	guaranteed	with	future	versions	of	this	profiler,	and	there	is

no	compatibility	with	files	produced	by	other	profilers	(such	as	the	old
system	profiler).

If	several	files	are	provided,	all	the	statistics	for	identical	functions	will	be
coalesced,	so	that	an	overall	view	of	several	processes	can	be	considered	in
a	single	report.	If	additional	files	need	to	be	combined	with	data	in	an
existing	Stats	object,	the	add()	method	can	be	used.

Subsections

10.5.1	The	Stats	Class

Python	Library	Reference
Previous:	10.4	What	Is	Deterministic	Up:	10.	The	Python	Profiler	Next:	10.5.1
The	Stats	Class

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.5	Reference	Manual	Up:	10.5	Reference	Manual	Next:	10.6
Limitations

10.5.1	The	Stats	Class

Stats	objects	have	the	following	methods:

strip_dirs()
This	method	for	the	Stats	class	removes	all	leading	path	information
from	file	names.	It	is	very	useful	in	reducing	the	size	of	the	printout	to	fit
within	(close	to)	80	columns.	This	method	modifies	the	object,	and	the
stripped	information	is	lost.	After	performing	a	strip	operation,	the	object	is
considered	to	have	its	entries	in	a	``random''	order,	as	it	was	just	after	object
initialization	and	loading.	If	strip_dirs()	causes	two	function	names
to	be	indistinguishable	(they	are	on	the	same	line	of	the	same	filename,	and
have	the	same	function	name),	then	the	statistics	for	these	two	entries	are
accumulated	into	a	single	entry.

add(filename[,	...])
This	method	of	the	Stats	class	accumulates	additional	profiling
information	into	the	current	profiling	object.	Its	arguments	should	refer	to
filenames	created	by	the	corresponding	version	of	profile.run().
Statistics	for	identically	named	(re:	file,	line,	name)	functions	are
automatically	accumulated	into	single	function	statistics.

dump_stats(filename)
Save	the	data	loaded	into	the	Stats	object	to	a	file	named	filename.	The
file	is	created	if	it	does	not	exist,	and	is	overwritten	if	it	already	exists.	This
is	equivalent	to	the	method	of	the	same	name	on	the	profile.Profile
class.	New	in	version	2.3.

sort_stats(key[,	...])
This	method	modifies	the	Stats	object	by	sorting	it	according	to	the
supplied	criteria.	The	argument	is	typically	a	string	identifying	the	basis	of
a	sort	(example:	'time'	or	'name').

When	more	than	one	key	is	provided,	then	additional	keys	are	used	as
secondary	criteria	when	there	is	equality	in	all	keys	selected	before	them.
For	example,	sort_stats('name',	'file')	will	sort	all	the	entries

according	to	their	function	name,	and	resolve	all	ties	(identical	function
names)	by	sorting	by	file	name.

Abbreviations	can	be	used	for	any	key	names,	as	long	as	the	abbreviation	is
unambiguous.	The	following	are	the	keys	currently	defined:

Valid	Arg Meaning
'calls' call	count
'cumulative' cumulative	time
'file' file	name
'module' file	name
'pcalls' primitive	call	count
'line' line	number
'name' function	name
'nfl' name/file/line
'stdname' standard	name
'time' internal	time

Note	that	all	sorts	on	statistics	are	in	descending	order	(placing	most	time
consuming	items	first),	where	as	name,	file,	and	line	number	searches	are	in
ascending	order	(alphabetical).	The	subtle	distinction	between	'nfl'	and
'stdname'	is	that	the	standard	name	is	a	sort	of	the	name	as	printed,
which	means	that	the	embedded	line	numbers	get	compared	in	an	odd	way.
For	example,	lines	3,	20,	and	40	would	(if	the	file	names	were	the	same)
appear	in	the	string	order	20,	3	and	40.	In	contrast,	'nfl'	does	a	numeric
compare	of	the	line	numbers.	In	fact,	sort_stats('nfl')	is	the	same
as	sort_stats('name',	'file',	'line').

For	compatibility	with	the	old	profiler,	the	numeric	arguments	-1,	0,	1,	and
2	are	permitted.	They	are	interpreted	as	'stdname',	'calls',
'time',	and	'cumulative'	respectively.	If	this	old	style	format
(numeric)	is	used,	only	one	sort	key	(the	numeric	key)	will	be	used,	and
additional	arguments	will	be	silently	ignored.

reverse_order()
This	method	for	the	Stats	class	reverses	the	ordering	of	the	basic	list
within	the	object.	This	method	is	provided	primarily	for	compatibility	with

the	old	profiler.	Its	utility	is	questionable	now	that	ascending	vs	descending
order	is	properly	selected	based	on	the	sort	key	of	choice.

print_stats([restriction,	...])
This	method	for	the	Stats	class	prints	out	a	report	as	described	in	the
profile.run()	definition.

The	order	of	the	printing	is	based	on	the	last	sort_stats()	operation
done	on	the	object	(subject	to	caveats	in	add()	and	strip_dirs()).

The	arguments	provided	(if	any)	can	be	used	to	limit	the	list	down	to	the
significant	entries.	Initially,	the	list	is	taken	to	be	the	complete	set	of
profiled	functions.	Each	restriction	is	either	an	integer	(to	select	a	count	of
lines),	or	a	decimal	fraction	between	0.0	and	1.0	inclusive	(to	select	a
percentage	of	lines),	or	a	regular	expression	(to	pattern	match	the	standard
name	that	is	printed;	as	of	Python	1.5b1,	this	uses	the	Perl-style	regular
expression	syntax	defined	by	the	re	module).	If	several	restrictions	are
provided,	then	they	are	applied	sequentially.	For	example:

print_stats(.1,	'foo:')

would	first	limit	the	printing	to	first	10%	of	list,	and	then	only	print
functions	that	were	part	of	filename	.*foo:.	In	contrast,	the	command:

print_stats('foo:',	.1)

would	limit	the	list	to	all	functions	having	file	names	.*foo:,	and	then
proceed	to	only	print	the	first	10%	of	them.

print_callers([restriction,	...])
This	method	for	the	Stats	class	prints	a	list	of	all	functions	that	called
each	function	in	the	profiled	database.	The	ordering	is	identical	to	that
provided	by	print_stats(),	and	the	definition	of	the	restricting
argument	is	also	identical.	For	convenience,	a	number	is	shown	in
parentheses	after	each	caller	to	show	how	many	times	this	specific	call	was
made.	A	second	non-parenthesized	number	is	the	cumulative	time	spent	in
the	function	at	the	right.

print_callees([restriction,	...])

This	method	for	the	Stats	class	prints	a	list	of	all	function	that	were
called	by	the	indicated	function.	Aside	from	this	reversal	of	direction	of
calls	(re:	called	vs	was	called	by),	the	arguments	and	ordering	are	identical
to	the	print_callers()	method.

ignore()
Deprecated	since	release	1.5.1.	This	is	not	needed	in	modern	versions	of
Python.10.2

Footnotes

...	Python.10.2
This	was	once	necessary,	when	Python	would	print	any	unused	expression
result	that	was	not	None.	The	method	is	still	defined	for	backward
compatibility.

Python	Library	Reference
Previous:	10.5	Reference	Manual	Up:	10.5	Reference	Manual	Next:	10.6
Limitations

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.5.1	The	Stats	Class	Up:	10.	The	Python	Profiler	Next:	10.7
Calibration

10.6	Limitations
There	are	two	fundamental	limitations	on	this	profiler.	The	first	is	that	it	relies
on	the	Python	interpreter	to	dispatch	call,	return,	and	exception	events.
Compiled	C	code	does	not	get	interpreted,	and	hence	is	``invisible''	to	the
profiler.	All	time	spent	in	C	code	(including	built-in	functions)	will	be	charged	to
the	Python	function	that	invoked	the	C	code.	If	the	C	code	calls	out	to	some
native	Python	code,	then	those	calls	will	be	profiled	properly.

The	second	limitation	has	to	do	with	accuracy	of	timing	information.	There	is	a
fundamental	problem	with	deterministic	profilers	involving	accuracy.	The	most
obvious	restriction	is	that	the	underlying	``clock''	is	only	ticking	at	a	rate
(typically)	of	about	.001	seconds.	Hence	no	measurements	will	be	more	accurate
than	the	underlying	clock.	If	enough	measurements	are	taken,	then	the	``error''
will	tend	to	average	out.	Unfortunately,	removing	this	first	error	induces	a
second	source	of	error.

The	second	problem	is	that	it	``takes	a	while''	from	when	an	event	is	dispatched
until	the	profiler's	call	to	get	the	time	actually	gets	the	state	of	the	clock.
Similarly,	there	is	a	certain	lag	when	exiting	the	profiler	event	handler	from	the
time	that	the	clock's	value	was	obtained	(and	then	squirreled	away),	until	the
user's	code	is	once	again	executing.	As	a	result,	functions	that	are	called	many
times,	or	call	many	functions,	will	typically	accumulate	this	error.	The	error	that
accumulates	in	this	fashion	is	typically	less	than	the	accuracy	of	the	clock	(less
than	one	clock	tick),	but	it	can	accumulate	and	become	very	significant.	This
profiler	provides	a	means	of	calibrating	itself	for	a	given	platform	so	that	this
error	can	be	probabilistically	(on	the	average)	removed.	After	the	profiler	is
calibrated,	it	will	be	more	accurate	(in	a	least	square	sense),	but	it	will
sometimes	produce	negative	numbers	(when	call	counts	are	exceptionally	low,
and	the	gods	of	probability	work	against	you	:-).)	Do	not	be	alarmed	by	negative
numbers	in	the	profile.	They	should	only	appear	if	you	have	calibrated	your
profiler,	and	the	results	are	actually	better	than	without	calibration.

Python	Library	Reference
Previous:	10.5.1	The	Stats	Class	Up:	10.	The	Python	Profiler	Next:	10.7
Calibration

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.6	Limitations	Up:	10.	The	Python	Profiler	Next:	10.8	Extensions

10.7	Calibration
The	profiler	subtracts	a	constant	from	each	event	handling	time	to	compensate
for	the	overhead	of	calling	the	time	function,	and	socking	away	the	results.	By
default,	the	constant	is	0.	The	following	procedure	can	be	used	to	obtain	a	better
constant	for	a	given	platform	(see	discussion	in	section	Limitations	above).

import	profile

pr	=	profile.Profile()

for	i	in	range(5):

				print	pr.calibrate(10000)

The	method	executes	the	number	of	Python	calls	given	by	the	argument,	directly
and	again	under	the	profiler,	measuring	the	time	for	both.	It	then	computes	the
hidden	overhead	per	profiler	event,	and	returns	that	as	a	float.	For	example,	on
an	800	MHz	Pentium	running	Windows	2000,	and	using	Python's	time.clock()	as
the	timer,	the	magical	number	is	about	12.5e-6.

The	object	of	this	exercise	is	to	get	a	fairly	consistent	result.	If	your	computer	is
very	fast,	or	your	timer	function	has	poor	resolution,	you	might	have	to	pass
100000,	or	even	1000000,	to	get	consistent	results.

When	you	have	a	consistent	answer,	there	are	three	ways	you	can	use	it:10.3

import	profile

#	1.	Apply	computed	bias	to	all	Profile	instances	created	hereafter.

profile.Profile.bias	=	your_computed_bias

#	2.	Apply	computed	bias	to	a	specific	Profile	instance.

pr	=	profile.Profile()

pr.bias	=	your_computed_bias

#	3.	Specify	computed	bias	in	instance	constructor.

pr	=	profile.Profile(bias=your_computed_bias)

If	you	have	a	choice,	you	are	better	off	choosing	a	smaller	constant,	and	then
your	results	will	``less	often''	show	up	as	negative	in	profile	statistics.

Footnotes

...	it:10.3
Prior	to	Python	2.2,	it	was	necessary	to	edit	the	profiler	source	code	to
embed	the	bias	as	a	literal	number.	You	still	can,	but	that	method	is	no
longer	described,	because	no	longer	needed.

Python	Library	Reference
Previous:	10.6	Limitations	Up:	10.	The	Python	Profiler	Next:	10.8	Extensions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.7	Calibration	Up:	10.	The	Python	Profiler	Next:	10.9	hotshot

10.8	Extensions	--	Deriving	Better
Profilers
The	Profile	class	of	module	profile	was	written	so	that	derived	classes
could	be	developed	to	extend	the	profiler.	The	details	are	not	described	here,	as
doing	this	successfully	requires	an	expert	understanding	of	how	the	Profile
class	works	internally.	Study	the	source	code	of	module	profile	carefully	if
you	want	to	pursue	this.

If	all	you	want	to	do	is	change	how	current	time	is	determined	(for	example,	to
force	use	of	wall-clock	time	or	elapsed	process	time),	pass	the	timing	function
you	want	to	the	Profile	class	constructor:

pr	=	profile.Profile(your_time_func)

The	resulting	profiler	will	then	call	your_time_func().	The	function	should
return	a	single	number,	or	a	list	of	numbers	whose	sum	is	the	current	time	(like
what	os.times()	returns).	If	the	function	returns	a	single	time	number,	or	the
list	of	returned	numbers	has	length	2,	then	you	will	get	an	especially	fast	version
of	the	dispatch	routine.

Be	warned	that	you	should	calibrate	the	profiler	class	for	the	timer	function	that
you	choose.	For	most	machines,	a	timer	that	returns	a	lone	integer	value	will
provide	the	best	results	in	terms	of	low	overhead	during	profiling.
(os.times()	is	pretty	bad,	as	it	returns	a	tuple	of	floating	point	values).	If	you
want	to	substitute	a	better	timer	in	the	cleanest	fashion,	derive	a	class	and
hardwire	a	replacement	dispatch	method	that	best	handles	your	timer	call,	along
with	the	appropriate	calibration	constant.

Python	Library	Reference
Previous:	10.7	Calibration	Up:	10.	The	Python	Profiler	Next:	10.9	hotshot

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.8	Extensions	Up:	10.	The	Python	Profiler	Next:	10.9.1	Profile
Objects

10.9	hotshot	--	High	performance
logging	profiler
New	in	version	2.2.

This	module	provides	a	nicer	interface	to	the	_hotshot	C	module.	Hotshot	is	a
replacement	for	the	existing	profile	module.	As	it's	written	mostly	in	C,	it
should	result	in	a	much	smaller	performance	impact	than	the	existing	profile
module.

Warning: 	The	hotshot	profiler	does	not	yet	work	well	with
threads.	It	is	useful	to	use	an	unthreaded	script	to	run	the	profiler
over	the	code	you're	interested	in	measuring	if	at	all	possible.

class	Profile(logfile[,	lineevents[,	linetimings]])
The	profiler	object.	The	argument	logfile	is	the	name	of	a	log	file	to	use	for
logged	profile	data.	The	argument	lineevents	specifies	whether	to	generate
events	for	every	source	line,	or	just	on	function	call/return.	It	defaults	to	0
(only	log	function	call/return).	The	argument	linetimings	specifies	whether
to	record	timing	information.	It	defaults	to	1	(store	timing	information).

Subsections

10.9.1	Profile	Objects
10.9.2	Using	hotshot	data
10.9.3	Example	Usage

Python	Library	Reference
Previous:	10.8	Extensions	Up:	10.	The	Python	Profiler	Next:	10.9.1	Profile
Objects

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.9	hotshot	Up:	10.9	hotshot	Next:	10.9.2	Using	hotshot	data

10.9.1	Profile	Objects
Profile	objects	have	the	following	methods:

addinfo(key,	value)
Add	an	arbitrary	labelled	value	to	the	profile	output.

close()
Close	the	logfile	and	terminate	the	profiler.

fileno()
Return	the	file	descriptor	of	the	profiler's	log	file.

run(cmd)
Profile	an	exec-compatible	string	in	the	script	environment.	The	globals
from	the	__main__	module	are	used	as	both	the	globals	and	locals	for	the
script.

runcall(func,	*args,	**keywords)
Profile	a	single	call	of	a	callable.	Additional	positional	and	keyword
arguments	may	be	passed	along;	the	result	of	the	call	is	returned,	and
exceptions	are	allowed	to	propogate	cleanly,	while	ensuring	that	profiling	is
disabled	on	the	way	out.

runctx(cmd,	globals,	locals)
Evaluate	an	exec-compatible	string	in	a	specific	environment.	The	string
is	compiled	before	profiling	begins.

start()
Start	the	profiler.

stop()
Stop	the	profiler.

Python	Library	Reference

Previous:	10.9	hotshot	Up:	10.9	hotshot	Next:	10.9.2	Using	hotshot	data

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.9.1	Profile	Objects	Up:	10.9	hotshot	Next:	10.9.3	Example	Usage

10.9.2	Using	hotshot	data
New	in	version	2.2.

This	module	loads	hotshot	profiling	data	into	the	standard	pstats	Stats
objects.

load(filename)
Load	hotshot	data	from	filename.	Returns	an	instance	of	the
pstats.Stats	class.

See	Also:

Module	profile:
The	profile	module's	Stats	class.

Python	Library	Reference
Previous:	10.9.1	Profile	Objects	Up:	10.9	hotshot	Next:	10.9.3	Example	Usage

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.9.2	Using	hotshot	data	Up:	10.9	hotshot	Next:	10.10	timeit

10.9.3	Example	Usage
Note	that	this	example	runs	the	python	``benchmark''	pystones.	It	can	take	some
time	to	run,	and	will	produce	large	output	files.

>>>	import	hotshot,	hotshot.stats,	test.pystone

>>>	prof	=	hotshot.Profile("stones.prof")

>>>	benchtime,	stones	=	prof.runcall(test.pystone.pystones)

>>>	prof.close()

>>>	stats	=	hotshot.stats.load("stones.prof")

>>>	stats.strip_dirs()

>>>	stats.sort_stats('time',	'calls')

>>>	stats.print_stats(20)

									850004	function	calls	in	10.090	CPU	seconds

			Ordered	by:	internal	time,	call	count

			ncalls		tottime		percall		cumtime		percall	filename:lineno(function)

								1				3.295				3.295			10.090			10.090	pystone.py:79(Proc0)

			150000				1.315				0.000				1.315				0.000	pystone.py:203(Proc7)

				50000				1.313				0.000				1.463				0.000	pystone.py:229(Func2)

	.

	.

	.

Python	Library	Reference
Previous:	10.9.2	Using	hotshot	data	Up:	10.9	hotshot	Next:	10.10	timeit

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.9.3	Example	Usage	Up:	10.	The	Python	Profiler	Next:	10.10.1
Command	Line	Interface

10.10	timeit	--	Measure	execution
time	of	small	code	snippets
New	in	version	2.3.

This	module	provides	a	simple	way	to	time	small	bits	of	Python	code.	It	has	both
command	line	as	well	as	callable	interfaces.	It	avoids	a	number	of	common	traps
for	measuring	execution	times.	See	also	Tim	Peters'	introduction	to	the
``Algorithms''	chapter	in	the	Python	Cookbook,	published	by	O'Reilly.

The	module	defines	the	following	public	class:

class	Timer([stmt='pass'	[,	setup='pass'	[,	timer=<timer
function>]]])

Class	for	timing	execution	speed	of	small	code	snippets.

The	constructor	takes	a	statement	to	be	timed,	an	additional	statement	used
for	setup,	and	a	timer	function.	Both	statements	default	to	'pass';	the
timer	function	is	platform-dependent	(see	the	module	doc	string).	The
statements	may	contain	newlines,	as	long	as	they	don't	contain	multi-line
string	literals.

To	measure	the	execution	time	of	the	first	statement,	use	the	timeit()
method.	The	repeat()	method	is	a	convenience	to	call	timeit()
multiple	times	and	return	a	list	of	results.

print_exc([file=None])
Helper	to	print	a	traceback	from	the	timed	code.

Typical	use:

				t	=	Timer(...)							#	outside	the	try/except

				try:

								t.timeit(...)				#	or	t.repeat(...)

				except:

								t.print_exc()

The	advantage	over	the	standard	traceback	is	that	source	lines	in	the
compiled	template	will	be	displayed.	The	optional	file	argument	directs
where	the	traceback	is	sent;	it	defaults	to	sys.stderr.

repeat([repeat=3	[,	number=1000000]])
Call	timeit()	a	few	times.

This	is	a	convenience	function	that	calls	the	timeit()	repeatedly,
returning	a	list	of	results.	The	first	argument	specifies	how	many	times	to
call	timeit().	The	second	argument	specifies	the	number	argument	for
timeit().

Note: 	It's	tempting	to	calculate	mean	and	standard
deviation	from	the	result	vector	and	report	these.	However,
this	is	not	very	useful.	In	a	typical	case,	the	lowest	value
gives	a	lower	bound	for	how	fast	your	machine	can	run	the
given	code	snippet;	higher	values	in	the	result	vector	are
typically	not	caused	by	variability	in	Python's	speed,	but	by
other	processes	interfering	with	your	timing	accuracy.	So	the
min()	of	the	result	is	probably	the	only	number	you	should
be	interested	in.	After	that,	you	should	look	at	the	entire
vector	and	apply	common	sense	rather	than	statistics.

timeit([number=1000000])
Time	number	executions	of	the	main	statement.	This	executes	the	setup
statement	once,	and	then	returns	the	time	it	takes	to	execute	the	main
statement	a	number	of	times,	measured	in	seconds	as	a	float.	The	argument
is	the	number	of	times	through	the	loop,	defaulting	to	one	million.	The
main	statement,	the	setup	statement	and	the	timer	function	to	be	used	are
passed	to	the	constructor.

Note: 	By	default,	timeit()	temporarily	turns	off
garbage	collection	during	the	timing.	The	advantage	of	this
approach	is	that	it	makes	independent	timings	more
comparable.	This	disadvantage	is	that	GC	may	be	an

important	component	of	the	performance	of	the	function
being	measured.	If	so,	GC	can	be	re-enabled	as	the	first
statement	in	the	setup	string.	For	example:

				timeit.Timer('for	i	in	xrange(10):	oct(i)',	'gc.enable()').timeit()

Subsections

10.10.1	Command	Line	Interface
10.10.2	Examples

Python	Library	Reference
Previous:	10.9.3	Example	Usage	Up:	10.	The	Python	Profiler	Next:	10.10.1
Command	Line	Interface

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.10	timeit	Up:	10.10	timeit	Next:	10.10.2	Examples

10.10.1	Command	Line	Interface
When	called	as	a	program	from	the	command	line,	the	following	form	is	used:

python	timeit.py	[-n	N]	[-r	N]	[-s	S]	[-t]	[-c]	[-h]	[statement	...]

where	the	following	options	are	understood:

-n	N/--number=N
how	many	times	to	execute	'statement'

-r	N/--repeat=N
how	many	times	to	repeat	the	timer	(default	3)

-s	S/--setup=S
statement	to	be	executed	once	initially	(default	'pass')

-t/--time
use	time.time()	(default	on	all	platforms	but	Windows)

-c/--clock
use	time.clock()	(default	on	Windows)

-v/--verbose
print	raw	timing	results;	repeat	for	more	digits	precision

-h/--help
print	a	short	usage	message	and	exit

A	multi-line	statement	may	be	given	by	specifying	each	line	as	a	separate
statement	argument;	indented	lines	are	possible	by	enclosing	an	argument	in
quotes	and	using	leading	spaces.	Multiple	-s	options	are	treated	similarly.

If	-n	is	not	given,	a	suitable	number	of	loops	is	calculated	by	trying	successive
powers	of	10	until	the	total	time	is	at	least	0.2	seconds.

The	default	timer	function	is	platform	dependent.	On	Windows,
time.clock()	has	microsecond	granularity	but	time.time()'s	granularity
is	1/60th	of	a	second;	on	UNIX,	time.clock()	has	1/100th	of	a	second
granularity	and	time.time()	is	much	more	precise.	On	either	platform,	the
default	timer	functions	measure	wall	clock	time,	not	the	CPU	time.	This	means
that	other	processes	running	on	the	same	computer	may	interfere	with	the
timing.	The	best	thing	to	do	when	accurate	timing	is	necessary	is	to	repeat	the
timing	a	few	times	and	use	the	best	time.	The	-r	option	is	good	for	this;	the

default	of	3	repetitions	is	probably	enough	in	most	cases.	On	UNIX,	you	can	use
time.clock()	to	measure	CPU	time.

Note: 	There	is	a	certain	baseline	overhead	associated	with
executing	a	pass	statement.	The	code	here	doesn't	try	to	hide	it,
but	you	should	be	aware	of	it.	The	baseline	overhead	can	be
measured	by	invoking	the	program	without	arguments.

The	baseline	overhead	differs	between	Python	versions!	Also,	to	fairly	compare
older	Python	versions	to	Python	2.3,	you	may	want	to	use	Python's	-O	option	for
the	older	versions	to	avoid	timing	SET_LINENO	instructions.

Python	Library	Reference
Previous:	10.10	timeit	Up:	10.10	timeit	Next:	10.10.2	Examples

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.10.1	Command	Line	Interface	Up:	10.10	timeit	Next:	11.	Internet
Protocols	and

10.10.2	Examples
Here	are	two	example	sessions	(one	using	the	command	line,	one	using	the
module	interface)	that	compare	the	cost	of	using	hasattr()	vs.	try/except
to	test	for	missing	and	present	object	attributes.

%	timeit.py	'try:'	'		str.__nonzero__'	'except	AttributeError:'	'		pass'

100000	loops,	best	of	3:	15.7	usec	per	loop

%	timeit.py	'if	hasattr(str,	"__nonzero__"):	pass'

100000	loops,	best	of	3:	4.26	usec	per	loop

%	timeit.py	'try:'	'		int.__nonzero__'	'except	AttributeError:'	'		pass'

1000000	loops,	best	of	3:	1.43	usec	per	loop

%	timeit.py	'if	hasattr(int,	"__nonzero__"):	pass'

100000	loops,	best	of	3:	2.23	usec	per	loop

>>>	import	timeit

>>>	s	=	"""\

...	try:

...					str.__nonzero__

...	except	AttributeError:

...					pass

...	"""

>>>	t	=	timeit.Timer(stmt=s)

>>>	print	"%.2f	usec/pass"	%	(1000000	*	t.timeit(number=100000)/100000)

17.09	usec/pass

>>>	s	=	"""\

...	if	hasattr(str,	'__nonzero__'):	pass

...	"""

>>>	t	=	timeit.Timer(stmt=s)

>>>	print	"%.2f	usec/pass"	%	(1000000	*	t.timeit(number=100000)/100000)

4.85	usec/pass

>>>	s	=	"""\

...	try:

...					int.__nonzero__

...	except	AttributeError:

...					pass

...	"""

>>>	t	=	timeit.Timer(stmt=s)

>>>	print	"%.2f	usec/pass"	%	(1000000	*	t.timeit(number=100000)/100000)

1.97	usec/pass

>>>	s	=	"""\

...	if	hasattr(int,	'__nonzero__'):	pass

...	"""

>>>	t	=	timeit.Timer(stmt=s)

>>>	print	"%.2f	usec/pass"	%	(1000000	*	t.timeit(number=100000)/100000)

3.15	usec/pass

To	give	the	timeit	module	access	to	functions	you	define,	you	can	pass	a

setup	parameter	which	contains	an	import	statement:

def	test():

				"Stupid	test	function"

				L	=	[]

				for	i	in	range(100):

								L.append(i)

if	__name__=='__main__':

				from	timeit	import	Timer

				t	=	Timer("test()",	"from	__main__	import	test")

				print	t.timeit()

Python	Library	Reference
Previous:	10.10.1	Command	Line	Interface	Up:	10.10	timeit	Next:	11.	Internet
Protocols	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.10.2	Examples	Up:	Python	Library	Reference	Next:	11.1
webbrowser

11.	Internet	Protocols	and	Support
The	modules	described	in	this	chapter	implement	Internet	protocols	and	support
for	related	technology.	They	are	all	implemented	in	Python.	Most	of	these
modules	require	the	presence	of	the	system-dependent	module	socket,	which
is	currently	supported	on	most	popular	platforms.	Here	is	an	overview:

webbrowser 	 Easy-to-use	controller	for	Web	browsers.

cgi 	 Common	Gateway	Interface	support,	used	tointerpret	forms	in	server-side	scripts.
cgitb 	 Configurable	traceback	handler	for	CGI	scripts.

urllib 	 Open	an	arbitrary	network	resource	by	URL(requires	sockets).

urllib2 	 An	extensible	library	for	opening	URLs	using	avariety	of	protocols

httplib 	 HTTP	and	HTTPS	protocol	client	(requiressockets).
ftplib 	 FTP	protocol	client	(requires	sockets).
gopherlib 	 Gopher	protocol	client	(requires	sockets).
poplib 	 POP3	protocol	client	(requires	sockets).
imaplib 	 IMAP4	protocol	client	(requires	sockets).
nntplib 	 NNTP	protocol	client	(requires	sockets).
smtplib 	 SMTP	protocol	client	(requires	sockets).
smtpd 	 Implement	a	flexible	SMTP	server
telnetlib 	 Telnet	client	class.
urlparse 	 Parse	URLs	into	components.
SocketServer 	 A	framework	for	network	servers.

BaseHTTPServer 	 Basic	HTTP	server	(base	class	for
SimpleHTTPServer	and	CGIHTTPServer).

SimpleHTTPServer 	 This	module	provides	a	basic	request	handler	forHTTP	servers.

CGIHTTPServer 	 This	module	provides	a	request	handler	for	HTTPservers	which	can	run	CGI	scripts.

cookielib 	 Cookie	handling	for	HTTP	clients
Cookie 	 Support	for	HTTP	state	management	(cookies).
xmlrpclib 	 XML-RPC	client	access.
SimpleXMLRPCServer 	 Basic	XML-RPC	server	implementation.

DocXMLRPCServer 	 Self-documenting	XML-RPC	server
implementation.

asyncore 	 A	base	class	for	developing	asynchronous	sockethandling	services.

asynchat 	 Support	for	asynchronous	command/responseprotocols.

Python	Library	Reference
Previous:	10.10.2	Examples	Up:	Python	Library	Reference	Next:	11.1
webbrowser

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.	Internet	Protocols	and	Up:	11.	Internet	Protocols	and	Next:
11.1.1	Browser	Controller	Objects

11.1	webbrowser	--	Convenient	Web-
browser	controller
The	webbrowser	module	provides	a	very	high-level	interface	to	allow
displaying	Web-based	documents	to	users.	The	controller	objects	are	easy	to	use
and	are	platform-independent.	Under	most	circumstances,	simply	calling	the
open()	function	from	this	module	will	do	the	right	thing.

Under	UNIX,	graphical	browsers	are	preferred	under	X11,	but	text-mode
browsers	will	be	used	if	graphical	browsers	are	not	available	or	an	X11	display
isn't	available.	If	text-mode	browsers	are	used,	the	calling	process	will	block
until	the	user	exits	the	browser.

Under	UNIX,	if	the	environment	variable	BROWSER	exists,	it	is	interpreted	to
override	the	platform	default	list	of	browsers,	as	a	colon-separated	list	of
browsers	to	try	in	order.	When	the	value	of	a	list	part	contains	the	string	%s,	then
it	is	interpreted	as	a	literal	browser	command	line	to	be	used	with	the	argument
URL	substituted	for	the	%s;	if	the	part	does	not	contain	%s,	it	is	simply
interpreted	as	the	name	of	the	browser	to	launch.

For	non-UNIX	platforms,	or	when	X11	browsers	are	available	on	UNIX,	the
controlling	process	will	not	wait	for	the	user	to	finish	with	the	browser,	but	allow
the	browser	to	maintain	its	own	window	on	the	display.

The	following	exception	is	defined:

exception	Error
Exception	raised	when	a	browser	control	error	occurs.

The	following	functions	are	defined:

open(url[,	new=0][,	autoraise=1])
Display	url	using	the	default	browser.	If	new	is	true,	a	new	browser	window
is	opened	if	possible.	If	autoraise	is	true,	the	window	is	raised	if	possible
(note	that	under	many	window	managers	this	will	occur	regardless	of	the
setting	of	this	variable).

open_new(url)
Open	url	in	a	new	window	of	the	default	browser,	if	possible,	otherwise,
open	url	in	the	only	browser	window.

get([name])
Return	a	controller	object	for	the	browser	type	name.	If	name	is	empty,
return	a	controller	for	a	default	browser	appropriate	to	the	caller's
environment.

register(name,	constructor[,	instance])
Register	the	browser	type	name.	Once	a	browser	type	is	registered,	the
get()	function	can	return	a	controller	for	that	browser	type.	If	instance	is
not	provided,	or	is	None,	constructor	will	be	called	without	parameters	to
create	an	instance	when	needed.	If	instance	is	provided,	constructor	will
never	be	called,	and	may	be	None.

This	entry	point	is	only	useful	if	you	plan	to	either	set	the	BROWSER
variable	or	call	get	with	a	nonempty	argument	matching	the	name	of	a
handler	you	declare.

A	number	of	browser	types	are	predefined.	This	table	gives	the	type	names	that
may	be	passed	to	the	get()	function	and	the	corresponding	instantiations	for
the	controller	classes,	all	defined	in	this	module.

Type	Name Class	Name Notes
'mozilla' Netscape('mozilla')

'netscape' Netscape('netscape')

'mosaic' GenericBrowser('mosaic	%s

&')

'kfm' Konqueror() (1)
'grail' Grail()

'links' GenericBrowser('links	%s')

'lynx' GenericBrowser('lynx	%s')

'w3m' GenericBrowser('w3m	%s')

'windows-

default'

WindowsDefault (2)

'internet-

config'

InternetConfig (3)

Notes:

(1)
``Konqueror''	is	the	file	manager	for	the	KDE	desktop	environment	for
UNIX,	and	only	makes	sense	to	use	if	KDE	is	running.	Some	way	of
reliably	detecting	KDE	would	be	nice;	the	KDEDIR	variable	is	not
sufficient.	Note	also	that	the	name	``kfm''	is	used	even	when	using	the
konqueror	command	with	KDE	2	--	the	implementation	selects	the	best
strategy	for	running	Konqueror.

(2)
Only	on	Windows	platforms;	requires	the	common	extension	modules
win32api	and	win32con.

(3)
Only	on	MacOS	platforms;	requires	the	standard	MacPython	ic	module,
described	in	the	Macintosh	Library	Modules	manual.

Subsections

11.1.1	Browser	Controller	Objects

Python	Library	Reference
Previous:	11.	Internet	Protocols	and	Up:	11.	Internet	Protocols	and	Next:
11.1.1	Browser	Controller	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.1	webbrowser	Up:	11.1	webbrowser	Next:	11.2	cgi

11.1.1	Browser	Controller	Objects
Browser	controllers	provide	two	methods	which	parallel	two	of	the	module-level
convenience	functions:

open(url[,	new])
Display	url	using	the	browser	handled	by	this	controller.	If	new	is	true,	a
new	browser	window	is	opened	if	possible.

open_new(url)
Open	url	in	a	new	window	of	the	browser	handled	by	this	controller,	if
possible,	otherwise,	open	url	in	the	only	browser	window.

Python	Library	Reference
Previous:	11.1	webbrowser	Up:	11.1	webbrowser	Next:	11.2	cgi

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.1.1	Browser	Controller	Objects	Up:	11.	Internet	Protocols	and
Next:	11.2.1	Introduction

11.2	cgi	--	Common	Gateway
Interface	support.
Support	module	for	Common	Gateway	Interface	(CGI)	scripts.

This	module	defines	a	number	of	utilities	for	use	by	CGI	scripts	written	in
Python.

Subsections

11.2.1	Introduction
11.2.2	Using	the	cgi	module
11.2.3	Higher	Level	Interface
11.2.4	Old	classes
11.2.5	Functions
11.2.6	Caring	about	security
11.2.7	Installing	your	CGI	script	on	a	UNIX	system
11.2.8	Testing	your	CGI	script
11.2.9	Debugging	CGI	scripts
11.2.10	Common	problems	and	solutions

Python	Library	Reference
Previous:	11.1.1	Browser	Controller	Objects	Up:	11.	Internet	Protocols	and
Next:	11.2.1	Introduction

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.2	cgi	Up:	11.2	cgi	Next:	11.2.2	Using	the	cgi

11.2.1	Introduction
A	CGI	script	is	invoked	by	an	HTTP	server,	usually	to	process	user	input
submitted	through	an	HTML	<FORM>	or	<ISINDEX>	element.

Most	often,	CGI	scripts	live	in	the	server's	special	cgi-bin	directory.	The	HTTP
server	places	all	sorts	of	information	about	the	request	(such	as	the	client's
hostname,	the	requested	URL,	the	query	string,	and	lots	of	other	goodies)	in	the
script's	shell	environment,	executes	the	script,	and	sends	the	script's	output	back
to	the	client.

The	script's	input	is	connected	to	the	client	too,	and	sometimes	the	form	data	is
read	this	way;	at	other	times	the	form	data	is	passed	via	the	``query	string''	part
of	the	URL.	This	module	is	intended	to	take	care	of	the	different	cases	and
provide	a	simpler	interface	to	the	Python	script.	It	also	provides	a	number	of
utilities	that	help	in	debugging	scripts,	and	the	latest	addition	is	support	for	file
uploads	from	a	form	(if	your	browser	supports	it	--	Grail	0.3	and	Netscape	2.0
do).

The	output	of	a	CGI	script	should	consist	of	two	sections,	separated	by	a	blank
line.	The	first	section	contains	a	number	of	headers,	telling	the	client	what	kind
of	data	is	following.	Python	code	to	generate	a	minimal	header	section	looks	like
this:

print	"Content-Type:	text/html"					#	HTML	is	following

print																															#	blank	line,	end	of	headers

The	second	section	is	usually	HTML,	which	allows	the	client	software	to	display
nicely	formatted	text	with	header,	in-line	images,	etc.	Here's	Python	code	that
prints	a	simple	piece	of	HTML:

print	"<TITLE>CGI	script	output</TITLE>"

print	"<H1>This	is	my	first	CGI	script</H1>"

print	"Hello,	world!"

Python	Library	Reference
Previous:	11.2	cgi	Up:	11.2	cgi	Next:	11.2.2	Using	the	cgi

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.2.1	Introduction	Up:	11.2	cgi	Next:	11.2.3	Higher	Level	Interface

11.2.2	Using	the	cgi	module
Begin	by	writing	"import	cgi".	Do	not	use	"from	cgi	import	*"	--	the
module	defines	all	sorts	of	names	for	its	own	use	or	for	backward	compatibility
that	you	don't	want	in	your	namespace.

When	you	write	a	new	script,	consider	adding	the	line:

import	cgitb;	cgitb.enable()

This	activates	a	special	exception	handler	that	will	display	detailed	reports	in	the
Web	browser	if	any	errors	occur.	If	you'd	rather	not	show	the	guts	of	your
program	to	users	of	your	script,	you	can	have	the	reports	saved	to	files	instead,
with	a	line	like	this:

import	cgitb;	cgitb.enable(display=0,	logdir="/tmp")

It's	very	helpful	to	use	this	feature	during	script	development.	The	reports
produced	by	cgitb	provide	information	that	can	save	you	a	lot	of	time	in
tracking	down	bugs.	You	can	always	remove	the	cgitb	line	later	when	you
have	tested	your	script	and	are	confident	that	it	works	correctly.

To	get	at	submitted	form	data,	it's	best	to	use	the	FieldStorage	class.	The
other	classes	defined	in	this	module	are	provided	mostly	for	backward
compatibility.	Instantiate	it	exactly	once,	without	arguments.	This	reads	the	form
contents	from	standard	input	or	the	environment	(depending	on	the	value	of
various	environment	variables	set	according	to	the	CGI	standard).	Since	it	may
consume	standard	input,	it	should	be	instantiated	only	once.

The	FieldStorage	instance	can	be	indexed	like	a	Python	dictionary,	and	also
supports	the	standard	dictionary	methods	has_key()	and	keys().	The	built-
in	len()	is	also	supported.	Form	fields	containing	empty	strings	are	ignored
and	do	not	appear	in	the	dictionary;	to	keep	such	values,	provide	a	true	value	for
the	optional	keep_blank_values	keyword	parameter	when	creating	the
FieldStorage	instance.

For	instance,	the	following	code	(which	assumes	that	the	Content-Type:	header
and	blank	line	have	already	been	printed)	checks	that	the	fields	name	and	addr

are	both	set	to	a	non-empty	string:

form	=	cgi.FieldStorage()

if	not	(form.has_key("name")	and	form.has_key("addr")):

				print	"<H1>Error</H1>"

				print	"Please	fill	in	the	name	and	addr	fields."

				return

print	"<p>name:",	form["name"].value

print	"<p>addr:",	form["addr"].value

...further	form	processing	here...

Here	the	fields,	accessed	through	"form[key]",	are	themselves	instances	of
FieldStorage	(or	MiniFieldStorage,	depending	on	the	form
encoding).	The	value	attribute	of	the	instance	yields	the	string	value	of	the
field.	The	getvalue()	method	returns	this	string	value	directly;	it	also	accepts
an	optional	second	argument	as	a	default	to	return	if	the	requested	key	is	not
present.

If	the	submitted	form	data	contains	more	than	one	field	with	the	same	name,	the
object	retrieved	by	"form[key]"	is	not	a	FieldStorage	or
MiniFieldStorage	instance	but	a	list	of	such	instances.	Similarly,	in	this
situation,	"form.getvalue(key)"	would	return	a	list	of	strings.	If	you	expect
this	possibility	(when	your	HTML	form	contains	multiple	fields	with	the	same
name),	use	the	getlist()	function,	which	always	returns	a	list	of	values	(so
that	you	do	not	need	to	special-case	the	single	item	case).	For	example,	this	code
concatenates	any	number	of	username	fields,	separated	by	commas:

value	=	form.getlist("username")

usernames	=	",".join(value)

If	a	field	represents	an	uploaded	file,	accessing	the	value	via	the	value	attribute
or	the	getvalue()	method	reads	the	entire	file	in	memory	as	a	string.	This
may	not	be	what	you	want.	You	can	test	for	an	uploaded	file	by	testing	either	the
filename	attribute	or	the	file	attribute.	You	can	then	read	the	data	at	leisure
from	the	file	attribute:

fileitem	=	form["userfile"]

if	fileitem.file:

				#	It's	an	uploaded	file;	count	lines

				linecount	=	0

				while	1:

								line	=	fileitem.file.readline()

								if	not	line:	break

								linecount	=	linecount	+	1

The	file	upload	draft	standard	entertains	the	possibility	of	uploading	multiple
files	from	one	field	(using	a	recursive	multipart/*	encoding).	When	this	occurs,
the	item	will	be	a	dictionary-like	FieldStorage	item.	This	can	be	determined
by	testing	its	type	attribute,	which	should	be	multipart/form-data	(or	perhaps
another	MIME	type	matching	multipart/*).	In	this	case,	it	can	be	iterated	over
recursively	just	like	the	top-level	form	object.

When	a	form	is	submitted	in	the	``old''	format	(as	the	query	string	or	as	a	single
data	part	of	type	application/x-www-form-urlencoded),	the	items	will	actually
be	instances	of	the	class	MiniFieldStorage.	In	this	case,	the	list,	file,
and	filename	attributes	are	always	None.

Python	Library	Reference
Previous:	11.2.1	Introduction	Up:	11.2	cgi	Next:	11.2.3	Higher	Level	Interface

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.2.2	Using	the	cgi	Up:	11.2	cgi	Next:	11.2.4	Old	classes

11.2.3	Higher	Level	Interface
New	in	version	2.2.

The	previous	section	explains	how	to	read	CGI	form	data	using	the
FieldStorage	class.	This	section	describes	a	higher	level	interface	which
was	added	to	this	class	to	allow	one	to	do	it	in	a	more	readable	and	intuitive	way.
The	interface	doesn't	make	the	techniques	described	in	previous	sections
obsolete	--	they	are	still	useful	to	process	file	uploads	efficiently,	for	example.

The	interface	consists	of	two	simple	methods.	Using	the	methods	you	can
process	form	data	in	a	generic	way,	without	the	need	to	worry	whether	only	one
or	more	values	were	posted	under	one	name.

In	the	previous	section,	you	learned	to	write	following	code	anytime	you
expected	a	user	to	post	more	than	one	value	under	one	name:

item	=	form.getvalue("item")

if	isinstance(item,	list):

				#	The	user	is	requesting	more	than	one	item.

else:

				#	The	user	is	requesting	only	one	item.

This	situation	is	common	for	example	when	a	form	contains	a	group	of	multiple
checkboxes	with	the	same	name:

<input	type="checkbox"	name="item"	value="1"	/>

<input	type="checkbox"	name="item"	value="2"	/>

In	most	situations,	however,	there's	only	one	form	control	with	a	particular	name
in	a	form	and	then	you	expect	and	need	only	one	value	associated	with	this
name.	So	you	write	a	script	containing	for	example	this	code:

user	=	form.getvalue("user").upper()

The	problem	with	the	code	is	that	you	should	never	expect	that	a	client	will
provide	valid	input	to	your	scripts.	For	example,	if	a	curious	user	appends
another	"user=foo"	pair	to	the	query	string,	then	the	script	would	crash,
because	in	this	situation	the	getvalue("user")	method	call	returns	a	list
instead	of	a	string.	Calling	the	toupper()	method	on	a	list	is	not	valid	(since

lists	do	not	have	a	method	of	this	name)	and	results	in	an	AttributeError
exception.

Therefore,	the	appropriate	way	to	read	form	data	values	was	to	always	use	the
code	which	checks	whether	the	obtained	value	is	a	single	value	or	a	list	of
values.	That's	annoying	and	leads	to	less	readable	scripts.

A	more	convenient	approach	is	to	use	the	methods	getfirst()	and
getlist()	provided	by	this	higher	level	interface.

getfirst(name[,	default])
This	method	always	returns	only	one	value	associated	with	form	field
name.	The	method	returns	only	the	first	value	in	case	that	more	values	were
posted	under	such	name.	Please	note	that	the	order	in	which	the	values	are
received	may	vary	from	browser	to	browser	and	should	not	be	counted
on.11.1	If	no	such	form	field	or	value	exists	then	the	method	returns	the
value	specified	by	the	optional	parameter	default.	This	parameter	defaults
to	None	if	not	specified.

getlist(name)
This	method	always	returns	a	list	of	values	associated	with	form	field	name.
The	method	returns	an	empty	list	if	no	such	form	field	or	value	exists	for
name.	It	returns	a	list	consisting	of	one	item	if	only	one	such	value	exists.

Using	these	methods	you	can	write	nice	compact	code:

import	cgi

form	=	cgi.FieldStorage()

user	=	form.getfirst("user",	"").upper()				#	This	way	it's	safe.

for	item	in	form.getlist("item"):

				do_something(item)

Footnotes

...	on.11.1
Note	that	some	recent	versions	of	the	HTML	specification	do	state	what
order	the	field	values	should	be	supplied	in,	but	knowing	whether	a	request
was	received	from	a	conforming	browser,	or	even	from	a	browser	at	all,	is

tedious	and	error-prone.

Python	Library	Reference
Previous:	11.2.2	Using	the	cgi	Up:	11.2	cgi	Next:	11.2.4	Old	classes

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.2.3	Higher	Level	Interface	Up:	11.2	cgi	Next:	11.2.5	Functions

11.2.4	Old	classes
These	classes,	present	in	earlier	versions	of	the	cgi	module,	are	still	supported
for	backward	compatibility.	New	applications	should	use	the	FieldStorage
class.

SvFormContentDict	stores	single	value	form	content	as	dictionary;	it
assumes	each	field	name	occurs	in	the	form	only	once.

FormContentDict	stores	multiple	value	form	content	as	a	dictionary	(the
form	items	are	lists	of	values).	Useful	if	your	form	contains	multiple	fields	with
the	same	name.

Other	classes	(FormContent,	InterpFormContentDict)	are	present	for
backwards	compatibility	with	really	old	applications	only.	If	you	still	use	these
and	would	be	inconvenienced	when	they	disappeared	from	a	next	version	of	this
module,	drop	me	a	note.

Python	Library	Reference
Previous:	11.2.3	Higher	Level	Interface	Up:	11.2	cgi	Next:	11.2.5	Functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.2.4	Old	classes	Up:	11.2	cgi	Next:	11.2.6	Caring	about	security

11.2.5	Functions
These	are	useful	if	you	want	more	control,	or	if	you	want	to	employ	some	of	the
algorithms	implemented	in	this	module	in	other	circumstances.

parse(fp[,	keep_blank_values[,	strict_parsing]])
Parse	a	query	in	the	environment	or	from	a	file	(the	file	defaults	to
sys.stdin).	The	keep_blank_values	and	strict_parsing	parameters	are
passed	to	parse_qs()	unchanged.

parse_qs(qs[,	keep_blank_values[,	strict_parsing]])
Parse	a	query	string	given	as	a	string	argument	(data	of	type	application/x-
www-form-urlencoded).	Data	are	returned	as	a	dictionary.	The	dictionary
keys	are	the	unique	query	variable	names	and	the	values	are	lists	of	values
for	each	name.

The	optional	argument	keep_blank_values	is	a	flag	indicating	whether
blank	values	in	URL	encoded	queries	should	be	treated	as	blank	strings.	A
true	value	indicates	that	blanks	should	be	retained	as	blank	strings.	The
default	false	value	indicates	that	blank	values	are	to	be	ignored	and	treated
as	if	they	were	not	included.

The	optional	argument	strict_parsing	is	a	flag	indicating	what	to	do	with
parsing	errors.	If	false	(the	default),	errors	are	silently	ignored.	If	true,
errors	raise	a	ValueError	exception.

Use	the	urllib.urlencode()	function	to	convert	such	dictionaries	into
query	strings.

parse_qsl(qs[,	keep_blank_values[,	strict_parsing]])
Parse	a	query	string	given	as	a	string	argument	(data	of	type	application/x-
www-form-urlencoded).	Data	are	returned	as	a	list	of	name,	value	pairs.

The	optional	argument	keep_blank_values	is	a	flag	indicating	whether
blank	values	in	URL	encoded	queries	should	be	treated	as	blank	strings.	A
true	value	indicates	that	blanks	should	be	retained	as	blank	strings.	The
default	false	value	indicates	that	blank	values	are	to	be	ignored	and	treated

as	if	they	were	not	included.

The	optional	argument	strict_parsing	is	a	flag	indicating	what	to	do	with
parsing	errors.	If	false	(the	default),	errors	are	silently	ignored.	If	true,
errors	raise	a	ValueError	exception.

Use	the	urllib.urlencode()	function	to	convert	such	lists	of	pairs	into
query	strings.

parse_multipart(fp,	pdict)
Parse	input	of	type	multipart/form-data	(for	file	uploads).	Arguments	are
fp	for	the	input	file	and	pdict	for	a	dictionary	containing	other	parameters	in
the	Content-Type:	header.

Returns	a	dictionary	just	like	parse_qs()	keys	are	the	field	names,	each
value	is	a	list	of	values	for	that	field.	This	is	easy	to	use	but	not	much	good
if	you	are	expecting	megabytes	to	be	uploaded	--	in	that	case,	use	the
FieldStorage	class	instead	which	is	much	more	flexible.

Note	that	this	does	not	parse	nested	multipart	parts	--	use	FieldStorage
for	that.

parse_header(string)
Parse	a	MIME	header	(such	as	Content-Type:)	into	a	main	value	and	a
dictionary	of	parameters.

test()
Robust	test	CGI	script,	usable	as	main	program.	Writes	minimal	HTTP
headers	and	formats	all	information	provided	to	the	script	in	HTML	form.

print_environ()
Format	the	shell	environment	in	HTML.

print_form(form)
Format	a	form	in	HTML.

print_directory()
Format	the	current	directory	in	HTML.

print_environ_usage()
Print	a	list	of	useful	(used	by	CGI)	environment	variables	in	HTML.

escape(s[,	quote])
Convert	the	characters	"&",	"<"	and	">"	in	string	s	to	HTML-safe
sequences.	Use	this	if	you	need	to	display	text	that	might	contain	such
characters	in	HTML.	If	the	optional	flag	quote	is	true,	the	double-quote
character	(""")	is	also	translated;	this	helps	for	inclusion	in	an	HTML
attribute	value,	as	in	.	If	the	value	to	be	quoted	might
include	single-	or	double-quote	characters,	or	both,	consider	using	the
quoteattr()	function	in	the	xml.sax.saxutils	module	instead.

Python	Library	Reference
Previous:	11.2.4	Old	classes	Up:	11.2	cgi	Next:	11.2.6	Caring	about	security

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.2.5	Functions	Up:	11.2	cgi	Next:	11.2.7	Installing	your	CGI

11.2.6	Caring	about	security
There's	one	important	rule:	if	you	invoke	an	external	program	(via	the
os.system()	or	os.popen()	functions.	or	others	with	similar
functionality),	make	very	sure	you	don't	pass	arbitrary	strings	received	from	the
client	to	the	shell.	This	is	a	well-known	security	hole	whereby	clever	hackers
anywhere	on	the	Web	can	exploit	a	gullible	CGI	script	to	invoke	arbitrary	shell
commands.	Even	parts	of	the	URL	or	field	names	cannot	be	trusted,	since	the
request	doesn't	have	to	come	from	your	form!

To	be	on	the	safe	side,	if	you	must	pass	a	string	gotten	from	a	form	to	a	shell
command,	you	should	make	sure	the	string	contains	only	alphanumeric
characters,	dashes,	underscores,	and	periods.

Python	Library	Reference
Previous:	11.2.5	Functions	Up:	11.2	cgi	Next:	11.2.7	Installing	your	CGI

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.2.6	Caring	about	security	Up:	11.2	cgi	Next:	11.2.8	Testing	your
CGI

11.2.7	Installing	your	CGI	script	on	a	UNIX	system
Read	the	documentation	for	your	HTTP	server	and	check	with	your	local	system
administrator	to	find	the	directory	where	CGI	scripts	should	be	installed;	usually
this	is	in	a	directory	cgi-bin	in	the	server	tree.

Make	sure	that	your	script	is	readable	and	executable	by	``others'';	the	UNIX	file
mode	should	be	0755	octal	(use	"chmod	0755	filename").	Make	sure	that	the
first	line	of	the	script	contains	#!	starting	in	column	1	followed	by	the	pathname
of	the	Python	interpreter,	for	instance:

#!/usr/local/bin/python

Make	sure	the	Python	interpreter	exists	and	is	executable	by	``others''.

Make	sure	that	any	files	your	script	needs	to	read	or	write	are	readable	or
writable,	respectively,	by	``others''	--	their	mode	should	be	0644	for	readable
and	0666	for	writable.	This	is	because,	for	security	reasons,	the	HTTP	server
executes	your	script	as	user	``nobody'',	without	any	special	privileges.	It	can
only	read	(write,	execute)	files	that	everybody	can	read	(write,	execute).	The
current	directory	at	execution	time	is	also	different	(it	is	usually	the	server's	cgi-
bin	directory)	and	the	set	of	environment	variables	is	also	different	from	what
you	get	when	you	log	in.	In	particular,	don't	count	on	the	shell's	search	path	for
executables	(PATH)	or	the	Python	module	search	path	(PYTHONPATH)	to	be
set	to	anything	interesting.

If	you	need	to	load	modules	from	a	directory	which	is	not	on	Python's	default
module	search	path,	you	can	change	the	path	in	your	script,	before	importing
other	modules.	For	example:

import	sys

sys.path.insert(0,	"/usr/home/joe/lib/python")

sys.path.insert(0,	"/usr/local/lib/python")

(This	way,	the	directory	inserted	last	will	be	searched	first!)

Instructions	for	non-UNIX	systems	will	vary;	check	your	HTTP	server's
documentation	(it	will	usually	have	a	section	on	CGI	scripts).

Python	Library	Reference
Previous:	11.2.6	Caring	about	security	Up:	11.2	cgi	Next:	11.2.8	Testing	your
CGI

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.2.7	Installing	your	CGI	Up:	11.2	cgi	Next:	11.2.9	Debugging	CGI
scripts

11.2.8	Testing	your	CGI	script
Unfortunately,	a	CGI	script	will	generally	not	run	when	you	try	it	from	the
command	line,	and	a	script	that	works	perfectly	from	the	command	line	may	fail
mysteriously	when	run	from	the	server.	There's	one	reason	why	you	should	still
test	your	script	from	the	command	line:	if	it	contains	a	syntax	error,	the	Python
interpreter	won't	execute	it	at	all,	and	the	HTTP	server	will	most	likely	send	a
cryptic	error	to	the	client.

Assuming	your	script	has	no	syntax	errors,	yet	it	does	not	work,	you	have	no
choice	but	to	read	the	next	section.

Python	Library	Reference
Previous:	11.2.7	Installing	your	CGI	Up:	11.2	cgi	Next:	11.2.9	Debugging	CGI
scripts

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.2.8	Testing	your	CGI	Up:	11.2	cgi	Next:	11.2.10	Common
problems	and

11.2.9	Debugging	CGI	scripts
First	of	all,	check	for	trivial	installation	errors	--	reading	the	section	above	on
installing	your	CGI	script	carefully	can	save	you	a	lot	of	time.	If	you	wonder
whether	you	have	understood	the	installation	procedure	correctly,	try	installing	a
copy	of	this	module	file	(cgi.py)	as	a	CGI	script.	When	invoked	as	a	script,	the
file	will	dump	its	environment	and	the	contents	of	the	form	in	HTML	form.	Give
it	the	right	mode	etc,	and	send	it	a	request.	If	it's	installed	in	the	standard	cgi-bin
directory,	it	should	be	possible	to	send	it	a	request	by	entering	a	URL	into	your
browser	of	the	form:

http://yourhostname/cgi-bin/cgi.py?name=Joe+Blow&addr=At+Home

If	this	gives	an	error	of	type	404,	the	server	cannot	find	the	script	-	perhaps	you
need	to	install	it	in	a	different	directory.	If	it	gives	another	error,	there's	an
installation	problem	that	you	should	fix	before	trying	to	go	any	further.	If	you
get	a	nicely	formatted	listing	of	the	environment	and	form	content	(in	this
example,	the	fields	should	be	listed	as	``addr''	with	value	``At	Home''	and
``name''	with	value	``Joe	Blow''),	the	cgi.py	script	has	been	installed	correctly.	If
you	follow	the	same	procedure	for	your	own	script,	you	should	now	be	able	to
debug	it.

The	next	step	could	be	to	call	the	cgi	module's	test()	function	from	your
script:	replace	its	main	code	with	the	single	statement

cgi.test()

This	should	produce	the	same	results	as	those	gotten	from	installing	the	cgi.py
file	itself.

When	an	ordinary	Python	script	raises	an	unhandled	exception	(for	whatever
reason:	of	a	typo	in	a	module	name,	a	file	that	can't	be	opened,	etc.),	the	Python
interpreter	prints	a	nice	traceback	and	exits.	While	the	Python	interpreter	will
still	do	this	when	your	CGI	script	raises	an	exception,	most	likely	the	traceback
will	end	up	in	one	of	the	HTTP	server's	log	files,	or	be	discarded	altogether.

Fortunately,	once	you	have	managed	to	get	your	script	to	execute	some	code,	you
can	easily	send	tracebacks	to	the	Web	browser	using	the	cgitb	module.	If	you

haven't	done	so	already,	just	add	the	line:

import	cgitb;	cgitb.enable()

to	the	top	of	your	script.	Then	try	running	it	again;	when	a	problem	occurs,	you
should	see	a	detailed	report	that	will	likely	make	apparent	the	cause	of	the	crash.

If	you	suspect	that	there	may	be	a	problem	in	importing	the	cgitb	module,	you
can	use	an	even	more	robust	approach	(which	only	uses	built-in	modules):

import	sys

sys.stderr	=	sys.stdout

print	"Content-Type:	text/plain"

print

...your	code	here...

This	relies	on	the	Python	interpreter	to	print	the	traceback.	The	content	type	of
the	output	is	set	to	plain	text,	which	disables	all	HTML	processing.	If	your	script
works,	the	raw	HTML	will	be	displayed	by	your	client.	If	it	raises	an	exception,
most	likely	after	the	first	two	lines	have	been	printed,	a	traceback	will	be
displayed.	Because	no	HTML	interpretation	is	going	on,	the	traceback	will	be
readable.

Python	Library	Reference
Previous:	11.2.8	Testing	your	CGI	Up:	11.2	cgi	Next:	11.2.10	Common
problems	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.2.9	Debugging	CGI	scripts	Up:	11.2	cgi	Next:	11.3	cgitb

11.2.10	Common	problems	and	solutions
Most	HTTP	servers	buffer	the	output	from	CGI	scripts	until	the	script	is
completed.	This	means	that	it	is	not	possible	to	display	a	progress	report	on
the	client's	display	while	the	script	is	running.

Check	the	installation	instructions	above.

Check	the	HTTP	server's	log	files.	("tail	-f	logfile"	in	a	separate
window	may	be	useful!)

Always	check	a	script	for	syntax	errors	first,	by	doing	something	like
"python	script.py".

If	your	script	does	not	have	any	syntax	errors,	try	adding	"import
cgitb;	cgitb.enable()"	to	the	top	of	the	script.

When	invoking	external	programs,	make	sure	they	can	be	found.	Usually,
this	means	using	absolute	path	names	--	PATH	is	usually	not	set	to	a	very
useful	value	in	a	CGI	script.

When	reading	or	writing	external	files,	make	sure	they	can	be	read	or
written	by	the	userid	under	which	your	CGI	script	will	be	running:	this	is
typically	the	userid	under	which	the	web	server	is	running,	or	some
explicitly	specified	userid	for	a	web	server's	"suexec"	feature.

Don't	try	to	give	a	CGI	script	a	set-uid	mode.	This	doesn't	work	on	most
systems,	and	is	a	security	liability	as	well.

Python	Library	Reference
Previous:	11.2.9	Debugging	CGI	scripts	Up:	11.2	cgi	Next:	11.3	cgitb

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.2.10	Common	problems	and	Up:	11.	Internet	Protocols	and	Next:
11.4	urllib

11.3	cgitb	--	Traceback	manager	for
CGI	scripts
New	in	version	2.2.

The	cgitb	module	provides	a	special	exception	handler	for	Python	scripts.	(Its
name	is	a	bit	misleading.	It	was	originally	designed	to	display	extensive
traceback	information	in	HTML	for	CGI	scripts.	It	was	later	generalized	to	also
display	this	information	in	plain	text.)	After	this	module	is	activated,	if	an
uncaught	exception	occurs,	a	detailed,	formatted	report	will	be	displayed.	The
report	includes	a	traceback	showing	excerpts	of	the	source	code	for	each	level,
as	well	as	the	values	of	the	arguments	and	local	variables	to	currently	running
functions,	to	help	you	debug	the	problem.	Optionally,	you	can	save	this
information	to	a	file	instead	of	sending	it	to	the	browser.

To	enable	this	feature,	simply	add	one	line	to	the	top	of	your	CGI	script:

import	cgitb;	cgitb.enable()

The	options	to	the	enable()	function	control	whether	the	report	is	displayed
in	the	browser	and	whether	the	report	is	logged	to	a	file	for	later	analysis.

enable([display[,	logdir[,	context[,	format]]]])
This	function	causes	the	cgitb	module	to	take	over	the	interpreter's
default	handling	for	exceptions	by	setting	the	value	of	sys.excepthook.

The	optional	argument	display	defaults	to	1	and	can	be	set	to	0	to	suppress
sending	the	traceback	to	the	browser.	If	the	argument	logdir	is	present,	the
traceback	reports	are	written	to	files.	The	value	of	logdir	should	be	a
directory	where	these	files	will	be	placed.	The	optional	argument	context	is
the	number	of	lines	of	context	to	display	around	the	current	line	of	source
code	in	the	traceback;	this	defaults	to	5.	If	the	optional	argument	format	is
"html",	the	output	is	formatted	as	HTML.	Any	other	value	forces	plain
text	output.	The	default	value	is	"html".

handler([info])

This	function	handles	an	exception	using	the	default	settings	(that	is,	show
a	report	in	the	browser,	but	don't	log	to	a	file).	This	can	be	used	when
you've	caught	an	exception	and	want	to	report	it	using	cgitb.	The	optional
info	argument	should	be	a	3-tuple	containing	an	exception	type,	exception
value,	and	traceback	object,	exactly	like	the	tuple	returned	by
sys.exc_info().	If	the	info	argument	is	not	supplied,	the	current
exception	is	obtained	from	sys.exc_info().

Python	Library	Reference
Previous:	11.2.10	Common	problems	and	Up:	11.	Internet	Protocols	and	Next:
11.4	urllib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.3	cgitb	Up:	11.	Internet	Protocols	and	Next:	11.4.1	URLopener
Objects

11.4	urllib	--	Open	arbitrary
resources	by	URL
This	module	provides	a	high-level	interface	for	fetching	data	across	the	World
Wide	Web.	In	particular,	the	urlopen()	function	is	similar	to	the	built-in
function	open(),	but	accepts	Universal	Resource	Locators	(URLs)	instead	of
filenames.	Some	restrictions	apply	--	it	can	only	open	URLs	for	reading,	and	no
seek	operations	are	available.

It	defines	the	following	public	functions:

urlopen(url[,	data[,	proxies]])
Open	a	network	object	denoted	by	a	URL	for	reading.	If	the	URL	does	not
have	a	scheme	identifier,	or	if	it	has	file:	as	its	scheme	identifier,	this	opens
a	local	file	(without	universal	newlines);	otherwise	it	opens	a	socket	to	a
server	somewhere	on	the	network.	If	the	connection	cannot	be	made,	or	if
the	server	returns	an	error	code,	the	IOError	exception	is	raised.	If	all
went	well,	a	file-like	object	is	returned.	This	supports	the	following
methods:	read(),	readline(),	readlines(),	fileno(),
close(),	info()	and	geturl().	It	also	has	proper	support	for	the
iterator	protocol.	One	caveat:	the	read()	method,	if	the	size	argument	is
omitted	or	negative,	may	not	read	until	the	end	of	the	data	stream;	there	is
no	good	way	to	determine	that	the	entire	stream	from	a	socket	has	been	read
in	the	general	case.

Except	for	the	info()	and	geturl()	methods,	these	methods	have	the
same	interface	as	for	file	objects	--	see	section	2.3.9	in	this	manual.	(It	is
not	a	built-in	file	object,	however,	so	it	can't	be	used	at	those	few	places
where	a	true	built-in	file	object	is	required.)

The	info()	method	returns	an	instance	of	the	class
mimetools.Message	containing	meta-information	associated	with	the
URL.	When	the	method	is	HTTP,	these	headers	are	those	returned	by	the
server	at	the	head	of	the	retrieved	HTML	page	(including	Content-Length
and	Content-Type).	When	the	method	is	FTP,	a	Content-Length	header	will

be	present	if	(as	is	now	usual)	the	server	passed	back	a	file	length	in
response	to	the	FTP	retrieval	request.	A	Content-Type	header	will	be
present	if	the	MIME	type	can	be	guessed.	When	the	method	is	local-file,
returned	headers	will	include	a	Date	representing	the	file's	last-modified
time,	a	Content-Length	giving	file	size,	and	a	Content-Type	containing	a
guess	at	the	file's	type.	See	also	the	description	of	the	mimetools	module.

The	geturl()	method	returns	the	real	URL	of	the	page.	In	some	cases,
the	HTTP	server	redirects	a	client	to	another	URL.	The	urlopen()
function	handles	this	transparently,	but	in	some	cases	the	caller	needs	to
know	which	URL	the	client	was	redirected	to.	The	geturl()	method	can
be	used	to	get	at	this	redirected	URL.

If	the	url	uses	the	http:	scheme	identifier,	the	optional	data	argument	may
be	given	to	specify	a	POST	request	(normally	the	request	type	is	GET).	The
data	argument	must	be	in	standard	application/x-www-form-urlencoded
format;	see	the	urlencode()	function	below.

The	urlopen()	function	works	transparently	with	proxies	which	do	not
require	authentication.	In	a	UNIX	or	Windows	environment,	set	the
http_proxy,	ftp_proxy	or	gopher_proxy	environment	variables	to	a	URL
that	identifies	the	proxy	server	before	starting	the	Python	interpreter.	For
example	(the	"%"	is	the	command	prompt):

%	http_proxy="http://www.someproxy.com:3128"

%	export	http_proxy

%	python

...

In	a	Windows	environment,	if	no	proxy	environment	variables	are	set,
proxy	settings	are	obtained	from	the	registry's	Internet	Settings	section.

In	a	Macintosh	environment,	urlopen()	will	retrieve	proxy	information
from	Internet	Config.

Alternatively,	the	optional	proxies	argument	may	be	used	to	explicitly
specify	proxies.	It	must	be	a	dictionary	mapping	scheme	names	to	proxy
URLs,	where	an	empty	dictionary	causes	no	proxies	to	be	used,	and	None
(the	default	value)	causes	environmental	proxy	settings	to	be	used	as
discussed	above.	For	example:

#	Use	http://www.someproxy.com:3128	for	http	proxying

proxies	=	proxies={'http':	'http://www.someproxy.com:3128'}

filehandle	=	urllib.urlopen(some_url,	proxies=proxies)

#	Don't	use	any	proxies

filehandle	=	urllib.urlopen(some_url,	proxies={})

#	Use	proxies	from	environment	-	both	versions	are	equivalent

filehandle	=	urllib.urlopen(some_url,	proxies=None)

filehandle	=	urllib.urlopen(some_url)

The	urlopen()	function	does	not	support	explicit	proxy	specification.	If
you	need	to	override	environmental	proxy	settings,	use	URLopener,	or	a
subclass	such	as	FancyURLopener.

Proxies	which	require	authentication	for	use	are	not	currently	supported;
this	is	considered	an	implementation	limitation.

Changed	in	version	2.3:	Added	the	proxies	support.

urlretrieve(url[,	filename[,	reporthook[,	data]]])
Copy	a	network	object	denoted	by	a	URL	to	a	local	file,	if	necessary.	If	the
URL	points	to	a	local	file,	or	a	valid	cached	copy	of	the	object	exists,	the
object	is	not	copied.	Return	a	tuple	(filename,	headers)	where	filename
is	the	local	file	name	under	which	the	object	can	be	found,	and	headers	is
whatever	the	info()	method	of	the	object	returned	by	urlopen()
returned	(for	a	remote	object,	possibly	cached).	Exceptions	are	the	same	as
for	urlopen().

The	second	argument,	if	present,	specifies	the	file	location	to	copy	to	(if
absent,	the	location	will	be	a	tempfile	with	a	generated	name).	The	third
argument,	if	present,	is	a	hook	function	that	will	be	called	once	on
establishment	of	the	network	connection	and	once	after	each	block	read
thereafter.	The	hook	will	be	passed	three	arguments;	a	count	of	blocks
transferred	so	far,	a	block	size	in	bytes,	and	the	total	size	of	the	file.	The
third	argument	may	be	-1	on	older	FTP	servers	which	do	not	return	a	file
size	in	response	to	a	retrieval	request.

If	the	url	uses	the	http:	scheme	identifier,	the	optional	data	argument	may
be	given	to	specify	a	POST	request	(normally	the	request	type	is	GET).	The
data	argument	must	in	standard	application/x-www-form-urlencoded
format;	see	the	urlencode()	function	below.

_urlopener

The	public	functions	urlopen()	and	urlretrieve()	create	an
instance	of	the	FancyURLopener	class	and	use	it	to	perform	their
requested	actions.	To	override	this	functionality,	programmers	can	create	a
subclass	of	URLopener	or	FancyURLopener,	then	assign	an	instance
of	that	class	to	the	urllib._urlopener	variable	before	calling	the
desired	function.	For	example,	applications	may	want	to	specify	a	different
User-Agent:	header	than	URLopener	defines.	This	can	be	accomplished
with	the	following	code:

import	urllib

class	AppURLopener(urllib.FancyURLopener):

				def	__init__(self,	*args):

								self.version	=	"App/1.7"

								urllib.FancyURLopener.__init__(self,	*args)

urllib._urlopener	=	AppURLopener()

urlcleanup()
Clear	the	cache	that	may	have	been	built	up	by	previous	calls	to
urlretrieve().

quote(string[,	safe])
Replace	special	characters	in	string	using	the	"%xx"	escape.	Letters,	digits,
and	the	characters	"_.-"	are	never	quoted.	The	optional	safe	parameter
specifies	additional	characters	that	should	not	be	quoted	--	its	default	value
is	'/'.

Example:	quote('/~connolly/')	yields	'/%7econnolly/'.

quote_plus(string[,	safe])
Like	quote(),	but	also	replaces	spaces	by	plus	signs,	as	required	for
quoting	HTML	form	values.	Plus	signs	in	the	original	string	are	escaped
unless	they	are	included	in	safe.	It	also	does	not	have	safe	default	to	'/'.

unquote(string)
Replace	"%xx"	escapes	by	their	single-character	equivalent.

Example:	unquote('/%7Econnolly/')	yields	'/~connolly/'.

unquote_plus(string)
Like	unquote(),	but	also	replaces	plus	signs	by	spaces,	as	required	for
unquoting	HTML	form	values.

urlencode(query[,	doseq])
Convert	a	mapping	object	or	a	sequence	of	two-element	tuples	to	a	``url-
encoded''	string,	suitable	to	pass	to	urlopen()	above	as	the	optional	data
argument.	This	is	useful	to	pass	a	dictionary	of	form	fields	to	a	POST
request.	The	resulting	string	is	a	series	of	key=value	pairs	separated	by	"&"
characters,	where	both	key	and	value	are	quoted	using	quote_plus()
above.	If	the	optional	parameter	doseq	is	present	and	evaluates	to	true,
individual	key=value	pairs	are	generated	for	each	element	of	the	sequence.
When	a	sequence	of	two-element	tuples	is	used	as	the	query	argument,	the
first	element	of	each	tuple	is	a	key	and	the	second	is	a	value.	The	order	of
parameters	in	the	encoded	string	will	match	the	order	of	parameter	tuples	in
the	sequence.	The	cgi	module	provides	the	functions	parse_qs()	and
parse_qsl()	which	are	used	to	parse	query	strings	into	Python	data
structures.

pathname2url(path)
Convert	the	pathname	path	from	the	local	syntax	for	a	path	to	the	form	used
in	the	path	component	of	a	URL.	This	does	not	produce	a	complete	URL.
The	return	value	will	already	be	quoted	using	the	quote()	function.

url2pathname(path)
Convert	the	path	component	path	from	an	encoded	URL	to	the	local	syntax
for	a	path.	This	does	not	accept	a	complete	URL.	This	function	uses
unquote()	to	decode	path.

class	URLopener([proxies[,	**x509]])
Base	class	for	opening	and	reading	URLs.	Unless	you	need	to	support
opening	objects	using	schemes	other	than	http:,	ftp:,	gopher:	or	file:,	you
probably	want	to	use	FancyURLopener.

By	default,	the	URLopener	class	sends	a	User-Agent:	header	of
"urllib/VVV",	where	VVV	is	the	urllib	version	number.	Applications
can	define	their	own	User-Agent:	header	by	subclassing	URLopener	or

FancyURLopener	and	setting	the	instance	attribute	version	to	an
appropriate	string	value	before	the	open()	method	is	called.

The	optional	proxies	parameter	should	be	a	dictionary	mapping	scheme
names	to	proxy	URLs,	where	an	empty	dictionary	turns	proxies	off
completely.	Its	default	value	is	None,	in	which	case	environmental	proxy
settings	will	be	used	if	present,	as	discussed	in	the	definition	of
urlopen(),	above.

Additional	keyword	parameters,	collected	in	x509,	are	used	for
authentication	with	the	https:	scheme.	The	keywords	key_file	and	cert_file
are	supported;	both	are	needed	to	actually	retrieve	a	resource	at	an	https:
URL.

class	FancyURLopener(...)
FancyURLopener	subclasses	URLopener	providing	default	handling
for	the	following	HTTP	response	codes:	301,	302,	303,	307	and	401.	For
the	30x	response	codes	listed	above,	the	Location:	header	is	used	to	fetch
the	actual	URL.	For	401	response	codes	(authentication	required),	basic
HTTP	authentication	is	performed.	For	the	30x	response	codes,	recursion	is
bounded	by	the	value	of	the	maxtries	attribute,	which	defaults	to	10.

Note:	According	to	the	letter	of	RFC	2616,	301	and	302	responses	to	POST
requests	must	not	be	automatically	redirected	without	confirmation	by	the
user.	In	reality,	browsers	do	allow	automatic	redirection	of	these	responses,
changing	the	POST	to	a	GET,	and	urllib	reproduces	this	behaviour.

The	parameters	to	the	constructor	are	the	same	as	those	for	URLopener.

Note:	When	performing	basic	authentication,	a	FancyURLopener
instance	calls	its	prompt_user_passwd()	method.	The	default
implementation	asks	the	users	for	the	required	information	on	the
controlling	terminal.	A	subclass	may	override	this	method	to	support	more
appropriate	behavior	if	needed.

Restrictions:

Currently,	only	the	following	protocols	are	supported:	HTTP,	(versions	0.9
and	1.0),	Gopher	(but	not	Gopher-+),	FTP,	and	local	files.

http://www.faqs.org/rfcs/rfc2616.html

The	caching	feature	of	urlretrieve()	has	been	disabled	until	I	find	the
time	to	hack	proper	processing	of	Expiration	time	headers.

There	should	be	a	function	to	query	whether	a	particular	URL	is	in	the
cache.

For	backward	compatibility,	if	a	URL	appears	to	point	to	a	local	file	but	the
file	can't	be	opened,	the	URL	is	re-interpreted	using	the	FTP	protocol.	This
can	sometimes	cause	confusing	error	messages.

The	urlopen()	and	urlretrieve()	functions	can	cause	arbitrarily
long	delays	while	waiting	for	a	network	connection	to	be	set	up.	This	means
that	it	is	difficult	to	build	an	interactive	Web	client	using	these	functions
without	using	threads.

The	data	returned	by	urlopen()	or	urlretrieve()	is	the	raw	data
returned	by	the	server.	This	may	be	binary	data	(e.g.	an	image),	plain	text	or
(for	example)	HTML.	The	HTTP	protocol	provides	type	information	in	the
reply	header,	which	can	be	inspected	by	looking	at	the	Content-Type:
header.	For	the	Gopher	protocol,	type	information	is	encoded	in	the	URL;
there	is	currently	no	easy	way	to	extract	it.	If	the	returned	data	is	HTML,
you	can	use	the	module	htmllib	to	parse	it.

The	code	handling	the	FTP	protocol	cannot	differentiate	between	a	file	and
a	directory.	This	can	lead	to	unexpected	behavior	when	attempting	to	read	a
URL	that	points	to	a	file	that	is	not	accessible.	If	the	URL	ends	in	a	/,	it	is
assumed	to	refer	to	a	directory	and	will	be	handled	accordingly.	But	if	an
attempt	to	read	a	file	leads	to	a	550	error	(meaning	the	URL	cannot	be
found	or	is	not	accessible,	often	for	permission	reasons),	then	the	path	is
treated	as	a	directory	in	order	to	handle	the	case	when	a	directory	is
specified	by	a	URL	but	the	trailing	/	has	been	left	off.	This	can	cause
misleading	results	when	you	try	to	fetch	a	file	whose	read	permissions
make	it	inaccessible;	the	FTP	code	will	try	to	read	it,	fail	with	a	550	error,
and	then	perform	a	directory	listing	for	the	unreadable	file.	If	fine-grained
control	is	needed,	consider	using	the	ftplib	module,	subclassing
FancyURLOpener,	or	changing	_urlopener	to	meet	your	needs.

This	module	does	not	support	the	use	of	proxies	which	require
authentication.	This	may	be	implemented	in	the	future.

Although	the	urllib	module	contains	(undocumented)	routines	to	parse
and	unparse	URL	strings,	the	recommended	interface	for	URL	manipulation
is	in	module	urlparse.

Subsections

11.4.1	URLopener	Objects
11.4.2	Examples

Python	Library	Reference
Previous:	11.3	cgitb	Up:	11.	Internet	Protocols	and	Next:	11.4.1	URLopener
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.4	urllib	Up:	11.4	urllib	Next:	11.4.2	Examples

11.4.1	URLopener	Objects
URLopener	and	FancyURLopener	objects	have	the	following	attributes.

open(fullurl[,	data])
Open	fullurl	using	the	appropriate	protocol.	This	method	sets	up	cache	and
proxy	information,	then	calls	the	appropriate	open	method	with	its	input
arguments.	If	the	scheme	is	not	recognized,	open_unknown()	is	called.
The	data	argument	has	the	same	meaning	as	the	data	argument	of
urlopen().

open_unknown(fullurl[,	data])
Overridable	interface	to	open	unknown	URL	types.

retrieve(url[,	filename[,	reporthook[,	data]]])
Retrieves	the	contents	of	url	and	places	it	in	filename.	The	return	value	is	a
tuple	consisting	of	a	local	filename	and	either	a	mimetools.Message
object	containing	the	response	headers	(for	remote	URLs)	or	None	(for
local	URLs).	The	caller	must	then	open	and	read	the	contents	of	filename.	If
filename	is	not	given	and	the	URL	refers	to	a	local	file,	the	input	filename	is
returned.	If	the	URL	is	non-local	and	filename	is	not	given,	the	filename	is
the	output	of	tempfile.mktemp()	with	a	suffix	that	matches	the	suffix
of	the	last	path	component	of	the	input	URL.	If	reporthook	is	given,	it	must
be	a	function	accepting	three	numeric	parameters.	It	will	be	called	after
each	chunk	of	data	is	read	from	the	network.	reporthook	is	ignored	for	local
URLs.

If	the	url	uses	the	http:	scheme	identifier,	the	optional	data	argument	may
be	given	to	specify	a	POST	request	(normally	the	request	type	is	GET).	The
data	argument	must	in	standard	application/x-www-form-urlencoded
format;	see	the	urlencode()	function	below.

version

Variable	that	specifies	the	user	agent	of	the	opener	object.	To	get	urllib
to	tell	servers	that	it	is	a	particular	user	agent,	set	this	in	a	subclass	as	a
class	variable	or	in	the	constructor	before	calling	the	base	constructor.

The	FancyURLopener	class	offers	one	additional	method	that	should	be
overloaded	to	provide	the	appropriate	behavior:

prompt_user_passwd(host,	realm)
Return	information	needed	to	authenticate	the	user	at	the	given	host	in	the
specified	security	realm.	The	return	value	should	be	a	tuple,	(user,
password),	which	can	be	used	for	basic	authentication.

The	implementation	prompts	for	this	information	on	the	terminal;	an
application	should	override	this	method	to	use	an	appropriate	interaction
model	in	the	local	environment.

Python	Library	Reference
Previous:	11.4	urllib	Up:	11.4	urllib	Next:	11.4.2	Examples

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.4.1	URLopener	Objects	Up:	11.4	urllib	Next:	11.5	urllib2

11.4.2	Examples
Here	is	an	example	session	that	uses	the	"GET"	method	to	retrieve	a	URL
containing	parameters:

>>>	import	urllib

>>>	params	=	urllib.urlencode({'spam':	1,	'eggs':	2,	'bacon':	0})

>>>	f	=	urllib.urlopen("http://www.musi-cal.com/cgi-bin/query?%s"	%	params)

>>>	print	f.read()

The	following	example	uses	the	"POST"	method	instead:

>>>	import	urllib

>>>	params	=	urllib.urlencode({'spam':	1,	'eggs':	2,	'bacon':	0})

>>>	f	=	urllib.urlopen("http://www.musi-cal.com/cgi-bin/query",	params)

>>>	print	f.read()

The	following	example	uses	an	explicitly	specified	HTTP	proxy,	overriding
environment	settings:

>>>	import	urllib

>>>	proxies	=	{'http':	'http://proxy.example.com:8080/'}

>>>	opener	=	urllib.FancyURLopener(proxies)

>>>	f	=	opener.open("http://www.python.org")

>>>	f.read()

The	following	example	uses	no	proxies	at	all,	overriding	environment	settings:

>>>	import	urllib

>>>	opener	=	urllib.FancyURLopener({})

>>>	f	=	opener.open("http://www.python.org/")

>>>	f.read()

Python	Library	Reference
Previous:	11.4.1	URLopener	Objects	Up:	11.4	urllib	Next:	11.5	urllib2

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.4.2	Examples	Up:	11.	Internet	Protocols	and	Next:	11.5.1
Request	Objects

11.5	urllib2	--	extensible	library	for
opening	URLs
The	urllib2	module	defines	functions	and	classes	which	help	in	opening
URLs	(mostly	HTTP)	in	a	complex	world	--	basic	and	digest	authentication,
redirections,	cookies	and	more.

The	urllib2	module	defines	the	following	functions:

urlopen(url[,	data])
Open	the	URL	url,	which	can	be	either	a	string	or	a	Request	object.

data	should	be	a	string,	which	specifies	additional	data	to	send	to	the	server.
In	HTTP	requests,	which	are	the	only	ones	that	support	data,	it	should	be	a
buffer	in	the	format	of	application/x-www-form-urlencoded,	for	example
one	returned	from	urllib.urlencode().

This	function	returns	a	file-like	object	with	two	additional	methods:

geturl()	--	return	the	URL	of	the	resource	retrieved
info()	--	return	the	meta-information	of	the	page,	as	a	dictionary-
like	object

Raises	URLError	on	errors.

Note	that	None	may	be	returned	if	no	handler	handles	the	request	(though
the	default	installed	global	OpenerDirector	uses	UnknownHandler
to	ensure	this	never	happens).

install_opener(opener)
Install	an	OpenerDirector	instance	as	the	default	global	opener.
Installing	an	opener	is	only	necessary	if	you	want	urlopen	to	use	that
opener;	otherwise,	simply	call	OpenerDirector.open()	instead	of
urlopen().	The	code	does	not	check	for	a	real	OpenerDirector,	and
any	class	with	the	appropriate	interface	will	work.

build_opener([handler,	...])
Return	an	OpenerDirector	instance,	which	chains	the	handlers	in	the
order	given.	handlers	can	be	either	instances	of	BaseHandler,	or
subclasses	of	BaseHandler	(in	which	case	it	must	be	possible	to	call	the
constructor	without	any	parameters).	Instances	of	the	following	classes	will
be	in	front	of	the	handlers,	unless	the	handlers	contain	them,	instances	of
them	or	subclasses	of	them:	ProxyHandler,	UnknownHandler,
HTTPHandler,	HTTPDefaultErrorHandler,
HTTPRedirectHandler,	FTPHandler,	FileHandler,
HTTPErrorProcessor.

If	the	Python	installation	has	SSL	support	(socket.ssl()	exists),
HTTPSHandler	will	also	be	added.

Beginning	in	Python	2.3,	a	BaseHandler	subclass	may	also	change	its
handler_order	member	variable	to	modify	its	position	in	the	handlers
list.	Besides	ProxyHandler,	which	has	handler_order	of	100,	all
handlers	currently	have	it	set	to	500.

The	following	exceptions	are	raised	as	appropriate:

exception	URLError
The	handlers	raise	this	exception	(or	derived	exceptions)	when	they	run	into
a	problem.	It	is	a	subclass	of	IOError.

exception	HTTPError
A	subclass	of	URLError,	it	can	also	function	as	a	non-exceptional	file-like
return	value	(the	same	thing	that	urlopen()	returns).	This	is	useful	when
handling	exotic	HTTP	errors,	such	as	requests	for	authentication.

exception	GopherError
A	subclass	of	URLError,	this	is	the	error	raised	by	the	Gopher	handler.

The	following	classes	are	provided:

class	Request(url[,	data][,	headers]	[,	origin_req_host][,	unverifiable])
This	class	is	an	abstraction	of	a	URL	request.

url	should	be	a	string	which	is	a	valid	URL.	For	a	description	of	data	see
the	add_data()	description.	headers	should	be	a	dictionary,	and	will	be
treated	as	if	add_header()	was	called	with	each	key	and	value	as
arguments.

The	final	two	arguments	are	only	of	interest	for	correct	handling	of	third-
party	HTTP	cookies:

origin_req_host	should	be	the	request-host	of	the	origin	transaction,	as
defined	by	RFC	2965.	It	defaults	to
cookielib.request_host(self).	This	is	the	host	name	or	IP
address	of	the	original	request	that	was	initiated	by	the	user.	For	example,	if
the	request	is	for	an	image	in	an	HTML	document,	this	should	be	the
request-host	of	the	request	for	the	page	containing	the	image.

unverifiable	should	indicate	whether	the	request	is	unverifiable,	as	defined
by	RFC	2965.	It	defaults	to	False.	An	unverifiable	request	is	one	whose
URL	the	user	did	not	have	the	option	to	approve.	For	example,	if	the
request	is	for	an	image	in	an	HTML	document,	and	the	user	had	no	option
to	approve	the	automatic	fetching	of	the	image,	this	should	be	true.

class	OpenerDirector()
The	OpenerDirector	class	opens	URLs	via	BaseHandlers	chained
together.	It	manages	the	chaining	of	handlers,	and	recovery	from	errors.

class	BaseHandler()
This	is	the	base	class	for	all	registered	handlers	--	and	handles	only	the
simple	mechanics	of	registration.

class	HTTPDefaultErrorHandler()
A	class	which	defines	a	default	handler	for	HTTP	error	responses;	all
responses	are	turned	into	HTTPError	exceptions.

class	HTTPRedirectHandler()
A	class	to	handle	redirections.

class	HTTPCookieProcessor([cookiejar])
A	class	to	handle	HTTP	Cookies.

http://www.faqs.org/rfcs/rfc2965.html

class	ProxyHandler([proxies])
Cause	requests	to	go	through	a	proxy.	If	proxies	is	given,	it	must	be	a
dictionary	mapping	protocol	names	to	URLs	of	proxies.	The	default	is	to
read	the	list	of	proxies	from	the	environment	variables	<protocol>_proxy.

class	HTTPPasswordMgr()
Keep	a	database	of	(realm,	uri)	->	(user,	password)	mappings.

class	HTTPPasswordMgrWithDefaultRealm()
Keep	a	database	of	(realm,	uri)	->	(user,	password)	mappings.	A
realm	of	None	is	considered	a	catch-all	realm,	which	is	searched	if	no	other
realm	fits.

class	AbstractBasicAuthHandler([password_mgr])
This	is	a	mixin	class	that	helps	with	HTTP	authentication,	both	to	the
remote	host	and	to	a	proxy.	password_mgr,	if	given,	should	be	something
that	is	compatible	with	HTTPPasswordMgr;	refer	to	section	11.5.7	for
information	on	the	interface	that	must	be	supported.

class	HTTPBasicAuthHandler([password_mgr])
Handle	authentication	with	the	remote	host.	password_mgr,	if	given,	should
be	something	that	is	compatible	with	HTTPPasswordMgr;	refer	to
section	11.5.7	for	information	on	the	interface	that	must	be	supported.

class	ProxyBasicAuthHandler([password_mgr])
Handle	authentication	with	the	proxy.	password_mgr,	if	given,	should	be
something	that	is	compatible	with	HTTPPasswordMgr;	refer	to
section	11.5.7	for	information	on	the	interface	that	must	be	supported.

class	AbstractDigestAuthHandler([password_mgr])
This	is	a	mixin	class	that	helps	with	HTTP	authentication,	both	to	the
remote	host	and	to	a	proxy.	password_mgr,	if	given,	should	be	something
that	is	compatible	with	HTTPPasswordMgr;	refer	to	section	11.5.7	for
information	on	the	interface	that	must	be	supported.

class	HTTPDigestAuthHandler([password_mgr])

Handle	authentication	with	the	remote	host.	password_mgr,	if	given,	should
be	something	that	is	compatible	with	HTTPPasswordMgr;	refer	to
section	11.5.7	for	information	on	the	interface	that	must	be	supported.

class	ProxyDigestAuthHandler([password_mgr])
Handle	authentication	with	the	proxy.	password_mgr,	if	given,	should	be
something	that	is	compatible	with	HTTPPasswordMgr;	refer	to
section	11.5.7	for	information	on	the	interface	that	must	be	supported.

class	HTTPHandler()
A	class	to	handle	opening	of	HTTP	URLs.

class	HTTPSHandler()
A	class	to	handle	opening	of	HTTPS	URLs.

class	FileHandler()
Open	local	files.

class	FTPHandler()
Open	FTP	URLs.

class	CacheFTPHandler()
Open	FTP	URLs,	keeping	a	cache	of	open	FTP	connections	to	minimize
delays.

class	GopherHandler()
Open	gopher	URLs.

class	UnknownHandler()
A	catch-all	class	to	handle	unknown	URLs.

Subsections

11.5.1	Request	Objects
11.5.2	OpenerDirector	Objects
11.5.3	BaseHandler	Objects
11.5.4	HTTPRedirectHandler	Objects

11.5.5	HTTPCookieProcessor	Objects
11.5.6	ProxyHandler	Objects
11.5.7	HTTPPasswordMgr	Objects
11.5.8	AbstractBasicAuthHandler	Objects
11.5.9	HTTPBasicAuthHandler	Objects
11.5.10	ProxyBasicAuthHandler	Objects
11.5.11	AbstractDigestAuthHandler	Objects
11.5.12	HTTPDigestAuthHandler	Objects
11.5.13	ProxyDigestAuthHandler	Objects
11.5.14	HTTPHandler	Objects
11.5.15	HTTPSHandler	Objects
11.5.16	FileHandler	Objects
11.5.17	FTPHandler	Objects
11.5.18	CacheFTPHandler	Objects
11.5.19	GopherHandler	Objects
11.5.20	UnknownHandler	Objects
11.5.21	HTTPErrorProcessor	Objects
11.5.22	Examples

Python	Library	Reference
Previous:	11.4.2	Examples	Up:	11.	Internet	Protocols	and	Next:	11.5.1
Request	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5	urllib2	Up:	11.5	urllib2	Next:	11.5.2	OpenerDirector	Objects

11.5.1	Request	Objects
The	following	methods	describe	all	of	Request's	public	interface,	and	so	all
must	be	overridden	in	subclasses.

add_data(data)
Set	the	Request	data	to	data.	This	is	ignored	by	all	handlers	except	HTTP
handlers	--	and	there	it	should	be	a	byte	string,	and	will	change	the	request
to	be	POST	rather	than	GET.

get_method()
Return	a	string	indicating	the	HTTP	request	method.	This	is	only
meaningful	for	HTTP	requests,	and	currently	always	takes	one	of	the	values
("GET",	"POST").

has_data()
Return	whether	the	instance	has	a	non-None	data.

get_data()
Return	the	instance's	data.

add_header(key,	val)
Add	another	header	to	the	request.	Headers	are	currently	ignored	by	all
handlers	except	HTTP	handlers,	where	they	are	added	to	the	list	of	headers
sent	to	the	server.	Note	that	there	cannot	be	more	than	one	header	with	the
same	name,	and	later	calls	will	overwrite	previous	calls	in	case	the	key
collides.	Currently,	this	is	no	loss	of	HTTP	functionality,	since	all	headers
which	have	meaning	when	used	more	than	once	have	a	(header-specific)
way	of	gaining	the	same	functionality	using	only	one	header.

add_unredirected_header(key,	header)
Add	a	header	that	will	not	be	added	to	a	redirected	request.	New	in	version
2.4.

has_header(header)
Return	whether	the	instance	has	the	named	header	(checks	both	regular	and

unredirected).	New	in	version	2.4.

get_full_url()
Return	the	URL	given	in	the	constructor.

get_type()
Return	the	type	of	the	URL	--	also	known	as	the	scheme.

get_host()
Return	the	host	to	which	a	connection	will	be	made.

get_selector()
Return	the	selector	--	the	part	of	the	URL	that	is	sent	to	the	server.

set_proxy(host,	type)
Prepare	the	request	by	connecting	to	a	proxy	server.	The	host	and	type	will
replace	those	of	the	instance,	and	the	instance's	selector	will	be	the	original
URL	given	in	the	constructor.

get_origin_req_host()
Return	the	request-host	of	the	origin	transaction,	as	defined	by	RFC	2965.
See	the	documentation	for	the	Request	constructor.

is_unverifiable()
Return	whether	the	request	is	unverifiable,	as	defined	by	RFC	2965.	See	the
documentation	for	the	Request	constructor.

Python	Library	Reference
Previous:	11.5	urllib2	Up:	11.5	urllib2	Next:	11.5.2	OpenerDirector	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.faqs.org/rfcs/rfc2965.html

Previous:	11.5.1	Request	Objects	Up:	11.5	urllib2	Next:	11.5.3	BaseHandler
Objects

11.5.2	OpenerDirector	Objects
OpenerDirector	instances	have	the	following	methods:

add_handler(handler)
handler	should	be	an	instance	of	BaseHandler.	The	following	methods
are	searched,	and	added	to	the	possible	chains	(note	that	HTTP	errors	are	a
special	case).

protocol_open()	--	signal	that	the	handler	knows	how	to	open
protocol	URLs.
http_error_type()	--	signal	that	the	handler	knows	how	to	handle
HTTP	errors	with	HTTP	error	code	type.
protocol_error()	--	signal	that	the	handler	knows	how	to	handle
errors	from	(non-http)	protocol.
protocol_request()	--	signal	that	the	handler	knows	how	to	pre-
process	protocol	requests.
protocol_response()	--	signal	that	the	handler	knows	how	to	post-
process	protocol	responses.

open(url[,	data])
Open	the	given	url	(which	can	be	a	request	object	or	a	string),	optionally
passing	the	given	data.	Arguments,	return	values	and	exceptions	raised	are
the	same	as	those	of	urlopen()	(which	simply	calls	the	open()	method
on	the	currently	installed	global	OpenerDirector).

error(proto[,	arg[,	...]])
Handle	an	error	of	the	given	protocol.	This	will	call	the	registered	error
handlers	for	the	given	protocol	with	the	given	arguments	(which	are
protocol	specific).	The	HTTP	protocol	is	a	special	case	which	uses	the
HTTP	response	code	to	determine	the	specific	error	handler;	refer	to	the
http_error_*()	methods	of	the	handler	classes.

Return	values	and	exceptions	raised	are	the	same	as	those	of	urlopen().

OpenerDirector	objects	open	URLs	in	three	stages:

The	order	in	which	these	methods	are	called	within	each	stage	is	determined	by
sorting	the	handler	instances.

1.	 Every	handler	with	a	method	named	like	protocol_request()	has	that
method	called	to	pre-process	the	request.

2.	 Handlers	with	a	method	named	like	protocol_open()	are	called	to	handle
the	request.	This	stage	ends	when	a	handler	either	returns	a	non-None
value	(ie.	a	response),	or	raises	an	exception	(usually	URLError).
Exceptions	are	allowed	to	propagate.

In	fact,	the	above	algorithm	is	first	tried	for	methods	named
default_open.	If	all	such	methods	return	None,	the	algorithm	is
repeated	for	methods	named	like	protocol_open().	If	all	such	methods
return	None,	the	algorithm	is	repeated	for	methods	named
unknown_open().

Note	that	the	implementation	of	these	methods	may	involve	calls	of	the
parent	OpenerDirector	instance's	.open()	and	.error()	methods.

3.	 Every	handler	with	a	method	named	like	protocol_response()	has	that
method	called	to	post-process	the	response.

Python	Library	Reference
Previous:	11.5.1	Request	Objects	Up:	11.5	urllib2	Next:	11.5.3	BaseHandler
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.2	OpenerDirector	Objects	Up:	11.5	urllib2	Next:	11.5.4
HTTPRedirectHandler	Objects

11.5.3	BaseHandler	Objects
BaseHandler	objects	provide	a	couple	of	methods	that	are	directly	useful,	and
others	that	are	meant	to	be	used	by	derived	classes.	These	are	intended	for	direct
use:

add_parent(director)
Add	a	director	as	parent.

close()
Remove	any	parents.

The	following	members	and	methods	should	only	be	used	by	classes	derived
from	BaseHandler.	Note:	The	convention	has	been	adopted	that	subclasses
defining	protocol_request()	or	protocol_response()	methods	are	named
*Processor;	all	others	are	named	*Handler.

parent

A	valid	OpenerDirector,	which	can	be	used	to	open	using	a	different
protocol,	or	handle	errors.

default_open(req)
This	method	is	not	defined	in	BaseHandler,	but	subclasses	should	define
it	if	they	want	to	catch	all	URLs.

This	method,	if	implemented,	will	be	called	by	the	parent
OpenerDirector.	It	should	return	a	file-like	object	as	described	in	the
return	value	of	the	open()	of	OpenerDirector,	or	None.	It	should
raise	URLError,	unless	a	truly	exceptional	thing	happens	(for	example,
MemoryError	should	not	be	mapped	to	URLError).

This	method	will	be	called	before	any	protocol-specific	open	method.

protocol_open(req)
This	method	is	not	defined	in	BaseHandler,	but	subclasses	should	define
it	if	they	want	to	handle	URLs	with	the	given	protocol.

This	method,	if	defined,	will	be	called	by	the	parent	OpenerDirector.
Return	values	should	be	the	same	as	for	default_open().

unknown_open(req)
This	method	is	not	defined	in	BaseHandler,	but	subclasses	should	define
it	if	they	want	to	catch	all	URLs	with	no	specific	registered	handler	to	open
it.

This	method,	if	implemented,	will	be	called	by	the	parent
OpenerDirector.	Return	values	should	be	the	same	as	for
default_open().

http_error_default(req,	fp,	code,	msg,	hdrs)
This	method	is	not	defined	in	BaseHandler,	but	subclasses	should
override	it	if	they	intend	to	provide	a	catch-all	for	otherwise	unhandled
HTTP	errors.	It	will	be	called	automatically	by	the	OpenerDirector
getting	the	error,	and	should	not	normally	be	called	in	other	circumstances.

req	will	be	a	Request	object,	fp	will	be	a	file-like	object	with	the	HTTP
error	body,	code	will	be	the	three-digit	code	of	the	error,	msg	will	be	the
user-visible	explanation	of	the	code	and	hdrs	will	be	a	mapping	object	with
the	headers	of	the	error.

Return	values	and	exceptions	raised	should	be	the	same	as	those	of
urlopen().

http_error_nnn(req,	fp,	code,	msg,	hdrs)
nnn	should	be	a	three-digit	HTTP	error	code.	This	method	is	also	not
defined	in	BaseHandler,	but	will	be	called,	if	it	exists,	on	an	instance	of
a	subclass,	when	an	HTTP	error	with	code	nnn	occurs.

Subclasses	should	override	this	method	to	handle	specific	HTTP	errors.

Arguments,	return	values	and	exceptions	raised	should	be	the	same	as	for
http_error_default().

protocol_request(req)
This	method	is	not	defined	in	BaseHandler,	but	subclasses	should	define

it	if	they	want	to	pre-process	requests	of	the	given	protocol.

This	method,	if	defined,	will	be	called	by	the	parent	OpenerDirector.
req	will	be	a	Request	object.	The	return	value	should	be	a	Request
object.

protocol_response(req,	response)
This	method	is	not	defined	in	BaseHandler,	but	subclasses	should	define
it	if	they	want	to	post-process	responses	of	the	given	protocol.

This	method,	if	defined,	will	be	called	by	the	parent	OpenerDirector.
req	will	be	a	Request	object.	response	will	be	an	object	implementing	the
same	interface	as	the	return	value	of	urlopen().	The	return	value	should
implement	the	same	interface	as	the	return	value	of	urlopen().

Python	Library	Reference
Previous:	11.5.2	OpenerDirector	Objects	Up:	11.5	urllib2	Next:	11.5.4
HTTPRedirectHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.3	BaseHandler	Objects	Up:	11.5	urllib2	Next:	11.5.5
HTTPCookieProcessor	Objects

11.5.4	HTTPRedirectHandler	Objects
Note:	Some	HTTP	redirections	require	action	from	this	module's	client	code.	If
this	is	the	case,	HTTPError	is	raised.	See	RFC	2616	for	details	of	the	precise
meanings	of	the	various	redirection	codes.

redirect_request(req,	fp,	code,	msg,	hdrs)
Return	a	Request	or	None	in	response	to	a	redirect.	This	is	called	by	the
default	implementations	of	the	http_error_30*()	methods	when	a
redirection	is	received	from	the	server.	If	a	redirection	should	take	place,
return	a	new	Request	to	allow	http_error_30*()	to	perform	the
redirect.	Otherwise,	raise	HTTPError	if	no	other	handler	should	try	to
handle	this	URL,	or	return	None	if	you	can't	but	another	handler	might.

Note: 	The	default	implementation	of	this	method	does	not
strictly	follow	RFC	2616,	which	says	that	301	and	302
responses	to	POST	requests	must	not	be	automatically
redirected	without	confirmation	by	the	user.	In	reality,
browsers	do	allow	automatic	redirection	of	these	responses,
changing	the	POST	to	a	GET,	and	the	default
implementation	reproduces	this	behavior.

http_error_301(req,	fp,	code,	msg,	hdrs)
Redirect	to	the	Location:	URL.	This	method	is	called	by	the	parent
OpenerDirector	when	getting	an	HTTP	`moved	permanently'
response.

http_error_302(req,	fp,	code,	msg,	hdrs)
The	same	as	http_error_301(),	but	called	for	the	`found'	response.

http_error_303(req,	fp,	code,	msg,	hdrs)
The	same	as	http_error_301(),	but	called	for	the	`see	other'	response.

http_error_307(req,	fp,	code,	msg,	hdrs)

http://www.faqs.org/rfcs/rfc2616.html
http://www.faqs.org/rfcs/rfc2616.html

The	same	as	http_error_301(),	but	called	for	the	`temporary	redirect'
response.

Python	Library	Reference
Previous:	11.5.3	BaseHandler	Objects	Up:	11.5	urllib2	Next:	11.5.5
HTTPCookieProcessor	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.4	HTTPRedirectHandler	Objects	Up:	11.5	urllib2	Next:	11.5.6
ProxyHandler	Objects

11.5.5	HTTPCookieProcessor	Objects
HTTPCookieProcessor	instances	have	one	attribute:

cookiejar

The	cookielib.CookieJar	in	which	cookies	are	stored.

Python	Library	Reference
Previous:	11.5.4	HTTPRedirectHandler	Objects	Up:	11.5	urllib2	Next:	11.5.6
ProxyHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.5	HTTPCookieProcessor	Objects	Up:	11.5	urllib2	Next:	11.5.7
HTTPPasswordMgr	Objects

11.5.6	ProxyHandler	Objects

protocol_open(request)
The	ProxyHandler	will	have	a	method	protocol_open()	for	every
protocol	which	has	a	proxy	in	the	proxies	dictionary	given	in	the
constructor.	The	method	will	modify	requests	to	go	through	the	proxy,	by
calling	request.set_proxy(),	and	call	the	next	handler	in	the	chain
to	actually	execute	the	protocol.

Python	Library	Reference
Previous:	11.5.5	HTTPCookieProcessor	Objects	Up:	11.5	urllib2	Next:	11.5.7
HTTPPasswordMgr	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.6	ProxyHandler	Objects	Up:	11.5	urllib2	Next:	11.5.8
AbstractBasicAuthHandler	Objects

11.5.7	HTTPPasswordMgr	Objects
These	methods	are	available	on	HTTPPasswordMgr	and
HTTPPasswordMgrWithDefaultRealm	objects.

add_password(realm,	uri,	user,	passwd)
uri	can	be	either	a	single	URI,	or	a	sequence	of	URIs.	realm,	user	and
passwd	must	be	strings.	This	causes	(user,	passwd)	to	be	used	as
authentication	tokens	when	authentication	for	realm	and	a	super-URI	of	any
of	the	given	URIs	is	given.

find_user_password(realm,	authuri)
Get	user/password	for	given	realm	and	URI,	if	any.	This	method	will	return
(None,	None)	if	there	is	no	matching	user/password.

For	HTTPPasswordMgrWithDefaultRealm	objects,	the	realm	None
will	be	searched	if	the	given	realm	has	no	matching	user/password.

Python	Library	Reference
Previous:	11.5.6	ProxyHandler	Objects	Up:	11.5	urllib2	Next:	11.5.8
AbstractBasicAuthHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.7	HTTPPasswordMgr	Objects	Up:	11.5	urllib2	Next:	11.5.9
HTTPBasicAuthHandler	Objects

11.5.8	AbstractBasicAuthHandler	Objects

handle_authentication_request(authreq,	host,	req,	headers)
Handle	an	authentication	request	by	getting	a	user/password	pair,	and	re-
trying	the	request.	authreq	should	be	the	name	of	the	header	where	the
information	about	the	realm	is	included	in	the	request,	host	is	the	host	to
authenticate	to,	req	should	be	the	(failed)	Request	object,	and	headers
should	be	the	error	headers.

Python	Library	Reference
Previous:	11.5.7	HTTPPasswordMgr	Objects	Up:	11.5	urllib2	Next:	11.5.9
HTTPBasicAuthHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.8	AbstractBasicAuthHandler	Objects	Up:	11.5	urllib2	Next:
11.5.10	ProxyBasicAuthHandler	Objects

11.5.9	HTTPBasicAuthHandler	Objects

http_error_401(req,	fp,	code,	msg,	hdrs)
Retry	the	request	with	authentication	information,	if	available.

Python	Library	Reference
Previous:	11.5.8	AbstractBasicAuthHandler	Objects	Up:	11.5	urllib2	Next:
11.5.10	ProxyBasicAuthHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.9	HTTPBasicAuthHandler	Objects	Up:	11.5	urllib2	Next:
11.5.11	AbstractDigestAuthHandler	Objects

11.5.10	ProxyBasicAuthHandler	Objects

http_error_407(req,	fp,	code,	msg,	hdrs)
Retry	the	request	with	authentication	information,	if	available.

Python	Library	Reference
Previous:	11.5.9	HTTPBasicAuthHandler	Objects	Up:	11.5	urllib2	Next:
11.5.11	AbstractDigestAuthHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.10	ProxyBasicAuthHandler	Objects	Up:	11.5	urllib2	Next:
11.5.12	HTTPDigestAuthHandler	Objects

11.5.11	AbstractDigestAuthHandler	Objects

handle_authentication_request(authreq,	host,	req,	headers)
authreq	should	be	the	name	of	the	header	where	the	information	about	the
realm	is	included	in	the	request,	host	should	be	the	host	to	authenticate	to,
req	should	be	the	(failed)	Request	object,	and	headers	should	be	the	error
headers.

Python	Library	Reference
Previous:	11.5.10	ProxyBasicAuthHandler	Objects	Up:	11.5	urllib2	Next:
11.5.12	HTTPDigestAuthHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.11	AbstractDigestAuthHandler	Objects	Up:	11.5	urllib2	Next:
11.5.13	ProxyDigestAuthHandler	Objects

11.5.12	HTTPDigestAuthHandler	Objects

http_error_401(req,	fp,	code,	msg,	hdrs)
Retry	the	request	with	authentication	information,	if	available.

Python	Library	Reference
Previous:	11.5.11	AbstractDigestAuthHandler	Objects	Up:	11.5	urllib2	Next:
11.5.13	ProxyDigestAuthHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.12	HTTPDigestAuthHandler	Objects	Up:	11.5	urllib2	Next:
11.5.14	HTTPHandler	Objects

11.5.13	ProxyDigestAuthHandler	Objects

http_error_407(req,	fp,	code,	msg,	hdrs)
Retry	the	request	with	authentication	information,	if	available.

Python	Library	Reference
Previous:	11.5.12	HTTPDigestAuthHandler	Objects	Up:	11.5	urllib2	Next:
11.5.14	HTTPHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.13	ProxyDigestAuthHandler	Objects	Up:	11.5	urllib2	Next:
11.5.15	HTTPSHandler	Objects

11.5.14	HTTPHandler	Objects

http_open(req)
Send	an	HTTP	request,	which	can	be	either	GET	or	POST,	depending	on
req.has_data().

Python	Library	Reference
Previous:	11.5.13	ProxyDigestAuthHandler	Objects	Up:	11.5	urllib2	Next:
11.5.15	HTTPSHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.14	HTTPHandler	Objects	Up:	11.5	urllib2	Next:	11.5.16
FileHandler	Objects

11.5.15	HTTPSHandler	Objects

https_open(req)
Send	an	HTTPS	request,	which	can	be	either	GET	or	POST,	depending	on
req.has_data().

Python	Library	Reference
Previous:	11.5.14	HTTPHandler	Objects	Up:	11.5	urllib2	Next:	11.5.16
FileHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.15	HTTPSHandler	Objects	Up:	11.5	urllib2	Next:	11.5.17
FTPHandler	Objects

11.5.16	FileHandler	Objects

file_open(req)
Open	the	file	locally,	if	there	is	no	host	name,	or	the	host	name	is
'localhost'.	Change	the	protocol	to	ftp	otherwise,	and	retry	opening
it	using	parent.

Python	Library	Reference
Previous:	11.5.15	HTTPSHandler	Objects	Up:	11.5	urllib2	Next:	11.5.17
FTPHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.16	FileHandler	Objects	Up:	11.5	urllib2	Next:	11.5.18
CacheFTPHandler	Objects

11.5.17	FTPHandler	Objects

ftp_open(req)
Open	the	FTP	file	indicated	by	req.	The	login	is	always	done	with	empty
username	and	password.

Python	Library	Reference
Previous:	11.5.16	FileHandler	Objects	Up:	11.5	urllib2	Next:	11.5.18
CacheFTPHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.17	FTPHandler	Objects	Up:	11.5	urllib2	Next:	11.5.19
GopherHandler	Objects

11.5.18	CacheFTPHandler	Objects
CacheFTPHandler	objects	are	FTPHandler	objects	with	the	following
additional	methods:

setTimeout(t)
Set	timeout	of	connections	to	t	seconds.

setMaxConns(m)
Set	maximum	number	of	cached	connections	to	m.

Python	Library	Reference
Previous:	11.5.17	FTPHandler	Objects	Up:	11.5	urllib2	Next:	11.5.19
GopherHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.18	CacheFTPHandler	Objects	Up:	11.5	urllib2	Next:	11.5.20
UnknownHandler	Objects

11.5.19	GopherHandler	Objects

gopher_open(req)
Open	the	gopher	resource	indicated	by	req.

Python	Library	Reference
Previous:	11.5.18	CacheFTPHandler	Objects	Up:	11.5	urllib2	Next:	11.5.20
UnknownHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.19	GopherHandler	Objects	Up:	11.5	urllib2	Next:	11.5.21
HTTPErrorProcessor	Objects

11.5.20	UnknownHandler	Objects

unknown_open()
Raise	a	URLError	exception.

Python	Library	Reference
Previous:	11.5.19	GopherHandler	Objects	Up:	11.5	urllib2	Next:	11.5.21
HTTPErrorProcessor	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.20	UnknownHandler	Objects	Up:	11.5	urllib2	Next:	11.5.22
Examples

11.5.21	HTTPErrorProcessor	Objects
New	in	version	2.4.

unknown_open()
Process	HTTP	error	responses.

For	200	error	codes,	the	response	object	is	returned	immediately.

For	non-200	error	codes,	this	simply	passes	the	job	on	to	the
protocol_error_code()	handler	methods,	via
OpenerDirector.error().	Eventually,
urllib2.HTTPDefaultErrorHandler	will	raise	an	HTTPError	if
no	other	handler	handles	the	error.

Python	Library	Reference
Previous:	11.5.20	UnknownHandler	Objects	Up:	11.5	urllib2	Next:	11.5.22
Examples

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.21	HTTPErrorProcessor	Objects	Up:	11.5	urllib2	Next:	11.6
httplib

11.5.22	Examples
This	example	gets	the	python.org	main	page	and	displays	the	first	100	bytes	of
it:

>>>	import	urllib2

>>>	f	=	urllib2.urlopen('http://www.python.org/')

>>>	print	f.read(100)

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	HTML	4.01	Transitional//EN">

<?xml-stylesheet	href="./css/ht2html

Here	we	are	sending	a	data-stream	to	the	stdin	of	a	CGI	and	reading	the	data	it
returns	to	us:

>>>	import	urllib2

>>>	req	=	urllib2.Request(url='https://localhost/cgi-bin/test.cgi',

...																							data='This	data	is	passed	to	stdin	of	the	CGI')

>>>	f	=	urllib2.urlopen(req)

>>>	print	f.read()

Got	Data:	"This	data	is	passed	to	stdin	of	the	CGI"

The	code	for	the	sample	CGI	used	in	the	above	example	is:

#!/usr/bin/env	python

import	sys

data	=	sys.stdin.read()

print	'Content-type:	text-plain\n\nGot	Data:	"%s"'	%	data

Use	of	Basic	HTTP	Authentication:

import	urllib2

#	Create	an	OpenerDirector	with	support	for	Basic	HTTP	Authentication...

auth_handler	=	urllib2.HTTPBasicAuthHandler()

auth_handler.add_password('realm',	'host',	'username',	'password')

opener	=	urllib2.build_opener(auth_handler)

#	...and	install	it	globally	so	it	can	be	used	with	urlopen.

urllib2.install_opener(opener)

urllib2.urlopen('http://www.example.com/login.html')

build_opener()	provides	many	handlers	by	default,	including	a
ProxyHandler.	By	default,	ProxyHandler	uses	the	environment	variables
named	<scheme>_proxy,	where	<scheme>	is	the	URL	scheme	involved.
For	example,	the	http_proxy	environment	variable	is	read	to	obtain	the	HTTP
proxy's	URL.

This	example	replaces	the	default	ProxyHandler	with	one	that	uses
programatically-supplied	proxy	URLs,	and	adds	proxy	authorization	support
with	ProxyBasicAuthHandler.

proxy_handler	=	urllib2.ProxyHandler({'http':	'http://www.example.com:3128/'})

proxy_auth_handler	=	urllib2.HTTPBasicAuthHandler()

proxy_auth_handler.add_password('realm',	'host',	'username',	'password')

opener	=	build_opener(proxy_handler,	proxy_auth_handler)

#	This	time,	rather	than	install	the	OpenerDirector,	we	use	it	directly:

opener.open('http://www.example.com/login.html')

Adding	HTTP	headers:

Use	the	headers	argument	to	the	Request	constructor,	or:

import	urllib2

req	=	urllib2.Request('http://www.example.com/')

req.add_header('Referer',	'http://www.python.org/')

r	=	urllib2.urlopen(req)

OpenerDirector	automatically	adds	a	User-Agent:	header	to	every
Request.	To	change	this:

import	urllib2

opener	=	urllib2.build_opener()

opener.addheaders	=	[('User-agent',	'Mozilla/5.0')]

opener.open('http://www.example.com/')

Also,	remember	that	a	few	standard	headers	(Content-Length:,	Content-Type:
and	Host:)	are	added	when	the	Request	is	passed	to	urlopen()	(or
OpenerDirector.open()).

Python	Library	Reference
Previous:	11.5.21	HTTPErrorProcessor	Objects	Up:	11.5	urllib2	Next:	11.6
httplib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.5.22	Examples	Up:	11.	Internet	Protocols	and	Next:	11.6.1
HTTPConnection	Objects

11.6	httplib	--	HTTP	protocol	client
This	module	defines	classes	which	implement	the	client	side	of	the	HTTP	and
HTTPS	protocols.	It	is	normally	not	used	directly	--	the	module	urllib	uses	it
to	handle	URLs	that	use	HTTP	and	HTTPS.

Note: 	HTTPS	support	is	only	available	if	the	socket	module
was	compiled	with	SSL	support.

Note: 	The	public	interface	for	this	module	changed
substantially	in	Python	2.0.	The	HTTP	class	is	retained	only	for
backward	compatibility	with	1.5.2.	It	should	not	be	used	in	new
code.	Refer	to	the	online	docstrings	for	usage.

The	module	provides	the	following	classes:

class	HTTPConnection(host[,	port])
An	HTTPConnection	instance	represents	one	transaction	with	an	HTTP
server.	It	should	be	instantiated	passing	it	a	host	and	optional	port	number.
If	no	port	number	is	passed,	the	port	is	extracted	from	the	host	string	if	it
has	the	form	host:port,	else	the	default	HTTP	port	(80)	is	used.	For
example,	the	following	calls	all	create	instances	that	connect	to	the	server	at
the	same	host	and	port:

>>>	h1	=	httplib.HTTPConnection('www.cwi.nl')

>>>	h2	=	httplib.HTTPConnection('www.cwi.nl:80')

>>>	h3	=	httplib.HTTPConnection('www.cwi.nl',	80)

New	in	version	2.0.

class	HTTPSConnection(host[,	port,	key_file,	cert_file])
A	subclass	of	HTTPConnection	that	uses	SSL	for	communication	with
secure	servers.	Default	port	is	443.	key_file	is	the	name	of	a	PEM
formatted	file	that	contains	your	private	key.	cert_file	is	a	PEM	formatted

certificate	chain	file.

Warning:	This	does	not	do	any	certificate	verification!

New	in	version	2.0.

class	HTTPResponse(sock[,	debuglevel=0][,	strict=0])
Class	whose	instances	are	returned	upon	successful	connection.	Not
instantiated	directly	by	user.	New	in	version	2.0.

The	following	exceptions	are	raised	as	appropriate:

exception	HTTPException
The	base	class	of	the	other	exceptions	in	this	module.	It	is	a	subclass	of
Exception.	New	in	version	2.0.

exception	NotConnected
A	subclass	of	HTTPException.	New	in	version	2.0.

exception	InvalidURL
A	subclass	of	HTTPException,	raised	if	a	port	is	given	and	is	either	non-
numeric	or	empty.	New	in	version	2.3.

exception	UnknownProtocol
A	subclass	of	HTTPException.	New	in	version	2.0.

exception	UnknownTransferEncoding
A	subclass	of	HTTPException.	New	in	version	2.0.

exception	UnimplementedFileMode
A	subclass	of	HTTPException.	New	in	version	2.0.

exception	IncompleteRead
A	subclass	of	HTTPException.	New	in	version	2.0.

exception	ImproperConnectionState
A	subclass	of	HTTPException.	New	in	version	2.0.

exception	CannotSendRequest

A	subclass	of	ImproperConnectionState.	New	in	version	2.0.

exception	CannotSendHeader
A	subclass	of	ImproperConnectionState.	New	in	version	2.0.

exception	ResponseNotReady
A	subclass	of	ImproperConnectionState.	New	in	version	2.0.

exception	BadStatusLine
A	subclass	of	HTTPException.	Raised	if	a	server	responds	with	a	HTTP
status	code	that	we	don't	understand.	New	in	version	2.0.

The	constants	defined	in	this	module	are:

HTTP_PORT

The	default	port	for	the	HTTP	protocol	(always	80).

HTTPS_PORT

The	default	port	for	the	HTTPS	protocol	(always	443).

and	also	the	following	constants	for	integer	status	codes:

Constant Value Definition
CONTINUE 100 HTTP/1.1,	RFC

2616,	Section	10.1.1
SWITCHING_PROTOCOLS 101 HTTP/1.1,	RFC

2616,	Section	10.1.2
PROCESSING 102 WEBDAV,	RFC

2518,	Section	10.1
OK 200 HTTP/1.1,	RFC

2616,	Section	10.2.1
CREATED 201 HTTP/1.1,	RFC

2616,	Section	10.2.2
ACCEPTED 202 HTTP/1.1,	RFC

2616,	Section	10.2.3

NON_AUTHORITATIVE_INFORMATION 203 HTTP/1.1,	RFC
2616,	Section	10.2.4

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.1.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.1.2
http://www.webdav.org/specs/rfc2518.htm#STATUS_102
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.4

NO_CONTENT 204 HTTP/1.1,	RFC
2616,	Section	10.2.5

RESET_CONTENT 205 HTTP/1.1,	RFC
2616,	Section	10.2.6

PARTIAL_CONTENT 206 HTTP/1.1,	RFC
2616,	Section	10.2.7

MULTI_STATUS 207 WEBDAV	RFC
2518,	Section	10.2

IM_USED 226 Delta	encoding	in
HTTP,	RFC	3229,
Section	10.4.1

MULTIPLE_CHOICES 300 HTTP/1.1,	RFC
2616,	Section	10.3.1

MOVED_PERMANENTLY 301 HTTP/1.1,	RFC
2616,	Section	10.3.2

FOUND 302 HTTP/1.1,	RFC
2616,	Section	10.3.3

SEE_OTHER 303 HTTP/1.1,	RFC
2616,	Section	10.3.4

NOT_MODIFIED 304 HTTP/1.1,	RFC
2616,	Section	10.3.5

USE_PROXY 305 HTTP/1.1,	RFC
2616,	Section	10.3.6

TEMPORARY_REDIRECT 307 HTTP/1.1,	RFC
2616,	Section	10.3.8

BAD_REQUEST 400 HTTP/1.1,	RFC
2616,	Section	10.4.1

UNAUTHORIZED 401 HTTP/1.1,	RFC
2616,	Section	10.4.2

PAYMENT_REQUIRED 402 HTTP/1.1,	RFC
2616,	Section	10.4.3

FORBIDDEN 403 HTTP/1.1,	RFC
2616,	Section	10.4.4

NOT_FOUND 404 HTTP/1.1,	RFC
2616,	Section	10.4.5

METHOD_NOT_ALLOWED 405 HTTP/1.1,	RFC

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.7
http://www.webdav.org/specs/rfc2518.htm#STATUS_207
http://www.faqs.org/rfcs/rfc3229.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.8
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6

2616,	Section	10.4.6
NOT_ACCEPTABLE 406 HTTP/1.1,	RFC

2616,	Section	10.4.7
PROXY_AUTHENTICATION_REQUIRED 407 HTTP/1.1,	RFC

2616,	Section	10.4.8
REQUEST_TIMEOUT 408 HTTP/1.1,	RFC

2616,	Section	10.4.9
CONFLICT 409 HTTP/1.1,	RFC

2616,	Section	10.4.10
GONE 410 HTTP/1.1,	RFC

2616,	Section	10.4.11
LENGTH_REQUIRED 411 HTTP/1.1,	RFC

2616,	Section	10.4.12
PRECONDITION_FAILED 412 HTTP/1.1,	RFC

2616,	Section	10.4.13
REQUEST_ENTITY_TOO_LARGE 413 HTTP/1.1,	RFC

2616,	Section	10.4.14
REQUEST_URI_TOO_LONG 414 HTTP/1.1,	RFC

2616,	Section	10.4.15
UNSUPPORTED_MEDIA_TYPE 415 HTTP/1.1,	RFC

2616,	Section	10.4.16
REQUESTED_RANGE_NOT_SATISFIABLE 416 HTTP/1.1,	RFC

2616,	Section	10.4.17
EXPECTATION_FAILED 417 HTTP/1.1,	RFC

2616,	Section	10.4.18
UNPROCESSABLE_ENTITY 422 WEBDAV,	RFC

2518,	Section	10.3
LOCKED 423 WEBDAV	RFC

2518,	Section	10.4
FAILED_DEPENDENCY 424 WEBDAV,	RFC

2518,	Section	10.5
UPGRADE_REQUIRED 426 HTTP	Upgrade	to

TLS,	RFC	2817,
Section	6

INTERNAL_SERVER_ERROR 500 HTTP/1.1,	RFC
2616,	Section	10.5.1

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.8
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.9
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.11
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.12
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.13
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.15
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.17
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.18
http://www.webdav.org/specs/rfc2518.htm#STATUS_422
http://www.webdav.org/specs/rfc2518.htm#STATUS_423
http://www.webdav.org/specs/rfc2518.htm#STATUS_424
http://www.faqs.org/rfcs/rfc2817.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

NOT_IMPLEMENTED 501 HTTP/1.1,	RFC
2616,	Section	10.5.2

BAD_GATEWAY 502 HTTP/1.1	RFC	2616,
Section	10.5.3

SERVICE_UNAVAILABLE 503 HTTP/1.1,	RFC
2616,	Section	10.5.4

GATEWAY_TIMEOUT 504 HTTP/1.1	RFC	2616,
Section	10.5.5

HTTP_VERSION_NOT_SUPPORTED 505 HTTP/1.1,	RFC
2616,	Section	10.5.6

INSUFFICIENT_STORAGE 507 WEBDAV,	RFC
2518,	Section	10.6

NOT_EXTENDED 510 An	HTTP	Extension
Framework,	RFC
2774,	Section	7

Subsections

11.6.1	HTTPConnection	Objects
11.6.2	HTTPResponse	Objects
11.6.3	Examples

Python	Library	Reference
Previous:	11.5.22	Examples	Up:	11.	Internet	Protocols	and	Next:	11.6.1
HTTPConnection	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.6
http://www.webdav.org/specs/rfc2518.htm#STATUS_507
http://www.faqs.org/rfcs/rfc2774.html

Previous:	11.6	httplib	Up:	11.6	httplib	Next:	11.6.2	HTTPResponse	Objects

11.6.1	HTTPConnection	Objects
HTTPConnection	instances	have	the	following	methods:

request(method,	url[,	body[,	headers]])
This	will	send	a	request	to	the	server	using	the	HTTP	request	method
method	and	the	selector	url.	If	the	body	argument	is	present,	it	should	be	a
string	of	data	to	send	after	the	headers	are	finished.	The	header	Content-
Length	is	automatically	set	to	the	correct	value.	The	headers	argument
should	be	a	mapping	of	extra	HTTP	headers	to	send	with	the	request.

getresponse()
Should	be	called	after	a	request	is	sent	to	get	the	response	from	the	server.
Returns	an	HTTPResponse	instance.

set_debuglevel(level)
Set	the	debugging	level	(the	amount	of	debugging	output	printed).	The
default	debug	level	is	0,	meaning	no	debugging	output	is	printed.

connect()
Connect	to	the	server	specified	when	the	object	was	created.

close()
Close	the	connection	to	the	server.

send(data)
Send	data	to	the	server.	This	should	be	used	directly	only	after	the
endheaders()	method	has	been	called	and	before	getreply()	has
been	called.

putrequest(request,	selector[,	skip_host[,	skip_accept_encoding]])
This	should	be	the	first	call	after	the	connection	to	the	server	has	been
made.	It	sends	a	line	to	the	server	consisting	of	the	request	string,	the
selector	string,	and	the	HTTP	version	(HTTP/1.1).	To	disable	automatic
sending	of	Host:	or	Accept-Encoding:	headers	(for	example	to

accept	additional	content	encodings),	specify	skip_host	or
skip_accept_encoding	with	non-False	values.	Changed	in	version	2.4:
skip_accept_encoding	argument	added.

putheader(header,	argument[,	...])
Send	an	RFC	822-style	header	to	the	server.	It	sends	a	line	to	the	server
consisting	of	the	header,	a	colon	and	a	space,	and	the	first	argument.	If
more	arguments	are	given,	continuation	lines	are	sent,	each	consisting	of	a
tab	and	an	argument.

endheaders()
Send	a	blank	line	to	the	server,	signalling	the	end	of	the	headers.

Python	Library	Reference
Previous:	11.6	httplib	Up:	11.6	httplib	Next:	11.6.2	HTTPResponse	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.faqs.org/rfcs/rfc822.html

Previous:	11.6.1	HTTPConnection	Objects	Up:	11.6	httplib	Next:	11.6.3
Examples

11.6.2	HTTPResponse	Objects
HTTPResponse	instances	have	the	following	methods	and	attributes:

read([amt])
Reads	and	returns	the	response	body,	or	up	to	the	next	amt	bytes.

getheader(name[,	default])
Get	the	contents	of	the	header	name,	or	default	if	there	is	no	matching
header.

getheaders()
Return	a	list	of	(header,	value)	tuples.	New	in	version	2.4.

msg

A	mimetools.Message	instance	containing	the	response	headers.

version

HTTP	protocol	version	used	by	server.	10	for	HTTP/1.0,	11	for	HTTP/1.1.

status

Status	code	returned	by	server.

reason

Reason	phrase	returned	by	server.

Python	Library	Reference
Previous:	11.6.1	HTTPConnection	Objects	Up:	11.6	httplib	Next:	11.6.3
Examples

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.6.2	HTTPResponse	Objects	Up:	11.6	httplib	Next:	11.7	ftplib

11.6.3	Examples
Here	is	an	example	session	that	uses	the	"GET"	method:

>>>	import	httplib

>>>	conn	=	httplib.HTTPConnection("www.python.org")

>>>	conn.request("GET",	"/index.html")

>>>	r1	=	conn.getresponse()

>>>	print	r1.status,	r1.reason

200	OK

>>>	data1	=	r1.read()

>>>	conn.request("GET",	"/parrot.spam")

>>>	r2	=	conn.getresponse()

>>>	print	r2.status,	r2.reason

404	Not	Found

>>>	data2	=	r2.read()

>>>	conn.close()

Here	is	an	example	session	that	shows	how	to	"POST"	requests:

>>>	import	httplib,	urllib

>>>	params	=	urllib.urlencode({'spam':	1,	'eggs':	2,	'bacon':	0})

>>>	headers	=	{"Content-type":	"application/x-www-form-urlencoded",

...												"Accept":	"text/plain"}

>>>	conn	=	httplib.HTTPConnection("musi-cal.mojam.com:80")

>>>	conn.request("POST",	"/cgi-bin/query",	params,	headers)

>>>	response	=	conn.getresponse()

>>>	print	response.status,	response.reason

200	OK

>>>	data	=	response.read()

>>>	conn.close()

Python	Library	Reference
Previous:	11.6.2	HTTPResponse	Objects	Up:	11.6	httplib	Next:	11.7	ftplib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.6.3	Examples	Up:	11.	Internet	Protocols	and	Next:	11.7.1	FTP
Objects

11.7	ftplib	--	FTP	protocol	client
This	module	defines	the	class	FTP	and	a	few	related	items.	The	FTP	class
implements	the	client	side	of	the	FTP	protocol.	You	can	use	this	to	write	Python
programs	that	perform	a	variety	of	automated	FTP	jobs,	such	as	mirroring	other
ftp	servers.	It	is	also	used	by	the	module	urllib	to	handle	URLs	that	use	FTP.
For	more	information	on	FTP	(File	Transfer	Protocol),	see	Internet	RFC	959.

Here's	a	sample	session	using	the	ftplib	module:

>>>	from	ftplib	import	FTP

>>>	ftp	=	FTP('ftp.cwi.nl')			#	connect	to	host,	default	port

>>>	ftp.login()															#	user	anonymous,	passwd	anonymous@

>>>	ftp.retrlines('LIST')					#	list	directory	contents

total	24418

drwxrwsr-x			5	ftp-usr		pdmaint					1536	Mar	20	09:48	.

dr-xr-srwt	105	ftp-usr		pdmaint					1536	Mar	21	14:32	..

-rw-r--r--			1	ftp-usr		pdmaint					5305	Mar	20	09:48	INDEX

	.

	.

	.

>>>	ftp.retrbinary('RETR	README',	open('README',	'wb').write)

'226	Transfer	complete.'

>>>	ftp.quit()

The	module	defines	the	following	items:

class	FTP([host[,	user[,	passwd[,	acct]]]])
Return	a	new	instance	of	the	FTP	class.	When	host	is	given,	the	method
call	connect(host)	is	made.	When	user	is	given,	additionally	the	method
call	login(user,	passwd,	acct)	is	made	(where	passwd	and	acct
default	to	the	empty	string	when	not	given).

all_errors

The	set	of	all	exceptions	(as	a	tuple)	that	methods	of	FTP	instances	may
raise	as	a	result	of	problems	with	the	FTP	connection	(as	opposed	to
programming	errors	made	by	the	caller).	This	set	includes	the	four
exceptions	listed	below	as	well	as	socket.error	and	IOError.

exception	error_reply

http://www.faqs.org/rfcs/rfc959.html

Exception	raised	when	an	unexpected	reply	is	received	from	the	server.

exception	error_temp
Exception	raised	when	an	error	code	in	the	range	400-499	is	received.

exception	error_perm
Exception	raised	when	an	error	code	in	the	range	500-599	is	received.

exception	error_proto
Exception	raised	when	a	reply	is	received	from	the	server	that	does	not
begin	with	a	digit	in	the	range	1-5.

See	Also:

Module	netrc:
Parser	for	the	.netrc	file	format.	The	file	.netrc	is	typically	used	by
FTP	clients	to	load	user	authentication	information	before	prompting
the	user.

The	file	Tools/scripts/ftpmirror.py	in	the	Python	source	distribution	is	a
script	that	can	mirror	FTP	sites,	or	portions	thereof,	using	the	ftplib
module.	It	can	be	used	as	an	extended	example	that	applies	this	module.

Subsections

11.7.1	FTP	Objects

Python	Library	Reference
Previous:	11.6.3	Examples	Up:	11.	Internet	Protocols	and	Next:	11.7.1	FTP
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.7	ftplib	Up:	11.7	ftplib	Next:	11.8	gopherlib

11.7.1	FTP	Objects
Several	methods	are	available	in	two	flavors:	one	for	handling	text	files	and
another	for	binary	files.	These	are	named	for	the	command	which	is	used
followed	by	"lines"	for	the	text	version	or	"binary"	for	the	binary	version.

FTP	instances	have	the	following	methods:

set_debuglevel(level)
Set	the	instance's	debugging	level.	This	controls	the	amount	of	debugging
output	printed.	The	default,	0,	produces	no	debugging	output.	A	value	of	1
produces	a	moderate	amount	of	debugging	output,	generally	a	single	line
per	request.	A	value	of	2	or	higher	produces	the	maximum	amount	of
debugging	output,	logging	each	line	sent	and	received	on	the	control
connection.

connect(host[,	port])
Connect	to	the	given	host	and	port.	The	default	port	number	is	21,	as
specified	by	the	FTP	protocol	specification.	It	is	rarely	needed	to	specify	a
different	port	number.	This	function	should	be	called	only	once	for	each
instance;	it	should	not	be	called	at	all	if	a	host	was	given	when	the	instance
was	created.	All	other	methods	can	only	be	used	after	a	connection	has	been
made.

getwelcome()
Return	the	welcome	message	sent	by	the	server	in	reply	to	the	initial
connection.	(This	message	sometimes	contains	disclaimers	or	help
information	that	may	be	relevant	to	the	user.)

login([user[,	passwd[,	acct]]])
Log	in	as	the	given	user.	The	passwd	and	acct	parameters	are	optional	and
default	to	the	empty	string.	If	no	user	is	specified,	it	defaults	to
'anonymous'.	If	user	is	'anonymous',	the	default	passwd	is
'anonymous@'.	This	function	should	be	called	only	once	for	each
instance,	after	a	connection	has	been	established;	it	should	not	be	called	at
all	if	a	host	and	user	were	given	when	the	instance	was	created.	Most	FTP

commands	are	only	allowed	after	the	client	has	logged	in.

abort()
Abort	a	file	transfer	that	is	in	progress.	Using	this	does	not	always	work,
but	it's	worth	a	try.

sendcmd(command)
Send	a	simple	command	string	to	the	server	and	return	the	response	string.

voidcmd(command)
Send	a	simple	command	string	to	the	server	and	handle	the	response.
Return	nothing	if	a	response	code	in	the	range	200-299	is	received.	Raise	an
exception	otherwise.

retrbinary(command,	callback[,	maxblocksize[,	rest]])
Retrieve	a	file	in	binary	transfer	mode.	command	should	be	an	appropriate
"RETR"	command:	'RETR	filename'.	The	callback	function	is	called	for
each	block	of	data	received,	with	a	single	string	argument	giving	the	data
block.	The	optional	maxblocksize	argument	specifies	the	maximum	chunk
size	to	read	on	the	low-level	socket	object	created	to	do	the	actual	transfer
(which	will	also	be	the	largest	size	of	the	data	blocks	passed	to	callback).	A
reasonable	default	is	chosen.	rest	means	the	same	thing	as	in	the
transfercmd()	method.

retrlines(command[,	callback])
Retrieve	a	file	or	directory	listing	in	ASCII	transfer	mode.	command	should
be	an	appropriate	"RETR"	command	(see	retrbinary())	or	a	"LIST"
command	(usually	just	the	string	'LIST').	The	callback	function	is	called
for	each	line,	with	the	trailing	CRLF	stripped.	The	default	callback	prints
the	line	to	sys.stdout.

set_pasv(boolean)
Enable	``passive''	mode	if	boolean	is	true,	other	disable	passive	mode.	(In
Python	2.0	and	before,	passive	mode	was	off	by	default;	in	Python	2.1	and
later,	it	is	on	by	default.)

storbinary(command,	file[,	blocksize])

Store	a	file	in	binary	transfer	mode.	command	should	be	an	appropriate
"STOR"	command:	"STOR	filename".	file	is	an	open	file	object	which	is
read	until	EOF	using	its	read()	method	in	blocks	of	size	blocksize	to
provide	the	data	to	be	stored.	The	blocksize	argument	defaults	to	8192.
Changed	in	version	2.1:	default	for	blocksize	added.

storlines(command,	file)
Store	a	file	in	ASCII	transfer	mode.	command	should	be	an	appropriate
"STOR"	command	(see	storbinary()).	Lines	are	read	until	EOF	from
the	open	file	object	file	using	its	readline()	method	to	provide	the	data
to	be	stored.

transfercmd(cmd[,	rest])
Initiate	a	transfer	over	the	data	connection.	If	the	transfer	is	active,	send	a
"EPRT"	or	"PORT"	command	and	the	transfer	command	specified	by	cmd,
and	accept	the	connection.	If	the	server	is	passive,	send	a	"EPSV"	or
"PASV"	command,	connect	to	it,	and	start	the	transfer	command.	Either
way,	return	the	socket	for	the	connection.

If	optional	rest	is	given,	a	"REST"	command	is	sent	to	the	server,	passing
rest	as	an	argument.	rest	is	usually	a	byte	offset	into	the	requested	file,
telling	the	server	to	restart	sending	the	file's	bytes	at	the	requested	offset,
skipping	over	the	initial	bytes.	Note	however	that	RFC	959	requires	only
that	rest	be	a	string	containing	characters	in	the	printable	range	from	ASCII
code	33	to	ASCII	code	126.	The	transfercmd()	method,	therefore,
converts	rest	to	a	string,	but	no	check	is	performed	on	the	string's	contents.
If	the	server	does	not	recognize	the	"REST"	command,	an	error_reply
exception	will	be	raised.	If	this	happens,	simply	call	transfercmd()
without	a	rest	argument.

ntransfercmd(cmd[,	rest])
Like	transfercmd(),	but	returns	a	tuple	of	the	data	connection	and	the
expected	size	of	the	data.	If	the	expected	size	could	not	be	computed,	None
will	be	returned	as	the	expected	size.	cmd	and	rest	means	the	same	thing	as
in	transfercmd().

nlst(argument[,	...])

Return	a	list	of	files	as	returned	by	the	"NLST"	command.	The	optional
argument	is	a	directory	to	list	(default	is	the	current	server	directory).
Multiple	arguments	can	be	used	to	pass	non-standard	options	to	the	"NLST"
command.

dir(argument[,	...])
Produce	a	directory	listing	as	returned	by	the	"LIST"	command,	printing	it
to	standard	output.	The	optional	argument	is	a	directory	to	list	(default	is
the	current	server	directory).	Multiple	arguments	can	be	used	to	pass	non-
standard	options	to	the	"LIST"command.	If	the	last	argument	is	a	function,
it	is	used	as	a	callback	function	as	for	retrlines();	the	default	prints	to
sys.stdout.	This	method	returns	None.

rename(fromname,	toname)
Rename	file	fromname	on	the	server	to	toname.

delete(filename)
Remove	the	file	named	filename	from	the	server.	If	successful,	returns	the
text	of	the	response,	otherwise	raises	error_perm	on	permission	errors
or	error_reply	on	other	errors.

cwd(pathname)
Set	the	current	directory	on	the	server.

mkd(pathname)
Create	a	new	directory	on	the	server.

pwd()
Return	the	pathname	of	the	current	directory	on	the	server.

rmd(dirname)
Remove	the	directory	named	dirname	on	the	server.

size(filename)
Request	the	size	of	the	file	named	filename	on	the	server.	On	success,	the
size	of	the	file	is	returned	as	an	integer,	otherwise	None	is	returned.	Note
that	the	"SIZE"	command	is	not	standardized,	but	is	supported	by	many

common	server	implementations.

quit()
Send	a	"QUIT"	command	to	the	server	and	close	the	connection.	This	is	the
``polite''	way	to	close	a	connection,	but	it	may	raise	an	exception	of	the
server	reponds	with	an	error	to	the	"QUIT"	command.	This	implies	a	call	to
the	close()	method	which	renders	the	FTP	instance	useless	for
subsequent	calls	(see	below).

close()
Close	the	connection	unilaterally.	This	should	not	be	applied	to	an	already
closed	connection	such	as	after	a	successful	call	to	quit().	After	this	call
the	FTP	instance	should	not	be	used	any	more	(after	a	call	to	close()	or
quit()	you	cannot	reopen	the	connection	by	issuing	another	login()
method).

Python	Library	Reference
Previous:	11.7	ftplib	Up:	11.7	ftplib	Next:	11.8	gopherlib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.7.1	FTP	Objects	Up:	11.	Internet	Protocols	and	Next:	11.9	poplib

11.8	gopherlib	--	Gopher	protocol
client
This	module	provides	a	minimal	implementation	of	client	side	of	the	Gopher
protocol.	It	is	used	by	the	module	urllib	to	handle	URLs	that	use	the	Gopher
protocol.

The	module	defines	the	following	functions:

send_selector(selector,	host[,	port])
Send	a	selector	string	to	the	gopher	server	at	host	and	port	(default	70).
Returns	an	open	file	object	from	which	the	returned	document	can	be	read.

send_query(selector,	query,	host[,	port])
Send	a	selector	string	and	a	query	string	to	a	gopher	server	at	host	and	port
(default	70).	Returns	an	open	file	object	from	which	the	returned	document
can	be	read.

Note	that	the	data	returned	by	the	Gopher	server	can	be	of	any	type,	depending
on	the	first	character	of	the	selector	string.	If	the	data	is	text	(first	character	of
the	selector	is	"0"),	lines	are	terminated	by	CRLF,	and	the	data	is	terminated	by
a	line	consisting	of	a	single	".",	and	a	leading	"."	should	be	stripped	from	lines
that	begin	with	"..".	Directory	listings	(first	character	of	the	selector	is	"1")	are
transferred	using	the	same	protocol.

Python	Library	Reference
Previous:	11.7.1	FTP	Objects	Up:	11.	Internet	Protocols	and	Next:	11.9	poplib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.8	gopherlib	Up:	11.	Internet	Protocols	and	Next:	11.9.1	POP3
Objects

11.9	poplib	--	POP3	protocol	client
This	module	defines	a	class,	POP3,	which	encapsulates	a	connection	to	a	POP3
server	and	implements	the	protocol	as	defined	in	RFC	1725.	The	POP3	class
supports	both	the	minimal	and	optional	command	sets.	Additionally,	this	module
provides	a	class	POP3_SSL,	which	provides	support	for	connecting	to	POP3
servers	that	use	SSL	as	an	underlying	protocol	layer.

Note	that	POP3,	though	widely	supported,	is	obsolescent.	The	implementation
quality	of	POP3	servers	varies	widely,	and	too	many	are	quite	poor.	If	your
mailserver	supports	IMAP,	you	would	be	better	off	using	the	imaplib.IMAP4
class,	as	IMAP	servers	tend	to	be	better	implemented.

A	single	class	is	provided	by	the	poplib	module:

class	POP3(host[,	port])
This	class	implements	the	actual	POP3	protocol.	The	connection	is	created
when	the	instance	is	initialized.	If	port	is	omitted,	the	standard	POP3	port
(110)	is	used.

class	POP3_SSL(host[,	port[,	keyfile[,	certfile]]])
This	is	a	subclass	of	POP3	that	connects	to	the	server	over	an	SSL
encrypted	socket.	If	port	is	not	specified,	995,	the	standard	POP3-over-SSL
port	is	used.	keyfile	and	certfile	are	also	optional	-	they	can	contain	a	PEM
formatted	private	key	and	certificate	chain	file	for	the	SSL	connection.

New	in	version	2.4.

One	exception	is	defined	as	an	attribute	of	the	poplib	module:

exception	error_proto
Exception	raised	on	any	errors.	The	reason	for	the	exception	is	passed	to	the
constructor	as	a	string.

See	Also:

http://www.faqs.org/rfcs/rfc1725.html

Module	imaplib:
The	standard	Python	IMAP	module.

Frequently	Asked	Questions	About	Fetchmail
The	FAQ	for	the	fetchmail	POP/IMAP	client	collects	information	on
POP3	server	variations	and	RFC	noncompliance	that	may	be	useful	if
you	need	to	write	an	application	based	on	the	POP	protocol.

Subsections

11.9.1	POP3	Objects
11.9.2	POP3	Example

Python	Library	Reference
Previous:	11.8	gopherlib	Up:	11.	Internet	Protocols	and	Next:	11.9.1	POP3
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.catb.org/~esr/fetchmail/fetchmail-FAQ.html

Previous:	11.9	poplib	Up:	11.9	poplib	Next:	11.9.2	POP3	Example

11.9.1	POP3	Objects
All	POP3	commands	are	represented	by	methods	of	the	same	name,	in	lower-
case;	most	return	the	response	text	sent	by	the	server.

An	POP3	instance	has	the	following	methods:

set_debuglevel(level)
Set	the	instance's	debugging	level.	This	controls	the	amount	of	debugging
output	printed.	The	default,	0,	produces	no	debugging	output.	A	value	of	1
produces	a	moderate	amount	of	debugging	output,	generally	a	single	line
per	request.	A	value	of	2	or	higher	produces	the	maximum	amount	of
debugging	output,	logging	each	line	sent	and	received	on	the	control
connection.

getwelcome()
Returns	the	greeting	string	sent	by	the	POP3	server.

user(username)
Send	user	command,	response	should	indicate	that	a	password	is	required.

pass_(password)
Send	password,	response	includes	message	count	and	mailbox	size.	Note:
the	mailbox	on	the	server	is	locked	until	quit()	is	called.

apop(user,	secret)
Use	the	more	secure	APOP	authentication	to	log	into	the	POP3	server.

rpop(user)
Use	RPOP	authentication	(similar	to	UNIX	r-commands)	to	log	into	POP3
server.

stat()
Get	mailbox	status.	The	result	is	a	tuple	of	2	integers:	(message	count,
mailbox	size).

list([which])
Request	message	list,	result	is	in	the	form	(response,	['mesg_num
octets',	...]).	If	which	is	set,	it	is	the	message	to	list.

retr(which)
Retrieve	whole	message	number	which,	and	set	its	seen	flag.	Result	is	in
form	(response,	['line',	...],	octets).

dele(which)
Flag	message	number	which	for	deletion.	On	most	servers	deletions	are	not
actually	performed	until	QUIT	(the	major	exception	is	Eudora	QPOP,	which
deliberately	violates	the	RFCs	by	doing	pending	deletes	on	any	disconnect).

rset()
Remove	any	deletion	marks	for	the	mailbox.

noop()
Do	nothing.	Might	be	used	as	a	keep-alive.

quit()
Signoff:	commit	changes,	unlock	mailbox,	drop	connection.

top(which,	howmuch)
Retrieves	the	message	header	plus	howmuch	lines	of	the	message	after	the
header	of	message	number	which.	Result	is	in	form	(response,
['line',	...],	octets).

The	POP3	TOP	command	this	method	uses,	unlike	the	RETR	command,
doesn't	set	the	message's	seen	flag;	unfortunately,	TOP	is	poorly	specified	in
the	RFCs	and	is	frequently	broken	in	off-brand	servers.	Test	this	method	by
hand	against	the	POP3	servers	you	will	use	before	trusting	it.

uidl([which])
Return	message	digest	(unique	id)	list.	If	which	is	specified,	result	contains
the	unique	id	for	that	message	in	the	form	'response	mesgnum	uid,
otherwise	result	is	list	(response,	['mesgnum	uid',	...],
octets).

Instances	of	POP3_SSL	have	no	additional	methods.	The	interface	of	this
subclass	is	identical	to	its	parent.

Python	Library	Reference
Previous:	11.9	poplib	Up:	11.9	poplib	Next:	11.9.2	POP3	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.9.1	POP3	Objects	Up:	11.9	poplib	Next:	11.10	imaplib

11.9.2	POP3	Example
Here	is	a	minimal	example	(without	error	checking)	that	opens	a	mailbox	and
retrieves	and	prints	all	messages:

import	getpass,	poplib

M	=	poplib.POP3('localhost')

M.user(getpass.getuser())

M.pass_(getpass.getpass())

numMessages	=	len(M.list()[1])

for	i	in	range(numMessages):

				for	j	in	M.retr(i+1)[1]:

								print	j

At	the	end	of	the	module,	there	is	a	test	section	that	contains	a	more	extensive
example	of	usage.

Python	Library	Reference
Previous:	11.9.1	POP3	Objects	Up:	11.9	poplib	Next:	11.10	imaplib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.9.2	POP3	Example	Up:	11.	Internet	Protocols	and	Next:	11.10.1
IMAP4	Objects

11.10	imaplib	--	IMAP4	protocol
client
This	module	defines	three	classes,	IMAP4,	IMAP4_SSL	and	IMAP4_stream,
which	encapsulate	a	connection	to	an	IMAP4	server	and	implement	a	large
subset	of	the	IMAP4rev1	client	protocol	as	defined	in	RFC	2060.	It	is	backward
compatible	with	IMAP4	(RFC	1730)	servers,	but	note	that	the	"STATUS"
command	is	not	supported	in	IMAP4.

Three	classes	are	provided	by	the	imaplib	module,	IMAP4	is	the	base	class:

class	IMAP4([host[,	port]])
This	class	implements	the	actual	IMAP4	protocol.	The	connection	is
created	and	protocol	version	(IMAP4	or	IMAP4rev1)	is	determined	when
the	instance	is	initialized.	If	host	is	not	specified,	''	(the	local	host)	is	used.
If	port	is	omitted,	the	standard	IMAP4	port	(143)	is	used.

Three	exceptions	are	defined	as	attributes	of	the	IMAP4	class:

exception	IMAP4.error
Exception	raised	on	any	errors.	The	reason	for	the	exception	is	passed	to	the
constructor	as	a	string.

exception	IMAP4.abort
IMAP4	server	errors	cause	this	exception	to	be	raised.	This	is	a	sub-class	of
IMAP4.error.	Note	that	closing	the	instance	and	instantiating	a	new	one
will	usually	allow	recovery	from	this	exception.

exception	IMAP4.readonly
This	exception	is	raised	when	a	writable	mailbox	has	its	status	changed	by
the	server.	This	is	a	sub-class	of	IMAP4.error.	Some	other	client	now
has	write	permission,	and	the	mailbox	will	need	to	be	re-opened	to	re-
obtain	write	permission.

There's	also	a	subclass	for	secure	connections:

http://www.faqs.org/rfcs/rfc2060.html
http://www.faqs.org/rfcs/rfc1730.html

class	IMAP4_SSL([host[,	port[,	keyfile[,	certfile]]]])
This	is	a	subclass	derived	from	IMAP4	that	connects	over	an	SSL
encrypted	socket	(to	use	this	class	you	need	a	socket	module	that	was
compiled	with	SSL	support).	If	host	is	not	specified,	''	(the	local	host)	is
used.	If	port	is	omitted,	the	standard	IMAP4-over-SSL	port	(993)	is	used.
keyfile	and	certfile	are	also	optional	-	they	can	contain	a	PEM	formatted
private	key	and	certificate	chain	file	for	the	SSL	connection.

The	second	subclass	allows	for	connections	created	by	a	child	process:

class	IMAP4_stream(command)
This	is	a	subclass	derived	from	IMAP4	that	connects	to	the
stdin/stdout	file	descriptors	created	by	passing	command	to
os.popen2().	New	in	version	2.3.

The	following	utility	functions	are	defined:

Internaldate2tuple(datestr)
Converts	an	IMAP4	INTERNALDATE	string	to	Coordinated	Universal
Time.	Returns	a	time	module	tuple.

Int2AP(num)
Converts	an	integer	into	a	string	representation	using	characters	from	the
set	[A	..	P].

ParseFlags(flagstr)
Converts	an	IMAP4	"FLAGS"	response	to	a	tuple	of	individual	flags.

Time2Internaldate(date_time)
Converts	a	time	module	tuple	to	an	IMAP4	"INTERNALDATE"
representation.	Returns	a	string	in	the	form:	"DD-Mmm-YYYY	HH:MM:SS
+HHMM"	(including	double-quotes).

Note	that	IMAP4	message	numbers	change	as	the	mailbox	changes;	in	particular,
after	an	"EXPUNGE"	command	performs	deletions	the	remaining	messages	are
renumbered.	So	it	is	highly	advisable	to	use	UIDs	instead,	with	the	UID
command.

At	the	end	of	the	module,	there	is	a	test	section	that	contains	a	more	extensive
example	of	usage.

See	Also:

Documents	describing	the	protocol,	and	sources	and	binaries	for	servers
implementing	it,	can	all	be	found	at	the	University	of	Washington's	IMAP
Information	Center	(http://www.cac.washington.edu/imap/).

Subsections

11.10.1	IMAP4	Objects
11.10.2	IMAP4	Example

Python	Library	Reference
Previous:	11.9.2	POP3	Example	Up:	11.	Internet	Protocols	and	Next:	11.10.1
IMAP4	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.cac.washington.edu/imap/

Previous:	11.10	imaplib	Up:	11.10	imaplib	Next:	11.10.2	IMAP4	Example

11.10.1	IMAP4	Objects
All	IMAP4rev1	commands	are	represented	by	methods	of	the	same	name,	either
upper-case	or	lower-case.

All	arguments	to	commands	are	converted	to	strings,	except	for
"AUTHENTICATE",	and	the	last	argument	to	"APPEND"	which	is	passed	as	an
IMAP4	literal.	If	necessary	(the	string	contains	IMAP4	protocol-sensitive
characters	and	isn't	enclosed	with	either	parentheses	or	double	quotes)	each
string	is	quoted.	However,	the	password	argument	to	the	"LOGIN"	command	is
always	quoted.	If	you	want	to	avoid	having	an	argument	string	quoted	(eg:	the
flags	argument	to	"STORE")	then	enclose	the	string	in	parentheses	(eg:
r'(\Deleted)').

Each	command	returns	a	tuple:	(type,	[data,	...])	where	type	is	usually
'OK'	or	'NO',	and	data	is	either	the	text	from	the	command	response,	or
mandated	results	from	the	command.	Each	data	is	either	a	string,	or	a	tuple.	If	a
tuple,	then	the	first	part	is	the	header	of	the	response,	and	the	second	part
contains	the	data	(ie:	'literal'	value).

An	IMAP4	instance	has	the	following	methods:

append(mailbox,	flags,	date_time,	message)
Append	message	to	named	mailbox.

authenticate(mechanism,	authobject)
Authenticate	command	--	requires	response	processing.

mechanism	specifies	which	authentication	mechanism	is	to	be	used	-	it
should	appear	in	the	instance	variable	capabilities	in	the	form
AUTH=mechanism.

authobject	must	be	a	callable	object:

data	=	authobject(response)

It	will	be	called	to	process	server	continuation	responses.	It	should	return
data	that	will	be	encoded	and	sent	to	server.	It	should	return	None	if	the

client	abort	response	"*"	should	be	sent	instead.

check()
Checkpoint	mailbox	on	server.

close()
Close	currently	selected	mailbox.	Deleted	messages	are	removed	from
writable	mailbox.	This	is	the	recommended	command	before	"LOGOUT".

copy(message_set,	new_mailbox)
Copy	message_set	messages	onto	end	of	new_mailbox.

create(mailbox)
Create	new	mailbox	named	mailbox.

delete(mailbox)
Delete	old	mailbox	named	mailbox.

deleteacl(mailbox,	who)
Delete	the	ACLs	(remove	any	rights)	set	for	who	on	mailbox.	New	in
version	2.4.

expunge()
Permanently	remove	deleted	items	from	selected	mailbox.	Generates	an
"EXPUNGE"	response	for	each	deleted	message.	Returned	data	contains	a
list	of	"EXPUNGE"	message	numbers	in	order	received.

fetch(message_set,	message_parts)
Fetch	(parts	of)	messages.	message_parts	should	be	a	string	of	message	part
names	enclosed	within	parentheses,	eg:	""(UID	BODY[TEXT])"".
Returned	data	are	tuples	of	message	part	envelope	and	data.

getacl(mailbox)
Get	the	"ACL"s	for	mailbox.	The	method	is	non-standard,	but	is	supported
by	the	"Cyrus"	server.

getquota(root)

Get	the	"quota"	root's	resource	usage	and	limits.	This	method	is	part	of
the	IMAP4	QUOTA	extension	defined	in	rfc2087.	New	in	version	2.3.

getquotaroot(mailbox)
Get	the	list	of	"quota"	"roots"	for	the	named	mailbox.	This	method	is
part	of	the	IMAP4	QUOTA	extension	defined	in	rfc2087.	New	in	version
2.3.

list([directory[,	pattern]])
List	mailbox	names	in	directory	matching	pattern.	directory	defaults	to	the
top-level	mail	folder,	and	pattern	defaults	to	match	anything.	Returned	data
contains	a	list	of	"LIST"	responses.

login(user,	password)
Identify	the	client	using	a	plaintext	password.	The	password	will	be	quoted.

login_cram_md5(user,	password)
Force	use	of	"CRAM-MD5"	authentication	when	identifying	the	client	to
protect	the	password.	Will	only	work	if	the	server	"CAPABILITY"
response	includes	the	phrase	"AUTH=CRAM-MD5".	New	in	version	2.3.

logout()
Shutdown	connection	to	server.	Returns	server	"BYE"	response.

lsub([directory[,	pattern]])
List	subscribed	mailbox	names	in	directory	matching	pattern.	directory
defaults	to	the	top	level	directory	and	pattern	defaults	to	match	any
mailbox.	Returned	data	are	tuples	of	message	part	envelope	and	data.

myrights(mailbox)
Show	my	ACLs	for	a	mailbox	(i.e.	the	rights	that	I	have	on	mailbox).	New
in	version	2.4.

namespace()
Returns	IMAP	namespaces	as	defined	in	RFC2342.	New	in	version	2.3.

noop()

Send	"NOOP"	to	server.

open(host,	port)
Opens	socket	to	port	at	host.	The	connection	objects	established	by	this
method	will	be	used	in	the	read,	readline,	send,	and	shutdown
methods.	You	may	override	this	method.

partial(message_num,	message_part,	start,	length)
Fetch	truncated	part	of	a	message.	Returned	data	is	a	tuple	of	message	part
envelope	and	data.

proxyauth(user)
Assume	authentication	as	user.	Allows	an	authorised	administrator	to	proxy
into	any	user's	mailbox.	New	in	version	2.3.

read(size)
Reads	size	bytes	from	the	remote	server.	You	may	override	this	method.

readline()
Reads	one	line	from	the	remote	server.	You	may	override	this	method.

recent()
Prompt	server	for	an	update.	Returned	data	is	None	if	no	new	messages,
else	value	of	"RECENT"	response.

rename(oldmailbox,	newmailbox)
Rename	mailbox	named	oldmailbox	to	newmailbox.

response(code)
Return	data	for	response	code	if	received,	or	None.	Returns	the	given	code,
instead	of	the	usual	type.

search(charset,	criterion[,	...])
Search	mailbox	for	matching	messages.	Returned	data	contains	a	space
separated	list	of	matching	message	numbers.	charset	may	be	None,	in
which	case	no	"CHARSET"	will	be	specified	in	the	request	to	the	server.
The	IMAP	protocol	requires	that	at	least	one	criterion	be	specified;	an

exception	will	be	raised	when	the	server	returns	an	error.

Example:

#	M	is	a	connected	IMAP4	instance...

msgnums	=	M.search(None,	'FROM',	'"LDJ"')

#	or:

msgnums	=	M.search(None,	'(FROM	"LDJ")')

select([mailbox[,	readonly]])
Select	a	mailbox.	Returned	data	is	the	count	of	messages	in	mailbox
("EXISTS"	response).	The	default	mailbox	is	'INBOX'.	If	the	readonly
flag	is	set,	modifications	to	the	mailbox	are	not	allowed.

send(data)
Sends	data	to	the	remote	server.	You	may	override	this	method.

setacl(mailbox,	who,	what)
Set	an	"ACL"	for	mailbox.	The	method	is	non-standard,	but	is	supported	by
the	"Cyrus"	server.

setquota(root,	limits)
Set	the	"quota"	root's	resource	limits.	This	method	is	part	of	the	IMAP4
QUOTA	extension	defined	in	rfc2087.	New	in	version	2.3.

shutdown()
Close	connection	established	in	open.	You	may	override	this	method.

socket()
Returns	socket	instance	used	to	connect	to	server.

sort(sort_criteria,	charset,	search_criterion[,	...])
The	sort	command	is	a	variant	of	search	with	sorting	semantics	for	the
results.	Returned	data	contains	a	space	separated	list	of	matching	message
numbers.

Sort	has	two	arguments	before	the	search_criterion	argument(s);	a
parenthesized	list	of	sort_criteria,	and	the	searching	charset.	Note	that

unlike	search,	the	searching	charset	argument	is	mandatory.	There	is	also
a	uid	sort	command	which	corresponds	to	sort	the	way	that	uid
search	corresponds	to	search.	The	sort	command	first	searches	the
mailbox	for	messages	that	match	the	given	searching	criteria	using	the
charset	argument	for	the	interpretation	of	strings	in	the	searching	criteria.	It
then	returns	the	numbers	of	matching	messages.

This	is	an	"IMAP4rev1"	extension	command.

status(mailbox,	names)
Request	named	status	conditions	for	mailbox.

store(message_set,	command,	flag_list)
Alters	flag	dispositions	for	messages	in	mailbox.

subscribe(mailbox)
Subscribe	to	new	mailbox.

thread(threading_algorithm,	charset,	search_criterion[,	...])
The	thread	command	is	a	variant	of	search	with	threading	semantics
for	the	results.	Returned	data	contains	a	space	separated	list	of	thread
members.

Thread	members	consist	of	zero	or	more	messages	numbers,	delimited	by
spaces,	indicating	successive	parent	and	child.

Thread	has	two	arguments	before	the	search_criterion	argument(s);	a
threading_algorithm,	and	the	searching	charset.	Note	that	unlike	search,
the	searching	charset	argument	is	mandatory.	There	is	also	a	uid	thread
command	which	corresponds	to	thread	the	way	that	uid	search
corresponds	to	search.	The	thread	command	first	searches	the	mailbox
for	messages	that	match	the	given	searching	criteria	using	the	charset
argument	for	the	interpretation	of	strings	in	the	searching	criteria.	It	thren
returns	the	matching	messages	threaded	according	to	the	specified
threading	algorithm.

This	is	an	"IMAP4rev1"	extension	command.	New	in	version	2.4.

uid(command,	arg[,	...])
Execute	command	args	with	messages	identified	by	UID,	rather	than
message	number.	Returns	response	appropriate	to	command.	At	least	one
argument	must	be	supplied;	if	none	are	provided,	the	server	will	return	an
error	and	an	exception	will	be	raised.

unsubscribe(mailbox)
Unsubscribe	from	old	mailbox.

xatom(name[,	arg[,	...]])
Allow	simple	extension	commands	notified	by	server	in	"CAPABILITY"
response.

Instances	of	IMAP4_SSL	have	just	one	additional	method:

ssl()
Returns	SSLObject	instance	used	for	the	secure	connection	with	the	server.

The	following	attributes	are	defined	on	instances	of	IMAP4:

PROTOCOL_VERSION

The	most	recent	supported	protocol	in	the	"CAPABILITY"	response	from
the	server.

debug

Integer	value	to	control	debugging	output.	The	initialize	value	is	taken	from
the	module	variable	Debug.	Values	greater	than	three	trace	each	command.

Python	Library	Reference
Previous:	11.10	imaplib	Up:	11.10	imaplib	Next:	11.10.2	IMAP4	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.10.1	IMAP4	Objects	Up:	11.10	imaplib	Next:	11.11	nntplib

11.10.2	IMAP4	Example
Here	is	a	minimal	example	(without	error	checking)	that	opens	a	mailbox	and
retrieves	and	prints	all	messages:

import	getpass,	imaplib

M	=	imaplib.IMAP4()

M.login(getpass.getuser(),	getpass.getpass())

M.select()

typ,	data	=	M.search(None,	'ALL')

for	num	in	data[0].split():

				typ,	data	=	M.fetch(num,	'(RFC822)')

				print	'Message	%s\n%s\n'	%	(num,	data[0][1])

M.logout()

Python	Library	Reference
Previous:	11.10.1	IMAP4	Objects	Up:	11.10	imaplib	Next:	11.11	nntplib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.10.2	IMAP4	Example	Up:	11.	Internet	Protocols	and	Next:	11.11.1
NNTP	Objects

11.11	nntplib	--	NNTP	protocol
client
This	module	defines	the	class	NNTP	which	implements	the	client	side	of	the
NNTP	protocol.	It	can	be	used	to	implement	a	news	reader	or	poster,	or
automated	news	processors.	For	more	information	on	NNTP	(Network	News
Transfer	Protocol),	see	Internet	RFC	977.

Here	are	two	small	examples	of	how	it	can	be	used.	To	list	some	statistics	about
a	newsgroup	and	print	the	subjects	of	the	last	10	articles:

>>>	s	=	NNTP('news.cwi.nl')

>>>	resp,	count,	first,	last,	name	=	s.group('comp.lang.python')

>>>	print	'Group',	name,	'has',	count,	'articles,	range',	first,	'to',	last

Group	comp.lang.python	has	59	articles,	range	3742	to	3803

>>>	resp,	subs	=	s.xhdr('subject',	first	+	'-'	+	last)

>>>	for	id,	sub	in	subs[-10:]:	print	id,	sub

...	

3792	Re:	Removing	elements	from	a	list	while	iterating...

3793	Re:	Who	likes	Info	files?

3794	Emacs	and	doc	strings

3795	a	few	questions	about	the	Mac	implementation

3796	Re:	executable	python	scripts

3797	Re:	executable	python	scripts

3798	Re:	a	few	questions	about	the	Mac	implementation	

3799	Re:	PROPOSAL:	A	Generic	Python	Object	Interface	for	Python	C	Modules

3802	Re:	executable	python	scripts	

3803	Re:	\POSIX{}	wait	and	SIGCHLD

>>>	s.quit()

'205	news.cwi.nl	closing	connection.		Goodbye.'

To	post	an	article	from	a	file	(this	assumes	that	the	article	has	valid	headers):

>>>	s	=	NNTP('news.cwi.nl')

>>>	f	=	open('/tmp/article')

>>>	s.post(f)

'240	Article	posted	successfully.'

>>>	s.quit()

'205	news.cwi.nl	closing	connection.		Goodbye.'

The	module	itself	defines	the	following	items:

class	NNTP(

http://www.faqs.org/rfcs/rfc977.html

host[,	port	[,	user[,	password	[,	readermode]	[,	usenetrc]]]])
Return	a	new	instance	of	the	NNTP	class,	representing	a	connection	to	the
NNTP	server	running	on	host	host,	listening	at	port	port.	The	default	port	is
119.	If	the	optional	user	and	password	are	provided,	or	if	suitable
credentials	are	present	in		/.netrc	and	the	optional	flag	usenetrc	is	true	(the
default),	the	"AUTHINFO	USER"	and	"AUTHINFO	PASS"	commands	are
used	to	identify	and	authenticate	the	user	to	the	server.	If	the	optional	flag
readermode	is	true,	then	a	"mode	reader"	command	is	sent	before
authentication	is	performed.	Reader	mode	is	sometimes	necessary	if	you	are
connecting	to	an	NNTP	server	on	the	local	machine	and	intend	to	call
reader-specific	commands,	such	as	"group".	If	you	get	unexpected
NNTPPermanentErrors,	you	might	need	to	set	readermode.
readermode	defaults	to	None.	usenetrc	defaults	to	True.

Changed	in	version	2.4:	usenetrc	argument	added.

class	NNTPError()
Derived	from	the	standard	exception	Exception,	this	is	the	base	class	for
all	exceptions	raised	by	the	nntplib	module.

class	NNTPReplyError()
Exception	raised	when	an	unexpected	reply	is	received	from	the	server.	For
backwards	compatibility,	the	exception	error_reply	is	equivalent	to
this	class.

class	NNTPTemporaryError()
Exception	raised	when	an	error	code	in	the	range	400-499	is	received.	For
backwards	compatibility,	the	exception	error_temp	is	equivalent	to	this
class.

class	NNTPPermanentError()
Exception	raised	when	an	error	code	in	the	range	500-599	is	received.	For
backwards	compatibility,	the	exception	error_perm	is	equivalent	to	this
class.

class	NNTPProtocolError()
Exception	raised	when	a	reply	is	received	from	the	server	that	does	not

begin	with	a	digit	in	the	range	1-5.	For	backwards	compatibility,	the
exception	error_proto	is	equivalent	to	this	class.

class	NNTPDataError()
Exception	raised	when	there	is	some	error	in	the	response	data.	For
backwards	compatibility,	the	exception	error_data	is	equivalent	to	this
class.

Subsections

11.11.1	NNTP	Objects

Python	Library	Reference
Previous:	11.10.2	IMAP4	Example	Up:	11.	Internet	Protocols	and	Next:	11.11.1
NNTP	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.11	nntplib	Up:	11.11	nntplib	Next:	11.12	smtplib

11.11.1	NNTP	Objects
NNTP	instances	have	the	following	methods.	The	response	that	is	returned	as	the
first	item	in	the	return	tuple	of	almost	all	methods	is	the	server's	response:	a
string	beginning	with	a	three-digit	code.	If	the	server's	response	indicates	an
error,	the	method	raises	one	of	the	above	exceptions.

getwelcome()
Return	the	welcome	message	sent	by	the	server	in	reply	to	the	initial
connection.	(This	message	sometimes	contains	disclaimers	or	help
information	that	may	be	relevant	to	the	user.)

set_debuglevel(level)
Set	the	instance's	debugging	level.	This	controls	the	amount	of	debugging
output	printed.	The	default,	0,	produces	no	debugging	output.	A	value	of	1
produces	a	moderate	amount	of	debugging	output,	generally	a	single	line
per	request	or	response.	A	value	of	2	or	higher	produces	the	maximum
amount	of	debugging	output,	logging	each	line	sent	and	received	on	the
connection	(including	message	text).

newgroups(date,	time,	[file])
Send	a	"NEWGROUPS"	command.	The	date	argument	should	be	a	string	of
the	form	'yymmdd'	indicating	the	date,	and	time	should	be	a	string	of	the
form	'hhmmss'	indicating	the	time.	Return	a	pair	(response,	groups)
where	groups	is	a	list	of	group	names	that	are	new	since	the	given	date	and
time.	If	the	file	parameter	is	supplied,	then	the	output	of	the	"NEWGROUPS"
command	is	stored	in	a	file.	If	file	is	a	string,	then	the	method	will	open	a
file	object	with	that	name,	write	to	it	then	close	it.	If	file	is	a	file	object,	then
it	will	start	calling	write()	on	it	to	store	the	lines	of	the	command	output.
If	file	is	supplied,	then	the	returned	list	is	an	empty	list.

newnews(group,	date,	time,	[file])
Send	a	"NEWNEWS"	command.	Here,	group	is	a	group	name	or	'*',	and
date	and	time	have	the	same	meaning	as	for	newgroups().	Return	a	pair
(response,	articles)	where	articles	is	a	list	of	article	ids.	If	the	file
parameter	is	supplied,	then	the	output	of	the	"NEWNEWS"	command	is

stored	in	a	file.	If	file	is	a	string,	then	the	method	will	open	a	file	object
with	that	name,	write	to	it	then	close	it.	If	file	is	a	file	object,	then	it	will
start	calling	write()	on	it	to	store	the	lines	of	the	command	output.	If	file
is	supplied,	then	the	returned	list	is	an	empty	list.

list([file])
Send	a	"LIST"	command.	Return	a	pair	(response,	list)	where	list	is	a
list	of	tuples.	Each	tuple	has	the	form	(group,	last,	first,	flag),	where
group	is	a	group	name,	last	and	first	are	the	last	and	first	article	numbers	(as
strings),	and	flag	is	'y'	if	posting	is	allowed,	'n'	if	not,	and	'm'	if	the
newsgroup	is	moderated.	(Note	the	ordering:	last,	first.)	If	the	file	parameter
is	supplied,	then	the	output	of	the	"LIST"	command	is	stored	in	a	file.	If
file	is	a	string,	then	the	method	will	open	a	file	object	with	that	name,	write
to	it	then	close	it.	If	file	is	a	file	object,	then	it	will	start	calling	write()
on	it	to	store	the	lines	of	the	command	output.	If	file	is	supplied,	then	the
returned	list	is	an	empty	list.

descriptions(grouppattern)
Send	a	"LIST	NEWSGROUPS"	command,	where	grouppattern	is	a
wildmat	string	as	specified	in	RFC2980	(it's	essentially	the	same	as	DOS	or
UNIX	shell	wildcard	strings).	Return	a	pair	(response,	list),	where	list	is
a	list	of	tuples	containing	(name,	title).

New	in	version	2.4.

description(group)
Get	a	description	for	a	single	group	group.	If	more	than	one	group	matches
(if	'group'	is	a	real	wildmat	string),	return	the	first	match.	If	no	group
matches,	return	an	empty	string.

This	elides	the	response	code	from	the	server.	If	the	response	code	is
needed,	use	descriptions().

New	in	version	2.4.

group(name)
Send	a	"GROUP"	command,	where	name	is	the	group	name.	Return	a	tuple
(response,	count,	first,	last,	name)	where	count	is	the	(estimated)

number	of	articles	in	the	group,	first	is	the	first	article	number	in	the	group,
last	is	the	last	article	number	in	the	group,	and	name	is	the	group	name.	The
numbers	are	returned	as	strings.

help([file])
Send	a	"HELP"	command.	Return	a	pair	(response,	list)	where	list	is	a
list	of	help	strings.	If	the	file	parameter	is	supplied,	then	the	output	of	the
"HELP"	command	is	stored	in	a	file.	If	file	is	a	string,	then	the	method	will
open	a	file	object	with	that	name,	write	to	it	then	close	it.	If	file	is	a	file
object,	then	it	will	start	calling	write()	on	it	to	store	the	lines	of	the
command	output.	If	file	is	supplied,	then	the	returned	list	is	an	empty	list.

stat(id)
Send	a	"STAT"	command,	where	id	is	the	message	id	(enclosed	in	"<"	and
">")	or	an	article	number	(as	a	string).	Return	a	triple	(response,
number,	id)	where	number	is	the	article	number	(as	a	string)	and	id	is	the
article	id	(enclosed	in	"<"	and	">").

next()
Send	a	"NEXT"	command.	Return	as	for	stat().

last()
Send	a	"LAST"	command.	Return	as	for	stat().

head(id)
Send	a	"HEAD"	command,	where	id	has	the	same	meaning	as	for	stat().
Return	a	tuple	(response,	number,	id,	list)	where	the	first	three	are	the
same	as	for	stat(),	and	list	is	a	list	of	the	article's	headers	(an
uninterpreted	list	of	lines,	without	trailing	newlines).

body(id,[file])
Send	a	"BODY"	command,	where	id	has	the	same	meaning	as	for	stat().
If	the	file	parameter	is	supplied,	then	the	body	is	stored	in	a	file.	If	file	is	a
string,	then	the	method	will	open	a	file	object	with	that	name,	write	to	it
then	close	it.	If	file	is	a	file	object,	then	it	will	start	calling	write()	on	it
to	store	the	lines	of	the	body.	Return	as	for	head().	If	file	is	supplied,	then
the	returned	list	is	an	empty	list.

article(id)
Send	an	"ARTICLE"	command,	where	id	has	the	same	meaning	as	for
stat().	Return	as	for	head().

slave()
Send	a	"SLAVE"	command.	Return	the	server's	response.

xhdr(header,	string,	[file])
Send	an	"XHDR"	command.	This	command	is	not	defined	in	the	RFC	but	is
a	common	extension.	The	header	argument	is	a	header	keyword,	e.g.
'subject'.	The	string	argument	should	have	the	form	'first-last'
where	first	and	last	are	the	first	and	last	article	numbers	to	search.	Return	a
pair	(response,	list),	where	list	is	a	list	of	pairs	(id,	text),	where	id	is
an	article	id	(as	a	string)	and	text	is	the	text	of	the	requested	header	for	that
article.	If	the	file	parameter	is	supplied,	then	the	output	of	the	"XHDR"
command	is	stored	in	a	file.	If	file	is	a	string,	then	the	method	will	open	a
file	object	with	that	name,	write	to	it	then	close	it.	If	file	is	a	file	object,	then
it	will	start	calling	write()	on	it	to	store	the	lines	of	the	command	output.
If	file	is	supplied,	then	the	returned	list	is	an	empty	list.

post(file)
Post	an	article	using	the	"POST"	command.	The	file	argument	is	an	open
file	object	which	is	read	until	EOF	using	its	readline()	method.	It
should	be	a	well-formed	news	article,	including	the	required	headers.	The
post()	method	automatically	escapes	lines	beginning	with	".".

ihave(id,	file)
Send	an	"IHAVE"	command.	If	the	response	is	not	an	error,	treat	file
exactly	as	for	the	post()	method.

date()
Return	a	triple	(response,	date,	time),	containing	the	current	date	and
time	in	a	form	suitable	for	the	newnews()	and	newgroups()	methods.
This	is	an	optional	NNTP	extension,	and	may	not	be	supported	by	all
servers.

xgtitle(name,	[file])

Process	an	"XGTITLE"	command,	returning	a	pair	(response,	list),
where	list	is	a	list	of	tuples	containing	(name,	title).	If	the	file	parameter
is	supplied,	then	the	output	of	the	"XGTITLE"	command	is	stored	in	a	file.
If	file	is	a	string,	then	the	method	will	open	a	file	object	with	that	name,
write	to	it	then	close	it.	If	file	is	a	file	object,	then	it	will	start	calling
write()	on	it	to	store	the	lines	of	the	command	output.	If	file	is	supplied,
then	the	returned	list	is	an	empty	list.	This	is	an	optional	NNTP	extension,
and	may	not	be	supported	by	all	servers.

RFC2980	says	``It	is	suggested	that	this	extension	be	deprecated''.	Use
descriptions()	or	description()	instead.

xover(start,	end,	[file])
Return	a	pair	(resp,	list).	list	is	a	list	of	tuples,	one	for	each	article	in	the
range	delimited	by	the	start	and	end	article	numbers.	Each	tuple	is	of	the
form	(article	number,	subject,	poster,	date,	id,	references,	size,
lines).	If	the	file	parameter	is	supplied,	then	the	output	of	the	"XOVER"
command	is	stored	in	a	file.	If	file	is	a	string,	then	the	method	will	open	a
file	object	with	that	name,	write	to	it	then	close	it.	If	file	is	a	file	object,	then
it	will	start	calling	write()	on	it	to	store	the	lines	of	the	command	output.
If	file	is	supplied,	then	the	returned	list	is	an	empty	list.	This	is	an	optional
NNTP	extension,	and	may	not	be	supported	by	all	servers.

xpath(id)
Return	a	pair	(resp,	path),	where	path	is	the	directory	path	to	the	article
with	message	ID	id.	This	is	an	optional	NNTP	extension,	and	may	not	be
supported	by	all	servers.

quit()
Send	a	"QUIT"	command	and	close	the	connection.	Once	this	method	has
been	called,	no	other	methods	of	the	NNTP	object	should	be	called.

Python	Library	Reference
Previous:	11.11	nntplib	Up:	11.11	nntplib	Next:	11.12	smtplib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.11.1	NNTP	Objects	Up:	11.	Internet	Protocols	and	Next:	11.12.1
SMTP	Objects

11.12	smtplib	--	SMTP	protocol
client
The	smtplib	module	defines	an	SMTP	client	session	object	that	can	be	used	to
send	mail	to	any	Internet	machine	with	an	SMTP	or	ESMTP	listener	daemon.
For	details	of	SMTP	and	ESMTP	operation,	consult	RFC	821	(Simple	Mail
Transfer	Protocol)	and	RFC	1869	(SMTP	Service	Extensions).

class	SMTP([host[,	port[,	local_hostname]]])
A	SMTP	instance	encapsulates	an	SMTP	connection.	It	has	methods	that
support	a	full	repertoire	of	SMTP	and	ESMTP	operations.	If	the	optional
host	and	port	parameters	are	given,	the	SMTP	connect()	method	is
called	with	those	parameters	during	initialization.	An
SMTPConnectError	is	raised	if	the	specified	host	doesn't	respond
correctly.

For	normal	use,	you	should	only	require	the	initialization/connect,
sendmail(),	and	quit()	methods.	An	example	is	included	below.

A	nice	selection	of	exceptions	is	defined	as	well:

exception	SMTPException
Base	exception	class	for	all	exceptions	raised	by	this	module.

exception	SMTPServerDisconnected
This	exception	is	raised	when	the	server	unexpectedly	disconnects,	or	when
an	attempt	is	made	to	use	the	SMTP	instance	before	connecting	it	to	a
server.

exception	SMTPResponseException
Base	class	for	all	exceptions	that	include	an	SMTP	error	code.	These
exceptions	are	generated	in	some	instances	when	the	SMTP	server	returns
an	error	code.	The	error	code	is	stored	in	the	smtp_code	attribute	of	the
error,	and	the	smtp_error	attribute	is	set	to	the	error	message.

http://www.faqs.org/rfcs/rfc821.html
http://www.faqs.org/rfcs/rfc1869.html

exception	SMTPSenderRefused
Sender	address	refused.	In	addition	to	the	attributes	set	by	on	all
SMTPResponseException	exceptions,	this	sets	`sender'	to	the	string
that	the	SMTP	server	refused.

exception	SMTPRecipientsRefused
All	recipient	addresses	refused.	The	errors	for	each	recipient	are	accessible
through	the	attribute	recipients,	which	is	a	dictionary	of	exactly	the
same	sort	as	SMTP.sendmail()	returns.

exception	SMTPDataError
The	SMTP	server	refused	to	accept	the	message	data.

exception	SMTPConnectError
Error	occurred	during	establishment	of	a	connection	with	the	server.

exception	SMTPHeloError
The	server	refused	our	"HELO"	message.

See	Also:

RFC	821,	Simple	Mail	Transfer	Protocol
Protocol	definition	for	SMTP.	This	document	covers	the	model,
operating	procedure,	and	protocol	details	for	SMTP.

RFC	1869,	SMTP	Service	Extensions
Definition	of	the	ESMTP	extensions	for	SMTP.	This	describes	a
framework	for	extending	SMTP	with	new	commands,	supporting
dynamic	discovery	of	the	commands	provided	by	the	server,	and
defines	a	few	additional	commands.

Subsections

11.12.1	SMTP	Objects
11.12.2	SMTP	Example

http://www.faqs.org/rfcs/rfc821.html
http://www.faqs.org/rfcs/rfc1869.html

Python	Library	Reference
Previous:	11.11.1	NNTP	Objects	Up:	11.	Internet	Protocols	and	Next:	11.12.1
SMTP	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.12	smtplib	Up:	11.12	smtplib	Next:	11.12.2	SMTP	Example

11.12.1	SMTP	Objects
An	SMTP	instance	has	the	following	methods:

set_debuglevel(level)
Set	the	debug	output	level.	A	true	value	for	level	results	in	debug	messages
for	connection	and	for	all	messages	sent	to	and	received	from	the	server.

connect([host[,	port]])
Connect	to	a	host	on	a	given	port.	The	defaults	are	to	connect	to	the	local
host	at	the	standard	SMTP	port	(25).	If	the	hostname	ends	with	a	colon
(":")	followed	by	a	number,	that	suffix	will	be	stripped	off	and	the	number
interpreted	as	the	port	number	to	use.	This	method	is	automatically	invoked
by	the	constructor	if	a	host	is	specified	during	instantiation.

docmd(cmd,	[,	argstring])
Send	a	command	cmd	to	the	server.	The	optional	argument	argstring	is
simply	concatenated	to	the	command,	separated	by	a	space.

This	returns	a	2-tuple	composed	of	a	numeric	response	code	and	the	actual
response	line	(multiline	responses	are	joined	into	one	long	line.)

In	normal	operation	it	should	not	be	necessary	to	call	this	method	explicitly.
It	is	used	to	implement	other	methods	and	may	be	useful	for	testing	private
extensions.

If	the	connection	to	the	server	is	lost	while	waiting	for	the	reply,
SMTPServerDisconnected	will	be	raised.

helo([hostname])
Identify	yourself	to	the	SMTP	server	using	"HELO".	The	hostname
argument	defaults	to	the	fully	qualified	domain	name	of	the	local	host.

In	normal	operation	it	should	not	be	necessary	to	call	this	method	explicitly.
It	will	be	implicitly	called	by	the	sendmail()	when	necessary.

ehlo([hostname])
Identify	yourself	to	an	ESMTP	server	using	"EHLO".	The	hostname
argument	defaults	to	the	fully	qualified	domain	name	of	the	local	host.
Examine	the	response	for	ESMTP	option	and	store	them	for	use	by
has_extn().

Unless	you	wish	to	use	has_extn()	before	sending	mail,	it	should	not	be
necessary	to	call	this	method	explicitly.	It	will	be	implicitly	called	by
sendmail()	when	necessary.

has_extn(name)
Return	True	if	name	is	in	the	set	of	SMTP	service	extensions	returned	by
the	server,	False	otherwise.	Case	is	ignored.

verify(address)
Check	the	validity	of	an	address	on	this	server	using	SMTP	"VRFY".
Returns	a	tuple	consisting	of	code	250	and	a	full	RFC	822	address
(including	human	name)	if	the	user	address	is	valid.	Otherwise	returns	an
SMTP	error	code	of	400	or	greater	and	an	error	string.

Note:	Many	sites	disable	SMTP	"VRFY"	in	order	to	foil	spammers.

login(user,	password)
Log	in	on	an	SMTP	server	that	requires	authentication.	The	arguments	are
the	username	and	the	password	to	authenticate	with.	If	there	has	been	no
previous	"EHLO"	or	"HELO"	command	this	session,	this	method	tries
ESMTP	"EHLO"	first.	This	method	will	return	normally	if	the
authentication	was	successful,	or	may	raise	the	following	exceptions:

SMTPHeloError

The	server	didn't	reply	properly	to	the	"HELO"	greeting.
SMTPAuthenticationError

The	server	didn't	accept	the	username/password	combination.
SMTPError

No	suitable	authentication	method	was	found.

starttls([keyfile[,	certfile]])

http://www.faqs.org/rfcs/rfc822.html

Put	the	SMTP	connection	in	TLS	(Transport	Layer	Security)	mode.	All
SMTP	commands	that	follow	will	be	encrypted.	You	should	then	call
ehlo()	again.

If	keyfile	and	certfile	are	provided,	these	are	passed	to	the	socket
module's	ssl()	function.

sendmail(from_addr,	to_addrs,	msg[,	mail_options,	rcpt_options])
Send	mail.	The	required	arguments	are	an	RFC	822	from-address	string,	a
list	of	RFC	822	to-address	strings,	and	a	message	string.	The	caller	may
pass	a	list	of	ESMTP	options	(such	as	"8bitmime")	to	be	used	in	"MAIL
FROM"	commands	as	mail_options.	ESMTP	options	(such	as	"DSN"
commands)	that	should	be	used	with	all	"RCPT"	commands	can	be	passed
as	rcpt_options.	(If	you	need	to	use	different	ESMTP	options	to	different
recipients	you	have	to	use	the	low-level	methods	such	as	mail,	rcpt	and
data	to	send	the	message.)

Note:	The	from_addr	and	to_addrs	parameters	are	used	to	construct	the
message	envelope	used	by	the	transport	agents.	The	SMTP	does	not	modify
the	message	headers	in	any	way.

If	there	has	been	no	previous	"EHLO"	or	"HELO"	command	this	session,
this	method	tries	ESMTP	"EHLO"	first.	If	the	server	does	ESMTP,	message
size	and	each	of	the	specified	options	will	be	passed	to	it	(if	the	option	is	in
the	feature	set	the	server	advertises).	If	"EHLO"	fails,	"HELO"	will	be	tried
and	ESMTP	options	suppressed.

This	method	will	return	normally	if	the	mail	is	accepted	for	at	least	one
recipient.	Otherwise	it	will	throw	an	exception.	That	is,	if	this	method	does
not	throw	an	exception,	then	someone	should	get	your	mail.	If	this	method
does	not	throw	an	exception,	it	returns	a	dictionary,	with	one	entry	for	each
recipient	that	was	refused.	Each	entry	contains	a	tuple	of	the	SMTP	error
code	and	the	accompanying	error	message	sent	by	the	server.

This	method	may	raise	the	following	exceptions:

SMTPRecipientsRefused

All	recipients	were	refused.	Nobody	got	the	mail.	The	recipients
attribute	of	the	exception	object	is	a	dictionary	with	information	about

http://www.faqs.org/rfcs/rfc822.html
http://www.faqs.org/rfcs/rfc822.html

the	refused	recipients	(like	the	one	returned	when	at	least	one	recipient
was	accepted).

SMTPHeloError

The	server	didn't	reply	properly	to	the	"HELO"	greeting.

SMTPSenderRefused

The	server	didn't	accept	the	from_addr.

SMTPDataError

The	server	replied	with	an	unexpected	error	code	(other	than	a	refusal
of	a	recipient).

Unless	otherwise	noted,	the	connection	will	be	open	even	after	an	exception
is	raised.

quit()
Terminate	the	SMTP	session	and	close	the	connection.

Low-level	methods	corresponding	to	the	standard	SMTP/ESMTP	commands
"HELP",	"RSET",	"NOOP",	"MAIL",	"RCPT",	and	"DATA"	are	also	supported.
Normally	these	do	not	need	to	be	called	directly,	so	they	are	not	documented
here.	For	details,	consult	the	module	code.

Python	Library	Reference
Previous:	11.12	smtplib	Up:	11.12	smtplib	Next:	11.12.2	SMTP	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.12.1	SMTP	Objects	Up:	11.12	smtplib	Next:	11.13	smtpd

11.12.2	SMTP	Example
This	example	prompts	the	user	for	addresses	needed	in	the	message	envelope
(`To'	and	`From'	addresses),	and	the	message	to	be	delivered.	Note	that	the
headers	to	be	included	with	the	message	must	be	included	in	the	message	as
entered;	this	example	doesn't	do	any	processing	of	the	RFC	822	headers.	In
particular,	the	`To'	and	`From'	addresses	must	be	included	in	the	message
headers	explicitly.

import	smtplib

def	prompt(prompt):

				return	raw_input(prompt).strip()

fromaddr	=	prompt("From:	")

toaddrs		=	prompt("To:	").split()

print	"Enter	message,	end	with	^D	(Unix)	or	^Z	(Windows):"

#	Add	the	From:	and	To:	headers	at	the	start!

msg	=	("From:	%s\r\nTo:	%s\r\n\r\n"

							%	(fromaddr,	",	".join(toaddrs)))

while	1:

				try:

								line	=	raw_input()

				except	EOFError:

								break

				if	not	line:

								break

				msg	=	msg	+	line

print	"Message	length	is	"	+	repr(len(msg))

server	=	smtplib.SMTP('localhost')

server.set_debuglevel(1)

server.sendmail(fromaddr,	toaddrs,	msg)

server.quit()

Python	Library	Reference
Previous:	11.12.1	SMTP	Objects	Up:	11.12	smtplib	Next:	11.13	smtpd

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.faqs.org/rfcs/rfc822.html

Previous:	11.12.2	SMTP	Example	Up:	11.	Internet	Protocols	and	Next:	11.13.1
SMTPServer	Objects

11.13	smtpd	--	SMTP	Server
This	module	offers	several	classes	to	implement	SMTP	servers.	One	is	a	generic
do-nothing	implementation,	which	can	be	overridden,	while	the	other	two	offer
specific	mail-sending	strategies.

Subsections

11.13.1	SMTPServer	Objects
11.13.2	DebuggingServer	Objects
11.13.3	PureProxy	Objects
11.13.4	MailmanProxy	Objects

Python	Library	Reference
Previous:	11.12.2	SMTP	Example	Up:	11.	Internet	Protocols	and	Next:	11.13.1
SMTPServer	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.13	smtpd	Up:	11.13	smtpd	Next:	11.13.2	DebuggingServer
Objects

11.13.1	SMTPServer	Objects

class	SMTPServer(localaddr,	remoteaddr)
Create	a	new	SMTPServer	object,	which	binds	to	local	address	localaddr.
It	will	treat	remoteaddr	as	an	upstream	SMTP	relayer.	It	inherits	from
asyncore.dispatcher,	and	so	will	insert	itself	into	asyncore's
event	loop	on	instantiation.

process_message(peer,	mailfrom,	rcpttos,	data)
Raise	NotImplementedError	exception.	Override	this	in	subclasses	to
do	something	useful	with	this	message.	Whatever	was	passed	in	the
constructor	as	remoteaddr	will	be	available	as	the	_remoteaddr
attribute.	peer	is	the	remote	host's	address,	mailfrom	is	the	envelope
originator,	rcpttos	are	the	envelope	recipients	and	data	is	a	string	containing
the	contents	of	the	e-mail	(which	should	be	in	RFC	2822	format).

Python	Library	Reference
Previous:	11.13	smtpd	Up:	11.13	smtpd	Next:	11.13.2	DebuggingServer
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.faqs.org/rfcs/rfc2822.html

Previous:	11.13.1	SMTPServer	Objects	Up:	11.13	smtpd	Next:	11.13.3
PureProxy	Objects

11.13.2	DebuggingServer	Objects

class	DebuggingServer(localaddr,	remoteaddr)
Create	a	new	debugging	server.	Arguments	are	as	per	SMTPServer.
Messages	will	be	discarded,	and	printed	on	stdout.

Python	Library	Reference
Previous:	11.13.1	SMTPServer	Objects	Up:	11.13	smtpd	Next:	11.13.3
PureProxy	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.13.2	DebuggingServer	Objects	Up:	11.13	smtpd	Next:	11.13.4
MailmanProxy	Objects

11.13.3	PureProxy	Objects

class	PureProxy(localaddr,	remoteaddr)
Create	a	new	pure	proxy	server.	Arguments	are	as	per	SMTPServer.
Everything	will	be	relayed	to	remoteaddr.	Note	that	running	this	has	a	good
chance	to	make	you	into	an	open	relay,	so	please	be	careful.

Python	Library	Reference
Previous:	11.13.2	DebuggingServer	Objects	Up:	11.13	smtpd	Next:	11.13.4
MailmanProxy	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.13.3	PureProxy	Objects	Up:	11.13	smtpd	Next:	11.14	telnetlib

11.13.4	MailmanProxy	Objects

class	MailmanProxy(localaddr,	remoteaddr)
Create	a	new	pure	proxy	server.	Arguments	are	as	per	SMTPServer.
Everything	will	be	relayed	to	remoteaddr,	unless	local	mailman
configurations	knows	about	an	address,	in	which	case	it	will	be	handled	via
mailman.	Note	that	running	this	has	a	good	chance	to	make	you	into	an
open	relay,	so	please	be	careful.

Python	Library	Reference
Previous:	11.13.3	PureProxy	Objects	Up:	11.13	smtpd	Next:	11.14	telnetlib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.13.4	MailmanProxy	Objects	Up:	11.	Internet	Protocols	and	Next:
11.14.1	Telnet	Objects

11.14	telnetlib	--	Telnet	client
The	telnetlib	module	provides	a	Telnet	class	that	implements	the	Telnet
protocol.	See	RFC	854	for	details	about	the	protocol.	In	addition,	it	provides
symbolic	constants	for	the	protocol	characters	(see	below),	and	for	the	telnet
options.	The	symbolic	names	of	the	telnet	options	follow	the	definitions	in
arpa/telnet.h,	with	the	leading	TELOPT_	removed.	For	symbolic	names
of	options	which	are	traditionally	not	included	in	arpa/telnet.h,	see	the
module	source	itself.

The	symbolic	constants	for	the	telnet	commands	are:	IAC,	DONT,	DO,	WONT,
WILL,	SE	(Subnegotiation	End),	NOP	(No	Operation),	DM	(Data	Mark),	BRK
(Break),	IP	(Interrupt	process),	AO	(Abort	output),	AYT	(Are	You	There),	EC
(Erase	Character),	EL	(Erase	Line),	GA	(Go	Ahead),	SB	(Subnegotiation	Begin).

class	Telnet([host[,	port]])
Telnet	represents	a	connection	to	a	Telnet	server.	The	instance	is	initially
not	connected	by	default;	the	open()	method	must	be	used	to	establish	a
connection.	Alternatively,	the	host	name	and	optional	port	number	can	be
passed	to	the	constructor,	to,	in	which	case	the	connection	to	the	server	will
be	established	before	the	constructor	returns.

Do	not	reopen	an	already	connected	instance.

This	class	has	many	read_*()	methods.	Note	that	some	of	them	raise
EOFError	when	the	end	of	the	connection	is	read,	because	they	can	return
an	empty	string	for	other	reasons.	See	the	individual	descriptions	below.

See	Also:

RFC	854,	Telnet	Protocol	Specification
Definition	of	the	Telnet	protocol.

Subsections

http://www.faqs.org/rfcs/rfc854.html
http://www.faqs.org/rfcs/rfc854.html

11.14.1	Telnet	Objects
11.14.2	Telnet	Example

Python	Library	Reference
Previous:	11.13.4	MailmanProxy	Objects	Up:	11.	Internet	Protocols	and	Next:
11.14.1	Telnet	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.14	telnetlib	Up:	11.14	telnetlib	Next:	11.14.2	Telnet	Example

11.14.1	Telnet	Objects
Telnet	instances	have	the	following	methods:

read_until(expected[,	timeout])
Read	until	a	given	string,	expected,	is	encountered	or	until	timeout	seconds
have	passed.

When	no	match	is	found,	return	whatever	is	available	instead,	possibly	the
empty	string.	Raise	EOFError	if	the	connection	is	closed	and	no	cooked
data	is	available.

read_all()
Read	all	data	until	EOF;	block	until	connection	closed.

read_some()
Read	at	least	one	byte	of	cooked	data	unless	EOF	is	hit.	Return	''	if	EOF
is	hit.	Block	if	no	data	is	immediately	available.

read_very_eager()
Read	everything	that	can	be	without	blocking	in	I/O	(eager).

Raise	EOFError	if	connection	closed	and	no	cooked	data	available.
Return	''	if	no	cooked	data	available	otherwise.	Do	not	block	unless	in	the
midst	of	an	IAC	sequence.

read_eager()
Read	readily	available	data.

Raise	EOFError	if	connection	closed	and	no	cooked	data	available.
Return	''	if	no	cooked	data	available	otherwise.	Do	not	block	unless	in	the
midst	of	an	IAC	sequence.

read_lazy()
Process	and	return	data	already	in	the	queues	(lazy).

Raise	EOFError	if	connection	closed	and	no	data	available.	Return	''	if
no	cooked	data	available	otherwise.	Do	not	block	unless	in	the	midst	of	an
IAC	sequence.

read_very_lazy()
Return	any	data	available	in	the	cooked	queue	(very	lazy).

Raise	EOFError	if	connection	closed	and	no	data	available.	Return	''	if
no	cooked	data	available	otherwise.	This	method	never	blocks.

read_sb_data()
Return	the	data	collected	between	a	SB/SE	pair	(suboption	begin/end).	The
callback	should	access	these	data	when	it	was	invoked	with	a	SE	command.
This	method	never	blocks.

New	in	version	2.3.

open(host[,	port])
Connect	to	a	host.	The	optional	second	argument	is	the	port	number,	which
defaults	to	the	standard	Telnet	port	(23).

Do	not	try	to	reopen	an	already	connected	instance.

msg(msg[,	*args])
Print	a	debug	message	when	the	debug	level	is	>	0.	If	extra	arguments	are
present,	they	are	substituted	in	the	message	using	the	standard	string
formatting	operator.

set_debuglevel(debuglevel)
Set	the	debug	level.	The	higher	the	value	of	debuglevel,	the	more	debug
output	you	get	(on	sys.stdout).

close()
Close	the	connection.

get_socket()
Return	the	socket	object	used	internally.

fileno()
Return	the	file	descriptor	of	the	socket	object	used	internally.

write(buffer)
Write	a	string	to	the	socket,	doubling	any	IAC	characters.	This	can	block	if
the	connection	is	blocked.	May	raise	socket.error	if	the	connection	is
closed.

interact()
Interaction	function,	emulates	a	very	dumb	Telnet	client.

mt_interact()
Multithreaded	version	of	interact().

expect(list[,	timeout])
Read	until	one	from	a	list	of	a	regular	expressions	matches.

The	first	argument	is	a	list	of	regular	expressions,	either	compiled
(re.RegexObject	instances)	or	uncompiled	(strings).	The	optional
second	argument	is	a	timeout,	in	seconds;	the	default	is	to	block
indefinitely.

Return	a	tuple	of	three	items:	the	index	in	the	list	of	the	first	regular
expression	that	matches;	the	match	object	returned;	and	the	text	read	up	till
and	including	the	match.

If	end	of	file	is	found	and	no	text	was	read,	raise	EOFError.	Otherwise,
when	nothing	matches,	return	(-1,	None,	text)	where	text	is	the	text
received	so	far	(may	be	the	empty	string	if	a	timeout	happened).

If	a	regular	expression	ends	with	a	greedy	match	(such	as	.*)	or	if	more
than	one	expression	can	match	the	same	input,	the	results	are
indeterministic,	and	may	depend	on	the	I/O	timing.

set_option_negotiation_callback(callback)
Each	time	a	telnet	option	is	read	on	the	input	flow,	this	callback	(if	set)	is
called	with	the	following	parameters	:	callback(telnet	socket,	command
(DO/DONT/WILL/WONT),	option).	No	other	action	is	done	afterwards	by

telnetlib.

Python	Library	Reference
Previous:	11.14	telnetlib	Up:	11.14	telnetlib	Next:	11.14.2	Telnet	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.14.1	Telnet	Objects	Up:	11.14	telnetlib	Next:	11.15	urlparse

11.14.2	Telnet	Example
A	simple	example	illustrating	typical	use:

import	getpass

import	sys

import	telnetlib

HOST	=	"localhost"

user	=	raw_input("Enter	your	remote	account:	")

password	=	getpass.getpass()

tn	=	telnetlib.Telnet(HOST)

tn.read_until("login:	")

tn.write(user	+	"\n")

if	password:

				tn.read_until("Password:	")

				tn.write(password	+	"\n")

tn.write("ls\n")

tn.write("exit\n")

print	tn.read_all()

Python	Library	Reference
Previous:	11.14.1	Telnet	Objects	Up:	11.14	telnetlib	Next:	11.15	urlparse

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.14.2	Telnet	Example	Up:	11.	Internet	Protocols	and	Next:	11.16
SocketServer

11.15	urlparse	--	Parse	URLs	into
components
This	module	defines	a	standard	interface	to	break	Uniform	Resource	Locator
(URL)	strings	up	in	components	(addressing	scheme,	network	location,	path
etc.),	to	combine	the	components	back	into	a	URL	string,	and	to	convert	a
``relative	URL''	to	an	absolute	URL	given	a	``base	URL.''

The	module	has	been	designed	to	match	the	Internet	RFC	on	Relative	Uniform
Resource	Locators	(and	discovered	a	bug	in	an	earlier	draft!).

It	defines	the	following	functions:

urlparse(urlstring[,	default_scheme[,	allow_fragments]])
Parse	a	URL	into	6	components,	returning	a	6-tuple:	(addressing	scheme,
network	location,	path,	parameters,	query,	fragment	identifier).	This
corresponds	to	the	general	structure	of	a	URL:
scheme://netloc/path;parameters?query#fragment.	Each	tuple	item	is	a
string,	possibly	empty.	The	components	are	not	broken	up	in	smaller	parts
(e.g.	the	network	location	is	a	single	string),	and	%	escapes	are	not
expanded.	The	delimiters	as	shown	above	are	not	part	of	the	tuple	items,
except	for	a	leading	slash	in	the	path	component,	which	is	retained	if
present.

Example:

urlparse('http://www.cwi.nl:80/%7Eguido/Python.html')

yields	the	tuple

('http',	'www.cwi.nl:80',	'/%7Eguido/Python.html',	'',	'',	'')

If	the	default_scheme	argument	is	specified,	it	gives	the	default	addressing
scheme,	to	be	used	only	if	the	URL	string	does	not	specify	one.	The	default
value	for	this	argument	is	the	empty	string.

If	the	allow_fragments	argument	is	zero,	fragment	identifiers	are	not

allowed,	even	if	the	URL's	addressing	scheme	normally	does	support	them.
The	default	value	for	this	argument	is	1.

urlunparse(tuple)
Construct	a	URL	string	from	a	tuple	as	returned	by	urlparse().	This
may	result	in	a	slightly	different,	but	equivalent	URL,	if	the	URL	that	was
parsed	originally	had	redundant	delimiters,	e.g.	a	?	with	an	empty	query
(the	draft	states	that	these	are	equivalent).

urlsplit(urlstring[,	default_scheme[,	allow_fragments]])
This	is	similar	to	urlparse(),	but	does	not	split	the	params	from	the
URL.	This	should	generally	be	used	instead	of	urlparse()	if	the	more
recent	URL	syntax	allowing	parameters	to	be	applied	to	each	segment	of
the	path	portion	of	the	URL	(see	RFC	2396).	A	separate	function	is	needed
to	separate	the	path	segments	and	parameters.	This	function	returns	a	5-
tuple:	(addressing	scheme,	network	location,	path,	query,	fragment
identifier).	New	in	version	2.2.

urlunsplit(tuple)
Combine	the	elements	of	a	tuple	as	returned	by	urlsplit()	into	a
complete	URL	as	a	string.	New	in	version	2.2.

urljoin(base,	url[,	allow_fragments])
Construct	a	full	(``absolute'')	URL	by	combining	a	``base	URL''	(base)	with
a	``relative	URL''	(url).	Informally,	this	uses	components	of	the	base	URL,
in	particular	the	addressing	scheme,	the	network	location	and	(part	of)	the
path,	to	provide	missing	components	in	the	relative	URL.

Example:

urljoin('http://www.cwi.nl/%7Eguido/Python.html',	'FAQ.html')

yields	the	string

'http://www.cwi.nl/%7Eguido/FAQ.html'

The	allow_fragments	argument	has	the	same	meaning	as	for
urlparse().

http://www.faqs.org/rfcs/rfc2396.html

urldefrag(url)
If	url	contains	a	fragment	identifier,	returns	a	modified	version	of	url	with
no	fragment	identifier,	and	the	fragment	identifier	as	a	separate	string.	If
there	is	no	fragment	identifier	in	url,	returns	url	unmodified	and	an	empty
string.

See	Also:

RFC	1738,	Uniform	Resource	Locators	(URL)
This	specifies	the	formal	syntax	and	semantics	of	absolute	URLs.

RFC	1808,	Relative	Uniform	Resource	Locators
This	Request	For	Comments	includes	the	rules	for	joining	an	absolute
and	a	relative	URL,	including	a	fair	number	of	``Abnormal	Examples''
which	govern	the	treatment	of	border	cases.

RFC	2396,	Uniform	Resource	Identifiers	(URI):	Generic	Syntax
Document	describing	the	generic	syntactic	requirements	for	both
Uniform	Resource	Names	(URNs)	and	Uniform	Resource	Locators
(URLs).

Python	Library	Reference
Previous:	11.14.2	Telnet	Example	Up:	11.	Internet	Protocols	and	Next:	11.16
SocketServer

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.faqs.org/rfcs/rfc1738.html
http://www.faqs.org/rfcs/rfc1808.html
http://www.faqs.org/rfcs/rfc2396.html

Previous:	11.15	urlparse	Up:	11.	Internet	Protocols	and	Next:	11.17
BaseHTTPServer

11.16	SocketServer	--	A	framework
for	network	servers
The	SocketServer	module	simplifies	the	task	of	writing	network	servers.

There	are	four	basic	server	classes:	TCPServer	uses	the	Internet	TCP	protocol,
which	provides	for	continuous	streams	of	data	between	the	client	and	server.
UDPServer	uses	datagrams,	which	are	discrete	packets	of	information	that
may	arrive	out	of	order	or	be	lost	while	in	transit.	The	more	infrequently	used
UnixStreamServer	and	UnixDatagramServer	classes	are	similar,	but
use	UNIX	domain	sockets;	they're	not	available	on	non-UNIX	platforms.	For	more
details	on	network	programming,	consult	a	book	such	as	W.	Richard	Steven's
UNIX	Network	Programming	or	Ralph	Davis's	Win32	Network	Programming.

These	four	classes	process	requests	synchronously;	each	request	must	be
completed	before	the	next	request	can	be	started.	This	isn't	suitable	if	each
request	takes	a	long	time	to	complete,	because	it	requires	a	lot	of	computation,	or
because	it	returns	a	lot	of	data	which	the	client	is	slow	to	process.	The	solution	is
to	create	a	separate	process	or	thread	to	handle	each	request;	the
ForkingMixIn	and	ThreadingMixIn	mix-in	classes	can	be	used	to
support	asynchronous	behaviour.

Creating	a	server	requires	several	steps.	First,	you	must	create	a	request	handler
class	by	subclassing	the	BaseRequestHandler	class	and	overriding	its
handle()	method;	this	method	will	process	incoming	requests.	Second,	you
must	instantiate	one	of	the	server	classes,	passing	it	the	server's	address	and	the
request	handler	class.	Finally,	call	the	handle_request()	or
serve_forever()	method	of	the	server	object	to	process	one	or	many
requests.

When	inheriting	from	ThreadingMixIn	for	threaded	connection	behavior,
you	should	explicitly	declare	how	you	want	your	threads	to	behave	on	an	abrupt
shutdown.	The	ThreadingMixIn	class	defines	an	attribute	daemon_threads,
which	indicates	whether	or	not	the	server	should	wait	for	thread	termination.
You	should	set	the	flag	explicitly	if	you	would	like	threads	to	behave
autonomously;	the	default	is	False,	meaning	that	Python	will	not	exit	until	all

threads	created	by	ThreadingMixIn	have	exited.

Server	classes	have	the	same	external	methods	and	attributes,	no	matter	what
network	protocol	they	use:

fileno()
Return	an	integer	file	descriptor	for	the	socket	on	which	the	server	is
listening.	This	function	is	most	commonly	passed	to	select.select(),
to	allow	monitoring	multiple	servers	in	the	same	process.

handle_request()
Process	a	single	request.	This	function	calls	the	following	methods	in	order:
get_request(),	verify_request(),	and
process_request().	If	the	user-provided	handle()	method	of	the
handler	class	raises	an	exception,	the	server's	handle_error()	method
will	be	called.

serve_forever()
Handle	an	infinite	number	of	requests.	This	simply	calls
handle_request()	inside	an	infinite	loop.

address_family

The	family	of	protocols	to	which	the	server's	socket	belongs.
socket.AF_INET	and	socket.AF_UNIX	are	two	possible	values.

RequestHandlerClass

The	user-provided	request	handler	class;	an	instance	of	this	class	is	created
for	each	request.

server_address

The	address	on	which	the	server	is	listening.	The	format	of	addresses	varies
depending	on	the	protocol	family;	see	the	documentation	for	the	socket
module	for	details.	For	Internet	protocols,	this	is	a	tuple	containing	a	string
giving	the	address,	and	an	integer	port	number:	('127.0.0.1',	80),
for	example.

socket

The	socket	object	on	which	the	server	will	listen	for	incoming	requests.

The	server	classes	support	the	following	class	variables:

allow_reuse_address

Whether	the	server	will	allow	the	reuse	of	an	address.	This	defaults	to
False,	and	can	be	set	in	subclasses	to	change	the	policy.

request_queue_size

The	size	of	the	request	queue.	If	it	takes	a	long	time	to	process	a	single
request,	any	requests	that	arrive	while	the	server	is	busy	are	placed	into	a
queue,	up	to	request_queue_size	requests.	Once	the	queue	is	full,
further	requests	from	clients	will	get	a	``Connection	denied''	error.	The
default	value	is	usually	5,	but	this	can	be	overridden	by	subclasses.

socket_type

The	type	of	socket	used	by	the	server;	socket.SOCK_STREAM	and
socket.SOCK_DGRAM	are	two	possible	values.

There	are	various	server	methods	that	can	be	overridden	by	subclasses	of	base
server	classes	like	TCPServer;	these	methods	aren't	useful	to	external	users	of
the	server	object.

finish_request()
Actually	processes	the	request	by	instantiating	RequestHandlerClass
and	calling	its	handle()	method.

get_request()
Must	accept	a	request	from	the	socket,	and	return	a	2-tuple	containing	the
new	socket	object	to	be	used	to	communicate	with	the	client,	and	the	client's
address.

handle_error(request,	client_address)
This	function	is	called	if	the	RequestHandlerClass's	handle()
method	raises	an	exception.	The	default	action	is	to	print	the	traceback	to
standard	output	and	continue	handling	further	requests.

process_request(request,	client_address)
Calls	finish_request()	to	create	an	instance	of	the
RequestHandlerClass.	If	desired,	this	function	can	create	a	new

process	or	thread	to	handle	the	request;	the	ForkingMixIn	and
ThreadingMixIn	classes	do	this.

server_activate()
Called	by	the	server's	constructor	to	activate	the	server.	May	be	overridden.

server_bind()
Called	by	the	server's	constructor	to	bind	the	socket	to	the	desired	address.
May	be	overridden.

verify_request(request,	client_address)
Must	return	a	Boolean	value;	if	the	value	is	True,	the	request	will	be
processed,	and	if	it's	False,	the	request	will	be	denied.	This	function	can
be	overridden	to	implement	access	controls	for	a	server.	The	default
implementation	always	returns	True.

The	request	handler	class	must	define	a	new	handle()	method,	and	can
override	any	of	the	following	methods.	A	new	instance	is	created	for	each
request.

finish()
Called	after	the	handle()	method	to	perform	any	clean-up	actions
required.	The	default	implementation	does	nothing.	If	setup()	or
handle()	raise	an	exception,	this	function	will	not	be	called.

handle()
This	function	must	do	all	the	work	required	to	service	a	request.	Several
instance	attributes	are	available	to	it;	the	request	is	available	as
self.request;	the	client	address	as	self.client_address;	and
the	server	instance	as	self.server,	in	case	it	needs	access	to	per-server
information.

The	type	of	self.request	is	different	for	datagram	or	stream	services.
For	stream	services,	self.request	is	a	socket	object;	for	datagram
services,	self.request	is	a	string.	However,	this	can	be	hidden	by
using	the	mix-in	request	handler	classes	StreamRequestHandler	or
DatagramRequestHandler,	which	override	the	setup()	and

finish()	methods,	and	provides	self.rfile	and	self.wfile
attributes.	self.rfile	and	self.wfile	can	be	read	or	written,
respectively,	to	get	the	request	data	or	return	data	to	the	client.

setup()
Called	before	the	handle()	method	to	perform	any	initialization	actions
required.	The	default	implementation	does	nothing.

Python	Library	Reference
Previous:	11.15	urlparse	Up:	11.	Internet	Protocols	and	Next:	11.17
BaseHTTPServer

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.16	SocketServer	Up:	11.	Internet	Protocols	and	Next:	11.18
SimpleHTTPServer

11.17	BaseHTTPServer	--	Basic
HTTP	server
This	module	defines	two	classes	for	implementing	HTTP	servers	(Web	servers).
Usually,	this	module	isn't	used	directly,	but	is	used	as	a	basis	for	building
functioning	Web	servers.	See	the	SimpleHTTPServer	and
CGIHTTPServer	modules.

The	first	class,	HTTPServer,	is	a	SocketServer.TCPServer	subclass.	It
creates	and	listens	at	the	HTTP	socket,	dispatching	the	requests	to	a	handler.
Code	to	create	and	run	the	server	looks	like	this:

def	run(server_class=BaseHTTPServer.HTTPServer,

								handler_class=BaseHTTPServer.BaseHTTPRequestHandler):

				server_address	=	('',	8000)

				httpd	=	server_class(server_address,	handler_class)

				httpd.serve_forever()

class	HTTPServer(server_address,	RequestHandlerClass)
This	class	builds	on	the	TCPServer	class	by	storing	the	server	address	as
instance	variables	named	server_name	and	server_port.	The	server
is	accessible	by	the	handler,	typically	through	the	handler's	server
instance	variable.

class	BaseHTTPRequestHandler(request,	client_address,	server)
This	class	is	used	to	handle	the	HTTP	requests	that	arrive	at	the	server.	By
itself,	it	cannot	respond	to	any	actual	HTTP	requests;	it	must	be	subclassed
to	handle	each	request	method	(e.g.	GET	or	POST).
BaseHTTPRequestHandler	provides	a	number	of	class	and	instance
variables,	and	methods	for	use	by	subclasses.

The	handler	will	parse	the	request	and	the	headers,	then	call	a	method
specific	to	the	request	type.	The	method	name	is	constructed	from	the
request.	For	example,	for	the	request	method	"SPAM",	the	do_SPAM()
method	will	be	called	with	no	arguments.	All	of	the	relevant	information	is
stored	in	instance	variables	of	the	handler.	Subclasses	should	not	need	to

override	or	extend	the	__init__()	method.

BaseHTTPRequestHandler	has	the	following	instance	variables:

client_address

Contains	a	tuple	of	the	form	(host,	port)	referring	to	the	client's	address.

command

Contains	the	command	(request	type).	For	example,	'GET'.

path

Contains	the	request	path.

request_version

Contains	the	version	string	from	the	request.	For	example,	'HTTP/1.0'.

headers

Holds	an	instance	of	the	class	specified	by	the	MessageClass	class
variable.	This	instance	parses	and	manages	the	headers	in	the	HTTP
request.

rfile

Contains	an	input	stream,	positioned	at	the	start	of	the	optional	input	data.

wfile

Contains	the	output	stream	for	writing	a	response	back	to	the	client.	Proper
adherence	to	the	HTTP	protocol	must	be	used	when	writing	to	this	stream.

BaseHTTPRequestHandler	has	the	following	class	variables:

server_version

Specifies	the	server	software	version.	You	may	want	to	override	this.	The
format	is	multiple	whitespace-separated	strings,	where	each	string	is	of	the
form	name[/version].	For	example,	'BaseHTTP/0.2'.

sys_version

Contains	the	Python	system	version,	in	a	form	usable	by	the
version_string	method	and	the	server_version	class	variable.
For	example,	'Python/1.4'.

error_message_format

Specifies	a	format	string	for	building	an	error	response	to	the	client.	It	uses
parenthesized,	keyed	format	specifiers,	so	the	format	operand	must	be	a
dictionary.	The	code	key	should	be	an	integer,	specifying	the	numeric
HTTP	error	code	value.	message	should	be	a	string	containing	a	(detailed)
error	message	of	what	occurred,	and	explain	should	be	an	explanation	of
the	error	code	number.	Default	message	and	explain	values	can	found	in	the
responses	class	variable.

protocol_version

This	specifies	the	HTTP	protocol	version	used	in	responses.	If	set	to
'HTTP/1.1',	the	server	will	permit	HTTP	persistent	connections;
however,	your	server	must	then	include	an	accurate	Content-Length
header	(using	send_header())	in	all	of	its	responses	to	clients.	For
backwards	compatibility,	the	setting	defaults	to	'HTTP/1.0'.

MessageClass

Specifies	a	rfc822.Message-like	class	to	parse	HTTP	headers.
Typically,	this	is	not	overridden,	and	it	defaults	to
mimetools.Message.

responses

This	variable	contains	a	mapping	of	error	code	integers	to	two-element
tuples	containing	a	short	and	long	message.	For	example,	{code:
(shortmessage,	longmessage)}.	The	shortmessage	is	usually	used	as	the
message	key	in	an	error	response,	and	longmessage	as	the	explain	key	(see
the	error_message_format	class	variable).

A	BaseHTTPRequestHandler	instance	has	the	following	methods:

handle()
Calls	handle_one_request()	once	(or,	if	persistent	connections	are
enabled,	multiple	times)	to	handle	incoming	HTTP	requests.	You	should
never	need	to	override	it;	instead,	implement	appropriate	do_*()	methods.

handle_one_request()
This	method	will	parse	and	dispatch	the	request	to	the	appropriate	do_*()
method.	You	should	never	need	to	override	it.

send_error(code[,	message])
Sends	and	logs	a	complete	error	reply	to	the	client.	The	numeric	code
specifies	the	HTTP	error	code,	with	message	as	optional,	more	specific	text.
A	complete	set	of	headers	is	sent,	followed	by	text	composed	using	the
error_message_format	class	variable.

send_response(code[,	message])
Sends	a	response	header	and	logs	the	accepted	request.	The	HTTP	response
line	is	sent,	followed	by	Server	and	Date	headers.	The	values	for	these	two
headers	are	picked	up	from	the	version_string()	and
date_time_string()	methods,	respectively.

send_header(keyword,	value)
Writes	a	specific	HTTP	header	to	the	output	stream.	keyword	should	specify
the	header	keyword,	with	value	specifying	its	value.

end_headers()
Sends	a	blank	line,	indicating	the	end	of	the	HTTP	headers	in	the	response.

log_request([code[,	size]])
Logs	an	accepted	(successful)	request.	code	should	specify	the	numeric
HTTP	code	associated	with	the	response.	If	a	size	of	the	response	is
available,	then	it	should	be	passed	as	the	size	parameter.

log_error(...)
Logs	an	error	when	a	request	cannot	be	fulfilled.	By	default,	it	passes	the
message	to	log_message(),	so	it	takes	the	same	arguments	(format	and
additional	values).

log_message(format,	...)
Logs	an	arbitrary	message	to	sys.stderr.	This	is	typically	overridden	to
create	custom	error	logging	mechanisms.	The	format	argument	is	a	standard
printf-style	format	string,	where	the	additional	arguments	to
log_message()	are	applied	as	inputs	to	the	formatting.	The	client
address	and	current	date	and	time	are	prefixed	to	every	message	logged.

version_string()

Returns	the	server	software's	version	string.	This	is	a	combination	of	the
server_version	and	sys_version	class	variables.

date_time_string()
Returns	the	current	date	and	time,	formatted	for	a	message	header.

log_data_time_string()
Returns	the	current	date	and	time,	formatted	for	logging.

address_string()
Returns	the	client	address,	formatted	for	logging.	A	name	lookup	is
performed	on	the	client's	IP	address.

See	Also:

Module	CGIHTTPServer:
Extended	request	handler	that	supports	CGI	scripts.

Module	SimpleHTTPServer:
Basic	request	handler	that	limits	response	to	files	actually	under	the
document	root.

Python	Library	Reference
Previous:	11.16	SocketServer	Up:	11.	Internet	Protocols	and	Next:	11.18
SimpleHTTPServer

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.17	BaseHTTPServer	Up:	11.	Internet	Protocols	and	Next:	11.19
CGIHTTPServer

11.18	SimpleHTTPServer	--	Simple
HTTP	request	handler
The	SimpleHTTPServer	module	defines	a	request-handler	class,	interface-
compatible	with	BaseHTTPServer.BaseHTTPRequestHandler,	that
serves	files	only	from	a	base	directory.

The	SimpleHTTPServer	module	defines	the	following	class:

class	SimpleHTTPRequestHandler(request,	client_address,	server)
This	class	is	used	to	serve	files	from	the	current	directory	and	below,
directly	mapping	the	directory	structure	to	HTTP	requests.

A	lot	of	the	work,	such	as	parsing	the	request,	is	done	by	the	base	class
BaseHTTPServer.BaseHTTPRequestHandler.	This	class
implements	the	do_GET()	and	do_HEAD()	functions.

The	SimpleHTTPRequestHandler	defines	the	following	member
variables:

server_version

This	will	be	"SimpleHTTP/"	+	__version__,	where
__version__	is	defined	in	the	module.

extensions_map

A	dictionary	mapping	suffixes	into	MIME	types.	The	default	is	signified	by
an	empty	string,	and	is	considered	to	be	application/octet-
stream.	The	mapping	is	used	case-insensitively,	and	so	should	contain
only	lower-cased	keys.

The	SimpleHTTPRequestHandler	defines	the	following	methods:

do_HEAD()
This	method	serves	the	'HEAD'	request	type:	it	sends	the	headers	it	would
send	for	the	equivalent	GET	request.	See	the	do_GET()	method	for	a	more

complete	explanation	of	the	possible	headers.

do_GET()
The	request	is	mapped	to	a	local	file	by	interpreting	the	request	as	a	path
relative	to	the	current	working	directory.

If	the	request	was	mapped	to	a	directory,	the	directory	is	checked	for	a	file
named	index.html	or	index.htm	(in	that	order).	If	found,	the	file's
contents	are	returned;	otherwise	a	directory	listing	is	generated	by	calling
the	list_directory()	method.	This	method	uses	os.listdir()	to
scan	the	directory,	and	returns	a	404	error	response	if	the	listdir()
fails.

If	the	request	was	mapped	to	a	file,	it	is	opened	and	the	contents	are
returned.	Any	IOError	exception	in	opening	the	requested	file	is	mapped
to	a	404,	'File	not	found'	error.	Otherwise,	the	content	type	is
guessed	by	calling	the	guess_type()	method,	which	in	turn	uses	the
extensions_map	variable.

A	'Content-type:'	header	with	the	guessed	content	type	is	output,
followed	by	a	blank	line	signifying	the	end	of	the	headers,	and	then	the
contents	of	the	file	are	output.	If	the	file's	MIME	type	starts	with	text/
the	file	is	opened	in	text	mode;	otherwise	binary	mode	is	used.

For	example	usage,	see	the	implementation	of	the	test()	function.

See	Also:

Module	BaseHTTPServer:
Base	class	implementation	for	Web	server	and	request	handler.

Python	Library	Reference
Previous:	11.17	BaseHTTPServer	Up:	11.	Internet	Protocols	and	Next:	11.19
CGIHTTPServer

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.18	SimpleHTTPServer	Up:	11.	Internet	Protocols	and	Next:	11.20
cookielib

11.19	CGIHTTPServer	--	CGI-
capable	HTTP	request	handler
The	CGIHTTPServer	module	defines	a	request-handler	class,	interface
compatible	with	BaseHTTPServer.BaseHTTPRequestHandler	and
inherits	behavior	from
SimpleHTTPServer.SimpleHTTPRequestHandler	but	can	also	run
CGI	scripts.

Note:	This	module	can	run	CGI	scripts	on	UNIX	and	Windows	systems;	on	Mac
OS	it	will	only	be	able	to	run	Python	scripts	within	the	same	process	as	itself.

The	CGIHTTPServer	module	defines	the	following	class:

class	CGIHTTPRequestHandler(request,	client_address,	server)
This	class	is	used	to	serve	either	files	or	output	of	CGI	scripts	from	the
current	directory	and	below.	Note	that	mapping	HTTP	hierarchic	structure
to	local	directory	structure	is	exactly	as	in
SimpleHTTPServer.SimpleHTTPRequestHandler.

The	class	will	however,	run	the	CGI	script,	instead	of	serving	it	as	a	file,	if
it	guesses	it	to	be	a	CGI	script.	Only	directory-based	CGI	are	used	--	the
other	common	server	configuration	is	to	treat	special	extensions	as	denoting
CGI	scripts.

The	do_GET()	and	do_HEAD()	functions	are	modified	to	run	CGI
scripts	and	serve	the	output,	instead	of	serving	files,	if	the	request	leads	to
somewhere	below	the	cgi_directories	path.

The	CGIHTTPRequestHandler	defines	the	following	data	member:

cgi_directories

This	defaults	to	['/cgi-bin',	'/htbin']	and	describes	directories
to	treat	as	containing	CGI	scripts.

The	CGIHTTPRequestHandler	defines	the	following	methods:

do_POST()
This	method	serves	the	'POST'	request	type,	only	allowed	for	CGI	scripts.
Error	501,	"Can	only	POST	to	CGI	scripts",	is	output	when	trying	to	POST
to	a	non-CGI	url.

Note	that	CGI	scripts	will	be	run	with	UID	of	user	nobody,	for	security	reasons.
Problems	with	the	CGI	script	will	be	translated	to	error	403.

For	example	usage,	see	the	implementation	of	the	test()	function.

See	Also:

Module	BaseHTTPServer:
Base	class	implementation	for	Web	server	and	request	handler.

Python	Library	Reference
Previous:	11.18	SimpleHTTPServer	Up:	11.	Internet	Protocols	and	Next:	11.20
cookielib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.19	CGIHTTPServer	Up:	11.	Internet	Protocols	and	Next:	11.20.1
CookieJar	and	FileCookieJar

11.20	cookielib	--	Cookie	handling
for	HTTP	clients
The	cookielib	module	defines	classes	for	automatic	handling	of	HTTP
cookies.	It	is	useful	for	accessing	web	sites	that	require	small	pieces	of	data	-
cookies	-	to	be	set	on	the	client	machine	by	an	HTTP	response	from	a	web
server,	and	then	returned	to	the	server	in	later	HTTP	requests.

Both	the	regular	Netscape	cookie	protocol	and	the	protocol	defined	by	RFC
2965	are	handled.	RFC	2965	handling	is	switched	off	by	default.	RFC	2109
cookies	are	parsed	as	Netscape	cookies	and	subsequently	treated	as	RFC	2965
cookies.	Note	that	the	great	majority	of	cookies	on	the	Internet	are	Netscape
cookies.	cookielib	attempts	to	follow	the	de-facto	Netscape	cookie	protocol
(which	differs	substantially	from	that	set	out	in	the	original	Netscape
specification),	including	taking	note	of	the	max-age	and	port	cookie-
attributes	introduced	with	RFC	2109.	Note:	The	various	named	parameters
found	in	Set-Cookie:	and	Set-Cookie2:	headers	(eg.	domain	and	expires)
are	conventionally	referred	to	as	attributes.	To	distinguish	them	from	Python
attributes,	the	documentation	for	this	module	uses	the	term	cookie-attribute
instead.

The	module	defines	the	following	exception:

exception	LoadError
Instances	of	FileCookieJar	raise	this	exception	on	failure	to	load
cookies	from	a	file.

The	following	classes	are	provided:

class	CookieJar(policy=None)
policy	is	an	object	implementing	the	CookiePolicy	interface.

The	CookieJar	class	stores	HTTP	cookies.	It	extracts	cookies	from
HTTP	requests,	and	returns	them	in	HTTP	responses.	CookieJar
instances	automatically	expire	contained	cookies	when	necessary.
Subclasses	are	also	responsible	for	storing	and	retrieving	cookies	from	a

http://www.faqs.org/rfcs/rfc2965.html
http://www.faqs.org/rfcs/rfc2109.html

file	or	database.

class	FileCookieJar(filename,	delayload=None,	policy=None)
policy	is	an	object	implementing	the	CookiePolicy	interface.	For	the
other	arguments,	see	the	documentation	for	the	corresponding	attributes.

A	CookieJar	which	can	load	cookies	from,	and	perhaps	save	cookies	to,
a	file	on	disk.	Cookies	are	NOT	loaded	from	the	named	file	until	either	the
load()	or	revert()	method	is	called.	Subclasses	of	this	class	are
documented	in	section	11.20.2.

class	CookiePolicy()
This	class	is	responsible	for	deciding	whether	each	cookie	should	be
accepted	from	/	returned	to	the	server.

class	DefaultCookiePolicy(

blocked_domains=None,	allowed_domains=
netscape=True,	rfc2965=False,	hide_cookie2=
strict_domain=False,	strict_rfc2965_unverifiable=
strict_ns_unverifiable=False,
strict_ns_domain=DefaultCookiePolicy.DomainLiberal
strict_ns_set_initial_dollar=False,	strict_ns_set_path=

Constructor	arguments	should	be	passed	as	keyword	arguments	only.
blocked_domains	is	a	sequence	of	domain	names	that	we	never	accept
cookies	from,	nor	return	cookies	to.	allowed_domains	if	not	None,	this	is	a
sequence	of	the	only	domains	for	which	we	accept	and	return	cookies.	For
all	other	arguments,	see	the	documentation	for	CookiePolicy	and
DefaultCookiePolicy	objects.

DefaultCookiePolicy	implements	the	standard	accept	/	reject	rules
for	Netscape	and	RFC	2965	cookies.	RFC	2109	cookies	(ie.	cookies
received	in	a	Set-Cookie:	header	with	a	version	cookie-attribute	of	1)	are
treated	according	to	the	RFC	2965	rules.	DefaultCookiePolicy	also
provides	some	parameters	to	allow	some	fine-tuning	of	policy.

class	Cookie()
This	class	represents	Netscape,	RFC	2109	and	RFC	2965	cookies.	It	is	not
expected	that	users	of	cookielib	construct	their	own	Cookie	instances.

Instead,	if	necessary,	call	make_cookies()	on	a	CookieJar	instance.

See	Also:

Module	urllib2:
URL	opening	with	automatic	cookie	handling.

Module	Cookie:
HTTP	cookie	classes,	principally	useful	for	server-side	code.	The
cookielib	and	Cookie	modules	do	not	depend	on	each	other.

http://wwwsearch.sf.net/ClientCookie/
Extensions	to	this	module,	including	a	class	for	reading	Microsoft
Internet	Explorer	cookies	on	Windows.

http://www.netscape.com/newsref/std/cookie_spec.html
The	specification	of	the	original	Netscape	cookie	protocol.	Though
this	is	still	the	dominant	protocol,	the	'Netscape	cookie	protocol'
implemented	by	all	the	major	browsers	(and	cookielib)	only	bears
a	passing	resemblance	to	the	one	sketched	out	in
cookie_spec.html.

RFC	2109,	HTTP	State	Management	Mechanism
Obsoleted	by	RFC	2965.	Uses	Set-Cookie:	with	version=1.

RFC	2965,	HTTP	State	Management	Mechanism
The	Netscape	protocol	with	the	bugs	fixed.	Uses	Set-Cookie2:	in
place	of	Set-Cookie:.	Not	widely	used.

http://kristol.org/cookie/errata.html
Unfinished	errata	to	RFC	2965.

RFC	2964,	Use	of	HTTP	State	Management

Subsections

11.20.1	CookieJar	and	FileCookieJar	Objects

http://wwwsearch.sf.net/ClientCookie/
http://www.netscape.com/newsref/std/cookie_spec.html
http://www.faqs.org/rfcs/rfc2109.html
http://www.faqs.org/rfcs/rfc2965.html
http://kristol.org/cookie/errata.html
http://www.faqs.org/rfcs/rfc2964.html

11.20.2	FileCookieJar	subclasses	and	co-operation	with	web	browsers
11.20.3	CookiePolicy	Objects
11.20.4	DefaultCookiePolicy	Objects
11.20.5	Cookie	Objects
11.20.6	Examples

Python	Library	Reference
Previous:	11.19	CGIHTTPServer	Up:	11.	Internet	Protocols	and	Next:	11.20.1
CookieJar	and	FileCookieJar

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.20	cookielib	Up:	11.20	cookielib	Next:	11.20.2	FileCookieJar
subclasses	and

11.20.1	CookieJar	and	FileCookieJar	Objects
CookieJar	objects	support	the	iterator	protocol	for	iterating	over	contained
Cookie	objects.

CookieJar	has	the	following	methods:

add_cookie_header(request)
Add	correct	Cookie:	header	to	request.

If	policy	allows	(ie.	the	rfc2965	and	hide_cookie2	attributes	of	the
CookieJar's	CookiePolicy	instance	are	true	and	false	respectively),
the	Cookie2:	header	is	also	added	when	appropriate.

The	request	object	(usually	a	urllib2.Request	instance)	must	support
the	methods	get_full_url(),	get_host(),	get_type(),
unverifiable(),	get_origin_req_host(),	has_header(),
get_header(),	header_items(),	and
add_unredirected_header(),as	documented	by	urllib2.

extract_cookies(response,	request)
Extract	cookies	from	HTTP	response	and	store	them	in	the	CookieJar,
where	allowed	by	policy.

The	CookieJar	will	look	for	allowable	Set-Cookie:	and	Set-Cookie2:
headers	in	the	response	argument,	and	store	cookies	as	appropriate	(subject
to	the	CookiePolicy.set_ok()	method's	approval).

The	response	object	(usually	the	result	of	a	call	to
urllib2.urlopen(),	or	similar)	should	support	an	info()	method,
which	returns	an	object	with	a	getallmatchingheaders()	method
(usually	a	mimetools.Message	instance).

The	request	object	(usually	a	urllib2.Request	instance)	must	support
the	methods	get_full_url(),	get_host(),	unverifiable(),
and	get_origin_req_host(),	as	documented	by	urllib2.	The
request	is	used	to	set	default	values	for	cookie-attributes	as	well	as	for

checking	that	the	cookie	is	allowed	to	be	set.

set_policy(policy)
Set	the	CookiePolicy	instance	to	be	used.

make_cookies(response,	request)
Return	sequence	of	Cookie	objects	extracted	from	response	object.

See	the	documentation	for	extract_cookies	for	the	interfaces	required
of	the	response	and	request	arguments.

set_cookie_if_ok(cookie,	request)
Set	a	Cookie	if	policy	says	it's	OK	to	do	so.

set_cookie(cookie)
Set	a	Cookie,	without	checking	with	policy	to	see	whether	or	not	it	should
be	set.

clear([domain[,	path[,	name]]])
Clear	some	cookies.

If	invoked	without	arguments,	clear	all	cookies.	If	given	a	single	argument,
only	cookies	belonging	to	that	domain	will	be	removed.	If	given	two
arguments,	cookies	belonging	to	the	specified	domain	and	URL	path	are
removed.	If	given	three	arguments,	then	the	cookie	with	the	specified
domain,	path	and	name	is	removed.

Raises	KeyError	if	no	matching	cookie	exists.

clear_session_cookies()
Discard	all	session	cookies.

Discards	all	contained	cookies	that	have	a	true	discard	attribute	(usually
because	they	had	either	no	max-age	or	expires	cookie-attribute,	or	an
explicit	discard	cookie-attribute).	For	interactive	browsers,	the	end	of	a
session	usually	corresponds	to	closing	the	browser	window.

Note	that	the	save()	method	won't	save	session	cookies	anyway,	unless

you	ask	otherwise	by	passing	a	true	ignore_discard	argument.

FileCookieJar	implements	the	following	additional	methods:

save(filename=None,	ignore_discard=False,	ignore_expires=False)
Save	cookies	to	a	file.

This	base	class	raises	NotImplementedError.	Subclasses	may	leave
this	method	unimplemented.

filename	is	the	name	of	file	in	which	to	save	cookies.	If	filename	is	not
specified,	self.filename	is	used	(whose	default	is	the	value	passed	to
the	constructor,	if	any);	if	self.filename	is	None,	ValueError	is
raised.

ignore_discard:	save	even	cookies	set	to	be	discarded.	ignore_expires:	save
even	cookies	that	have	expired

The	file	is	overwritten	if	it	already	exists,	thus	wiping	all	the	cookies	it
contains.	Saved	cookies	can	be	restored	later	using	the	load()	or
revert()	methods.

load(filename=None,	ignore_discard=False,	ignore_expires=False)
Load	cookies	from	a	file.

Old	cookies	are	kept	unless	overwritten	by	newly	loaded	ones.

Arguments	are	as	for	save().

The	named	file	must	be	in	the	format	understood	by	the	class,	or
LoadError	will	be	raised.

revert(filename=None,	ignore_discard=False,	ignore_expires=False)
Clear	all	cookies	and	reload	cookies	from	a	saved	file.

Raises	cookielib.LoadError	or	IOError	if	reversion	is	not
successful;	the	object's	state	will	not	be	altered	if	this	happens.

FileCookieJar	instances	have	the	following	public	attributes:

filename

Filename	of	default	file	in	which	to	keep	cookies.	This	attribute	may	be
assigned	to.

delayload

If	true,	load	cookies	lazily	from	disk.	This	attribute	should	not	be	assigned
to.	This	is	only	a	hint,	since	this	only	affects	performance,	not	behaviour
(unless	the	cookies	on	disk	are	changing).	A	CookieJar	object	may
ignore	it.	None	of	the	FileCookieJar	classes	included	in	the	standard
library	lazily	loads	cookies.

Python	Library	Reference
Previous:	11.20	cookielib	Up:	11.20	cookielib	Next:	11.20.2	FileCookieJar
subclasses	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.20.1	CookieJar	and	FileCookieJar	Up:	11.20	cookielib	Next:
11.20.3	CookiePolicy	Objects

11.20.2	FileCookieJar	subclasses	and	co-
operation	with	web	browsers
The	following	CookieJar	subclasses	are	provided	for	reading	and	writing	.
Further	CookieJar	subclasses,	including	one	that	reads	Microsoft	Internet
Explorer	cookies,	are	available	at	http://wwwsearch.sf.net/ClientCookie/.

class	MozillaCookieJar(filename,	delayload=None,	policy=None)
A	FileCookieJar	that	can	load	from	and	save	cookies	to	disk	in	the
Mozilla	cookies.txt	file	format	(which	is	also	used	by	the	Lynx	and
Netscape	browsers).	Note:	This	loses	information	about	RFC	2965	cookies,
and	also	about	newer	or	non-standard	cookie-attributes	such	as	port.

Warning:	Back	up	your	cookies	before	saving	if	you	have	cookies	whose
loss	/	corruption	would	be	inconvenient	(there	are	some	subtleties	which
may	lead	to	slight	changes	in	the	file	over	a	load	/	save	round-trip).

Also	note	that	cookies	saved	while	Mozilla	is	running	will	get	clobbered	by
Mozilla.

class	LWPCookieJar(filename,	delayload=None,	policy=None)
A	FileCookieJar	that	can	load	from	and	save	cookies	to	disk	in	format
compatible	with	the	libwww-perl	library's	Set-Cookie3	file	format.	This
is	convenient	if	you	want	to	store	cookies	in	a	human-readable	file.

Python	Library	Reference
Previous:	11.20.1	CookieJar	and	FileCookieJar	Up:	11.20	cookielib	Next:
11.20.3	CookiePolicy	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://wwwsearch.sf.net/ClientCookie/

Previous:	11.20.2	FileCookieJar	subclasses	and	Up:	11.20	cookielib	Next:
11.20.4	DefaultCookiePolicy	Objects

11.20.3	CookiePolicy	Objects
Objects	implementing	the	CookiePolicy	interface	have	the	following
methods:

set_ok(cookie,	request)
Return	boolean	value	indicating	whether	cookie	should	be	accepted	from
server.

cookie	is	a	cookielib.Cookie	instance.	request	is	an	object
implementing	the	interface	defined	by	the	documentation	for
CookieJar.extract_cookies().

return_ok(cookie,	request)
Return	boolean	value	indicating	whether	cookie	should	be	returned	to
server.

cookie	is	a	cookielib.Cookie	instance.	request	is	an	object
implementing	the	interface	defined	by	the	documentation	for
CookieJar.add_cookie_header().

domain_return_ok(domain,	request)
Return	false	if	cookies	should	not	be	returned,	given	cookie	domain.

This	method	is	an	optimization.	It	removes	the	need	for	checking	every
cookie	with	a	particular	domain	(which	might	involve	reading	many	files).
Returning	true	from	domain_return_ok()	and
path_return_ok()	leaves	all	the	work	to	return_ok().

If	domain_return_ok()	returns	true	for	the	cookie	domain,
path_return_ok()	is	called	for	the	cookie	path.	Otherwise,
path_return_ok()	and	return_ok()	are	never	called	for	that
cookie	domain.	If	path_return_ok()	returns	true,	return_ok()	is
called	with	the	Cookie	object	itself	for	a	full	check.	Otherwise,
return_ok()	is	never	called	for	that	cookie	path.

Note	that	domain_return_ok()	is	called	for	every	cookie	domain,	not

just	for	the	request	domain.	For	example,	the	function	might	be	called	with
both	".example.com"	and	"www.example.com"	if	the	request
domain	is	"www.example.com".	The	same	goes	for
path_return_ok().

The	request	argument	is	as	documented	for	return_ok().

path_return_ok(path,	request)
Return	false	if	cookies	should	not	be	returned,	given	cookie	path.

See	the	documentation	for	domain_return_ok().

In	addition	to	implementing	the	methods	above,	implementations	of	the
CookiePolicy	interface	must	also	supply	the	following	attributes,	indicating
which	protocols	should	be	used,	and	how.	All	of	these	attributes	may	be	assigned
to.

netscape

Implement	Netscape	protocol.

rfc2965

Implement	RFC	2965	protocol.

hide_cookie2

Don't	add	Cookie2:	header	to	requests	(the	presence	of	this	header
indicates	to	the	server	that	we	understand	RFC	2965	cookies).

The	most	useful	way	to	define	a	CookiePolicy	class	is	by	subclassing	from
DefaultCookiePolicy	and	overriding	some	or	all	of	the	methods	above.
CookiePolicy	itself	may	be	used	as	a	'null	policy'	to	allow	setting	and
receiving	any	and	all	cookies	(this	is	unlikely	to	be	useful).

Python	Library	Reference
Previous:	11.20.2	FileCookieJar	subclasses	and	Up:	11.20	cookielib	Next:
11.20.4	DefaultCookiePolicy	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.20.3	CookiePolicy	Objects	Up:	11.20	cookielib	Next:	11.20.5
Cookie	Objects

11.20.4	DefaultCookiePolicy	Objects
Implements	the	standard	rules	for	accepting	and	returning	cookies.

Both	RFC	2965	and	Netscape	cookies	are	covered.	RFC	2965	handling	is
switched	off	by	default.

The	easiest	way	to	provide	your	own	policy	is	to	override	this	class	and	call	its
methods	in	your	overriden	implementations	before	adding	your	own	additional
checks:

import	cookielib

class	MyCookiePolicy(cookielib.DefaultCookiePolicy):

				def	set_ok(self,	cookie,	request):

								if	not	cookielib.DefaultCookiePolicy.set_ok(self,	cookie,	request):

												return	False

								if	i_dont_want_to_store_this_cookie(cookie):

												return	False

								return	True

In	addition	to	the	features	required	to	implement	the	CookiePolicy	interface,
this	class	allows	you	to	block	and	allow	domains	from	setting	and	receiving
cookies.	There	are	also	some	strictness	switches	that	allow	you	to	tighten	up	the
rather	loose	Netscape	protocol	rules	a	little	bit	(at	the	cost	of	blocking	some
benign	cookies).

A	domain	blacklist	and	whitelist	is	provided	(both	off	by	default).	Only	domains
not	in	the	blacklist	and	present	in	the	whitelist	(if	the	whitelist	is	active)
participate	in	cookie	setting	and	returning.	Use	the	blocked_domains	constructor
argument,	and	blocked_domains()	and	set_blocked_domains()
methods	(and	the	corresponding	argument	and	methods	for	allowed_domains).	If
you	set	a	whitelist,	you	can	turn	it	off	again	by	setting	it	to	None.

Domains	in	block	or	allow	lists	that	do	not	start	with	a	dot	must	equal	the	cookie
domain	to	be	matched.	For	example,	"example.com"	matches	a	blacklist
entry	of	"example.com",	but	"www.example.com"	does	not.	Domains
that	do	start	with	a	dot	are	matched	by	more	specific	domains	too.	For	example,
both	"www.example.com"	and	"www.coyote.example.com"	match
".example.com"	(but	"example.com"	itself	does	not).	IP	addresses	are
an	exception,	and	must	match	exactly.	For	example,	if	blocked_domains	contains

"192.168.1.2"	and	".168.1.2",	192.168.1.2	is	blocked,	but	193.168.1.2
is	not.

DefaultCookiePolicy	implements	the	following	additional	methods:

blocked_domains()
Return	the	sequence	of	blocked	domains	(as	a	tuple).

set_blocked_domains(blocked_domains)
Set	the	sequence	of	blocked	domains.

is_blocked(domain)
Return	whether	domain	is	on	the	blacklist	for	setting	or	receiving	cookies.

allowed_domains()
Return	None,	or	the	sequence	of	allowed	domains	(as	a	tuple).

set_allowed_domains(allowed_domains)
Set	the	sequence	of	allowed	domains,	or	None.

is_not_allowed(domain)
Return	whether	domain	is	not	on	the	whitelist	for	setting	or	receiving
cookies.

DefaultCookiePolicy	instances	have	the	following	attributes,	which	are
all	initialised	from	the	constructor	arguments	of	the	same	name,	and	which	may
all	be	assigned	to.

General	strictness	switches:

strict_domain

Don't	allow	sites	to	set	two-component	domains	with	country-code	top-
level	domains	like	.co.uk,	.gov.uk,	.co.nz.etc.	This	is	far	from
perfect	and	isn't	guaranteed	to	work!

RFC	2965	protocol	strictness	switches:

strict_rfc2965_unverifiable

Follow	RFC	2965	rules	on	unverifiable	transactions	(usually,	an
unverifiable	transaction	is	one	resulting	from	a	redirect	or	a	request	for	an
image	hosted	on	another	site).	If	this	is	false,	cookies	are	never	blocked	on
the	basis	of	verifiability

Netscape	protocol	strictness	switches:

strict_ns_unverifiable

apply	RFC	2965	rules	on	unverifiable	transactions	even	to	Netscape
cookies

strict_ns_domain

Flags	indicating	how	strict	to	be	with	domain-matching	rules	for	Netscape
cookies.	See	below	for	acceptable	values.

strict_ns_set_initial_dollar

Ignore	cookies	in	Set-Cookie:	headers	that	have	names	starting	with	'$'.

strict_ns_set_path

Don't	allow	setting	cookies	whose	path	doesn't	path-match	request	URI.

strict_ns_domain	is	a	collection	of	flags.	Its	value	is	constructed	by	or-ing
together	(for	example,
DomainStrictNoDots|DomainStrictNonDomain	means	both	flags	are
set).

DomainStrictNoDots

When	setting	cookies,	the	'host	prefix'	must	not	contain	a	dot	(eg.
www.foo.bar.com	can't	set	a	cookie	for	.bar.com,	because
www.foo	contains	a	dot).

DomainStrictNonDomain

Cookies	that	did	not	explicitly	specify	a	domain	cookie-attribute	can	only
be	returned	to	a	domain	equal	to	the	domain	that	set	the	cookie	(eg.
spam.example.com	won't	be	returned	cookies	from	example.com
that	had	no	domain	cookie-attribute).

DomainRFC2965Match

When	setting	cookies,	require	a	full	RFC	2965	domain-match.

The	following	attributes	are	provided	for	convenience,	and	are	the	most	useful
combinations	of	the	above	flags:

DomainLiberal

Equivalent	to	0	(ie.	all	of	the	above	Netscape	domain	strictness	flags
switched	off).

DomainStrict

Equivalent	to	DomainStrictNoDots|DomainStrictNonDomain.

Python	Library	Reference
Previous:	11.20.3	CookiePolicy	Objects	Up:	11.20	cookielib	Next:	11.20.5
Cookie	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.20.4	DefaultCookiePolicy	Objects	Up:	11.20	cookielib	Next:
11.20.6	Examples

11.20.5	Cookie	Objects
Cookie	instances	have	Python	attributes	roughly	corresponding	to	the	standard
cookie-attributes	specified	in	the	various	cookie	standards.	The	correspondence
is	not	one-to-one,	because	there	are	complicated	rules	for	assigning	default
values,	and	because	the	max-age	and	expires	cookie-attributes	contain
equivalent	information.

Assignment	to	these	attributes	should	not	be	necessary	other	than	in	rare
circumstances	in	a	CookiePolicy	method.	The	class	does	not	enforce	internal
consistency,	so	you	should	know	what	you're	doing	if	you	do	that.

version

Integer	or	None.	Netscape	cookies	have	version	0.	RFC	2965	and	RFC
2109	cookies	have	version	1.

name

Cookie	name	(a	string).

value

Cookie	value	(a	string),	or	None.

port

String	representing	a	port	or	a	set	of	ports	(eg.	'80',	or	'80,8080'),	or	None.

path

Cookie	path	(a	string,	eg.	'/acme/rocket_launchers').

secure

True	if	cookie	should	only	be	returned	over	a	secure	connection.

expires

Integer	expiry	date	in	seconds	since	epoch,	or	None.	See	also	the
is_expired()	method.

discard

True	if	this	is	a	session	cookie.

comment

String	comment	from	the	server	explaining	the	function	of	this	cookie,	or
None.

comment_url

URL	linking	to	a	comment	from	the	server	explaining	the	function	of	this
cookie,	or	None.

port_specified

True	if	a	port	or	set	of	ports	was	explicitly	specified	by	the	server	(in	the
Set-Cookie:	/	Set-Cookie2:	header).

domain_specified

True	if	a	domain	was	explicitly	specified	by	the	server.

domain_initial_dot

True	if	the	domain	explicitly	specified	by	the	server	began	with	a	dot
('.').

Cookies	may	have	additional	non-standard	cookie-attributes.	These	may	be
accessed	using	the	following	methods:

has_nonstandard_attr(name)
Return	true	if	cookie	has	the	named	cookie-attribute.

get_nonstandard_attr(name,	default=None)
If	cookie	has	the	named	cookie-attribute,	return	its	value.	Otherwise,	return
default.

set_nonstandard_attr(name,	value)
Set	the	value	of	the	named	cookie-attribute.

The	Cookie	class	also	defines	the	following	method:

is_expired([now=None])
True	if	cookie	has	passed	the	time	at	which	the	server	requested	it	should
expire.	If	now	is	given	(in	seconds	since	the	epoch),	return	whether	the
cookie	has	expired	at	the	specified	time.

Python	Library	Reference
Previous:	11.20.4	DefaultCookiePolicy	Objects	Up:	11.20	cookielib	Next:
11.20.6	Examples

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.20.5	Cookie	Objects	Up:	11.20	cookielib	Next:	11.21	Cookie

11.20.6	Examples
The	first	example	shows	the	most	common	usage	of	cookielib:

import	cookielib,	urllib2

cj	=	cookielib.CookieJar()

opener	=	urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))

r	=	opener.open("http://example.com/")

This	example	illustrates	how	to	open	a	URL	using	your	Netscape,	Mozilla,	or
Lynx	cookies	(assumes	UNIX/Netscape	convention	for	location	of	the	cookies
file):

import	os,	cookielib,	urllib2

cj	=	cookielib.MozillaCookieJar()

cj.load(os.path.join(os.environ["HOME"],	".netscape/cookies.txt"))

opener	=	urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))

r	=	opener.open("http://example.com/")

The	next	example	illustrates	the	use	of	DefaultCookiePolicy.	Turn	on
RFC	2965	cookies,	be	more	strict	about	domains	when	setting	and	returning
Netscape	cookies,	and	block	some	domains	from	setting	cookies	or	having	them
returned:

import	urllib2

from	cookielib	import	CookieJar,	DefaultCookiePolicy

policy	=	DefaultCookiePolicy(

				rfc2965=True,	strict_ns_domain=Policy.DomainStrict,

				blocked_domains=["ads.net",	".ads.net"])

cj	=	CookieJar(policy)

opener	=	urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))

r	=	opener.open("http://example.com/")

Python	Library	Reference
Previous:	11.20.5	Cookie	Objects	Up:	11.20	cookielib	Next:	11.21	Cookie

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.20.6	Examples	Up:	11.	Internet	Protocols	and	Next:	11.21.1
Cookie	Objects

11.21	Cookie	--	HTTP	state
management
The	Cookie	module	defines	classes	for	abstracting	the	concept	of	cookies,	an
HTTP	state	management	mechanism.	It	supports	both	simple	string-only
cookies,	and	provides	an	abstraction	for	having	any	serializable	data-type	as
cookie	value.

The	module	formerly	strictly	applied	the	parsing	rules	described	in	the	RFC
2109	and	RFC	2068	specifications.	It	has	since	been	discovered	that	MSIE	3.0x
doesn't	follow	the	character	rules	outlined	in	those	specs.	As	a	result,	the	parsing
rules	used	are	a	bit	less	strict.

exception	CookieError
Exception	failing	because	of	RFC	2109	invalidity:	incorrect	attributes,
incorrect	Set-Cookie:	header,	etc.

class	BaseCookie([input])
This	class	is	a	dictionary-like	object	whose	keys	are	strings	and	whose
values	are	Morsel	instances.	Note	that	upon	setting	a	key	to	a	value,	the
value	is	first	converted	to	a	Morsel	containing	the	key	and	the	value.

If	input	is	given,	it	is	passed	to	the	load()	method.

class	SimpleCookie([input])
This	class	derives	from	BaseCookie	and	overrides	value_decode()
and	value_encode()	to	be	the	identity	and	str()	respectively.

class	SerialCookie([input])
This	class	derives	from	BaseCookie	and	overrides	value_decode()
and	value_encode()	to	be	the	pickle.loads()	and
pickle.dumps().

Deprecated	since	release	2.3.	Reading	pickled	values	from	untrusted
cookie	data	is	a	huge	security	hole,	as	pickle	strings	can	be	crafted	to	cause

http://www.faqs.org/rfcs/rfc2109.html
http://www.faqs.org/rfcs/rfc2068.html
http://www.faqs.org/rfcs/rfc2109.html

arbitrary	code	to	execute	on	your	server.	It	is	supported	for	backwards
compatibility	only,	and	may	eventually	go	away.

class	SmartCookie([input])
This	class	derives	from	BaseCookie.	It	overrides	value_decode()	to
be	pickle.loads()	if	it	is	a	valid	pickle,	and	otherwise	the	value	itself.
It	overrides	value_encode()	to	be	pickle.dumps()	unless	it	is	a
string,	in	which	case	it	returns	the	value	itself.

Deprecated	since	release	2.3.	The	same	security	warning	from
SerialCookie	applies	here.

A	further	security	note	is	warranted.	For	backwards	compatibility,	the	Cookie
module	exports	a	class	named	Cookie	which	is	just	an	alias	for
SmartCookie.	This	is	probably	a	mistake	and	will	likely	be	removed	in	a
future	version.	You	should	not	use	the	Cookie	class	in	your	applications,	for
the	same	reason	why	you	should	not	use	the	SerialCookie	class.

See	Also:

Module	cookielib:
HTTP	cookie	handling	for	for	web	clients.	The	cookielib	and
Cookie	modules	do	not	depend	on	each	other.

RFC	2109,	HTTP	State	Management	Mechanism
This	is	the	state	management	specification	implemented	by	this
module.

Subsections

11.21.1	Cookie	Objects
11.21.2	Morsel	Objects
11.21.3	Example

Python	Library	Reference

http://www.faqs.org/rfcs/rfc2109.html

Previous:	11.20.6	Examples	Up:	11.	Internet	Protocols	and	Next:	11.21.1
Cookie	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.21	Cookie	Up:	11.21	Cookie	Next:	11.21.2	Morsel	Objects

11.21.1	Cookie	Objects

value_decode(val)
Return	a	decoded	value	from	a	string	representation.	Return	value	can	be
any	type.	This	method	does	nothing	in	BaseCookie	--	it	exists	so	it	can
be	overridden.

value_encode(val)
Return	an	encoded	value.	val	can	be	any	type,	but	return	value	must	be	a
string.	This	method	does	nothing	in	BaseCookie	--	it	exists	so	it	can	be
overridden

In	general,	it	should	be	the	case	that	value_encode()	and
value_decode()	are	inverses	on	the	range	of	value_decode.

output([attrs[,	header[,	sep]]])
Return	a	string	representation	suitable	to	be	sent	as	HTTP	headers.	attrs	and
header	are	sent	to	each	Morsel's	output()	method.	sep	is	used	to	join
the	headers	together,	and	is	by	default	a	newline.

js_output([attrs])
Return	an	embeddable	JavaScript	snippet,	which,	if	run	on	a	browser	which
supports	JavaScript,	will	act	the	same	as	if	the	HTTP	headers	was	sent.

The	meaning	for	attrs	is	the	same	as	in	output().

load(rawdata)
If	rawdata	is	a	string,	parse	it	as	an	HTTP_COOKIE	and	add	the	values
found	there	as	Morsels.	If	it	is	a	dictionary,	it	is	equivalent	to:

for	k,	v	in	rawdata.items():

				cookie[k]	=	v

Python	Library	Reference
Previous:	11.21	Cookie	Up:	11.21	Cookie	Next:	11.21.2	Morsel	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.21.1	Cookie	Objects	Up:	11.21	Cookie	Next:	11.21.3	Example

11.21.2	Morsel	Objects

class	Morsel()
Abstract	a	key/value	pair,	which	has	some	RFC	2109	attributes.

Morsels	are	dictionary-like	objects,	whose	set	of	keys	is	constant	--	the
valid	RFC	2109	attributes,	which	are

expires

path

comment

domain

max-age

secure

version

The	keys	are	case-insensitive.

value

The	value	of	the	cookie.

coded_value

The	encoded	value	of	the	cookie	--	this	is	what	should	be	sent.

key

The	name	of	the	cookie.

set(key,	value,	coded_value)
Set	the	key,	value	and	coded_value	members.

isReservedKey(K)
Whether	K	is	a	member	of	the	set	of	keys	of	a	Morsel.

output([attrs[,	header]])
Return	a	string	representation	of	the	Morsel,	suitable	to	be	sent	as	an	HTTP
header.	By	default,	all	the	attributes	are	included,	unless	attrs	is	given,	in
which	case	it	should	be	a	list	of	attributes	to	use.	header	is	by	default

http://www.faqs.org/rfcs/rfc2109.html
http://www.faqs.org/rfcs/rfc2109.html

"Set-Cookie:".

js_output([attrs])
Return	an	embeddable	JavaScript	snippet,	which,	if	run	on	a	browser	which
supports	JavaScript,	will	act	the	same	as	if	the	HTTP	header	was	sent.

The	meaning	for	attrs	is	the	same	as	in	output().

OutputString([attrs])
Return	a	string	representing	the	Morsel,	without	any	surrounding	HTTP	or
JavaScript.

The	meaning	for	attrs	is	the	same	as	in	output().

Python	Library	Reference
Previous:	11.21.1	Cookie	Objects	Up:	11.21	Cookie	Next:	11.21.3	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.21.2	Morsel	Objects	Up:	11.21	Cookie	Next:	11.22	xmlrpclib

11.21.3	Example
The	following	example	demonstrates	how	to	use	the	Cookie	module.

>>>	import	Cookie

>>>	C	=	Cookie.SimpleCookie()

>>>	C	=	Cookie.SerialCookie()

>>>	C	=	Cookie.SmartCookie()

>>>	C["fig"]	=	"newton"

>>>	C["sugar"]	=	"wafer"

>>>	print	C	#	generate	HTTP	headers

Set-Cookie:	sugar=wafer;

Set-Cookie:	fig=newton;

>>>	print	C.output()	#	same	thing

Set-Cookie:	sugar=wafer;

Set-Cookie:	fig=newton;

>>>	C	=	Cookie.SmartCookie()

>>>	C["rocky"]	=	"road"

>>>	C["rocky"]["path"]	=	"/cookie"

>>>	print	C.output(header="Cookie:")

Cookie:	rocky=road;	Path=/cookie;

>>>	print	C.output(attrs=[],	header="Cookie:")

Cookie:	rocky=road;

>>>	C	=	Cookie.SmartCookie()

>>>	C.load("chips=ahoy;	vienna=finger")	#	load	from	a	string	(HTTP	header)

>>>	print	C

Set-Cookie:	vienna=finger;

Set-Cookie:	chips=ahoy;

>>>	C	=	Cookie.SmartCookie()

>>>	C.load('keebler="E=everybody;	L=\\"Loves\\";	fudge=\\012;";')

>>>	print	C

Set-Cookie:	keebler="E=everybody;	L=\"Loves\";	fudge=\012;";

>>>	C	=	Cookie.SmartCookie()

>>>	C["oreo"]	=	"doublestuff"

>>>	C["oreo"]["path"]	=	"/"

>>>	print	C

Set-Cookie:	oreo=doublestuff;	Path=/;

>>>	C	=	Cookie.SmartCookie()

>>>	C["twix"]	=	"none	for	you"

>>>	C["twix"].value

'none	for	you'

>>>	C	=	Cookie.SimpleCookie()

>>>	C["number"]	=	7	#	equivalent	to	C["number"]	=	str(7)

>>>	C["string"]	=	"seven"

>>>	C["number"].value

'7'

>>>	C["string"].value

'seven'

>>>	print	C

Set-Cookie:	number=7;

Set-Cookie:	string=seven;

>>>	C	=	Cookie.SerialCookie()

>>>	C["number"]	=	7

>>>	C["string"]	=	"seven"

>>>	C["number"].value

7

>>>	C["string"].value

'seven'

>>>	print	C

Set-Cookie:	number="I7\012.";

Set-Cookie:	string="S'seven'\012p1\012.";

>>>	C	=	Cookie.SmartCookie()

>>>	C["number"]	=	7

>>>	C["string"]	=	"seven"

>>>	C["number"].value

7

>>>	C["string"].value

'seven'

>>>	print	C

Set-Cookie:	number="I7\012.";

Set-Cookie:	string=seven;

Python	Library	Reference
Previous:	11.21.2	Morsel	Objects	Up:	11.21	Cookie	Next:	11.22	xmlrpclib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.21.3	Example	Up:	11.	Internet	Protocols	and	Next:	11.22.1
ServerProxy	Objects

11.22	xmlrpclib	--	XML-RPC	client
access
New	in	version	2.2.

XML-RPC	is	a	Remote	Procedure	Call	method	that	uses	XML	passed	via	HTTP
as	a	transport.	With	it,	a	client	can	call	methods	with	parameters	on	a	remote
server	(the	server	is	named	by	a	URI)	and	get	back	structured	data.	This	module
supports	writing	XML-RPC	client	code;	it	handles	all	the	details	of	translating
between	conformable	Python	objects	and	XML	on	the	wire.

class	ServerProxy(uri[,	transport[,	encoding[,	verbose[,	allow_none]]]])
A	ServerProxy	instance	is	an	object	that	manages	communication	with
a	remote	XML-RPC	server.	The	required	first	argument	is	a	URI	(Uniform
Resource	Indicator),	and	will	normally	be	the	URL	of	the	server.	The
optional	second	argument	is	a	transport	factory	instance;	by	default	it	is	an
internal	SafeTransport	instance	for	https:	URLs	and	an	internal	HTTP
Transport	instance	otherwise.	The	optional	third	argument	is	an
encoding,	by	default	UTF-8.	The	optional	fourth	argument	is	a	debugging
flag.	If	allow_none	is	true,	the	Python	constant	None	will	be	translated	into
XML;	the	default	behaviour	is	for	None	to	raise	a	TypeError.	This	is	a
commonly-used	extension	to	the	XML-RPC	specification,	but	isn't
supported	by	all	clients	and	servers;	see	http://ontosys.com/xml-
rpc/extensions.html	for	a	description.

Both	the	HTTP	and	HTTPS	transports	support	the	URL	syntax	extension
for	HTTP	Basic	Authentication:
http://user:pass@host:port/path.	The	user:pass	portion
will	be	base64-encoded	as	an	HTTP	`Authorization'	header,	and	sent	to	the
remote	server	as	part	of	the	connection	process	when	invoking	an	XML-
RPC	method.	You	only	need	to	use	this	if	the	remote	server	requires	a	Basic
Authentication	user	and	password.

The	returned	instance	is	a	proxy	object	with	methods	that	can	be	used	to
invoke	corresponding	RPC	calls	on	the	remote	server.	If	the	remote	server

http://ontosys.com/xml-rpc/extensions.html

supports	the	introspection	API,	the	proxy	can	also	be	used	to	query	the
remote	server	for	the	methods	it	supports	(service	discovery)	and	fetch
other	server-associated	metadata.

ServerProxy	instance	methods	take	Python	basic	types	and	objects	as
arguments	and	return	Python	basic	types	and	classes.	Types	that	are
conformable	(e.g.	that	can	be	marshalled	through	XML),	include	the
following	(and	except	where	noted,	they	are	unmarshalled	as	the	same
Python	type):

Name Meaning
boolean The	True	and	False	constants
integers Pass	in	directly
floating-

point

numbers

Pass	in	directly

strings Pass	in	directly
arrays Any	Python	sequence	type	containing	conformable

elements.	Arrays	are	returned	as	lists
structures A	Python	dictionary.	Keys	must	be	strings,	values

may	be	any	conformable	type.
dates in	seconds	since	the	epoch;	pass	in	an	instance	of	the

DateTime	wrapper	class
binary	data pass	in	an	instance	of	the	Binary	wrapper	class

This	is	the	full	set	of	data	types	supported	by	XML-RPC.	Method	calls	may
also	raise	a	special	Fault	instance,	used	to	signal	XML-RPC	server	errors,
or	ProtocolError	used	to	signal	an	error	in	the	HTTP/HTTPS	transport
layer.	Note	that	even	though	starting	with	Python	2.2	you	can	subclass
builtin	types,	the	xmlrpclib	module	currently	does	not	marshal	instances	of
such	subclasses.

When	passing	strings,	characters	special	to	XML	such	as	"<",	">",	and	"&"
will	be	automatically	escaped.	However,	it's	the	caller's	responsibility	to
ensure	that	the	string	is	free	of	characters	that	aren't	allowed	in	XML,	such
as	the	control	characters	with	ASCII	values	between	0	and	31;	failing	to	do
this	will	result	in	an	XML-RPC	request	that	isn't	well-formed	XML.	If	you

have	to	pass	arbitrary	strings	via	XML-RPC,	use	the	Binary	wrapper
class	described	below.

Server	is	retained	as	an	alias	for	ServerProxy	for	backwards
compatibility.	New	code	should	use	ServerProxy.

See	Also:

XML-RPC	HOWTO
A	good	description	of	XML	operation	and	client	software	in	several
languages.	Contains	pretty	much	everything	an	XML-RPC	client
developer	needs	to	know.

XML-RPC-Hacks	page
Extensions	for	various	open-source	libraries	to	support	instrospection
and	multicall.

Subsections

11.22.1	ServerProxy	Objects
11.22.2	Boolean	Objects
11.22.3	DateTime	Objects
11.22.4	Binary	Objects
11.22.5	Fault	Objects
11.22.6	ProtocolError	Objects
11.22.7	MultiCall	Objects
11.22.8	Convenience	Functions
11.22.9	Example	of	Client	Usage

Python	Library	Reference
Previous:	11.21.3	Example	Up:	11.	Internet	Protocols	and	Next:	11.22.1
ServerProxy	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://xmlrpc-c.sourceforge.net/xmlrpc-howto/xmlrpc-howto.html
http://xmlrpc-c.sourceforge.net/hacks.php

Previous:	11.22	xmlrpclib	Up:	11.22	xmlrpclib	Next:	11.22.2	Boolean	Objects

11.22.1	ServerProxy	Objects
A	ServerProxy	instance	has	a	method	corresponding	to	each	remote
procedure	call	accepted	by	the	XML-RPC	server.	Calling	the	method	performs
an	RPC,	dispatched	by	both	name	and	argument	signature	(e.g.	the	same	method
name	can	be	overloaded	with	multiple	argument	signatures).	The	RPC	finishes
by	returning	a	value,	which	may	be	either	returned	data	in	a	conformant	type	or	a
Fault	or	ProtocolError	object	indicating	an	error.

Servers	that	support	the	XML	introspection	API	support	some	common	methods
grouped	under	the	reserved	system	member:

system.listMethods()
This	method	returns	a	list	of	strings,	one	for	each	(non-system)	method
supported	by	the	XML-RPC	server.

system.methodSignature(name)
This	method	takes	one	parameter,	the	name	of	a	method	implemented	by
the	XML-RPC	server.It	returns	an	array	of	possible	signatures	for	this
method.	A	signature	is	an	array	of	types.	The	first	of	these	types	is	the
return	type	of	the	method,	the	rest	are	parameters.

Because	multiple	signatures	(ie.	overloading)	is	permitted,	this	method
returns	a	list	of	signatures	rather	than	a	singleton.

Signatures	themselves	are	restricted	to	the	top	level	parameters	expected	by
a	method.	For	instance	if	a	method	expects	one	array	of	structs	as	a
parameter,	and	it	returns	a	string,	its	signature	is	simply	"string,	array".	If	it
expects	three	integers	and	returns	a	string,	its	signature	is	"string,	int,	int,
int".

If	no	signature	is	defined	for	the	method,	a	non-array	value	is	returned.	In
Python	this	means	that	the	type	of	the	returned	value	will	be	something
other	that	list.

system.methodHelp(name)
This	method	takes	one	parameter,	the	name	of	a	method	implemented	by

the	XML-RPC	server.	It	returns	a	documentation	string	describing	the	use
of	that	method.	If	no	such	string	is	available,	an	empty	string	is	returned.
The	documentation	string	may	contain	HTML	markup.

Introspection	methods	are	currently	supported	by	servers	written	in	PHP,	C	and
Microsoft	.NET.	Partial	introspection	support	is	included	in	recent	updates	to
UserLand	Frontier.	Introspection	support	for	Perl,	Python	and	Java	is	available	at
the	XML-RPC	Hacks	page.

Python	Library	Reference
Previous:	11.22	xmlrpclib	Up:	11.22	xmlrpclib	Next:	11.22.2	Boolean	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.22.1	ServerProxy	Objects	Up:	11.22	xmlrpclib	Next:	11.22.3
DateTime	Objects

11.22.2	Boolean	Objects
This	class	may	be	initialized	from	any	Python	value;	the	instance	returned
depends	only	on	its	truth	value.	It	supports	various	Python	operators	through
__cmp__(),	__repr__(),	__int__(),	and	__nonzero__()	methods,
all	implemented	in	the	obvious	ways.

It	also	has	the	following	method,	supported	mainly	for	internal	use	by	the
unmarshalling	code:

encode(out)
Write	the	XML-RPC	encoding	of	this	Boolean	item	to	the	out	stream
object.

Python	Library	Reference
Previous:	11.22.1	ServerProxy	Objects	Up:	11.22	xmlrpclib	Next:	11.22.3
DateTime	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.22.2	Boolean	Objects	Up:	11.22	xmlrpclib	Next:	11.22.4	Binary
Objects

11.22.3	DateTime	Objects
This	class	may	be	initialized	with	seconds	since	the	epoch,	a	time	tuple,	or	an
ISO	8601	time/date	string.	It	has	the	following	methods,	supported	mainly	for
internal	use	by	the	marshalling/unmarshalling	code:

decode(string)
Accept	a	string	as	the	instance's	new	time	value.

encode(out)
Write	the	XML-RPC	encoding	of	this	DateTime	item	to	the	out	stream
object.

It	also	supports	certain	of	Python's	built-in	operators	through	_cmp__	and
__repr__	methods.

Python	Library	Reference
Previous:	11.22.2	Boolean	Objects	Up:	11.22	xmlrpclib	Next:	11.22.4	Binary
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.22.3	DateTime	Objects	Up:	11.22	xmlrpclib	Next:	11.22.5	Fault
Objects

11.22.4	Binary	Objects
This	class	may	initialized	from	string	data	(which	may	include	NULs).	The
primary	access	to	the	content	of	a	Binary	object	is	provided	by	an	attribute:

data

The	binary	data	encapsulated	by	the	Binary	instance.	The	data	is	provided
as	an	8-bit	string.

Binary	objects	have	the	following	methods,	supported	mainly	for	internal	use
by	the	marshalling/unmarshalling	code:

decode(string)
Accept	a	base64	string	and	decode	it	as	the	instance's	new	data.

encode(out)
Write	the	XML-RPC	base	64	encoding	of	this	binary	item	to	the	out	stream
object.

It	also	supports	certain	of	Python's	built-in	operators	through	a	_cmp__()
method.

Python	Library	Reference
Previous:	11.22.3	DateTime	Objects	Up:	11.22	xmlrpclib	Next:	11.22.5	Fault
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.22.4	Binary	Objects	Up:	11.22	xmlrpclib	Next:	11.22.6
ProtocolError	Objects

11.22.5	Fault	Objects
A	Fault	object	encapsulates	the	content	of	an	XML-RPC	fault	tag.	Fault
objects	have	the	following	members:

faultCode

A	string	indicating	the	fault	type.

faultString

A	string	containing	a	diagnostic	message	associated	with	the	fault.

Python	Library	Reference
Previous:	11.22.4	Binary	Objects	Up:	11.22	xmlrpclib	Next:	11.22.6
ProtocolError	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.22.5	Fault	Objects	Up:	11.22	xmlrpclib	Next:	11.22.7	MultiCall
Objects

11.22.6	ProtocolError	Objects
A	ProtocolError	object	describes	a	protocol	error	in	the	underlying
transport	layer	(such	as	a	404	`not	found'	error	if	the	server	named	by	the	URI
does	not	exist).	It	has	the	following	members:

url

The	URI	or	URL	that	triggered	the	error.

errcode

The	error	code.

errmsg

The	error	message	or	diagnostic	string.

headers

A	string	containing	the	headers	of	the	HTTP/HTTPS	request	that	triggered
the	error.

Python	Library	Reference
Previous:	11.22.5	Fault	Objects	Up:	11.22	xmlrpclib	Next:	11.22.7	MultiCall
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.22.6	ProtocolError	Objects	Up:	11.22	xmlrpclib	Next:	11.22.8
Convenience	Functions

11.22.7	MultiCall	Objects
New	in	version	2.4.

In	http://www.xmlrpc.com/discuss/msgReader%241208,	an	approach	is
presented	to	encapsulate	multiple	calls	to	a	remote	server	into	a	single	request.

class	MultiCall(server)

Create	an	object	used	to	boxcar	method	calls.	server	is	the	eventual	target
of	the	call.	Calls	can	be	made	to	the	result	object,	but	they	will	immediately
return	None,	and	only	store	the	call	name	and	parameters	in	the
MultiCall	object.	Calling	the	object	itself	causes	all	stored	calls	to	be
transmitted	as	a	single	system.multicall	request.	The	result	of	this
call	is	a	generator;	iterating	over	this	generator	yields	the	individual	results.

A	usage	example	of	this	class	is

multicall	=	MultiCall(server_proxy)

multicall.add(2,3)

multicall.get_address("Guido")

add_result,	address	=	multicall()

Python	Library	Reference
Previous:	11.22.6	ProtocolError	Objects	Up:	11.22	xmlrpclib	Next:	11.22.8
Convenience	Functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.xmlrpc.com/discuss/msgReader%241208

Previous:	11.22.7	MultiCall	Objects	Up:	11.22	xmlrpclib	Next:	11.22.9	Example
of	Client

11.22.8	Convenience	Functions

boolean(value)
Convert	any	Python	value	to	one	of	the	XML-RPC	Boolean	constants,
True	or	False.

binary(data)
Trivially	convert	any	Python	string	to	a	Binary	object.

dumps(params[,	methodname[,	methodresponse[,	encoding[,	allow_none]]]])

Convert	params	into	an	XML-RPC	request.	or	into	a	response	if
methodresponse	is	true.	params	can	be	either	a	tuple	of	arguments	or	an
instance	of	the	Fault	exception	class.	If	methodresponse	is	true,	only	a
single	value	can	be	returned,	meaning	that	params	must	be	of	length	1.
encoding,	if	supplied,	is	the	encoding	to	use	in	the	generated	XML;	the
default	is	UTF-8.	Python's	None	value	cannot	be	used	in	standard	XML-
RPC;	to	allow	using	it	via	an	extension,	provide	a	true	value	for
allow_none.

loads(data)
Convert	an	XML-RPC	request	or	response	into	Python	objects,	a	(params,
methodname).	params	is	a	tuple	of	argument;	methodname	is	a	string,	or
None	if	no	method	name	is	present	in	the	packet.	If	the	XML-RPC	packet
represents	a	fault	condition,	this	function	will	raise	a	Fault	exception.

Python	Library	Reference
Previous:	11.22.7	MultiCall	Objects	Up:	11.22	xmlrpclib	Next:	11.22.9	Example
of	Client

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.22.8	Convenience	Functions	Up:	11.22	xmlrpclib	Next:	11.23
SimpleXMLRPCServer

11.22.9	Example	of	Client	Usage
#	simple	test	program	(from	the	XML-RPC	specification)

#	server	=	ServerProxy("http://localhost:8000")	#	local	server

server	=	ServerProxy("http://betty.userland.com")

print	server

try:

				print	server.examples.getStateName(41)

except	Error,	v:

				print	"ERROR",	v

Python	Library	Reference
Previous:	11.22.8	Convenience	Functions	Up:	11.22	xmlrpclib	Next:	11.23
SimpleXMLRPCServer

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.22.9	Example	of	Client	Up:	11.	Internet	Protocols	and	Next:
11.23.1	SimpleXMLRPCServer	Objects

11.23	SimpleXMLRPCServer	--	Basic
XML-RPC	server
The	SimpleXMLRPCServer	module	provides	a	basic	server	framework	for
XML-RPC	servers	written	in	Python.	Servers	can	either	be	free	standing,	using
SimpleXMLRPCServer,	or	embedded	in	a	CGI	environment,	using
CGIXMLRPCRequestHandler.

class	SimpleXMLRPCServer(addr[,	requestHandler[,	logRequests]])

Create	a	new	server	instance.	The	requestHandler	parameter	should	be	a
factory	for	request	handler	instances;	it	defaults	to
SimpleXMLRPCRequestHandler.	The	addr	and	requestHandler
parameters	are	passed	to	the	SocketServer.TCPServer	constructor.	If
logRequests	is	true	(the	default),	requests	will	be	logged;	setting	this
parameter	to	false	will	turn	off	logging.	This	class	provides	methods	for
registration	of	functions	that	can	be	called	by	the	XML-RPC	protocol.

class	CGIXMLRPCRequestHandler()
Create	a	new	instance	to	handle	XML-RPC	requests	in	a	CGI	environment.
New	in	version	2.3.

class	SimpleXMLRPCRequestHandler()
Create	a	new	request	handler	instance.	This	request	handler	supports	POST
requests	and	modifies	logging	so	that	the	logRequests	parameter	to	the
SimpleXMLRPCServer	constructor	parameter	is	honored.

Subsections

11.23.1	SimpleXMLRPCServer	Objects
11.23.2	CGIXMLRPCRequestHandler

Python	Library	Reference

Previous:	11.22.9	Example	of	Client	Up:	11.	Internet	Protocols	and	Next:
11.23.1	SimpleXMLRPCServer	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.23	SimpleXMLRPCServer	Up:	11.23	SimpleXMLRPCServer
Next:	11.23.2	CGIXMLRPCRequestHandler

11.23.1	SimpleXMLRPCServer	Objects
The	SimpleXMLRPCServer	class	is	based	on
SocketServer.TCPServer	and	provides	a	means	of	creating	simple,	stand
alone	XML-RPC	servers.

register_function(function[,	name])
Register	a	function	that	can	respond	to	XML-RPC	requests.	If	name	is
given,	it	will	be	the	method	name	associated	with	function,	otherwise
function.__name__	will	be	used.	name	can	be	either	a	normal	or	Unicode
string,	and	may	contain	characters	not	legal	in	Python	identifiers,	including
the	period	character.

register_instance(instance)
Register	an	object	which	is	used	to	expose	method	names	which	have	not
been	registered	using	register_function().	If	instance	contains	a
_dispatch()	method,	it	is	called	with	the	requested	method	name	and
the	parameters	from	the	request.	Its	API	is	def	_dispatch(self,
method,	params)	(note	tha	params	does	not	represent	a	variable
argument	list).	If	it	calls	an	underlying	function	to	perform	its	task,	that
function	is	called	as	func(*params),	expanding	the	parameter	list.	The
return	value	from	_dispatch()	is	returned	to	the	client	as	the	result.	If
instance	does	not	have	a	_dispatch()	method,	it	is	searched	for	an
attribute	matching	the	name	of	the	requested	method;	if	the	requested
method	name	contains	periods,	each	component	of	the	method	name	is
searched	for	individually,	with	the	effect	that	a	simple	hierarchical	search	is
performed.	The	value	found	from	this	search	is	then	called	with	the
parameters	from	the	request,	and	the	return	value	is	passed	back	to	the
client.

register_introspection_functions()
Registers	the	XML-RPC	introspection	functions
system.listMethods,	system.methodHelp	and
system.methodSignature.	New	in	version	2.3.

register_multicall_functions()

Registers	the	XML-RPC	multicall	function	system.multicall.

Example:

class	MyFuncs:

				def	div(self,	x,	y)	:	return	x	//	y

server	=	SimpleXMLRPCServer(("localhost",	8000))

server.register_function(pow)

server.register_function(lambda	x,y:	x+y,	'add')

server.register_introspection_functions()

server.register_instance(MyFuncs())

server.serve_forever()

Python	Library	Reference
Previous:	11.23	SimpleXMLRPCServer	Up:	11.23	SimpleXMLRPCServer
Next:	11.23.2	CGIXMLRPCRequestHandler

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.23.1	SimpleXMLRPCServer	Objects	Up:	11.23
SimpleXMLRPCServer	Next:	11.24	DocXMLRPCServer

11.23.2	CGIXMLRPCRequestHandler
The	CGIXMLRPCRequestHandler	class	can	be	used	to	handle	XML-RPC
requests	sent	to	Python	CGI	scripts.

register_function(function[,	name])
Register	a	function	that	can	respond	to	XML-RPC	requests.	If	name	is
given,	it	will	be	the	method	name	associated	with	function,	otherwise
function.__name__	will	be	used.	name	can	be	either	a	normal	or	Unicode
string,	and	may	contain	characters	not	legal	in	Python	identifiers,	including
the	period	character.

register_instance(instance)
Register	an	object	which	is	used	to	expose	method	names	which	have	not
been	registered	using	register_function().	If	instance	contains	a
_dispatch()	method,	it	is	called	with	the	requested	method	name	and
the	parameters	from	the	request;	the	return	value	is	returned	to	the	client	as
the	result.	If	instance	does	not	have	a	_dispatch()	method,	it	is
searched	for	an	attribute	matching	the	name	of	the	requested	method;	if	the
requested	method	name	contains	periods,	each	component	of	the	method
name	is	searched	for	individually,	with	the	effect	that	a	simple	hierarchical
search	is	performed.	The	value	found	from	this	search	is	then	called	with
the	parameters	from	the	request,	and	the	return	value	is	passed	back	to	the
client.

register_introspection_functions()
Register	the	XML-RPC	introspection	functions	system.listMethods,
system.methodHelp	and	system.methodSignature.

register_multicall_functions()
Register	the	XML-RPC	multicall	function	system.multicall.

handle_request([request_text	=	None])
Handle	a	XML-RPC	request.	If	request_text	is	given,	it	should	be	the	POST
data	provided	by	the	HTTP	server,	otherwise	the	contents	of	stdin	will	be
used.

Example:

class	MyFuncs:

				def	div(self,	x,	y)	:	return	div(x,y)

handler	=	CGIXMLRPCRequestHandler()

handler.register_function(pow)

handler.register_function(lambda	x,y:	x+y,	'add')

handler.register_introspection_functions()

handler.register_instance(MyFuncs())

handler.handle_request()

Python	Library	Reference
Previous:	11.23.1	SimpleXMLRPCServer	Objects	Up:	11.23
SimpleXMLRPCServer	Next:	11.24	DocXMLRPCServer

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.23.2	CGIXMLRPCRequestHandler	Up:	11.	Internet	Protocols
and	Next:	11.24.1	DocXMLRPCServer	Objects

11.24	DocXMLRPCServer	--	Self-
documenting	XML-RPC	server
New	in	version	2.3.

The	DocXMLRPCServer	module	extends	the	classes	found	in
SimpleXMLRPCServer	to	serve	HTML	documentation	in	response	to	HTTP
GET	requests.	Servers	can	either	be	free	standing,	using	DocXMLRPCServer,
or	embedded	in	a	CGI	environment,	using
DocCGIXMLRPCRequestHandler.

class	DocXMLRPCServer(addr[,	requestHandler[,	logRequests]])

Create	a	new	server	instance.	All	parameters	have	the	same	meaning	as	for
SimpleXMLRPCServer.SimpleXMLRPCServer;	requestHandler
defaults	to	DocXMLRPCRequestHandler.

class	DocCGIXMLRPCRequestHandler()

Create	a	new	instance	to	handle	XML-RPC	requests	in	a	CGI	environment.

class	DocXMLRPCRequestHandler()

Create	a	new	request	handler	instance.	This	request	handler	supports	XML-
RPC	POST	requests,	documentation	GET	requests,	and	modifies	logging	so
that	the	logRequests	parameter	to	the	DocXMLRPCServer	constructor
parameter	is	honored.

Subsections

11.24.1	DocXMLRPCServer	Objects
11.24.2	DocCGIXMLRPCRequestHandler

Python	Library	Reference

Previous:	11.23.2	CGIXMLRPCRequestHandler	Up:	11.	Internet	Protocols
and	Next:	11.24.1	DocXMLRPCServer	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.24	DocXMLRPCServer	Up:	11.24	DocXMLRPCServer	Next:
11.24.2	DocCGIXMLRPCRequestHandler

11.24.1	DocXMLRPCServer	Objects
The	DocXMLRPCServer	class	is	derived	from
SimpleXMLRPCServer.SimpleXMLRPCServer	and	provides	a	means	of
creating	self-documenting,	stand	alone	XML-RPC	servers.	HTTP	POST	requests
are	handled	as	XML-RPC	method	calls.	HTTP	GET	requests	are	handled	by
generating	pydoc-style	HTML	documentation.	This	allows	a	server	to	provide	its
own	web-based	documentation.

set_server_title(server_title)

Set	the	title	used	in	the	generated	HTML	documentation.	This	title	will	be
used	inside	the	HTML	"title"	element.

set_server_name(server_name)

Set	the	name	used	in	the	generated	HTML	documentation.	This	name	will
appear	at	the	top	of	the	generated	documentation	inside	a	"h1"	element.

set_server_documentation(server_documentation)

Set	the	description	used	in	the	generated	HTML	documentation.	This
description	will	appear	as	a	paragraph,	below	the	server	name,	in	the
documentation.

Python	Library	Reference
Previous:	11.24	DocXMLRPCServer	Up:	11.24	DocXMLRPCServer	Next:
11.24.2	DocCGIXMLRPCRequestHandler

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.24.1	DocXMLRPCServer	Objects	Up:	11.24
DocXMLRPCServer	Next:	11.25	asyncore

11.24.2	DocCGIXMLRPCRequestHandler
The	DocCGIXMLRPCRequestHandler	class	is	derived	from
SimpleXMLRPCServer.CGIXMLRPCRequestHandler	and	provides	a
means	of	creating	self-documenting,	XML-RPC	CGI	scripts.	HTTP	POST
requests	are	handled	as	XML-RPC	method	calls.	HTTP	GET	requests	are
handled	by	generating	pydoc-style	HTML	documentation.	This	allows	a	server
to	provide	its	own	web-based	documentation.

set_server_title(server_title)

Set	the	title	used	in	the	generated	HTML	documentation.	This	title	will	be
used	inside	the	HTML	"title"	element.

set_server_name(server_name)

Set	the	name	used	in	the	generated	HTML	documentation.	This	name	will
appear	at	the	top	of	the	generated	documentation	inside	a	"h1"	element.

set_server_documentation(server_documentation)

Set	the	description	used	in	the	generated	HTML	documentation.	This
description	will	appear	as	a	paragraph,	below	the	server	name,	in	the
documentation.

Python	Library	Reference
Previous:	11.24.1	DocXMLRPCServer	Objects	Up:	11.24
DocXMLRPCServer	Next:	11.25	asyncore

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.24.2	DocCGIXMLRPCRequestHandler	Up:	11.	Internet
Protocols	and	Next:	11.25.1	asyncore	Example	basic

11.25	asyncore	--	Asynchronous
socket	handler
This	module	provides	the	basic	infrastructure	for	writing	asynchronous	socket
service	clients	and	servers.

There	are	only	two	ways	to	have	a	program	on	a	single	processor	do	``more	than
one	thing	at	a	time.''	Multi-threaded	programming	is	the	simplest	and	most
popular	way	to	do	it,	but	there	is	another	very	different	technique,	that	lets	you
have	nearly	all	the	advantages	of	multi-threading,	without	actually	using
multiple	threads.	It's	really	only	practical	if	your	program	is	largely	I/O	bound.	If
your	program	is	processor	bound,	then	pre-emptive	scheduled	threads	are
probably	what	you	really	need.	Network	servers	are	rarely	processor	bound,
however.

If	your	operating	system	supports	the	select()	system	call	in	its	I/O	library
(and	nearly	all	do),	then	you	can	use	it	to	juggle	multiple	communication
channels	at	once;	doing	other	work	while	your	I/O	is	taking	place	in	the
``background.''	Although	this	strategy	can	seem	strange	and	complex,	especially
at	first,	it	is	in	many	ways	easier	to	understand	and	control	than	multi-threaded
programming.	The	asyncore	module	solves	many	of	the	difficult	problems	for
you,	making	the	task	of	building	sophisticated	high-performance	network	servers
and	clients	a	snap.	For	``conversational''	applications	and	protocols	the
companion	asynchat	module	is	invaluable.

The	basic	idea	behind	both	modules	is	to	create	one	or	more	network	channels,
instances	of	class	asyncore.dispatcher	and	asynchat.async_chat.
Creating	the	channels	adds	them	to	a	global	map,	used	by	the	loop()	function
if	you	do	not	provide	it	with	your	own	map.

Once	the	initial	channel(s)	is(are)	created,	calling	the	loop()	function	activates
channel	service,	which	continues	until	the	last	channel	(including	any	that	have
been	added	to	the	map	during	asynchronous	service)	is	closed.

loop([timeout[,	use_poll[,	map[,count]]]])

Enter	a	polling	loop	that	terminates	after	count	passes	or	all	open	channels
have	been	closed.	All	arguments	are	optional.	The	(count)	parameter
defaults	to	None,	resulting	in	the	loop	terminating	only	when	all	channels
have	been	closed.	The	timeout	argument	sets	the	timeout	parameter	for	the
appropriate	select()	or	poll()	call,	measured	in	seconds;	the	default
is	30	seconds.	The	use_poll	parameter,	if	true,	indicates	that	poll()
should	be	used	in	preference	to	select()	(the	default	is	False).	The
map	parameter	is	a	dictionary	whose	items	are	the	channels	to	watch.	As
channels	are	closed	they	are	deleted	from	their	map.	If	map	is	omitted,	a
global	map	is	used	(this	map	is	updated	by	the	default	class	__init__()
-	make	sure	you	extend,	rather	than	override,	__init__()	if	you	want	to
retain	this	behavior).

Channels	(instances	of	asyncore.dispatcher,
asynchat.async_chat	and	subclasses	thereof)	can	freely	be	mixed	in
the	map.

class	dispatcher()
The	dispatcher	class	is	a	thin	wrapper	around	a	low-level	socket	object.
To	make	it	more	useful,	it	has	a	few	methods	for	event-handling	which	are
called	from	the	asynchronous	loop.	Otherwise,	it	can	be	treated	as	a	normal
non-blocking	socket	object.

Two	class	attributes	can	be	modified,	to	improve	performance,	or	possibly
even	to	conserve	memory.

ac_in_buffer_size

The	asynchronous	input	buffer	size	(default	4096).

ac_out_buffer_size

The	asynchronous	output	buffer	size	(default	4096).

The	firing	of	low-level	events	at	certain	times	or	in	certain	connection	states
tells	the	asynchronous	loop	that	certain	higher-level	events	have	taken
place.	For	example,	if	we	have	asked	for	a	socket	to	connect	to	another
host,	we	know	that	the	connection	has	been	made	when	the	socket	becomes
writable	for	the	first	time	(at	this	point	you	know	that	you	may	write	to	it
with	the	expectation	of	success).	The	implied	higher-level	events	are:

Event Description
handle_connect() Implied	by	the	first	write	event
handle_close() Implied	by	a	read	event	with	no	data	available
handle_accept() Implied	by	a	read	event	on	a	listening	socket

During	asynchronous	processing,	each	mapped	channel's	readable()
and	writable()	methods	are	used	to	determine	whether	the	channel's
socket	should	be	added	to	the	list	of	channels	select()ed	or	poll()ed
for	read	and	write	events.

Thus,	the	set	of	channel	events	is	larger	than	the	basic	socket	events.	The	full	set
of	methods	that	can	be	overridden	in	your	subclass	follows:

handle_read()
Called	when	the	asynchronous	loop	detects	that	a	read()	call	on	the
channel's	socket	will	succeed.

handle_write()
Called	when	the	asynchronous	loop	detects	that	a	writable	socket	can	be
written.	Often	this	method	will	implement	the	necessary	buffering	for
performance.	For	example:

def	handle_write(self):

				sent	=	self.send(self.buffer)

				self.buffer	=	self.buffer[sent:]

handle_expt()
Called	when	there	is	out	of	band	(OOB)	data	for	a	socket	connection.	This
will	almost	never	happen,	as	OOB	is	tenuously	supported	and	rarely	used.

handle_connect()
Called	when	the	active	opener's	socket	actually	makes	a	connection.	Might
send	a	``welcome''	banner,	or	initiate	a	protocol	negotiation	with	the	remote
endpoint,	for	example.

handle_close()
Called	when	the	socket	is	closed.

handle_error()
Called	when	an	exception	is	raised	and	not	otherwise	handled.	The	default
version	prints	a	condensed	traceback.

handle_accept()
Called	on	listening	channels	(passive	openers)	when	a	connection	can	be
established	with	a	new	remote	endpoint	that	has	issued	a	connect()	call
for	the	local	endpoint.

readable()
Called	each	time	around	the	asynchronous	loop	to	determine	whether	a
channel's	socket	should	be	added	to	the	list	on	which	read	events	can	occur.
The	default	method	simply	returns	True,	indicating	that	by	default,	all
channels	will	be	interested	in	read	events.

writable()
Called	each	time	around	the	asynchronous	loop	to	determine	whether	a
channel's	socket	should	be	added	to	the	list	on	which	write	events	can
occur.	The	default	method	simply	returns	True,	indicating	that	by	default,
all	channels	will	be	interested	in	write	events.

In	addition,	each	channel	delegates	or	extends	many	of	the	socket	methods.	Most
of	these	are	nearly	identical	to	their	socket	partners.

create_socket(family,	type)
This	is	identical	to	the	creation	of	a	normal	socket,	and	will	use	the	same
options	for	creation.	Refer	to	the	socket	documentation	for	information
on	creating	sockets.

connect(address)
As	with	the	normal	socket	object,	address	is	a	tuple	with	the	first	element
the	host	to	connect	to,	and	the	second	the	port	number.

send(data)
Send	data	to	the	remote	end-point	of	the	socket.

recv(buffer_size)

Read	at	most	buffer_size	bytes	from	the	socket's	remote	end-point.	An
empty	string	implies	that	the	channel	has	been	closed	from	the	other	end.

listen(backlog)
Listen	for	connections	made	to	the	socket.	The	backlog	argument	specifies
the	maximum	number	of	queued	connections	and	should	be	at	least	1;	the
maximum	value	is	system-dependent	(usually	5).

bind(address)
Bind	the	socket	to	address.	The	socket	must	not	already	be	bound.	(The
format	of	address	depends	on	the	address	family	--	see	above.)

accept()
Accept	a	connection.	The	socket	must	be	bound	to	an	address	and	listening
for	connections.	The	return	value	is	a	pair	(conn,	address)	where	conn	is
a	new	socket	object	usable	to	send	and	receive	data	on	the	connection,	and
address	is	the	address	bound	to	the	socket	on	the	other	end	of	the
connection.

close()
Close	the	socket.	All	future	operations	on	the	socket	object	will	fail.	The
remote	end-point	will	receive	no	more	data	(after	queued	data	is	flushed).
Sockets	are	automatically	closed	when	they	are	garbage-collected.

Subsections

11.25.1	asyncore	Example	basic	HTTP	client

Python	Library	Reference
Previous:	11.24.2	DocCGIXMLRPCRequestHandler	Up:	11.	Internet
Protocols	and	Next:	11.25.1	asyncore	Example	basic

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.25	asyncore	Up:	11.25	asyncore	Next:	11.26	asynchat

11.25.1	asyncore	Example	basic	HTTP	client
As	a	basic	example,	below	is	a	very	basic	HTTP	client	that	uses	the
dispatcher	class	to	implement	its	socket	handling:

class	http_client(asyncore.dispatcher):

				def	__init__(self,	host,path):

								asyncore.dispatcher.__init__(self)

								self.path	=	path

								self.create_socket(socket.AF_INET,	socket.SOCK_STREAM)

								self.connect((host,	80))

								self.buffer	=	'GET	%s	HTTP/1.0\r\n\r\n'	%	self.path

								

				def	handle_connect(self):

								pass

								

				def	handle_read(self):

								data	=	self.recv(8192)

								print	data

								

				def	writable(self):

								return	(len(self.buffer)	>	0)

				

				def	handle_write(self):

								sent	=	self.send(self.buffer)

								self.buffer	=	self.buffer[sent:]

Python	Library	Reference
Previous:	11.25	asyncore	Up:	11.25	asyncore	Next:	11.26	asynchat

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.25.1	asyncore	Example	basic	Up:	11.	Internet	Protocols	and
Next:	11.26.1	asynchat	-	Auxiliary

11.26	asynchat	--	Asynchronous
socket	command/response	handler
This	module	builds	on	the	asyncore	infrastructure,	simplifying	asynchronous
clients	and	servers	and	making	it	easier	to	handle	protocols	whose	elements	are
terminated	by	arbitrary	strings,	or	are	of	variable	length.	asynchat	defines	the
abstract	class	async_chat	that	you	subclass,	providing	implementations	of	the
collect_incoming_data()	and	found_terminator()	methods.	It
uses	the	same	asynchronous	loop	as	asyncore,	and	the	two	types	of	channel,
asyncore.dispatcher	and	asynchat.async_chat,	can	freely	be
mixed	in	the	channel	map.	Typically	an	asyncore.dispatcher	server
channel	generates	new	asynchat.async_chat	channel	objects	as	it
receives	incoming	connection	requests.

class	async_chat()
This	class	is	an	abstract	subclass	of	asyncore.dispatcher.	To	make
practical	use	of	the	code	you	must	subclass	async_chat,	providing
meaningful	collect_incoming_data()	and
found_terminator()	methods.	The	asyncore.dispatcher
methods	can	be	used,	although	not	all	make	sense	in	a	message/response
context.

Like	asyncore.dispatcher,	async_chat	defines	a	set	of	events
that	are	generated	by	an	analysis	of	socket	conditions	after	a	select()
call.	Once	the	polling	loop	has	been	started	the	async_chat	object's
methods	are	called	by	the	event-processing	framework	with	no	action	on
the	part	of	the	programmer.

Unlike	asyncore.dispatcher,	async_chat	allows	you	to	define	a
first-in-first-out	queue	(fifo)	of	producers.	A	producer	need	have	only	one
method,	more(),	which	should	return	data	to	be	transmitted	on	the
channel.	The	producer	indicates	exhaustion	(i.e.	that	it	contains	no	more
data)	by	having	its	more()	method	return	the	empty	string.	At	this	point
the	async_chat	object	removes	the	producer	from	the	fifo	and	starts
using	the	next	producer,	if	any.	When	the	producer	fifo	is	empty	the

handle_write()	method	does	nothing.	You	use	the	channel	object's
set_terminator()	method	to	describe	how	to	recognize	the	end	of,	or
an	important	breakpoint	in,	an	incoming	transmission	from	the	remote
endpoint.

To	build	a	functioning	async_chat	subclass	your	input	methods
collect_incoming_data()	and	found_terminator()	must
handle	the	data	that	the	channel	receives	asynchronously.	The	methods	are
described	below.

close_when_done()
Pushes	a	None	on	to	the	producer	fifo.	When	this	producer	is	popped	off
the	fifo	it	causes	the	channel	to	be	closed.

collect_incoming_data(data)
Called	with	data	holding	an	arbitrary	amount	of	received	data.	The	default
method,	which	must	be	overridden,	raises	a	NotImplementedError
exception.

discard_buffers()
In	emergencies	this	method	will	discard	any	data	held	in	the	input	and/or
output	buffers	and	the	producer	fifo.

found_terminator()
Called	when	the	incoming	data	stream	matches	the	termination	condition
set	by	set_terminator.	The	default	method,	which	must	be	overridden,
raises	a	NotImplementedError	exception.	The	buffered	input	data
should	be	available	via	an	instance	attribute.

get_terminator()
Returns	the	current	terminator	for	the	channel.

handle_close()
Called	when	the	channel	is	closed.	The	default	method	silently	closes	the
channel's	socket.

handle_read()

Called	when	a	read	event	fires	on	the	channel's	socket	in	the	asynchronous
loop.	The	default	method	checks	for	the	termination	condition	established
by	set_terminator(),	which	can	be	either	the	appearance	of	a
particular	string	in	the	input	stream	or	the	receipt	of	a	particular	number	of
characters.	When	the	terminator	is	found,	handle_read	calls	the
found_terminator()	method	after	calling
collect_incoming_data()	with	any	data	preceding	the	terminating
condition.

handle_write()
Called	when	the	application	may	write	data	to	the	channel.	The	default
method	calls	the	initiate_send()	method,	which	in	turn	will	call
refill_buffer()	to	collect	data	from	the	producer	fifo	associated	with
the	channel.

push(data)
Creates	a	simple_producer	object	(see	below)	containing	the	data	and
pushes	it	on	to	the	channel's	producer_fifo	to	ensure	its	transmission.
This	is	all	you	need	to	do	to	have	the	channel	write	the	data	out	to	the
network,	although	it	is	possible	to	use	your	own	producers	in	more	complex
schemes	to	implement	encryption	and	chunking,	for	example.

push_with_producer(producer)
Takes	a	producer	object	and	adds	it	to	the	producer	fifo	associated	with	the
channel.	When	all	currently-pushed	producers	have	been	exhausted	the
channel	will	consume	this	producer's	data	by	calling	its	more()	method
and	send	the	data	to	the	remote	endpoint.

readable()
Should	return	True	for	the	channel	to	be	included	in	the	set	of	channels
tested	by	the	select()	loop	for	readability.

refill_buffer()
Refills	the	output	buffer	by	calling	the	more()	method	of	the	producer	at
the	head	of	the	fifo.	If	it	is	exhausted	then	the	producer	is	popped	off	the
fifo	and	the	next	producer	is	activated.	If	the	current	producer	is,	or
becomes,	None	then	the	channel	is	closed.

set_terminator(term)
Sets	the	terminating	condition	to	be	recognised	on	the	channel.	term	may
be	any	of	three	types	of	value,	corresponding	to	three	different	ways	to
handle	incoming	protocol	data.

term Description
string Will	call	found_terminator()	when	the	string	is	found	in

the	input	stream
integer Will	call	found_terminator()	when	the	indicated	number

of	characters	have	been	received
None The	channel	continues	to	collect	data	forever

Note	that	any	data	following	the	terminator	will	be	available	for	reading	by
the	channel	after	found_terminator()	is	called.

writable()
Should	return	True	as	long	as	items	remain	on	the	producer	fifo,	or	the
channel	is	connected	and	the	channel's	output	buffer	is	non-empty.

Subsections

11.26.1	asynchat	-	Auxiliary	Classes	and	Functions
11.26.2	asynchat	Example

Python	Library	Reference
Previous:	11.25.1	asyncore	Example	basic	Up:	11.	Internet	Protocols	and
Next:	11.26.1	asynchat	-	Auxiliary

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.26	asynchat	Up:	11.26	asynchat	Next:	11.26.2	asynchat	Example

11.26.1	asynchat	-	Auxiliary	Classes	and
Functions

class	simple_producer(data[,	buffer_size=512])
A	simple_producer	takes	a	chunk	of	data	and	an	optional	buffer	size.
Repeated	calls	to	its	more()	method	yield	successive	chunks	of	the	data
no	larger	than	buffer_size.

more()
Produces	the	next	chunk	of	information	from	the	producer,	or	returns	the
empty	string.

class	fifo([list=None])
Each	channel	maintains	a	fifo	holding	data	which	has	been	pushed	by	the
application	but	not	yet	popped	for	writing	to	the	channel.	A	fifo	is	a	list
used	to	hold	data	and/or	producers	until	they	are	required.	If	the	list
argument	is	provided	then	it	should	contain	producers	or	data	items	to	be
written	to	the	channel.

is_empty()
Returns	True	iff	the	fifo	is	empty.

first()
Returns	the	least-recently	push()ed	item	from	the	fifo.

push(data)
Adds	the	given	data	(which	may	be	a	string	or	a	producer	object)	to	the
producer	fifo.

pop()
If	the	fifo	is	not	empty,	returns	True,	first(),	deleting	the	popped
item.	Returns	False,	None	for	an	empty	fifo.

The	asynchat	module	also	defines	one	utility	function,	which	may	be	of	use
in	network	and	textual	analysis	operations.

find_prefix_at_end(haystack,	needle)
Returns	True	if	string	haystack	ends	with	any	non-empty	prefix	of	string
needle.

Python	Library	Reference
Previous:	11.26	asynchat	Up:	11.26	asynchat	Next:	11.26.2	asynchat	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.26.1	asynchat	-	Auxiliary	Up:	11.26	asynchat	Next:	12.	Internet
Data	Handling

11.26.2	asynchat	Example
The	following	partial	example	shows	how	HTTP	requests	can	be	read	with
async_chat.	A	web	server	might	create	an	http_request_handler
object	for	each	incoming	client	connection.	Notice	that	initially	the	channel
terminator	is	set	to	match	the	blank	line	at	the	end	of	the	HTTP	headers,	and	a
flag	indicates	that	the	headers	are	being	read.

Once	the	headers	have	been	read,	if	the	request	is	of	type	POST	(indicating	that
further	data	are	present	in	the	input	stream)	then	the	Content-Length:
header	is	used	to	set	a	numeric	terminator	to	read	the	right	amount	of	data	from
the	channel.

The	handle_request()	method	is	called	once	all	relevant	input	has	been
marshalled,	after	setting	the	channel	terminator	to	None	to	ensure	that	any
extraneous	data	sent	by	the	web	client	are	ignored.

class	http_request_handler(asynchat.async_chat):

				def	__init__(self,	conn,	addr,	sessions,	log):

								asynchat.async_chat.__init__(self,	conn=conn)

								self.addr	=	addr

								self.sessions	=	sessions

								self.ibuffer	=	[]

								self.obuffer	=	""

								self.set_terminator("\r\n\r\n")

								self.reading_headers	=	True

								self.handling	=	False

								self.cgi_data	=	None

								self.log	=	log

				def	collect_incoming_data(self,	data):

								"""Buffer	the	data"""

								self.ibuffer.append(data)

				def	found_terminator(self):

								if	self.reading_headers:

												self.reading_headers	=	False

												self.parse_headers("".join(self.ibuffer))

												self.ibuffer	=	[]

												if	self.op.upper()	==	"POST":

																clen	=	self.headers.getheader("content-length")

																self.set_terminator(int(clen))

												else:

																self.handling	=	True

																self.set_terminator(None)

																self.handle_request()

								elif	not	self.handling:

												self.set_terminator(None)	#	browsers	sometimes	over-send

												self.cgi_data	=	parse(self.headers,	"".join(self.ibuffer))

												self.handling	=	True

												self.ibuffer	=	[]

												self.handle_request()

Python	Library	Reference
Previous:	11.26.1	asynchat	-	Auxiliary	Up:	11.26	asynchat	Next:	12.	Internet
Data	Handling

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	11.26.2	asynchat	Example	Up:	Python	Library	Reference	Next:	12.1
formatter

12.	Internet	Data	Handling
This	chapter	describes	modules	which	support	handling	data	formats	commonly
used	on	the	Internet.

formatter 	 Generic	output	formatter	and	device	interface.

email 	
Package	supporting	the	parsing,	manipulating,	and
generating	email	messages,	including	MIME
documents.

email.Message 	 The	base	class	representing	email	messages.

email.Parser 	 Parse	flat	text	email	messages	to	produce	a	messageobject	structure.

email.Generator 	 Generate	flat	text	email	messages	from	a	messagestructure.
email.Header 	 Representing	non-ASCII	headers
email.Charset 	 Character	Sets
email.Encoders 	 Encoders	for	email	message	payloads.
email.Errors 	 The	exception	classes	used	by	the	email	package.
email.Utils 	 Miscellaneous	email	package	utilities.
email.Iterators 	 Iterate	over	a	message	object	tree.
mailcap 	 Mailcap	file	handling.
mailbox 	 Read	various	mailbox	formats.
mhlib 	 Manipulate	MH	mailboxes	from	Python.
mimetools 	 Tools	for	parsing	MIME-style	message	bodies.
mimetypes 	 Mapping	of	filename	extensions	to	MIME	types.
MimeWriter 	 Generic	MIME	file	writer.
mimify 	 Mimification	and	unmimification	of	mail	messages.

multifile 	 Support	for	reading	files	which	contain	distinct	parts,such	as	some	MIME	data.
rfc822 	 Parse	RFC	2822	style	mail	messages.
base64 	 RFC	3548:	Base16,	Base32,	Base64	Data	Encodings

binascii 	 Tools	for	converting	between	binary	and	variousASCII-encoded	binary	representations.

http://www.faqs.org/rfcs/rfc2822.html

binhex 	 Encode	and	decode	files	in	binhex4	format.

quopri 	 Encode	and	decode	files	using	the	MIME	quoted-
printable	encoding.

uu 	 Encode	and	decode	files	in	uuencode	format.

xdrlib 	 Encoders	and	decoders	for	the	External	DataRepresentation	(XDR).
netrc 	 Loading	of	.netrc	files.

robotparser 	 Loads	a	robots.txt	file	and	answers	questions	aboutfetchability	of	other	URLs.
csv 	 Write	and	read	tabular	data	to	and	from	delimited	files.

Python	Library	Reference
Previous:	11.26.2	asynchat	Example	Up:	Python	Library	Reference	Next:	12.1
formatter

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.	Internet	Data	Handling	Up:	12.	Internet	Data	Handling	Next:
12.1.1	The	Formatter	Interface

12.1	formatter	--	Generic	output
formatting
This	module	supports	two	interface	definitions,	each	with	multiple
implementations.	The	formatter	interface	is	used	by	the	HTMLParser	class	of
the	htmllib	module,	and	the	writer	interface	is	required	by	the	formatter
interface.

Formatter	objects	transform	an	abstract	flow	of	formatting	events	into	specific
output	events	on	writer	objects.	Formatters	manage	several	stack	structures	to
allow	various	properties	of	a	writer	object	to	be	changed	and	restored;	writers
need	not	be	able	to	handle	relative	changes	nor	any	sort	of	``change	back''
operation.	Specific	writer	properties	which	may	be	controlled	via	formatter
objects	are	horizontal	alignment,	font,	and	left	margin	indentations.	A
mechanism	is	provided	which	supports	providing	arbitrary,	non-exclusive	style
settings	to	a	writer	as	well.	Additional	interfaces	facilitate	formatting	events
which	are	not	reversible,	such	as	paragraph	separation.

Writer	objects	encapsulate	device	interfaces.	Abstract	devices,	such	as	file
formats,	are	supported	as	well	as	physical	devices.	The	provided
implementations	all	work	with	abstract	devices.	The	interface	makes	available
mechanisms	for	setting	the	properties	which	formatter	objects	manage	and
inserting	data	into	the	output.

Subsections

12.1.1	The	Formatter	Interface
12.1.2	Formatter	Implementations
12.1.3	The	Writer	Interface
12.1.4	Writer	Implementations

Python	Library	Reference
Previous:	12.	Internet	Data	Handling	Up:	12.	Internet	Data	Handling	Next:
12.1.1	The	Formatter	Interface

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.1	formatter	Up:	12.1	formatter	Next:	12.1.2	Formatter
Implementations

12.1.1	The	Formatter	Interface
Interfaces	to	create	formatters	are	dependent	on	the	specific	formatter	class	being
instantiated.	The	interfaces	described	below	are	the	required	interfaces	which	all
formatters	must	support	once	initialized.

One	data	element	is	defined	at	the	module	level:

AS_IS

Value	which	can	be	used	in	the	font	specification	passed	to	the
push_font()	method	described	below,	or	as	the	new	value	to	any	other
push_property()	method.	Pushing	the	AS_IS	value	allows	the
corresponding	pop_property()	method	to	be	called	without	having	to
track	whether	the	property	was	changed.

The	following	attributes	are	defined	for	formatter	instance	objects:

writer

The	writer	instance	with	which	the	formatter	interacts.

end_paragraph(blanklines)
Close	any	open	paragraphs	and	insert	at	least	blanklines	before	the	next
paragraph.

add_line_break()
Add	a	hard	line	break	if	one	does	not	already	exist.	This	does	not	break	the
logical	paragraph.

add_hor_rule(*args,	**kw)
Insert	a	horizontal	rule	in	the	output.	A	hard	break	is	inserted	if	there	is	data
in	the	current	paragraph,	but	the	logical	paragraph	is	not	broken.	The
arguments	and	keywords	are	passed	on	to	the	writer's
send_line_break()	method.

add_flowing_data(data)
Provide	data	which	should	be	formatted	with	collapsed	whitespace.
Whitespace	from	preceding	and	successive	calls	to

add_flowing_data()	is	considered	as	well	when	the	whitespace
collapse	is	performed.	The	data	which	is	passed	to	this	method	is	expected
to	be	word-wrapped	by	the	output	device.	Note	that	any	word-wrapping	still
must	be	performed	by	the	writer	object	due	to	the	need	to	rely	on	device
and	font	information.

add_literal_data(data)
Provide	data	which	should	be	passed	to	the	writer	unchanged.	Whitespace,
including	newline	and	tab	characters,	are	considered	legal	in	the	value	of
data.

add_label_data(format,	counter)
Insert	a	label	which	should	be	placed	to	the	left	of	the	current	left	margin.
This	should	be	used	for	constructing	bulleted	or	numbered	lists.	If	the
format	value	is	a	string,	it	is	interpreted	as	a	format	specification	for
counter,	which	should	be	an	integer.	The	result	of	this	formatting	becomes
the	value	of	the	label;	if	format	is	not	a	string	it	is	used	as	the	label	value
directly.	The	label	value	is	passed	as	the	only	argument	to	the	writer's
send_label_data()	method.	Interpretation	of	non-string	label	values
is	dependent	on	the	associated	writer.

Format	specifications	are	strings	which,	in	combination	with	a	counter
value,	are	used	to	compute	label	values.	Each	character	in	the	format	string
is	copied	to	the	label	value,	with	some	characters	recognized	to	indicate	a
transform	on	the	counter	value.	Specifically,	the	character	"1"	represents
the	counter	value	formatter	as	an	Arabic	number,	the	characters	"A"	and	"a"
represent	alphabetic	representations	of	the	counter	value	in	upper	and	lower
case,	respectively,	and	"I"	and	"i"	represent	the	counter	value	in	Roman
numerals,	in	upper	and	lower	case.	Note	that	the	alphabetic	and	roman
transforms	require	that	the	counter	value	be	greater	than	zero.

flush_softspace()
Send	any	pending	whitespace	buffered	from	a	previous	call	to
add_flowing_data()	to	the	associated	writer	object.	This	should	be
called	before	any	direct	manipulation	of	the	writer	object.

push_alignment(align)
Push	a	new	alignment	setting	onto	the	alignment	stack.	This	may	be	AS_IS

if	no	change	is	desired.	If	the	alignment	value	is	changed	from	the	previous
setting,	the	writer's	new_alignment()	method	is	called	with	the	align
value.

pop_alignment()
Restore	the	previous	alignment.

push_font((size,	italic,	bold,	teletype))
Change	some	or	all	font	properties	of	the	writer	object.	Properties	which	are
not	set	to	AS_IS	are	set	to	the	values	passed	in	while	others	are	maintained
at	their	current	settings.	The	writer's	new_font()	method	is	called	with
the	fully	resolved	font	specification.

pop_font()
Restore	the	previous	font.

push_margin(margin)
Increase	the	number	of	left	margin	indentations	by	one,	associating	the
logical	tag	margin	with	the	new	indentation.	The	initial	margin	level	is	0.
Changed	values	of	the	logical	tag	must	be	true	values;	false	values	other
than	AS_IS	are	not	sufficient	to	change	the	margin.

pop_margin()
Restore	the	previous	margin.

push_style(*styles)
Push	any	number	of	arbitrary	style	specifications.	All	styles	are	pushed	onto
the	styles	stack	in	order.	A	tuple	representing	the	entire	stack,	including
AS_IS	values,	is	passed	to	the	writer's	new_styles()	method.

pop_style([n	=	1])
Pop	the	last	n	style	specifications	passed	to	push_style().	A	tuple
representing	the	revised	stack,	including	AS_IS	values,	is	passed	to	the
writer's	new_styles()	method.

set_spacing(spacing)
Set	the	spacing	style	for	the	writer.

assert_line_data([flag	=	1])
Inform	the	formatter	that	data	has	been	added	to	the	current	paragraph	out-
of-band.	This	should	be	used	when	the	writer	has	been	manipulated	directly.
The	optional	flag	argument	can	be	set	to	false	if	the	writer	manipulations
produced	a	hard	line	break	at	the	end	of	the	output.

Python	Library	Reference
Previous:	12.1	formatter	Up:	12.1	formatter	Next:	12.1.2	Formatter
Implementations

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.1.1	The	Formatter	Interface	Up:	12.1	formatter	Next:	12.1.3	The
Writer	Interface

12.1.2	Formatter	Implementations
Two	implementations	of	formatter	objects	are	provided	by	this	module.	Most
applications	may	use	one	of	these	classes	without	modification	or	subclassing.

class	NullFormatter([writer])
A	formatter	which	does	nothing.	If	writer	is	omitted,	a	NullWriter
instance	is	created.	No	methods	of	the	writer	are	called	by
NullFormatter	instances.	Implementations	should	inherit	from	this
class	if	implementing	a	writer	interface	but	don't	need	to	inherit	any
implementation.

class	AbstractFormatter(writer)
The	standard	formatter.	This	implementation	has	demonstrated	wide
applicability	to	many	writers,	and	may	be	used	directly	in	most
circumstances.	It	has	been	used	to	implement	a	full-featured	World	Wide
Web	browser.

Python	Library	Reference
Previous:	12.1.1	The	Formatter	Interface	Up:	12.1	formatter	Next:	12.1.3	The
Writer	Interface

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.1.2	Formatter	Implementations	Up:	12.1	formatter	Next:	12.1.4
Writer	Implementations

12.1.3	The	Writer	Interface
Interfaces	to	create	writers	are	dependent	on	the	specific	writer	class	being
instantiated.	The	interfaces	described	below	are	the	required	interfaces	which	all
writers	must	support	once	initialized.	Note	that	while	most	applications	can	use
the	AbstractFormatter	class	as	a	formatter,	the	writer	must	typically	be
provided	by	the	application.

flush()
Flush	any	buffered	output	or	device	control	events.

new_alignment(align)
Set	the	alignment	style.	The	align	value	can	be	any	object,	but	by
convention	is	a	string	or	None,	where	None	indicates	that	the	writer's
``preferred''	alignment	should	be	used.	Conventional	align	values	are
'left',	'center',	'right',	and	'justify'.

new_font(font)
Set	the	font	style.	The	value	of	font	will	be	None,	indicating	that	the
device's	default	font	should	be	used,	or	a	tuple	of	the	form	(size,	italic,
bold,	teletype).	Size	will	be	a	string	indicating	the	size	of	font	that	should
be	used;	specific	strings	and	their	interpretation	must	be	defined	by	the
application.	The	italic,	bold,	and	teletype	values	are	Boolean	values
specifying	which	of	those	font	attributes	should	be	used.

new_margin(margin,	level)
Set	the	margin	level	to	the	integer	level	and	the	logical	tag	to	margin.
Interpretation	of	the	logical	tag	is	at	the	writer's	discretion;	the	only
restriction	on	the	value	of	the	logical	tag	is	that	it	not	be	a	false	value	for
non-zero	values	of	level.

new_spacing(spacing)
Set	the	spacing	style	to	spacing.

new_styles(styles)
Set	additional	styles.	The	styles	value	is	a	tuple	of	arbitrary	values;	the

value	AS_IS	should	be	ignored.	The	styles	tuple	may	be	interpreted	either
as	a	set	or	as	a	stack	depending	on	the	requirements	of	the	application	and
writer	implementation.

send_line_break()
Break	the	current	line.

send_paragraph(blankline)
Produce	a	paragraph	separation	of	at	least	blankline	blank	lines,	or	the
equivalent.	The	blankline	value	will	be	an	integer.	Note	that	the
implementation	will	receive	a	call	to	send_line_break()	before	this
call	if	a	line	break	is	needed;	this	method	should	not	include	ending	the	last
line	of	the	paragraph.	It	is	only	responsible	for	vertical	spacing	between
paragraphs.

send_hor_rule(*args,	**kw)
Display	a	horizontal	rule	on	the	output	device.	The	arguments	to	this
method	are	entirely	application-	and	writer-specific,	and	should	be
interpreted	with	care.	The	method	implementation	may	assume	that	a	line
break	has	already	been	issued	via	send_line_break().

send_flowing_data(data)
Output	character	data	which	may	be	word-wrapped	and	re-flowed	as
needed.	Within	any	sequence	of	calls	to	this	method,	the	writer	may	assume
that	spans	of	multiple	whitespace	characters	have	been	collapsed	to	single
space	characters.

send_literal_data(data)
Output	character	data	which	has	already	been	formatted	for	display.
Generally,	this	should	be	interpreted	to	mean	that	line	breaks	indicated	by
newline	characters	should	be	preserved	and	no	new	line	breaks	should	be
introduced.	The	data	may	contain	embedded	newline	and	tab	characters,
unlike	data	provided	to	the	send_formatted_data()	interface.

send_label_data(data)
Set	data	to	the	left	of	the	current	left	margin,	if	possible.	The	value	of	data
is	not	restricted;	treatment	of	non-string	values	is	entirely	application-	and

writer-dependent.	This	method	will	only	be	called	at	the	beginning	of	a	line.

Python	Library	Reference
Previous:	12.1.2	Formatter	Implementations	Up:	12.1	formatter	Next:	12.1.4
Writer	Implementations

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.1.3	The	Writer	Interface	Up:	12.1	formatter	Next:	12.2	email

12.1.4	Writer	Implementations
Three	implementations	of	the	writer	object	interface	are	provided	as	examples
by	this	module.	Most	applications	will	need	to	derive	new	writer	classes	from
the	NullWriter	class.

class	NullWriter()
A	writer	which	only	provides	the	interface	definition;	no	actions	are	taken
on	any	methods.	This	should	be	the	base	class	for	all	writers	which	do	not
need	to	inherit	any	implementation	methods.

class	AbstractWriter()
A	writer	which	can	be	used	in	debugging	formatters,	but	not	much	else.
Each	method	simply	announces	itself	by	printing	its	name	and	arguments
on	standard	output.

class	DumbWriter([file[,	maxcol	=	72]])
Simple	writer	class	which	writes	output	on	the	file	object	passed	in	as	file
or,	if	file	is	omitted,	on	standard	output.	The	output	is	simply	word-wrapped
to	the	number	of	columns	specified	by	maxcol.	This	class	is	suitable	for
reflowing	a	sequence	of	paragraphs.

Python	Library	Reference
Previous:	12.1.3	The	Writer	Interface	Up:	12.1	formatter	Next:	12.2	email

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.1.4	Writer	Implementations	Up:	12.	Internet	Data	Handling	Next:
12.2.1	Representing	an	email

12.2	email	--	An	email	and	MIME
handling	package
New	in	version	2.2.

The	email	package	is	a	library	for	managing	email	messages,	including	MIME
and	other	RFC	2822-based	message	documents.	It	subsumes	most	of	the
functionality	in	several	older	standard	modules	such	as	rfc822,	mimetools,
multifile,	and	other	non-standard	packages	such	as	mimecntl.	It	is
specifically	not	designed	to	do	any	sending	of	email	messages	to	SMTP	(RFC
2821)	servers;	that	is	the	function	of	the	smtplib	module.	The	email	package
attempts	to	be	as	RFC-compliant	as	possible,	supporting	in	addition	to	RFC
2822,	such	MIME-related	RFCs	as	RFC	2045,	RFC	2046,	RFC	2047,	and	RFC
2231.

The	primary	distinguishing	feature	of	the	email	package	is	that	it	splits	the
parsing	and	generating	of	email	messages	from	the	internal	object	model
representation	of	email.	Applications	using	the	email	package	deal	primarily
with	objects;	you	can	add	sub-objects	to	messages,	remove	sub-objects	from
messages,	completely	re-arrange	the	contents,	etc.	There	is	a	separate	parser	and
a	separate	generator	which	handles	the	transformation	from	flat	text	to	the	object
model,	and	then	back	to	flat	text	again.	There	are	also	handy	subclasses	for	some
common	MIME	object	types,	and	a	few	miscellaneous	utilities	that	help	with
such	common	tasks	as	extracting	and	parsing	message	field	values,	creating
RFC-compliant	dates,	etc.

The	following	sections	describe	the	functionality	of	the	email	package.	The
ordering	follows	a	progression	that	should	be	common	in	applications:	an	email
message	is	read	as	flat	text	from	a	file	or	other	source,	the	text	is	parsed	to
produce	the	object	structure	of	the	email	message,	this	structure	is	manipulated,
and	finally	rendered	back	into	flat	text.

It	is	perfectly	feasible	to	create	the	object	structure	out	of	whole	cloth	--	i.e.
completely	from	scratch.	From	there,	a	similar	progression	can	be	taken	as
above.

http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2821.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2045.html
http://www.faqs.org/rfcs/rfc2046.html
http://www.faqs.org/rfcs/rfc2047.html
http://www.faqs.org/rfcs/rfc2231.html

Also	included	are	detailed	specifications	of	all	the	classes	and	modules	that	the
email	package	provides,	the	exception	classes	you	might	encounter	while
using	the	email	package,	some	auxiliary	utilities,	and	a	few	examples.	For
users	of	the	older	mimelib	package,	or	previous	versions	of	the	email
package,	a	section	on	differences	and	porting	is	provided.

See	Also:

Module	smtplib:
SMTP	protocol	client.

Subsections

12.2.1	Representing	an	email	message
12.2.1.1	Deprecated	methods

12.2.2	Parsing	email	messages
12.2.2.1	FeedParser	API
12.2.2.2	Parser	class	API
12.2.2.3	Additional	notes

12.2.3	Generating	MIME	documents
12.2.3.1	Deprecated	methods

12.2.4	Creating	email	and	MIME	objects	from	scratch
12.2.5	Internationalized	headers
12.2.6	Representing	character	sets
12.2.7	Encoders
12.2.8	Exception	and	Defect	classes
12.2.9	Miscellaneous	utilities
12.2.10	Iterators
12.2.11	Package	History
12.2.12	Differences	from	mimelib
12.2.13	Examples

Python	Library	Reference
Previous:	12.1.4	Writer	Implementations	Up:	12.	Internet	Data	Handling	Next:
12.2.1	Representing	an	email

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2	email	Up:	12.2	email	Next:	12.2.1.1	Deprecated	methods

12.2.1	Representing	an	email	message
The	central	class	in	the	email	package	is	the	Message	class;	it	is	the	base
class	for	the	email	object	model.	Message	provides	the	core	functionality	for
setting	and	querying	header	fields,	and	for	accessing	message	bodies.

Conceptually,	a	Message	object	consists	of	headers	and	payloads.	Headers	are
RFC	2822	style	field	names	and	values	where	the	field	name	and	value	are
separated	by	a	colon.	The	colon	is	not	part	of	either	the	field	name	or	the	field
value.

Headers	are	stored	and	returned	in	case-preserving	form	but	are	matched	case-
insensitively.	There	may	also	be	a	single	envelope	header,	also	known	as	the
Unix-From	header	or	the	From_	header.	The	payload	is	either	a	string	in	the
case	of	simple	message	objects	or	a	list	of	Message	objects	for	MIME
container	documents	(e.g.	multipart/*	and	message/rfc822).

Message	objects	provide	a	mapping	style	interface	for	accessing	the	message
headers,	and	an	explicit	interface	for	accessing	both	the	headers	and	the	payload.
It	provides	convenience	methods	for	generating	a	flat	text	representation	of	the
message	object	tree,	for	accessing	commonly	used	header	parameters,	and	for
recursively	walking	over	the	object	tree.

Here	are	the	methods	of	the	Message	class:

class	Message()
The	constructor	takes	no	arguments.

as_string([unixfrom])
Return	the	entire	message	flatten	as	a	string.	When	optional	unixfrom	is
True,	the	envelope	header	is	included	in	the	returned	string.	unixfrom
defaults	to	False.

Note	that	this	method	is	provided	as	a	convenience	and	may	not	always
format	the	message	the	way	you	want.	For	example,	by	default	it	mangles
lines	that	begin	with	From	.	For	more	flexibility,	instantiate	a
Generator	instance	and	use	its	flatten()	method	directly.	For

http://www.faqs.org/rfcs/rfc2822.html

example:

from	cStringIO	import	StringIO

from	email.Generator	import	Generator

fp	=	StringIO()

g	=	Generator(fp,	mangle_from_=False,	maxheaderlen=60)

g.flatten(msg)

text	=	fp.getvalue()

__str__()
Equivalent	to	as_string(unixfrom=True).

is_multipart()
Return	True	if	the	message's	payload	is	a	list	of	sub-Message	objects,
otherwise	return	False.	When	is_multipart()	returns	False,	the
payload	should	be	a	string	object.

set_unixfrom(unixfrom)
Set	the	message's	envelope	header	to	unixfrom,	which	should	be	a	string.

get_unixfrom()
Return	the	message's	envelope	header.	Defaults	to	None	if	the	envelope
header	was	never	set.

attach(payload)
Add	the	given	payload	to	the	current	payload,	which	must	be	None	or	a	list
of	Message	objects	before	the	call.	After	the	call,	the	payload	will	always
be	a	list	of	Message	objects.	If	you	want	to	set	the	payload	to	a	scalar
object	(e.g.	a	string),	use	set_payload()	instead.

get_payload([i[,	decode]])
Return	a	reference	the	current	payload,	which	will	be	a	list	of	Message
objects	when	is_multipart()	is	True,	or	a	string	when
is_multipart()	is	False.	If	the	payload	is	a	list	and	you	mutate	the
list	object,	you	modify	the	message's	payload	in	place.

With	optional	argument	i,	get_payload()	will	return	the	i-th	element	of
the	payload,	counting	from	zero,	if	is_multipart()	is	True.	An
IndexError	will	be	raised	if	i	is	less	than	0	or	greater	than	or	equal	to	the

number	of	items	in	the	payload.	If	the	payload	is	a	string	(i.e.
is_multipart()	is	False)	and	i	is	given,	a	TypeError	is	raised.

Optional	decode	is	a	flag	indicating	whether	the	payload	should	be	decoded
or	not,	according	to	the	Content-Transfer-Encoding:	header.	When	True
and	the	message	is	not	a	multipart,	the	payload	will	be	decoded	if	this
header's	value	is	"quoted-printable"	or	"base64".	If	some	other
encoding	is	used,	or	Content-Transfer-Encoding:	header	is	missing,	or	if
the	payload	has	bogus	base64	data,	the	payload	is	returned	as-is
(undecoded).	If	the	message	is	a	multipart	and	the	decode	flag	is	True,
then	None	is	returned.	The	default	for	decode	is	False.

set_payload(payload[,	charset])
Set	the	entire	message	object's	payload	to	payload.	It	is	the	client's
responsibility	to	ensure	the	payload	invariants.	Optional	charset	sets	the
message's	default	character	set;	see	set_charset()	for	details.

Changed	in	version	2.2.2:	charset	argument	added.

set_charset(charset)
Set	the	character	set	of	the	payload	to	charset,	which	can	either	be	a
Charset	instance	(see	email.Charset),	a	string	naming	a	character
set,	or	None.	If	it	is	a	string,	it	will	be	converted	to	a	Charset	instance.	If
charset	is	None,	the	charset	parameter	will	be	removed	from	the
Content-Type:	header.	Anything	else	will	generate	a	TypeError.

The	message	will	be	assumed	to	be	of	type	text/*	encoded	with
charset.input_charset.	It	will	be	converted	to
charset.output_charset	and	encoded	properly,	if	needed,	when
generating	the	plain	text	representation	of	the	message.	MIME	headers
(MIME-Version:,	Content-Type:,	Content-Transfer-Encoding:)	will	be
added	as	needed.

New	in	version	2.2.2.

get_charset()
Return	the	Charset	instance	associated	with	the	message's	payload.	New
in	version	2.2.2.

The	following	methods	implement	a	mapping-like	interface	for	accessing	the
message's	RFC	2822	headers.	Note	that	there	are	some	semantic	differences
between	these	methods	and	a	normal	mapping	(i.e.	dictionary)	interface.	For
example,	in	a	dictionary	there	are	no	duplicate	keys,	but	here	there	may	be
duplicate	message	headers.	Also,	in	dictionaries	there	is	no	guaranteed	order	to
the	keys	returned	by	keys(),	but	in	a	Message	object,	headers	are	always
returned	in	the	order	they	appeared	in	the	original	message,	or	were	added	to	the
message	later.	Any	header	deleted	and	then	re-added	are	always	appended	to	the
end	of	the	header	list.

These	semantic	differences	are	intentional	and	are	biased	toward	maximal
convenience.

Note	that	in	all	cases,	any	envelope	header	present	in	the	message	is	not	included
in	the	mapping	interface.

__len__()
Return	the	total	number	of	headers,	including	duplicates.

__contains__(name)
Return	true	if	the	message	object	has	a	field	named	name.	Matching	is	done
case-insensitively	and	name	should	not	include	the	trailing	colon.	Used	for
the	in	operator,	e.g.:

if	'message-id'	in	myMessage:

				print	'Message-ID:',	myMessage['message-id']

__getitem__(name)
Return	the	value	of	the	named	header	field.	name	should	not	include	the
colon	field	separator.	If	the	header	is	missing,	None	is	returned;	a
KeyError	is	never	raised.

Note	that	if	the	named	field	appears	more	than	once	in	the	message's
headers,	exactly	which	of	those	field	values	will	be	returned	is	undefined.
Use	the	get_all()	method	to	get	the	values	of	all	the	extant	named
headers.

__setitem__(name,	val)
Add	a	header	to	the	message	with	field	name	name	and	value	val.	The	field

http://www.faqs.org/rfcs/rfc2822.html

is	appended	to	the	end	of	the	message's	existing	fields.

Note	that	this	does	not	overwrite	or	delete	any	existing	header	with	the
same	name.	If	you	want	to	ensure	that	the	new	header	is	the	only	one
present	in	the	message	with	field	name	name,	delete	the	field	first,	e.g.:

del	msg['subject']

msg['subject']	=	'Python	roolz!'

__delitem__(name)
Delete	all	occurrences	of	the	field	with	name	name	from	the	message's
headers.	No	exception	is	raised	if	the	named	field	isn't	present	in	the
headers.

has_key(name)
Return	true	if	the	message	contains	a	header	field	named	name,	otherwise
return	false.

keys()
Return	a	list	of	all	the	message's	header	field	names.

values()
Return	a	list	of	all	the	message's	field	values.

items()
Return	a	list	of	2-tuples	containing	all	the	message's	field	headers	and
values.

get(name[,	failobj])
Return	the	value	of	the	named	header	field.	This	is	identical	to
__getitem__()	except	that	optional	failobj	is	returned	if	the	named
header	is	missing	(defaults	to	None).

Here	are	some	additional	useful	methods:

get_all(name[,	failobj])
Return	a	list	of	all	the	values	for	the	field	named	name.	If	there	are	no	such
named	headers	in	the	message,	failobj	is	returned	(defaults	to	None).

add_header(_name,	_value,	**_params)
Extended	header	setting.	This	method	is	similar	to	__setitem__()
except	that	additional	header	parameters	can	be	provided	as	keyword
arguments.	_name	is	the	header	field	to	add	and	_value	is	the	primary	value
for	the	header.

For	each	item	in	the	keyword	argument	dictionary	_params,	the	key	is
taken	as	the	parameter	name,	with	underscores	converted	to	dashes	(since
dashes	are	illegal	in	Python	identifiers).	Normally,	the	parameter	will	be
added	as	key="value"	unless	the	value	is	None,	in	which	case	only	the
key	will	be	added.

Here's	an	example:

msg.add_header('Content-Disposition',	'attachment',	filename='bud.gif')

This	will	add	a	header	that	looks	like

Content-Disposition:	attachment;	filename="bud.gif"

replace_header(_name,	_value)
Replace	a	header.	Replace	the	first	header	found	in	the	message	that
matches	_name,	retaining	header	order	and	field	name	case.	If	no	matching
header	was	found,	a	KeyError	is	raised.

New	in	version	2.2.2.

get_content_type()
Return	the	message's	content	type.	The	returned	string	is	coerced	to	lower
case	of	the	form	maintype/subtype.	If	there	was	no	Content-Type:	header
in	the	message	the	default	type	as	given	by	get_default_type()	will
be	returned.	Since	according	to	RFC	2045,	messages	always	have	a	default
type,	get_content_type()	will	always	return	a	value.

RFC	2045	defines	a	message's	default	type	to	be	text/plain	unless	it	appears
inside	a	multipart/digest	container,	in	which	case	it	would	be
message/rfc822.	If	the	Content-Type:	header	has	an	invalid	type
specification,	RFC	2045	mandates	that	the	default	type	be	text/plain.

http://www.faqs.org/rfcs/rfc2045.html
http://www.faqs.org/rfcs/rfc2045.html
http://www.faqs.org/rfcs/rfc2045.html

New	in	version	2.2.2.

get_content_maintype()
Return	the	message's	main	content	type.	This	is	the	maintype	part	of	the
string	returned	by	get_content_type().

New	in	version	2.2.2.

get_content_subtype()
Return	the	message's	sub-content	type.	This	is	the	subtype	part	of	the
string	returned	by	get_content_type().

New	in	version	2.2.2.

get_default_type()
Return	the	default	content	type.	Most	messages	have	a	default	content	type
of	text/plain,	except	for	messages	that	are	subparts	of	multipart/digest
containers.	Such	subparts	have	a	default	content	type	of	message/rfc822.

New	in	version	2.2.2.

set_default_type(ctype)
Set	the	default	content	type.	ctype	should	either	be	text/plain	or
message/rfc822,	although	this	is	not	enforced.	The	default	content	type	is
not	stored	in	the	Content-Type:	header.

New	in	version	2.2.2.

get_params([failobj[,	header[,	unquote]]])
Return	the	message's	Content-Type:	parameters,	as	a	list.	The	elements	of
the	returned	list	are	2-tuples	of	key/value	pairs,	as	split	on	the	"="	sign.	The
left	hand	side	of	the	"="	is	the	key,	while	the	right	hand	side	is	the	value.	If
there	is	no	"="	sign	in	the	parameter	the	value	is	the	empty	string,	otherwise
the	value	is	as	described	in	get_param()	and	is	unquoted	if	optional
unquote	is	True	(the	default).

Optional	failobj	is	the	object	to	return	if	there	is	no	Content-Type:	header.
Optional	header	is	the	header	to	search	instead	of	Content-Type:.

Changed	in	version	2.2.2:	unquote	argument	added.

get_param(param[,	failobj[,	header[,	unquote]]])
Return	the	value	of	the	Content-Type:	header's	parameter	param	as	a
string.	If	the	message	has	no	Content-Type:	header	or	if	there	is	no	such
parameter,	then	failobj	is	returned	(defaults	to	None).

Optional	header	if	given,	specifies	the	message	header	to	use	instead	of
Content-Type:.

Parameter	keys	are	always	compared	case	insensitively.	The	return	value
can	either	be	a	string,	or	a	3-tuple	if	the	parameter	was	RFC	2231	encoded.
When	it's	a	3-tuple,	the	elements	of	the	value	are	of	the	form	(CHARSET,
LANGUAGE,	VALUE).	Note	that	both	CHARSET	and	LANGUAGE	can	be
None,	in	which	case	you	should	consider	VALUE	to	be	encoded	in	the	us-
ascii	charset.	You	can	usually	ignore	LANGUAGE.

If	your	application	doesn't	care	whether	the	parameter	was	encoded	as	in
RFC	2231,	you	can	collapse	the	parameter	value	by	calling
email.Utils.collapse_rfc2231_value(),	passing	in	the	return
value	from	get_param().	This	will	return	a	suitably	decoded	Unicode
string	whn	the	value	is	a	tuple,	or	the	original	string	unquoted	if	it	isn't.	For
example:

rawparam	=	msg.get_param('foo')

param	=	email.Utils.collapse_rfc2231_value(rawparam)

In	any	case,	the	parameter	value	(either	the	returned	string,	or	the	VALUE
item	in	the	3-tuple)	is	always	unquoted,	unless	unquote	is	set	to	False.

Changed	in	version	2.2.2:	unquote	argument	added,	and	3-tuple	return	value
possible.

set_param(param,	value[,	header[,	requote[,	charset[,	language]]]])

Set	a	parameter	in	the	Content-Type:	header.	If	the	parameter	already
exists	in	the	header,	its	value	will	be	replaced	with	value.	If	the	Content-
Type:	header	as	not	yet	been	defined	for	this	message,	it	will	be	set	to
text/plain	and	the	new	parameter	value	will	be	appended	as	per	RFC	2045.

http://www.faqs.org/rfcs/rfc2231.html
http://www.faqs.org/rfcs/rfc2231.html
http://www.faqs.org/rfcs/rfc2045.html

Optional	header	specifies	an	alternative	header	to	Content-Type:,	and	all
parameters	will	be	quoted	as	necessary	unless	optional	requote	is	False
(the	default	is	True).

If	optional	charset	is	specified,	the	parameter	will	be	encoded	according	to
RFC	2231.	Optional	language	specifies	the	RFC	2231	language,	defaulting
to	the	empty	string.	Both	charset	and	language	should	be	strings.

New	in	version	2.2.2.

del_param(param[,	header[,	requote]])
Remove	the	given	parameter	completely	from	the	Content-Type:	header.
The	header	will	be	re-written	in	place	without	the	parameter	or	its	value.
All	values	will	be	quoted	as	necessary	unless	requote	is	False	(the	default
is	True).	Optional	header	specifies	an	alternative	to	Content-Type:.

New	in	version	2.2.2.

set_type(type[,	header][,	requote])
Set	the	main	type	and	subtype	for	the	Content-Type:	header.	type	must	be
a	string	in	the	form	maintype/subtype,	otherwise	a	ValueError	is
raised.

This	method	replaces	the	Content-Type:	header,	keeping	all	the	parameters
in	place.	If	requote	is	False,	this	leaves	the	existing	header's	quoting	as	is,
otherwise	the	parameters	will	be	quoted	(the	default).

An	alternative	header	can	be	specified	in	the	header	argument.	When	the
Content-Type:	header	is	set	a	MIME-Version:	header	is	also	added.

New	in	version	2.2.2.

get_filename([failobj])
Return	the	value	of	the	filename	parameter	of	the	Content-Disposition:
header	of	the	message,	or	failobj	if	either	the	header	is	missing,	or	has	no
filename	parameter.	The	returned	string	will	always	be	unquoted	as	per
Utils.unquote().

http://www.faqs.org/rfcs/rfc2231.html

get_boundary([failobj])
Return	the	value	of	the	boundary	parameter	of	the	Content-Type:	header
of	the	message,	or	failobj	if	either	the	header	is	missing,	or	has	no
boundary	parameter.	The	returned	string	will	always	be	unquoted	as	per
Utils.unquote().

set_boundary(boundary)
Set	the	boundary	parameter	of	the	Content-Type:	header	to	boundary.
set_boundary()	will	always	quote	boundary	if	necessary.	A
HeaderParseError	is	raised	if	the	message	object	has	no	Content-
Type:	header.

Note	that	using	this	method	is	subtly	different	than	deleting	the	old
Content-Type:	header	and	adding	a	new	one	with	the	new	boundary	via
add_header(),	because	set_boundary()	preserves	the	order	of	the
Content-Type:	header	in	the	list	of	headers.	However,	it	does	not	preserve
any	continuation	lines	which	may	have	been	present	in	the	original
Content-Type:	header.

get_content_charset([failobj])
Return	the	charset	parameter	of	the	Content-Type:	header,	coerced	to
lower	case.	If	there	is	no	Content-Type:	header,	or	if	that	header	has	no
charset	parameter,	failobj	is	returned.

Note	that	this	method	differs	from	get_charset()	which	returns	the
Charset	instance	for	the	default	encoding	of	the	message	body.

New	in	version	2.2.2.

get_charsets([failobj])
Return	a	list	containing	the	character	set	names	in	the	message.	If	the
message	is	a	multipart,	then	the	list	will	contain	one	element	for	each
subpart	in	the	payload,	otherwise,	it	will	be	a	list	of	length	1.

Each	item	in	the	list	will	be	a	string	which	is	the	value	of	the	charset
parameter	in	the	Content-Type:	header	for	the	represented	subpart.
However,	if	the	subpart	has	no	Content-Type:	header,	no	charset
parameter,	or	is	not	of	the	text	main	MIME	type,	then	that	item	in	the

returned	list	will	be	failobj.

walk()
The	walk()	method	is	an	all-purpose	generator	which	can	be	used	to
iterate	over	all	the	parts	and	subparts	of	a	message	object	tree,	in	depth-first
traversal	order.	You	will	typically	use	walk()	as	the	iterator	in	a	for
loop;	each	iteration	returns	the	next	subpart.

Here's	an	example	that	prints	the	MIME	type	of	every	part	of	a	multipart
message	structure:

>>>	for	part	in	msg.walk():

...					print	part.get_content_type()

multipart/report

text/plain

message/delivery-status

text/plain

text/plain

message/rfc822

Message	objects	can	also	optionally	contain	two	instance	attributes,	which	can
be	used	when	generating	the	plain	text	of	a	MIME	message.

preamble

The	format	of	a	MIME	document	allows	for	some	text	between	the	blank
line	following	the	headers,	and	the	first	multipart	boundary	string.
Normally,	this	text	is	never	visible	in	a	MIME-aware	mail	reader	because	it
falls	outside	the	standard	MIME	armor.	However,	when	viewing	the	raw
text	of	the	message,	or	when	viewing	the	message	in	a	non-MIME	aware
reader,	this	text	can	become	visible.

The	preamble	attribute	contains	this	leading	extra-armor	text	for	MIME
documents.	When	the	Parser	discovers	some	text	after	the	headers	but
before	the	first	boundary	string,	it	assigns	this	text	to	the	message's
preamble	attribute.	When	the	Generator	is	writing	out	the	plain	text
representation	of	a	MIME	message,	and	it	finds	the	message	has	a	preamble
attribute,	it	will	write	this	text	in	the	area	between	the	headers	and	the	first
boundary.	See	email.Parser	and	email.Generator	for	details.

Note	that	if	the	message	object	has	no	preamble,	the	preamble	attribute	will
be	None.

epilogue

The	epilogue	attribute	acts	the	same	way	as	the	preamble	attribute,	except
that	it	contains	text	that	appears	between	the	last	boundary	and	the	end	of
the	message.

One	note:	when	generating	the	flat	text	for	a	multipart	message	that	has	no
epilogue	(using	the	standard	Generator	class),	no	newline	is	added	after
the	closing	boundary	line.	If	the	message	object	has	an	epilogue	and	its
value	does	not	start	with	a	newline,	a	newline	is	printed	after	the	closing
boundary.	This	seems	a	little	clumsy,	but	it	makes	the	most	practical	sense.
The	upshot	is	that	if	you	want	to	ensure	that	a	newline	get	printed	after	your
closing	multipart	boundary,	set	the	epilogue	to	the	empty	string.

defects

The	defects	attribute	contains	a	list	of	all	the	problems	found	when	parsing
this	message.	See	email.Errors	for	a	detailed	description	of	the
possible	parsing	defects.

New	in	version	2.4.

Subsections

12.2.1.1	Deprecated	methods

Python	Library	Reference
Previous:	12.2	email	Up:	12.2	email	Next:	12.2.1.1	Deprecated	methods

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.1.1	Deprecated	methods	Up:	12.2	email	Next:	12.2.2.1
FeedParser	API

12.2.2	Parsing	email	messages
Message	object	structures	can	be	created	in	one	of	two	ways:	they	can	be	created
from	whole	cloth	by	instantiating	Message	objects	and	stringing	them	together
via	attach()	and	set_payload()	calls,	or	they	can	be	created	by	parsing
a	flat	text	representation	of	the	email	message.

The	email	package	provides	a	standard	parser	that	understands	most	email
document	structures,	including	MIME	documents.	You	can	pass	the	parser	a
string	or	a	file	object,	and	the	parser	will	return	to	you	the	root	Message
instance	of	the	object	structure.	For	simple,	non-MIME	messages	the	payload	of
this	root	object	will	likely	be	a	string	containing	the	text	of	the	message.	For
MIME	messages,	the	root	object	will	return	True	from	its	is_multipart()
method,	and	the	subparts	can	be	accessed	via	the	get_payload()	and
walk()	methods.

There	are	actually	two	parser	interfaces	available	for	use,	the	classic	Parser
API	and	the	incremental	FeedParser	API.	The	classic	Parser	API	is	fine	if
you	have	the	entire	text	of	the	message	in	memory	as	a	string,	or	if	the	entire
message	lives	in	a	file	on	the	file	system.	FeedParser	is	more	appropriate	for
when	you're	reading	the	message	from	a	stream	which	might	block	waiting	for
more	input	(e.g.	reading	an	email	message	from	a	socket).	The	FeedParser
can	consume	and	parse	the	message	incrementally,	and	only	returns	the	root
object	when	you	close	the	parser12.1.

Note	that	the	parser	can	be	extended	in	limited	ways,	and	of	course	you	can
implement	your	own	parser	completely	from	scratch.	There	is	no	magical
connection	between	the	email	package's	bundled	parser	and	the	Message
class,	so	your	custom	parser	can	create	message	object	trees	any	way	it	finds
necessary.

Footnotes

...	parser12.1
As	of	email	package	version	3.0,	introduced	in	Python	2.4,	the	classic

Parser	was	re-implemented	in	terms	of	the	FeedParser,	so	the
semantics	and	results	are	identical	between	the	two	parsers.

Subsections

12.2.2.1	FeedParser	API
12.2.2.2	Parser	class	API
12.2.2.3	Additional	notes

Python	Library	Reference
Previous:	12.2.1.1	Deprecated	methods	Up:	12.2	email	Next:	12.2.2.1
FeedParser	API

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.2.3	Additional	notes	Up:	12.2	email	Next:	12.2.3.1	Deprecated
methods

12.2.3	Generating	MIME	documents
One	of	the	most	common	tasks	is	to	generate	the	flat	text	of	the	email	message
represented	by	a	message	object	structure.	You	will	need	to	do	this	if	you	want	to
send	your	message	via	the	smtplib	module	or	the	nntplib	module,	or	print
the	message	on	the	console.	Taking	a	message	object	structure	and	producing	a
flat	text	document	is	the	job	of	the	Generator	class.

Again,	as	with	the	email.Parser	module,	you	aren't	limited	to	the
functionality	of	the	bundled	generator;	you	could	write	one	from	scratch
yourself.	However	the	bundled	generator	knows	how	to	generate	most	email	in	a
standards-compliant	way,	should	handle	MIME	and	non-MIME	email	messages
just	fine,	and	is	designed	so	that	the	transformation	from	flat	text,	to	a	message
structure	via	the	Parser	class,	and	back	to	flat	text,	is	idempotent	(the	input	is
identical	to	the	output).

Here	are	the	public	methods	of	the	Generator	class:

class	Generator(outfp[,	mangle_from_[,	maxheaderlen]])
The	constructor	for	the	Generator	class	takes	a	file-like	object	called
outfp	for	an	argument.	outfp	must	support	the	write()	method	and	be
usable	as	the	output	file	in	a	Python	extended	print	statement.

Optional	mangle_from_	is	a	flag	that,	when	True,	puts	a	">"	character	in
front	of	any	line	in	the	body	that	starts	exactly	as	"From	",	i.e.	From
followed	by	a	space	at	the	beginning	of	the	line.	This	is	the	only	guaranteed
portable	way	to	avoid	having	such	lines	be	mistaken	for	a	Unix	mailbox
format	envelope	header	separator	(see	WHY	THE	CONTENT-LENGTH
FORMAT	IS	BAD	for	details).	mangle_from_	defaults	to	True,	but	you
might	want	to	set	this	to	False	if	you	are	not	writing	Unix	mailbox	format
files.

Optional	maxheaderlen	specifies	the	longest	length	for	a	non-continued
header.	When	a	header	line	is	longer	than	maxheaderlen	(in	characters,	with
tabs	expanded	to	8	spaces),	the	header	will	be	split	as	defined	in	the
email.Header	class.	Set	to	zero	to	disable	header	wrapping.	The	default
is	78,	as	recommended	(but	not	required)	by	RFC	2822.

http://home.netscape.com/eng/mozilla/2.0/relnotes/demo/content-length.html
http://www.faqs.org/rfcs/rfc2822.html

The	other	public	Generator	methods	are:

flatten(msg[,	unixfrom])
Print	the	textual	representation	of	the	message	object	structure	rooted	at
msg	to	the	output	file	specified	when	the	Generator	instance	was
created.	Subparts	are	visited	depth-first	and	the	resulting	text	will	be
properly	MIME	encoded.

Optional	unixfrom	is	a	flag	that	forces	the	printing	of	the	envelope	header
delimiter	before	the	first	RFC	2822	header	of	the	root	message	object.	If	the
root	object	has	no	envelope	header,	a	standard	one	is	crafted.	By	default,
this	is	set	to	False	to	inhibit	the	printing	of	the	envelope	delimiter.

Note	that	for	subparts,	no	envelope	header	is	ever	printed.

New	in	version	2.2.2.

clone(fp)
Return	an	independent	clone	of	this	Generator	instance	with	the	exact
same	options.

New	in	version	2.2.2.

write(s)
Write	the	string	s	to	the	underlying	file	object,	i.e.	outfp	passed	to
Generator's	constructor.	This	provides	just	enough	file-like	API	for
Generator	instances	to	be	used	in	extended	print	statements.

As	a	convenience,	see	the	methods	Message.as_string()	and
str(aMessage),	a.k.a.	Message.__str__(),	which	simplify	the
generation	of	a	formatted	string	representation	of	a	message	object.	For	more
detail,	see	email.Message.

The	email.Generator	module	also	provides	a	derived	class,	called
DecodedGenerator	which	is	like	the	Generator	base	class,	except	that
non-text	parts	are	substituted	with	a	format	string	representing	the	part.

class	DecodedGenerator(outfp[,	mangle_from_[,	maxheaderlen[,	fmt]]])

http://www.faqs.org/rfcs/rfc2822.html

This	class,	derived	from	Generator	walks	through	all	the	subparts	of	a
message.	If	the	subpart	is	of	main	type	text,	then	it	prints	the	decoded
payload	of	the	subpart.	Optional	_mangle_from_	and	maxheaderlen	are	as
with	the	Generator	base	class.

If	the	subpart	is	not	of	main	type	text,	optional	fmt	is	a	format	string	that	is
used	instead	of	the	message	payload.	fmt	is	expanded	with	the	following
keywords,	"%(keyword)s"format:

type	-	Full	MIME	type	of	the	non-text	part

maintype	-	Main	MIME	type	of	the	non-text	part

subtype	-	Sub-MIME	type	of	the	non-text	part

filename	-	Filename	of	the	non-text	part

description	-	Description	associated	with	the	non-text	part

encoding	-	Content	transfer	encoding	of	the	non-text	part

The	default	value	for	fmt	is	None,	meaning

[Non-text	(%(type)s)	part	of	message	omitted,	filename	%(filename)s]

New	in	version	2.2.2.

Subsections

12.2.3.1	Deprecated	methods

Python	Library	Reference
Previous:	12.2.2.3	Additional	notes	Up:	12.2	email	Next:	12.2.3.1	Deprecated
methods

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.3.1	Deprecated	methods	Up:	12.2	email	Next:	12.2.5
Internationalized	headers

12.2.4	Creating	email	and	MIME	objects	from
scratch
Ordinarily,	you	get	a	message	object	structure	by	passing	a	file	or	some	text	to	a
parser,	which	parses	the	text	and	returns	the	root	message	object.	However	you
can	also	build	a	complete	message	structure	from	scratch,	or	even	individual
Message	objects	by	hand.	In	fact,	you	can	also	take	an	existing	structure	and
add	new	Message	objects,	move	them	around,	etc.	This	makes	a	very
convenient	interface	for	slicing-and-dicing	MIME	messages.

You	can	create	a	new	object	structure	by	creating	Message	instances,	adding
attachments	and	all	the	appropriate	headers	manually.	For	MIME	messages
though,	the	email	package	provides	some	convenient	subclasses	to	make
things	easier.	Each	of	these	classes	should	be	imported	from	a	module	with	the
same	name	as	the	class,	from	within	the	email	package.	E.g.:

import	email.MIMEImage.MIMEImage

or

from	email.MIMEText	import	MIMEText

Here	are	the	classes:

class	MIMEBase(_maintype,	_subtype,	**_params)
This	is	the	base	class	for	all	the	MIME-specific	subclasses	of	Message.
Ordinarily	you	won't	create	instances	specifically	of	MIMEBase,	although
you	could.	MIMEBase	is	provided	primarily	as	a	convenient	base	class	for
more	specific	MIME-aware	subclasses.

_maintype	is	the	Content-Type:	major	type	(e.g.	text	or	image),	and
_subtype	is	the	Content-Type:	minor	type	(e.g.	plain	or	gif).	_params	is	a
parameter	key/value	dictionary	and	is	passed	directly	to
Message.add_header().

The	MIMEBase	class	always	adds	a	Content-Type:	header	(based	on
_maintype,	_subtype,	and	_params),	and	a	MIME-Version:	header	(always

set	to	1.0).

class	MIMENonMultipart()
A	subclass	of	MIMEBase,	this	is	an	intermediate	base	class	for	MIME
messages	that	are	not	multipart.	The	primary	purpose	of	this	class	is	to
prevent	the	use	of	the	attach()	method,	which	only	makes	sense	for
multipart	messages.	If	attach()	is	called,	a
MultipartConversionError	exception	is	raised.

New	in	version	2.2.2.

class	MIMEMultipart([subtype[,	boundary[,	_subparts[,	_params]]]])

A	subclass	of	MIMEBase,	this	is	an	intermediate	base	class	for	MIME
messages	that	are	multipart.	Optional	_subtype	defaults	to	mixed,	but	can
be	used	to	specify	the	subtype	of	the	message.	A	Content-Type:	header	of
multipart/_subtype	will	be	added	to	the	message	object.	A	MIME-Version:
header	will	also	be	added.

Optional	boundary	is	the	multipart	boundary	string.	When	None	(the
default),	the	boundary	is	calculated	when	needed.

_subparts	is	a	sequence	of	initial	subparts	for	the	payload.	It	must	be
possible	to	convert	this	sequence	to	a	list.	You	can	always	attach	new
subparts	to	the	message	by	using	the	Message.attach()	method.

Additional	parameters	for	the	Content-Type:	header	are	taken	from	the
keyword	arguments,	or	passed	into	the	_params	argument,	which	is	a
keyword	dictionary.

New	in	version	2.2.2.

class	MIMEAudio(_audiodata[,	_subtype[,	_encoder[,	**_params]]])

A	subclass	of	MIMENonMultipart,	the	MIMEAudio	class	is	used	to
create	MIME	message	objects	of	major	type	audio.	_audiodata	is	a	string
containing	the	raw	audio	data.	If	this	data	can	be	decoded	by	the	standard
Python	module	sndhdr,	then	the	subtype	will	be	automatically	included	in

the	Content-Type:	header.	Otherwise	you	can	explicitly	specify	the	audio
subtype	via	the	_subtype	parameter.	If	the	minor	type	could	not	be	guessed
and	_subtype	was	not	given,	then	TypeError	is	raised.

Optional	_encoder	is	a	callable	(i.e.	function)	which	will	perform	the	actual
encoding	of	the	audio	data	for	transport.	This	callable	takes	one	argument,
which	is	the	MIMEAudio	instance.	It	should	use	get_payload()	and
set_payload()	to	change	the	payload	to	encoded	form.	It	should	also
add	any	Content-Transfer-Encoding:	or	other	headers	to	the	message
object	as	necessary.	The	default	encoding	is	base64.	See	the
email.Encoders	module	for	a	list	of	the	built-in	encoders.

_params	are	passed	straight	through	to	the	base	class	constructor.

class	MIMEImage(_imagedata[,	_subtype[,	_encoder[,	**_params]]])

A	subclass	of	MIMENonMultipart,	the	MIMEImage	class	is	used	to
create	MIME	message	objects	of	major	type	image.	_imagedata	is	a	string
containing	the	raw	image	data.	If	this	data	can	be	decoded	by	the	standard
Python	module	imghdr,	then	the	subtype	will	be	automatically	included	in
the	Content-Type:	header.	Otherwise	you	can	explicitly	specify	the	image
subtype	via	the	_subtype	parameter.	If	the	minor	type	could	not	be	guessed
and	_subtype	was	not	given,	then	TypeError	is	raised.

Optional	_encoder	is	a	callable	(i.e.	function)	which	will	perform	the	actual
encoding	of	the	image	data	for	transport.	This	callable	takes	one	argument,
which	is	the	MIMEImage	instance.	It	should	use	get_payload()	and
set_payload()	to	change	the	payload	to	encoded	form.	It	should	also
add	any	Content-Transfer-Encoding:	or	other	headers	to	the	message
object	as	necessary.	The	default	encoding	is	base64.	See	the
email.Encoders	module	for	a	list	of	the	built-in	encoders.

_params	are	passed	straight	through	to	the	MIMEBase	constructor.

class	MIMEMessage(_msg[,	_subtype])
A	subclass	of	MIMENonMultipart,	the	MIMEMessage	class	is	used	to
create	MIME	objects	of	main	type	message.	_msg	is	used	as	the	payload,
and	must	be	an	instance	of	class	Message	(or	a	subclass	thereof),

otherwise	a	TypeError	is	raised.

Optional	_subtype	sets	the	subtype	of	the	message;	it	defaults	to	rfc822.

class	MIMEText(_text[,	_subtype[,	_charset]])
A	subclass	of	MIMENonMultipart,	the	MIMEText	class	is	used	to
create	MIME	objects	of	major	type	text.	_text	is	the	string	for	the	payload.
_subtype	is	the	minor	type	and	defaults	to	plain.	_charset	is	the	character
set	of	the	text	and	is	passed	as	a	parameter	to	the	MIMENonMultipart
constructor;	it	defaults	to	us-ascii.	No	guessing	or	encoding	is
performed	on	the	text	data.

Changed	in	version	2.4:	The	previously	deprecated	_encoding	argument	has
been	removed.	Encoding	happens	implicitly	based	on	the	_charset
argument.

Python	Library	Reference
Previous:	12.2.3.1	Deprecated	methods	Up:	12.2	email	Next:	12.2.5
Internationalized	headers

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.4	Creating	email	and	Up:	12.2	email	Next:	12.2.6	Representing
character	sets

12.2.5	Internationalized	headers
RFC	2822	is	the	base	standard	that	describes	the	format	of	email	messages.	It
derives	from	the	older	RFC	822	standard	which	came	into	widespread	use	at	a
time	when	most	email	was	composed	of	ASCII	characters	only.	RFC	2822	is	a
specification	written	assuming	email	contains	only	7-bit	ASCII	characters.

Of	course,	as	email	has	been	deployed	worldwide,	it	has	become
internationalized,	such	that	language	specific	character	sets	can	now	be	used	in
email	messages.	The	base	standard	still	requires	email	messages	to	be	transfered
using	only	7-bit	ASCII	characters,	so	a	slew	of	RFCs	have	been	written
describing	how	to	encode	email	containing	non-ASCII	characters	into	RFC
2822-compliant	format.	These	RFCs	include	RFC	2045,	RFC	2046,	RFC	2047,
and	RFC	2231.	The	email	package	supports	these	standards	in	its
email.Header	and	email.Charset	modules.

If	you	want	to	include	non-ASCII	characters	in	your	email	headers,	say	in	the
Subject:	or	To:	fields,	you	should	use	the	Header	class	and	assign	the	field	in
the	Message	object	to	an	instance	of	Header	instead	of	using	a	string	for	the
header	value.	For	example:

>>>	from	email.Message	import	Message

>>>	from	email.Header	import	Header

>>>	msg	=	Message()

>>>	h	=	Header('p\xf6stal',	'iso-8859-1')

>>>	msg['Subject']	=	h

>>>	print	msg.as_string()

Subject:	=?iso-8859-1?q?p=F6stal?=

Notice	here	how	we	wanted	the	Subject:	field	to	contain	a	non-ASCII
character?	We	did	this	by	creating	a	Header	instance	and	passing	in	the
character	set	that	the	byte	string	was	encoded	in.	When	the	subsequent
Message	instance	was	flattened,	the	Subject:	field	was	properly	RFC	2047
encoded.	MIME-aware	mail	readers	would	show	this	header	using	the	embedded
ISO-8859-1	character.

New	in	version	2.2.2.

Here	is	the	Header	class	description:

http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2045.html
http://www.faqs.org/rfcs/rfc2046.html
http://www.faqs.org/rfcs/rfc2047.html
http://www.faqs.org/rfcs/rfc2231.html
http://www.faqs.org/rfcs/rfc2047.html

class	Header([s[,	charset[,	maxlinelen[,	header_name[,	continuation_ws[,
errors]]]]]])

Create	a	MIME-compliant	header	that	can	contain	strings	in	different
character	sets.

Optional	s	is	the	initial	header	value.	If	None	(the	default),	the	initial
header	value	is	not	set.	You	can	later	append	to	the	header	with	append()
method	calls.	s	may	be	a	byte	string	or	a	Unicode	string,	but	see	the
append()	documentation	for	semantics.

Optional	charset	serves	two	purposes:	it	has	the	same	meaning	as	the
charset	argument	to	the	append()	method.	It	also	sets	the	default
character	set	for	all	subsequent	append()	calls	that	omit	the	charset
argument.	If	charset	is	not	provided	in	the	constructor	(the	default),	the
us-ascii	character	set	is	used	both	as	s's	initial	charset	and	as	the	default
for	subsequent	append()	calls.

The	maximum	line	length	can	be	specified	explicit	via	maxlinelen.	For
splitting	the	first	line	to	a	shorter	value	(to	account	for	the	field	header
which	isn't	included	in	s,	e.g.	Subject:)	pass	in	the	name	of	the	field	in
header_name.	The	default	maxlinelen	is	76,	and	the	default	value	for
header_name	is	None,	meaning	it	is	not	taken	into	account	for	the	first	line
of	a	long,	split	header.

Optional	continuation_ws	must	be	RFC	2822-compliant	folding
whitespace,	and	is	usually	either	a	space	or	a	hard	tab	character.	This
character	will	be	prepended	to	continuation	lines.

Optional	errors	is	passed	straight	through	to	the	append()	method.

append(s[,	charset[,	errors]])
Append	the	string	s	to	the	MIME	header.

Optional	charset,	if	given,	should	be	a	Charset	instance	(see
email.Charset)	or	the	name	of	a	character	set,	which	will	be	converted
to	a	Charset	instance.	A	value	of	None	(the	default)	means	that	the
charset	given	in	the	constructor	is	used.

http://www.faqs.org/rfcs/rfc2822.html

s	may	be	a	byte	string	or	a	Unicode	string.	If	it	is	a	byte	string	(i.e.
isinstance(s,	str)	is	true),	then	charset	is	the	encoding	of	that	byte
string,	and	a	UnicodeError	will	be	raised	if	the	string	cannot	be
decoded	with	that	character	set.

If	s	is	a	Unicode	string,	then	charset	is	a	hint	specifying	the	character	set	of
the	characters	in	the	string.	In	this	case,	when	producing	an	RFC	2822-
compliant	header	using	RFC	2047	rules,	the	Unicode	string	will	be	encoded
using	the	following	charsets	in	order:	us-ascii,	the	charset	hint,	utf-8.
The	first	character	set	to	not	provoke	a	UnicodeError	is	used.

Optional	errors	is	passed	through	to	any	unicode()	or
ustr.encode()	call,	and	defaults	to	``strict''.

encode([splitchars])
Encode	a	message	header	into	an	RFC-compliant	format,	possibly	wrapping
long	lines	and	encapsulating	non-ASCII	parts	in	base64	or	quoted-printable
encodings.	Optional	splitchars	is	a	string	containing	characters	to	split	long
ASCII	lines	on,	in	rough	support	of	RFC	2822's	highest	level	syntactic
breaks.	This	doesn't	affect	RFC	2047	encoded	lines.

The	Header	class	also	provides	a	number	of	methods	to	support	standard
operators	and	built-in	functions.

__str__()
A	synonym	for	Header.encode().	Useful	for	str(aHeader).

__unicode__()
A	helper	for	the	built-in	unicode()	function.	Returns	the	header	as	a
Unicode	string.

__eq__(other)
This	method	allows	you	to	compare	two	Header	instances	for	equality.

__ne__(other)
This	method	allows	you	to	compare	two	Header	instances	for	inequality.

The	email.Header	module	also	provides	the	following	convenient	functions.

http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2047.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2047.html

decode_header(header)
Decode	a	message	header	value	without	converting	the	character	set.	The
header	value	is	in	header.

This	function	returns	a	list	of	(decoded_string,	charset)	pairs
containing	each	of	the	decoded	parts	of	the	header.	charset	is	None	for
non-encoded	parts	of	the	header,	otherwise	a	lower	case	string	containing
the	name	of	the	character	set	specified	in	the	encoded	string.

Here's	an	example:

>>>	from	email.Header	import	decode_header

>>>	decode_header('=?iso-8859-1?q?p=F6stal?=')

[('p\xf6stal',	'iso-8859-1')]

make_header(decoded_seq[,	maxlinelen[,	header_name[,
continuation_ws]]])

Create	a	Header	instance	from	a	sequence	of	pairs	as	returned	by
decode_header().

decode_header()	takes	a	header	value	string	and	returns	a	sequence	of
pairs	of	the	format	(decoded_string,	charset)	where	charset	is
the	name	of	the	character	set.

This	function	takes	one	of	those	sequence	of	pairs	and	returns	a	Header
instance.	Optional	maxlinelen,	header_name,	and	continuation_ws	are	as	in
the	Header	constructor.

Python	Library	Reference
Previous:	12.2.4	Creating	email	and	Up:	12.2	email	Next:	12.2.6	Representing
character	sets

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.5	Internationalized	headers	Up:	12.2	email	Next:	12.2.7
Encoders

12.2.6	Representing	character	sets
This	module	provides	a	class	Charset	for	representing	character	sets	and
character	set	conversions	in	email	messages,	as	well	as	a	character	set	registry
and	several	convenience	methods	for	manipulating	this	registry.	Instances	of
Charset	are	used	in	several	other	modules	within	the	email	package.

New	in	version	2.2.2.

class	Charset([input_charset])
Map	character	sets	to	their	email	properties.

This	class	provides	information	about	the	requirements	imposed	on	email
for	a	specific	character	set.	It	also	provides	convenience	routines	for
converting	between	character	sets,	given	the	availability	of	the	applicable
codecs.	Given	a	character	set,	it	will	do	its	best	to	provide	information	on
how	to	use	that	character	set	in	an	email	message	in	an	RFC-compliant	way.

Certain	character	sets	must	be	encoded	with	quoted-printable	or	base64
when	used	in	email	headers	or	bodies.	Certain	character	sets	must	be
converted	outright,	and	are	not	allowed	in	email.

Optional	input_charset	is	as	described	below;	it	is	always	coerced	to	lower
case.	After	being	alias	normalized	it	is	also	used	as	a	lookup	into	the
registry	of	character	sets	to	find	out	the	header	encoding,	body	encoding,
and	output	conversion	codec	to	be	used	for	the	character	set.	For	example,
if	input_charset	is	iso-8859-1,	then	headers	and	bodies	will	be	encoded
using	quoted-printable	and	no	output	conversion	codec	is	necessary.	If
input_charset	is	euc-jp,	then	headers	will	be	encoded	with	base64,
bodies	will	not	be	encoded,	but	output	text	will	be	converted	from	the
euc-jp	character	set	to	the	iso-2022-jp	character	set.

Charset	instances	have	the	following	data	attributes:

input_charset

The	initial	character	set	specified.	Common	aliases	are	converted	to	their
official	email	names	(e.g.	latin_1	is	converted	to	iso-8859-1).

Defaults	to	7-bit	us-ascii.

header_encoding

If	the	character	set	must	be	encoded	before	it	can	be	used	in	an	email
header,	this	attribute	will	be	set	to	Charset.QP	(for	quoted-printable),
Charset.BASE64	(for	base64	encoding),	or	Charset.SHORTEST	for
the	shortest	of	QP	or	BASE64	encoding.	Otherwise,	it	will	be	None.

body_encoding

Same	as	header_encoding,	but	describes	the	encoding	for	the	mail
message's	body,	which	indeed	may	be	different	than	the	header	encoding.
Charset.SHORTEST	is	not	allowed	for	body_encoding.

output_charset

Some	character	sets	must	be	converted	before	they	can	be	used	in	email
headers	or	bodies.	If	the	input_charset	is	one	of	them,	this	attribute	will
contain	the	name	of	the	character	set	output	will	be	converted	to.
Otherwise,	it	will	be	None.

input_codec

The	name	of	the	Python	codec	used	to	convert	the	input_charset	to
Unicode.	If	no	conversion	codec	is	necessary,	this	attribute	will	be	None.

output_codec

The	name	of	the	Python	codec	used	to	convert	Unicode	to	the
output_charset.	If	no	conversion	codec	is	necessary,	this	attribute	will	have
the	same	value	as	the	input_codec.

Charset	instances	also	have	the	following	methods:

get_body_encoding()
Return	the	content	transfer	encoding	used	for	body	encoding.

This	is	either	the	string	"quoted-printable"	or	"base64"depending
on	the	encoding	used,	or	it	is	a	function,	in	which	case	you	should	call	the
function	with	a	single	argument,	the	Message	object	being	encoded.	The
function	should	then	set	the	Content-Transfer-Encoding:	header	itself	to
whatever	is	appropriate.

Returns	the	string	"quoted-printable"	if	body_encoding	is	QP,
returns	the	string	"base64"	if	body_encoding	is	BASE64,	and	returns	the
string	"7bit"	otherwise.

convert(s)
Convert	the	string	s	from	the	input_codec	to	the	output_codec.

to_splittable(s)
Convert	a	possibly	multibyte	string	to	a	safely	splittable	format.	s	is	the
string	to	split.

Uses	the	input_codec	to	try	and	convert	the	string	to	Unicode,	so	it	can	be
safely	split	on	character	boundaries	(even	for	multibyte	characters).

Returns	the	string	as-is	if	it	isn't	known	how	to	convert	s	to	Unicode	with
the	input_charset.

Characters	that	could	not	be	converted	to	Unicode	will	be	replaced	with	the
Unicode	replacement	character	"U+FFFD".

from_splittable(ustr[,	to_output])
Convert	a	splittable	string	back	into	an	encoded	string.	ustr	is	a	Unicode
string	to	``unsplit''.

This	method	uses	the	proper	codec	to	try	and	convert	the	string	from
Unicode	back	into	an	encoded	format.	Return	the	string	as-is	if	it	is	not
Unicode,	or	if	it	could	not	be	converted	from	Unicode.

Characters	that	could	not	be	converted	from	Unicode	will	be	replaced	with
an	appropriate	character	(usually	"?").

If	to_output	is	True	(the	default),	uses	output_codec	to	convert	to	an
encoded	format.	If	to_output	is	False,	it	uses	input_codec.

get_output_charset()
Return	the	output	character	set.

This	is	the	output_charset	attribute	if	that	is	not	None,	otherwise	it	is

input_charset.

encoded_header_len()
Return	the	length	of	the	encoded	header	string,	properly	calculating	for
quoted-printable	or	base64	encoding.

header_encode(s[,	convert])
Header-encode	the	string	s.

If	convert	is	True,	the	string	will	be	converted	from	the	input	charset	to	the
output	charset	automatically.	This	is	not	useful	for	multibyte	character	sets,
which	have	line	length	issues	(multibyte	characters	must	be	split	on	a
character,	not	a	byte	boundary);	use	the	higher-level	Header	class	to	deal
with	these	issues	(see	email.Header).	convert	defaults	to	False.

The	type	of	encoding	(base64	or	quoted-printable)	will	be	based	on	the
header_encoding	attribute.

body_encode(s[,	convert])
Body-encode	the	string	s.

If	convert	is	True	(the	default),	the	string	will	be	converted	from	the	input
charset	to	output	charset	automatically.	Unlike	header_encode(),	there
are	no	issues	with	byte	boundaries	and	multibyte	charsets	in	email	bodies,
so	this	is	usually	pretty	safe.

The	type	of	encoding	(base64	or	quoted-printable)	will	be	based	on	the
body_encoding	attribute.

The	Charset	class	also	provides	a	number	of	methods	to	support	standard
operations	and	built-in	functions.

__str__()
Returns	input_charset	as	a	string	coerced	to	lower	case.	__repr__()	is
an	alias	for	__str__().

__eq__(other)
This	method	allows	you	to	compare	two	Charset	instances	for	equality.

__ne__(other)
This	method	allows	you	to	compare	two	Charset	instances	for	inequality.

The	email.Charset	module	also	provides	the	following	functions	for	adding
new	entries	to	the	global	character	set,	alias,	and	codec	registries:

add_charset(charset[,	header_enc[,	body_enc[,	output_charset]]])
Add	character	properties	to	the	global	registry.

charset	is	the	input	character	set,	and	must	be	the	canonical	name	of	a
character	set.

Optional	header_enc	and	body_enc	is	either	Charset.QP	for	quoted-
printable,	Charset.BASE64	for	base64	encoding,
Charset.SHORTEST	for	the	shortest	of	quoted-printable	or	base64
encoding,	or	None	for	no	encoding.	SHORTEST	is	only	valid	for
header_enc.	The	default	is	None	for	no	encoding.

Optional	output_charset	is	the	character	set	that	the	output	should	be	in.
Conversions	will	proceed	from	input	charset,	to	Unicode,	to	the	output
charset	when	the	method	Charset.convert()	is	called.	The	default	is
to	output	in	the	same	character	set	as	the	input.

Both	input_charset	and	output_charset	must	have	Unicode	codec	entries	in
the	module's	character	set-to-codec	mapping;	use	add_codec()	to	add
codecs	the	module	does	not	know	about.	See	the	codecs	module's
documentation	for	more	information.

The	global	character	set	registry	is	kept	in	the	module	global	dictionary
CHARSETS.

add_alias(alias,	canonical)
Add	a	character	set	alias.	alias	is	the	alias	name,	e.g.	latin-1.	canonical
is	the	character	set's	canonical	name,	e.g.	iso-8859-1.

The	global	charset	alias	registry	is	kept	in	the	module	global	dictionary
ALIASES.

add_codec(charset,	codecname)
Add	a	codec	that	map	characters	in	the	given	character	set	to	and	from
Unicode.

charset	is	the	canonical	name	of	a	character	set.	codecname	is	the	name	of	a
Python	codec,	as	appropriate	for	the	second	argument	to	the	unicode()
built-in,	or	to	the	encode()	method	of	a	Unicode	string.

Python	Library	Reference
Previous:	12.2.5	Internationalized	headers	Up:	12.2	email	Next:	12.2.7
Encoders

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.6	Representing	character	sets	Up:	12.2	email	Next:	12.2.8
Exception	and	Defect

12.2.7	Encoders
When	creating	Message	objects	from	scratch,	you	often	need	to	encode	the
payloads	for	transport	through	compliant	mail	servers.	This	is	especially	true	for
image/*	and	text/*	type	messages	containing	binary	data.

The	email	package	provides	some	convenient	encodings	in	its	Encoders
module.	These	encoders	are	actually	used	by	the	MIMEAudio	and	MIMEImage
class	constructors	to	provide	default	encodings.	All	encoder	functions	take
exactly	one	argument,	the	message	object	to	encode.	They	usually	extract	the
payload,	encode	it,	and	reset	the	payload	to	this	newly	encoded	value.	They
should	also	set	the	Content-Transfer-Encoding:	header	as	appropriate.

Here	are	the	encoding	functions	provided:

encode_quopri(msg)
Encodes	the	payload	into	quoted-printable	form	and	sets	the	Content-
Transfer-Encoding:	header	to	quoted-printable12.2.	This	is	a	good
encoding	to	use	when	most	of	your	payload	is	normal	printable	data,	but
contains	a	few	unprintable	characters.

encode_base64(msg)
Encodes	the	payload	into	base64	form	and	sets	the	Content-Transfer-
Encoding:	header	to	base64.	This	is	a	good	encoding	to	use	when	most
of	your	payload	is	unprintable	data	since	it	is	a	more	compact	form	than
quoted-printable.	The	drawback	of	base64	encoding	is	that	it	renders	the
text	non-human	readable.

encode_7or8bit(msg)
This	doesn't	actually	modify	the	message's	payload,	but	it	does	set	the
Content-Transfer-Encoding:	header	to	either	7bit	or	8bit	as
appropriate,	based	on	the	payload	data.

encode_noop(msg)
This	does	nothing;	it	doesn't	even	set	the	Content-Transfer-Encoding:
header.

Footnotes

...quoted-printable12.2
Note	that	encoding	with	encode_quopri()	also	encodes	all	tabs	and
space	characters	in	the	data.

Python	Library	Reference
Previous:	12.2.6	Representing	character	sets	Up:	12.2	email	Next:	12.2.8
Exception	and	Defect

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.7	Encoders	Up:	12.2	email	Next:	12.2.9	Miscellaneous	utilities

12.2.8	Exception	and	Defect	classes
The	following	exception	classes	are	defined	in	the	email.Errors	module:

exception	MessageError()
This	is	the	base	class	for	all	exceptions	that	the	email	package	can	raise.	It
is	derived	from	the	standard	Exception	class	and	defines	no	additional
methods.

exception	MessageParseError()
This	is	the	base	class	for	exceptions	thrown	by	the	Parser	class.	It	is
derived	from	MessageError.

exception	HeaderParseError()
Raised	under	some	error	conditions	when	parsing	the	RFC	2822	headers	of
a	message,	this	class	is	derived	from	MessageParseError.	It	can	be
raised	from	the	Parser.parse()	or	Parser.parsestr()	methods.

Situations	where	it	can	be	raised	include	finding	an	envelope	header	after
the	first	RFC	2822	header	of	the	message,	finding	a	continuation	line	before
the	first	RFC	2822	header	is	found,	or	finding	a	line	in	the	headers	which	is
neither	a	header	or	a	continuation	line.

exception	BoundaryError()
Raised	under	some	error	conditions	when	parsing	the	RFC	2822	headers	of
a	message,	this	class	is	derived	from	MessageParseError.	It	can	be
raised	from	the	Parser.parse()	or	Parser.parsestr()	methods.

Situations	where	it	can	be	raised	include	not	being	able	to	find	the	starting
or	terminating	boundary	in	a	multipart/*	message	when	strict	parsing	is
used.

exception	MultipartConversionError()
Raised	when	a	payload	is	added	to	a	Message	object	using
add_payload(),	but	the	payload	is	already	a	scalar	and	the	message's
Content-Type:	main	type	is	not	either	multipart	or	missing.

http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html

MultipartConversionError	multiply	inherits	from
MessageError	and	the	built-in	TypeError.

Since	Message.add_payload()	is	deprecated,	this	exception	is	rarely
raised	in	practice.	However	the	exception	may	also	be	raised	if	the
attach()	method	is	called	on	an	instance	of	a	class	derived	from
MIMENonMultipart	(e.g.	MIMEImage).

Here's	the	list	of	the	defects	that	the	FeedParser	can	find	while	parsing
messages.	Note	that	the	defects	are	added	to	the	message	where	the	problem	was
found,	so	for	example,	if	a	message	nested	inside	a	multipart/alternative	had	a
malformed	header,	that	nested	message	object	would	have	a	defect,	but	the
containing	messages	would	not.

All	defect	classes	are	subclassed	from	email.Errors.MessageDefect,
but	this	class	is	not	an	exception!

New	in	version	2.4:	All	the	defect	classes	were	added.

NoBoundaryInMultipartDefect	-	A	message	claimed	to	be	a
multipart,	but	had	no	boundary	parameter.

StartBoundaryNotFoundDefect	-	The	start	boundary	claimed	in	the
Content-Type:	header	was	never	found.

FirstHeaderLineIsContinuationDefect	-	The	message	had	a
continuation	line	as	its	first	header	line.

MisplacedEnvelopeHeaderDefect	-	A	``Unix	From''	header	was
found	in	the	middle	of	a	header	block.

MalformedHeaderDefect	-	A	header	was	found	that	was	missing	a
colon,	or	was	otherwise	malformed.

MultipartInvariantViolationDefect	-	A	message	claimed	to
be	a	multipart,	but	no	subparts	were	found.	Note	that	when	a	message	has
this	defect,	its	is_multipart()	method	may	return	false	even	though
its	content	type	claims	to	be	multipart.

Python	Library	Reference
Previous:	12.2.7	Encoders	Up:	12.2	email	Next:	12.2.9	Miscellaneous	utilities

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.8	Exception	and	Defect	Up:	12.2	email	Next:	12.2.10	Iterators

12.2.9	Miscellaneous	utilities
There	are	several	useful	utilities	provided	in	the	email.Utils	module:

quote(str)
Return	a	new	string	with	backslashes	in	str	replaced	by	two	backslashes,
and	double	quotes	replaced	by	backslash-double	quote.

unquote(str)
Return	a	new	string	which	is	an	unquoted	version	of	str.	If	str	ends	and
begins	with	double	quotes,	they	are	stripped	off.	Likewise	if	str	ends	and
begins	with	angle	brackets,	they	are	stripped	off.

parseaddr(address)
Parse	address	-	which	should	be	the	value	of	some	address-containing	field
such	as	To:	or	Cc:	-	into	its	constituent	realname	and	email	address	parts.
Returns	a	tuple	of	that	information,	unless	the	parse	fails,	in	which	case	a	2-
tuple	of	('',	'')	is	returned.

formataddr(pair)
The	inverse	of	parseaddr(),	this	takes	a	2-tuple	of	the	form
(realname,	email_address)	and	returns	the	string	value	suitable
for	a	To:	or	Cc:	header.	If	the	first	element	of	pair	is	false,	then	the	second
element	is	returned	unmodified.

getaddresses(fieldvalues)
This	method	returns	a	list	of	2-tuples	of	the	form	returned	by
parseaddr().	fieldvalues	is	a	sequence	of	header	field	values	as	might
be	returned	by	Message.get_all().	Here's	a	simple	example	that	gets
all	the	recipients	of	a	message:

from	email.Utils	import	getaddresses

tos	=	msg.get_all('to',	[])

ccs	=	msg.get_all('cc',	[])

resent_tos	=	msg.get_all('resent-to',	[])

resent_ccs	=	msg.get_all('resent-cc',	[])

all_recipients	=	getaddresses(tos	+	ccs	+	resent_tos	+	resent_ccs)

parsedate(date)
Attempts	to	parse	a	date	according	to	the	rules	in	RFC	2822.	however,	some
mailers	don't	follow	that	format	as	specified,	so	parsedate()	tries	to
guess	correctly	in	such	cases.	date	is	a	string	containing	an	RFC	2822	date,
such	as	"Mon,	20	Nov	1995	19:12:08	-0500".	If	it	succeeds	in
parsing	the	date,	parsedate()	returns	a	9-tuple	that	can	be	passed
directly	to	time.mktime();	otherwise	None	will	be	returned.	Note	that
fields	6,	7,	and	8	of	the	result	tuple	are	not	usable.

parsedate_tz(date)
Performs	the	same	function	as	parsedate(),	but	returns	either	None	or
a	10-tuple;	the	first	9	elements	make	up	a	tuple	that	can	be	passed	directly
to	time.mktime(),	and	the	tenth	is	the	offset	of	the	date's	timezone
from	UTC	(which	is	the	official	term	for	Greenwich	Mean	Time)12.3.	If	the
input	string	has	no	timezone,	the	last	element	of	the	tuple	returned	is	None.
Note	that	fields	6,	7,	and	8	of	the	result	tuple	are	not	usable.

mktime_tz(tuple)
Turn	a	10-tuple	as	returned	by	parsedate_tz()	into	a	UTC	timestamp.
It	the	timezone	item	in	the	tuple	is	None,	assume	local	time.	Minor
deficiency:	mktime_tz()	interprets	the	first	8	elements	of	tuple	as	a	local
time	and	then	compensates	for	the	timezone	difference.	This	may	yield	a
slight	error	around	changes	in	daylight	savings	time,	though	not	worth
worrying	about	for	common	use.

formatdate([timeval[,	localtime][,	usegmt]])
Returns	a	date	string	as	per	RFC	2822,	e.g.:

Fri,	09	Nov	2001	01:08:47	-0000

Optional	timeval	if	given	is	a	floating	point	time	value	as	accepted	by
time.gmtime()	and	time.localtime(),	otherwise	the	current	time
is	used.

Optional	localtime	is	a	flag	that	when	True,	interprets	timeval,	and	returns
a	date	relative	to	the	local	timezone	instead	of	UTC,	properly	taking
daylight	savings	time	into	account.	The	default	is	False	meaning	UTC	is
used.

http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html

Optional	usegmt	is	a	flag	that	when	True,	outputs	a	date	string	with	the
timezone	as	an	ascii	string	GMT,	rather	than	a	numeric	-0000.	This	is
needed	for	some	protocols	(such	as	HTTP).	This	only	applies	when
localtime	is	False

make_msgid([idstring])
Returns	a	string	suitable	for	an	RFC	2822-compliant	Message-ID:	header.
Optional	idstring	if	given,	is	a	string	used	to	strengthen	the	uniqueness	of
the	message	id.

decode_rfc2231(s)
Decode	the	string	s	according	to	RFC	2231.

encode_rfc2231(s[,	charset[,	language]])
Encode	the	string	s	according	to	RFC	2231.	Optional	charset	and	language,
if	given	is	the	character	set	name	and	language	name	to	use.	If	neither	is
given,	s	is	returned	as-is.	If	charset	is	given	but	language	is	not,	the	string
is	encoded	using	the	empty	string	for	language.

collapse_rfc2231_value(value[,	errors[,	fallback_charset]])
When	a	header	parameter	is	encoded	in	RFC	2231	format,
Message.get_param()	may	return	a	3-tuple	containing	the	character
set,	language,	and	value.	collapse_rfc2231_value()	turns	this	into
a	unicode	string.	Optional	errors	is	passed	to	the	errors	argument	of	the
built-in	unicode()	function;	it	defaults	to	replace.	Optional
fallback_charset	specifies	the	character	set	to	use	if	the	one	in	the	RFC
2231	header	is	not	known	by	Python;	it	defaults	to	us-ascii.

For	convenience,	if	the	value	passed	to	collapse_rfc2231_value()
is	not	a	tuple,	it	should	be	a	string	and	it	is	returned	unquoted.

decode_params(params)
Decode	parameters	list	according	to	RFC	2231.	params	is	a	sequence	of	2-
tuples	containing	elements	of	the	form	(content-type,	string-
value).

Changed	in	version	2.4:	The	dump_address_pair()	function	has	been

http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2231.html
http://www.faqs.org/rfcs/rfc2231.html
http://www.faqs.org/rfcs/rfc2231.html
http://www.faqs.org/rfcs/rfc2231.html
http://www.faqs.org/rfcs/rfc2231.html

removed;	use	formataddr()	instead..

Changed	in	version	2.4:	The	decode()	function	has	been	removed;	use	the
Header.decode_header()	method	instead..

Changed	in	version	2.4:	The	encode()	function	has	been	removed;	use	the
Header.encode()	method	instead..

Footnotes

...	Time)12.3
Note	that	the	sign	of	the	timezone	offset	is	the	opposite	of	the	sign	of	the
time.timezone	variable	for	the	same	timezone;	the	latter	variable
follows	the	POSIX	standard	while	this	module	follows	RFC	2822.

Python	Library	Reference
Previous:	12.2.8	Exception	and	Defect	Up:	12.2	email	Next:	12.2.10	Iterators

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.faqs.org/rfcs/rfc2822.html

Previous:	12.2.9	Miscellaneous	utilities	Up:	12.2	email	Next:	12.2.11	Package
History

12.2.10	Iterators
Iterating	over	a	message	object	tree	is	fairly	easy	with	the	Message.walk()
method.	The	email.Iterators	module	provides	some	useful	higher	level
iterations	over	message	object	trees.

body_line_iterator(msg[,	decode])
This	iterates	over	all	the	payloads	in	all	the	subparts	of	msg,	returning	the
string	payloads	line-by-line.	It	skips	over	all	the	subpart	headers,	and	it
skips	over	any	subpart	with	a	payload	that	isn't	a	Python	string.	This	is
somewhat	equivalent	to	reading	the	flat	text	representation	of	the	message
from	a	file	using	readline(),	skipping	over	all	the	intervening	headers.

Optional	decode	is	passed	through	to	Message.get_payload().

typed_subpart_iterator(msg[,	maintype[,	subtype]])
This	iterates	over	all	the	subparts	of	msg,	returning	only	those	subparts	that
match	the	MIME	type	specified	by	maintype	and	subtype.

Note	that	subtype	is	optional;	if	omitted,	then	subpart	MIME	type	matching
is	done	only	with	the	main	type.	maintype	is	optional	too;	it	defaults	to	text.

Thus,	by	default	typed_subpart_iterator()	returns	each	subpart
that	has	a	MIME	type	of	text/*.

The	following	function	has	been	added	as	a	useful	debugging	tool.	It	should	not
be	considered	part	of	the	supported	public	interface	for	the	package.

_structure(msg[,	fp[,	level]])
Prints	an	indented	representation	of	the	content	types	of	the	message	object
structure.	For	example:

>>>	msg	=	email.message_from_file(somefile)

>>>	_structure(msg)

multipart/mixed

				text/plain

				text/plain

				multipart/digest

								message/rfc822

												text/plain

								message/rfc822

												text/plain

								message/rfc822

												text/plain

								message/rfc822

												text/plain

								message/rfc822

												text/plain

				text/plain

Optional	fp	is	a	file-like	object	to	print	the	output	to.	It	must	be	suitable	for
Python's	extended	print	statement.	level	is	used	internally.

Python	Library	Reference
Previous:	12.2.9	Miscellaneous	utilities	Up:	12.2	email	Next:	12.2.11	Package
History

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.10	Iterators	Up:	12.2	email	Next:	12.2.12	Differences	from
mimelib

12.2.11	Package	History
Version	1	of	the	email	package	was	bundled	with	Python	releases	up	to	Python
2.2.1.	Version	2	was	developed	for	the	Python	2.3	release,	and	backported	to
Python	2.2.2.	It	was	also	available	as	a	separate	distutils-based	package,	and	is
compatible	back	to	Python	2.1.

email	version	3.0	was	released	with	Python	2.4	and	as	a	separate	distutils-
based	package.	It	is	compatible	back	to	Python	2.3.

Here	are	the	differences	between	email	version	3	and	version	2:

The	FeedParser	class	was	introduced,	and	the	Parser	class	was
implemented	in	terms	of	the	FeedParser.	All	parsing	there	for	is	non-
strict,	and	parsing	will	make	a	best	effort	never	to	raise	an	exception.
Problems	found	while	parsing	messages	are	stored	in	the	message's	defect
attribute.

All	aspects	of	the	API	which	raised	DeprecationWarnings	in	version
2	have	been	removed.	These	include	the	_encoder	argument	to	the
MIMEText	constructor,	the	Message.add_payload()	method,	the
Utils.dump_address_pair()	function,	and	the	functions
Utils.decode()	and	Utils.encode().

New	DeprecationWarnings	have	been	added	to:
Generator.__call__(),	Message.get_type(),
Message.get_main_type(),	Message.get_subtype(),	and	the
strict	argument	to	the	Parser	class.	These	are	expected	to	be	removed	in
email	3.1.

Support	for	Pythons	earlier	than	2.3	has	been	removed.

Here	are	the	differences	between	email	version	2	and	version	1:

The	email.Header	and	email.Charset	modules	have	been	added.

The	pickle	format	for	Message	instances	has	changed.	Since	this	was
never	(and	still	isn't)	formally	defined,	this	isn't	considered	a	backward

incompatibility.	However	if	your	application	pickles	and	unpickles
Message	instances,	be	aware	that	in	email	version	2,	Message
instances	now	have	private	variables	_charset	and	_default_type.

Several	methods	in	the	Message	class	have	been	deprecated,	or	their
signatures	changed.	Also,	many	new	methods	have	been	added.	See	the
documentation	for	the	Message	class	for	details.	The	changes	should	be
completely	backward	compatible.

The	object	structure	has	changed	in	the	face	of	message/rfc822	content
types.	In	email	version	1,	such	a	type	would	be	represented	by	a	scalar
payload,	i.e.	the	container	message's	is_multipart()	returned	false,
get_payload()	was	not	a	list	object,	but	a	single	Message	instance.

This	structure	was	inconsistent	with	the	rest	of	the	package,	so	the	object
representation	for	message/rfc822	content	types	was	changed.	In	email
version	2,	the	container	does	return	True	from	is_multipart(),	and
get_payload()	returns	a	list	containing	a	single	Message	item.

Note	that	this	is	one	place	that	backward	compatibility	could	not	be
completely	maintained.	However,	if	you're	already	testing	the	return	type	of
get_payload(),	you	should	be	fine.	You	just	need	to	make	sure	your
code	doesn't	do	a	set_payload()	with	a	Message	instance	on	a
container	with	a	content	type	of	message/rfc822.

The	Parser	constructor's	strict	argument	was	added,	and	its	parse()
and	parsestr()	methods	grew	a	headersonly	argument.	The	strict	flag
was	also	added	to	functions	email.message_from_file()	and
email.message_from_string().

Generator.__call__()	is	deprecated;	use
Generator.flatten()	instead.	The	Generator	class	has	also
grown	the	clone()	method.

The	DecodedGenerator	class	in	the	email.Generator	module	was
added.

The	intermediate	base	classes	MIMENonMultipart	and
MIMEMultipart	have	been	added,	and	interposed	in	the	class	hierarchy

for	most	of	the	other	MIME-related	derived	classes.

The	_encoder	argument	to	the	MIMEText	constructor	has	been	deprecated.
Encoding	now	happens	implicitly	based	on	the	_charset	argument.

The	following	functions	in	the	email.Utils	module	have	been
deprecated:	dump_address_pairs(),	decode(),	and	encode().
The	following	functions	have	been	added	to	the	module:	make_msgid(),
decode_rfc2231(),	encode_rfc2231(),	and
decode_params().

The	non-public	function	email.Iterators._structure()	was
added.

Python	Library	Reference
Previous:	12.2.10	Iterators	Up:	12.2	email	Next:	12.2.12	Differences	from
mimelib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.11	Package	History	Up:	12.2	email	Next:	12.2.13	Examples

12.2.12	Differences	from	mimelib

The	email	package	was	originally	prototyped	as	a	separate	library	called
mimelib.	Changes	have	been	made	so	that	method	names	are	more	consistent,
and	some	methods	or	modules	have	either	been	added	or	removed.	The
semantics	of	some	of	the	methods	have	also	changed.	For	the	most	part,	any
functionality	available	in	mimelib	is	still	available	in	the	email	package,
albeit	often	in	a	different	way.	Backward	compatibility	between	the	mimelib
package	and	the	email	package	was	not	a	priority.

Here	is	a	brief	description	of	the	differences	between	the	mimelib	and	the
email	packages,	along	with	hints	on	how	to	port	your	applications.

Of	course,	the	most	visible	difference	between	the	two	packages	is	that	the
package	name	has	been	changed	to	email.	In	addition,	the	top-level	package
has	the	following	differences:

messageFromString()	has	been	renamed	to
message_from_string().

messageFromFile()	has	been	renamed	to
message_from_file().

The	Message	class	has	the	following	differences:

The	method	asString()	was	renamed	to	as_string().

The	method	ismultipart()	was	renamed	to	is_multipart().

The	get_payload()	method	has	grown	a	decode	optional	argument.

The	method	getall()	was	renamed	to	get_all().

The	method	addheader()	was	renamed	to	add_header().

The	method	gettype()	was	renamed	to	get_type().

The	methodgetmaintype()	was	renamed	to	get_main_type().

http://mimelib.sf.net/

The	method	getsubtype()	was	renamed	to	get_subtype().

The	method	getparams()	was	renamed	to	get_params().	Also,
whereas	getparams()	returned	a	list	of	strings,	get_params()
returns	a	list	of	2-tuples,	effectively	the	key/value	pairs	of	the	parameters,
split	on	the	"="	sign.

The	method	getparam()	was	renamed	to	get_param().

The	method	getcharsets()	was	renamed	to	get_charsets().

The	method	getfilename()	was	renamed	to	get_filename().

The	method	getboundary()	was	renamed	to	get_boundary().

The	method	setboundary()	was	renamed	to	set_boundary().

The	method	getdecodedpayload()	was	removed.	To	get	similar
functionality,	pass	the	value	1	to	the	decode	flag	of	the	get_payload()
method.

The	method	getpayloadastext()	was	removed.	Similar	functionality
is	supported	by	the	DecodedGenerator	class	in	the
email.Generator	module.

The	method	getbodyastext()	was	removed.	You	can	get	similar
functionality	by	creating	an	iterator	with
typed_subpart_iterator()	in	the	email.Iterators	module.

The	Parser	class	has	no	differences	in	its	public	interface.	It	does	have	some
additional	smarts	to	recognize	message/delivery-status	type	messages,	which
it	represents	as	a	Message	instance	containing	separate	Message	subparts	for
each	header	block	in	the	delivery	status	notification12.4.

The	Generator	class	has	no	differences	in	its	public	interface.	There	is	a	new
class	in	the	email.Generator	module	though,	called
DecodedGenerator	which	provides	most	of	the	functionality	previously
available	in	the	Message.getpayloadastext()	method.

The	following	modules	and	classes	have	been	changed:

The	MIMEBase	class	constructor	arguments	_major	and	_minor	have
changed	to	_maintype	and	_subtype	respectively.

The	Image	class/module	has	been	renamed	to	MIMEImage.	The	_minor
argument	has	been	renamed	to	_subtype.

The	Text	class/module	has	been	renamed	to	MIMEText.	The	_minor
argument	has	been	renamed	to	_subtype.

The	MessageRFC822	class/module	has	been	renamed	to
MIMEMessage.	Note	that	an	earlier	version	of	mimelib	called	this
class/module	RFC822,	but	that	clashed	with	the	Python	standard	library
module	rfc822	on	some	case-insensitive	file	systems.

Also,	the	MIMEMessage	class	now	represents	any	kind	of	MIME	message
with	main	type	message.	It	takes	an	optional	argument	_subtype	which	is
used	to	set	the	MIME	subtype.	_subtype	defaults	to	rfc822.

mimelib	provided	some	utility	functions	in	its	address	and	date	modules.
All	of	these	functions	have	been	moved	to	the	email.Utils	module.

The	MsgReader	class/module	has	been	removed.	Its	functionality	is	most
closely	supported	in	the	body_line_iterator()	function	in	the
email.Iterators	module.

Footnotes

...	notification12.4
Delivery	Status	Notifications	(DSN)	are	defined	in	RFC	1894.

Python	Library	Reference
Previous:	12.2.11	Package	History	Up:	12.2	email	Next:	12.2.13	Examples

Release	2.4,	documentation	updated	on	29	November	2004.

http://www.faqs.org/rfcs/rfc1894.html

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.12	Differences	from	mimelib	Up:	12.2	email	Next:	12.3	mailcap

12.2.13	Examples
Here	are	a	few	examples	of	how	to	use	the	email	package	to	read,	write,	and
send	simple	email	messages,	as	well	as	more	complex	MIME	messages.

First,	let's	see	how	to	create	and	send	a	simple	text	message:

#	Import	smtplib	for	the	actual	sending	function

import	smtplib

#	Import	the	email	modules	we'll	need

from	email.MIMEText	import	MIMEText

#	Open	a	plain	text	file	for	reading.		For	this	example,	assume	that

#	the	text	file	contains	only	ASCII	characters.

fp	=	open(textfile,	'rb')

#	Create	a	text/plain	message

msg	=	MIMEText(fp.read())

fp.close()

#	me	==	the	sender's	email	address

#	you	==	the	recipient's	email	address

msg['Subject']	=	'The	contents	of	%s'	%	textfile

msg['From']	=	me

msg['To']	=	you

#	Send	the	message	via	our	own	SMTP	server,	but	don't	include	the

#	envelope	header.

s	=	smtplib.SMTP()

s.connect()

s.sendmail(me,	[you],	msg.as_string())

s.close()

Download	as	text	(original	file	name:	email-simple.py).

Here's	an	example	of	how	to	send	a	MIME	message	containing	a	bunch	of
family	pictures	that	may	be	residing	in	a	directory:

#	Import	smtplib	for	the	actual	sending	function

import	smtplib

#	Here	are	the	email	pacakge	modules	we'll	need

from	email.MIMEImage	import	MIMEImage

from	email.MIMEMultipart	import	MIMEMultipart

COMMASPACE	=	',	'

#	Create	the	container	(outer)	email	message.

msg	=	MIMEMultipart()

msg['Subject']	=	'Our	family	reunion'

#	me	==	the	sender's	email	address

#	family	=	the	list	of	all	recipients'	email	addresses

msg['From']	=	me

msg['To']	=	COMMASPACE.join(family)

msg.preamble	=	'Our	family	reunion'

#	Guarantees	the	message	ends	in	a	newline

msg.epilogue	=	''

#	Assume	we	know	that	the	image	files	are	all	in	PNG	format

for	file	in	pngfiles:

				#	Open	the	files	in	binary	mode.		Let	the	MIMEImage	class	automatically

				#	guess	the	specific	image	type.

				fp	=	open(file,	'rb')

				img	=	MIMEImage(fp.read())

				fp.close()

				msg.attach(img)

#	Send	the	email	via	our	own	SMTP	server.

s	=	smtplib.SMTP()

s.connect()

s.sendmail(me,	family,	msg.as_string())

s.close()

Download	as	text	(original	file	name:	email-mime.py).

Here's	an	example	of	how	to	send	the	entire	contents	of	a	directory	as	an	email
message:	12.5

#!/usr/bin/env	python

"""Send	the	contents	of	a	directory	as	a	MIME	message.

Usage:	dirmail	[options]	from	to	[to	...]*

Options:

				-h	/	--help

								Print	this	message	and	exit.

				-d	directory

				--directory=directory

								Mail	the	contents	of	the	specified	directory,	otherwise	use	the

								current	directory.		Only	the	regular	files	in	the	directory	are	sent,

								and	we	don't	recurse	to	subdirectories.

`from'	is	the	email	address	of	the	sender	of	the	message.

`to'	is	the	email	address	of	the	recipient	of	the	message,	and	multiple

recipients	may	be	given.

The	email	is	sent	by	forwarding	to	your	local	SMTP	server,	which	then	does	the

normal	delivery	process.		Your	local	machine	must	be	running	an	SMTP	server.

"""

import	sys

import	os

import	getopt

import	smtplib

#	For	guessing	MIME	type	based	on	file	name	extension

import	mimetypes

from	email	import	Encoders

from	email.Message	import	Message

from	email.MIMEAudio	import	MIMEAudio

from	email.MIMEBase	import	MIMEBase

from	email.MIMEMultipart	import	MIMEMultipart

from	email.MIMEImage	import	MIMEImage

from	email.MIMEText	import	MIMEText

COMMASPACE	=	',	'

def	usage(code,	msg=''):

				print	>>	sys.stderr,	__doc__

				if	msg:

								print	>>	sys.stderr,	msg

				sys.exit(code)

def	main():

				try:

								opts,	args	=	getopt.getopt(sys.argv[1:],	'hd:',	['help',	'directory='])

				except	getopt.error,	msg:

								usage(1,	msg)

				dir	=	os.curdir

				for	opt,	arg	in	opts:

								if	opt	in	('-h',	'--help'):

												usage(0)

								elif	opt	in	('-d',	'--directory'):

												dir	=	arg

				if	len(args)	<	2:

								usage(1)

				sender	=	args[0]

				recips	=	args[1:]

				#	Create	the	enclosing	(outer)	message

				outer	=	MIMEMultipart()

				outer['Subject']	=	'Contents	of	directory	%s'	%	os.path.abspath(dir)

				outer['To']	=	COMMASPACE.join(recips)

				outer['From']	=	sender

				outer.preamble	=	'You	will	not	see	this	in	a	MIME-aware	mail	reader.\n'

				#	To	guarantee	the	message	ends	with	a	newline

				outer.epilogue	=	''

				for	filename	in	os.listdir(dir):

								path	=	os.path.join(dir,	filename)

								if	not	os.path.isfile(path):

												continue

								#	Guess	the	content	type	based	on	the	file's	extension.		Encoding

								#	will	be	ignored,	although	we	should	check	for	simple	things	like

								#	gzip'd	or	compressed	files.

								ctype,	encoding	=	mimetypes.guess_type(path)

								if	ctype	is	None	or	encoding	is	not	None:

												#	No	guess	could	be	made,	or	the	file	is	encoded	(compressed),	so

												#	use	a	generic	bag-of-bits	type.

												ctype	=	'application/octet-stream'

								maintype,	subtype	=	ctype.split('/',	1)

								if	maintype	==	'text':

												fp	=	open(path)

												#	Note:	we	should	handle	calculating	the	charset

												msg	=	MIMEText(fp.read(),	_subtype=subtype)

												fp.close()

								elif	maintype	==	'image':

												fp	=	open(path,	'rb')

												msg	=	MIMEImage(fp.read(),	_subtype=subtype)

												fp.close()

								elif	maintype	==	'audio':

												fp	=	open(path,	'rb')

												msg	=	MIMEAudio(fp.read(),	_subtype=subtype)

												fp.close()

								else:

												fp	=	open(path,	'rb')

												msg	=	MIMEBase(maintype,	subtype)

												msg.set_payload(fp.read())

												fp.close()

												#	Encode	the	payload	using	Base64

												Encoders.encode_base64(msg)

								#	Set	the	filename	parameter

								msg.add_header('Content-Disposition',	'attachment',	filename=filename)

								outer.attach(msg)

				#	Now	send	the	message

				s	=	smtplib.SMTP()

				s.connect()

				s.sendmail(sender,	recips,	outer.as_string())

				s.close()

if	__name__	==	'__main__':

				main()

Download	as	text	(original	file	name:	email-dir.py).

And	finally,	here's	an	example	of	how	to	unpack	a	MIME	message	like	the	one
above,	into	a	directory	of	files:

#!/usr/bin/env	python

"""Unpack	a	MIME	message	into	a	directory	of	files.

Usage:	unpackmail	[options]	msgfile

Options:

				-h	/	--help

								Print	this	message	and	exit.

				-d	directory

				--directory=directory

								Unpack	the	MIME	message	into	the	named	directory,	which	will	be

								created	if	it	doesn't	already	exist.

msgfile	is	the	path	to	the	file	containing	the	MIME	message.

"""

import	sys

import	os

import	getopt

import	errno

import	mimetypes

import	email

def	usage(code,	msg=''):

				print	>>	sys.stderr,	__doc__

				if	msg:

								print	>>	sys.stderr,	msg

				sys.exit(code)

def	main():

				try:

								opts,	args	=	getopt.getopt(sys.argv[1:],	'hd:',	['help',	'directory='])

				except	getopt.error,	msg:

								usage(1,	msg)

				dir	=	os.curdir

				for	opt,	arg	in	opts:

								if	opt	in	('-h',	'--help'):

												usage(0)

								elif	opt	in	('-d',	'--directory'):

												dir	=	arg

				try:

								msgfile	=	args[0]

				except	IndexError:

								usage(1)

				try:

								os.mkdir(dir)

				except	OSError,	e:

								#	Ignore	directory	exists	error

								if	e.errno	<>	errno.EEXIST:	raise

				fp	=	open(msgfile)

				msg	=	email.message_from_file(fp)

				fp.close()

				counter	=	1

				for	part	in	msg.walk():

								#	multipart/*	are	just	containers

								if	part.get_content_maintype()	==	'multipart':

												continue

								#	Applications	should	really	sanitize	the	given	filename	so	that	an

								#	email	message	can't	be	used	to	overwrite	important	files

								filename	=	part.get_filename()

								if	not	filename:

												ext	=	mimetypes.guess_extension(part.get_type())

												if	not	ext:

																#	Use	a	generic	bag-of-bits	extension

																ext	=	'.bin'

												filename	=	'part-%03d%s'	%	(counter,	ext)

								counter	+=	1

								fp	=	open(os.path.join(dir,	filename),	'wb')

								fp.write(part.get_payload(decode=1))

								fp.close()

if	__name__	==	'__main__':

				main()

Download	as	text	(original	file	name:	email-unpack.py).

Footnotes

...	message:12.5
Thanks	to	Matthew	Dixon	Cowles	for	the	original	inspiration	and
examples.

Python	Library	Reference
Previous:	12.2.12	Differences	from	mimelib	Up:	12.2	email	Next:	12.3	mailcap

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.13	Examples	Up:	12.	Internet	Data	Handling	Next:	12.4
mailbox

12.3	mailcap	--	Mailcap	file
handling.
Mailcap	files	are	used	to	configure	how	MIME-aware	applications	such	as	mail
readers	and	Web	browsers	react	to	files	with	different	MIME	types.	(The	name
``mailcap''	is	derived	from	the	phrase	``mail	capability''.)	For	example,	a	mailcap
file	might	contain	a	line	like	"video/mpeg;	xmpeg	%s".	Then,	if	the	user
encounters	an	email	message	or	Web	document	with	the	MIME	type
video/mpeg,	"%s"	will	be	replaced	by	a	filename	(usually	one	belonging	to	a
temporary	file)	and	the	xmpeg	program	can	be	automatically	started	to	view	the
file.

The	mailcap	format	is	documented	in	RFC	1524,	``A	User	Agent	Configuration
Mechanism	For	Multimedia	Mail	Format	Information,''	but	is	not	an	Internet
standard.	However,	mailcap	files	are	supported	on	most	UNIX	systems.

findmatch(caps,	MIMEtype[,	key[,	filename[,	plist]]])
Return	a	2-tuple;	the	first	element	is	a	string	containing	the	command	line
to	be	executed	(which	can	be	passed	to	os.system()),	and	the	second
element	is	the	mailcap	entry	for	a	given	MIME	type.	If	no	matching	MIME
type	can	be	found,	(None,	None)	is	returned.

key	is	the	name	of	the	field	desired,	which	represents	the	type	of	activity	to
be	performed;	the	default	value	is	'view',	since	in	the	most	common	case
you	simply	want	to	view	the	body	of	the	MIME-typed	data.	Other	possible
values	might	be	'compose'	and	'edit',	if	you	wanted	to	create	a	new	body	of
the	given	MIME	type	or	alter	the	existing	body	data.	See	RFC	1524	for	a
complete	list	of	these	fields.

filename	is	the	filename	to	be	substituted	for	"%s"	in	the	command	line;	the
default	value	is	'/dev/null'	which	is	almost	certainly	not	what	you
want,	so	usually	you'll	override	it	by	specifying	a	filename.

plist	can	be	a	list	containing	named	parameters;	the	default	value	is	simply
an	empty	list.	Each	entry	in	the	list	must	be	a	string	containing	the

http://www.faqs.org/rfcs/rfc1524.html
http://www.faqs.org/rfcs/rfc1524.html

parameter	name,	an	equals	sign	("="),	and	the	parameter's	value.	Mailcap
entries	can	contain	named	parameters	like	%{foo},	which	will	be	replaced
by	the	value	of	the	parameter	named	'foo'.	For	example,	if	the	command
line	"showpartial	%{id}	%{number}	%{total}"was	in	a
mailcap	file,	and	plist	was	set	to	['id=1',	'number=2',
'total=3'],	the	resulting	command	line	would	be	'showpartial	1
2	3'.

In	a	mailcap	file,	the	``test''	field	can	optionally	be	specified	to	test	some
external	condition	(such	as	the	machine	architecture,	or	the	window	system
in	use)	to	determine	whether	or	not	the	mailcap	line	applies.
findmatch()	will	automatically	check	such	conditions	and	skip	the
entry	if	the	check	fails.

getcaps()
Returns	a	dictionary	mapping	MIME	types	to	a	list	of	mailcap	file	entries.
This	dictionary	must	be	passed	to	the	findmatch()	function.	An	entry	is
stored	as	a	list	of	dictionaries,	but	it	shouldn't	be	necessary	to	know	the
details	of	this	representation.

The	information	is	derived	from	all	of	the	mailcap	files	found	on	the
system.	Settings	in	the	user's	mailcap	file	$HOME/.mailcap	will	override
settings	in	the	system	mailcap	files	/etc/mailcap,	/usr/etc/mailcap,	and
/usr/local/etc/mailcap.

An	example	usage:

>>>	import	mailcap

>>>	d=mailcap.getcaps()

>>>	mailcap.findmatch(d,	'video/mpeg',	filename='/tmp/tmp1223')

('xmpeg	/tmp/tmp1223',	{'view':	'xmpeg	%s'})

Python	Library	Reference
Previous:	12.2.13	Examples	Up:	12.	Internet	Data	Handling	Next:	12.4
mailbox

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.3	mailcap	Up:	12.	Internet	Data	Handling	Next:	12.4.1	Mailbox
Objects

12.4	mailbox	--	Read	various
mailbox	formats
This	module	defines	a	number	of	classes	that	allow	easy	and	uniform	access	to
mail	messages	in	a	(UNIX)	mailbox.

class	UnixMailbox(fp[,	factory])
Access	to	a	classic	UNIX-style	mailbox,	where	all	messages	are	contained	in
a	single	file	and	separated	by	"From	"(a.k.a.	"From_")	lines.	The	file
object	fp	points	to	the	mailbox	file.	The	optional	factory	parameter	is	a
callable	that	should	create	new	message	objects.	factory	is	called	with	one
argument,	fp	by	the	next()	method	of	the	mailbox	object.	The	default	is
the	rfc822.Message	class	(see	the	rfc822	module	-	and	the	note
below).

Note: 	For	reasons	of	this	module's	internal
implementation,	you	will	probably	want	to	open	the	fp
object	in	binary	mode.	This	is	especially	important	on
Windows.

For	maximum	portability,	messages	in	a	UNIX-style	mailbox	are	separated
by	any	line	that	begins	exactly	with	the	string	'From	'	(note	the	trailing
space)	if	preceded	by	exactly	two	newlines.	Because	of	the	wide-range	of
variations	in	practice,	nothing	else	on	the	From_	line	should	be	considered.
However,	the	current	implementation	doesn't	check	for	the	leading	two
newlines.	This	is	usually	fine	for	most	applications.

The	UnixMailbox	class	implements	a	more	strict	version	of	From_	line
checking,	using	a	regular	expression	that	usually	correctly	matched	From_
delimiters.	It	considers	delimiter	line	to	be	separated	by	"From	name
time"	lines.	For	maximum	portability,	use	the	PortableUnixMailbox
class	instead.	This	class	is	identical	to	UnixMailbox	except	that
individual	messages	are	separated	by	only	"From	"	lines.

For	more	information,	see	Configuring	Netscape	Mail	on	UNIX:	Why	the
Content-Length	Format	is	Bad.

class	PortableUnixMailbox(fp[,	factory])
A	less-strict	version	of	UnixMailbox,	which	considers	only	the	"From	"
at	the	beginning	of	the	line	separating	messages.	The	``name	time''	portion
of	the	From	line	is	ignored,	to	protect	against	some	variations	that	are
observed	in	practice.	This	works	since	lines	in	the	message	which	begin
with	'From	'	are	quoted	by	mail	handling	software	at	delivery-time.

class	MmdfMailbox(fp[,	factory])
Access	an	MMDF-style	mailbox,	where	all	messages	are	contained	in	a
single	file	and	separated	by	lines	consisting	of	4	control-A	characters.	The
file	object	fp	points	to	the	mailbox	file.	Optional	factory	is	as	with	the
UnixMailbox	class.

class	MHMailbox(dirname[,	factory])
Access	an	MH	mailbox,	a	directory	with	each	message	in	a	separate	file
with	a	numeric	name.	The	name	of	the	mailbox	directory	is	passed	in
dirname.	factory	is	as	with	the	UnixMailbox	class.

class	Maildir(dirname[,	factory])
Access	a	Qmail	mail	directory.	All	new	and	current	mail	for	the	mailbox
specified	by	dirname	is	made	available.	factory	is	as	with	the
UnixMailbox	class.

class	BabylMailbox(fp[,	factory])
Access	a	Babyl	mailbox,	which	is	similar	to	an	MMDF	mailbox.	In	Babyl
format,	each	message	has	two	sets	of	headers,	the	original	headers	and	the
visible	headers.	The	original	headers	appear	before	a	line	containing	only
'***	EOOH	***'	(End-Of-Original-Headers)	and	the	visible	headers
appear	after	the	EOOH	line.	Babyl-compliant	mail	readers	will	show	you
only	the	visible	headers,	and	BabylMailbox	objects	will	return	messages
containing	only	the	visible	headers.	You'll	have	to	do	your	own	parsing	of
the	mailbox	file	to	get	at	the	original	headers.	Mail	messages	start	with	the
EOOH	line	and	end	with	a	line	containing	only	'\037\014'.	factory	is	as
with	the	UnixMailbox	class.

http://home.netscape.com/eng/mozilla/2.0/relnotes/demo/content-length.html

Note	that	because	the	rfc822	module	is	deprecated,	it	is	recommended	that
you	use	the	email	package	to	create	message	objects	from	a	mailbox.	(The
default	can't	be	changed	for	backwards	compatibility	reasons.)	The	safest	way	to
do	this	is	with	bit	of	code:

import	email

import	email.Errors

import	mailbox

def	msgfactory(fp):

				try:

								return	email.message_from_file(fp)

				except	email.Errors.MessageParseError:

								#	Don't	return	None	since	that	will

	 #	stop	the	mailbox	iterator

	 return	''

mbox	=	mailbox.UnixMailbox(fp,	msgfactory)

The	above	wrapper	is	defensive	against	ill-formed	MIME	messages	in	the
mailbox,	but	you	have	to	be	prepared	to	receive	the	empty	string	from	the
mailbox's	next()	method.	On	the	other	hand,	if	you	know	your	mailbox
contains	only	well-formed	MIME	messages,	you	can	simplify	this	to:

import	email

import	mailbox

mbox	=	mailbox.UnixMailbox(fp,	email.message_from_file)

See	Also:

mbox	-	file	containing	mail	messages
Description	of	the	traditional	``mbox''	mailbox	format.

maildir	-	directory	for	incoming	mail	messages
Description	of	the	``maildir''	mailbox	format.

Configuring	Netscape	Mail	on	UNIX:	Why	the	Content-Length	Format	is
Bad

A	description	of	problems	with	relying	on	the	Content-Length:
header	for	messages	stored	in	mailbox	files.

http://www.qmail.org/man/man5/mbox.html
http://www.qmail.org/man/man5/maildir.html
http://home.netscape.com/eng/mozilla/2.0/relnotes/demo/content-length.html

Subsections

12.4.1	Mailbox	Objects

Python	Library	Reference
Previous:	12.3	mailcap	Up:	12.	Internet	Data	Handling	Next:	12.4.1	Mailbox
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.4	mailbox	Up:	12.4	mailbox	Next:	12.5	mhlib

12.4.1	Mailbox	Objects
All	implementations	of	mailbox	objects	are	iterable	objects,	and	have	one
externally	visible	method.	This	method	is	used	by	iterators	created	from	mailbox
objects	and	may	also	be	used	directly.

next()
Return	the	next	message	in	the	mailbox,	created	with	the	optional	factory
argument	passed	into	the	mailbox	object's	constructor.	By	default	this	is	an
rfc822.Message	object	(see	the	rfc822	module).	Depending	on	the
mailbox	implementation	the	fp	attribute	of	this	object	may	be	a	true	file
object	or	a	class	instance	simulating	a	file	object,	taking	care	of	things	like
message	boundaries	if	multiple	mail	messages	are	contained	in	a	single	file,
etc.	If	no	more	messages	are	available,	this	method	returns	None.

Python	Library	Reference
Previous:	12.4	mailbox	Up:	12.4	mailbox	Next:	12.5	mhlib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.4.1	Mailbox	Objects	Up:	12.	Internet	Data	Handling	Next:	12.5.1
MH	Objects

12.5	mhlib	--	Access	to	MH
mailboxes
The	mhlib	module	provides	a	Python	interface	to	MH	folders	and	their
contents.

The	module	contains	three	basic	classes,	MH,	which	represents	a	particular
collection	of	folders,	Folder,	which	represents	a	single	folder,	and	Message,
which	represents	a	single	message.

class	MH([path[,	profile]])
MH	represents	a	collection	of	MH	folders.

class	Folder(mh,	name)
The	Folder	class	represents	a	single	folder	and	its	messages.

class	Message(folder,	number[,	name])
Message	objects	represent	individual	messages	in	a	folder.	The	Message
class	is	derived	from	mimetools.Message.

Subsections

12.5.1	MH	Objects
12.5.2	Folder	Objects
12.5.3	Message	Objects

Python	Library	Reference
Previous:	12.4.1	Mailbox	Objects	Up:	12.	Internet	Data	Handling	Next:	12.5.1
MH	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.5	mhlib	Up:	12.5	mhlib	Next:	12.5.2	Folder	Objects

12.5.1	MH	Objects
MH	instances	have	the	following	methods:

error(format[,	...])
Print	an	error	message	-	can	be	overridden.

getprofile(key)
Return	a	profile	entry	(None	if	not	set).

getpath()
Return	the	mailbox	pathname.

getcontext()
Return	the	current	folder	name.

setcontext(name)
Set	the	current	folder	name.

listfolders()
Return	a	list	of	top-level	folders.

listallfolders()
Return	a	list	of	all	folders.

listsubfolders(name)
Return	a	list	of	direct	subfolders	of	the	given	folder.

listallsubfolders(name)
Return	a	list	of	all	subfolders	of	the	given	folder.

makefolder(name)
Create	a	new	folder.

deletefolder(name)

Delete	a	folder	-	must	have	no	subfolders.

openfolder(name)
Return	a	new	open	folder	object.

Python	Library	Reference
Previous:	12.5	mhlib	Up:	12.5	mhlib	Next:	12.5.2	Folder	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.5.1	MH	Objects	Up:	12.5	mhlib	Next:	12.5.3	Message	Objects

12.5.2	Folder	Objects
Folder	instances	represent	open	folders	and	have	the	following	methods:

error(format[,	...])
Print	an	error	message	-	can	be	overridden.

getfullname()
Return	the	folder's	full	pathname.

getsequencesfilename()
Return	the	full	pathname	of	the	folder's	sequences	file.

getmessagefilename(n)
Return	the	full	pathname	of	message	n	of	the	folder.

listmessages()
Return	a	list	of	messages	in	the	folder	(as	numbers).

getcurrent()
Return	the	current	message	number.

setcurrent(n)
Set	the	current	message	number	to	n.

parsesequence(seq)
Parse	msgs	syntax	into	list	of	messages.

getlast()
Get	last	message,	or	0	if	no	messages	are	in	the	folder.

setlast(n)
Set	last	message	(internal	use	only).

getsequences()

Return	dictionary	of	sequences	in	folder.	The	sequence	names	are	used	as
keys,	and	the	values	are	the	lists	of	message	numbers	in	the	sequences.

putsequences(dict)
Return	dictionary	of	sequences	in	folder	name:	list.

removemessages(list)
Remove	messages	in	list	from	folder.

refilemessages(list,	tofolder)
Move	messages	in	list	to	other	folder.

movemessage(n,	tofolder,	ton)
Move	one	message	to	a	given	destination	in	another	folder.

copymessage(n,	tofolder,	ton)
Copy	one	message	to	a	given	destination	in	another	folder.

Python	Library	Reference
Previous:	12.5.1	MH	Objects	Up:	12.5	mhlib	Next:	12.5.3	Message	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.5.2	Folder	Objects	Up:	12.5	mhlib	Next:	12.6	mimetools

12.5.3	Message	Objects
The	Message	class	adds	one	method	to	those	of	mimetools.Message:

openmessage(n)
Return	a	new	open	message	object	(costs	a	file	descriptor).

Python	Library	Reference
Previous:	12.5.2	Folder	Objects	Up:	12.5	mhlib	Next:	12.6	mimetools

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.5.3	Message	Objects	Up:	12.	Internet	Data	Handling	Next:	12.6.1
Additional	Methods	of

12.6	mimetools	--	Tools	for	parsing
MIME	messages
Deprecated	since	release	2.3.	The	email	package	should	be	used	in	preference
to	the	mimetools	module.	This	module	is	present	only	to	maintain	backward
compatibility.

This	module	defines	a	subclass	of	the	rfc822	module's	Message	class	and	a
number	of	utility	functions	that	are	useful	for	the	manipulation	for	MIME
multipart	or	encoded	message.

It	defines	the	following	items:

class	Message(fp[,	seekable])
Return	a	new	instance	of	the	Message	class.	This	is	a	subclass	of	the
rfc822.Message	class,	with	some	additional	methods	(see	below).	The
seekable	argument	has	the	same	meaning	as	for	rfc822.Message.

choose_boundary()
Return	a	unique	string	that	has	a	high	likelihood	of	being	usable	as	a	part
boundary.	The	string	has	the	form
'hostipaddr.uid.pid.timestamp.random'.

decode(input,	output,	encoding)
Read	data	encoded	using	the	allowed	MIME	encoding	from	open	file	object
input	and	write	the	decoded	data	to	open	file	object	output.	Valid	values	for
encoding	include	'base64',	'quoted-printable',	'uuencode',
'x-uuencode',	'uue',	'x-uue',	'7bit',	and	'8bit'.	Decoding
messages	encoded	in	'7bit'	or	'8bit'	has	no	effect.	The	input	is
simply	copied	to	the	output.

encode(input,	output,	encoding)
Read	data	from	open	file	object	input	and	write	it	encoded	using	the
allowed	MIME	encoding	to	open	file	object	output.	Valid	values	for

encoding	are	the	same	as	for	decode().

copyliteral(input,	output)
Read	lines	from	open	file	input	until	EOF	and	write	them	to	open	file
output.

copybinary(input,	output)
Read	blocks	until	EOF	from	open	file	input	and	write	them	to	open	file
output.	The	block	size	is	currently	fixed	at	8192.

See	Also:

Module	email:
Comprehensive	email	handling	package;	supercedes	the	mimetools
module.

Module	rfc822:
Provides	the	base	class	for	mimetools.Message.

Module	multifile:
Support	for	reading	files	which	contain	distinct	parts,	such	as	MIME
data.

http://www.cs.uu.nl/wais/html/na-dir/mail/mime-faq/.html
The	MIME	Frequently	Asked	Questions	document.	For	an	overview
of	MIME,	see	the	answer	to	question	1.1	in	Part	1	of	this	document.

Subsections

12.6.1	Additional	Methods	of	Message	Objects

Python	Library	Reference
Previous:	12.5.3	Message	Objects	Up:	12.	Internet	Data	Handling	Next:	12.6.1
Additional	Methods	of

http://www.cs.uu.nl/wais/html/na-dir/mail/mime-faq/.html

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.6	mimetools	Up:	12.6	mimetools	Next:	12.7	mimetypes

12.6.1	Additional	Methods	of	Message	Objects
The	Message	class	defines	the	following	methods	in	addition	to	the
rfc822.Message	methods:

getplist()
Return	the	parameter	list	of	the	Content-Type:	header.	This	is	a	list	of
strings.	For	parameters	of	the	form	"key=value",	key	is	converted	to	lower
case	but	value	is	not.	For	example,	if	the	message	contains	the	header
"Content-type:	text/html;	spam=1;	Spam=2;	Spam"	then
getplist()	will	return	the	Python	list	['spam=1',	'spam=2',
'Spam'].

getparam(name)
Return	the	value	of	the	first	parameter	(as	returned	by	getplist())	of
the	form	"name=value"	for	the	given	name.	If	value	is	surrounded	by
quotes	of	the	form	`<...>'	or	`"..."',	these	are	removed.

getencoding()
Return	the	encoding	specified	in	the	Content-Transfer-Encoding:
message	header.	If	no	such	header	exists,	return	'7bit'.	The	encoding	is
converted	to	lower	case.

gettype()
Return	the	message	type	(of	the	form	"type/subtype")	as	specified	in	the
Content-Type:	header.	If	no	such	header	exists,	return	'text/plain'.
The	type	is	converted	to	lower	case.

getmaintype()
Return	the	main	type	as	specified	in	the	Content-Type:	header.	If	no	such
header	exists,	return	'text'.	The	main	type	is	converted	to	lower	case.

getsubtype()
Return	the	subtype	as	specified	in	the	Content-Type:	header.	If	no	such
header	exists,	return	'plain'.	The	subtype	is	converted	to	lower	case.

Python	Library	Reference
Previous:	12.6	mimetools	Up:	12.6	mimetools	Next:	12.7	mimetypes

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.6.1	Additional	Methods	of	Up:	12.	Internet	Data	Handling	Next:
12.7.1	MimeTypes	Objects

12.7	mimetypes	--	Map	filenames	to
MIME	types
The	mimetypes	module	converts	between	a	filename	or	URL	and	the	MIME
type	associated	with	the	filename	extension.	Conversions	are	provided	from
filename	to	MIME	type	and	from	MIME	type	to	filename	extension;	encodings
are	not	supported	for	the	latter	conversion.

The	module	provides	one	class	and	a	number	of	convenience	functions.	The
functions	are	the	normal	interface	to	this	module,	but	some	applications	may	be
interested	in	the	class	as	well.

The	functions	described	below	provide	the	primary	interface	for	this	module.	If
the	module	has	not	been	initialized,	they	will	call	init()	if	they	rely	on	the
information	init()	sets	up.

guess_type(filename[,	strict])
Guess	the	type	of	a	file	based	on	its	filename	or	URL,	given	by	filename.
The	return	value	is	a	tuple	(type,	encoding)	where	type	is	None	if	the
type	can't	be	guessed	(missing	or	unknown	suffix)	or	a	string	of	the	form
'type/subtype',	usable	for	a	MIME	content-type:	header.

encoding	is	None	for	no	encoding	or	the	name	of	the	program	used	to
encode	(e.g.	compress	or	gzip).	The	encoding	is	suitable	for	use	as	a
Content-Encoding:	header,	not	as	a	Content-Transfer-Encoding:	header.
The	mappings	are	table	driven.	Encoding	suffixes	are	case	sensitive;	type
suffixes	are	first	tried	case	sensitively,	then	case	insensitively.

Optional	strict	is	a	flag	specifying	whether	the	list	of	known	MIME	types	is
limited	to	only	the	official	types	registered	with	IANA	are	recognized.
When	strict	is	true	(the	default),	only	the	IANA	types	are	supported;	when
strict	is	false,	some	additional	non-standard	but	commonly	used	MIME
types	are	also	recognized.

guess_all_extensions(type[,	strict])

http://www.isi.edu/in-notes/iana/assignments/media-types

Guess	the	extensions	for	a	file	based	on	its	MIME	type,	given	by	type.	The
return	value	is	a	list	of	strings	giving	all	possible	filename	extensions,
including	the	leading	dot	(".").	The	extensions	are	not	guaranteed	to	have
been	associated	with	any	particular	data	stream,	but	would	be	mapped	to
the	MIME	type	type	by	guess_type().

Optional	strict	has	the	same	meaning	as	with	the	guess_type()
function.

guess_extension(type[,	strict])
Guess	the	extension	for	a	file	based	on	its	MIME	type,	given	by	type.	The
return	value	is	a	string	giving	a	filename	extension,	including	the	leading
dot	(".").	The	extension	is	not	guaranteed	to	have	been	associated	with	any
particular	data	stream,	but	would	be	mapped	to	the	MIME	type	type	by
guess_type().	If	no	extension	can	be	guessed	for	type,	None	is
returned.

Optional	strict	has	the	same	meaning	as	with	the	guess_type()
function.

Some	additional	functions	and	data	items	are	available	for	controlling	the
behavior	of	the	module.

init([files])
Initialize	the	internal	data	structures.	If	given,	files	must	be	a	sequence	of
file	names	which	should	be	used	to	augment	the	default	type	map.	If
omitted,	the	file	names	to	use	are	taken	from	knownfiles.	Each	file
named	in	files	or	knownfiles	takes	precedence	over	those	named	before
it.	Calling	init()	repeatedly	is	allowed.

read_mime_types(filename)
Load	the	type	map	given	in	the	file	filename,	if	it	exists.	The	type	map	is
returned	as	a	dictionary	mapping	filename	extensions,	including	the	leading
dot	("."),	to	strings	of	the	form	'type/subtype'.	If	the	file	filename	does
not	exist	or	cannot	be	read,	None	is	returned.

add_type(type,	ext[,	strict])

Add	a	mapping	from	the	mimetype	type	to	the	extension	ext.	When	the
extension	is	already	known,	the	new	type	will	replace	the	old	one.	When
the	type	is	already	known	the	extension	will	be	added	to	the	list	of	known
extensions.

When	strict	is	the	mapping	will	added	to	the	official	MIME	types,
otherwise	to	the	non-standard	ones.

inited

Flag	indicating	whether	or	not	the	global	data	structures	have	been
initialized.	This	is	set	to	true	by	init().

knownfiles

List	of	type	map	file	names	commonly	installed.	These	files	are	typically
named	mime.types	and	are	installed	in	different	locations	by	different
packages.

suffix_map

Dictionary	mapping	suffixes	to	suffixes.	This	is	used	to	allow	recognition
of	encoded	files	for	which	the	encoding	and	the	type	are	indicated	by	the
same	extension.	For	example,	the	.tgz	extension	is	mapped	to	.tar.gz	to
allow	the	encoding	and	type	to	be	recognized	separately.

encodings_map

Dictionary	mapping	filename	extensions	to	encoding	types.

types_map

Dictionary	mapping	filename	extensions	to	MIME	types.

common_types

Dictionary	mapping	filename	extensions	to	non-standard,	but	commonly
found	MIME	types.

The	MimeTypes	class	may	be	useful	for	applications	which	may	want	more
than	one	MIME-type	database:

class	MimeTypes([filenames])
This	class	represents	a	MIME-types	database.	By	default,	it	provides	access
to	the	same	database	as	the	rest	of	this	module.	The	initial	database	is	a

copy	of	that	provided	by	the	module,	and	may	be	extended	by	loading
additional	mime.types-style	files	into	the	database	using	the	read()	or
readfp()	methods.	The	mapping	dictionaries	may	also	be	cleared	before
loading	additional	data	if	the	default	data	is	not	desired.

The	optional	filenames	parameter	can	be	used	to	cause	additional	files	to	be
loaded	``on	top''	of	the	default	database.

New	in	version	2.2.

Subsections

12.7.1	MimeTypes	Objects

Python	Library	Reference
Previous:	12.6.1	Additional	Methods	of	Up:	12.	Internet	Data	Handling	Next:
12.7.1	MimeTypes	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.7	mimetypes	Up:	12.7	mimetypes	Next:	12.8	MimeWriter

12.7.1	MimeTypes	Objects
MimeTypes	instances	provide	an	interface	which	is	very	like	that	of	the
mimetypes	module.

suffix_map

Dictionary	mapping	suffixes	to	suffixes.	This	is	used	to	allow	recognition
of	encoded	files	for	which	the	encoding	and	the	type	are	indicated	by	the
same	extension.	For	example,	the	.tgz	extension	is	mapped	to	.tar.gz	to
allow	the	encoding	and	type	to	be	recognized	separately.	This	is	initially	a
copy	of	the	global	suffix_map	defined	in	the	module.

encodings_map

Dictionary	mapping	filename	extensions	to	encoding	types.	This	is	initially
a	copy	of	the	global	encodings_map	defined	in	the	module.

types_map

Dictionary	mapping	filename	extensions	to	MIME	types.	This	is	initially	a
copy	of	the	global	types_map	defined	in	the	module.

common_types

Dictionary	mapping	filename	extensions	to	non-standard,	but	commonly
found	MIME	types.	This	is	initially	a	copy	of	the	global	common_types
defined	in	the	module.

guess_extension(type[,	strict])
Similar	to	the	guess_extension()	function,	using	the	tables	stored	as
part	of	the	object.

guess_type(url[,	strict])
Similar	to	the	guess_type()	function,	using	the	tables	stored	as	part	of
the	object.

read(path)
Load	MIME	information	from	a	file	named	path.	This	uses	readfp()	to
parse	the	file.

readfp(file)
Load	MIME	type	information	from	an	open	file.	The	file	must	have	the
format	of	the	standard	mime.types	files.

Python	Library	Reference
Previous:	12.7	mimetypes	Up:	12.7	mimetypes	Next:	12.8	MimeWriter

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.7.1	MimeTypes	Objects	Up:	12.	Internet	Data	Handling	Next:
12.8.1	MimeWriter	Objects

12.8	MimeWriter	--	Generic	MIME
file	writer
Deprecated	since	release	2.3.	The	email	package	should	be	used	in	preference
to	the	MimeWriter	module.	This	module	is	present	only	to	maintain	backward
compatibility.

This	module	defines	the	class	MimeWriter.	The	MimeWriter	class
implements	a	basic	formatter	for	creating	MIME	multi-part	files.	It	doesn't	seek
around	the	output	file	nor	does	it	use	large	amounts	of	buffer	space.	You	must
write	the	parts	out	in	the	order	that	they	should	occur	in	the	final	file.
MimeWriter	does	buffer	the	headers	you	add,	allowing	you	to	rearrange	their
order.

class	MimeWriter(fp)
Return	a	new	instance	of	the	MimeWriter	class.	The	only	argument
passed,	fp,	is	a	file	object	to	be	used	for	writing.	Note	that	a	StringIO
object	could	also	be	used.

Subsections

12.8.1	MimeWriter	Objects

Python	Library	Reference
Previous:	12.7.1	MimeTypes	Objects	Up:	12.	Internet	Data	Handling	Next:
12.8.1	MimeWriter	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.8	MimeWriter	Up:	12.8	MimeWriter	Next:	12.9	mimify

12.8.1	MimeWriter	Objects
MimeWriter	instances	have	the	following	methods:

addheader(key,	value[,	prefix])
Add	a	header	line	to	the	MIME	message.	The	key	is	the	name	of	the	header,
where	the	value	obviously	provides	the	value	of	the	header.	The	optional
argument	prefix	determines	where	the	header	is	inserted;	"0"	means	append
at	the	end,	"1"	is	insert	at	the	start.	The	default	is	to	append.

flushheaders()
Causes	all	headers	accumulated	so	far	to	be	written	out	(and	forgotten).
This	is	useful	if	you	don't	need	a	body	part	at	all,	e.g.	for	a	subpart	of	type
message/rfc822	that's	(mis)used	to	store	some	header-like	information.

startbody(ctype[,	plist[,	prefix]])
Returns	a	file-like	object	which	can	be	used	to	write	to	the	body	of	the
message.	The	content-type	is	set	to	the	provided	ctype,	and	the	optional
parameter	plist	provides	additional	parameters	for	the	content-type
declaration.	prefix	functions	as	in	addheader()	except	that	the	default	is
to	insert	at	the	start.

startmultipartbody(subtype[,	boundary[,	plist[,	prefix]]])
Returns	a	file-like	object	which	can	be	used	to	write	to	the	body	of	the
message.	Additionally,	this	method	initializes	the	multi-part	code,	where
subtype	provides	the	multipart	subtype,	boundary	may	provide	a	user-
defined	boundary	specification,	and	plist	provides	optional	parameters	for
the	subtype.	prefix	functions	as	in	startbody().	Subparts	should	be
created	using	nextpart().

nextpart()
Returns	a	new	instance	of	MimeWriter	which	represents	an	individual
part	in	a	multipart	message.	This	may	be	used	to	write	the	part	as	well	as
used	for	creating	recursively	complex	multipart	messages.	The	message
must	first	be	initialized	with	startmultipartbody()	before	using

nextpart().

lastpart()
This	is	used	to	designate	the	last	part	of	a	multipart	message,	and	should
always	be	used	when	writing	multipart	messages.

Python	Library	Reference
Previous:	12.8	MimeWriter	Up:	12.8	MimeWriter	Next:	12.9	mimify

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.8.1	MimeWriter	Objects	Up:	12.	Internet	Data	Handling	Next:
12.10	multifile

12.9	mimify	--	MIME	processing	of
mail	messages
Deprecated	since	release	2.3.	The	email	package	should	be	used	in	preference
to	the	mimify	module.	This	module	is	present	only	to	maintain	backward
compatibility.

The	mimify	module	defines	two	functions	to	convert	mail	messages	to	and
from	MIME	format.	The	mail	message	can	be	either	a	simple	message	or	a	so-
called	multipart	message.	Each	part	is	treated	separately.	Mimifying	(a	part	of)	a
message	entails	encoding	the	message	as	quoted-printable	if	it	contains	any
characters	that	cannot	be	represented	using	7-bit	ASCII.	Unmimifying	(a	part	of)
a	message	entails	undoing	the	quoted-printable	encoding.	Mimify	and	unmimify
are	especially	useful	when	a	message	has	to	be	edited	before	being	sent.	Typical
use	would	be:

unmimify	message

edit	message

mimify	message

send	message

The	modules	defines	the	following	user-callable	functions	and	user-settable
variables:

mimify(infile,	outfile)
Copy	the	message	in	infile	to	outfile,	converting	parts	to	quoted-printable
and	adding	MIME	mail	headers	when	necessary.	infile	and	outfile	can	be
file	objects	(actually,	any	object	that	has	a	readline()	method	(for
infile)	or	a	write()	method	(for	outfile))	or	strings	naming	the	files.	If
infile	and	outfile	are	both	strings,	they	may	have	the	same	value.

unmimify(infile,	outfile[,	decode_base64])
Copy	the	message	in	infile	to	outfile,	decoding	all	quoted-printable	parts.
infile	and	outfile	can	be	file	objects	(actually,	any	object	that	has	a
readline()	method	(for	infile)	or	a	write()	method	(for	outfile))	or
strings	naming	the	files.	If	infile	and	outfile	are	both	strings,	they	may	have

the	same	value.	If	the	decode_base64	argument	is	provided	and	tests	true,
any	parts	that	are	coded	in	the	base64	encoding	are	decoded	as	well.

mime_decode_header(line)
Return	a	decoded	version	of	the	encoded	header	line	in	line.	This	only
supports	the	ISO	8859-1	charset	(Latin-1).

mime_encode_header(line)
Return	a	MIME-encoded	version	of	the	header	line	in	line.

MAXLEN

By	default,	a	part	will	be	encoded	as	quoted-printable	when	it	contains	any
non-ASCII	characters	(characters	with	the	8th	bit	set),	or	if	there	are	any
lines	longer	than	MAXLEN	characters	(default	value	200).

CHARSET

When	not	specified	in	the	mail	headers,	a	character	set	must	be	filled	in.
The	string	used	is	stored	in	CHARSET,	and	the	default	value	is	ISO-8859-1
(also	known	as	Latin1	(latin-one)).

This	module	can	also	be	used	from	the	command	line.	Usage	is	as	follows:

mimify.py	-e	[-l	length]	[infile	[outfile]]

mimify.py	-d	[-b]	[infile	[outfile]]

to	encode	(mimify)	and	decode	(unmimify)	respectively.	infile	defaults	to
standard	input,	outfile	defaults	to	standard	output.	The	same	file	can	be	specified
for	input	and	output.

If	the	-l	option	is	given	when	encoding,	if	there	are	any	lines	longer	than	the
specified	length,	the	containing	part	will	be	encoded.

If	the	-b	option	is	given	when	decoding,	any	base64	parts	will	be	decoded	as
well.

See	Also:

Module	quopri:
Encode	and	decode	MIME	quoted-printable	files.

Python	Library	Reference
Previous:	12.8.1	MimeWriter	Objects	Up:	12.	Internet	Data	Handling	Next:
12.10	multifile

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.9	mimify	Up:	12.	Internet	Data	Handling	Next:	12.10.1	MultiFile
Objects

12.10	multifile	--	Support	for	files
containing	distinct	parts
The	MultiFile	object	enables	you	to	treat	sections	of	a	text	file	as	file-like
input	objects,	with	''	being	returned	by	readline()	when	a	given	delimiter
pattern	is	encountered.	The	defaults	of	this	class	are	designed	to	make	it	useful
for	parsing	MIME	multipart	messages,	but	by	subclassing	it	and	overriding
methods	it	can	be	easily	adapted	for	more	general	use.

class	MultiFile(fp[,	seekable])
Create	a	multi-file.	You	must	instantiate	this	class	with	an	input	object
argument	for	the	MultiFile	instance	to	get	lines	from,	such	as	a	file
object	returned	by	open().

MultiFile	only	ever	looks	at	the	input	object's	readline(),	seek()
and	tell()	methods,	and	the	latter	two	are	only	needed	if	you	want
random	access	to	the	individual	MIME	parts.	To	use	MultiFile	on	a
non-seekable	stream	object,	set	the	optional	seekable	argument	to	false;	this
will	prevent	using	the	input	object's	seek()	and	tell()	methods.

It	will	be	useful	to	know	that	in	MultiFile's	view	of	the	world,	text	is
composed	of	three	kinds	of	lines:	data,	section-dividers,	and	end-markers.
MultiFile	is	designed	to	support	parsing	of	messages	that	may	have	multiple
nested	message	parts,	each	with	its	own	pattern	for	section-divider	and	end-
marker	lines.

See	Also:

Module	email:
Comprehensive	email	handling	package;	supercedes	the	multifile
module.

Subsections

12.10.1	MultiFile	Objects
12.10.2	MultiFile	Example

Python	Library	Reference
Previous:	12.9	mimify	Up:	12.	Internet	Data	Handling	Next:	12.10.1	MultiFile
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.10	multifile	Up:	12.10	multifile	Next:	12.10.2	MultiFile	Example

12.10.1	MultiFile	Objects
A	MultiFile	instance	has	the	following	methods:

readline(str)
Read	a	line.	If	the	line	is	data	(not	a	section-divider	or	end-marker	or	real
EOF)	return	it.	If	the	line	matches	the	most-recently-stacked	boundary,
return	''	and	set	self.last	to	1	or	0	according	as	the	match	is	or	is	not
an	end-marker.	If	the	line	matches	any	other	stacked	boundary,	raise	an
error.	On	encountering	end-of-file	on	the	underlying	stream	object,	the
method	raises	Error	unless	all	boundaries	have	been	popped.

readlines(str)
Return	all	lines	remaining	in	this	part	as	a	list	of	strings.

read()
Read	all	lines,	up	to	the	next	section.	Return	them	as	a	single	(multiline)
string.	Note	that	this	doesn't	take	a	size	argument!

seek(pos[,	whence])
Seek.	Seek	indices	are	relative	to	the	start	of	the	current	section.	The	pos
and	whence	arguments	are	interpreted	as	for	a	file	seek.

tell()
Return	the	file	position	relative	to	the	start	of	the	current	section.

next()
Skip	lines	to	the	next	section	(that	is,	read	lines	until	a	section-divider	or
end-marker	has	been	consumed).	Return	true	if	there	is	such	a	section,	false
if	an	end-marker	is	seen.	Re-enable	the	most-recently-pushed	boundary.

is_data(str)
Return	true	if	str	is	data	and	false	if	it	might	be	a	section	boundary.	As
written,	it	tests	for	a	prefix	other	than	'--'	at	start	of	line	(which	all
MIME	boundaries	have)	but	it	is	declared	so	it	can	be	overridden	in	derived
classes.

Note	that	this	test	is	used	intended	as	a	fast	guard	for	the	real	boundary
tests;	if	it	always	returns	false	it	will	merely	slow	processing,	not	cause	it	to
fail.

push(str)
Push	a	boundary	string.	When	an	appropriately	decorated	version	of	this
boundary	is	found	as	an	input	line,	it	will	be	interpreted	as	a	section-divider
or	end-marker.	All	subsequent	reads	will	return	the	empty	string	to	indicate
end-of-file,	until	a	call	to	pop()	removes	the	boundary	a	or	next()	call
reenables	it.

It	is	possible	to	push	more	than	one	boundary.	Encountering	the	most-
recently-pushed	boundary	will	return	EOF;	encountering	any	other
boundary	will	raise	an	error.

pop()
Pop	a	section	boundary.	This	boundary	will	no	longer	be	interpreted	as
EOF.

section_divider(str)
Turn	a	boundary	into	a	section-divider	line.	By	default,	this	method
prepends	'--'	(which	MIME	section	boundaries	have)	but	it	is	declared	so
it	can	be	overridden	in	derived	classes.	This	method	need	not	append	LF	or
CR-LF,	as	comparison	with	the	result	ignores	trailing	whitespace.

end_marker(str)
Turn	a	boundary	string	into	an	end-marker	line.	By	default,	this	method
prepends	'--'	and	appends	'--'	(like	a	MIME-multipart	end-of-message
marker)	but	it	is	declared	so	it	can	be	overridden	in	derived	classes.	This
method	need	not	append	LF	or	CR-LF,	as	comparison	with	the	result
ignores	trailing	whitespace.

Finally,	MultiFile	instances	have	two	public	instance	variables:

level

Nesting	depth	of	the	current	part.

last

True	if	the	last	end-of-file	was	for	an	end-of-message	marker.

Python	Library	Reference
Previous:	12.10	multifile	Up:	12.10	multifile	Next:	12.10.2	MultiFile	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.10.1	MultiFile	Objects	Up:	12.10	multifile	Next:	12.11	rfc822

12.10.2	MultiFile	Example
import	mimetools

import	multifile

import	StringIO

def	extract_mime_part_matching(stream,	mimetype):

				"""Return	the	first	element	in	a	multipart	MIME	message	on	stream

				matching	mimetype."""

				msg	=	mimetools.Message(stream)

				msgtype	=	msg.gettype()

				params	=	msg.getplist()

				data	=	StringIO.StringIO()

				if	msgtype[:10]	==	"multipart/":

								file	=	multifile.MultiFile(stream)

								file.push(msg.getparam("boundary"))

								while	file.next():

												submsg	=	mimetools.Message(file)

												try:

																data	=	StringIO.StringIO()

																mimetools.decode(file,	data,	submsg.getencoding())

												except	ValueError:

																continue

												if	submsg.gettype()	==	mimetype:

																break

								file.pop()

				return	data.getvalue()

Python	Library	Reference
Previous:	12.10.1	MultiFile	Objects	Up:	12.10	multifile	Next:	12.11	rfc822

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.10.2	MultiFile	Example	Up:	12.	Internet	Data	Handling	Next:
12.11.1	Message	Objects

12.11	rfc822	--	Parse	RFC	2822	mail
headers
Deprecated	since	release	2.3.	The	email	package	should	be	used	in	preference
to	the	rfc822	module.	This	module	is	present	only	to	maintain	backward
compatibility.

This	module	defines	a	class,	Message,	which	represents	an	``email	message''	as
defined	by	the	Internet	standard	RFC	2822.12.6	Such	messages	consist	of	a
collection	of	message	headers,	and	a	message	body.	This	module	also	defines	a
helper	class	AddressList	for	parsing	RFC	2822	addresses.	Please	refer	to	the
RFC	for	information	on	the	specific	syntax	of	RFC	2822	messages.

The	mailbox	module	provides	classes	to	read	mailboxes	produced	by	various
end-user	mail	programs.

class	Message(file[,	seekable])
A	Message	instance	is	instantiated	with	an	input	object	as	parameter.
Message	relies	only	on	the	input	object	having	a	readline()	method;	in
particular,	ordinary	file	objects	qualify.	Instantiation	reads	headers	from	the
input	object	up	to	a	delimiter	line	(normally	a	blank	line)	and	stores	them	in
the	instance.	The	message	body,	following	the	headers,	is	not	consumed.

This	class	can	work	with	any	input	object	that	supports	a	readline()
method.	If	the	input	object	has	seek	and	tell	capability,	the
rewindbody()	method	will	work;	also,	illegal	lines	will	be	pushed	back
onto	the	input	stream.	If	the	input	object	lacks	seek	but	has	an	unread()
method	that	can	push	back	a	line	of	input,	Message	will	use	that	to	push
back	illegal	lines.	Thus	this	class	can	be	used	to	parse	messages	coming
from	a	buffered	stream.

The	optional	seekable	argument	is	provided	as	a	workaround	for	certain
stdio	libraries	in	which	tell()	discards	buffered	data	before	discovering
that	the	lseek()	system	call	doesn't	work.	For	maximum	portability,	you
should	set	the	seekable	argument	to	zero	to	prevent	that	initial	tell()

http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html

when	passing	in	an	unseekable	object	such	as	a	file	object	created	from	a
socket	object.

Input	lines	as	read	from	the	file	may	either	be	terminated	by	CR-LF	or	by	a
single	linefeed;	a	terminating	CR-LF	is	replaced	by	a	single	linefeed	before
the	line	is	stored.

All	header	matching	is	done	independent	of	upper	or	lower	case;	e.g.
m['From'],	m['from']	and	m['FROM']	all	yield	the	same	result.

class	AddressList(field)
You	may	instantiate	the	AddressList	helper	class	using	a	single	string
parameter,	a	comma-separated	list	of	RFC	2822	addresses	to	be	parsed.
(The	parameter	None	yields	an	empty	list.)

quote(str)
Return	a	new	string	with	backslashes	in	str	replaced	by	two	backslashes	and
double	quotes	replaced	by	backslash-double	quote.

unquote(str)
Return	a	new	string	which	is	an	unquoted	version	of	str.	If	str	ends	and
begins	with	double	quotes,	they	are	stripped	off.	Likewise	if	str	ends	and
begins	with	angle	brackets,	they	are	stripped	off.

parseaddr(address)
Parse	address,	which	should	be	the	value	of	some	address-containing	field
such	as	To:	or	Cc:,	into	its	constituent	``realname''	and	``email	address''
parts.	Returns	a	tuple	of	that	information,	unless	the	parse	fails,	in	which
case	a	2-tuple	(None,	None)	is	returned.

dump_address_pair(pair)
The	inverse	of	parseaddr(),	this	takes	a	2-tuple	of	the	form
(realname,	email_address)	and	returns	the	string	value	suitable	for	a	To:
or	Cc:	header.	If	the	first	element	of	pair	is	false,	then	the	second	element	is
returned	unmodified.

parsedate(date)
Attempts	to	parse	a	date	according	to	the	rules	in	RFC	2822.	however,	some

http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html

mailers	don't	follow	that	format	as	specified,	so	parsedate()	tries	to
guess	correctly	in	such	cases.	date	is	a	string	containing	an	RFC	2822	date,
such	as	'Mon,	20	Nov	1995	19:12:08	-0500'.	If	it	succeeds	in
parsing	the	date,	parsedate()	returns	a	9-tuple	that	can	be	passed
directly	to	time.mktime();	otherwise	None	will	be	returned.	Note	that
fields	6,	7,	and	8	of	the	result	tuple	are	not	usable.

parsedate_tz(date)
Performs	the	same	function	as	parsedate(),	but	returns	either	None	or
a	10-tuple;	the	first	9	elements	make	up	a	tuple	that	can	be	passed	directly
to	time.mktime(),	and	the	tenth	is	the	offset	of	the	date's	timezone
from	UTC	(which	is	the	official	term	for	Greenwich	Mean	Time).	(Note
that	the	sign	of	the	timezone	offset	is	the	opposite	of	the	sign	of	the
time.timezone	variable	for	the	same	timezone;	the	latter	variable
follows	the	POSIX	standard	while	this	module	follows	RFC	2822.)	If	the
input	string	has	no	timezone,	the	last	element	of	the	tuple	returned	is	None.
Note	that	fields	6,	7,	and	8	of	the	result	tuple	are	not	usable.

mktime_tz(tuple)
Turn	a	10-tuple	as	returned	by	parsedate_tz()	into	a	UTC	timestamp.
If	the	timezone	item	in	the	tuple	is	None,	assume	local	time.	Minor
deficiency:	this	first	interprets	the	first	8	elements	as	a	local	time	and	then
compensates	for	the	timezone	difference;	this	may	yield	a	slight	error
around	daylight	savings	time	switch	dates.	Not	enough	to	worry	about	for
common	use.

See	Also:

Module	email:
Comprehensive	email	handling	package;	supercedes	the	rfc822
module.

Module	mailbox:
Classes	to	read	various	mailbox	formats	produced	by	end-user	mail
programs.

Module	mimetools:

http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html

Subclass	of	rfc822.Message	that	handles	MIME	encoded
messages.

Footnotes

...2822.12.6
This	module	originally	conformed	to	RFC	822,	hence	the	name.	Since	then,
RFC	2822	has	been	released	as	an	update	to	RFC	822.	This	module	should
be	considered	RFC	2822-conformant,	especially	in	cases	where	the	syntax
or	semantics	have	changed	since	RFC	822.

Subsections

12.11.1	Message	Objects
12.11.2	AddressList	Objects

Python	Library	Reference
Previous:	12.10.2	MultiFile	Example	Up:	12.	Internet	Data	Handling	Next:
12.11.1	Message	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.faqs.org/rfcs/rfc822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc822.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc822.html

Previous:	12.11	rfc822	Up:	12.11	rfc822	Next:	12.11.2	AddressList	Objects

12.11.1	Message	Objects
A	Message	instance	has	the	following	methods:

rewindbody()
Seek	to	the	start	of	the	message	body.	This	only	works	if	the	file	object	is
seekable.

isheader(line)
Returns	a	line's	canonicalized	fieldname	(the	dictionary	key	that	will	be
used	to	index	it)	if	the	line	is	a	legal	RFC	2822	header;	otherwise	returns
None	(implying	that	parsing	should	stop	here	and	the	line	be	pushed	back
on	the	input	stream).	It	is	sometimes	useful	to	override	this	method	in	a
subclass.

islast(line)
Return	true	if	the	given	line	is	a	delimiter	on	which	Message	should	stop.
The	delimiter	line	is	consumed,	and	the	file	object's	read	location	positioned
immediately	after	it.	By	default	this	method	just	checks	that	the	line	is
blank,	but	you	can	override	it	in	a	subclass.

iscomment(line)
Return	True	if	the	given	line	should	be	ignored	entirely,	just	skipped.	By
default	this	is	a	stub	that	always	returns	False,	but	you	can	override	it	in	a
subclass.

getallmatchingheaders(name)
Return	a	list	of	lines	consisting	of	all	headers	matching	name,	if	any.	Each
physical	line,	whether	it	is	a	continuation	line	or	not,	is	a	separate	list	item.
Return	the	empty	list	if	no	header	matches	name.

getfirstmatchingheader(name)
Return	a	list	of	lines	comprising	the	first	header	matching	name,	and	its
continuation	line(s),	if	any.	Return	None	if	there	is	no	header	matching
name.

http://www.faqs.org/rfcs/rfc2822.html

getrawheader(name)
Return	a	single	string	consisting	of	the	text	after	the	colon	in	the	first	header
matching	name.	This	includes	leading	whitespace,	the	trailing	linefeed,	and
internal	linefeeds	and	whitespace	if	there	any	continuation	line(s)	were
present.	Return	None	if	there	is	no	header	matching	name.

getheader(name[,	default])
Like	getrawheader(name),	but	strip	leading	and	trailing	whitespace.
Internal	whitespace	is	not	stripped.	The	optional	default	argument	can	be
used	to	specify	a	different	default	to	be	returned	when	there	is	no	header
matching	name.

get(name[,	default])
An	alias	for	getheader(),	to	make	the	interface	more	compatible	with
regular	dictionaries.

getaddr(name)
Return	a	pair	(full	name,	email	address)	parsed	from	the	string	returned
by	getheader(name).	If	no	header	matching	name	exists,	return
(None,	None);	otherwise	both	the	full	name	and	the	address	are
(possibly	empty)	strings.

Example:	If	m's	first	From:	header	contains	the	string	'jack@cwi.nl
(Jack	Jansen)',	then	m.getaddr('From')	will	yield	the	pair
('Jack	Jansen',	'jack@cwi.nl').	If	the	header	contained
'Jack	Jansen	<jack@cwi.nl>'	instead,	it	would	yield	the	exact
same	result.

getaddrlist(name)
This	is	similar	to	getaddr(list),	but	parses	a	header	containing	a	list	of
email	addresses	(e.g.	a	To:	header)	and	returns	a	list	of	(full	name,	email
address)	pairs	(even	if	there	was	only	one	address	in	the	header).	If	there	is
no	header	matching	name,	return	an	empty	list.

If	multiple	headers	exist	that	match	the	named	header	(e.g.	if	there	are
several	Cc:	headers),	all	are	parsed	for	addresses.	Any	continuation	lines
the	named	headers	contain	are	also	parsed.

getdate(name)
Retrieve	a	header	using	getheader()	and	parse	it	into	a	9-tuple
compatible	with	time.mktime();	note	that	fields	6,	7,	and	8	are	not
usable.	If	there	is	no	header	matching	name,	or	it	is	unparsable,	return
None.

Date	parsing	appears	to	be	a	black	art,	and	not	all	mailers	adhere	to	the
standard.	While	it	has	been	tested	and	found	correct	on	a	large	collection	of
email	from	many	sources,	it	is	still	possible	that	this	function	may
occasionally	yield	an	incorrect	result.

getdate_tz(name)
Retrieve	a	header	using	getheader()	and	parse	it	into	a	10-tuple;	the
first	9	elements	will	make	a	tuple	compatible	with	time.mktime(),	and
the	10th	is	a	number	giving	the	offset	of	the	date's	timezone	from	UTC.
Note	that	fields	6,	7,	and	8	are	not	usable.	Similarly	to	getdate(),	if
there	is	no	header	matching	name,	or	it	is	unparsable,	return	None.

Message	instances	also	support	a	limited	mapping	interface.	In	particular:
m[name]	is	like	m.getheader(name)	but	raises	KeyError	if	there	is	no
matching	header;	and	len(m),	m.get(name[,	default]),
m.has_key(name),	m.keys(),	m.values()	m.items(),	and
m.setdefault(name[,	default])	act	as	expected,	with	the	one	difference
that	setdefault()	uses	an	empty	string	as	the	default	value.	Message
instances	also	support	the	mapping	writable	interface	m[name]	=	value	and
del	m[name].	Message	objects	do	not	support	the	clear(),	copy(),
popitem(),	or	update()	methods	of	the	mapping	interface.	(Support	for
get()	and	setdefault()	was	only	added	in	Python	2.2.)

Finally,	Message	instances	have	some	public	instance	variables:

headers

A	list	containing	the	entire	set	of	header	lines,	in	the	order	in	which	they
were	read	(except	that	setitem	calls	may	disturb	this	order).	Each	line
contains	a	trailing	newline.	The	blank	line	terminating	the	headers	is	not
contained	in	the	list.

fp

The	file	or	file-like	object	passed	at	instantiation	time.	This	can	be	used	to
read	the	message	content.

unixfrom

The	UNIX	"From	"	line,	if	the	message	had	one,	or	an	empty	string.	This	is
needed	to	regenerate	the	message	in	some	contexts,	such	as	an	mbox-style
mailbox	file.

Python	Library	Reference
Previous:	12.11	rfc822	Up:	12.11	rfc822	Next:	12.11.2	AddressList	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.11.1	Message	Objects	Up:	12.11	rfc822	Next:	12.12	base64

12.11.2	AddressList	Objects
An	AddressList	instance	has	the	following	methods:

__len__()
Return	the	number	of	addresses	in	the	address	list.

__str__()
Return	a	canonicalized	string	representation	of	the	address	list.	Addresses
are	rendered	in	"name"	<host@domain>	form,	comma-separated.

__add__(alist)
Return	a	new	AddressList	instance	that	contains	all	addresses	in	both
AddressList	operands,	with	duplicates	removed	(set	union).

__iadd__(alist)
In-place	version	of	__add__();	turns	this	AddressList	instance	into
the	union	of	itself	and	the	right-hand	instance,	alist.

__sub__(alist)
Return	a	new	AddressList	instance	that	contains	every	address	in	the
left-hand	AddressList	operand	that	is	not	present	in	the	right-hand
address	operand	(set	difference).

__isub__(alist)
In-place	version	of	__sub__(),	removing	addresses	in	this	list	which	are
also	in	alist.

Finally,	AddressList	instances	have	one	public	instance	variable:

addresslist

A	list	of	tuple	string	pairs,	one	per	address.	In	each	member,	the	first	is	the
canonicalized	name	part,	the	second	is	the	actual	route-address	("@"-
separated	username-host.domain	pair).

Python	Library	Reference
Previous:	12.11.1	Message	Objects	Up:	12.11	rfc822	Next:	12.12	base64

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.11.2	AddressList	Objects	Up:	12.	Internet	Data	Handling	Next:
12.13	binascii

12.12	base64	--	RFC	3548:	Base16,
Base32,	Base64	Data	Encodings
This	module	provides	data	encoding	and	decoding	as	specified	in	RFC	3548.
This	standard	defines	the	Base16,	Base32,	and	Base64	algorithms	for	encoding
and	decoding	arbitrary	binary	strings	into	text	strings	that	can	be	safely	sent	by
email,	used	as	parts	of	URLs,	or	included	as	part	of	an	HTTP	POST	request.	The
encoding	algorith	is	not	the	same	as	the	uuencode	program.

There	are	two	interfaces	provided	by	this	module.	The	modern	interface	supports
encoding	and	decoding	string	objects	using	all	three	alphabets.	The	legacy
interface	provides	for	encoding	and	decoding	to	and	from	file-like	objects	as
well	as	strings,	but	only	using	the	Base64	standard	alphabet.

The	modern	interface	provides:

b64encode(s[,	altchars])
Encode	a	string	use	Base64.

s	is	the	string	to	encode.	Optional	altchars	must	be	a	string	of	at	least	length
2	(additional	characters	are	ignored)	which	specifies	an	alternative	alphabet
for	the	+	and	/	characters.	This	allows	an	application	to	e.g.	generate	URL
or	filesystem	safe	Base64	strings.	The	default	is	None,	for	which	the
standard	Base64	alphabet	is	used.

The	encoded	string	is	returned.

b64decode(s[,	altchars])
Decode	a	Base64	encoded	string.

s	is	the	string	to	decode.	Optional	altchars	must	be	a	string	of	at	least	length
2	(additional	characters	are	ignored)	which	specifies	the	alternative
alphabet	used	instead	of	the	+	and	/	characters.

The	decoded	string	is	returned.	A	TypeError	is	raised	if	s	were
incorrectly	padded	or	if	there	are	non-alphabet	characters	present	in	the

http://www.faqs.org/rfcs/rfc3548.html

string.

standard_b64encode(s)
Encode	string	s	using	the	standard	Base64	alphabet.

standard_b64decode(s)
Decode	string	s	using	the	standard	Base64	alphabet.

urlsafe_b64encode(s)
Encode	string	s	using	a	URL-safe	alphabet,	which	substitutes	-	instead	of	+
and	_	instead	of	/	in	the	standard	Base64	alphabet.

urlsafe_b64decode(s)
Decode	string	s	using	a	URL-safe	alphabet,	which	substitutes	-	instead	of	+
and	_	instead	of	/	in	the	standard	Base64	alphabet.

b32encode(s)
Encode	a	string	using	Base32.	s	is	the	string	to	encode.	The	encoded	string
is	returned.

b32decode(s[,	casefold[,	map01]])
Decode	a	Base32	encoded	string.

s	is	the	string	to	decode.	Optional	casefold	is	a	flag	specifying	whether	a
lowercase	alphabet	is	acceptable	as	input.	For	security	purposes,	the	default
is	False.

RFC	3548	allows	for	optional	mapping	of	the	digit	0	(zero)	to	the	letter	O
(oh),	and	for	optional	mapping	of	the	digit	1	(one)	to	either	the	letter	I	(eye)
or	letter	L	(el).	The	optional	argument	map01	when	not	None,	specifies
which	letter	the	digit	1	should	be	mapped	to	(when	map01	is	not	None,	the
digit	0	is	always	mapped	to	the	letter	O).	For	security	purposes	the	default
is	None,	so	that	0	and	1	are	not	allowed	in	the	input.

The	decoded	string	is	returned.	A	TypeError	is	raised	if	s	were
incorrectly	padded	or	if	there	are	non-alphabet	characters	present	in	the
string.

http://www.faqs.org/rfcs/rfc3548.html

b16encode(s)
Encode	a	string	using	Base16.

s	is	the	string	to	encode.	The	encoded	string	is	returned.

b16decode(s[,	casefold])
Decode	a	Base16	encoded	string.

s	is	the	string	to	decode.	Optional	casefold	is	a	flag	specifying	whether	a
lowercase	alphabet	is	acceptable	as	input.	For	security	purposes,	the	default
is	False.

The	decoded	string	is	returned.	A	TypeError	is	raised	if	s	were
incorrectly	padded	or	if	there	are	non-alphabet	characters	present	in	the
string.

The	legacy	interface:

decode(input,	output)
Decode	the	contents	of	the	input	file	and	write	the	resulting	binary	data	to
the	output	file.	input	and	output	must	either	be	file	objects	or	objects	that
mimic	the	file	object	interface.	input	will	be	read	until	input.read()
returns	an	empty	string.

decodestring(s)
Decode	the	string	s,	which	must	contain	one	or	more	lines	of	base64
encoded	data,	and	return	a	string	containing	the	resulting	binary	data.

encode(input,	output)
Encode	the	contents	of	the	input	file	and	write	the	resulting	base64	encoded
data	to	the	output	file.	input	and	output	must	either	be	file	objects	or	objects
that	mimic	the	file	object	interface.	input	will	be	read	until	input.read()
returns	an	empty	string.	encode()	returns	the	encoded	data	plus	a	trailing
newline	character	('\n').

encodestring(s)
Encode	the	string	s,	which	can	contain	arbitrary	binary	data,	and	return	a
string	containing	one	or	more	lines	of	base64-encoded	data.

encodestring()	returns	a	string	containing	one	or	more	lines	of
base64-encoded	data	always	including	an	extra	trailing	newline	('\n').

See	Also:

Module	binascii:
Support	module	containing	ASCII-to-binary	and	binary-to-ASCII
conversions.

RFC	1521,	MIME	(Multipurpose	Internet	Mail	Extensions)	Part	One:
Mechanisms	for	Specifying	and	Describing	the	Format	of	Internet	Message
Bodies

Section	5.2,	``Base64	Content-Transfer-Encoding,''	provides	the
definition	of	the	base64	encoding.

Python	Library	Reference
Previous:	12.11.2	AddressList	Objects	Up:	12.	Internet	Data	Handling	Next:
12.13	binascii

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.faqs.org/rfcs/rfc1521.html

Previous:	12.12	base64	Up:	12.	Internet	Data	Handling	Next:	12.14	binhex

12.13	binascii	--	Convert	between
binary	and	ASCII
The	binascii	module	contains	a	number	of	methods	to	convert	between
binary	and	various	ASCII-encoded	binary	representations.	Normally,	you	will
not	use	these	functions	directly	but	use	wrapper	modules	like	uu	or	binhex
instead,	this	module	solely	exists	because	bit-manipulation	of	large	amounts	of
data	is	slow	in	Python.

The	binascii	module	defines	the	following	functions:

a2b_uu(string)
Convert	a	single	line	of	uuencoded	data	back	to	binary	and	return	the	binary
data.	Lines	normally	contain	45	(binary)	bytes,	except	for	the	last	line.	Line
data	may	be	followed	by	whitespace.

b2a_uu(data)
Convert	binary	data	to	a	line	of	ASCII	characters,	the	return	value	is	the
converted	line,	including	a	newline	char.	The	length	of	data	should	be	at
most	45.

a2b_base64(string)
Convert	a	block	of	base64	data	back	to	binary	and	return	the	binary	data.
More	than	one	line	may	be	passed	at	a	time.

b2a_base64(data)
Convert	binary	data	to	a	line	of	ASCII	characters	in	base64	coding.	The
return	value	is	the	converted	line,	including	a	newline	char.	The	length	of
data	should	be	at	most	57	to	adhere	to	the	base64	standard.

a2b_qp(string[,	header])
Convert	a	block	of	quoted-printable	data	back	to	binary	and	return	the
binary	data.	More	than	one	line	may	be	passed	at	a	time.	If	the	optional
argument	header	is	present	and	true,	underscores	will	be	decoded	as	spaces.

b2a_qp(data[,	quotetabs,	istext,	header])
Convert	binary	data	to	a	line(s)	of	ASCII	characters	in	quoted-printable
encoding.	The	return	value	is	the	converted	line(s).	If	the	optional	argument
quotetabs	is	present	and	true,	all	tabs	and	spaces	will	be	encoded.	If	the
optional	argument	header	is	present	and	true,	spaces	will	be	encoded	as
underscores	per	RFC1522.	If	the	optional	argument	header	is	present	and
false,	newline	characters	will	be	encoded	as	well,	otherwise	linefeed
conversion	might	corrupt	the	binary	data	stream.

a2b_hqx(string)
Convert	binhex4	formatted	ASCII	data	to	binary,	without	doing	RLE-
decompression.	The	string	should	contain	a	complete	number	of	binary
bytes,	or	(in	case	of	the	last	portion	of	the	binhex4	data)	have	the	remaining
bits	zero.

rledecode_hqx(data)
Perform	RLE-decompression	on	the	data,	as	per	the	binhex4	standard.	The
algorithm	uses	0x90	after	a	byte	as	a	repeat	indicator,	followed	by	a	count.
A	count	of	0	specifies	a	byte	value	of	0x90.	The	routine	returns	the
decompressed	data,	unless	data	input	data	ends	in	an	orphaned	repeat
indicator,	in	which	case	the	Incomplete	exception	is	raised.

rlecode_hqx(data)
Perform	binhex4	style	RLE-compression	on	data	and	return	the	result.

b2a_hqx(data)
Perform	hexbin4	binary-to-ASCII	translation	and	return	the	resulting	string.
The	argument	should	already	be	RLE-coded,	and	have	a	length	divisible	by
3	(except	possibly	the	last	fragment).

crc_hqx(data,	crc)
Compute	the	binhex4	crc	value	of	data,	starting	with	an	initial	crc	and
returning	the	result.

crc32(data[,	crc])
Compute	CRC-32,	the	32-bit	checksum	of	data,	starting	with	an	initial	crc.
This	is	consistent	with	the	ZIP	file	checksum.	Since	the	algorithm	is

designed	for	use	as	a	checksum	algorithm,	it	is	not	suitable	for	use	as	a
general	hash	algorithm.	Use	as	follows:

				print	binascii.crc32("hello	world")

				#	Or,	in	two	pieces:

				crc	=	binascii.crc32("hello")

				crc	=	binascii.crc32("	world",	crc)

				print	crc

b2a_hex(data)
hexlify(data)

Return	the	hexadecimal	representation	of	the	binary	data.	Every	byte	of
data	is	converted	into	the	corresponding	2-digit	hex	representation.	The
resulting	string	is	therefore	twice	as	long	as	the	length	of	data.

a2b_hex(hexstr)
unhexlify(hexstr)

Return	the	binary	data	represented	by	the	hexadecimal	string	hexstr.	This
function	is	the	inverse	of	b2a_hex().	hexstr	must	contain	an	even
number	of	hexadecimal	digits	(which	can	be	upper	or	lower	case),
otherwise	a	TypeError	is	raised.

exception	Error
Exception	raised	on	errors.	These	are	usually	programming	errors.

exception	Incomplete
Exception	raised	on	incomplete	data.	These	are	usually	not	programming
errors,	but	may	be	handled	by	reading	a	little	more	data	and	trying	again.

See	Also:

Module	base64:
Support	for	base64	encoding	used	in	MIME	email	messages.

Module	binhex:
Support	for	the	binhex	format	used	on	the	Macintosh.

Module	uu:
Support	for	UU	encoding	used	on	UNIX.

Module	quopri:
Support	for	quoted-printable	encoding	used	in	MIME	email	messages.
.

Python	Library	Reference
Previous:	12.12	base64	Up:	12.	Internet	Data	Handling	Next:	12.14	binhex

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.13	binascii	Up:	12.	Internet	Data	Handling	Next:	12.14.1	Notes

12.14	binhex	--	Encode	and	decode
binhex4	files
This	module	encodes	and	decodes	files	in	binhex4	format,	a	format	allowing
representation	of	Macintosh	files	in	ASCII.	On	the	Macintosh,	both	forks	of	a
file	and	the	finder	information	are	encoded	(or	decoded),	on	other	platforms	only
the	data	fork	is	handled.

The	binhex	module	defines	the	following	functions:

binhex(input,	output)
Convert	a	binary	file	with	filename	input	to	binhex	file	output.	The	output
parameter	can	either	be	a	filename	or	a	file-like	object	(any	object
supporting	a	write()	and	close()	method).

hexbin(input[,	output])
Decode	a	binhex	file	input.	input	may	be	a	filename	or	a	file-like	object
supporting	read()	and	close()	methods.	The	resulting	file	is	written	to
a	file	named	output,	unless	the	argument	is	omitted	in	which	case	the	output
filename	is	read	from	the	binhex	file.

The	following	exception	is	also	defined:

exception	Error
Exception	raised	when	something	can't	be	encoded	using	the	binhex	format
(for	example,	a	filename	is	too	long	to	fit	in	the	filename	field),	or	when
input	is	not	properly	encoded	binhex	data.

See	Also:

Module	binascii:
Support	module	containing	ASCII-to-binary	and	binary-to-ASCII
conversions.

Subsections

12.14.1	Notes

Python	Library	Reference
Previous:	12.13	binascii	Up:	12.	Internet	Data	Handling	Next:	12.14.1	Notes

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.14	binhex	Up:	12.14	binhex	Next:	12.15	quopri

12.14.1	Notes
There	is	an	alternative,	more	powerful	interface	to	the	coder	and	decoder,	see	the
source	for	details.

If	you	code	or	decode	textfiles	on	non-Macintosh	platforms	they	will	still	use	the
Macintosh	newline	convention	(carriage-return	as	end	of	line).

As	of	this	writing,	hexbin()	appears	to	not	work	in	all	cases.

Python	Library	Reference
Previous:	12.14	binhex	Up:	12.14	binhex	Next:	12.15	quopri

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.14.1	Notes	Up:	12.	Internet	Data	Handling	Next:	12.16	uu

12.15	quopri	--	Encode	and	decode
MIME	quoted-printable	data
This	module	performs	quoted-printable	transport	encoding	and	decoding,	as
defined	in	RFC	1521:	``MIME	(Multipurpose	Internet	Mail	Extensions)	Part
One:	Mechanisms	for	Specifying	and	Describing	the	Format	of	Internet	Message
Bodies''.	The	quoted-printable	encoding	is	designed	for	data	where	there	are
relatively	few	nonprintable	characters;	the	base64	encoding	scheme	available	via
the	base64	module	is	more	compact	if	there	are	many	such	characters,	as	when
sending	a	graphics	file.

decode(input,	output[,header])
Decode	the	contents	of	the	input	file	and	write	the	resulting	decoded	binary
data	to	the	output	file.	input	and	output	must	either	be	file	objects	or	objects
that	mimic	the	file	object	interface.	input	will	be	read	until
input.readline()	returns	an	empty	string.	If	the	optional	argument
header	is	present	and	true,	underscore	will	be	decoded	as	space.	This	is
used	to	decode	``Q''-encoded	headers	as	described	in	RFC	1522:	``MIME
(Multipurpose	Internet	Mail	Extensions)	Part	Two:	Message	Header
Extensions	for	Non-ASCII	Text''.

encode(input,	output,	quotetabs)
Encode	the	contents	of	the	input	file	and	write	the	resulting	quoted-
printable	data	to	the	output	file.	input	and	output	must	either	be	file	objects
or	objects	that	mimic	the	file	object	interface.	input	will	be	read	until
input.readline()	returns	an	empty	string.	quotetabs	is	a	flag	which
controls	whether	to	encode	embedded	spaces	and	tabs;	when	true	it	encodes
such	embedded	whitespace,	and	when	false	it	leaves	them	unencoded.	Note
that	spaces	and	tabs	appearing	at	the	end	of	lines	are	always	encoded,	as	per
RFC	1521.

decodestring(s[,header])
Like	decode(),	except	that	it	accepts	a	source	string	and	returns	the
corresponding	decoded	string.

http://www.faqs.org/rfcs/rfc1521.html
http://www.faqs.org/rfcs/rfc1522.html
http://www.faqs.org/rfcs/rfc1521.html

encodestring(s[,	quotetabs])
Like	encode(),	except	that	it	accepts	a	source	string	and	returns	the
corresponding	encoded	string.	quotetabs	is	optional	(defaulting	to	0),	and	is
passed	straight	through	to	encode().

See	Also:

Module	mimify:
General	utilities	for	processing	of	MIME	messages.

Module	base64:
Encode	and	decode	MIME	base64	data.

Python	Library	Reference
Previous:	12.14.1	Notes	Up:	12.	Internet	Data	Handling	Next:	12.16	uu

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.15	quopri	Up:	12.	Internet	Data	Handling	Next:	12.17	xdrlib

12.16	uu	--	Encode	and	decode
uuencode	files
This	module	encodes	and	decodes	files	in	uuencode	format,	allowing	arbitrary
binary	data	to	be	transferred	over	ASCII-only	connections.	Wherever	a	file
argument	is	expected,	the	methods	accept	a	file-like	object.	For	backwards
compatibility,	a	string	containing	a	pathname	is	also	accepted,	and	the
corresponding	file	will	be	opened	for	reading	and	writing;	the	pathname	'-'	is
understood	to	mean	the	standard	input	or	output.	However,	this	interface	is
deprecated;	it's	better	for	the	caller	to	open	the	file	itself,	and	be	sure	that,	when
required,	the	mode	is	'rb'	or	'wb'	on	Windows.

This	code	was	contributed	by	Lance	Ellinghouse,	and	modified	by	Jack	Jansen.

The	uu	module	defines	the	following	functions:

encode(in_file,	out_file[,	name[,	mode]])
Uuencode	file	in_file	into	file	out_file.	The	uuencoded	file	will	have	the
header	specifying	name	and	mode	as	the	defaults	for	the	results	of	decoding
the	file.	The	default	defaults	are	taken	from	in_file,	or	'-'	and	0666
respectively.

decode(in_file[,	out_file[,	mode]])
This	call	decodes	uuencoded	file	in_file	placing	the	result	on	file	out_file.	If
out_file	is	a	pathname,	mode	is	used	to	set	the	permission	bits	if	the	file
must	be	created.	Defaults	for	out_file	and	mode	are	taken	from	the
uuencode	header.	However,	if	the	file	specified	in	the	header	already	exists,
a	uu.Error	is	raised.

exception	Error()
Subclass	of	Exception,	this	can	be	raised	by	uu.decode()	under
various	situations,	such	as	described	above,	but	also	including	a	badly
formated	header,	or	truncated	input	file.

See	Also:

Module	binascii:
Support	module	containing	ASCII-to-binary	and	binary-to-ASCII
conversions.

Python	Library	Reference
Previous:	12.15	quopri	Up:	12.	Internet	Data	Handling	Next:	12.17	xdrlib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.16	uu	Up:	12.	Internet	Data	Handling	Next:	12.17.1	Packer
Objects

12.17	xdrlib	--	Encode	and	decode
XDR	data
The	xdrlib	module	supports	the	External	Data	Representation	Standard	as
described	in	RFC	1014,	written	by	Sun	Microsystems,	Inc.	June	1987.	It
supports	most	of	the	data	types	described	in	the	RFC.

The	xdrlib	module	defines	two	classes,	one	for	packing	variables	into	XDR
representation,	and	another	for	unpacking	from	XDR	representation.	There	are
also	two	exception	classes.

class	Packer()
Packer	is	the	class	for	packing	data	into	XDR	representation.	The
Packer	class	is	instantiated	with	no	arguments.

class	Unpacker(data)
Unpacker	is	the	complementary	class	which	unpacks	XDR	data	values
from	a	string	buffer.	The	input	buffer	is	given	as	data.

See	Also:

RFC	1014,	XDR:	External	Data	Representation	Standard
This	RFC	defined	the	encoding	of	data	which	was	XDR	at	the	time
this	module	was	originally	written.	It	has	apparently	been	obsoleted	by
RFC	1832.

RFC	1832,	XDR:	External	Data	Representation	Standard
Newer	RFC	that	provides	a	revised	definition	of	XDR.

Subsections

12.17.1	Packer	Objects
12.17.2	Unpacker	Objects

http://www.faqs.org/rfcs/rfc1014.html
http://www.faqs.org/rfcs/rfc1014.html
http://www.faqs.org/rfcs/rfc1832.html
http://www.faqs.org/rfcs/rfc1832.html

12.17.3	Exceptions

Python	Library	Reference
Previous:	12.16	uu	Up:	12.	Internet	Data	Handling	Next:	12.17.1	Packer
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.17	xdrlib	Up:	12.17	xdrlib	Next:	12.17.2	Unpacker	Objects

12.17.1	Packer	Objects
Packer	instances	have	the	following	methods:

get_buffer()
Returns	the	current	pack	buffer	as	a	string.

reset()
Resets	the	pack	buffer	to	the	empty	string.

In	general,	you	can	pack	any	of	the	most	common	XDR	data	types	by	calling	the
appropriate	pack_type()	method.	Each	method	takes	a	single	argument,	the
value	to	pack.	The	following	simple	data	type	packing	methods	are	supported:
pack_uint(),	pack_int(),	pack_enum(),	pack_bool(),
pack_uhyper(),	and	pack_hyper().

pack_float(value)
Packs	the	single-precision	floating	point	number	value.

pack_double(value)
Packs	the	double-precision	floating	point	number	value.

The	following	methods	support	packing	strings,	bytes,	and	opaque	data:

pack_fstring(n,	s)
Packs	a	fixed	length	string,	s.	n	is	the	length	of	the	string	but	it	is	not
packed	into	the	data	buffer.	The	string	is	padded	with	null	bytes	if	necessary
to	guaranteed	4	byte	alignment.

pack_fopaque(n,	data)
Packs	a	fixed	length	opaque	data	stream,	similarly	to	pack_fstring().

pack_string(s)
Packs	a	variable	length	string,	s.	The	length	of	the	string	is	first	packed	as
an	unsigned	integer,	then	the	string	data	is	packed	with
pack_fstring().

pack_opaque(data)
Packs	a	variable	length	opaque	data	string,	similarly	to	pack_string().

pack_bytes(bytes)
Packs	a	variable	length	byte	stream,	similarly	to	pack_string().

The	following	methods	support	packing	arrays	and	lists:

pack_list(list,	pack_item)
Packs	a	list	of	homogeneous	items.	This	method	is	useful	for	lists	with	an
indeterminate	size;	i.e.	the	size	is	not	available	until	the	entire	list	has	been
walked.	For	each	item	in	the	list,	an	unsigned	integer	1	is	packed	first,
followed	by	the	data	value	from	the	list.	pack_item	is	the	function	that	is
called	to	pack	the	individual	item.	At	the	end	of	the	list,	an	unsigned	integer
0	is	packed.

For	example,	to	pack	a	list	of	integers,	the	code	might	appear	like	this:

import	xdrlib

p	=	xdrlib.Packer()

p.pack_list([1,	2,	3],	p.pack_int)

pack_farray(n,	array,	pack_item)
Packs	a	fixed	length	list	(array)	of	homogeneous	items.	n	is	the	length	of
the	list;	it	is	not	packed	into	the	buffer,	but	a	ValueError	exception	is
raised	if	len(array)	is	not	equal	to	n.	As	above,	pack_item	is	the	function
used	to	pack	each	element.

pack_array(list,	pack_item)
Packs	a	variable	length	list	of	homogeneous	items.	First,	the	length	of	the
list	is	packed	as	an	unsigned	integer,	then	each	element	is	packed	as	in
pack_farray()	above.

Python	Library	Reference
Previous:	12.17	xdrlib	Up:	12.17	xdrlib	Next:	12.17.2	Unpacker	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.17.1	Packer	Objects	Up:	12.17	xdrlib	Next:	12.17.3	Exceptions

12.17.2	Unpacker	Objects
The	Unpacker	class	offers	the	following	methods:

reset(data)
Resets	the	string	buffer	with	the	given	data.

get_position()
Returns	the	current	unpack	position	in	the	data	buffer.

set_position(position)
Sets	the	data	buffer	unpack	position	to	position.	You	should	be	careful
about	using	get_position()	and	set_position().

get_buffer()
Returns	the	current	unpack	data	buffer	as	a	string.

done()
Indicates	unpack	completion.	Raises	an	Error	exception	if	all	of	the	data
has	not	been	unpacked.

In	addition,	every	data	type	that	can	be	packed	with	a	Packer,	can	be	unpacked
with	an	Unpacker.	Unpacking	methods	are	of	the	form	unpack_type(),	and
take	no	arguments.	They	return	the	unpacked	object.

unpack_float()
Unpacks	a	single-precision	floating	point	number.

unpack_double()
Unpacks	a	double-precision	floating	point	number,	similarly	to
unpack_float().

In	addition,	the	following	methods	unpack	strings,	bytes,	and	opaque	data:

unpack_fstring(n)
Unpacks	and	returns	a	fixed	length	string.	n	is	the	number	of	characters

expected.	Padding	with	null	bytes	to	guaranteed	4	byte	alignment	is
assumed.

unpack_fopaque(n)
Unpacks	and	returns	a	fixed	length	opaque	data	stream,	similarly	to
unpack_fstring().

unpack_string()
Unpacks	and	returns	a	variable	length	string.	The	length	of	the	string	is	first
unpacked	as	an	unsigned	integer,	then	the	string	data	is	unpacked	with
unpack_fstring().

unpack_opaque()
Unpacks	and	returns	a	variable	length	opaque	data	string,	similarly	to
unpack_string().

unpack_bytes()
Unpacks	and	returns	a	variable	length	byte	stream,	similarly	to
unpack_string().

The	following	methods	support	unpacking	arrays	and	lists:

unpack_list(unpack_item)
Unpacks	and	returns	a	list	of	homogeneous	items.	The	list	is	unpacked	one
element	at	a	time	by	first	unpacking	an	unsigned	integer	flag.	If	the	flag	is
1,	then	the	item	is	unpacked	and	appended	to	the	list.	A	flag	of	0	indicates
the	end	of	the	list.	unpack_item	is	the	function	that	is	called	to	unpack	the
items.

unpack_farray(n,	unpack_item)
Unpacks	and	returns	(as	a	list)	a	fixed	length	array	of	homogeneous	items.	n
is	number	of	list	elements	to	expect	in	the	buffer.	As	above,	unpack_item	is
the	function	used	to	unpack	each	element.

unpack_array(unpack_item)
Unpacks	and	returns	a	variable	length	list	of	homogeneous	items.	First,	the
length	of	the	list	is	unpacked	as	an	unsigned	integer,	then	each	element	is

unpacked	as	in	unpack_farray()	above.

Python	Library	Reference
Previous:	12.17.1	Packer	Objects	Up:	12.17	xdrlib	Next:	12.17.3	Exceptions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.17.2	Unpacker	Objects	Up:	12.17	xdrlib	Next:	12.18	netrc

12.17.3	Exceptions
Exceptions	in	this	module	are	coded	as	class	instances:

exception	Error
The	base	exception	class.	Error	has	a	single	public	data	member	msg
containing	the	description	of	the	error.

exception	ConversionError
Class	derived	from	Error.	Contains	no	additional	instance	variables.

Here	is	an	example	of	how	you	would	catch	one	of	these	exceptions:

import	xdrlib

p	=	xdrlib.Packer()

try:

				p.pack_double(8.01)

except	xdrlib.ConversionError,	instance:

				print	'packing	the	double	failed:',	instance.msg

Python	Library	Reference
Previous:	12.17.2	Unpacker	Objects	Up:	12.17	xdrlib	Next:	12.18	netrc

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.17.3	Exceptions	Up:	12.	Internet	Data	Handling	Next:	12.18.1
netrc	Objects

12.18	netrc	--	netrc	file	processing
New	in	version	1.5.2.

The	netrc	class	parses	and	encapsulates	the	netrc	file	format	used	by	the	UNIX

ftp	program	and	other	FTP	clients.

class	netrc([file])
A	netrc	instance	or	subclass	instance	encapsulates	data	from	a	netrc	file.
The	initialization	argument,	if	present,	specifies	the	file	to	parse.	If	no
argument	is	given,	the	file	.netrc	in	the	user's	home	directory	will	be	read.
Parse	errors	will	raise	NetrcParseError	with	diagnostic	information
including	the	file	name,	line	number,	and	terminating	token.

exception	NetrcParseError
Exception	raised	by	the	netrc	class	when	syntactical	errors	are
encountered	in	source	text.	Instances	of	this	exception	provide	three
interesting	attributes:	msg	is	a	textual	explanation	of	the	error,	filename
is	the	name	of	the	source	file,	and	lineno	gives	the	line	number	on	which
the	error	was	found.

Subsections

12.18.1	netrc	Objects

Python	Library	Reference
Previous:	12.17.3	Exceptions	Up:	12.	Internet	Data	Handling	Next:	12.18.1
netrc	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.18	netrc	Up:	12.18	netrc	Next:	12.19	robotparser

12.18.1	netrc	Objects
A	netrc	instance	has	the	following	methods:

authenticators(host)
Return	a	3-tuple	(login,	account,	password)	of	authenticators	for	host.
If	the	netrc	file	did	not	contain	an	entry	for	the	given	host,	return	the	tuple
associated	with	the	`default'	entry.	If	neither	matching	host	nor	default	entry
is	available,	return	None.

__repr__()
Dump	the	class	data	as	a	string	in	the	format	of	a	netrc	file.	(This	discards
comments	and	may	reorder	the	entries.)

Instances	of	netrc	have	public	instance	variables:

hosts

Dictionary	mapping	host	names	to	(login,	account,	password)	tuples.
The	`default'	entry,	if	any,	is	represented	as	a	pseudo-host	by	that	name.

macros

Dictionary	mapping	macro	names	to	string	lists.

Note:	Passwords	are	limited	to	a	subset	of	the	ASCII	character	set.	Versions	of
this	module	prior	to	2.3	were	extremely	limited.	Starting	with	2.3,	all	ASCII
punctuation	is	allowed	in	passwords.	However,	note	that	whitespace	and	non-
printable	characters	are	not	allowed	in	passwords.	This	is	a	limitation	of	the	way
the	.netrc	file	is	parsed	and	may	be	removed	in	the	future.

Python	Library	Reference
Previous:	12.18	netrc	Up:	12.18	netrc	Next:	12.19	robotparser

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.18.1	netrc	Objects	Up:	12.	Internet	Data	Handling	Next:	12.20
csv

12.19	robotparser	--	Parser	for
robots.txt
This	module	provides	a	single	class,	RobotFileParser,	which	answers
questions	about	whether	or	not	a	particular	user	agent	can	fetch	a	URL	on	the
Web	site	that	published	the	robots.txt	file.	For	more	details	on	the	structure	of
robots.txt	files,	see	http://www.robotstxt.org/wc/norobots.html.

class	RobotFileParser()

This	class	provides	a	set	of	methods	to	read,	parse	and	answer	questions
about	a	single	robots.txt	file.

set_url(url)
Sets	the	URL	referring	to	a	robots.txt	file.

read()
Reads	the	robots.txt	URL	and	feeds	it	to	the	parser.

parse(lines)
Parses	the	lines	argument.

can_fetch(useragent,	url)
Returns	True	if	the	useragent	is	allowed	to	fetch	the	url	according	to
the	rules	contained	in	the	parsed	robots.txt	file.

mtime()
Returns	the	time	the	robots.txt	file	was	last	fetched.	This	is	useful
for	long-running	web	spiders	that	need	to	check	for	new
robots.txt	files	periodically.

modified()
Sets	the	time	the	robots.txt	file	was	last	fetched	to	the	current
time.

http://www.robotstxt.org/wc/norobots.html

The	following	example	demonstrates	basic	use	of	the	RobotFileParser	class.

>>>	import	robotparser

>>>	rp	=	robotparser.RobotFileParser()

>>>	rp.set_url("http://www.musi-cal.com/robots.txt")

>>>	rp.read()

>>>	rp.can_fetch("*",	"http://www.musi-cal.com/cgi-bin/search?city=San+Francisco")

False

>>>	rp.can_fetch("*",	"http://www.musi-cal.com/")

True

Python	Library	Reference
Previous:	12.18.1	netrc	Objects	Up:	12.	Internet	Data	Handling	Next:	12.20
csv

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.19	robotparser	Up:	12.	Internet	Data	Handling	Next:	12.20.1
Module	Contents

12.20	csv	--	CSV	File	Reading	and
Writing
New	in	version	2.3.

The	so-called	CSV	(Comma	Separated	Values)	format	is	the	most	common
import	and	export	format	for	spreadsheets	and	databases.	There	is	no	``CSV
standard'',	so	the	format	is	operationally	defined	by	the	many	applications	which
read	and	write	it.	The	lack	of	a	standard	means	that	subtle	differences	often	exist
in	the	data	produced	and	consumed	by	different	applications.	These	differences
can	make	it	annoying	to	process	CSV	files	from	multiple	sources.	Still,	while	the
delimiters	and	quoting	characters	vary,	the	overall	format	is	similar	enough	that
it	is	possible	to	write	a	single	module	which	can	efficiently	manipulate	such
data,	hiding	the	details	of	reading	and	writing	the	data	from	the	programmer.

The	csv	module	implements	classes	to	read	and	write	tabular	data	in	CSV
format.	It	allows	programmers	to	say,	``write	this	data	in	the	format	preferred	by
Excel,''	or	``read	data	from	this	file	which	was	generated	by	Excel,''	without
knowing	the	precise	details	of	the	CSV	format	used	by	Excel.	Programmers	can
also	describe	the	CSV	formats	understood	by	other	applications	or	define	their
own	special-purpose	CSV	formats.

The	csv	module's	reader	and	writer	objects	read	and	write	sequences.
Programmers	can	also	read	and	write	data	in	dictionary	form	using	the
DictReader	and	DictWriter	classes.

Note: 	This	version	of	the	csv	module	doesn't	support	Unicode
input.	Also,	there	are	currently	some	issues	regarding	ASCII
NUL	characters.	Accordingly,	all	input	should	generally	be
printable	ASCII	to	be	safe.	These	restrictions	will	be	removed	in
the	future.

See	Also:

PEP	305,	CSV	File	API
The	Python	Enhancement	Proposal	which	proposed	this	addition	to
Python.

Subsections

12.20.1	Module	Contents
12.20.2	Dialects	and	Formatting	Parameters
12.20.3	Reader	Objects
12.20.4	Writer	Objects
12.20.5	Examples

Python	Library	Reference
Previous:	12.19	robotparser	Up:	12.	Internet	Data	Handling	Next:	12.20.1
Module	Contents

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/peps/pep-0305.html

Previous:	12.20	csv	Up:	12.20	csv	Next:	12.20.2	Dialects	and	Formatting

12.20.1	Module	Contents
The	csv	module	defines	the	following	functions:

reader(csvfile[,	dialect='excel'[,	fmtparam]])
Return	a	reader	object	which	will	iterate	over	lines	in	the	given	csvfile.
csvfile	can	be	any	object	which	supports	the	iterator	protocol	and	returns	a
string	each	time	its	next	method	is	called.	If	csvfile	is	a	file	object,	it	must
be	opened	with	the	'b'	flag	on	platforms	where	that	makes	a	difference.	An
optional	dialect	parameter	can	be	given	which	is	used	to	define	a	set	of
parameters	specific	to	a	particular	CSV	dialect.	It	may	be	an	instance	of	a
subclass	of	the	Dialect	class	or	one	of	the	strings	returned	by	the
list_dialects	function.	The	other	optional	fmtparam	keyword
arguments	can	be	given	to	override	individual	formatting	parameters	in	the
current	dialect.	For	more	information	about	the	dialect	and	formatting
parameters,	see	section	12.20.2,	``Dialects	and	Formatting	Parameters''	for
details	of	these	parameters.

All	data	read	are	returned	as	strings.	No	automatic	data	type	conversion	is
performed.

writer(csvfile[,	dialect='excel'[,	fmtparam]])
Return	a	writer	object	responsible	for	converting	the	user's	data	into
delimited	strings	on	the	given	file-like	object.	csvfile	can	be	any	object	with
a	write	method.	If	csvfile	is	a	file	object,	it	must	be	opened	with	the	'b'
flag	on	platforms	where	that	makes	a	difference.	An	optional	dialect
parameter	can	be	given	which	is	used	to	define	a	set	of	parameters	specific
to	a	particular	CSV	dialect.	It	may	be	an	instance	of	a	subclass	of	the
Dialect	class	or	one	of	the	strings	returned	by	the	list_dialects
function.	The	other	optional	fmtparam	keyword	arguments	can	be	given	to
override	individual	formatting	parameters	in	the	current	dialect.	For	more
information	about	the	dialect	and	formatting	parameters,	see
section	12.20.2,	``Dialects	and	Formatting	Parameters''	for	details	of	these
parameters.	To	make	it	as	easy	as	possible	to	interface	with	modules	which
implement	the	DB	API,	the	value	None	is	written	as	the	empty	string.
While	this	isn't	a	reversible	transformation,	it	makes	it	easier	to	dump	SQL

NULL	data	values	to	CSV	files	without	preprocessing	the	data	returned
from	a	cursor.fetch*()	call.	All	other	non-string	data	are	stringified
with	str()	before	being	written.

register_dialect(name,	dialect)
Associate	dialect	with	name.	dialect	must	be	a	subclass	of	csv.Dialect.
name	must	be	a	string	or	Unicode	object.

unregister_dialect(name)
Delete	the	dialect	associated	with	name	from	the	dialect	registry.	An
Error	is	raised	if	name	is	not	a	registered	dialect	name.

get_dialect(name)
Return	the	dialect	associated	with	name.	An	Error	is	raised	if	name	is	not
a	registered	dialect	name.

list_dialects()
Return	the	names	of	all	registered	dialects.

The	csv	module	defines	the	following	classes:

class	DictReader(
csvfile[,	fieldnames=None,[,	restkey=None[,
restval=None[,	dialect='excel'[,	*args,
**kwds]]]]])

Create	an	object	which	operates	like	a	regular	reader	but	maps	the
information	read	into	a	dict	whose	keys	are	given	by	the	optional
fieldnames	parameter.	If	the	fieldnames	parameter	is	omitted,	the	values	in
the	first	row	of	the	csvfile	will	be	used	as	the	fieldnames.	If	the	row	read
has	fewer	fields	than	the	fieldnames	sequence,	the	value	of	restval	will	be
used	as	the	default	value.	If	the	row	read	has	more	fields	than	the
fieldnames	sequence,	the	remaining	data	is	added	as	a	sequence	keyed	by
the	value	of	restkey.	If	the	row	read	has	fewer	fields	than	the	fieldnames
sequence,	the	remaining	keys	take	the	value	of	the	optional	restval
parameter.	Any	other	optional	or	keyword	arguments	are	passed	to	the
underlying	reader	instance.

csvfile,	fieldnames[,	restval=""[,

class	DictWriter(extrasaction='raise'[,	dialect='excel'[,	*args,
**kwds]]]])

Create	an	object	which	operates	like	a	regular	writer	but	maps	dictionaries
onto	output	rows.	The	fieldnames	parameter	identifies	the	order	in	which
values	in	the	dictionary	passed	to	the	writerow()	method	are	written	to
the	csvfile.	The	optional	restval	parameter	specifies	the	value	to	be	written
if	the	dictionary	is	missing	a	key	in	fieldnames.	If	the	dictionary	passed	to
the	writerow()	method	contains	a	key	not	found	in	fieldnames,	the
optional	extrasaction	parameter	indicates	what	action	to	take.	If	it	is	set	to
'raise'	a	ValueError	is	raised.	If	it	is	set	to	'ignore',	extra	values
in	the	dictionary	are	ignored.	Any	other	optional	or	keyword	arguments	are
passed	to	the	underlying	writer	instance.

Note	that	unlike	the	DictReader	class,	the	fieldnames	parameter	of	the
DictWriter	is	not	optional.	Since	Python's	dict	objects	are	not
ordered,	there	is	not	enough	information	available	to	deduce	the	order	in
which	the	row	should	be	written	to	the	csvfile.

class	Dialect
The	Dialect	class	is	a	container	class	relied	on	primarily	for	its
attributes,	which	are	used	to	define	the	parameters	for	a	specific	reader	or
writer	instance.

class	Sniffer()
The	Sniffer	class	is	used	to	deduce	the	format	of	a	CSV	file.

The	Sniffer	class	provides	a	single	method:

sniff(sample[,delimiters=None])
Analyze	the	given	sample	and	return	a	Dialect	subclass	reflecting	the
parameters	found.	If	the	optional	delimiters	parameter	is	given,	it	is
interpreted	as	a	string	containing	possible	valid	delimiter	characters.

has_header(sample)
Analyze	the	sample	text	(presumed	to	be	in	CSV	format)	and	return	True
if	the	first	row	appears	to	be	a	series	of	column	headers.

The	csv	module	defines	the	following	constants:

QUOTE_ALL

Instructs	writer	objects	to	quote	all	fields.

QUOTE_MINIMAL

Instructs	writer	objects	to	only	quote	those	fields	which	contain	the
current	delimiter	or	begin	with	the	current	quotechar.

QUOTE_NONNUMERIC

Instructs	writer	objects	to	quote	all	non-numeric	fields.

QUOTE_NONE

Instructs	writer	objects	to	never	quote	fields.	When	the	current	delimiter
occurs	in	output	data	it	is	preceded	by	the	current	escapechar	character.
When	QUOTE_NONE	is	in	effect,	it	is	an	error	not	to	have	a	single-character
escapechar	defined,	even	if	no	data	to	be	written	contains	the	delimiter
character.

The	csv	module	defines	the	following	exception:

exception	Error
Raised	by	any	of	the	functions	when	an	error	is	detected.

Python	Library	Reference
Previous:	12.20	csv	Up:	12.20	csv	Next:	12.20.2	Dialects	and	Formatting

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.20.1	Module	Contents	Up:	12.20	csv	Next:	12.20.3	Reader
Objects

12.20.2	Dialects	and	Formatting	Parameters
To	make	it	easier	to	specify	the	format	of	input	and	output	records,	specific
formatting	parameters	are	grouped	together	into	dialects.	A	dialect	is	a	subclass
of	the	Dialect	class	having	a	set	of	specific	methods	and	a	single
validate()	method.	When	creating	reader	or	writer	objects,	the
programmer	can	specify	a	string	or	a	subclass	of	the	Dialect	class	as	the
dialect	parameter.	In	addition	to,	or	instead	of,	the	dialect	parameter,	the
programmer	can	also	specify	individual	formatting	parameters,	which	have	the
same	names	as	the	attributes	defined	below	for	the	Dialect	class.

Dialects	support	the	following	attributes:

delimiter

A	one-character	string	used	to	separate	fields.	It	defaults	to	','.

doublequote

Controls	how	instances	of	quotechar	appearing	inside	a	field	should	be
themselves	be	quoted.	When	True,	the	character	is	doubled.	When
False,	the	escapechar	must	be	a	one-character	string	which	is	used	as	a
prefix	to	the	quotechar.	It	defaults	to	True.

escapechar

A	one-character	string	used	to	escape	the	delimiter	if	quoting	is	set	to
QUOTE_NONE.	It	defaults	to	None.

lineterminator

The	string	used	to	terminate	lines	in	the	CSV	file.	It	defaults	to	'\r\n'.

quotechar

A	one-character	string	used	to	quote	elements	containing	the	delimiter	or
which	start	with	the	quotechar.	It	defaults	to	'"'.

quoting

Controls	when	quotes	should	be	generated	by	the	writer.	It	can	take	on	any
of	the	QUOTE_*	constants	(see	section	12.20.1)	and	defaults	to
QUOTE_MINIMAL.

skipinitialspace

When	True,	whitespace	immediately	following	the	delimiter	is	ignored.
The	default	is	False.

Python	Library	Reference
Previous:	12.20.1	Module	Contents	Up:	12.20	csv	Next:	12.20.3	Reader
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.20.2	Dialects	and	Formatting	Up:	12.20	csv	Next:	12.20.4	Writer
Objects

12.20.3	Reader	Objects
Reader	objects	(DictReader	instances	and	objects	returned	by	the
reader()	function)	have	the	following	public	methods:

next()
Return	the	next	row	of	the	reader's	iterable	object	as	a	list,	parsed	according
to	the	current	dialect.

Python	Library	Reference
Previous:	12.20.2	Dialects	and	Formatting	Up:	12.20	csv	Next:	12.20.4	Writer
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.20.3	Reader	Objects	Up:	12.20	csv	Next:	12.20.5	Examples

12.20.4	Writer	Objects
Writer	objects	(DictWriter	instances	and	objects	returned	by	the
writer()	function)	have	the	following	public	methods.	A	row	must	be	a
sequence	of	strings	or	numbers	for	Writer	objects	and	a	dictionary	mapping
fieldnames	to	strings	or	numbers	(by	passing	them	through	str()	first)	for
DictWriter	objects.	Note	that	complex	numbers	are	written	out	surrounded
by	parens.	This	may	cause	some	problems	for	other	programs	which	read	CSV
files	(assuming	they	support	complex	numbers	at	all).

writerow(row)
Write	the	row	parameter	to	the	writer's	file	object,	formatted	according	to
the	current	dialect.

writerows(rows)
Write	all	the	rows	parameters	(a	list	of	row	objects	as	described	above)	to
the	writer's	file	object,	formatted	according	to	the	current	dialect.

Python	Library	Reference
Previous:	12.20.3	Reader	Objects	Up:	12.20	csv	Next:	12.20.5	Examples

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.20.4	Writer	Objects	Up:	12.20	csv	Next:	13.	Structured	Markup
Processing

12.20.5	Examples
The	``Hello,	world''	of	csv	reading	is

import	csv

reader	=	csv.reader(open("some.csv",	"rb"))

for	row	in	reader:

				print	row

To	print	just	the	first	and	last	columns	of	each	row	try

import	csv

reader	=	csv.reader(open("some.csv",	"rb"))

for	row	in	reader:

				print	row[0],	row[-1]

The	corresponding	simplest	possible	writing	example	is

import	csv

writer	=	csv.writer(open("some.csv",	"wb"))

for	row	in	someiterable:

				writer.writerow(row)

Python	Library	Reference
Previous:	12.20.4	Writer	Objects	Up:	12.20	csv	Next:	13.	Structured	Markup
Processing

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.20.5	Examples	Up:	Python	Library	Reference	Next:	13.1
HTMLParser

13.	Structured	Markup	Processing
Tools
Python	supports	a	variety	of	modules	to	work	with	various	forms	of	structured
data	markup.	This	includes	modules	to	work	with	the	Standard	Generalized
Markup	Language	(SGML)	and	the	Hypertext	Markup	Language	(HTML),	and
several	interfaces	for	working	with	the	Extensible	Markup	Language	(XML).

It	is	important	to	note	that	modules	in	the	xml	package	require	that	there	be	at
least	one	SAX-compliant	XML	parser	available.	Starting	with	Python	2.3,	the
Expat	parser	is	included	with	Python,	so	the	xml.parsers.expat	module
will	always	be	available.	You	may	still	want	to	be	aware	of	the	PyXML	add-on
package;	that	package	provides	an	extended	set	of	XML	libraries	for	Python.

The	documentation	for	the	xml.dom	and	xml.sax	packages	are	the	definition
of	the	Python	bindings	for	the	DOM	and	SAX	interfaces.

HTMLParser 	 A	simple	parser	that	can	handle	HTML	and
XHTML.

sgmllib 	 Only	as	much	of	an	SGML	parser	as	needed	to	parse
HTML.

htmllib 	 A	parser	for	HTML	documents.
htmlentitydefs 	 Definitions	of	HTML	general	entities.

xml.parsers.expat 	 An	interface	to	the	Expat	non-validating	XML
parser.

xml.dom 	 Document	Object	Model	API	for	Python.

xml.dom.minidom 	 Lightweight	Document	Object	Model	(DOM)
implementation.

xml.dom.pulldom 	 Support	for	building	partial	DOM	trees	from	SAX
events.

xml.sax 	 Package	containing	SAX2	base	classes	andconvenience	functions.
xml.sax.handler 	 Base	classes	for	SAX	event	handlers.

Convenience	functions	and	classes	for	use	with

http://pyxml.sourceforge.net/

xml.sax.saxutils 	 SAX.

xml.sax.xmlreader 	 Interface	which	SAX-compliant	XML	parsers	must
implement.

xmllib 	 A	parser	for	XML	documents.

See	Also:

Python/XML	Libraries
Home	page	for	the	PyXML	package,	containing	an	extension	of	xml
package	bundled	with	Python.

Python	Library	Reference
Previous:	12.20.5	Examples	Up:	Python	Library	Reference	Next:	13.1
HTMLParser

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://pyxml.sourceforge.net/

Previous:	13.	Structured	Markup	Processing	Up:	13.	Structured	Markup
Processing	Next:	13.1.1	Example	HTML	Parser

13.1	HTMLParser	--	Simple	HTML
and	XHTML	parser
New	in	version	2.2.

This	module	defines	a	class	HTMLParser	which	serves	as	the	basis	for	parsing
text	files	formatted	in	HTML	(HyperText	Mark-up	Language)	and	XHTML.
Unlike	the	parser	in	htmllib,	this	parser	is	not	based	on	the	SGML	parser	in
sgmllib.

class	HTMLParser()
The	HTMLParser	class	is	instantiated	without	arguments.

An	HTMLParser	instance	is	fed	HTML	data	and	calls	handler	functions
when	tags	begin	and	end.	The	HTMLParser	class	is	meant	to	be
overridden	by	the	user	to	provide	a	desired	behavior.

Unlike	the	parser	in	htmllib,	this	parser	does	not	check	that	end	tags
match	start	tags	or	call	the	end-tag	handler	for	elements	which	are	closed
implicitly	by	closing	an	outer	element.

An	exception	is	defined	as	well:

exception	HTMLParseError
Exception	raised	by	the	HTMLParser	class	when	it	encounters	an	error
while	parsing.	This	exception	provides	three	attributes:	msg	is	a	brief
message	explaining	the	error,	lineno	is	the	number	of	the	line	on	which
the	broken	construct	was	detected,	and	offset	is	the	number	of	characters
into	the	line	at	which	the	construct	starts.

HTMLParser	instances	have	the	following	methods:

reset()
Reset	the	instance.	Loses	all	unprocessed	data.	This	is	called	implicitly	at
instantiation	time.

feed(data)
Feed	some	text	to	the	parser.	It	is	processed	insofar	as	it	consists	of
complete	elements;	incomplete	data	is	buffered	until	more	data	is	fed	or
close()	is	called.

close()
Force	processing	of	all	buffered	data	as	if	it	were	followed	by	an	end-of-file
mark.	This	method	may	be	redefined	by	a	derived	class	to	define	additional
processing	at	the	end	of	the	input,	but	the	redefined	version	should	always
call	the	HTMLParser	base	class	method	close().

getpos()
Return	current	line	number	and	offset.

get_starttag_text()
Return	the	text	of	the	most	recently	opened	start	tag.	This	should	not
normally	be	needed	for	structured	processing,	but	may	be	useful	in	dealing
with	HTML	``as	deployed''	or	for	re-generating	input	with	minimal	changes
(whitespace	between	attributes	can	be	preserved,	etc.).

handle_starttag(tag,	attrs)
This	method	is	called	to	handle	the	start	of	a	tag.	It	is	intended	to	be
overridden	by	a	derived	class;	the	base	class	implementation	does	nothing.

The	tag	argument	is	the	name	of	the	tag	converted	to	lower	case.	The	attrs
argument	is	a	list	of	(name,	value)	pairs	containing	the	attributes	found
inside	the	tag's	<>	brackets.	The	name	will	be	translated	to	lower	case	and
double	quotes	and	backslashes	in	the	value	have	been	interpreted.	For
instance,	for	the	tag	,	this
method	would	be	called	as	"handle_starttag('a',	[('href',
'http://www.cwi.nl/')])".

handle_startendtag(tag,	attrs)
Similar	to	handle_starttag(),	but	called	when	the	parser	encounters
an	XHTML-style	empty	tag	(<a	.../>).	This	method	may	be	overridden
by	subclasses	which	require	this	particular	lexical	information;	the	default
implementation	simple	calls	handle_starttag()	and

handle_endtag().

handle_endtag(tag)
This	method	is	called	to	handle	the	end	tag	of	an	element.	It	is	intended	to
be	overridden	by	a	derived	class;	the	base	class	implementation	does
nothing.	The	tag	argument	is	the	name	of	the	tag	converted	to	lower	case.

handle_data(data)
This	method	is	called	to	process	arbitrary	data.	It	is	intended	to	be
overridden	by	a	derived	class;	the	base	class	implementation	does	nothing.

handle_charref(name)
This	method	is	called	to	process	a	character	reference	of	the	form	"&#ref;".
It	is	intended	to	be	overridden	by	a	derived	class;	the	base	class
implementation	does	nothing.

handle_entityref(name)
This	method	is	called	to	process	a	general	entity	reference	of	the	form
"&name;"	where	name	is	an	general	entity	reference.	It	is	intended	to	be
overridden	by	a	derived	class;	the	base	class	implementation	does	nothing.

handle_comment(data)
This	method	is	called	when	a	comment	is	encountered.	The	comment
argument	is	a	string	containing	the	text	between	the	"--"	and	"--"
delimiters,	but	not	the	delimiters	themselves.	For	example,	the	comment	"
<!--text-->"	will	cause	this	method	to	be	called	with	the	argument
'text'.	It	is	intended	to	be	overridden	by	a	derived	class;	the	base	class
implementation	does	nothing.

handle_decl(decl)
Method	called	when	an	SGML	declaration	is	read	by	the	parser.	The	decl
parameter	will	be	the	entire	contents	of	the	declaration	inside	the	<!...>
markup.It	is	intended	to	be	overridden	by	a	derived	class;	the	base	class
implementation	does	nothing.

handle_pi(data)
Method	called	when	a	processing	instruction	is	encountered.	The	data

parameter	will	contain	the	entire	processing	instruction.	For	example,	for
the	processing	instruction	<?proc	color='red'>,	this	method	would
be	called	as	handle_pi("proc	color='red'").	It	is	intended	to	be
overridden	by	a	derived	class;	the	base	class	implementation	does	nothing.

Note:	The	HTMLParser	class	uses	the	SGML	syntactic	rules	for
processing	instructions.	An	XHTML	processing	instruction	using	the
trailing	"?"	will	cause	the	"?"	to	be	included	in	data.

Subsections

13.1.1	Example	HTML	Parser	Application

Python	Library	Reference
Previous:	13.	Structured	Markup	Processing	Up:	13.	Structured	Markup
Processing	Next:	13.1.1	Example	HTML	Parser

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.1	HTMLParser	Up:	13.1	HTMLParser	Next:	13.2	sgmllib

13.1.1	Example	HTML	Parser	Application
As	a	basic	example,	below	is	a	very	basic	HTML	parser	that	uses	the
HTMLParser	class	to	print	out	tags	as	they	are	encountered:

from	HTMLParser	import	HTMLParser

class	MyHTMLParser(HTMLParser):

				def	handle_starttag(self,	tag,	attrs):

								print	"Encountered	the	beginning	of	a	%s	tag"	%	tag

				def	handle_endtag(self,	tag):

								print	"Encountered	the	end	of	a	%s	tag"	%	tag

Python	Library	Reference
Previous:	13.1	HTMLParser	Up:	13.1	HTMLParser	Next:	13.2	sgmllib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.1.1	Example	HTML	Parser	Up:	13.	Structured	Markup
Processing	Next:	13.3	htmllib

13.2	sgmllib	--	Simple	SGML	parser
This	module	defines	a	class	SGMLParser	which	serves	as	the	basis	for	parsing
text	files	formatted	in	SGML	(Standard	Generalized	Mark-up	Language).	In	fact,
it	does	not	provide	a	full	SGML	parser	--	it	only	parses	SGML	insofar	as	it	is
used	by	HTML,	and	the	module	only	exists	as	a	base	for	the	htmllib	module.
Another	HTML	parser	which	supports	XHTML	and	offers	a	somewhat	different
interface	is	available	in	the	HTMLParser	module.

class	SGMLParser()
The	SGMLParser	class	is	instantiated	without	arguments.	The	parser	is
hardcoded	to	recognize	the	following	constructs:

Opening	and	closing	tags	of	the	form	"<tag	attr="value"	...>"
and	"</tag>",	respectively.

Numeric	character	references	of	the	form	"&#name;".

Entity	references	of	the	form	"&name;".

SGML	comments	of	the	form	"<!--text-->".	Note	that	spaces,	tabs,
and	newlines	are	allowed	between	the	trailing	">"	and	the	immediately
preceding	"--".

A	single	exception	is	defined	as	well:

exception	SGMLParseError
Exception	raised	by	the	SGMLParser	class	when	it	encounters	an	error
while	parsing.	New	in	version	2.1.

SGMLParser	instances	have	the	following	methods:

reset()
Reset	the	instance.	Loses	all	unprocessed	data.	This	is	called	implicitly	at
instantiation	time.

setnomoretags()
Stop	processing	tags.	Treat	all	following	input	as	literal	input	(CDATA).
(This	is	only	provided	so	the	HTML	tag	<PLAINTEXT>	can	be
implemented.)

setliteral()
Enter	literal	mode	(CDATA	mode).

feed(data)
Feed	some	text	to	the	parser.	It	is	processed	insofar	as	it	consists	of
complete	elements;	incomplete	data	is	buffered	until	more	data	is	fed	or
close()	is	called.

close()
Force	processing	of	all	buffered	data	as	if	it	were	followed	by	an	end-of-file
mark.	This	method	may	be	redefined	by	a	derived	class	to	define	additional
processing	at	the	end	of	the	input,	but	the	redefined	version	should	always
call	close().

get_starttag_text()
Return	the	text	of	the	most	recently	opened	start	tag.	This	should	not
normally	be	needed	for	structured	processing,	but	may	be	useful	in	dealing
with	HTML	``as	deployed''	or	for	re-generating	input	with	minimal	changes
(whitespace	between	attributes	can	be	preserved,	etc.).

handle_starttag(tag,	method,	attributes)
This	method	is	called	to	handle	start	tags	for	which	either	a	start_tag()
or	do_tag()	method	has	been	defined.	The	tag	argument	is	the	name	of
the	tag	converted	to	lower	case,	and	the	method	argument	is	the	bound
method	which	should	be	used	to	support	semantic	interpretation	of	the	start
tag.	The	attributes	argument	is	a	list	of	(name,	value)	pairs	containing
the	attributes	found	inside	the	tag's	<>	brackets.	The	name	has	been
translated	to	lower	case	and	double	quotes	and	backslashes	in	the	value
have	been	interpreted.	For	instance,	for	the	tag	,	this	method	would	be	called	as
"unknown_starttag('a',	[('href',
'http://www.cwi.nl/')])".	The	base	implementation	simply	calls

method	with	attributes	as	the	only	argument.

handle_endtag(tag,	method)
This	method	is	called	to	handle	endtags	for	which	an	end_tag()	method
has	been	defined.	The	tag	argument	is	the	name	of	the	tag	converted	to
lower	case,	and	the	method	argument	is	the	bound	method	which	should	be
used	to	support	semantic	interpretation	of	the	end	tag.	If	no	end_tag()
method	is	defined	for	the	closing	element,	this	handler	is	not	called.	The
base	implementation	simply	calls	method.

handle_data(data)
This	method	is	called	to	process	arbitrary	data.	It	is	intended	to	be
overridden	by	a	derived	class;	the	base	class	implementation	does	nothing.

handle_charref(ref)
This	method	is	called	to	process	a	character	reference	of	the	form	"&#ref;".
In	the	base	implementation,	ref	must	be	a	decimal	number	in	the	range	0-
255.	It	translates	the	character	to	ASCII	and	calls	the	method
handle_data()	with	the	character	as	argument.	If	ref	is	invalid	or	out	of
range,	the	method	unknown_charref(ref)	is	called	to	handle	the	error.
A	subclass	must	override	this	method	to	provide	support	for	named
character	entities.

handle_entityref(ref)
This	method	is	called	to	process	a	general	entity	reference	of	the	form
"&ref;"	where	ref	is	an	general	entity	reference.	It	looks	for	ref	in	the
instance	(or	class)	variable	entitydefs	which	should	be	a	mapping	from
entity	names	to	corresponding	translations.	If	a	translation	is	found,	it	calls
the	method	handle_data()	with	the	translation;	otherwise,	it	calls	the
method	unknown_entityref(ref).	The	default	entitydefs	defines
translations	for	&,	&apos,	>,	<,	and	".

handle_comment(comment)
This	method	is	called	when	a	comment	is	encountered.	The	comment
argument	is	a	string	containing	the	text	between	the	"<!--"	and	"-->"
delimiters,	but	not	the	delimiters	themselves.	For	example,	the	comment	"
<!--text-->"	will	cause	this	method	to	be	called	with	the	argument

'text'.	The	default	method	does	nothing.

handle_decl(data)
Method	called	when	an	SGML	declaration	is	read	by	the	parser.	In	practice,
the	DOCTYPE	declaration	is	the	only	thing	observed	in	HTML,	but	the
parser	does	not	discriminate	among	different	(or	broken)	declarations.
Internal	subsets	in	a	DOCTYPE	declaration	are	not	supported.	The	data
parameter	will	be	the	entire	contents	of	the	declaration	inside	the	<!...>
markup.	The	default	implementation	does	nothing.

report_unbalanced(tag)
This	method	is	called	when	an	end	tag	is	found	which	does	not	correspond
to	any	open	element.

unknown_starttag(tag,	attributes)
This	method	is	called	to	process	an	unknown	start	tag.	It	is	intended	to	be
overridden	by	a	derived	class;	the	base	class	implementation	does	nothing.

unknown_endtag(tag)
This	method	is	called	to	process	an	unknown	end	tag.	It	is	intended	to	be
overridden	by	a	derived	class;	the	base	class	implementation	does	nothing.

unknown_charref(ref)
This	method	is	called	to	process	unresolvable	numeric	character	references.
Refer	to	handle_charref()	to	determine	what	is	handled	by	default.	It
is	intended	to	be	overridden	by	a	derived	class;	the	base	class
implementation	does	nothing.

unknown_entityref(ref)
This	method	is	called	to	process	an	unknown	entity	reference.	It	is	intended
to	be	overridden	by	a	derived	class;	the	base	class	implementation	does
nothing.

Apart	from	overriding	or	extending	the	methods	listed	above,	derived	classes
may	also	define	methods	of	the	following	form	to	define	processing	of	specific
tags.	Tag	names	in	the	input	stream	are	case	independent;	the	tag	occurring	in
method	names	must	be	in	lower	case:

start_tag(attributes)
This	method	is	called	to	process	an	opening	tag	tag.	It	has	preference	over
do_tag().	The	attributes	argument	has	the	same	meaning	as	described	for
handle_starttag()	above.

do_tag(attributes)
This	method	is	called	to	process	an	opening	tag	tag	that	does	not	come	with
a	matching	closing	tag.	The	attributes	argument	has	the	same	meaning	as
described	for	handle_starttag()	above.

end_tag()
This	method	is	called	to	process	a	closing	tag	tag.

Note	that	the	parser	maintains	a	stack	of	open	elements	for	which	no	end	tag	has
been	found	yet.	Only	tags	processed	by	start_tag()	are	pushed	on	this	stack.
Definition	of	an	end_tag()	method	is	optional	for	these	tags.	For	tags
processed	by	do_tag()	or	by	unknown_tag(),	no	end_tag()	method	must
be	defined;	if	defined,	it	will	not	be	used.	If	both	start_tag()	and	do_tag()
methods	exist	for	a	tag,	the	start_tag()	method	takes	precedence.

Python	Library	Reference
Previous:	13.1.1	Example	HTML	Parser	Up:	13.	Structured	Markup
Processing	Next:	13.3	htmllib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.2	sgmllib	Up:	13.	Structured	Markup	Processing	Next:	13.3.1
HTMLParser	Objects

13.3	htmllib	--	A	parser	for	HTML
documents
This	module	defines	a	class	which	can	serve	as	a	base	for	parsing	text	files
formatted	in	the	HyperText	Mark-up	Language	(HTML).	The	class	is	not
directly	concerned	with	I/O	--	it	must	be	provided	with	input	in	string	form	via	a
method,	and	makes	calls	to	methods	of	a	``formatter''	object	in	order	to	produce
output.	The	HTMLParser	class	is	designed	to	be	used	as	a	base	class	for	other
classes	in	order	to	add	functionality,	and	allows	most	of	its	methods	to	be
extended	or	overridden.	In	turn,	this	class	is	derived	from	and	extends	the
SGMLParser	class	defined	in	module	sgmllib.	The	HTMLParser
implementation	supports	the	HTML	2.0	language	as	described	in	RFC	1866.
Two	implementations	of	formatter	objects	are	provided	in	the	formatter
module;	refer	to	the	documentation	for	that	module	for	information	on	the
formatter	interface.

The	following	is	a	summary	of	the	interface	defined	by
sgmllib.SGMLParser:

The	interface	to	feed	data	to	an	instance	is	through	the	feed()	method,
which	takes	a	string	argument.	This	can	be	called	with	as	little	or	as	much
text	at	a	time	as	desired;	"p.feed(a);	p.feed(b)"	has	the	same
effect	as	"p.feed(a+b)".	When	the	data	contains	complete	HTML
markup	constructs,	these	are	processed	immediately;	incomplete	constructs
are	saved	in	a	buffer.	To	force	processing	of	all	unprocessed	data,	call	the
close()	method.

For	example,	to	parse	the	entire	contents	of	a	file,	use:

parser.feed(open('myfile.html').read())

parser.close()

The	interface	to	define	semantics	for	HTML	tags	is	very	simple:	derive	a
class	and	define	methods	called	start_tag(),	end_tag(),	or	do_tag().
The	parser	will	call	these	at	appropriate	moments:	start_tag	or
do_tag()	is	called	when	an	opening	tag	of	the	form	<tag	...>	is

http://www.faqs.org/rfcs/rfc1866.html

encountered;	end_tag()	is	called	when	a	closing	tag	of	the	form	<tag>	is
encountered.	If	an	opening	tag	requires	a	corresponding	closing	tag,	like
<H1>	...	</H1>,	the	class	should	define	the	start_tag()	method;	if	a
tag	requires	no	closing	tag,	like	<P>,	the	class	should	define	the	do_tag()
method.

The	module	defines	a	parser	class	and	an	exception:

class	HTMLParser(formatter)
This	is	the	basic	HTML	parser	class.	It	supports	all	entity	names	required
by	the	XHTML	1.0	Recommendation	(http://www.w3.org/TR/xhtml1).	It
also	defines	handlers	for	all	HTML	2.0	and	many	HTML	3.0	and	3.2
elements.

exception	HTMLParseError
Exception	raised	by	the	HTMLParser	class	when	it	encounters	an	error
while	parsing.	New	in	version	2.4.

See	Also:

Module	formatter:
Interface	definition	for	transforming	an	abstract	flow	of	formatting
events	into	specific	output	events	on	writer	objects.

Module	HTMLParser:
Alternate	HTML	parser	that	offers	a	slightly	lower-level	view	of	the
input,	but	is	designed	to	work	with	XHTML,	and	does	not	implement
some	of	the	SGML	syntax	not	used	in	``HTML	as	deployed''	and
which	isn't	legal	for	XHTML.

Module	htmlentitydefs:
Definition	of	replacement	text	for	XHTML	1.0	entities.

Module	sgmllib:
Base	class	for	HTMLParser.

http://www.w3.org/TR/xhtml1

Subsections

13.3.1	HTMLParser	Objects

Python	Library	Reference
Previous:	13.2	sgmllib	Up:	13.	Structured	Markup	Processing	Next:	13.3.1
HTMLParser	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.3	htmllib	Up:	13.3	htmllib	Next:	13.4	htmlentitydefs

13.3.1	HTMLParser	Objects
In	addition	to	tag	methods,	the	HTMLParser	class	provides	some	additional
methods	and	instance	variables	for	use	within	tag	methods.

formatter

This	is	the	formatter	instance	associated	with	the	parser.

nofill

Boolean	flag	which	should	be	true	when	whitespace	should	not	be
collapsed,	or	false	when	it	should	be.	In	general,	this	should	only	be	true
when	character	data	is	to	be	treated	as	``preformatted''	text,	as	within	a
<PRE>	element.	The	default	value	is	false.	This	affects	the	operation	of
handle_data()	and	save_end().

anchor_bgn(href,	name,	type)
This	method	is	called	at	the	start	of	an	anchor	region.	The	arguments
correspond	to	the	attributes	of	the	<A>	tag	with	the	same	names.	The
default	implementation	maintains	a	list	of	hyperlinks	(defined	by	the	HREF
attribute	for	<A>	tags)	within	the	document.	The	list	of	hyperlinks	is
available	as	the	data	attribute	anchorlist.

anchor_end()
This	method	is	called	at	the	end	of	an	anchor	region.	The	default
implementation	adds	a	textual	footnote	marker	using	an	index	into	the	list
of	hyperlinks	created	by	anchor_bgn().

handle_image(source,	alt[,	ismap[,	align[,	width[,	height]]]])
This	method	is	called	to	handle	images.	The	default	implementation	simply
passes	the	alt	value	to	the	handle_data()	method.

save_bgn()
Begins	saving	character	data	in	a	buffer	instead	of	sending	it	to	the
formatter	object.	Retrieve	the	stored	data	via	save_end().	Use	of	the
save_bgn()	/	save_end()	pair	may	not	be	nested.

save_end()
Ends	buffering	character	data	and	returns	all	data	saved	since	the	preceding
call	to	save_bgn().	If	the	nofill	flag	is	false,	whitespace	is	collapsed
to	single	spaces.	A	call	to	this	method	without	a	preceding	call	to
save_bgn()	will	raise	a	TypeError	exception.

Python	Library	Reference
Previous:	13.3	htmllib	Up:	13.3	htmllib	Next:	13.4	htmlentitydefs

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.3.1	HTMLParser	Objects	Up:	13.	Structured	Markup	Processing
Next:	13.5	xml.parsers.expat

13.4	htmlentitydefs	--	Definitions
of	HTML	general	entities
This	module	defines	three	dictionaries,	name2codepoint,
codepoint2name,	and	entitydefs.	entitydefs	is	used	by	the
htmllib	module	to	provide	the	entitydefs	member	of	the	HTMLParser
class.	The	definition	provided	here	contains	all	the	entities	defined	by	XHTML
1.0	that	can	be	handled	using	simple	textual	substitution	in	the	Latin-1	character
set	(ISO-8859-1).

entitydefs

A	dictionary	mapping	XHTML	1.0	entity	definitions	to	their	replacement
text	in	ISO	Latin-1.

name2codepoint

A	dictionary	that	maps	HTML	entity	names	to	the	Unicode	codepoints.
New	in	version	2.3.

codepoint2name

A	dictionary	that	maps	Unicode	codepoints	to	HTML	entity	names.	New	in
version	2.3.

Python	Library	Reference
Previous:	13.3.1	HTMLParser	Objects	Up:	13.	Structured	Markup	Processing
Next:	13.5	xml.parsers.expat

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.4	htmlentitydefs	Up:	13.	Structured	Markup	Processing	Next:
13.5.1	XMLParser	Objects

13.5	xml.parsers.expat	--	Fast
XML	parsing	using	Expat
New	in	version	2.0.

The	xml.parsers.expat	module	is	a	Python	interface	to	the	Expat	non-
validating	XML	parser.	The	module	provides	a	single	extension	type,
xmlparser,	that	represents	the	current	state	of	an	XML	parser.	After	an
xmlparser	object	has	been	created,	various	attributes	of	the	object	can	be	set
to	handler	functions.	When	an	XML	document	is	then	fed	to	the	parser,	the
handler	functions	are	called	for	the	character	data	and	markup	in	the	XML
document.

This	module	uses	the	pyexpat	module	to	provide	access	to	the	Expat	parser.
Direct	use	of	the	pyexpat	module	is	deprecated.

This	module	provides	one	exception	and	one	type	object:

exception	ExpatError
The	exception	raised	when	Expat	reports	an	error.	See	section	13.5.2,
``ExpatError	Exceptions,''	for	more	information	on	interpreting	Expat
errors.

exception	error
Alias	for	ExpatError.

XMLParserType

The	type	of	the	return	values	from	the	ParserCreate()	function.

The	xml.parsers.expat	module	contains	two	functions:

ErrorString(errno)
Returns	an	explanatory	string	for	a	given	error	number	errno.

ParserCreate([encoding[,	namespace_separator]])

Creates	and	returns	a	new	xmlparser	object.	encoding,	if	specified,	must
be	a	string	naming	the	encoding	used	by	the	XML	data.	Expat	doesn't
support	as	many	encodings	as	Python	does,	and	its	repertoire	of	encodings
can't	be	extended;	it	supports	UTF-8,	UTF-16,	ISO-8859-1	(Latin1),	and
ASCII.	If	encoding	is	given	it	will	override	the	implicit	or	explicit	encoding
of	the	document.

Expat	can	optionally	do	XML	namespace	processing	for	you,	enabled	by
providing	a	value	for	namespace_separator.	The	value	must	be	a	one-
character	string;	a	ValueError	will	be	raised	if	the	string	has	an	illegal
length	(None	is	considered	the	same	as	omission).	When	namespace
processing	is	enabled,	element	type	names	and	attribute	names	that	belong
to	a	namespace	will	be	expanded.	The	element	name	passed	to	the	element
handlers	StartElementHandler	and	EndElementHandler	will	be
the	concatenation	of	the	namespace	URI,	the	namespace	separator
character,	and	the	local	part	of	the	name.	If	the	namespace	separator	is	a
zero	byte	(chr(0))	then	the	namespace	URI	and	the	local	part	will	be
concatenated	without	any	separator.

For	example,	if	namespace_separator	is	set	to	a	space	character	("	")	and
the	following	document	is	parsed:

<?xml	version="1.0"?>

<root	xmlns				=	"http://default-namespace.org/"

						xmlns:py	=	"http://www.python.org/ns/">

		<py:elem1	/>

		<elem2	xmlns=""	/>

</root>

StartElementHandler	will	receive	the	following	strings	for	each
element:

http://default-namespace.org/	root

http://www.python.org/ns/	elem1

elem2

See	Also:

The	Expat	XML	Parser
Home	page	of	the	Expat	project.

http://www.libexpat.org/

Subsections

13.5.1	XMLParser	Objects
13.5.2	ExpatError	Exceptions
13.5.3	Example
13.5.4	Content	Model	Descriptions
13.5.5	Expat	error	constants

Python	Library	Reference
Previous:	13.4	htmlentitydefs	Up:	13.	Structured	Markup	Processing	Next:
13.5.1	XMLParser	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.5	xml.parsers.expat	Up:	13.5	xml.parsers.expat	Next:	13.5.2
ExpatError	Exceptions

13.5.1	XMLParser	Objects
xmlparser	objects	have	the	following	methods:

Parse(data[,	isfinal])
Parses	the	contents	of	the	string	data,	calling	the	appropriate	handler
functions	to	process	the	parsed	data.	isfinal	must	be	true	on	the	final	call	to
this	method.	data	can	be	the	empty	string	at	any	time.

ParseFile(file)
Parse	XML	data	reading	from	the	object	file.	file	only	needs	to	provide	the
read(nbytes)	method,	returning	the	empty	string	when	there's	no	more
data.

SetBase(base)
Sets	the	base	to	be	used	for	resolving	relative	URIs	in	system	identifiers	in
declarations.	Resolving	relative	identifiers	is	left	to	the	application:	this
value	will	be	passed	through	as	the	base	argument	to	the
ExternalEntityRefHandler,	NotationDeclHandler,	and
UnparsedEntityDeclHandler	functions.

GetBase()
Returns	a	string	containing	the	base	set	by	a	previous	call	to	SetBase(),
or	None	if	SetBase()	hasn't	been	called.

GetInputContext()
Returns	the	input	data	that	generated	the	current	event	as	a	string.	The	data
is	in	the	encoding	of	the	entity	which	contains	the	text.	When	called	while
an	event	handler	is	not	active,	the	return	value	is	None.	New	in	version	2.1.

ExternalEntityParserCreate(context[,	encoding])
Create	a	``child''	parser	which	can	be	used	to	parse	an	external	parsed	entity
referred	to	by	content	parsed	by	the	parent	parser.	The	context	parameter
should	be	the	string	passed	to	the	ExternalEntityRefHandler()
handler	function,	described	below.	The	child	parser	is	created	with	the

ordered_attributes,	returns_unicode	and
specified_attributes	set	to	the	values	of	this	parser.

UseForeignDTD([flag])
Calling	this	with	a	true	value	for	flag	(the	default)	will	cause	Expat	to	call
the	ExternalEntityRefHandler	with	None	for	all	arguments	to
allow	an	alternate	DTD	to	be	loaded.	If	the	document	does	not	contain	a
document	type	declaration,	the	ExternalEntityRefHandler	will
still	be	called,	but	the	StartDoctypeDeclHandler	and
EndDoctypeDeclHandler	will	not	be	called.

Passing	a	false	value	for	flag	will	cancel	a	previous	call	that	passed	a	true
value,	but	otherwise	has	no	effect.

This	method	can	only	be	called	before	the	Parse()	or	ParseFile()
methods	are	called;	calling	it	after	either	of	those	have	been	called	causes
ExpatError	to	be	raised	with	the	code	attribute	set	to
errors.XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING.

New	in	version	2.3.

xmlparser	objects	have	the	following	attributes:

buffer_size

The	size	of	the	buffer	used	when	buffer_text	is	true.	This	value	cannot
be	changed	at	this	time.	New	in	version	2.3.

buffer_text

Setting	this	to	true	causes	the	xmlparser	object	to	buffer	textual	content
returned	by	Expat	to	avoid	multiple	calls	to	the
CharacterDataHandler()	callback	whenever	possible.	This	can
improve	performance	substantially	since	Expat	normally	breaks	character
data	into	chunks	at	every	line	ending.	This	attribute	is	false	by	default,	and
may	be	changed	at	any	time.	New	in	version	2.3.

buffer_used

If	buffer_text	is	enabled,	the	number	of	bytes	stored	in	the	buffer.
These	bytes	represent	UTF-8	encoded	text.	This	attribute	has	no	meaningful
interpretation	when	buffer_text	is	false.	New	in	version	2.3.

ordered_attributes

Setting	this	attribute	to	a	non-zero	integer	causes	the	attributes	to	be
reported	as	a	list	rather	than	a	dictionary.	The	attributes	are	presented	in	the
order	found	in	the	document	text.	For	each	attribute,	two	list	entries	are
presented:	the	attribute	name	and	the	attribute	value.	(Older	versions	of	this
module	also	used	this	format.)	By	default,	this	attribute	is	false;	it	may	be
changed	at	any	time.	New	in	version	2.1.

returns_unicode

If	this	attribute	is	set	to	a	non-zero	integer,	the	handler	functions	will	be
passed	Unicode	strings.	If	returns_unicode	is	0,	8-bit	strings
containing	UTF-8	encoded	data	will	be	passed	to	the	handlers.	Changed	in
version	1.6:	Can	be	changed	at	any	time	to	affect	the	result	type.

specified_attributes

If	set	to	a	non-zero	integer,	the	parser	will	report	only	those	attributes	which
were	specified	in	the	document	instance	and	not	those	which	were	derived
from	attribute	declarations.	Applications	which	set	this	need	to	be
especially	careful	to	use	what	additional	information	is	available	from	the
declarations	as	needed	to	comply	with	the	standards	for	the	behavior	of
XML	processors.	By	default,	this	attribute	is	false;	it	may	be	changed	at	any
time.	New	in	version	2.1.

The	following	attributes	contain	values	relating	to	the	most	recent	error
encountered	by	an	xmlparser	object,	and	will	only	have	correct	values	once	a
call	to	Parse()	or	ParseFile()	has	raised	a
xml.parsers.expat.ExpatError	exception.

ErrorByteIndex

Byte	index	at	which	an	error	occurred.

ErrorCode

Numeric	code	specifying	the	problem.	This	value	can	be	passed	to	the
ErrorString()	function,	or	compared	to	one	of	the	constants	defined	in
the	errors	object.

ErrorColumnNumber

Column	number	at	which	an	error	occurred.

ErrorLineNumber

Line	number	at	which	an	error	occurred.

The	following	attributes	contain	values	relating	to	the	current	parse	location	in
an	xmlparser	object.	During	a	callback	reporting	a	parse	event	they	indicate
the	location	of	the	first	of	the	sequence	of	characters	that	generated	the	event.
When	called	outside	of	a	callback,	the	position	indicated	will	be	just	past	the	last
parse	event	(regardless	of	whether	there	was	an	associated	callback).	New	in
version	2.4.

CurrentByteIndex

Current	byte	index	in	the	parser	input.

CurrentColumnNumber

Current	column	number	in	the	parser	input.

CurrentLineNumber

Current	line	number	in	the	parser	input.

Here	is	the	list	of	handlers	that	can	be	set.	To	set	a	handler	on	an	xmlparser
object	o,	use	o.handlername	=	func.	handlername	must	be	taken	from	the
following	list,	and	func	must	be	a	callable	object	accepting	the	correct	number	of
arguments.	The	arguments	are	all	strings,	unless	otherwise	stated.

XmlDeclHandler(version,	encoding,	standalone)
Called	when	the	XML	declaration	is	parsed.	The	XML	declaration	is	the
(optional)	declaration	of	the	applicable	version	of	the	XML
recommendation,	the	encoding	of	the	document	text,	and	an	optional
``standalone''	declaration.	version	and	encoding	will	be	strings	of	the	type
dictated	by	the	returns_unicode	attribute,	and	standalone	will	be	1	if
the	document	is	declared	standalone,	0	if	it	is	declared	not	to	be	standalone,
or	-1	if	the	standalone	clause	was	omitted.	This	is	only	available	with
Expat	version	1.95.0	or	newer.	New	in	version	2.1.

StartDoctypeDeclHandler(doctypeName,	systemId,	publicId,has_internal_subset)
Called	when	Expat	begins	parsing	the	document	type	declaration
(<!DOCTYPE	...).	The	doctypeName	is	provided	exactly	as	presented.
The	systemId	and	publicId	parameters	give	the	system	and	public	identifiers

if	specified,	or	None	if	omitted.	has_internal_subset	will	be	true	if	the
document	contains	and	internal	document	declaration	subset.	This	requires
Expat	version	1.2	or	newer.

EndDoctypeDeclHandler()
Called	when	Expat	is	done	parsing	the	document	type	delaration.	This
requires	Expat	version	1.2	or	newer.

ElementDeclHandler(name,	model)
Called	once	for	each	element	type	declaration.	name	is	the	name	of	the
element	type,	and	model	is	a	representation	of	the	content	model.

AttlistDeclHandler(elname,	attname,	type,	default,	required)
Called	for	each	declared	attribute	for	an	element	type.	If	an	attribute	list
declaration	declares	three	attributes,	this	handler	is	called	three	times,	once
for	each	attribute.	elname	is	the	name	of	the	element	to	which	the
declaration	applies	and	attname	is	the	name	of	the	attribute	declared.	The
attribute	type	is	a	string	passed	as	type;	the	possible	values	are	'CDATA',
'ID',	'IDREF',	...	default	gives	the	default	value	for	the	attribute	used
when	the	attribute	is	not	specified	by	the	document	instance,	or	None	if
there	is	no	default	value	(#IMPLIED	values).	If	the	attribute	is	required	to
be	given	in	the	document	instance,	required	will	be	true.	This	requires
Expat	version	1.95.0	or	newer.

StartElementHandler(name,	attributes)
Called	for	the	start	of	every	element.	name	is	a	string	containing	the
element	name,	and	attributes	is	a	dictionary	mapping	attribute	names	to
their	values.

EndElementHandler(name)
Called	for	the	end	of	every	element.

ProcessingInstructionHandler(target,	data)
Called	for	every	processing	instruction.

CharacterDataHandler(data)
Called	for	character	data.	This	will	be	called	for	normal	character	data,

CDATA	marked	content,	and	ignorable	whitespace.	Applications	which
must	distinguish	these	cases	can	use	the
StartCdataSectionHandler,	EndCdataSectionHandler,	and
ElementDeclHandler	callbacks	to	collect	the	required	information.

UnparsedEntityDeclHandler(entityName,	base,	systemId,	publicId,notationName)
Called	for	unparsed	(NDATA)	entity	declarations.	This	is	only	present	for
version	1.2	of	the	Expat	library;	for	more	recent	versions,	use
EntityDeclHandler	instead.	(The	underlying	function	in	the	Expat
library	has	been	declared	obsolete.)

EntityDeclHandler(entityName,	is_parameter_entity,	value,	base,systemId,	publicId,	notationName)
Called	for	all	entity	declarations.	For	parameter	and	internal	entities,	value
will	be	a	string	giving	the	declared	contents	of	the	entity;	this	will	be	None
for	external	entities.	The	notationName	parameter	will	be	None	for	parsed
entities,	and	the	name	of	the	notation	for	unparsed	entities.
is_parameter_entity	will	be	true	if	the	entity	is	a	paremeter	entity	or	false
for	general	entities	(most	applications	only	need	to	be	concerned	with
general	entities).	This	is	only	available	starting	with	version	1.95.0	of	the
Expat	library.	New	in	version	2.1.

NotationDeclHandler(notationName,	base,	systemId,	publicId)
Called	for	notation	declarations.	notationName,	base,	and	systemId,	and
publicId	are	strings	if	given.	If	the	public	identifier	is	omitted,	publicId	will
be	None.

StartNamespaceDeclHandler(prefix,	uri)
Called	when	an	element	contains	a	namespace	declaration.	Namespace
declarations	are	processed	before	the	StartElementHandler	is	called
for	the	element	on	which	declarations	are	placed.

EndNamespaceDeclHandler(prefix)
Called	when	the	closing	tag	is	reached	for	an	element	that	contained	a
namespace	declaration.	This	is	called	once	for	each	namespace	declaration
on	the	element	in	the	reverse	of	the	order	for	which	the
StartNamespaceDeclHandler	was	called	to	indicate	the	start	of	each

namespace	declaration's	scope.	Calls	to	this	handler	are	made	after	the
corresponding	EndElementHandler	for	the	end	of	the	element.

CommentHandler(data)
Called	for	comments.	data	is	the	text	of	the	comment,	excluding	the	leading
`<!--'	and	trailing	`-->'.

StartCdataSectionHandler()
Called	at	the	start	of	a	CDATA	section.	This	and
StartCdataSectionHandler	are	needed	to	be	able	to	identify	the
syntactical	start	and	end	for	CDATA	sections.

EndCdataSectionHandler()
Called	at	the	end	of	a	CDATA	section.

DefaultHandler(data)
Called	for	any	characters	in	the	XML	document	for	which	no	applicable
handler	has	been	specified.	This	means	characters	that	are	part	of	a
construct	which	could	be	reported,	but	for	which	no	handler	has	been
supplied.

DefaultHandlerExpand(data)
This	is	the	same	as	the	DefaultHandler,	but	doesn't	inhibit	expansion
of	internal	entities.	The	entity	reference	will	not	be	passed	to	the	default
handler.

NotStandaloneHandler()
Called	if	the	XML	document	hasn't	been	declared	as	being	a	standalone
document.	This	happens	when	there	is	an	external	subset	or	a	reference	to	a
parameter	entity,	but	the	XML	declaration	does	not	set	standalone	to	yes	in
an	XML	declaration.	If	this	handler	returns	0,	then	the	parser	will	throw	an
XML_ERROR_NOT_STANDALONE	error.	If	this	handler	is	not	set,	no
exception	is	raised	by	the	parser	for	this	condition.

ExternalEntityRefHandler(context,	base,	systemId,	publicId)
Called	for	references	to	external	entities.	base	is	the	current	base,	as	set	by	a
previous	call	to	SetBase().	The	public	and	system	identifiers,	systemId

and	publicId,	are	strings	if	given;	if	the	public	identifier	is	not	given,
publicId	will	be	None.	The	context	value	is	opaque	and	should	only	be
used	as	described	below.

For	external	entities	to	be	parsed,	this	handler	must	be	implemented.	It	is
responsible	for	creating	the	sub-parser	using
ExternalEntityParserCreate(context),	initializing	it	with	the
appropriate	callbacks,	and	parsing	the	entity.	This	handler	should	return	an
integer;	if	it	returns	0,	the	parser	will	throw	an
XML_ERROR_EXTERNAL_ENTITY_HANDLING	error,	otherwise	parsing
will	continue.

If	this	handler	is	not	provided,	external	entities	are	reported	by	the
DefaultHandler	callback,	if	provided.

Python	Library	Reference
Previous:	13.5	xml.parsers.expat	Up:	13.5	xml.parsers.expat	Next:	13.5.2
ExpatError	Exceptions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.5.1	XMLParser	Objects	Up:	13.5	xml.parsers.expat	Next:	13.5.3
Example

13.5.2	ExpatError	Exceptions
ExpatError	exceptions	have	a	number	of	interesting	attributes:

code

Expat's	internal	error	number	for	the	specific	error.	This	will	match	one	of
the	constants	defined	in	the	errors	object	from	this	module.	New	in
version	2.1.

lineno

Line	number	on	which	the	error	was	detected.	The	first	line	is	numbered	1.
New	in	version	2.1.

offset

Character	offset	into	the	line	where	the	error	occurred.	The	first	column	is
numbered	0.	New	in	version	2.1.

Python	Library	Reference
Previous:	13.5.1	XMLParser	Objects	Up:	13.5	xml.parsers.expat	Next:	13.5.3
Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.5.2	ExpatError	Exceptions	Up:	13.5	xml.parsers.expat	Next:
13.5.4	Content	Model	Descriptions

13.5.3	Example
The	following	program	defines	three	handlers	that	just	print	out	their	arguments.

import	xml.parsers.expat

#	3	handler	functions

def	start_element(name,	attrs):

				print	'Start	element:',	name,	attrs

def	end_element(name):

				print	'End	element:',	name

def	char_data(data):

				print	'Character	data:',	repr(data)

p	=	xml.parsers.expat.ParserCreate()

p.StartElementHandler	=	start_element

p.EndElementHandler	=	end_element

p.CharacterDataHandler	=	char_data

p.Parse("""<?xml	version="1.0"?>

<parent	id="top"><child1	name="paul">Text	goes	here</child1>

<child2	name="fred">More	text</child2>

</parent>""",	1)

The	output	from	this	program	is:

Start	element:	parent	{'id':	'top'}

Start	element:	child1	{'name':	'paul'}

Character	data:	'Text	goes	here'

End	element:	child1

Character	data:	'\n'

Start	element:	child2	{'name':	'fred'}

Character	data:	'More	text'

End	element:	child2

Character	data:	'\n'

End	element:	parent

Python	Library	Reference
Previous:	13.5.2	ExpatError	Exceptions	Up:	13.5	xml.parsers.expat	Next:
13.5.4	Content	Model	Descriptions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.5.3	Example	Up:	13.5	xml.parsers.expat	Next:	13.5.5	Expat	error
constants

13.5.4	Content	Model	Descriptions
Content	modules	are	described	using	nested	tuples.	Each	tuple	contains	four
values:	the	type,	the	quantifier,	the	name,	and	a	tuple	of	children.	Children	are
simply	additional	content	module	descriptions.

The	values	of	the	first	two	fields	are	constants	defined	in	the	model	object	of
the	xml.parsers.expat	module.	These	constants	can	be	collected	in	two
groups:	the	model	type	group	and	the	quantifier	group.

The	constants	in	the	model	type	group	are:

XML_CTYPE_ANY

The	element	named	by	the	model	name	was	declared	to	have	a	content
model	of	ANY.

XML_CTYPE_CHOICE

The	named	element	allows	a	choice	from	a	number	of	options;	this	is	used
for	content	models	such	as	(A	|	B	|	C).

XML_CTYPE_EMPTY

Elements	which	are	declared	to	be	EMPTY	have	this	model	type.

XML_CTYPE_MIXED

XML_CTYPE_NAME

XML_CTYPE_SEQ

Models	which	represent	a	series	of	models	which	follow	one	after	the	other
are	indicated	with	this	model	type.	This	is	used	for	models	such	as	(A,	B,
C).

The	constants	in	the	quantifier	group	are:

XML_CQUANT_NONE

No	modifier	is	given,	so	it	can	appear	exactly	once,	as	for	A.

XML_CQUANT_OPT

The	model	is	optional:	it	can	appear	once	or	not	at	all,	as	for	A?.

XML_CQUANT_PLUS

The	model	must	occur	one	or	more	times	(like	A+).

XML_CQUANT_REP

The	model	must	occur	zero	or	more	times,	as	for	A*.

Python	Library	Reference
Previous:	13.5.3	Example	Up:	13.5	xml.parsers.expat	Next:	13.5.5	Expat	error
constants

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.5.4	Content	Model	Descriptions	Up:	13.5	xml.parsers.expat	Next:
13.6	xml.dom

13.5.5	Expat	error	constants
The	following	constants	are	provided	in	the	errors	object	of	the
xml.parsers.expat	module.	These	constants	are	useful	in	interpreting
some	of	the	attributes	of	the	ExpatError	exception	objects	raised	when	an
error	has	occurred.

The	errors	object	has	the	following	attributes:

XML_ERROR_ASYNC_ENTITY

XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF

An	entity	reference	in	an	attribute	value	referred	to	an	external	entity
instead	of	an	internal	entity.

XML_ERROR_BAD_CHAR_REF

A	character	reference	referred	to	a	character	which	is	illegal	in	XML	(for
example,	character	0,	or	`�').

XML_ERROR_BINARY_ENTITY_REF

An	entity	reference	referred	to	an	entity	which	was	declared	with	a
notation,	so	cannot	be	parsed.

XML_ERROR_DUPLICATE_ATTRIBUTE

An	attribute	was	used	more	than	once	in	a	start	tag.

XML_ERROR_INCORRECT_ENCODING

XML_ERROR_INVALID_TOKEN

Raised	when	an	input	byte	could	not	properly	be	assigned	to	a	character;	for
example,	a	NUL	byte	(value	0)	in	a	UTF-8	input	stream.

XML_ERROR_JUNK_AFTER_DOC_ELEMENT

Something	other	than	whitespace	occurred	after	the	document	element.

XML_ERROR_MISPLACED_XML_PI

An	XML	declaration	was	found	somewhere	other	than	the	start	of	the	input
data.

XML_ERROR_NO_ELEMENTS

The	document	contains	no	elements	(XML	requires	all	documents	to
contain	exactly	one	top-level	element)..

XML_ERROR_NO_MEMORY

Expat	was	not	able	to	allocate	memory	internally.

XML_ERROR_PARAM_ENTITY_REF

A	parameter	entity	reference	was	found	where	it	was	not	allowed.

XML_ERROR_PARTIAL_CHAR

An	incomplete	character	was	found	in	the	input.

XML_ERROR_RECURSIVE_ENTITY_REF

An	entity	reference	contained	another	reference	to	the	same	entity;	possibly
via	a	different	name,	and	possibly	indirectly.

XML_ERROR_SYNTAX

Some	unspecified	syntax	error	was	encountered.

XML_ERROR_TAG_MISMATCH

An	end	tag	did	not	match	the	innermost	open	start	tag.

XML_ERROR_UNCLOSED_TOKEN

Some	token	(such	as	a	start	tag)	was	not	closed	before	the	end	of	the	stream
or	the	next	token	was	encountered.

XML_ERROR_UNDEFINED_ENTITY

A	reference	was	made	to	a	entity	which	was	not	defined.

XML_ERROR_UNKNOWN_ENCODING

The	document	encoding	is	not	supported	by	Expat.

XML_ERROR_UNCLOSED_CDATA_SECTION

A	CDATA	marked	section	was	not	closed.

XML_ERROR_EXTERNAL_ENTITY_HANDLING

XML_ERROR_NOT_STANDALONE

The	parser	determined	that	the	document	was	not	``standalone''	though	it

declared	itself	to	be	in	the	XML	declaration,	and	the
NotStandaloneHandler	was	set	and	returned	0.

XML_ERROR_UNEXPECTED_STATE

XML_ERROR_ENTITY_DECLARED_IN_PE

XML_ERROR_FEATURE_REQUIRES_XML_DTD

An	operation	was	requested	that	requires	DTD	support	to	be	compiled	in,
but	Expat	was	configured	without	DTD	support.	This	should	never	be
reported	by	a	standard	build	of	the	xml.parsers.expat	module.

XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING

A	behavioral	change	was	requested	after	parsing	started	that	can	only	be
changed	before	parsing	has	started.	This	is	(currently)	only	raised	by
UseForeignDTD().

XML_ERROR_UNBOUND_PREFIX

An	undeclared	prefix	was	found	when	namespace	processing	was	enabled.

XML_ERROR_UNDECLARING_PREFIX

The	document	attempted	to	remove	the	namespace	declaration	associated
with	a	prefix.

XML_ERROR_INCOMPLETE_PE

A	parameter	entity	contained	incomplete	markup.

XML_ERROR_XML_DECL

The	document	contained	no	document	element	at	all.

XML_ERROR_TEXT_DECL

There	was	an	error	parsing	a	text	declaration	in	an	external	entity.

XML_ERROR_PUBLICID

Characters	were	found	in	the	public	id	that	are	not	allowed.

XML_ERROR_SUSPENDED

The	requested	operation	was	made	on	a	suspended	parser,	but	isn't	allowed.
This	includes	attempts	to	provide	additional	input	or	to	stop	the	parser.

XML_ERROR_NOT_SUSPENDED

An	attempt	to	resume	the	parser	was	made	when	the	parser	had	not	been
suspended.

XML_ERROR_ABORTED

This	should	not	be	reported	to	Python	applications.

XML_ERROR_FINISHED

The	requested	operation	was	made	on	a	parser	which	was	finished	parsing
input,	but	isn't	allowed.	This	includes	attempts	to	provide	additional	input
or	to	stop	the	parser.

XML_ERROR_SUSPEND_PE

Python	Library	Reference
Previous:	13.5.4	Content	Model	Descriptions	Up:	13.5	xml.parsers.expat	Next:
13.6	xml.dom

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.5.5	Expat	error	constants	Up:	13.	Structured	Markup
Processing	Next:	13.6.1	Module	Contents

13.6	xml.dom	--	The	Document
Object	Model	API
New	in	version	2.0.

The	Document	Object	Model,	or	``DOM,''	is	a	cross-language	API	from	the
World	Wide	Web	Consortium	(W3C)	for	accessing	and	modifying	XML
documents.	A	DOM	implementation	presents	an	XML	document	as	a	tree
structure,	or	allows	client	code	to	build	such	a	structure	from	scratch.	It	then
gives	access	to	the	structure	through	a	set	of	objects	which	provided	well-known
interfaces.

The	DOM	is	extremely	useful	for	random-access	applications.	SAX	only	allows
you	a	view	of	one	bit	of	the	document	at	a	time.	If	you	are	looking	at	one	SAX
element,	you	have	no	access	to	another.	If	you	are	looking	at	a	text	node,	you
have	no	access	to	a	containing	element.	When	you	write	a	SAX	application,	you
need	to	keep	track	of	your	program's	position	in	the	document	somewhere	in
your	own	code.	SAX	does	not	do	it	for	you.	Also,	if	you	need	to	look	ahead	in
the	XML	document,	you	are	just	out	of	luck.

Some	applications	are	simply	impossible	in	an	event	driven	model	with	no
access	to	a	tree.	Of	course	you	could	build	some	sort	of	tree	yourself	in	SAX
events,	but	the	DOM	allows	you	to	avoid	writing	that	code.	The	DOM	is	a
standard	tree	representation	for	XML	data.

The	Document	Object	Model	is	being	defined	by	the	W3C	in	stages,	or	``levels''
in	their	terminology.	The	Python	mapping	of	the	API	is	substantially	based	on
the	DOM	Level	2	recommendation.	The	mapping	of	the	Level	3	specification,
currently	only	available	in	draft	form,	is	being	developed	by	the	Python	XML
Special	Interest	Group	as	part	of	the	PyXML	package.	Refer	to	the
documentation	bundled	with	that	package	for	information	on	the	current	state	of
DOM	Level	3	support.

DOM	applications	typically	start	by	parsing	some	XML	into	a	DOM.	How	this
is	accomplished	is	not	covered	at	all	by	DOM	Level	1,	and	Level	2	provides
only	limited	improvements:	There	is	a	DOMImplementation	object	class

http://www.python.org/sigs/xml-sig/
http://pyxml.sourceforge.net/

which	provides	access	to	Document	creation	methods,	but	no	way	to	access	an
XML	reader/parser/Document	builder	in	an	implementation-independent	way.
There	is	also	no	well-defined	way	to	access	these	methods	without	an	existing
Document	object.	In	Python,	each	DOM	implementation	will	provide	a
function	getDOMImplementation().	DOM	Level	3	adds	a	Load/Store
specification,	which	defines	an	interface	to	the	reader,	but	this	is	not	yet
available	in	the	Python	standard	library.

Once	you	have	a	DOM	document	object,	you	can	access	the	parts	of	your	XML
document	through	its	properties	and	methods.	These	properties	are	defined	in	the
DOM	specification;	this	portion	of	the	reference	manual	describes	the
interpretation	of	the	specification	in	Python.

The	specification	provided	by	the	W3C	defines	the	DOM	API	for	Java,
ECMAScript,	and	OMG	IDL.	The	Python	mapping	defined	here	is	based	in
large	part	on	the	IDL	version	of	the	specification,	but	strict	compliance	is	not
required	(though	implementations	are	free	to	support	the	strict	mapping	from
IDL).	See	section	13.6.3,	``Conformance,''	for	a	detailed	discussion	of	mapping
requirements.

See	Also:

Document	Object	Model	(DOM)	Level	2	Specification
The	W3C	recommendation	upon	which	the	Python	DOM	API	is
based.

Document	Object	Model	(DOM)	Level	1	Specification
The	W3C	recommendation	for	the	DOM	supported	by
xml.dom.minidom.

PyXML
Users	that	require	a	full-featured	implementation	of	DOM	should	use
the	PyXML	package.

CORBA	Scripting	with	Python
This	specifies	the	mapping	from	OMG	IDL	to	Python.

http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/REC-DOM-Level-1/
http://pyxml.sourceforge.net
http://cgi.omg.org/cgi-bin/doc?orbos/99-08-02.pdf

Subsections

13.6.1	Module	Contents
13.6.2	Objects	in	the	DOM

13.6.2.1	DOMImplementation	Objects
13.6.2.2	Node	Objects
13.6.2.3	NodeList	Objects
13.6.2.4	DocumentType	Objects
13.6.2.5	Document	Objects
13.6.2.6	Element	Objects
13.6.2.7	Attr	Objects
13.6.2.8	NamedNodeMap	Objects
13.6.2.9	Comment	Objects
13.6.2.10	Text	and	CDATASection	Objects
13.6.2.11	ProcessingInstruction	Objects
13.6.2.12	Exceptions

13.6.3	Conformance
13.6.3.1	Type	Mapping
13.6.3.2	Accessor	Methods

Python	Library	Reference
Previous:	13.5.5	Expat	error	constants	Up:	13.	Structured	Markup
Processing	Next:	13.6.1	Module	Contents

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6	xml.dom	Up:	13.6	xml.dom	Next:	13.6.2	Objects	in	the

13.6.1	Module	Contents
The	xml.dom	contains	the	following	functions:

registerDOMImplementation(name,	factory)
Register	the	factory	function	with	the	name	name.	The	factory	function
should	return	an	object	which	implements	the	DOMImplementation
interface.	The	factory	function	can	return	the	same	object	every	time,	or	a
new	one	for	each	call,	as	appropriate	for	the	specific	implementation	(e.g.	if
that	implementation	supports	some	customization).

getDOMImplementation([name[,	features]])
Return	a	suitable	DOM	implementation.	The	name	is	either	well-known,
the	module	name	of	a	DOM	implementation,	or	None.	If	it	is	not	None,
imports	the	corresponding	module	and	returns	a	DOMImplementation
object	if	the	import	succeeds.	If	no	name	is	given,	and	if	the	environment
variable	PYTHON_DOM	is	set,	this	variable	is	used	to	find	the
implementation.

If	name	is	not	given,	this	examines	the	available	implementations	to	find
one	with	the	required	feature	set.	If	no	implementation	can	be	found,	raise
an	ImportError.	The	features	list	must	be	a	sequence	of	(feature,
version)	pairs	which	are	passed	to	the	hasFeature()	method	on
available	DOMImplementation	objects.

Some	convenience	constants	are	also	provided:

EMPTY_NAMESPACE

The	value	used	to	indicate	that	no	namespace	is	associated	with	a	node	in
the	DOM.	This	is	typically	found	as	the	namespaceURI	of	a	node,	or
used	as	the	namespaceURI	parameter	to	a	namespaces-specific	method.
New	in	version	2.2.

XML_NAMESPACE

The	namespace	URI	associated	with	the	reserved	prefix	xml,	as	defined	by
Namespaces	in	XML	(section	4).	New	in	version	2.2.

http://www.w3.org/TR/REC-xml-names/

XMLNS_NAMESPACE

The	namespace	URI	for	namespace	declarations,	as	defined	by	Document
Object	Model	(DOM)	Level	2	Core	Specification	(section	1.1.8).	New	in
version	2.2.

XHTML_NAMESPACE

The	URI	of	the	XHTML	namespace	as	defined	by	XHTML	1.0:	The
Extensible	HyperText	Markup	Language	(section	3.1.1).	New	in	version
2.2.

In	addition,	xml.dom	contains	a	base	Node	class	and	the	DOM	exception
classes.	The	Node	class	provided	by	this	module	does	not	implement	any	of	the
methods	or	attributes	defined	by	the	DOM	specification;	concrete	DOM
implementations	must	provide	those.	The	Node	class	provided	as	part	of	this
module	does	provide	the	constants	used	for	the	nodeType	attribute	on	concrete
Node	objects;	they	are	located	within	the	class	rather	than	at	the	module	level	to
conform	with	the	DOM	specifications.

Python	Library	Reference
Previous:	13.6	xml.dom	Up:	13.6	xml.dom	Next:	13.6.2	Objects	in	the

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.w3.org/TR/DOM-Level-2-Core/core.html
http://www.w3.org/TR/xhtml1/

Previous:	13.6.1	Module	Contents	Up:	13.6	xml.dom	Next:	13.6.2.1
DOMImplementation	Objects

13.6.2	Objects	in	the	DOM
The	definitive	documentation	for	the	DOM	is	the	DOM	specification	from	the
W3C.

Note	that	DOM	attributes	may	also	be	manipulated	as	nodes	instead	of	as	simple
strings.	It	is	fairly	rare	that	you	must	do	this,	however,	so	this	usage	is	not	yet
documented.

Interface Section Purpose
DOMImplementation 13.6.2 Interface	to	the	underlying

implementation.
Node 13.6.2 Base	interface	for	most	objects	in

a	document.
NodeList 13.6.2 Interface	for	a	sequence	of	nodes.
DocumentType 13.6.2 Information	about	the

declarations	needed	to	process	a
document.

Document 13.6.2 Object	which	represents	an	entire
document.

Element 13.6.2 Element	nodes	in	the	document
hierarchy.

Attr 13.6.2 Attribute	value	nodes	on	element
nodes.

Comment 13.6.2 Representation	of	comments	in
the	source	document.

Text 13.6.2 Nodes	containing	textual	content
from	the	document.

ProcessingInstruction 13.6.2 Processing	instruction
representation.

An	additional	section	describes	the	exceptions	defined	for	working	with	the
DOM	in	Python.

Subsections

13.6.2.1	DOMImplementation	Objects
13.6.2.2	Node	Objects
13.6.2.3	NodeList	Objects
13.6.2.4	DocumentType	Objects
13.6.2.5	Document	Objects
13.6.2.6	Element	Objects
13.6.2.7	Attr	Objects
13.6.2.8	NamedNodeMap	Objects
13.6.2.9	Comment	Objects
13.6.2.10	Text	and	CDATASection	Objects
13.6.2.11	ProcessingInstruction	Objects
13.6.2.12	Exceptions

Python	Library	Reference
Previous:	13.6.1	Module	Contents	Up:	13.6	xml.dom	Next:	13.6.2.1
DOMImplementation	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6.2.12	Exceptions	Up:	13.6	xml.dom	Next:	13.6.3.1	Type
Mapping

13.6.3	Conformance
This	section	describes	the	conformance	requirements	and	relationships	between
the	Python	DOM	API,	the	W3C	DOM	recommendations,	and	the	OMG	IDL
mapping	for	Python.

Subsections

13.6.3.1	Type	Mapping
13.6.3.2	Accessor	Methods

Python	Library	Reference
Previous:	13.6.2.12	Exceptions	Up:	13.6	xml.dom	Next:	13.6.3.1	Type
Mapping

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6.3.2	Accessor	Methods	Up:	13.	Structured	Markup	Processing
Next:	13.7.1	DOM	Objects

13.7	xml.dom.minidom	--
Lightweight	DOM	implementation
New	in	version	2.0.

xml.dom.minidom	is	a	light-weight	implementation	of	the	Document	Object
Model	interface.	It	is	intended	to	be	simpler	than	the	full	DOM	and	also
significantly	smaller.

DOM	applications	typically	start	by	parsing	some	XML	into	a	DOM.	With
xml.dom.minidom,	this	is	done	through	the	parse	functions:

from	xml.dom.minidom	import	parse,	parseString

dom1	=	parse('c:\\temp\\mydata.xml')	#	parse	an	XML	file	by	name

datasource	=	open('c:\\temp\\mydata.xml')

dom2	=	parse(datasource)			#	parse	an	open	file

dom3	=	parseString('<myxml>Some	data<empty/>	some	more	data</myxml>')

The	parse()	function	can	take	either	a	filename	or	an	open	file	object.

parse(filename_or_file,	parser)
Return	a	Document	from	the	given	input.	filename_or_file	may	be	either	a
file	name,	or	a	file-like	object.	parser,	if	given,	must	be	a	SAX2	parser
object.	This	function	will	change	the	document	handler	of	the	parser	and
activate	namespace	support;	other	parser	configuration	(like	setting	an
entity	resolver)	must	have	been	done	in	advance.

If	you	have	XML	in	a	string,	you	can	use	the	parseString()	function
instead:

parseString(string[,	parser])
Return	a	Document	that	represents	the	string.	This	method	creates	a
StringIO	object	for	the	string	and	passes	that	on	to	parse.

Both	functions	return	a	Document	object	representing	the	content	of	the

document.

What	the	parse()	and	parseString()	functions	do	is	connect	an	XML
parser	with	a	``DOM	builder''	that	can	accept	parse	events	from	any	SAX	parser
and	convert	them	into	a	DOM	tree.	The	name	of	the	functions	are	perhaps
misleading,	but	are	easy	to	grasp	when	learning	the	interfaces.	The	parsing	of	the
document	will	be	completed	before	these	functions	return;	it's	simply	that	these
functions	do	not	provide	a	parser	implementation	themselves.

You	can	also	create	a	Document	by	calling	a	method	on	a	``DOM
Implementation''	object.	You	can	get	this	object	either	by	calling	the
getDOMImplementation()	function	in	the	xml.dom	package	or	the
xml.dom.minidom	module.	Using	the	implementation	from	the
xml.dom.minidom	module	will	always	return	a	Document	instance	from
the	minidom	implementation,	while	the	version	from	xml.dom	may	provide	an
alternate	implementation	(this	is	likely	if	you	have	the	PyXML	package
installed).	Once	you	have	a	Document,	you	can	add	child	nodes	to	it	to
populate	the	DOM:

from	xml.dom.minidom	import	getDOMImplementation

impl	=	getDOMImplementation()

newdoc	=	impl.createDocument(None,	"some_tag",	None)

top_element	=	newdoc.documentElement

text	=	newdoc.createTextNode('Some	textual	content.')

top_element.appendChild(text)

Once	you	have	a	DOM	document	object,	you	can	access	the	parts	of	your	XML
document	through	its	properties	and	methods.	These	properties	are	defined	in	the
DOM	specification.	The	main	property	of	the	document	object	is	the
documentElement	property.	It	gives	you	the	main	element	in	the	XML
document:	the	one	that	holds	all	others.	Here	is	an	example	program:

dom3	=	parseString("<myxml>Some	data</myxml>")

assert	dom3.documentElement.tagName	==	"myxml"

When	you	are	finished	with	a	DOM,	you	should	clean	it	up.	This	is	necessary
because	some	versions	of	Python	do	not	support	garbage	collection	of	objects
that	refer	to	each	other	in	a	cycle.	Until	this	restriction	is	removed	from	all
versions	of	Python,	it	is	safest	to	write	your	code	as	if	cycles	would	not	be
cleaned	up.

http://pyxml.sourceforge.net/

The	way	to	clean	up	a	DOM	is	to	call	its	unlink()	method:

dom1.unlink()

dom2.unlink()

dom3.unlink()

unlink()	is	a	xml.dom.minidom-specific	extension	to	the	DOM	API.
After	calling	unlink()	on	a	node,	the	node	and	its	descendents	are	essentially
useless.

See	Also:

Document	Object	Model	(DOM)	Level	1	Specification
The	W3C	recommendation	for	the	DOM	supported	by
xml.dom.minidom.

Subsections

13.7.1	DOM	Objects
13.7.2	DOM	Example
13.7.3	minidom	and	the	DOM	standard

Python	Library	Reference
Previous:	13.6.3.2	Accessor	Methods	Up:	13.	Structured	Markup	Processing
Next:	13.7.1	DOM	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.w3.org/TR/REC-DOM-Level-1/

Previous:	13.7	xml.dom.minidom	Up:	13.7	xml.dom.minidom	Next:	13.7.2
DOM	Example

13.7.1	DOM	Objects
The	definition	of	the	DOM	API	for	Python	is	given	as	part	of	the	xml.dom
module	documentation.	This	section	lists	the	differences	between	the	API	and
xml.dom.minidom.

unlink()
Break	internal	references	within	the	DOM	so	that	it	will	be	garbage
collected	on	versions	of	Python	without	cyclic	GC.	Even	when	cyclic	GC	is
available,	using	this	can	make	large	amounts	of	memory	available	sooner,
so	calling	this	on	DOM	objects	as	soon	as	they	are	no	longer	needed	is
good	practice.	This	only	needs	to	be	called	on	the	Document	object,	but
may	be	called	on	child	nodes	to	discard	children	of	that	node.

writexml(writer[,indent=""[,addindent=""[,newl=""]]])
Write	XML	to	the	writer	object.	The	writer	should	have	a	write()
method	which	matches	that	of	the	file	object	interface.	The	indent
parameter	is	the	indentation	of	the	current	node.	The	addindent	parameter	is
the	incremental	indentation	to	use	for	subnodes	of	the	current	one.	The	newl
parameter	specifies	the	string	to	use	to	terminate	newlines.

Changed	in	version	2.1:	The	optional	keyword	parameters	indent,
addindent,	and	newl	were	added	to	support	pretty	output.

Changed	in	version	2.3:	For	the	Document	node,	an	additional	keyword
argument	encoding	can	be	used	to	specify	the	encoding	field	of	the	XML
header.

toxml([encoding])
Return	the	XML	that	the	DOM	represents	as	a	string.

With	no	argument,	the	XML	header	does	not	specify	an	encoding,	and	the
result	is	Unicode	string	if	the	default	encoding	cannot	represent	all
characters	in	the	document.	Encoding	this	string	in	an	encoding	other	than
UTF-8	is	likely	incorrect,	since	UTF-8	is	the	default	encoding	of	XML.

With	an	explicit	encoding	argument,	the	result	is	a	byte	string	in	the

specified	encoding.	It	is	recommended	that	this	argument	is	always
specified.	To	avoid	UnicodeError	exceptions	in	case	of	unrepresentable	text
data,	the	encoding	argument	should	be	specified	as	"utf-8".

Changed	in	version	2.3:	the	encoding	argument	was	introduced.

toprettyxml([indent[,	newl]])
Return	a	pretty-printed	version	of	the	document.	indent	specifies	the
indentation	string	and	defaults	to	a	tabulator;	newl	specifies	the	string
emitted	at	the	end	of	each	line	and	defaults	to	
n.

New	in	version	2.1.	Changed	in	version	2.3:	the	encoding	argument;	see
toxml().

The	following	standard	DOM	methods	have	special	considerations	with
xml.dom.minidom:

cloneNode(deep)
Although	this	method	was	present	in	the	version	of	xml.dom.minidom
packaged	with	Python	2.0,	it	was	seriously	broken.	This	has	been	corrected
for	subsequent	releases.

Python	Library	Reference
Previous:	13.7	xml.dom.minidom	Up:	13.7	xml.dom.minidom	Next:	13.7.2
DOM	Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.7.1	DOM	Objects	Up:	13.7	xml.dom.minidom	Next:	13.7.3
minidom	and	the

13.7.2	DOM	Example
This	example	program	is	a	fairly	realistic	example	of	a	simple	program.	In	this
particular	case,	we	do	not	take	much	advantage	of	the	flexibility	of	the	DOM.

import	xml.dom.minidom

document	=	"""\

<slideshow>

<title>Demo	slideshow</title>

<slide><title>Slide	title</title>

<point>This	is	a	demo</point>

<point>Of	a	program	for	processing	slides</point>

</slide>

<slide><title>Another	demo	slide</title>

<point>It	is	important</point>

<point>To	have	more	than</point>

<point>one	slide</point>

</slide>

</slideshow>

"""

dom	=	xml.dom.minidom.parseString(document)

def	getText(nodelist):

				rc	=	""

				for	node	in	nodelist:

								if	node.nodeType	==	node.TEXT_NODE:

												rc	=	rc	+	node.data

				return	rc

def	handleSlideshow(slideshow):

				print	"<html>"

				handleSlideshowTitle(slideshow.getElementsByTagName("title")[0])

				slides	=	slideshow.getElementsByTagName("slide")

				handleToc(slides)

				handleSlides(slides)

				print	"</html>"

def	handleSlides(slides):

				for	slide	in	slides:

								handleSlide(slide)

def	handleSlide(slide):

				handleSlideTitle(slide.getElementsByTagName("title")[0])

				handlePoints(slide.getElementsByTagName("point"))

def	handleSlideshowTitle(title):

				print	"<title>%s</title>"	%	getText(title.childNodes)

def	handleSlideTitle(title):

				print	"<h2>%s</h2>"	%	getText(title.childNodes)

def	handlePoints(points):

				print	""

				for	point	in	points:

								handlePoint(point)

				print	""

def	handlePoint(point):

				print	"%s"	%	getText(point.childNodes)

def	handleToc(slides):

				for	slide	in	slides:

								title	=	slide.getElementsByTagName("title")[0]

								print	"<p>%s</p>"	%	getText(title.childNodes)

handleSlideshow(dom)

Download	as	text	(original	file	name:	minidom-example.py).

Python	Library	Reference
Previous:	13.7.1	DOM	Objects	Up:	13.7	xml.dom.minidom	Next:	13.7.3
minidom	and	the

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.7.2	DOM	Example	Up:	13.7	xml.dom.minidom	Next:	13.8
xml.dom.pulldom

13.7.3	minidom	and	the	DOM	standard
The	xml.dom.minidom	module	is	essentially	a	DOM	1.0-compatible	DOM
with	some	DOM	2	features	(primarily	namespace	features).

Usage	of	the	DOM	interface	in	Python	is	straight-forward.	The	following
mapping	rules	apply:

Interfaces	are	accessed	through	instance	objects.	Applications	should	not
instantiate	the	classes	themselves;	they	should	use	the	creator	functions
available	on	the	Document	object.	Derived	interfaces	support	all
operations	(and	attributes)	from	the	base	interfaces,	plus	any	new
operations.

Operations	are	used	as	methods.	Since	the	DOM	uses	only	in	parameters,
the	arguments	are	passed	in	normal	order	(from	left	to	right).	There	are	no
optional	arguments.	void	operations	return	None.

IDL	attributes	map	to	instance	attributes.	For	compatibility	with	the	OMG
IDL	language	mapping	for	Python,	an	attribute	foo	can	also	be	accessed
through	accessor	methods	_get_foo()	and	_set_foo().	readonly
attributes	must	not	be	changed;	this	is	not	enforced	at	runtime.

The	types	short	int,	unsigned	int,	unsigned	long	long,
and	boolean	all	map	to	Python	integer	objects.

The	type	DOMString	maps	to	Python	strings.	xml.dom.minidom
supports	either	byte	or	Unicode	strings,	but	will	normally	produce	Unicode
strings.	Values	of	type	DOMString	may	also	be	None	where	allowed	to
have	the	IDL	null	value	by	the	DOM	specification	from	the	W3C.

const	declarations	map	to	variables	in	their	respective	scope	(e.g.
xml.dom.minidom.Node.PROCESSING_INSTRUCTION_NODE);
they	must	not	be	changed.

DOMException	is	currently	not	supported	in	xml.dom.minidom.
Instead,	xml.dom.minidom	uses	standard	Python	exceptions	such	as

TypeError	and	AttributeError.

NodeList	objects	are	implemented	using	Python's	built-in	list	type.
Starting	with	Python	2.2,	these	objects	provide	the	interface	defined	in	the
DOM	specification,	but	with	earlier	versions	of	Python	they	do	not	support
the	official	API.	They	are,	however,	much	more	``Pythonic''	than	the
interface	defined	in	the	W3C	recommendations.

The	following	interfaces	have	no	implementation	in	xml.dom.minidom:

DOMTimeStamp

DocumentType	(added	in	Python	2.1)

DOMImplementation	(added	in	Python	2.1)

CharacterData

CDATASection

Notation

Entity

EntityReference

DocumentFragment

Most	of	these	reflect	information	in	the	XML	document	that	is	not	of	general
utility	to	most	DOM	users.

Python	Library	Reference
Previous:	13.7.2	DOM	Example	Up:	13.7	xml.dom.minidom	Next:	13.8
xml.dom.pulldom

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.7.3	minidom	and	the	Up:	13.	Structured	Markup	Processing
Next:	13.8.1	DOMEventStream	Objects

13.8	xml.dom.pulldom	--	Support
for	building	partial	DOM	trees
New	in	version	2.0.

xml.dom.pulldom	allows	building	only	selected	portions	of	a	Document
Object	Model	representation	of	a	document	from	SAX	events.

class	PullDOM([documentFactory])
xml.sax.handler.ContentHandler	implementation	that	...

class	DOMEventStream(stream,	parser,	bufsize)
...

class	SAX2DOM([documentFactory])
xml.sax.handler.ContentHandler	implementation	that	...

parse(stream_or_string[,	parser[,	bufsize]])
...

parseString(string[,	parser])
...

default_bufsize

Default	value	for	the	busize	parameter	to	parse().	Changed	in	version
2.1:	The	value	of	this	variable	can	be	changed	before	calling	parse()	and
the	new	value	will	take	effect.

Subsections

13.8.1	DOMEventStream	Objects

Python	Library	Reference

Previous:	13.7.3	minidom	and	the	Up:	13.	Structured	Markup	Processing
Next:	13.8.1	DOMEventStream	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.8	xml.dom.pulldom	Up:	13.8	xml.dom.pulldom	Next:	13.9	xml.sax

13.8.1	DOMEventStream	Objects

getEvent()
...

expandNode(node)
...

reset()
...

Python	Library	Reference
Previous:	13.8	xml.dom.pulldom	Up:	13.8	xml.dom.pulldom	Next:	13.9	xml.sax

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.8.1	DOMEventStream	Objects	Up:	13.	Structured	Markup
Processing	Next:	13.9.1	SAXException	Objects

13.9	xml.sax	--	Support	for	SAX2
parsers
New	in	version	2.0.

The	xml.sax	package	provides	a	number	of	modules	which	implement	the
Simple	API	for	XML	(SAX)	interface	for	Python.	The	package	itself	provides
the	SAX	exceptions	and	the	convenience	functions	which	will	be	most	used	by
users	of	the	SAX	API.

The	convenience	functions	are:

make_parser([parser_list])
Create	and	return	a	SAX	XMLReader	object.	The	first	parser	found	will	be
used.	If	parser_list	is	provided,	it	must	be	a	sequence	of	strings	which	name
modules	that	have	a	function	named	create_parser().	Modules	listed
in	parser_list	will	be	used	before	modules	in	the	default	list	of	parsers.

parse(filename_or_stream,	handler[,	error_handler])
Create	a	SAX	parser	and	use	it	to	parse	a	document.	The	document,	passed
in	as	filename_or_stream,	can	be	a	filename	or	a	file	object.	The	handler
parameter	needs	to	be	a	SAX	ContentHandler	instance.	If
error_handler	is	given,	it	must	be	a	SAX	ErrorHandler	instance;	if
omitted,	SAXParseException	will	be	raised	on	all	errors.	There	is	no
return	value;	all	work	must	be	done	by	the	handler	passed	in.

parseString(string,	handler[,	error_handler])
Similar	to	parse(),	but	parses	from	a	buffer	string	received	as	a
parameter.

A	typical	SAX	application	uses	three	kinds	of	objects:	readers,	handlers	and
input	sources.	``Reader''	in	this	context	is	another	term	for	parser,	i.e.	some	piece
of	code	that	reads	the	bytes	or	characters	from	the	input	source,	and	produces	a
sequence	of	events.	The	events	then	get	distributed	to	the	handler	objects,	i.e.	the
reader	invokes	a	method	on	the	handler.	A	SAX	application	must	therefore

obtain	a	reader	object,	create	or	open	the	input	sources,	create	the	handlers,	and
connect	these	objects	all	together.	As	the	final	step	of	preparation,	the	reader	is
called	to	parse	the	input.	During	parsing,	methods	on	the	handler	objects	are
called	based	on	structural	and	syntactic	events	from	the	input	data.

For	these	objects,	only	the	interfaces	are	relevant;	they	are	normally	not
instantiated	by	the	application	itself.	Since	Python	does	not	have	an	explicit
notion	of	interface,	they	are	formally	introduced	as	classes,	but	applications	may
use	implementations	which	do	not	inherit	from	the	provided	classes.	The
InputSource,	Locator,	Attributes,	AttributesNS,	and
XMLReader	interfaces	are	defined	in	the	module	xml.sax.xmlreader.
The	handler	interfaces	are	defined	in	xml.sax.handler.	For	convenience,
InputSource	(which	is	often	instantiated	directly)	and	the	handler	classes	are
also	available	from	xml.sax.	These	interfaces	are	described	below.

In	addition	to	these	classes,	xml.sax	provides	the	following	exception	classes.

exception	SAXException(msg[,	exception])
Encapsulate	an	XML	error	or	warning.	This	class	can	contain	basic	error	or
warning	information	from	either	the	XML	parser	or	the	application:	it	can
be	subclassed	to	provide	additional	functionality	or	to	add	localization.
Note	that	although	the	handlers	defined	in	the	ErrorHandler	interface
receive	instances	of	this	exception,	it	is	not	required	to	actually	raise	the
exception	--	it	is	also	useful	as	a	container	for	information.

When	instantiated,	msg	should	be	a	human-readable	description	of	the	error.
The	optional	exception	parameter,	if	given,	should	be	None	or	an	exception
that	was	caught	by	the	parsing	code	and	is	being	passed	along	as
information.

This	is	the	base	class	for	the	other	SAX	exception	classes.

exception	SAXParseException(msg,	exception,	locator)
Subclass	of	SAXException	raised	on	parse	errors.	Instances	of	this	class
are	passed	to	the	methods	of	the	SAX	ErrorHandler	interface	to
provide	information	about	the	parse	error.	This	class	supports	the	SAX
Locator	interface	as	well	as	the	SAXException	interface.

exception	SAXNotRecognizedException(msg[,	exception])
Subclass	of	SAXException	raised	when	a	SAX	XMLReader	is
confronted	with	an	unrecognized	feature	or	property.	SAX	applications	and
extensions	may	use	this	class	for	similar	purposes.

exception	SAXNotSupportedException(msg[,	exception])
Subclass	of	SAXException	raised	when	a	SAX	XMLReader	is	asked	to
enable	a	feature	that	is	not	supported,	or	to	set	a	property	to	a	value	that	the
implementation	does	not	support.	SAX	applications	and	extensions	may	use
this	class	for	similar	purposes.

See	Also:

SAX:	The	Simple	API	for	XML
This	site	is	the	focal	point	for	the	definition	of	the	SAX	API.	It
provides	a	Java	implementation	and	online	documentation.	Links	to
implementations	and	historical	information	are	also	available.

Module	xml.sax.handler:
Definitions	of	the	interfaces	for	application-provided	objects.

Module	xml.sax.saxutils:
Convenience	functions	for	use	in	SAX	applications.

Module	xml.sax.xmlreader:
Definitions	of	the	interfaces	for	parser-provided	objects.

Subsections

13.9.1	SAXException	Objects

Python	Library	Reference
Previous:	13.8.1	DOMEventStream	Objects	Up:	13.	Structured	Markup
Processing	Next:	13.9.1	SAXException	Objects

http://www.saxproject.org/

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.9	xml.sax	Up:	13.9	xml.sax	Next:	13.10	xml.sax.handler

13.9.1	SAXException	Objects
The	SAXException	exception	class	supports	the	following	methods:

getMessage()
Return	a	human-readable	message	describing	the	error	condition.

getException()
Return	an	encapsulated	exception	object,	or	None.

Python	Library	Reference
Previous:	13.9	xml.sax	Up:	13.9	xml.sax	Next:	13.10	xml.sax.handler

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.9.1	SAXException	Objects	Up:	13.	Structured	Markup
Processing	Next:	13.10.1	ContentHandler	Objects

13.10	xml.sax.handler	--	Base
classes	for	SAX	handlers
New	in	version	2.0.

The	SAX	API	defines	four	kinds	of	handlers:	content	handlers,	DTD	handlers,
error	handlers,	and	entity	resolvers.	Applications	normally	only	need	to
implement	those	interfaces	whose	events	they	are	interested	in;	they	can
implement	the	interfaces	in	a	single	object	or	in	multiple	objects.	Handler
implementations	should	inherit	from	the	base	classes	provided	in	the	module
xml.sax,	so	that	all	methods	get	default	implementations.

class	ContentHandler
This	is	the	main	callback	interface	in	SAX,	and	the	one	most	important	to
applications.	The	order	of	events	in	this	interface	mirrors	the	order	of	the
information	in	the	document.

class	DTDHandler
Handle	DTD	events.

This	interface	specifies	only	those	DTD	events	required	for	basic	parsing
(unparsed	entities	and	attributes).

class	EntityResolver
Basic	interface	for	resolving	entities.	If	you	create	an	object	implementing
this	interface,	then	register	the	object	with	your	Parser,	the	parser	will	call
the	method	in	your	object	to	resolve	all	external	entities.

class	ErrorHandler
Interface	used	by	the	parser	to	present	error	and	warning	messages	to	the
application.	The	methods	of	this	object	control	whether	errors	are
immediately	converted	to	exceptions	or	are	handled	in	some	other	way.

In	addition	to	these	classes,	xml.sax.handler	provides	symbolic	constants
for	the	feature	and	property	names.

feature_namespaces

Value:	"http://xml.org/sax/features/namespaces"	
true:	Perform	Namespace	processing.	
false:	Optionally	do	not	perform	Namespace	processing	(implies
namespace-prefixes;	default).	
access:	(parsing)	read-only;	(not	parsing)	read/write

feature_namespace_prefixes

Value:	"http://xml.org/sax/features/namespace-
prefixes"	
true:	Report	the	original	prefixed	names	and	attributes	used	for	Namespace
declarations.	
false:	Do	not	report	attributes	used	for	Namespace	declarations,	and
optionally	do	not	report	original	prefixed	names	(default).	
access:	(parsing)	read-only;	(not	parsing)	read/write

feature_string_interning

Value:	"http://xml.org/sax/features/string-interning"
true:	All	element	names,	prefixes,	attribute	names,	Namespace	URIs,	and
local	names	are	interned	using	the	built-in	intern	function.	
false:	Names	are	not	necessarily	interned,	although	they	may	be	(default).	
access:	(parsing)	read-only;	(not	parsing)	read/write

feature_validation

Value:	"http://xml.org/sax/features/validation"	
true:	Report	all	validation	errors	(implies	external-general-entities	and
external-parameter-entities).	
false:	Do	not	report	validation	errors.	
access:	(parsing)	read-only;	(not	parsing)	read/write

feature_external_ges

Value:	"http://xml.org/sax/features/external-general-
entities"	
true:	Include	all	external	general	(text)	entities.	
false:	Do	not	include	external	general	entities.	
access:	(parsing)	read-only;	(not	parsing)	read/write

feature_external_pes

Value:	"http://xml.org/sax/features/external-

parameter-entities"	
true:	Include	all	external	parameter	entities,	including	the	external	DTD
subset.	
false:	Do	not	include	any	external	parameter	entities,	even	the	external
DTD	subset.	
access:	(parsing)	read-only;	(not	parsing)	read/write

all_features

List	of	all	features.

property_lexical_handler

Value:	"http://xml.org/sax/properties/lexical-
handler"	
data	type:	xml.sax.sax2lib.LexicalHandler	(not	supported	in	Python	2)	
description:	An	optional	extension	handler	for	lexical	events	like
comments.	
access:	read/write

property_declaration_handler

Value:	"http://xml.org/sax/properties/declaration-
handler"	
data	type:	xml.sax.sax2lib.DeclHandler	(not	supported	in	Python	2)	
description:	An	optional	extension	handler	for	DTD-related	events	other
than	notations	and	unparsed	entities.	
access:	read/write

property_dom_node

Value:	"http://xml.org/sax/properties/dom-node"	
data	type:	org.w3c.dom.Node	(not	supported	in	Python	2)	
description:	When	parsing,	the	current	DOM	node	being	visited	if	this	is	a
DOM	iterator;	when	not	parsing,	the	root	DOM	node	for	iteration.	
access:	(parsing)	read-only;	(not	parsing)	read/write

property_xml_string

Value:	"http://xml.org/sax/properties/xml-string"	
data	type:	String	
description:	The	literal	string	of	characters	that	was	the	source	for	the
current	event.	
access:	read-only

all_properties

List	of	all	known	property	names.

Subsections

13.10.1	ContentHandler	Objects
13.10.2	DTDHandler	Objects
13.10.3	EntityResolver	Objects
13.10.4	ErrorHandler	Objects

Python	Library	Reference
Previous:	13.9.1	SAXException	Objects	Up:	13.	Structured	Markup
Processing	Next:	13.10.1	ContentHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.10	xml.sax.handler	Up:	13.10	xml.sax.handler	Next:	13.10.2
DTDHandler	Objects

13.10.1	ContentHandler	Objects
Users	are	expected	to	subclass	ContentHandler	to	support	their	application.
The	following	methods	are	called	by	the	parser	on	the	appropriate	events	in	the
input	document:

setDocumentLocator(locator)
Called	by	the	parser	to	give	the	application	a	locator	for	locating	the	origin
of	document	events.

SAX	parsers	are	strongly	encouraged	(though	not	absolutely	required)	to
supply	a	locator:	if	it	does	so,	it	must	supply	the	locator	to	the	application
by	invoking	this	method	before	invoking	any	of	the	other	methods	in	the
DocumentHandler	interface.

The	locator	allows	the	application	to	determine	the	end	position	of	any
document-related	event,	even	if	the	parser	is	not	reporting	an	error.
Typically,	the	application	will	use	this	information	for	reporting	its	own
errors	(such	as	character	content	that	does	not	match	an	application's
business	rules).	The	information	returned	by	the	locator	is	probably	not
sufficient	for	use	with	a	search	engine.

Note	that	the	locator	will	return	correct	information	only	during	the
invocation	of	the	events	in	this	interface.	The	application	should	not	attempt
to	use	it	at	any	other	time.

startDocument()
Receive	notification	of	the	beginning	of	a	document.

The	SAX	parser	will	invoke	this	method	only	once,	before	any	other
methods	in	this	interface	or	in	DTDHandler	(except	for
setDocumentLocator()).

endDocument()
Receive	notification	of	the	end	of	a	document.

The	SAX	parser	will	invoke	this	method	only	once,	and	it	will	be	the	last

method	invoked	during	the	parse.	The	parser	shall	not	invoke	this	method
until	it	has	either	abandoned	parsing	(because	of	an	unrecoverable	error)	or
reached	the	end	of	input.

startPrefixMapping(prefix,	uri)
Begin	the	scope	of	a	prefix-URI	Namespace	mapping.

The	information	from	this	event	is	not	necessary	for	normal	Namespace
processing:	the	SAX	XML	reader	will	automatically	replace	prefixes	for
element	and	attribute	names	when	the	feature_namespaces	feature	is
enabled	(the	default).

There	are	cases,	however,	when	applications	need	to	use	prefixes	in
character	data	or	in	attribute	values,	where	they	cannot	safely	be	expanded
automatically;	the	startPrefixMapping()	and
endPrefixMapping()	events	supply	the	information	to	the	application
to	expand	prefixes	in	those	contexts	itself,	if	necessary.

Note	that	startPrefixMapping()	and	endPrefixMapping()
events	are	not	guaranteed	to	be	properly	nested	relative	to	each-other:	all
startPrefixMapping()	events	will	occur	before	the	corresponding
startElement()	event,	and	all	endPrefixMapping()	events	will
occur	after	the	corresponding	endElement()	event,	but	their	order	is	not
guaranteed.

endPrefixMapping(prefix)
End	the	scope	of	a	prefix-URI	mapping.

See	startPrefixMapping()	for	details.	This	event	will	always	occur
after	the	corresponding	endElement()	event,	but	the	order	of
endPrefixMapping()	events	is	not	otherwise	guaranteed.

startElement(name,	attrs)
Signals	the	start	of	an	element	in	non-namespace	mode.

The	name	parameter	contains	the	raw	XML	1.0	name	of	the	element	type	as
a	string	and	the	attrs	parameter	holds	an	object	of	the	Attributes
interface	containing	the	attributes	of	the	element.	The	object	passed	as	attrs

may	be	re-used	by	the	parser;	holding	on	to	a	reference	to	it	is	not	a	reliable
way	to	keep	a	copy	of	the	attributes.	To	keep	a	copy	of	the	attributes,	use
the	copy()	method	of	the	attrs	object.

endElement(name)
Signals	the	end	of	an	element	in	non-namespace	mode.

The	name	parameter	contains	the	name	of	the	element	type,	just	as	with	the
startElement()	event.

startElementNS(name,	qname,	attrs)
Signals	the	start	of	an	element	in	namespace	mode.

The	name	parameter	contains	the	name	of	the	element	type	as	a	(uri,
localname)	tuple,	the	qname	parameter	contains	the	raw	XML	1.0	name
used	in	the	source	document,	and	the	attrs	parameter	holds	an	instance	of
the	AttributesNS	interface	containing	the	attributes	of	the	element.	If
no	namespace	is	associated	with	the	element,	the	uri	component	of	name
will	be	None.	The	object	passed	as	attrs	may	be	re-used	by	the	parser;
holding	on	to	a	reference	to	it	is	not	a	reliable	way	to	keep	a	copy	of	the
attributes.	To	keep	a	copy	of	the	attributes,	use	the	copy()	method	of	the
attrs	object.

Parsers	may	set	the	qname	parameter	to	None,	unless	the
feature_namespace_prefixes	feature	is	activated.

endElementNS(name,	qname)
Signals	the	end	of	an	element	in	namespace	mode.

The	name	parameter	contains	the	name	of	the	element	type,	just	as	with	the
startElementNS()	method,	likewise	the	qname	parameter.

characters(content)
Receive	notification	of	character	data.

The	Parser	will	call	this	method	to	report	each	chunk	of	character	data.
SAX	parsers	may	return	all	contiguous	character	data	in	a	single	chunk,	or
they	may	split	it	into	several	chunks;	however,	all	of	the	characters	in	any

single	event	must	come	from	the	same	external	entity	so	that	the	Locator
provides	useful	information.

content	may	be	a	Unicode	string	or	a	byte	string;	the	expat	reader	module
produces	always	Unicode	strings.

Note:	The	earlier	SAX	1	interface	provided	by	the	Python	XML	Special
Interest	Group	used	a	more	Java-like	interface	for	this	method.	Since	most
parsers	used	from	Python	did	not	take	advantage	of	the	older	interface,	the
simpler	signature	was	chosen	to	replace	it.	To	convert	old	code	to	the	new
interface,	use	content	instead	of	slicing	content	with	the	old	offset	and
length	parameters.

ignorableWhitespace(whitespace)
Receive	notification	of	ignorable	whitespace	in	element	content.

Validating	Parsers	must	use	this	method	to	report	each	chunk	of	ignorable
whitespace	(see	the	W3C	XML	1.0	recommendation,	section	2.10):	non-
validating	parsers	may	also	use	this	method	if	they	are	capable	of	parsing
and	using	content	models.

SAX	parsers	may	return	all	contiguous	whitespace	in	a	single	chunk,	or
they	may	split	it	into	several	chunks;	however,	all	of	the	characters	in	any
single	event	must	come	from	the	same	external	entity,	so	that	the	Locator
provides	useful	information.

processingInstruction(target,	data)
Receive	notification	of	a	processing	instruction.

The	Parser	will	invoke	this	method	once	for	each	processing	instruction
found:	note	that	processing	instructions	may	occur	before	or	after	the	main
document	element.

A	SAX	parser	should	never	report	an	XML	declaration	(XML	1.0,	section
2.8)	or	a	text	declaration	(XML	1.0,	section	4.3.1)	using	this	method.

skippedEntity(name)
Receive	notification	of	a	skipped	entity.

The	Parser	will	invoke	this	method	once	for	each	entity	skipped.	Non-
validating	processors	may	skip	entities	if	they	have	not	seen	the
declarations	(because,	for	example,	the	entity	was	declared	in	an	external
DTD	subset).	All	processors	may	skip	external	entities,	depending	on	the
values	of	the	feature_external_ges	and	the
feature_external_pes	properties.

Python	Library	Reference
Previous:	13.10	xml.sax.handler	Up:	13.10	xml.sax.handler	Next:	13.10.2
DTDHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.10.1	ContentHandler	Objects	Up:	13.10	xml.sax.handler	Next:
13.10.3	EntityResolver	Objects

13.10.2	DTDHandler	Objects
DTDHandler	instances	provide	the	following	methods:

notationDecl(name,	publicId,	systemId)
Handle	a	notation	declaration	event.

unparsedEntityDecl(name,	publicId,	systemId,	ndata)
Handle	an	unparsed	entity	declaration	event.

Python	Library	Reference
Previous:	13.10.1	ContentHandler	Objects	Up:	13.10	xml.sax.handler	Next:
13.10.3	EntityResolver	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.10.2	DTDHandler	Objects	Up:	13.10	xml.sax.handler	Next:
13.10.4	ErrorHandler	Objects

13.10.3	EntityResolver	Objects

resolveEntity(publicId,	systemId)
Resolve	the	system	identifier	of	an	entity	and	return	either	the	system
identifier	to	read	from	as	a	string,	or	an	InputSource	to	read	from.	The
default	implementation	returns	systemId.

Python	Library	Reference
Previous:	13.10.2	DTDHandler	Objects	Up:	13.10	xml.sax.handler	Next:
13.10.4	ErrorHandler	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.10.3	EntityResolver	Objects	Up:	13.10	xml.sax.handler	Next:
13.11	xml.sax.saxutils

13.10.4	ErrorHandler	Objects
Objects	with	this	interface	are	used	to	receive	error	and	warning	information
from	the	XMLReader.	If	you	create	an	object	that	implements	this	interface,
then	register	the	object	with	your	XMLReader,	the	parser	will	call	the	methods
in	your	object	to	report	all	warnings	and	errors.	There	are	three	levels	of	errors
available:	warnings,	(possibly)	recoverable	errors,	and	unrecoverable	errors.	All
methods	take	a	SAXParseException	as	the	only	parameter.	Errors	and
warnings	may	be	converted	to	an	exception	by	raising	the	passed-in	exception
object.

error(exception)
Called	when	the	parser	encounters	a	recoverable	error.	If	this	method	does
not	raise	an	exception,	parsing	may	continue,	but	further	document
information	should	not	be	expected	by	the	application.	Allowing	the	parser
to	continue	may	allow	additional	errors	to	be	discovered	in	the	input
document.

fatalError(exception)
Called	when	the	parser	encounters	an	error	it	cannot	recover	from;	parsing
is	expected	to	terminate	when	this	method	returns.

warning(exception)
Called	when	the	parser	presents	minor	warning	information	to	the
application.	Parsing	is	expected	to	continue	when	this	method	returns,	and
document	information	will	continue	to	be	passed	to	the	application.	Raising
an	exception	in	this	method	will	cause	parsing	to	end.

Python	Library	Reference
Previous:	13.10.3	EntityResolver	Objects	Up:	13.10	xml.sax.handler	Next:
13.11	xml.sax.saxutils

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.10.4	ErrorHandler	Objects	Up:	13.	Structured	Markup
Processing	Next:	13.12	xml.sax.xmlreader

13.11	xml.sax.saxutils	--	SAX
Utilities
New	in	version	2.0.

The	module	xml.sax.saxutils	contains	a	number	of	classes	and	functions
that	are	commonly	useful	when	creating	SAX	applications,	either	in	direct	use,
or	as	base	classes.

escape(data[,	entities])
Escape	"&",	"<",	and	">"	in	a	string	of	data.

You	can	escape	other	strings	of	data	by	passing	a	dictionary	as	the	optional
entities	parameter.	The	keys	and	values	must	all	be	strings;	each	key	will	be
replaced	with	its	corresponding	value.

unescape(data[,	entities])
Unescape	"&",	"<",	and	">"	in	a	string	of	data.

You	can	unescape	other	strings	of	data	by	passing	a	dictionary	as	the
optional	entities	parameter.	The	keys	and	values	must	all	be	strings;	each
key	will	be	replaced	with	its	corresponding	value.

New	in	version	2.3.

quoteattr(data[,	entities])
Similar	to	escape(),	but	also	prepares	data	to	be	used	as	an	attribute
value.	The	return	value	is	a	quoted	version	of	data	with	any	additional
required	replacements.	quoteattr()	will	select	a	quote	character	based
on	the	content	of	data,	attempting	to	avoid	encoding	any	quote	characters	in
the	string.	If	both	single-	and	double-quote	characters	are	already	in	data,
the	double-quote	characters	will	be	encoded	and	data	will	be	wrapped	in
double-quotes.	The	resulting	string	can	be	used	directly	as	an	attribute
value:

>>>	print	"<element	attr=%s>"	%	quoteattr("ab	'	cd	\"	ef")

<element	attr="ab	'	cd	"	ef">

This	function	is	useful	when	generating	attribute	values	for	HTML	or	any
SGML	using	the	reference	concrete	syntax.	New	in	version	2.2.

class	XMLGenerator([out[,	encoding]])
This	class	implements	the	ContentHandler	interface	by	writing	SAX
events	back	into	an	XML	document.	In	other	words,	using	an
XMLGenerator	as	the	content	handler	will	reproduce	the	original
document	being	parsed.	out	should	be	a	file-like	object	which	will	default
to	sys.stdout.	encoding	is	the	encoding	of	the	output	stream	which	defaults
to	'iso-8859-1'.

class	XMLFilterBase(base)
This	class	is	designed	to	sit	between	an	XMLReader	and	the	client
application's	event	handlers.	By	default,	it	does	nothing	but	pass	requests	up
to	the	reader	and	events	on	to	the	handlers	unmodified,	but	subclasses	can
override	specific	methods	to	modify	the	event	stream	or	the	configuration
requests	as	they	pass	through.

prepare_input_source(source[,	base])
This	function	takes	an	input	source	and	an	optional	base	URL	and	returns	a
fully	resolved	InputSource	object	ready	for	reading.	The	input	source
can	be	given	as	a	string,	a	file-like	object,	or	an	InputSource	object;
parsers	will	use	this	function	to	implement	the	polymorphic	source
argument	to	their	parse()	method.

Python	Library	Reference
Previous:	13.10.4	ErrorHandler	Objects	Up:	13.	Structured	Markup
Processing	Next:	13.12	xml.sax.xmlreader

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.11	xml.sax.saxutils	Up:	13.	Structured	Markup	Processing	Next:
13.12.1	XMLReader	Objects

13.12	xml.sax.xmlreader	--
Interface	for	XML	parsers
New	in	version	2.0.

SAX	parsers	implement	the	XMLReader	interface.	They	are	implemented	in	a
Python	module,	which	must	provide	a	function	create_parser().	This
function	is	invoked	by	xml.sax.make_parser()	with	no	arguments	to
create	a	new	parser	object.

class	XMLReader()
Base	class	which	can	be	inherited	by	SAX	parsers.

class	IncrementalParser()
In	some	cases,	it	is	desirable	not	to	parse	an	input	source	at	once,	but	to
feed	chunks	of	the	document	as	they	get	available.	Note	that	the	reader	will
normally	not	read	the	entire	file,	but	read	it	in	chunks	as	well;	still
parse()	won't	return	until	the	entire	document	is	processed.	So	these
interfaces	should	be	used	if	the	blocking	behaviour	of	parse()	is	not
desirable.

When	the	parser	is	instantiated	it	is	ready	to	begin	accepting	data	from	the
feed	method	immediately.	After	parsing	has	been	finished	with	a	call	to
close	the	reset	method	must	be	called	to	make	the	parser	ready	to	accept
new	data,	either	from	feed	or	using	the	parse	method.

Note	that	these	methods	must	not	be	called	during	parsing,	that	is,	after
parse	has	been	called	and	before	it	returns.

By	default,	the	class	also	implements	the	parse	method	of	the	XMLReader
interface	using	the	feed,	close	and	reset	methods	of	the	IncrementalParser
interface	as	a	convenience	to	SAX	2.0	driver	writers.

class	Locator()
Interface	for	associating	a	SAX	event	with	a	document	location.	A	locator

object	will	return	valid	results	only	during	calls	to	DocumentHandler
methods;	at	any	other	time,	the	results	are	unpredictable.	If	information	is
not	available,	methods	may	return	None.

class	InputSource([systemId])
Encapsulation	of	the	information	needed	by	the	XMLReader	to	read
entities.

This	class	may	include	information	about	the	public	identifier,	system
identifier,	byte	stream	(possibly	with	character	encoding	information)
and/or	the	character	stream	of	an	entity.

Applications	will	create	objects	of	this	class	for	use	in	the
XMLReader.parse()	method	and	for	returning	from
EntityResolver.resolveEntity.

An	InputSource	belongs	to	the	application,	the	XMLReader	is	not
allowed	to	modify	InputSource	objects	passed	to	it	from	the
application,	although	it	may	make	copies	and	modify	those.

class	AttributesImpl(attrs)
This	is	an	implementation	of	the	Attributes	interface	(see
section	13.12.5).	This	is	a	dictionary-like	object	which	represents	the
element	attributes	in	a	startElement()	call.	In	addition	to	the	most
useful	dictionary	operations,	it	supports	a	number	of	other	methods	as
described	by	the	interface.	Objects	of	this	class	should	be	instantiated	by
readers;	attrs	must	be	a	dictionary-like	object	containing	a	mapping	from
attribute	names	to	attribute	values.

class	AttributesNSImpl(attrs,	qnames)
Namespace-aware	variant	of	AttributesImpl,	which	will	be	passed	to
startElementNS().	It	is	derived	from	AttributesImpl,	but
understands	attribute	names	as	two-tuples	of	namespaceURI	and
localname.	In	addition,	it	provides	a	number	of	methods	expecting	qualified
names	as	they	appear	in	the	original	document.	This	class	implements	the
AttributesNS	interface	(see	section	13.12.6).

Subsections

13.12.1	XMLReader	Objects
13.12.2	IncrementalParser	Objects
13.12.3	Locator	Objects
13.12.4	InputSource	Objects
13.12.5	The	Attributes	Interface
13.12.6	The	AttributesNS	Interface

Python	Library	Reference
Previous:	13.11	xml.sax.saxutils	Up:	13.	Structured	Markup	Processing	Next:
13.12.1	XMLReader	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.12	xml.sax.xmlreader	Up:	13.12	xml.sax.xmlreader	Next:	13.12.2
IncrementalParser	Objects

13.12.1	XMLReader	Objects
The	XMLReader	interface	supports	the	following	methods:

parse(source)
Process	an	input	source,	producing	SAX	events.	The	source	object	can	be	a
system	identifier	(a	string	identifying	the	input	source	-	typically	a	file
name	or	an	URL),	a	file-like	object,	or	an	InputSource	object.	When
parse()	returns,	the	input	is	completely	processed,	and	the	parser	object
can	be	discarded	or	reset.	As	a	limitation,	the	current	implementation	only
accepts	byte	streams;	processing	of	character	streams	is	for	further	study.

getContentHandler()
Return	the	current	ContentHandler.

setContentHandler(handler)
Set	the	current	ContentHandler.	If	no	ContentHandler	is	set,
content	events	will	be	discarded.

getDTDHandler()
Return	the	current	DTDHandler.

setDTDHandler(handler)
Set	the	current	DTDHandler.	If	no	DTDHandler	is	set,	DTD	events	will
be	discarded.

getEntityResolver()
Return	the	current	EntityResolver.

setEntityResolver(handler)
Set	the	current	EntityResolver.	If	no	EntityResolver	is	set,
attempts	to	resolve	an	external	entity	will	result	in	opening	the	system
identifier	for	the	entity,	and	fail	if	it	is	not	available.

getErrorHandler()

Return	the	current	ErrorHandler.

setErrorHandler(handler)
Set	the	current	error	handler.	If	no	ErrorHandler	is	set,	errors	will	be
raised	as	exceptions,	and	warnings	will	be	printed.

setLocale(locale)
Allow	an	application	to	set	the	locale	for	errors	and	warnings.

SAX	parsers	are	not	required	to	provide	localization	for	errors	and
warnings;	if	they	cannot	support	the	requested	locale,	however,	they	must
throw	a	SAX	exception.	Applications	may	request	a	locale	change	in	the
middle	of	a	parse.

getFeature(featurename)
Return	the	current	setting	for	feature	featurename.	If	the	feature	is	not
recognized,	SAXNotRecognizedException	is	raised.	The	well-
known	featurenames	are	listed	in	the	module	xml.sax.handler.

setFeature(featurename,	value)
Set	the	featurename	to	value.	If	the	feature	is	not	recognized,
SAXNotRecognizedException	is	raised.	If	the	feature	or	its	setting	is
not	supported	by	the	parser,	SAXNotSupportedException	is	raised.

getProperty(propertyname)
Return	the	current	setting	for	property	propertyname.	If	the	property	is	not
recognized,	a	SAXNotRecognizedException	is	raised.	The	well-
known	propertynames	are	listed	in	the	module	xml.sax.handler.

setProperty(propertyname,	value)
Set	the	propertyname	to	value.	If	the	property	is	not	recognized,
SAXNotRecognizedException	is	raised.	If	the	property	or	its	setting
is	not	supported	by	the	parser,	SAXNotSupportedException	is	raised.

Python	Library	Reference
Previous:	13.12	xml.sax.xmlreader	Up:	13.12	xml.sax.xmlreader	Next:	13.12.2

IncrementalParser	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.12.1	XMLReader	Objects	Up:	13.12	xml.sax.xmlreader	Next:
13.12.3	Locator	Objects

13.12.2	IncrementalParser	Objects
Instances	of	IncrementalParser	offer	the	following	additional	methods:

feed(data)
Process	a	chunk	of	data.

close()
Assume	the	end	of	the	document.	That	will	check	well-formedness
conditions	that	can	be	checked	only	at	the	end,	invoke	handlers,	and	may
clean	up	resources	allocated	during	parsing.

reset()
This	method	is	called	after	close	has	been	called	to	reset	the	parser	so	that	it
is	ready	to	parse	new	documents.	The	results	of	calling	parse	or	feed	after
close	without	calling	reset	are	undefined.

Python	Library	Reference
Previous:	13.12.1	XMLReader	Objects	Up:	13.12	xml.sax.xmlreader	Next:
13.12.3	Locator	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.12.2	IncrementalParser	Objects	Up:	13.12	xml.sax.xmlreader
Next:	13.12.4	InputSource	Objects

13.12.3	Locator	Objects
Instances	of	Locator	provide	these	methods:

getColumnNumber()
Return	the	column	number	where	the	current	event	ends.

getLineNumber()
Return	the	line	number	where	the	current	event	ends.

getPublicId()
Return	the	public	identifier	for	the	current	event.

getSystemId()
Return	the	system	identifier	for	the	current	event.

Python	Library	Reference
Previous:	13.12.2	IncrementalParser	Objects	Up:	13.12	xml.sax.xmlreader
Next:	13.12.4	InputSource	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.12.3	Locator	Objects	Up:	13.12	xml.sax.xmlreader	Next:	13.12.5
The	Attributes	Interface

13.12.4	InputSource	Objects

setPublicId(id)
Sets	the	public	identifier	of	this	InputSource.

getPublicId()
Returns	the	public	identifier	of	this	InputSource.

setSystemId(id)
Sets	the	system	identifier	of	this	InputSource.

getSystemId()
Returns	the	system	identifier	of	this	InputSource.

setEncoding(encoding)
Sets	the	character	encoding	of	this	InputSource.

The	encoding	must	be	a	string	acceptable	for	an	XML	encoding	declaration
(see	section	4.3.3	of	the	XML	recommendation).

The	encoding	attribute	of	the	InputSource	is	ignored	if	the
InputSource	also	contains	a	character	stream.

getEncoding()
Get	the	character	encoding	of	this	InputSource.

setByteStream(bytefile)
Set	the	byte	stream	(a	Python	file-like	object	which	does	not	perform	byte-
to-character	conversion)	for	this	input	source.

The	SAX	parser	will	ignore	this	if	there	is	also	a	character	stream	specified,
but	it	will	use	a	byte	stream	in	preference	to	opening	a	URI	connection
itself.

If	the	application	knows	the	character	encoding	of	the	byte	stream,	it	should
set	it	with	the	setEncoding	method.

getByteStream()
Get	the	byte	stream	for	this	input	source.

The	getEncoding	method	will	return	the	character	encoding	for	this	byte
stream,	or	None	if	unknown.

setCharacterStream(charfile)
Set	the	character	stream	for	this	input	source.	(The	stream	must	be	a	Python
1.6	Unicode-wrapped	file-like	that	performs	conversion	to	Unicode	strings.)

If	there	is	a	character	stream	specified,	the	SAX	parser	will	ignore	any	byte
stream	and	will	not	attempt	to	open	a	URI	connection	to	the	system
identifier.

getCharacterStream()
Get	the	character	stream	for	this	input	source.

Python	Library	Reference
Previous:	13.12.3	Locator	Objects	Up:	13.12	xml.sax.xmlreader	Next:	13.12.5
The	Attributes	Interface

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.12.4	InputSource	Objects	Up:	13.12	xml.sax.xmlreader	Next:
13.12.6	The	AttributesNS	Interface

13.12.5	The	Attributes	Interface

Attributes	objects	implement	a	portion	of	the	mapping	protocol,	including
the	methods	copy(),	get(),	has_key(),	items(),	keys(),	and
values().	The	following	methods	are	also	provided:

getLength()
Return	the	number	of	attributes.

getNames()
Return	the	names	of	the	attributes.

getType(name)
Returns	the	type	of	the	attribute	name,	which	is	normally	'CDATA'.

getValue(name)
Return	the	value	of	attribute	name.

Python	Library	Reference
Previous:	13.12.4	InputSource	Objects	Up:	13.12	xml.sax.xmlreader	Next:
13.12.6	The	AttributesNS	Interface

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.12.5	The	Attributes	Interface	Up:	13.12	xml.sax.xmlreader	Next:
13.13	xmllib

13.12.6	The	AttributesNS	Interface

This	interface	is	a	subtype	of	the	Attributes	interface	(see	section	13.12.5).
All	methods	supported	by	that	interface	are	also	available	on	AttributesNS
objects.

The	following	methods	are	also	available:

getValueByQName(name)
Return	the	value	for	a	qualified	name.

getNameByQName(name)
Return	the	(namespace,	localname)	pair	for	a	qualified	name.

getQNameByName(name)
Return	the	qualified	name	for	a	(namespace,	localname)	pair.

getQNames()
Return	the	qualified	names	of	all	attributes.

Python	Library	Reference
Previous:	13.12.5	The	Attributes	Interface	Up:	13.12	xml.sax.xmlreader	Next:
13.13	xmllib

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.12.6	The	AttributesNS	Interface	Up:	13.	Structured	Markup
Processing	Next:	13.13.1	XML	Namespaces

13.13	xmllib	--	A	parser	for	XML
documents
Deprecated	since	release	2.0.	Use	xml.sax	instead.	The	newer	XML	package
includes	full	support	for	XML	1.0.

Changed	in	version	1.5.2:	Added	namespace	support.

This	module	defines	a	class	XMLParser	which	serves	as	the	basis	for	parsing
text	files	formatted	in	XML	(Extensible	Markup	Language).

class	XMLParser()
The	XMLParser	class	must	be	instantiated	without	arguments.13.1

This	class	provides	the	following	interface	methods	and	instance	variables:

attributes

A	mapping	of	element	names	to	mappings.	The	latter	mapping	maps
attribute	names	that	are	valid	for	the	element	to	the	default	value	of	the
attribute,	or	if	there	is	no	default	to	None.	The	default	value	is	the	empty
dictionary.	This	variable	is	meant	to	be	overridden,	not	extended	since	the
default	is	shared	by	all	instances	of	XMLParser.

elements

A	mapping	of	element	names	to	tuples.	The	tuples	contain	a	function	for
handling	the	start	and	end	tag	respectively	of	the	element,	or	None	if	the
method	unknown_starttag()	or	unknown_endtag()	is	to	be
called.	The	default	value	is	the	empty	dictionary.	This	variable	is	meant	to
be	overridden,	not	extended	since	the	default	is	shared	by	all	instances	of
XMLParser.

entitydefs

A	mapping	of	entitynames	to	their	values.	The	default	value	contains
definitions	for	'lt',	'gt',	'amp',	'quot',	and	'apos'.

reset()

Reset	the	instance.	Loses	all	unprocessed	data.	This	is	called	implicitly	at
the	instantiation	time.

setnomoretags()
Stop	processing	tags.	Treat	all	following	input	as	literal	input	(CDATA).

setliteral()
Enter	literal	mode	(CDATA	mode).	This	mode	is	automatically	exited	when
the	close	tag	matching	the	last	unclosed	open	tag	is	encountered.

feed(data)
Feed	some	text	to	the	parser.	It	is	processed	insofar	as	it	consists	of
complete	tags;	incomplete	data	is	buffered	until	more	data	is	fed	or
close()	is	called.

close()
Force	processing	of	all	buffered	data	as	if	it	were	followed	by	an	end-of-file
mark.	This	method	may	be	redefined	by	a	derived	class	to	define	additional
processing	at	the	end	of	the	input,	but	the	redefined	version	should	always
call	close().

translate_references(data)
Translate	all	entity	and	character	references	in	data	and	return	the	translated
string.

getnamespace()
Return	a	mapping	of	namespace	abbreviations	to	namespace	URIs	that	are
currently	in	effect.

handle_xml(encoding,	standalone)
This	method	is	called	when	the	"<?xml	...?>"	tag	is	processed.	The
arguments	are	the	values	of	the	encoding	and	standalone	attributes	in	the
tag.	Both	encoding	and	standalone	are	optional.	The	values	passed	to
handle_xml()	default	to	None	and	the	string	'no'	respectively.

handle_doctype(tag,	pubid,	syslit,	data)
This	method	is	called	when	the	"<!DOCTYPE...>"	declaration	is

processed.	The	arguments	are	the	tag	name	of	the	root	element,	the	Formal
Public	Identifier	(or	None	if	not	specified),	the	system	identifier,	and	the
uninterpreted	contents	of	the	internal	DTD	subset	as	a	string	(or	None	if
not	present).

handle_starttag(tag,	method,	attributes)
This	method	is	called	to	handle	start	tags	for	which	a	start	tag	handler	is
defined	in	the	instance	variable	elements.	The	tag	argument	is	the	name
of	the	tag,	and	the	method	argument	is	the	function	(method)	which	should
be	used	to	support	semantic	interpretation	of	the	start	tag.	The	attributes
argument	is	a	dictionary	of	attributes,	the	key	being	the	name	and	the	value
being	the	value	of	the	attribute	found	inside	the	tag's	<>	brackets.	Character
and	entity	references	in	the	value	have	been	interpreted.	For	instance,	for
the	start	tag	,	this	method	would
be	called	as	handle_starttag('A',	self.elements['A']
[0],	{'HREF':	'http://www.cwi.nl/'}).	The	base
implementation	simply	calls	method	with	attributes	as	the	only	argument.

handle_endtag(tag,	method)
This	method	is	called	to	handle	endtags	for	which	an	end	tag	handler	is
defined	in	the	instance	variable	elements.	The	tag	argument	is	the	name
of	the	tag,	and	the	method	argument	is	the	function	(method)	which	should
be	used	to	support	semantic	interpretation	of	the	end	tag.	For	instance,	for
the	endtag	,	this	method	would	be	called	as
handle_endtag('A',	self.elements['A'][1]).	The	base
implementation	simply	calls	method.

handle_data(data)
This	method	is	called	to	process	arbitrary	data.	It	is	intended	to	be
overridden	by	a	derived	class;	the	base	class	implementation	does	nothing.

handle_charref(ref)
This	method	is	called	to	process	a	character	reference	of	the	form	"&#ref;".
ref	can	either	be	a	decimal	number,	or	a	hexadecimal	number	when
preceded	by	an	"x".	In	the	base	implementation,	ref	must	be	a	number	in
the	range	0-255.	It	translates	the	character	to	ASCII	and	calls	the	method
handle_data()	with	the	character	as	argument.	If	ref	is	invalid	or	out	of

range,	the	method	unknown_charref(ref)	is	called	to	handle	the	error.
A	subclass	must	override	this	method	to	provide	support	for	character
references	outside	of	the	ASCII	range.

handle_comment(comment)
This	method	is	called	when	a	comment	is	encountered.	The	comment
argument	is	a	string	containing	the	text	between	the	"<!--"	and	"-->"
delimiters,	but	not	the	delimiters	themselves.	For	example,	the	comment	"
<!--text-->"	will	cause	this	method	to	be	called	with	the	argument
'text'.	The	default	method	does	nothing.

handle_cdata(data)
This	method	is	called	when	a	CDATA	element	is	encountered.	The	data
argument	is	a	string	containing	the	text	between	the	"<![CDATA["	and
"]]>"	delimiters,	but	not	the	delimiters	themselves.	For	example,	the	entity
"<![CDATA[text]]>"	will	cause	this	method	to	be	called	with	the
argument	'text'.	The	default	method	does	nothing,	and	is	intended	to	be
overridden.

handle_proc(name,	data)
This	method	is	called	when	a	processing	instruction	(PI)	is	encountered.
The	name	is	the	PI	target,	and	the	data	argument	is	a	string	containing	the
text	between	the	PI	target	and	the	closing	delimiter,	but	not	the	delimiter
itself.	For	example,	the	instruction	"<?XML	text?>"	will	cause	this
method	to	be	called	with	the	arguments	'XML'	and	'text'.	The	default
method	does	nothing.	Note	that	if	a	document	starts	with	"<?xml	..?>",
handle_xml()	is	called	to	handle	it.

handle_special(data)
This	method	is	called	when	a	declaration	is	encountered.	The	data
argument	is	a	string	containing	the	text	between	the	"<!"	and	">"
delimiters,	but	not	the	delimiters	themselves.	For	example,	the	entity
declaration	"<!ENTITY	text>"	will	cause	this	method	to	be	called	with
the	argument	'ENTITY	text'.	The	default	method	does	nothing.	Note
that	"<!DOCTYPE	...>"	is	handled	separately	if	it	is	located	at	the	start
of	the	document.

syntax_error(message)
This	method	is	called	when	a	syntax	error	is	encountered.	The	message	is	a
description	of	what	was	wrong.	The	default	method	raises	a
RuntimeError	exception.	If	this	method	is	overridden,	it	is	permissible
for	it	to	return.	This	method	is	only	called	when	the	error	can	be	recovered
from.	Unrecoverable	errors	raise	a	RuntimeError	without	first	calling
syntax_error().

unknown_starttag(tag,	attributes)
This	method	is	called	to	process	an	unknown	start	tag.	It	is	intended	to	be
overridden	by	a	derived	class;	the	base	class	implementation	does	nothing.

unknown_endtag(tag)
This	method	is	called	to	process	an	unknown	end	tag.	It	is	intended	to	be
overridden	by	a	derived	class;	the	base	class	implementation	does	nothing.

unknown_charref(ref)
This	method	is	called	to	process	unresolvable	numeric	character	references.
It	is	intended	to	be	overridden	by	a	derived	class;	the	base	class
implementation	does	nothing.

unknown_entityref(ref)
This	method	is	called	to	process	an	unknown	entity	reference.	It	is	intended
to	be	overridden	by	a	derived	class;	the	base	class	implementation	calls
syntax_error()	to	signal	an	error.

See	Also:

Extensible	Markup	Language	(XML)	1.0
The	XML	specification,	published	by	the	World	Wide	Web
Consortium	(W3C),	defines	the	syntax	and	processor	requirements	for
XML.	References	to	additional	material	on	XML,	including
translations	of	the	specification,	are	available	at
http://www.w3.org/XML/.

Python	and	XML	Processing
The	Python	XML	Topic	Guide	provides	a	great	deal	of	information	on

http://www.w3.org/TR/REC-xml
http://www.w3.org/XML/
http://www.python.org/topics/xml/

using	XML	from	Python	and	links	to	other	sources	of	information	on
XML.

SIG	for	XML	Processing	in	Python
The	Python	XML	Special	Interest	Group	is	developing	substantial
support	for	processing	XML	from	Python.

Footnotes

...	arguments.13.1
Actually,	a	number	of	keyword	arguments	are	recognized	which	influence
the	parser	to	accept	certain	non-standard	constructs.	The	following	keyword
arguments	are	currently	recognized.	The	defaults	for	all	of	these	is	0	(false)
except	for	the	last	one	for	which	the	default	is	1	(true).
accept_unquoted_attributes	(accept	certain	attribute	values	without
requiring	quotes),	accept_missing_endtag_name	(accept	end	tags	that	look
like	</>),	map_case	(map	upper	case	to	lower	case	in	tags	and	attributes),
accept_utf8	(allow	UTF-8	characters	in	input;	this	is	required	according	to
the	XML	standard,	but	Python	does	not	as	yet	deal	properly	with	these
characters,	so	this	is	not	the	default),	translate_attribute_references	(don't
attempt	to	translate	character	and	entity	references	in	attribute	values).

Subsections

13.13.1	XML	Namespaces

Python	Library	Reference
Previous:	13.12.6	The	AttributesNS	Interface	Up:	13.	Structured	Markup
Processing	Next:	13.13.1	XML	Namespaces

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/sigs/xml-sig/

Previous:	13.13	xmllib	Up:	13.13	xmllib	Next:	14.	Multimedia	Services

13.13.1	XML	Namespaces
This	module	has	support	for	XML	namespaces	as	defined	in	the	XML
Namespaces	proposed	recommendation.

Tag	and	attribute	names	that	are	defined	in	an	XML	namespace	are	handled	as	if
the	name	of	the	tag	or	element	consisted	of	the	namespace	(the	URL	that	defines
the	namespace)	followed	by	a	space	and	the	name	of	the	tag	or	attribute.	For
instance,	the	tag	<html	xmlns='http://www.w3.org/TR/REC-
html40'>	is	treated	as	if	the	tag	name	was
'http://www.w3.org/TR/REC-html40	html',	and	the	tag	<html:a
href='http://frob.com'>	inside	the	above	mentioned	element	is	treated
as	if	the	tag	name	were	'http://www.w3.org/TR/REC-html40	a'	and
the	attribute	name	as	if	it	were	'http://www.w3.org/TR/REC-html40
href'.

An	older	draft	of	the	XML	Namespaces	proposal	is	also	recognized,	but	triggers
a	warning.

See	Also:

Namespaces	in	XML
This	World	Wide	Web	Consortium	recommendation	describes	the
proper	syntax	and	processing	requirements	for	namespaces	in	XML.

Python	Library	Reference
Previous:	13.13	xmllib	Up:	13.13	xmllib	Next:	14.	Multimedia	Services

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.w3.org/TR/REC-xml-names/

Previous:	13.13.1	XML	Namespaces	Up:	Python	Library	Reference	Next:	14.1
audioop

14.	Multimedia	Services
The	modules	described	in	this	chapter	implement	various	algorithms	or
interfaces	that	are	mainly	useful	for	multimedia	applications.	They	are	available
at	the	discretion	of	the	installation.	Here's	an	overview:

audioop 	 Manipulate	raw	audio	data.
imageop 	 Manipulate	raw	image	data.
aifc 	 Read	and	write	audio	files	in	AIFF	or	AIFC	format.
sunau 	 Provide	an	interface	to	the	Sun	AU	sound	format.
wave 	 Provide	an	interface	to	the	WAV	sound	format.
chunk 	 Module	to	read	IFF	chunks.
colorsys 	 Conversion	functions	between	RGB	and	other	color	systems.

rgbimg 	 Read	and	write	image	files	in	``SGI	RGB''	format	(the	moduleis	not	SGI	specific	though!).

imghdr 	 Determine	the	type	of	image	contained	in	a	file	or	bytestream.
sndhdr 	 Determine	type	of	a	sound	file.
ossaudiodev 	 Access	to	OSS-compatible	audio	devices.

Python	Library	Reference
Previous:	13.13.1	XML	Namespaces	Up:	Python	Library	Reference	Next:	14.1
audioop

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.	Multimedia	Services	Up:	14.	Multimedia	Services	Next:	14.2
imageop

14.1	audioop	--	Manipulate	raw
audio	data
The	audioop	module	contains	some	useful	operations	on	sound	fragments.	It
operates	on	sound	fragments	consisting	of	signed	integer	samples	8,	16	or	32	bits
wide,	stored	in	Python	strings.	This	is	the	same	format	as	used	by	the	al	and
sunaudiodev	modules.	All	scalar	items	are	integers,	unless	specified
otherwise.

This	module	provides	support	for	u-LAW	and	Intel/DVI	ADPCM	encodings.

A	few	of	the	more	complicated	operations	only	take	16-bit	samples,	otherwise
the	sample	size	(in	bytes)	is	always	a	parameter	of	the	operation.

The	module	defines	the	following	variables	and	functions:

exception	error
This	exception	is	raised	on	all	errors,	such	as	unknown	number	of	bytes	per
sample,	etc.

add(fragment1,	fragment2,	width)
Return	a	fragment	which	is	the	addition	of	the	two	samples	passed	as
parameters.	width	is	the	sample	width	in	bytes,	either	1,	2	or	4.	Both
fragments	should	have	the	same	length.

adpcm2lin(adpcmfragment,	width,	state)
Decode	an	Intel/DVI	ADPCM	coded	fragment	to	a	linear	fragment.	See	the
description	of	lin2adpcm()	for	details	on	ADPCM	coding.	Return	a
tuple	(sample,	newstate)	where	the	sample	has	the	width	specified	in
width.

adpcm32lin(adpcmfragment,	width,	state)
Decode	an	alternative	3-bit	ADPCM	code.	See	lin2adpcm3()	for
details.

avg(fragment,	width)
Return	the	average	over	all	samples	in	the	fragment.

avgpp(fragment,	width)
Return	the	average	peak-peak	value	over	all	samples	in	the	fragment.	No
filtering	is	done,	so	the	usefulness	of	this	routine	is	questionable.

bias(fragment,	width,	bias)
Return	a	fragment	that	is	the	original	fragment	with	a	bias	added	to	each
sample.

cross(fragment,	width)
Return	the	number	of	zero	crossings	in	the	fragment	passed	as	an	argument.

findfactor(fragment,	reference)
Return	a	factor	F	such	that	rms(add(fragment,	mul(reference,	-
F)))	is	minimal,	i.e.,	return	the	factor	with	which	you	should	multiply
reference	to	make	it	match	as	well	as	possible	to	fragment.	The	fragments
should	both	contain	2-byte	samples.

The	time	taken	by	this	routine	is	proportional	to	len(fragment).

findfit(fragment,	reference)
Try	to	match	reference	as	well	as	possible	to	a	portion	of	fragment	(which
should	be	the	longer	fragment).	This	is	(conceptually)	done	by	taking	slices
out	of	fragment,	using	findfactor()	to	compute	the	best	match,	and
minimizing	the	result.	The	fragments	should	both	contain	2-byte	samples.
Return	a	tuple	(offset,	factor)	where	offset	is	the	(integer)	offset	into
fragment	where	the	optimal	match	started	and	factor	is	the	(floating-point)
factor	as	per	findfactor().

findmax(fragment,	length)
Search	fragment	for	a	slice	of	length	length	samples	(not	bytes!)	with
maximum	energy,	i.e.,	return	i	for	which	rms(fragment[i*2:
(i+length)*2])	is	maximal.	The	fragments	should	both	contain	2-byte
samples.

The	routine	takes	time	proportional	to	len(fragment).

getsample(fragment,	width,	index)
Return	the	value	of	sample	index	from	the	fragment.

lin2lin(fragment,	width,	newwidth)
Convert	samples	between	1-,	2-	and	4-byte	formats.

lin2adpcm(fragment,	width,	state)
Convert	samples	to	4	bit	Intel/DVI	ADPCM	encoding.	ADPCM	coding	is
an	adaptive	coding	scheme,	whereby	each	4	bit	number	is	the	difference
between	one	sample	and	the	next,	divided	by	a	(varying)	step.	The
Intel/DVI	ADPCM	algorithm	has	been	selected	for	use	by	the	IMA,	so	it
may	well	become	a	standard.

state	is	a	tuple	containing	the	state	of	the	coder.	The	coder	returns	a	tuple
(adpcmfrag,	newstate),	and	the	newstate	should	be	passed	to	the	next
call	of	lin2adpcm().	In	the	initial	call,	None	can	be	passed	as	the	state.
adpcmfrag	is	the	ADPCM	coded	fragment	packed	2	4-bit	values	per	byte.

lin2adpcm3(fragment,	width,	state)
This	is	an	alternative	ADPCM	coder	that	uses	only	3	bits	per	sample.	It	is
not	compatible	with	the	Intel/DVI	ADPCM	coder	and	its	output	is	not
packed	(due	to	laziness	on	the	side	of	the	author).	Its	use	is	discouraged.

lin2ulaw(fragment,	width)
Convert	samples	in	the	audio	fragment	to	u-LAW	encoding	and	return	this
as	a	Python	string.	u-LAW	is	an	audio	encoding	format	whereby	you	get	a
dynamic	range	of	about	14	bits	using	only	8	bit	samples.	It	is	used	by	the
Sun	audio	hardware,	among	others.

minmax(fragment,	width)
Return	a	tuple	consisting	of	the	minimum	and	maximum	values	of	all
samples	in	the	sound	fragment.

max(fragment,	width)
Return	the	maximum	of	the	absolute	value	of	all	samples	in	a	fragment.

maxpp(fragment,	width)
Return	the	maximum	peak-peak	value	in	the	sound	fragment.

mul(fragment,	width,	factor)
Return	a	fragment	that	has	all	samples	in	the	original	fragment	multiplied
by	the	floating-point	value	factor.	Overflow	is	silently	ignored.

ratecv(fragment,	width,	nchannels,	inrate,	outrate,	state[,	weightA[,
weightB]])

Convert	the	frame	rate	of	the	input	fragment.

state	is	a	tuple	containing	the	state	of	the	converter.	The	converter	returns	a
tuple	(newfragment,	newstate),	and	newstate	should	be	passed	to	the
next	call	of	ratecv().	The	initial	call	should	pass	None	as	the	state.

The	weightA	and	weightB	arguments	are	parameters	for	a	simple	digital
filter	and	default	to	1	and	0	respectively.

reverse(fragment,	width)
Reverse	the	samples	in	a	fragment	and	returns	the	modified	fragment.

rms(fragment,	width)
Return	the	root-mean-square	of	the	fragment,	i.e.	

This	is	a	measure	of	the	power	in	an	audio	signal.

tomono(fragment,	width,	lfactor,	rfactor)
Convert	a	stereo	fragment	to	a	mono	fragment.	The	left	channel	is
multiplied	by	lfactor	and	the	right	channel	by	rfactor	before	adding	the	two
channels	to	give	a	mono	signal.

tostereo(fragment,	width,	lfactor,	rfactor)
Generate	a	stereo	fragment	from	a	mono	fragment.	Each	pair	of	samples	in

the	stereo	fragment	are	computed	from	the	mono	sample,	whereby	left
channel	samples	are	multiplied	by	lfactor	and	right	channel	samples	by
rfactor.

ulaw2lin(fragment,	width)
Convert	sound	fragments	in	u-LAW	encoding	to	linearly	encoded	sound
fragments.	u-LAW	encoding	always	uses	8	bits	samples,	so	width	refers
only	to	the	sample	width	of	the	output	fragment	here.

Note	that	operations	such	as	mul()	or	max()	make	no	distinction	between
mono	and	stereo	fragments,	i.e.	all	samples	are	treated	equal.	If	this	is	a	problem
the	stereo	fragment	should	be	split	into	two	mono	fragments	first	and
recombined	later.	Here	is	an	example	of	how	to	do	that:

def	mul_stereo(sample,	width,	lfactor,	rfactor):

				lsample	=	audioop.tomono(sample,	width,	1,	0)

				rsample	=	audioop.tomono(sample,	width,	0,	1)

				lsample	=	audioop.mul(sample,	width,	lfactor)

				rsample	=	audioop.mul(sample,	width,	rfactor)

				lsample	=	audioop.tostereo(lsample,	width,	1,	0)

				rsample	=	audioop.tostereo(rsample,	width,	0,	1)

				return	audioop.add(lsample,	rsample,	width)

If	you	use	the	ADPCM	coder	to	build	network	packets	and	you	want	your
protocol	to	be	stateless	(i.e.	to	be	able	to	tolerate	packet	loss)	you	should	not
only	transmit	the	data	but	also	the	state.	Note	that	you	should	send	the	initial
state	(the	one	you	passed	to	lin2adpcm())	along	to	the	decoder,	not	the	final
state	(as	returned	by	the	coder).	If	you	want	to	use	struct.struct()	to
store	the	state	in	binary	you	can	code	the	first	element	(the	predicted	value)	in	16
bits	and	the	second	(the	delta	index)	in	8.

The	ADPCM	coders	have	never	been	tried	against	other	ADPCM	coders,	only
against	themselves.	It	could	well	be	that	I	misinterpreted	the	standards	in	which
case	they	will	not	be	interoperable	with	the	respective	standards.

The	find*()	routines	might	look	a	bit	funny	at	first	sight.	They	are	primarily
meant	to	do	echo	cancellation.	A	reasonably	fast	way	to	do	this	is	to	pick	the
most	energetic	piece	of	the	output	sample,	locate	that	in	the	input	sample	and
subtract	the	whole	output	sample	from	the	input	sample:

def	echocancel(outputdata,	inputdata):

				pos	=	audioop.findmax(outputdata,	800)				#	one	tenth	second

				out_test	=	outputdata[pos*2:]

				in_test	=	inputdata[pos*2:]

				ipos,	factor	=	audioop.findfit(in_test,	out_test)

				#	Optional	(for	better	cancellation):

				#	factor	=	audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],	

				#														out_test)

				prefill	=	'\0'*(pos+ipos)*2

				postfill	=	'\0'*(len(inputdata)-len(prefill)-len(outputdata))

				outputdata	=	prefill	+	audioop.mul(outputdata,2,-factor)	+	postfill

				return	audioop.add(inputdata,	outputdata,	2)

Python	Library	Reference
Previous:	14.	Multimedia	Services	Up:	14.	Multimedia	Services	Next:	14.2
imageop

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.1	audioop	Up:	14.	Multimedia	Services	Next:	14.3	aifc

14.2	imageop	--	Manipulate	raw
image	data
The	imageop	module	contains	some	useful	operations	on	images.	It	operates
on	images	consisting	of	8	or	32	bit	pixels	stored	in	Python	strings.	This	is	the
same	format	as	used	by	gl.lrectwrite()	and	the	imgfile	module.

The	module	defines	the	following	variables	and	functions:

exception	error
This	exception	is	raised	on	all	errors,	such	as	unknown	number	of	bits	per
pixel,	etc.

crop(image,	psize,	width,	height,	x0,	y0,	x1,	y1)
Return	the	selected	part	of	image,	which	should	by	width	by	height	in	size
and	consist	of	pixels	of	psize	bytes.	x0,	y0,	x1	and	y1	are	like	the
gl.lrectread()	parameters,	i.e.	the	boundary	is	included	in	the	new
image.	The	new	boundaries	need	not	be	inside	the	picture.	Pixels	that	fall
outside	the	old	image	will	have	their	value	set	to	zero.	If	x0	is	bigger	than
x1	the	new	image	is	mirrored.	The	same	holds	for	the	y	coordinates.

scale(image,	psize,	width,	height,	newwidth,	newheight)
Return	image	scaled	to	size	newwidth	by	newheight.	No	interpolation	is
done,	scaling	is	done	by	simple-minded	pixel	duplication	or	removal.
Therefore,	computer-generated	images	or	dithered	images	will	not	look	nice
after	scaling.

tovideo(image,	psize,	width,	height)
Run	a	vertical	low-pass	filter	over	an	image.	It	does	so	by	computing	each
destination	pixel	as	the	average	of	two	vertically-aligned	source	pixels.	The
main	use	of	this	routine	is	to	forestall	excessive	flicker	if	the	image	is
displayed	on	a	video	device	that	uses	interlacing,	hence	the	name.

grey2mono(image,	width,	height,	threshold)
Convert	a	8-bit	deep	greyscale	image	to	a	1-bit	deep	image	by	thresholding

all	the	pixels.	The	resulting	image	is	tightly	packed	and	is	probably	only
useful	as	an	argument	to	mono2grey().

dither2mono(image,	width,	height)
Convert	an	8-bit	greyscale	image	to	a	1-bit	monochrome	image	using	a
(simple-minded)	dithering	algorithm.

mono2grey(image,	width,	height,	p0,	p1)
Convert	a	1-bit	monochrome	image	to	an	8	bit	greyscale	or	color	image.	All
pixels	that	are	zero-valued	on	input	get	value	p0	on	output	and	all	one-value
input	pixels	get	value	p1	on	output.	To	convert	a	monochrome	black-and-
white	image	to	greyscale	pass	the	values	0	and	255	respectively.

grey2grey4(image,	width,	height)
Convert	an	8-bit	greyscale	image	to	a	4-bit	greyscale	image	without
dithering.

grey2grey2(image,	width,	height)
Convert	an	8-bit	greyscale	image	to	a	2-bit	greyscale	image	without
dithering.

dither2grey2(image,	width,	height)
Convert	an	8-bit	greyscale	image	to	a	2-bit	greyscale	image	with	dithering.
As	for	dither2mono(),	the	dithering	algorithm	is	currently	very	simple.

grey42grey(image,	width,	height)
Convert	a	4-bit	greyscale	image	to	an	8-bit	greyscale	image.

grey22grey(image,	width,	height)
Convert	a	2-bit	greyscale	image	to	an	8-bit	greyscale	image.

backward_compatible

If	set	to	0,	the	functions	in	this	module	use	a	non-backward	compatible	way
of	representing	multi-byte	pixels	on	little-endian	systems.	The	SGI	for
which	this	module	was	originally	written	is	a	big-endian	system,	so	setting
this	variable	will	have	no	effect.	However,	the	code	wasn't	originally
intended	to	run	on	anything	else,	so	it	made	assumptions	about	byte	order

which	are	not	universal.	Setting	this	variable	to	0	will	cause	the	byte	order
to	be	reversed	on	little-endian	systems,	so	that	it	then	is	the	same	as	on	big-
endian	systems.

Python	Library	Reference
Previous:	14.1	audioop	Up:	14.	Multimedia	Services	Next:	14.3	aifc

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.2	imageop	Up:	14.	Multimedia	Services	Next:	14.4	sunau

14.3	aifc	--	Read	and	write	AIFF	and
AIFC	files
This	module	provides	support	for	reading	and	writing	AIFF	and	AIFF-C	files.
AIFF	is	Audio	Interchange	File	Format,	a	format	for	storing	digital	audio
samples	in	a	file.	AIFF-C	is	a	newer	version	of	the	format	that	includes	the
ability	to	compress	the	audio	data.

Caveat:	Some	operations	may	only	work	under	IRIX;	these	will	raise
ImportError	when	attempting	to	import	the	cl	module,	which	is	only
available	on	IRIX.

Audio	files	have	a	number	of	parameters	that	describe	the	audio	data.	The
sampling	rate	or	frame	rate	is	the	number	of	times	per	second	the	sound	is
sampled.	The	number	of	channels	indicate	if	the	audio	is	mono,	stereo,	or
quadro.	Each	frame	consists	of	one	sample	per	channel.	The	sample	size	is	the
size	in	bytes	of	each	sample.	Thus	a	frame	consists	of	nchannels*samplesize
bytes,	and	a	second's	worth	of	audio	consists	of
nchannels*samplesize*framerate	bytes.

For	example,	CD	quality	audio	has	a	sample	size	of	two	bytes	(16	bits),	uses	two
channels	(stereo)	and	has	a	frame	rate	of	44,100	frames/second.	This	gives	a
frame	size	of	4	bytes	(2*2),	and	a	second's	worth	occupies	2*2*44100	bytes
(176,400	bytes).

Module	aifc	defines	the	following	function:

open(file[,	mode])
Open	an	AIFF	or	AIFF-C	file	and	return	an	object	instance	with	methods
that	are	described	below.	The	argument	file	is	either	a	string	naming	a	file
or	a	file	object.	mode	must	be	'r'	or	'rb'	when	the	file	must	be	opened
for	reading,	or	'w'	or	'wb'	when	the	file	must	be	opened	for	writing.	If
omitted,	file.mode	is	used	if	it	exists,	otherwise	'rb'	is	used.	When	used
for	writing,	the	file	object	should	be	seekable,	unless	you	know	ahead	of
time	how	many	samples	you	are	going	to	write	in	total	and	use

writeframesraw()	and	setnframes().

Objects	returned	by	open()	when	a	file	is	opened	for	reading	have	the
following	methods:

getnchannels()
Return	the	number	of	audio	channels	(1	for	mono,	2	for	stereo).

getsampwidth()
Return	the	size	in	bytes	of	individual	samples.

getframerate()
Return	the	sampling	rate	(number	of	audio	frames	per	second).

getnframes()
Return	the	number	of	audio	frames	in	the	file.

getcomptype()
Return	a	four-character	string	describing	the	type	of	compression	used	in
the	audio	file.	For	AIFF	files,	the	returned	value	is	'NONE'.

getcompname()
Return	a	human-readable	description	of	the	type	of	compression	used	in	the
audio	file.	For	AIFF	files,	the	returned	value	is	'not	compressed'.

getparams()
Return	a	tuple	consisting	of	all	of	the	above	values	in	the	above	order.

getmarkers()
Return	a	list	of	markers	in	the	audio	file.	A	marker	consists	of	a	tuple	of
three	elements.	The	first	is	the	mark	ID	(an	integer),	the	second	is	the	mark
position	in	frames	from	the	beginning	of	the	data	(an	integer),	the	third	is
the	name	of	the	mark	(a	string).

getmark(id)
Return	the	tuple	as	described	in	getmarkers()	for	the	mark	with	the
given	id.

readframes(nframes)
Read	and	return	the	next	nframes	frames	from	the	audio	file.	The	returned
data	is	a	string	containing	for	each	frame	the	uncompressed	samples	of	all
channels.

rewind()
Rewind	the	read	pointer.	The	next	readframes()	will	start	from	the
beginning.

setpos(pos)
Seek	to	the	specified	frame	number.

tell()
Return	the	current	frame	number.

close()
Close	the	AIFF	file.	After	calling	this	method,	the	object	can	no	longer	be
used.

Objects	returned	by	open()	when	a	file	is	opened	for	writing	have	all	the
above	methods,	except	for	readframes()	and	setpos().	In	addition	the
following	methods	exist.	The	get*()	methods	can	only	be	called	after	the
corresponding	set*()	methods	have	been	called.	Before	the	first
writeframes()	or	writeframesraw(),	all	parameters	except	for	the
number	of	frames	must	be	filled	in.

aiff()
Create	an	AIFF	file.	The	default	is	that	an	AIFF-C	file	is	created,	unless	the
name	of	the	file	ends	in	'.aiff'	in	which	case	the	default	is	an	AIFF	file.

aifc()
Create	an	AIFF-C	file.	The	default	is	that	an	AIFF-C	file	is	created,	unless
the	name	of	the	file	ends	in	'.aiff'	in	which	case	the	default	is	an	AIFF
file.

setnchannels(nchannels)
Specify	the	number	of	channels	in	the	audio	file.

setsampwidth(width)
Specify	the	size	in	bytes	of	audio	samples.

setframerate(rate)
Specify	the	sampling	frequency	in	frames	per	second.

setnframes(nframes)
Specify	the	number	of	frames	that	are	to	be	written	to	the	audio	file.	If	this
parameter	is	not	set,	or	not	set	correctly,	the	file	needs	to	support	seeking.

setcomptype(type,	name)
Specify	the	compression	type.	If	not	specified,	the	audio	data	will	not	be
compressed.	In	AIFF	files,	compression	is	not	possible.	The	name
parameter	should	be	a	human-readable	description	of	the	compression	type,
the	type	parameter	should	be	a	four-character	string.	Currently	the
following	compression	types	are	supported:	NONE,	ULAW,	ALAW,	G722.

setparams(nchannels,	sampwidth,	framerate,	comptype,	compname)
Set	all	the	above	parameters	at	once.	The	argument	is	a	tuple	consisting	of
the	various	parameters.	This	means	that	it	is	possible	to	use	the	result	of	a
getparams()	call	as	argument	to	setparams().

setmark(id,	pos,	name)
Add	a	mark	with	the	given	id	(larger	than	0),	and	the	given	name	at	the
given	position.	This	method	can	be	called	at	any	time	before	close().

tell()
Return	the	current	write	position	in	the	output	file.	Useful	in	combination
with	setmark().

writeframes(data)
Write	data	to	the	output	file.	This	method	can	only	be	called	after	the	audio
file	parameters	have	been	set.

writeframesraw(data)
Like	writeframes(),	except	that	the	header	of	the	audio	file	is	not
updated.

close()
Close	the	AIFF	file.	The	header	of	the	file	is	updated	to	reflect	the	actual
size	of	the	audio	data.	After	calling	this	method,	the	object	can	no	longer	be
used.

Python	Library	Reference
Previous:	14.2	imageop	Up:	14.	Multimedia	Services	Next:	14.4	sunau

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.3	aifc	Up:	14.	Multimedia	Services	Next:	14.4.1	AU_read	Objects

14.4	sunau	--	Read	and	write	Sun	AU
files
The	sunau	module	provides	a	convenient	interface	to	the	Sun	AU	sound
format.	Note	that	this	module	is	interface-compatible	with	the	modules	aifc
and	wave.

An	audio	file	consists	of	a	header	followed	by	the	data.	The	fields	of	the	header
are:

Field Contents
magic
word

The	four	bytes	".snd".

header	size Size	of	the	header,	including	info,	in	bytes.
data	size Physical	size	of	the	data,	in	bytes.
encoding Indicates	how	the	audio	samples	are	encoded.
sample
rate

The	sampling	rate.

#	of
channels

The	number	of	channels	in	the	samples.

info ASCII	string	giving	a	description	of	the	audio	file	(padded	with
null	bytes).

Apart	from	the	info	field,	all	header	fields	are	4	bytes	in	size.	They	are	all	32-bit
unsigned	integers	encoded	in	big-endian	byte	order.

The	sunau	module	defines	the	following	functions:

open(file,	mode)
If	file	is	a	string,	open	the	file	by	that	name,	otherwise	treat	it	as	a	seekable
file-like	object.	mode	can	be	any	of
'r'

Read	only	mode.
'w'

Write	only	mode.

Note	that	it	does	not	allow	read/write	files.

A	mode	of	'r'	returns	a	AU_read	object,	while	a	mode	of	'w'	or	'wb'
returns	a	AU_write	object.

openfp(file,	mode)
A	synonym	for	open,	maintained	for	backwards	compatibility.

The	sunau	module	defines	the	following	exception:

exception	Error
An	error	raised	when	something	is	impossible	because	of	Sun	AU	specs	or
implementation	deficiency.

The	sunau	module	defines	the	following	data	items:

AUDIO_FILE_MAGIC

An	integer	every	valid	Sun	AU	file	begins	with,	stored	in	big-endian	form.
This	is	the	string	".snd"	interpreted	as	an	integer.

AUDIO_FILE_ENCODING_MULAW_8

AUDIO_FILE_ENCODING_LINEAR_8

AUDIO_FILE_ENCODING_LINEAR_16

AUDIO_FILE_ENCODING_LINEAR_24

AUDIO_FILE_ENCODING_LINEAR_32

AUDIO_FILE_ENCODING_ALAW_8

Values	of	the	encoding	field	from	the	AU	header	which	are	supported	by
this	module.

AUDIO_FILE_ENCODING_FLOAT

AUDIO_FILE_ENCODING_DOUBLE

AUDIO_FILE_ENCODING_ADPCM_G721

AUDIO_FILE_ENCODING_ADPCM_G722

AUDIO_FILE_ENCODING_ADPCM_G723_3

AUDIO_FILE_ENCODING_ADPCM_G723_5

Additional	known	values	of	the	encoding	field	from	the	AU	header,	but
which	are	not	supported	by	this	module.

Subsections

14.4.1	AU_read	Objects
14.4.2	AU_write	Objects

Python	Library	Reference
Previous:	14.3	aifc	Up:	14.	Multimedia	Services	Next:	14.4.1	AU_read	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.4	sunau	Up:	14.4	sunau	Next:	14.4.2	AU_write	Objects

14.4.1	AU_read	Objects
AU_read	objects,	as	returned	by	open()	above,	have	the	following	methods:

close()
Close	the	stream,	and	make	the	instance	unusable.	(This	is	called
automatically	on	deletion.)

getnchannels()
Returns	number	of	audio	channels	(1	for	mone,	2	for	stereo).

getsampwidth()
Returns	sample	width	in	bytes.

getframerate()
Returns	sampling	frequency.

getnframes()
Returns	number	of	audio	frames.

getcomptype()
Returns	compression	type.	Supported	compression	types	are	'ULAW',
'ALAW'	and	'NONE'.

getcompname()
Human-readable	version	of	getcomptype().	The	supported	types	have
the	respective	names	'CCITT	G.711	u-law',	'CCITT	G.711	A-
law'	and	'not	compressed'.

getparams()
Returns	a	tuple	(nchannels,	sampwidth,	framerate,	nframes,
comptype,	compname),	equivalent	to	output	of	the	get*()	methods.

readframes(n)
Reads	and	returns	at	most	n	frames	of	audio,	as	a	string	of	bytes.	The	data

will	be	returned	in	linear	format.	If	the	original	data	is	in	u-LAW	format,	it
will	be	converted.

rewind()
Rewind	the	file	pointer	to	the	beginning	of	the	audio	stream.

The	following	two	methods	define	a	term	``position''	which	is	compatible
between	them,	and	is	otherwise	implementation	dependent.

setpos(pos)
Set	the	file	pointer	to	the	specified	position.	Only	values	returned	from
tell()	should	be	used	for	pos.

tell()
Return	current	file	pointer	position.	Note	that	the	returned	value	has	nothing
to	do	with	the	actual	position	in	the	file.

The	following	two	functions	are	defined	for	compatibility	with	the	aifc,	and
don't	do	anything	interesting.

getmarkers()
Returns	None.

getmark(id)
Raise	an	error.

Python	Library	Reference
Previous:	14.4	sunau	Up:	14.4	sunau	Next:	14.4.2	AU_write	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.4.1	AU_read	Objects	Up:	14.4	sunau	Next:	14.5	wave

14.4.2	AU_write	Objects
AU_write	objects,	as	returned	by	open()	above,	have	the	following	methods:

setnchannels(n)
Set	the	number	of	channels.

setsampwidth(n)
Set	the	sample	width	(in	bytes.)

setframerate(n)
Set	the	frame	rate.

setnframes(n)
Set	the	number	of	frames.	This	can	be	later	changed,	when	and	if	more
frames	are	written.

setcomptype(type,	name)
Set	the	compression	type	and	description.	Only	'NONE'	and	'ULAW'	are
supported	on	output.

setparams(tuple)
The	tuple	should	be	(nchannels,	sampwidth,	framerate,	nframes,
comptype,	compname),	with	values	valid	for	the	set*()	methods.	Set
all	parameters.

tell()
Return	current	position	in	the	file,	with	the	same	disclaimer	for	the
AU_read.tell()	and	AU_read.setpos()	methods.

writeframesraw(data)
Write	audio	frames,	without	correcting	nframes.

writeframes(data)
Write	audio	frames	and	make	sure	nframes	is	correct.

close()
Make	sure	nframes	is	correct,	and	close	the	file.

This	method	is	called	upon	deletion.

Note	that	it	is	invalid	to	set	any	parameters	after	calling	writeframes()	or
writeframesraw().

Python	Library	Reference
Previous:	14.4.1	AU_read	Objects	Up:	14.4	sunau	Next:	14.5	wave

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.4.2	AU_write	Objects	Up:	14.	Multimedia	Services	Next:	14.5.1
Wave_read	Objects

14.5	wave	--	Read	and	write	WAV
files
The	wave	module	provides	a	convenient	interface	to	the	WAV	sound	format.	It
does	not	support	compression/decompression,	but	it	does	support	mono/stereo.

The	wave	module	defines	the	following	function	and	exception:

open(file[,	mode])
If	file	is	a	string,	open	the	file	by	that	name,	other	treat	it	as	a	seekable	file-
like	object.	mode	can	be	any	of
'r',	'rb'

Read	only	mode.
'w',	'wb'

Write	only	mode.
Note	that	it	does	not	allow	read/write	WAV	files.

A	mode	of	'r'	or	'rb'	returns	a	Wave_read	object,	while	a	mode	of
'w'	or	'wb'	returns	a	Wave_write	object.	If	mode	is	omitted	and	a	file-
like	object	is	passed	as	file,	file.mode	is	used	as	the	default	value	for	mode
(the	"b"	flag	is	still	added	if	necessary).

openfp(file,	mode)
A	synonym	for	open(),	maintained	for	backwards	compatibility.

exception	Error
An	error	raised	when	something	is	impossible	because	it	violates	the	WAV
specification	or	hits	an	implementation	deficiency.

Subsections

14.5.1	Wave_read	Objects
14.5.2	Wave_write	Objects

Python	Library	Reference
Previous:	14.4.2	AU_write	Objects	Up:	14.	Multimedia	Services	Next:	14.5.1
Wave_read	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.5	wave	Up:	14.5	wave	Next:	14.5.2	Wave_write	Objects

14.5.1	Wave_read	Objects
Wave_read	objects,	as	returned	by	open(),	have	the	following	methods:

close()
Close	the	stream,	and	make	the	instance	unusable.	This	is	called
automatically	on	object	collection.

getnchannels()
Returns	number	of	audio	channels	(1	for	mono,	2	for	stereo).

getsampwidth()
Returns	sample	width	in	bytes.

getframerate()
Returns	sampling	frequency.

getnframes()
Returns	number	of	audio	frames.

getcomptype()
Returns	compression	type	('NONE'	is	the	only	supported	type).

getcompname()
Human-readable	version	of	getcomptype().	Usually	'not
compressed'	parallels	'NONE'.

getparams()
Returns	a	tuple	(nchannels,	sampwidth,	framerate,	nframes,
comptype,	compname),	equivalent	to	output	of	the	get*()	methods.

readframes(n)
Reads	and	returns	at	most	n	frames	of	audio,	as	a	string	of	bytes.

rewind()

Rewind	the	file	pointer	to	the	beginning	of	the	audio	stream.

The	following	two	methods	are	defined	for	compatibility	with	the	aifc	module,
and	don't	do	anything	interesting.

getmarkers()
Returns	None.

getmark(id)
Raise	an	error.

The	following	two	methods	define	a	term	``position''	which	is	compatible
between	them,	and	is	otherwise	implementation	dependent.

setpos(pos)
Set	the	file	pointer	to	the	specified	position.

tell()
Return	current	file	pointer	position.

Python	Library	Reference
Previous:	14.5	wave	Up:	14.5	wave	Next:	14.5.2	Wave_write	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.5.1	Wave_read	Objects	Up:	14.5	wave	Next:	14.6	chunk

14.5.2	Wave_write	Objects
Wave_write	objects,	as	returned	by	open(),	have	the	following	methods:

close()
Make	sure	nframes	is	correct,	and	close	the	file.	This	method	is	called	upon
deletion.

setnchannels(n)
Set	the	number	of	channels.

setsampwidth(n)
Set	the	sample	width	to	n	bytes.

setframerate(n)
Set	the	frame	rate	to	n.

setnframes(n)
Set	the	number	of	frames	to	n.	This	will	be	changed	later	if	more	frames	are
written.

setcomptype(type,	name)
Set	the	compression	type	and	description.

setparams(tuple)
The	tuple	should	be	(nchannels,	sampwidth,	framerate,	nframes,
comptype,	compname),	with	values	valid	for	the	set*()	methods.	Sets
all	parameters.

tell()
Return	current	position	in	the	file,	with	the	same	disclaimer	for	the
Wave_read.tell()	and	Wave_read.setpos()	methods.

writeframesraw(data)
Write	audio	frames,	without	correcting	nframes.

writeframes(data)
Write	audio	frames	and	make	sure	nframes	is	correct.

Note	that	it	is	invalid	to	set	any	parameters	after	calling	writeframes()	or
writeframesraw(),	and	any	attempt	to	do	so	will	raise	wave.Error.

Python	Library	Reference
Previous:	14.5.1	Wave_read	Objects	Up:	14.5	wave	Next:	14.6	chunk

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.5.2	Wave_write	Objects	Up:	14.	Multimedia	Services	Next:	14.7
colorsys

14.6	chunk	--	Read	IFF	chunked	data
This	module	provides	an	interface	for	reading	files	that	use	EA	IFF	85
chunks.14.1	This	format	is	used	in	at	least	the	Audio	Interchange	File	Format
(AIFF/AIFF-C)	and	the	Real	Media	File	Format	(RMFF).	The	WAVE	audio	file
format	is	closely	related	and	can	also	be	read	using	this	module.

A	chunk	has	the	following	structure:

Offset Length Contents
0 4 Chunk	ID
4 4 Size	of	chunk	in	big-endian	byte	order,	not	including	the

header
8 n Data	bytes,	where	n	is	the	size	given	in	the	preceding	field

8	+	n 0	or	1 Pad	byte	needed	if	n	is	odd	and	chunk	alignment	is	used

The	ID	is	a	4-byte	string	which	identifies	the	type	of	chunk.

The	size	field	(a	32-bit	value,	encoded	using	big-endian	byte	order)	gives	the
size	of	the	chunk	data,	not	including	the	8-byte	header.

Usually	an	IFF-type	file	consists	of	one	or	more	chunks.	The	proposed	usage	of
the	Chunk	class	defined	here	is	to	instantiate	an	instance	at	the	start	of	each
chunk	and	read	from	the	instance	until	it	reaches	the	end,	after	which	a	new
instance	can	be	instantiated.	At	the	end	of	the	file,	creating	a	new	instance	will
fail	with	a	EOFError	exception.

class	Chunk(file[,	align,	bigendian,	inclheader])
Class	which	represents	a	chunk.	The	file	argument	is	expected	to	be	a	file-
like	object.	An	instance	of	this	class	is	specifically	allowed.	The	only
method	that	is	needed	is	read().	If	the	methods	seek()	and	tell()
are	present	and	don't	raise	an	exception,	they	are	also	used.	If	these	methods
are	present	and	raise	an	exception,	they	are	expected	to	not	have	altered	the
object.	If	the	optional	argument	align	is	true,	chunks	are	assumed	to	be
aligned	on	2-byte	boundaries.	If	align	is	false,	no	alignment	is	assumed.
The	default	value	is	true.	If	the	optional	argument	bigendian	is	false,	the

chunk	size	is	assumed	to	be	in	little-endian	order.	This	is	needed	for	WAVE
audio	files.	The	default	value	is	true.	If	the	optional	argument	inclheader	is
true,	the	size	given	in	the	chunk	header	includes	the	size	of	the	header.	The
default	value	is	false.

A	Chunk	object	supports	the	following	methods:

getname()
Returns	the	name	(ID)	of	the	chunk.	This	is	the	first	4	bytes	of	the	chunk.

getsize()
Returns	the	size	of	the	chunk.

close()
Close	and	skip	to	the	end	of	the	chunk.	This	does	not	close	the	underlying
file.

The	remaining	methods	will	raise	IOError	if	called	after	the	close()
method	has	been	called.

isatty()
Returns	False.

seek(pos[,	whence])
Set	the	chunk's	current	position.	The	whence	argument	is	optional	and
defaults	to	0	(absolute	file	positioning);	other	values	are	1	(seek	relative	to
the	current	position)	and	2	(seek	relative	to	the	file's	end).	There	is	no
return	value.	If	the	underlying	file	does	not	allow	seek,	only	forward	seeks
are	allowed.

tell()
Return	the	current	position	into	the	chunk.

read([size])
Read	at	most	size	bytes	from	the	chunk	(less	if	the	read	hits	the	end	of	the
chunk	before	obtaining	size	bytes).	If	the	size	argument	is	negative	or
omitted,	read	all	data	until	the	end	of	the	chunk.	The	bytes	are	returned	as	a

string	object.	An	empty	string	is	returned	when	the	end	of	the	chunk	is
encountered	immediately.

skip()
Skip	to	the	end	of	the	chunk.	All	further	calls	to	read()	for	the	chunk	will
return	''.	If	you	are	not	interested	in	the	contents	of	the	chunk,	this	method
should	be	called	so	that	the	file	points	to	the	start	of	the	next	chunk.

Footnotes

...	chunks.14.1
``EA	IFF	85''	Standard	for	Interchange	Format	Files,	Jerry	Morrison,
Electronic	Arts,	January	1985.

Python	Library	Reference
Previous:	14.5.2	Wave_write	Objects	Up:	14.	Multimedia	Services	Next:	14.7
colorsys

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.6	chunk	Up:	14.	Multimedia	Services	Next:	14.8	rgbimg

14.7	colorsys	--	Conversions
between	color	systems
The	colorsys	module	defines	bidirectional	conversions	of	color	values
between	colors	expressed	in	the	RGB	(Red	Green	Blue)	color	space	used	in
computer	monitors	and	three	other	coordinate	systems:	YIQ,	HLS	(Hue
Lightness	Saturation)	and	HSV	(Hue	Saturation	Value).	Coordinates	in	all	of
these	color	spaces	are	floating	point	values.	In	the	YIQ	space,	the	Y	coordinate	is
between	0	and	1,	but	the	I	and	Q	coordinates	can	be	positive	or	negative.	In	all
other	spaces,	the	coordinates	are	all	between	0	and	1.

More	information	about	color	spaces	can	be	found	at
http://www.poynton.com/ColorFAQ.html.

The	colorsys	module	defines	the	following	functions:

rgb_to_yiq(r,	g,	b)
Convert	the	color	from	RGB	coordinates	to	YIQ	coordinates.

yiq_to_rgb(y,	i,	q)
Convert	the	color	from	YIQ	coordinates	to	RGB	coordinates.

rgb_to_hls(r,	g,	b)
Convert	the	color	from	RGB	coordinates	to	HLS	coordinates.

hls_to_rgb(h,	l,	s)
Convert	the	color	from	HLS	coordinates	to	RGB	coordinates.

rgb_to_hsv(r,	g,	b)
Convert	the	color	from	RGB	coordinates	to	HSV	coordinates.

hsv_to_rgb(h,	s,	v)
Convert	the	color	from	HSV	coordinates	to	RGB	coordinates.

Example:

http://www.poynton.com/ColorFAQ.html

>>>	import	colorsys

>>>	colorsys.rgb_to_hsv(.3,	.4,	.2)

(0.25,	0.5,	0.4)

>>>	colorsys.hsv_to_rgb(0.25,	0.5,	0.4)

(0.3,	0.4,	0.2)

Python	Library	Reference
Previous:	14.6	chunk	Up:	14.	Multimedia	Services	Next:	14.8	rgbimg

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.7	colorsys	Up:	14.	Multimedia	Services	Next:	14.9	imghdr

14.8	rgbimg	--	Read	and	write	``SGI
RGB''	files
The	rgbimg	module	allows	Python	programs	to	access	SGI	imglib	image	files
(also	known	as	.rgb	files).	The	module	is	far	from	complete,	but	is	provided
anyway	since	the	functionality	that	there	is	enough	in	some	cases.	Currently,
colormap	files	are	not	supported.

Note:	This	module	is	only	built	by	default	for	32-bit	platforms;	it	is	not	expected
to	work	properly	on	other	systems.

The	module	defines	the	following	variables	and	functions:

exception	error
This	exception	is	raised	on	all	errors,	such	as	unsupported	file	type,	etc.

sizeofimage(file)
This	function	returns	a	tuple	(x,	y)	where	x	and	y	are	the	size	of	the
image	in	pixels.	Only	4	byte	RGBA	pixels,	3	byte	RGB	pixels,	and	1	byte
greyscale	pixels	are	currently	supported.

longimagedata(file)
This	function	reads	and	decodes	the	image	on	the	specified	file,	and	returns
it	as	a	Python	string.	The	string	has	4	byte	RGBA	pixels.	The	bottom	left
pixel	is	the	first	in	the	string.	This	format	is	suitable	to	pass	to
gl.lrectwrite(),	for	instance.

longstoimage(data,	x,	y,	z,	file)
This	function	writes	the	RGBA	data	in	data	to	image	file	file.	x	and	y	give
the	size	of	the	image.	z	is	1	if	the	saved	image	should	be	1	byte	greyscale,	3
if	the	saved	image	should	be	3	byte	RGB	data,	or	4	if	the	saved	images
should	be	4	byte	RGBA	data.	The	input	data	always	contains	4	bytes	per
pixel.	These	are	the	formats	returned	by	gl.lrectread().

ttob(flag)

This	function	sets	a	global	flag	which	defines	whether	the	scan	lines	of	the
image	are	read	or	written	from	bottom	to	top	(flag	is	zero,	compatible	with
SGI	GL)	or	from	top	to	bottom(flag	is	one,	compatible	with	X).	The	default
is	zero.

Python	Library	Reference
Previous:	14.7	colorsys	Up:	14.	Multimedia	Services	Next:	14.9	imghdr

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.8	rgbimg	Up:	14.	Multimedia	Services	Next:	14.10	sndhdr

14.9	imghdr	--	Determine	the	type	of
an	image
The	imghdr	module	determines	the	type	of	image	contained	in	a	file	or	byte
stream.

The	imghdr	module	defines	the	following	function:

what(filename[,	h])
Tests	the	image	data	contained	in	the	file	named	by	filename,	and	returns	a
string	describing	the	image	type.	If	optional	h	is	provided,	the	filename	is
ignored	and	h	is	assumed	to	contain	the	byte	stream	to	test.

The	following	image	types	are	recognized,	as	listed	below	with	the	return	value
from	what():

Value Image	format
'rgb' SGI	ImgLib	Files
'gif' GIF	87a	and	89a	Files
'pbm' Portable	Bitmap	Files
'pgm' Portable	Graymap	Files
'ppm' Portable	Pixmap	Files
'tiff' TIFF	Files
'rast' Sun	Raster	Files
'xbm' X	Bitmap	Files
'jpeg' JPEG	data	in	JFIF	format
'bmp' BMP	files
'png' Portable	Network	Graphics

You	can	extend	the	list	of	file	types	imghdr	can	recognize	by	appending	to	this
variable:

tests

A	list	of	functions	performing	the	individual	tests.	Each	function	takes	two

arguments:	the	byte-stream	and	an	open	file-like	object.	When	what()	is
called	with	a	byte-stream,	the	file-like	object	will	be	None.

The	test	function	should	return	a	string	describing	the	image	type	if	the	test
succeeded,	or	None	if	it	failed.

Example:

>>>	import	imghdr

>>>	imghdr.what('/tmp/bass.gif')

'gif'

Python	Library	Reference
Previous:	14.8	rgbimg	Up:	14.	Multimedia	Services	Next:	14.10	sndhdr

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.9	imghdr	Up:	14.	Multimedia	Services	Next:	14.11	ossaudiodev

14.10	sndhdr	--	Determine	type	of
sound	file
The	sndhdr	provides	utility	functions	which	attempt	to	determine	the	type	of
sound	data	which	is	in	a	file.	When	these	functions	are	able	to	determine	what
type	of	sound	data	is	stored	in	a	file,	they	return	a	tuple	(type,	sampling_rate,
channels,	frames,	bits_per_sample).	The	value	for	type	indicates	the	data
type	and	will	be	one	of	the	strings	'aifc',	'aiff',	'au',	'hcom',
'sndr',	'sndt',	'voc',	'wav',	'8svx',	'sb',	'ub',	or	'ul'.	The
sampling_rate	will	be	either	the	actual	value	or	0	if	unknown	or	difficult	to
decode.	Similarly,	channels	will	be	either	the	number	of	channels	or	0	if	it
cannot	be	determined	or	if	the	value	is	difficult	to	decode.	The	value	for	frames
will	be	either	the	number	of	frames	or	-1.	The	last	item	in	the	tuple,
bits_per_sample,	will	either	be	the	sample	size	in	bits	or	'A'	for	A-LAW	or
'U'	for	u-LAW.

what(filename)
Determines	the	type	of	sound	data	stored	in	the	file	filename	using
whathdr().	If	it	succeeds,	returns	a	tuple	as	described	above,	otherwise
None	is	returned.

whathdr(filename)
Determines	the	type	of	sound	data	stored	in	a	file	based	on	the	file	header.
The	name	of	the	file	is	given	by	filename.	This	function	returns	a	tuple	as
described	above	on	success,	or	None.

Python	Library	Reference
Previous:	14.9	imghdr	Up:	14.	Multimedia	Services	Next:	14.11	ossaudiodev

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.10	sndhdr	Up:	14.	Multimedia	Services	Next:	14.11.1	Audio
Device	Objects

14.11	ossaudiodev	--	Access	to
OSS-compatible	audio	devices
Availability:	Linux,	FreeBSD.

New	in	version	2.3.

This	module	allows	you	to	access	the	OSS	(Open	Sound	System)	audio
interface.	OSS	is	available	for	a	wide	range	of	open-source	and	commercial
Unices,	and	is	the	standard	audio	interface	for	Linux	and	recent	versions	of
FreeBSD.

See	Also:

Open	Sound	System	Programmer's	Guide
the	official	documentation	for	the	OSS	C	API

The	module	defines	a	large	number	of	constants	supplied	by	the	OSS
device	driver;	see	<sys/soundcard.h>	on	either	Linux	or	FreeBSD	for
a	listing	.

ossaudiodev	defines	the	following	variables	and	functions:

exception	OSSAudioError
This	exception	is	raised	on	certain	errors.	The	argument	is	a	string
describing	what	went	wrong.

(If	ossaudiodev	receives	an	error	from	a	system	call	such	as	open(),
write(),	or	ioctl(),	it	raises	IOError.	Errors	detected	directly	by
ossaudiodev	result	in	OSSAudioError.)

(For	backwards	compatibility,	the	exception	class	is	also	available	as
ossaudiodev.error.)

http://www.opensound.com/pguide/oss.pdf

open([device,]mode)
Open	an	audio	device	and	return	an	OSS	audio	device	object.	This	object
supports	many	file-like	methods,	such	as	read(),	write(),	and
fileno()	(although	there	are	subtle	differences	between	conventional
Unix	read/write	semantics	and	those	of	OSS	audio	devices).	It	also	supports
a	number	of	audio-specific	methods;	see	below	for	the	complete	list	of
methods.

device	is	the	audio	device	filename	to	use.	If	it	is	not	specified,	this	module
first	looks	in	the	environment	variable	AUDIODEV	for	a	device	to	use.	If
not	found,	it	falls	back	to	/dev/dsp.

mode	is	one	of	'r'	for	read-only	(record)	access,	'w'	for	write-only
(playback)	access	and	'rw'	for	both.	Since	many	sound	cards	only	allow
one	process	to	have	the	recorder	or	player	open	at	a	time,	it	is	a	good	idea	to
open	the	device	only	for	the	activity	needed.	Further,	some	sound	cards	are
half-duplex:	they	can	be	opened	for	reading	or	writing,	but	not	both	at	once.

Note	the	unusual	calling	syntax:	the	first	argument	is	optional,	and	the
second	is	required.	This	is	a	historical	artifact	for	compatibility	with	the
older	linuxaudiodev	module	which	ossaudiodev	supersedes.

openmixer([device])
Open	a	mixer	device	and	return	an	OSS	mixer	device	object.	device	is	the
mixer	device	filename	to	use.	If	it	is	not	specified,	this	module	first	looks	in
the	environment	variable	MIXERDEV	for	a	device	to	use.	If	not	found,	it
falls	back	to	/dev/mixer.

Subsections

14.11.1	Audio	Device	Objects
14.11.2	Mixer	Device	Objects

Python	Library	Reference
Previous:	14.10	sndhdr	Up:	14.	Multimedia	Services	Next:	14.11.1	Audio
Device	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.11	ossaudiodev	Up:	14.11	ossaudiodev	Next:	14.11.2	Mixer
Device	Objects

14.11.1	Audio	Device	Objects
Before	you	can	write	to	or	read	from	an	audio	device,	you	must	call	three
methods	in	the	correct	order:

1.	 setfmt()	to	set	the	output	format
2.	 channels()	to	set	the	number	of	channels
3.	 speed()	to	set	the	sample	rate

Alternately,	you	can	use	the	setparameters()	method	to	set	all	three	audio
parameters	at	once.	This	is	more	convenient,	but	may	not	be	as	flexible	in	all
cases.

The	audio	device	objects	returned	by	open()	define	the	following	methods:

close()
Explicitly	close	the	audio	device.	When	you	are	done	writing	to	or	reading
from	an	audio	device,	you	should	explicitly	close	it.	A	closed	device	cannot
be	used	again.

fileno()
Return	the	file	descriptor	associated	with	the	device.

read(size)
Read	size	bytes	from	the	audio	input	and	return	them	as	a	Python	string.
Unlike	most	UNIX	device	drivers,	OSS	audio	devices	in	blocking	mode	(the
default)	will	block	read()	until	the	entire	requested	amount	of	data	is
available.

write(data)
Write	the	Python	string	data	to	the	audio	device	and	return	the	number	of
bytes	written.	If	the	audio	device	is	in	blocking	mode	(the	default),	the
entire	string	is	always	written	(again,	this	is	different	from	usual	UNIX

device	semantics).	If	the	device	is	in	non-blocking	mode,	some	data	may
not	be	written--see	writeall().

data)

writeall(
Write	the	entire	Python	string	data	to	the	audio	device:	waits	until	the	audio
device	is	able	to	accept	data,	writes	as	much	data	as	it	will	accept,	and
repeats	until	data	has	been	completely	written.	If	the	device	is	in	blocking
mode	(the	default),	this	has	the	same	effect	as	write();	writeall()	is
only	useful	in	non-blocking	mode.	Has	no	return	value,	since	the	amount	of
data	written	is	always	equal	to	the	amount	of	data	supplied.

The	following	methods	each	map	to	exactly	one	ioctl()	system	call.	The
correspondence	is	obvious:	for	example,	setfmt()	corresponds	to	the
SNDCTL_DSP_SETFMT	ioctl,	and	sync()	to	SNDCTL_DSP_SYNC	(this	can
be	useful	when	consulting	the	OSS	documentation).	If	the	underlying	ioctl()
fails,	they	all	raise	IOError.

nonblock()
Put	the	device	into	non-blocking	mode.	Once	in	non-blocking	mode,	there
is	no	way	to	return	it	to	blocking	mode.

getfmts()
Return	a	bitmask	of	the	audio	output	formats	supported	by	the	soundcard.
On	a	typical	Linux	system,	these	formats	are:

Format Description
AFMT_MU_LAW a	logarithmic	encoding	(used	by	Sun	.au	files

and	/dev/audio)
AFMT_A_LAW a	logarithmic	encoding
AFMT_IMA_ADPCM a	4:1	compressed	format	defined	by	the

Interactive	Multimedia	Association
AFMT_U8 Unsigned,	8-bit	audio
AFMT_S16_LE Unsigned,	16-bit	audio,	little-endian	byte	order

(as	used	by	Intel	processors)
AFMT_S16_BE Unsigned,	16-bit	audio,	big-endian	byte	order

(as	used	by	68k,	PowerPC,	Sparc)
AFMT_S8 Signed,	8	bit	audio
AFMT_U16_LE Signed,	16-bit	little-endian	audio
AFMT_U16_BE Signed,	16-bit	big-endian	audio
Most	systems	support	only	a	subset	of	these	formats.	Many	devices	only

support	AFMT_U8;	the	most	common	format	used	today	is
AFMT_S16_LE.

setfmt(format)
Try	to	set	the	current	audio	format	to	format--see	getfmts()	for	a	list.
Returns	the	audio	format	that	the	device	was	set	to,	which	may	not	be	the
requested	format.	May	also	be	used	to	return	the	current	audio	format--do
this	by	passing	an	``audio	format''	of	AFMT_QUERY.

channels(nchannels)
Set	the	number	of	output	channels	to	nchannels.	A	value	of	1	indicates
monophonic	sound,	2	stereophonic.	Some	devices	may	have	more	than	2
channels,	and	some	high-end	devices	may	not	support	mono.	Returns	the
number	of	channels	the	device	was	set	to.

speed(samplerate)
Try	to	set	the	audio	sampling	rate	to	samplerate	samples	per	second.
Returns	the	rate	actually	set.	Most	sound	devices	don't	support	arbitrary
sampling	rates.	Common	rates	are:

Rate Description
8000 default	rate	for	/dev/audio
11025 speech	recording
22050
44100 CD	quality	audio	(at	16	bits/sample	and	2	channels)
96000 DVD	quality	audio	(at	24	bits/sample)

sync()
Wait	until	the	sound	device	has	played	every	byte	in	its	buffer.	(This
happens	implicitly	when	the	device	is	closed.)	The	OSS	documentation
recommends	closing	and	re-opening	the	device	rather	than	using	sync().

reset()
Immediately	stop	playing	or	recording	and	return	the	device	to	a	state
where	it	can	accept	commands.	The	OSS	documentation	recommends
closing	and	re-opening	the	device	after	calling	reset().

post()

Tell	the	driver	that	there	is	likely	to	be	a	pause	in	the	output,	making	it
possible	for	the	device	to	handle	the	pause	more	intelligently.	You	might
use	this	after	playing	a	spot	sound	effect,	before	waiting	for	user	input,	or
before	doing	disk	I/O.

The	following	convenience	methods	combine	several	ioctls,	or	one	ioctl	and
some	simple	calculations.

setparameters(format,	nchannels,	samplerate	[,	strict=False])

Set	the	key	audio	sampling	parameters--sample	format,	number	of
channels,	and	sampling	rate--in	one	method	call.	format,	nchannels,	and
samplerate	should	be	as	specified	in	the	setfmt(),	channels(),	and
speed()	methods.	If	strict	is	true,	setparameters()	checks	to	see	if
each	parameter	was	actually	set	to	the	requested	value,	and	raises
OSSAudioError	if	not.	Returns	a	tuple	(format,	nchannels,	samplerate)
indicating	the	parameter	values	that	were	actually	set	by	the	device	driver
(i.e.,	the	same	as	the	return	valus	of	setfmt(),	channels(),	and
speed()).

For	example,

		(fmt,	channels,	rate)	=	dsp.setparameters(fmt,	channels,	rate)

is	equivalent	to
		fmt	=	dsp.setfmt(fmt)

		channels	=	dsp.channels(channels)

		rate	=	dsp.rate(channels)

bufsize()
Returns	the	size	of	the	hardware	buffer,	in	samples.

obufcount()
Returns	the	number	of	samples	that	are	in	the	hardware	buffer	yet	to	be
played.

obuffree()
Returns	the	number	of	samples	that	could	be	queued	into	the	hardware
buffer	to	be	played	without	blocking.

Python	Library	Reference
Previous:	14.11	ossaudiodev	Up:	14.11	ossaudiodev	Next:	14.11.2	Mixer
Device	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.11.1	Audio	Device	Objects	Up:	14.11	ossaudiodev	Next:	15.
Cryptographic	Services

14.11.2	Mixer	Device	Objects
The	mixer	object	provides	two	file-like	methods:

close()
This	method	closes	the	open	mixer	device	file.	Any	further	attempts	to	use
the	mixer	after	this	file	is	closed	will	raise	an	IOError.

fileno()
Returns	the	file	handle	number	of	the	open	mixer	device	file.

The	remaining	methods	are	specific	to	audio	mixing:

controls()
This	method	returns	a	bitmask	specifying	the	available	mixer	controls
(``Control''	being	a	specific	mixable	``channel'',	such	as
SOUND_MIXER_PCM	or	SOUND_MIXER_SYNTH).	This	bitmask	indicates
a	subset	of	all	available	mixer	controls--the	SOUND_MIXER_*	constants
defined	at	module	level.	To	determine	if,	for	example,	the	current	mixer
object	supports	a	PCM	mixer,	use	the	following	Python	code:

mixer=ossaudiodev.openmixer()

if	mixer.controls()	&	(1	<<	ossaudiodev.SOUND_MIXER_PCM):

				#	PCM	is	supported

				...	code	...

For	most	purposes,	the	SOUND_MIXER_VOLUME	(master	volume)	and
SOUND_MIXER_PCM	controls	should	suffice--but	code	that	uses	the	mixer
should	be	flexible	when	it	comes	to	choosing	mixer	controls.	On	the	Gravis
Ultrasound,	for	example,	SOUND_MIXER_VOLUME	does	not	exist.

stereocontrols()
Returns	a	bitmask	indicating	stereo	mixer	controls.	If	a	bit	is	set,	the
corresponding	control	is	stereo;	if	it	is	unset,	the	control	is	either
monophonic	or	not	supported	by	the	mixer	(use	in	combination	with
controls()	to	determine	which).

See	the	code	example	for	the	controls()	function	for	an	example	of

getting	data	from	a	bitmask.

reccontrols()
Returns	a	bitmask	specifying	the	mixer	controls	that	may	be	used	to	record.
See	the	code	example	for	controls()	for	an	example	of	reading	from	a
bitmask.

get(control)
Returns	the	volume	of	a	given	mixer	control.	The	returned	volume	is	a	2-
tuple	(left_volume,right_volume).	Volumes	are	specified	as
numbers	from	0	(silent)	to	100	(full	volume).	If	the	control	is	monophonic,
a	2-tuple	is	still	returned,	but	both	volumes	are	the	same.

Raises	OSSAudioError	if	an	invalid	control	was	is	specified,	or
IOError	if	an	unsupported	control	is	specified.

set(control,	(left,	right))
Sets	the	volume	for	a	given	mixer	control	to	(left,right).	left	and
right	must	be	ints	and	between	0	(silent)	and	100	(full	volume).	On
success,	the	new	volume	is	returned	as	a	2-tuple.	Note	that	this	may	not	be
exactly	the	same	as	the	volume	specified,	because	of	the	limited	resolution
of	some	soundcard's	mixers.

Raises	OSSAudioError	if	an	invalid	mixer	control	was	specified,	or	if
the	specified	volumes	were	out-of-range.

get_recsrc()
This	method	returns	a	bitmask	indicating	which	control(s)	are	currently
being	used	as	a	recording	source.

set_recsrc(bitmask)
Call	this	function	to	specify	a	recording	source.	Returns	a	bitmask
indicating	the	new	recording	source	(or	sources)	if	successful;	raises
IOError	if	an	invalid	source	was	specified.	To	set	the	current	recording
source	to	the	microphone	input:

mixer.setrecsrc	(1	<<	ossaudiodev.SOUND_MIXER_MIC)

Python	Library	Reference
Previous:	14.11.1	Audio	Device	Objects	Up:	14.11	ossaudiodev	Next:	15.
Cryptographic	Services

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	14.11.2	Mixer	Device	Objects	Up:	Python	Library	Reference	Next:
15.1	hmac

15.	Cryptographic	Services
The	modules	described	in	this	chapter	implement	various	algorithms	of	a
cryptographic	nature.	They	are	available	at	the	discretion	of	the	installation.
Here's	an	overview:

hmac 	 Keyed-Hashing	for	Message	Authentication	(HMAC)	implementation
for	Python.

md5 	 RSA's	MD5	message	digest	algorithm.
sha 	 NIST's	secure	hash	algorithm,	SHA.

Hardcore	cypherpunks	will	probably	find	the	cryptographic	modules	written	by
A.M.	Kuchling	of	further	interest;	the	package	adds	built-in	modules	for	DES
and	IDEA	encryption,	provides	a	Python	module	for	reading	and	decrypting	PGP
files,	and	then	some.	These	modules	are	not	distributed	with	Python	but
available	separately.	See	the	URL
http://www.amk.ca/python/code/crypto.html	for	more	information.

Python	Library	Reference
Previous:	14.11.2	Mixer	Device	Objects	Up:	Python	Library	Reference	Next:
15.1	hmac

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.amk.ca/python/code/crypto.html

Previous:	15.	Cryptographic	Services	Up:	15.	Cryptographic	Services	Next:
15.2	md5

15.1	hmac	--	Keyed-Hashing	for
Message	Authentication
New	in	version	2.2.

This	module	implements	the	HMAC	algorithm	as	described	by	RFC	2104.

new(key[,	msg[,	digestmod]])
Return	a	new	hmac	object.	If	msg	is	present,	the	method	call
update(msg)	is	made.	digestmod	is	the	digest	module	for	the	HMAC
object	to	use.	It	defaults	to	the	md5	module.

An	HMAC	object	has	the	following	methods:

update(msg)
Update	the	hmac	object	with	the	string	msg.	Repeated	calls	are	equivalent
to	a	single	call	with	the	concatenation	of	all	the	arguments:
m.update(a);	m.update(b)	is	equivalent	to	m.update(a	+	b).

digest()
Return	the	digest	of	the	strings	passed	to	the	update()	method	so	far.
This	is	a	16-byte	string	(for	md5)	or	a	20-byte	string	(for	sha)	which	may
contain	non-ASCII	characters,	including	NUL	bytes.

hexdigest()
Like	digest()	except	the	digest	is	returned	as	a	string	of	length	32	for
md5	(40	for	sha),	containing	only	hexadecimal	digits.	This	may	be	used	to
exchange	the	value	safely	in	email	or	other	non-binary	environments.

copy()
Return	a	copy	(``clone'')	of	the	hmac	object.	This	can	be	used	to	efficiently
compute	the	digests	of	strings	that	share	a	common	initial	substring.

http://www.faqs.org/rfcs/rfc2104.html

Python	Library	Reference
Previous:	15.	Cryptographic	Services	Up:	15.	Cryptographic	Services	Next:
15.2	md5

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	15.1	hmac	Up:	15.	Cryptographic	Services	Next:	15.3	sha

15.2	md5	--	MD5	message	digest
algorithm
This	module	implements	the	interface	to	RSA's	MD5	message	digest	algorithm
(see	also	Internet	RFC	1321).	Its	use	is	quite	straightforward:	use	new()	to
create	an	md5	object.	You	can	now	feed	this	object	with	arbitrary	strings	using
the	update()	method,	and	at	any	point	you	can	ask	it	for	the	digest	(a	strong
kind	of	128-bit	checksum,	a.k.a.	``fingerprint'')	of	the	concatenation	of	the
strings	fed	to	it	so	far	using	the	digest()	method.

For	example,	to	obtain	the	digest	of	the	string	'Nobody	inspects	the
spammish	repetition':

>>>	import	md5

>>>	m	=	md5.new()

>>>	m.update("Nobody	inspects")

>>>	m.update("	the	spammish	repetition")

>>>	m.digest()

'\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9'

More	condensed:

>>>	md5.new("Nobody	inspects	the	spammish	repetition").digest()

'\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9'

The	following	values	are	provided	as	constants	in	the	module	and	as	attributes	of
the	md5	objects	returned	by	new():

digest_size

The	size	of	the	resulting	digest	in	bytes.	This	is	always	16.

md5	objects	support	the	following	methods:

new([arg])
Return	a	new	md5	object.	If	arg	is	present,	the	method	call	update(arg)
is	made.

md5([arg])

http://www.faqs.org/rfcs/rfc1321.html

For	backward	compatibility	reasons,	this	is	an	alternative	name	for	the
new()	function.

An	md5	object	has	the	following	methods:

update(arg)
Update	the	md5	object	with	the	string	arg.	Repeated	calls	are	equivalent	to
a	single	call	with	the	concatenation	of	all	the	arguments:	m.update(a);
m.update(b)	is	equivalent	to	m.update(a+b).

digest()
Return	the	digest	of	the	strings	passed	to	the	update()	method	so	far.
This	is	a	16-byte	string	which	may	contain	non-ASCII	characters,	including
null	bytes.

hexdigest()
Like	digest()	except	the	digest	is	returned	as	a	string	of	length	32,
containing	only	hexadecimal	digits.	This	may	be	used	to	exchange	the	value
safely	in	email	or	other	non-binary	environments.

copy()
Return	a	copy	(``clone'')	of	the	md5	object.	This	can	be	used	to	efficiently
compute	the	digests	of	strings	that	share	a	common	initial	substring.

See	Also:

Module	sha:
Similar	module	implementing	the	Secure	Hash	Algorithm	(SHA).	The
SHA	algorithm	is	considered	a	more	secure	hash.

Python	Library	Reference
Previous:	15.1	hmac	Up:	15.	Cryptographic	Services	Next:	15.3	sha

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	15.2	md5	Up:	15.	Cryptographic	Services	Next:	16.	Graphical	User
Interfaces

15.3	sha	--	SHA-1	message	digest
algorithm
This	module	implements	the	interface	to	NIST's	secure	hash	algorithm,	known
as	SHA-1.	SHA-1	is	an	improved	version	of	the	original	SHA	hash	algorithm.	It
is	used	in	the	same	way	as	the	md5	module:	use	new()	to	create	an	sha	object,
then	feed	this	object	with	arbitrary	strings	using	the	update()	method,	and	at
any	point	you	can	ask	it	for	the	digest	of	the	concatenation	of	the	strings	fed	to	it
so	far.	SHA-1	digests	are	160	bits	instead	of	MD5's	128	bits.

new([string])
Return	a	new	sha	object.	If	string	is	present,	the	method	call
update(string)	is	made.

The	following	values	are	provided	as	constants	in	the	module	and	as	attributes	of
the	sha	objects	returned	by	new():

blocksize

Size	of	the	blocks	fed	into	the	hash	function;	this	is	always	1.	This	size	is
used	to	allow	an	arbitrary	string	to	be	hashed.

digest_size

The	size	of	the	resulting	digest	in	bytes.	This	is	always	20.

An	sha	object	has	the	same	methods	as	md5	objects:

update(arg)
Update	the	sha	object	with	the	string	arg.	Repeated	calls	are	equivalent	to	a
single	call	with	the	concatenation	of	all	the	arguments:	m.update(a);
m.update(b)	is	equivalent	to	m.update(a+b).

digest()
Return	the	digest	of	the	strings	passed	to	the	update()	method	so	far.
This	is	a	20-byte	string	which	may	contain	non-ASCII	characters,	including
null	bytes.

hexdigest()
Like	digest()	except	the	digest	is	returned	as	a	string	of	length	40,
containing	only	hexadecimal	digits.	This	may	be	used	to	exchange	the	value
safely	in	email	or	other	non-binary	environments.

copy()
Return	a	copy	(``clone'')	of	the	sha	object.	This	can	be	used	to	efficiently
compute	the	digests	of	strings	that	share	a	common	initial	substring.

See	Also:

Secure	Hash	Standard
The	Secure	Hash	Algorithm	is	defined	by	NIST	document	FIPS	PUB
180-2:	Secure	Hash	Standard,	published	in	August	2002.

Cryptographic	Toolkit	(Secure	Hashing)
Links	from	NIST	to	various	information	on	secure	hashing.

Python	Library	Reference
Previous:	15.2	md5	Up:	15.	Cryptographic	Services	Next:	16.	Graphical	User
Interfaces

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/encryption/tkhash.html

Previous:	15.3	sha	Up:	Python	Library	Reference	Next:	16.1	Tkinter

16.	Graphical	User	Interfaces	with	Tk
Tk/Tcl	has	long	been	an	integral	part	of	Python.	It	provides	a	robust	and	platform
independent	windowing	toolkit,	that	is	available	to	Python	programmers	using
the	Tkinter	module,	and	its	extension,	the	Tix	module.

The	Tkinter	module	is	a	thin	object-oriented	layer	on	top	of	Tcl/Tk.	To	use
Tkinter,	you	don't	need	to	write	Tcl	code,	but	you	will	need	to	consult	the	Tk
documentation,	and	occasionally	the	Tcl	documentation.	Tkinter	is	a	set	of
wrappers	that	implement	the	Tk	widgets	as	Python	classes.	In	addition,	the
internal	module	_tkinter	provides	a	threadsafe	mechanism	which	allows
Python	and	Tcl	to	interact.

Tk	is	not	the	only	GUI	for	Python,	but	is	however	the	most	commonly	used	one;
see	section	,	``Other	User	Interface	Modules	and	Packages,''	for	more
information	on	other	GUI	toolkits	for	Python.

Tkinter 	 Interface	to	Tcl/Tk	for	graphical	user	interfaces
Tix 	 Tk	Extension	Widgets	for	Tkinter
ScrolledText 	 Text	widget	with	a	vertical	scroll	bar.
turtle 	 An	environment	for	turtle	graphics.

Python	Library	Reference
Previous:	15.3	sha	Up:	Python	Library	Reference	Next:	16.1	Tkinter

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.	Graphical	User	Interfaces	Up:	16.	Graphical	User	Interfaces
Next:	16.1.1	Tkinter	Modules

16.1	Tkinter	--	Python	interface	to
Tcl/Tk
The	Tkinter	module	(``Tk	interface'')	is	the	standard	Python	interface	to	the
Tk	GUI	toolkit.	Both	Tk	and	Tkinter	are	available	on	most	UNIX	platforms,	as
well	as	on	Windows	and	Macintosh	systems.	(Tk	itself	is	not	part	of	Python;	it	is
maintained	at	ActiveState.)

See	Also:

Python	Tkinter	Resources
The	Python	Tkinter	Topic	Guide	provides	a	great	deal	of	information
on	using	Tk	from	Python	and	links	to	other	sources	of	information	on
Tk.

An	Introduction	to	Tkinter
Fredrik	Lundh's	on-line	reference	material.

Tkinter	reference:	a	GUI	for	Python
On-line	reference	material.

Tkinter	for	JPython
The	Jython	interface	to	Tkinter.

Python	and	Tkinter	Programming
The	book	by	John	Grayson	(ISBN	1-884777-81-3).

Subsections

16.1.1	Tkinter	Modules
16.1.2	Tkinter	Life	Preserver

16.1.2.1	How	To	Use	This	Section
16.1.2.2	A	Simple	Hello	World	Program

http://www.python.org/topics/tkinter/
http://www.pythonware.com/library/an-introduction-to-tkinter.htm
http://www.nmt.edu/tcc/help/pubs/lang.html
http://jtkinter.sourceforge.net
http://www.amazon.com/exec/obidos/ASIN/1884777813

16.1.3	A	(Very)	Quick	Look	at	Tcl/Tk
16.1.4	Mapping	Basic	Tk	into	Tkinter
16.1.5	How	Tk	and	Tkinter	are	Related
16.1.6	Handy	Reference

16.1.6.1	Setting	Options
16.1.6.2	The	Packer
16.1.6.3	Packer	Options
16.1.6.4	Coupling	Widget	Variables
16.1.6.5	The	Window	Manager
16.1.6.6	Tk	Option	Data	Types
16.1.6.7	Bindings	and	Events
16.1.6.8	The	index	Parameter
16.1.6.9	Images

Python	Library	Reference
Previous:	16.	Graphical	User	Interfaces	Up:	16.	Graphical	User	Interfaces
Next:	16.1.1	Tkinter	Modules

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.1	Tkinter	Up:	16.1	Tkinter	Next:	16.1.2	Tkinter	Life	Preserver

16.1.1	Tkinter	Modules
Most	of	the	time,	the	Tkinter	module	is	all	you	really	need,	but	a	number	of
additional	modules	are	available	as	well.	The	Tk	interface	is	located	in	a	binary
module	named	_tkinter.	This	module	contains	the	low-level	interface	to	Tk,
and	should	never	be	used	directly	by	application	programmers.	It	is	usually	a
shared	library	(or	DLL),	but	might	in	some	cases	be	statically	linked	with	the
Python	interpreter.

In	addition	to	the	Tk	interface	module,	Tkinter	includes	a	number	of	Python
modules.	The	two	most	important	modules	are	the	Tkinter	module	itself,	and
a	module	called	Tkconstants.	The	former	automatically	imports	the	latter,	so
to	use	Tkinter,	all	you	need	to	do	is	to	import	one	module:

import	Tkinter

Or,	more	often:

from	Tkinter	import	*

class	Tk(screenName=None,	baseName=None,	className='Tk',	useTk=1)
The	Tk	class	is	instantiated	without	arguments.	This	creates	a	toplevel
widget	of	Tk	which	usually	is	the	main	window	of	an	appliation.	Each
instance	has	its	own	associated	Tcl	interpreter.	Changed	in	version	2.4:	The
useTk	parameter	was	added.

Tcl(screenName=None,	baseName=None,	className='Tk',	useTk=0)
The	Tcl	function	is	a	factory	function	which	creates	an	object	much	like
that	created	by	the	Tk	class,	except	that	it	does	not	initialize	the	Tk
subsystem.	This	is	most	often	useful	when	driving	the	Tcl	interpreter	in	an
environment	where	one	doesn't	want	to	create	extraneous	toplevel	windows,
or	where	one	cannot	(i.e.	Unix/Linux	systems	without	an	X	server).	An
object	created	by	the	Tcl	object	can	have	a	Toplevel	window	created	(and
the	Tk	subsystem	initialized)	by	calling	its	loadtk	method.	New	in
version	2.4.

Other	modules	that	provide	Tk	support	include:

ScrolledText

Text	widget	with	a	vertical	scroll	bar	built	in.

tkColorChooser

Dialog	to	let	the	user	choose	a	color.

tkCommonDialog

Base	class	for	the	dialogs	defined	in	the	other	modules	listed	here.

tkFileDialog

Common	dialogs	to	allow	the	user	to	specify	a	file	to	open	or	save.

tkFont

Utilities	to	help	work	with	fonts.

tkMessageBox

Access	to	standard	Tk	dialog	boxes.

tkSimpleDialog

Basic	dialogs	and	convenience	functions.

Tkdnd

Drag-and-drop	support	for	Tkinter.	This	is	experimental	and	should
become	deprecated	when	it	is	replaced	with	the	Tk	DND.

turtle

Turtle	graphics	in	a	Tk	window.

Python	Library	Reference
Previous:	16.1	Tkinter	Up:	16.1	Tkinter	Next:	16.1.2	Tkinter	Life	Preserver

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.1.1	Tkinter	Modules	Up:	16.1	Tkinter	Next:	16.1.2.1	How	To	Use

16.1.2	Tkinter	Life	Preserver
This	section	is	not	designed	to	be	an	exhaustive	tutorial	on	either	Tk	or	Tkinter.
Rather,	it	is	intended	as	a	stop	gap,	providing	some	introductory	orientation	on
the	system.

Credits:

Tkinter	was	written	by	Steen	Lumholt	and	Guido	van	Rossum.
Tk	was	written	by	John	Ousterhout	while	at	Berkeley.
This	Life	Preserver	was	written	by	Matt	Conway	at	the	University	of
Virginia.
The	html	rendering,	and	some	liberal	editing,	was	produced	from	a
FrameMaker	version	by	Ken	Manheimer.
Fredrik	Lundh	elaborated	and	revised	the	class	interface	descriptions,	to	get
them	current	with	Tk	4.2.
Mike	Clarkson	converted	the	documentation	to	LaTeX,	and	compiled	the
User	Interface	chapter	of	the	reference	manual.

Subsections

16.1.2.1	How	To	Use	This	Section
16.1.2.2	A	Simple	Hello	World	Program

Python	Library	Reference
Previous:	16.1.1	Tkinter	Modules	Up:	16.1	Tkinter	Next:	16.1.2.1	How	To	Use

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.1.2.2	A	Simple	Hello	Up:	16.1	Tkinter	Next:	16.1.4	Mapping
Basic	Tk

16.1.3	A	(Very)	Quick	Look	at	Tcl/Tk
The	class	hierarchy	looks	complicated,	but	in	actual	practice,	application
programmers	almost	always	refer	to	the	classes	at	the	very	bottom	of	the
hierarchy.

Notes:

These	classes	are	provided	for	the	purposes	of	organizing	certain	functions
under	one	namespace.	They	aren't	meant	to	be	instantiated	independently.

The	Tk	class	is	meant	to	be	instantiated	only	once	in	an	application.
Application	programmers	need	not	instantiate	one	explicitly,	the	system
creates	one	whenever	any	of	the	other	classes	are	instantiated.

The	Widget	class	is	not	meant	to	be	instantiated,	it	is	meant	only	for
subclassing	to	make	``real''	widgets	(in	C++,	this	is	called	an	`abstract
class').

To	make	use	of	this	reference	material,	there	will	be	times	when	you	will	need	to
know	how	to	read	short	passages	of	Tk	and	how	to	identify	the	various	parts	of	a
Tk	command.	(See	section	16.1.4	for	the	Tkinter	equivalents	of	what's
below.)

Tk	scripts	are	Tcl	programs.	Like	all	Tcl	programs,	Tk	scripts	are	just	lists	of
tokens	separated	by	spaces.	A	Tk	widget	is	just	its	class,	the	options	that	help
configure	it,	and	the	actions	that	make	it	do	useful	things.

To	make	a	widget	in	Tk,	the	command	is	always	of	the	form:

																classCommand	newPathname	options

classCommand
denotes	which	kind	of	widget	to	make	(a	button,	a	label,	a	menu...)

newPathname
is	the	new	name	for	this	widget.	All	names	in	Tk	must	be	unique.	To	help
enforce	this,	widgets	in	Tk	are	named	with	pathnames,	just	like	files	in	a
file	system.	The	top	level	widget,	the	root,	is	called	.	(period)	and	children

are	delimited	by	more	periods.	For	example,
.myApp.controlPanel.okButton	might	be	the	name	of	a	widget.

options
configure	the	widget's	appearance	and	in	some	cases,	its	behavior.	The
options	come	in	the	form	of	a	list	of	flags	and	values.	Flags	are	proceeded
by	a	`-',	like	unix	shell	command	flags,	and	values	are	put	in	quotes	if	they
are	more	than	one	word.

For	example:

				button			.fred			-fg	red	-text	"hi	there"

							^							^					_____________________/

							|							|																|

					class				new												options

				command		widget		(-opt	val	-opt	val	...)

Once	created,	the	pathname	to	the	widget	becomes	a	new	command.	This	new
widget	command	is	the	programmer's	handle	for	getting	the	new	widget	to
perform	some	action.	In	C,	you'd	express	this	as	someAction(fred,
someOptions),	in	C++,	you	would	express	this	as
fred.someAction(someOptions),	and	in	Tk,	you	say:

				.fred	someAction	someOptions

Note	that	the	object	name,	.fred,	starts	with	a	dot.

As	you'd	expect,	the	legal	values	for	someAction	will	depend	on	the	widget's
class:	.fred	disable	works	if	fred	is	a	button	(fred	gets	greyed	out),	but
does	not	work	if	fred	is	a	label	(disabling	of	labels	is	not	supported	in	Tk).

The	legal	values	of	someOptions	is	action	dependent.	Some	actions,	like
disable,	require	no	arguments,	others,	like	a	text-entry	box's	delete
command,	would	need	arguments	to	specify	what	range	of	text	to	delete.

Python	Library	Reference
Previous:	16.1.2.2	A	Simple	Hello	Up:	16.1	Tkinter	Next:	16.1.4	Mapping
Basic	Tk

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.1.3	A	(Very)	Quick	Up:	16.1	Tkinter	Next:	16.1.5	How	Tk	and

16.1.4	Mapping	Basic	Tk	into	Tkinter
Class	commands	in	Tk	correspond	to	class	constructors	in	Tkinter.

				button	.fred																=====>		fred	=	Button()

The	master	of	an	object	is	implicit	in	the	new	name	given	to	it	at	creation	time.
In	Tkinter,	masters	are	specified	explicitly.

				button	.panel.fred										=====>		fred	=	Button(panel)

The	configuration	options	in	Tk	are	given	in	lists	of	hyphened	tags	followed	by
values.	In	Tkinter,	options	are	specified	as	keyword-arguments	in	the	instance
constructor,	and	keyword-args	for	configure	calls	or	as	instance	indices,	in
dictionary	style,	for	established	instances.	See	section	16.1.6	on	setting	options.

				button	.fred	-fg	red								=====>		fred	=	Button(panel,	fg	=	"red")

				.fred	configure	-fg	red					=====>		fred["fg"]	=	red

																																OR	==>		fred.config(fg	=	"red")

In	Tk,	to	perform	an	action	on	a	widget,	use	the	widget	name	as	a	command,	and
follow	it	with	an	action	name,	possibly	with	arguments	(options).	In	Tkinter,	you
call	methods	on	the	class	instance	to	invoke	actions	on	the	widget.	The	actions
(methods)	that	a	given	widget	can	perform	are	listed	in	the	Tkinter.py	module.

				.fred	invoke																=====>		fred.invoke()

To	give	a	widget	to	the	packer	(geometry	manager),	you	call	pack	with	optional
arguments.	In	Tkinter,	the	Pack	class	holds	all	this	functionality,	and	the	various
forms	of	the	pack	command	are	implemented	as	methods.	All	widgets	in
Tkinter	are	subclassed	from	the	Packer,	and	so	inherit	all	the	packing
methods.	See	the	Tix	module	documentation	for	additional	information	on	the
Form	geometry	manager.

				pack	.fred	-side	left							=====>		fred.pack(side	=	"left")

Python	Library	Reference
Previous:	16.1.3	A	(Very)	Quick	Up:	16.1	Tkinter	Next:	16.1.5	How	Tk	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.1.4	Mapping	Basic	Tk	Up:	16.1	Tkinter	Next:	16.1.6	Handy
Reference

16.1.5	How	Tk	and	Tkinter	are	Related
Note:	This	was	derived	from	a	graphical	image;	the	image	will	be	used	more
directly	in	a	subsequent	version	of	this	document.

From	the	top	down:

Your	App	Here	(Python)
A	Python	application	makes	a	Tkinter	call.

Tkinter	(Python	Module)
This	call	(say,	for	example,	creating	a	button	widget),	is	implemented	in	the
Tkinter	module,	which	is	written	in	Python.	This	Python	function	will	parse
the	commands	and	the	arguments	and	convert	them	into	a	form	that	makes
them	look	as	if	they	had	come	from	a	Tk	script	instead	of	a	Python	script.

tkinter	(C)
These	commands	and	their	arguments	will	be	passed	to	a	C	function	in	the
tkinter	-	note	the	lowercase	-	extension	module.

Tk	Widgets	(C	and	Tcl)
This	C	function	is	able	to	make	calls	into	other	C	modules,	including	the	C
functions	that	make	up	the	Tk	library.	Tk	is	implemented	in	C	and	some
Tcl.	The	Tcl	part	of	the	Tk	widgets	is	used	to	bind	certain	default	behaviors
to	widgets,	and	is	executed	once	at	the	point	where	the	Python	Tkinter
module	is	imported.	(The	user	never	sees	this	stage).

Tk	(C)
The	Tk	part	of	the	Tk	Widgets	implement	the	final	mapping	to	...

Xlib	(C)
the	Xlib	library	to	draw	graphics	on	the	screen.

Python	Library	Reference
Previous:	16.1.4	Mapping	Basic	Tk	Up:	16.1	Tkinter	Next:	16.1.6	Handy
Reference

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.1.5	How	Tk	and	Up:	16.1	Tkinter	Next:	16.1.6.1	Setting	Options

16.1.6	Handy	Reference

Subsections

16.1.6.1	Setting	Options
16.1.6.2	The	Packer
16.1.6.3	Packer	Options
16.1.6.4	Coupling	Widget	Variables
16.1.6.5	The	Window	Manager
16.1.6.6	Tk	Option	Data	Types
16.1.6.7	Bindings	and	Events
16.1.6.8	The	index	Parameter
16.1.6.9	Images

Python	Library	Reference
Previous:	16.1.5	How	Tk	and	Up:	16.1	Tkinter	Next:	16.1.6.1	Setting	Options

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.1.6.9	Images	Up:	16.	Graphical	User	Interfaces	Next:	16.2.1
Using	Tix

16.2	Tix	--	Extension	widgets	for	Tk
The	Tix	(Tk	Interface	Extension)	module	provides	an	additional	rich	set	of
widgets.	Although	the	standard	Tk	library	has	many	useful	widgets,	they	are	far
from	complete.	The	Tix	library	provides	most	of	the	commonly	needed	widgets
that	are	missing	from	standard	Tk:	HList,	ComboBox,	Control	(a.k.a.
SpinBox)	and	an	assortment	of	scrollable	widgets.	Tix	also	includes	many	more
widgets	that	are	generally	useful	in	a	wide	range	of	applications:	NoteBook,
FileEntry,	PanedWindow,	etc;	there	are	more	than	40	of	them.

With	all	these	new	widgets,	you	can	introduce	new	interaction	techniques	into
applications,	creating	more	useful	and	more	intuitive	user	interfaces.	You	can
design	your	application	by	choosing	the	most	appropriate	widgets	to	match	the
special	needs	of	your	application	and	users.

See	Also:

Tix	Homepage
The	home	page	for	Tix.	This	includes	links	to	additional
documentation	and	downloads.

Tix	Man	Pages
On-line	version	of	the	man	pages	and	reference	material.

Tix	Programming	Guide
On-line	version	of	the	programmer's	reference	material.

Tix	Development	Applications
Tix	applications	for	development	of	Tix	and	Tkinter	programs.	Tide
applications	work	under	Tk	or	Tkinter,	and	include	TixInspect,	an
inspector	to	remotely	modify	and	debug	Tix/Tk/Tkinter	applications.

Subsections

http://tix.sourceforge.net/
http://tix.sourceforge.net/dist/current/man/
http://tix.sourceforge.net/dist/current/docs/tix-book/tix.book.html
http://tix.sourceforge.net/Tide/

16.2.1	Using	Tix
16.2.2	Tix	Widgets

16.2.2.1	Basic	Widgets
16.2.2.2	File	Selectors
16.2.2.3	Hierachical	ListBox
16.2.2.4	Tabular	ListBox
16.2.2.5	Manager	Widgets
16.2.2.6	Image	Types
16.2.2.7	Miscellaneous	Widgets
16.2.2.8	Form	Geometry	Manager

16.2.3	Tix	Commands

Python	Library	Reference
Previous:	16.1.6.9	Images	Up:	16.	Graphical	User	Interfaces	Next:	16.2.1
Using	Tix

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.2	Tix	Up:	16.2	Tix	Next:	16.2.2	Tix	Widgets

16.2.1	Using	Tix

class	Tix(screenName[,	baseName[,	className]])
Toplevel	widget	of	Tix	which	represents	mostly	the	main	window	of	an
application.	It	has	an	associated	Tcl	interpreter.

Classes	in	the	Tix	module	subclasses	the	classes	in	the	Tkinter	module.
The	former	imports	the	latter,	so	to	use	Tix	with	Tkinter,	all	you	need	to	do
is	to	import	one	module.	In	general,	you	can	just	import	Tix,	and	replace
the	toplevel	call	to	Tkinter.Tk	with	Tix.Tk:

import	Tix

from	Tkconstants	import	*

root	=	Tix.Tk()

To	use	Tix,	you	must	have	the	Tix	widgets	installed,	usually	alongside	your
installation	of	the	Tk	widgets.	To	test	your	installation,	try	the	following:

import	Tix

root	=	Tix.Tk()

root.tk.eval('package	require	Tix')

If	this	fails,	you	have	a	Tk	installation	problem	which	must	be	resolved	before
proceeding.	Use	the	environment	variable	TIX_LIBRARY	to	point	to	the
installed	Tix	library	directory,	and	make	sure	you	have	the	dynamic	object
library	(tix8183.dll	or	libtix8183.so)	in	the	same	directory	that	contains	your	Tk
dynamic	object	library	(tk8183.dll	or	libtk8183.so).	The	directory	with	the
dynamic	object	library	should	also	have	a	file	called	pkgIndex.tcl	(case
sensitive),	which	contains	the	line:

package	ifneeded	Tix	8.1	[list	load	"[file	join	$dir	tix8183.dll]"	Tix]

Python	Library	Reference
Previous:	16.2	Tix	Up:	16.2	Tix	Next:	16.2.2	Tix	Widgets

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.2.1	Using	Tix	Up:	16.2	Tix	Next:	16.2.2.1	Basic	Widgets

16.2.2	Tix	Widgets
Tix	introduces	over	40	widget	classes	to	the	Tkinter	repertoire.	There	is	a
demo	of	all	the	Tix	widgets	in	the	Demo/tix	directory	of	the	standard
distribution.

Subsections

16.2.2.1	Basic	Widgets
16.2.2.2	File	Selectors
16.2.2.3	Hierachical	ListBox
16.2.2.4	Tabular	ListBox
16.2.2.5	Manager	Widgets
16.2.2.6	Image	Types
16.2.2.7	Miscellaneous	Widgets
16.2.2.8	Form	Geometry	Manager

Python	Library	Reference
Previous:	16.2.1	Using	Tix	Up:	16.2	Tix	Next:	16.2.2.1	Basic	Widgets

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/TixIntro.htm

Previous:	16.2.2.8	Form	Geometry	Manager	Up:	16.2	Tix	Next:	16.3
ScrolledText

16.2.3	Tix	Commands

class	tixCommand()
The	tix	commands	provide	access	to	miscellaneous	elements	of	Tix's
internal	state	and	the	Tix	application	context.	Most	of	the	information
manipulated	by	these	methods	pertains	to	the	application	as	a	whole,	or	to	a
screen	or	display,	rather	than	to	a	particular	window.

To	view	the	current	settings,	the	common	usage	is:

import	Tix

root	=	Tix.Tk()

print	root.tix_configure()

tix_configure([cnf,]	**kw)
Query	or	modify	the	configuration	options	of	the	Tix	application	context.	If
no	option	is	specified,	returns	a	dictionary	all	of	the	available	options.	If
option	is	specified	with	no	value,	then	the	method	returns	a	list	describing
the	one	named	option	(this	list	will	be	identical	to	the	corresponding	sublist
of	the	value	returned	if	no	option	is	specified).	If	one	or	more	option-value
pairs	are	specified,	then	the	method	modifies	the	given	option(s)	to	have	the
given	value(s);	in	this	case	the	method	returns	an	empty	string.	Option	may
be	any	of	the	configuration	options.

tix_cget(option)
Returns	the	current	value	of	the	configuration	option	given	by	option.
Option	may	be	any	of	the	configuration	options.

tix_getbitmap(name)
Locates	a	bitmap	file	of	the	name	name.xpm	or	name	in	one	of	the	bitmap
directories	(see	the	tix_addbitmapdir()	method).	By	using
tix_getbitmap(),	you	can	avoid	hard	coding	the	pathnames	of	the
bitmap	files	in	your	application.	When	successful,	it	returns	the	complete
pathname	of	the	bitmap	file,	prefixed	with	the	character	"@".	The	returned
value	can	be	used	to	configure	the	bitmap	option	of	the	Tk	and	Tix
widgets.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tix.htm

tix_addbitmapdir(directory)
Tix	maintains	a	list	of	directories	under	which	the	tix_getimage()	and
tix_getbitmap()	methods	will	search	for	image	files.	The	standard
bitmap	directory	is	$TIX_LIBRARY/bitmaps.	The
tix_addbitmapdir()	method	adds	directory	into	this	list.	By	using
this	method,	the	image	files	of	an	applications	can	also	be	located	using	the
tix_getimage()	or	tix_getbitmap()	method.

tix_filedialog([dlgclass])
Returns	the	file	selection	dialog	that	may	be	shared	among	different	calls
from	this	application.	This	method	will	create	a	file	selection	dialog	widget
when	it	is	called	the	first	time.	This	dialog	will	be	returned	by	all
subsequent	calls	to	tix_filedialog().	An	optional	dlgclass	parameter
can	be	passed	as	a	string	to	specified	what	type	of	file	selection	dialog
widget	is	desired.	Possible	options	are	tix,	FileSelectDialog	or
tixExFileSelectDialog.

tix_getimage(self,	name)
Locates	an	image	file	of	the	name	name.xpm,	name.xbm	or	name.ppm
in	one	of	the	bitmap	directories	(see	the	tix_addbitmapdir()	method
above).	If	more	than	one	file	with	the	same	name	(but	different	extensions)
exist,	then	the	image	type	is	chosen	according	to	the	depth	of	the	X	display:
xbm	images	are	chosen	on	monochrome	displays	and	color	images	are
chosen	on	color	displays.	By	using	tix_getimage(),	you	can	avoid
hard	coding	the	pathnames	of	the	image	files	in	your	application.	When
successful,	this	method	returns	the	name	of	the	newly	created	image,	which
can	be	used	to	configure	the	image	option	of	the	Tk	and	Tix	widgets.

tix_option_get(name)
Gets	the	options	manitained	by	the	Tix	scheme	mechanism.

tix_resetoptions(newScheme,	newFontSet[,	newScmPrio])
Resets	the	scheme	and	fontset	of	the	Tix	application	to	newScheme	and
newFontSet,	respectively.	This	affects	only	those	widgets	created	after	this
call.	Therefore,	it	is	best	to	call	the	resetoptions	method	before	the	creation
of	any	widgets	in	a	Tix	application.

The	optional	parameter	newScmPrio	can	be	given	to	reset	the	priority	level
of	the	Tk	options	set	by	the	Tix	schemes.

Because	of	the	way	Tk	handles	the	X	option	database,	after	Tix	has	been
has	imported	and	inited,	it	is	not	possible	to	reset	the	color	schemes	and
font	sets	using	the	tix_config()	method.	Instead,	the
tix_resetoptions()	method	must	be	used.

Python	Library	Reference
Previous:	16.2.2.8	Form	Geometry	Manager	Up:	16.2	Tix	Next:	16.3
ScrolledText

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.2.3	Tix	Commands	Up:	16.	Graphical	User	Interfaces	Next:	16.4
turtle

16.3	ScrolledText	--	Scrolled	Text
Widget
Availability:	Tk.

The	ScrolledText	module	provides	a	class	of	the	same	name	which
implements	a	basic	text	widget	which	has	a	vertical	scroll	bar	configured	to	do
the	``right	thing.''	Using	the	ScrolledText	class	is	a	lot	easier	than	setting	up
a	text	widget	and	scroll	bar	directly.	The	constructor	is	the	same	as	that	of	the
Tkinter.Text	class.

The	text	widget	and	scrollbar	are	packed	together	in	a	Frame,	and	the	methods
of	the	Grid	and	Pack	geometry	managers	are	acquired	from	the	Frame	object.
This	allows	the	ScrolledText	widget	to	be	used	directly	to	achieve	most
normal	geometry	management	behavior.

Should	more	specific	control	be	necessary,	the	following	attributes	are	available:

frame

The	frame	which	surrounds	the	text	and	scroll	bar	widgets.

vbar

The	scroll	bar	widget.

Python	Library	Reference
Previous:	16.2.3	Tix	Commands	Up:	16.	Graphical	User	Interfaces	Next:	16.4
turtle

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.3	ScrolledText	Up:	16.	Graphical	User	Interfaces	Next:	16.4.1
Pen	and	RawPen

16.4	turtle	--	Turtle	graphics	for	Tk
Availability:	Tk.

The	turtle	module	provides	turtle	graphics	primitives,	in	both	an	object-
oriented	and	procedure-oriented	ways.	Because	it	uses	Tkinter	for	the
underlying	graphics,	it	needs	a	version	of	python	installed	with	Tk	support.

The	procedural	interface	uses	a	pen	and	a	canvas	which	are	automagically
created	when	any	of	the	functions	are	called.

The	turtle	module	defines	the	following	functions:

degrees()
Set	angle	measurement	units	to	degrees.

radians()
Set	angle	measurement	units	to	radians.

reset()
Clear	the	screen,	re-center	the	pen,	and	set	variables	to	the	default	values.

clear()
Clear	the	screen.

tracer(flag)
Set	tracing	on/off	(according	to	whether	flag	is	true	or	not).	Tracing	means
line	are	drawn	more	slowly,	with	an	animation	of	an	arrow	along	the	line.

forward(distance)
Go	forward	distance	steps.

backward(distance)
Go	backward	distance	steps.

left(angle)
Turn	left	angle	units.	Units	are	by	default	degrees,	but	can	be	set	via	the
degrees()	and	radians()	functions.

right(angle)
Turn	right	angle	units.	Units	are	by	default	degrees,	but	can	be	set	via	the
degrees()	and	radians()	functions.

up()
Move	the	pen	up	--	stop	drawing.

down()
Move	the	pen	down	--	draw	when	moving.

width(width)
Set	the	line	width	to	width.

color(s)
color((r,	g,	b))
color(r,	g,	b)

Set	the	pen	color.	In	the	first	form,	the	color	is	specified	as	a	Tk	color
specification	as	a	string.	The	second	form	specifies	the	color	as	a	tuple	of
the	RGB	values,	each	in	the	range	[0..1].	For	the	third	form,	the	color	is
specified	giving	the	RGB	values	as	three	separate	parameters	(each	in	the
range	[0..1]).

write(text[,	move])
Write	text	at	the	current	pen	position.	If	move	is	true,	the	pen	is	moved	to
the	bottom-right	corner	of	the	text.	By	default,	move	is	false.

fill(flag)
The	complete	specifications	are	rather	complex,	but	the	recommended
usage	is:	call	fill(1)	before	drawing	a	path	you	want	to	fill,	and	call
fill(0)	when	you	finish	to	draw	the	path.

circle(radius[,	extent])

Draw	a	circle	with	radius	radius	whose	center-point	is	radius	units	left	of
the	turtle.	extent	determines	which	part	of	a	circle	is	drawn:	if	not	given	it
defaults	to	a	full	circle.

If	extent	is	not	a	full	circle,	one	endpoint	of	the	arc	is	the	current	pen
position.	The	arc	is	drawn	in	a	counter	clockwise	direction	if	radius	is
positive,	otherwise	in	a	clockwise	direction.	In	the	process,	the	direction	of
the	turtle	is	changed	by	the	amount	of	the	extent.

goto(x,	y)
goto((x,	y))

Go	to	co-ordinates	x,	y.	The	co-ordinates	may	be	specified	either	as	two
separate	arguments	or	as	a	2-tuple.

This	module	also	does	from	math	import	*,	so	see	the	documentation	for
the	math	module	for	additional	constants	and	functions	useful	for	turtle
graphics.

demo()
Exercise	the	module	a	bit.

exception	Error
Exception	raised	on	any	error	caught	by	this	module.

For	examples,	see	the	code	of	the	demo()	function.

This	module	defines	the	following	classes:

class	Pen()
Define	a	pen.	All	above	functions	can	be	called	as	a	methods	on	the	given
pen.	The	constructor	automatically	creates	a	canvas	do	be	drawn	on.

class	RawPen(canvas)
Define	a	pen	which	draws	on	a	canvas	canvas.	This	is	useful	if	you	want	to
use	the	module	to	create	graphics	in	a	``real''	program.

Subsections

16.4.1	Pen	and	RawPen	Objects

Python	Library	Reference
Previous:	16.3	ScrolledText	Up:	16.	Graphical	User	Interfaces	Next:	16.4.1
Pen	and	RawPen

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.4	turtle	Up:	16.4	turtle	Next:	16.5	Idle

16.4.1	Pen	and	RawPen	Objects
Pen	and	RawPen	objects	have	all	the	global	functions	described	above,	except
for	demo()	as	methods,	which	manipulate	the	given	pen.

The	only	method	which	is	more	powerful	as	a	method	is	degrees().

degrees([fullcircle])
fullcircle	is	by	default	360.	This	can	cause	the	pen	to	have	any	angular	units
whatever:	give	fullcircle	2* 	for	radians,	or	400	for	gradians.

Python	Library	Reference
Previous:	16.4	turtle	Up:	16.4	turtle	Next:	16.5	Idle

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.4.1	Pen	and	RawPen	Up:	16.	Graphical	User	Interfaces	Next:
16.5.1	Menus

16.5	Idle
Idle	is	the	Python	IDE	built	with	the	Tkinter	GUI	toolkit.

IDLE	has	the	following	features:

coded	in	100%	pure	Python,	using	the	Tkinter	GUI	toolkit

cross-platform:	works	on	Windows	and	UNIX	(on	Mac	OS,	there	are
currently	problems	with	Tcl/Tk)

multi-window	text	editor	with	multiple	undo,	Python	colorizing	and	many
other	features,	e.g.	smart	indent	and	call	tips

Python	shell	window	(a.k.a.	interactive	interpreter)

debugger	(not	complete,	but	you	can	set	breakpoints,	view	and	step)

Subsections

16.5.1	Menus
16.5.1.1	File	menu
16.5.1.2	Edit	menu
16.5.1.3	Windows	menu
16.5.1.4	Debug	menu	(in	the	Python	Shell	window	only)

16.5.2	Basic	editing	and	navigation
16.5.2.1	Automatic	indentation
16.5.2.2	Python	Shell	window

16.5.3	Syntax	colors
16.5.3.1	Command	line	usage

Python	Library	Reference
Previous:	16.4.1	Pen	and	RawPen	Up:	16.	Graphical	User	Interfaces	Next:
16.5.1	Menus

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.5	Idle	Up:	16.5	Idle	Next:	16.5.1.1	File	menu

16.5.1	Menus

Subsections

16.5.1.1	File	menu
16.5.1.2	Edit	menu
16.5.1.3	Windows	menu
16.5.1.4	Debug	menu	(in	the	Python	Shell	window	only)

Python	Library	Reference
Previous:	16.5	Idle	Up:	16.5	Idle	Next:	16.5.1.1	File	menu

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.5.1.4	Debug	menu	(in	Up:	16.5	Idle	Next:	16.5.2.1	Automatic
indentation

16.5.2	Basic	editing	and	navigation
Backspace	deletes	to	the	left;	Del	deletes	to	the	right
Arrow	keys	and	Page	Up/Page	Down	to	move	around
Home/End	go	to	begin/end	of	line
C-Home/C-End	go	to	begin/end	of	file
Some	Emacs	bindings	may	also	work,	including	C-B,	C-P,	C-A,	C-E,	C-D,	C-
L

Subsections

16.5.2.1	Automatic	indentation
16.5.2.2	Python	Shell	window

Python	Library	Reference
Previous:	16.5.1.4	Debug	menu	(in	Up:	16.5	Idle	Next:	16.5.2.1	Automatic
indentation

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.5.2.2	Python	Shell	window	Up:	16.5	Idle	Next:	16.5.3.1
Command	line	usage

16.5.3	Syntax	colors
The	coloring	is	applied	in	a	background	``thread,''	so	you	may	occasionally	see
uncolorized	text.	To	change	the	color	scheme,	edit	the	[Colors]	section	in
config.txt.

Python	syntax	colors:

Keywords
orange

Strings
green

Comments
red

Definitions
blue

Shell	colors:
Console	output

brown
stdout

blue
stderr

dark	green
stdin

black

Subsections

16.5.3.1	Command	line	usage

Python	Library	Reference
Previous:	16.5.2.2	Python	Shell	window	Up:	16.5	Idle	Next:	16.5.3.1
Command	line	usage

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.5.3.1	Command	line	usage	Up:	16.	Graphical	User	Interfaces
Next:	17.	Restricted	Execution

16.6	Other	Graphical	User	Interface
Packages
There	are	an	number	of	extension	widget	sets	to	Tkinter.

Python	megawidgets
is	a	toolkit	for	building	high-level	compound	widgets	in	Python	using	the
Tkinter	module.	It	consists	of	a	set	of	base	classes	and	a	library	of
flexible	and	extensible	megawidgets	built	on	this	foundation.	These
megawidgets	include	notebooks,	comboboxes,	selection	widgets,	paned
widgets,	scrolled	widgets,	dialog	windows,	etc.	Also,	with	the	Pmw.Blt
interface	to	BLT,	the	busy,	graph,	stripchart,	tabset	and	vector	commands
are	be	available.

The	initial	ideas	for	Pmw	were	taken	from	the	Tk	itcl	extensions	[incr
Tk]	by	Michael	McLennan	and	[incr	Widgets]	by	Mark	Ulferts.
Several	of	the	megawidgets	are	direct	translations	from	the	itcl	to	Python.	It
offers	most	of	the	range	of	widgets	that	[incr	Widgets]	does,	and	is
almost	as	complete	as	Tix,	lacking	however	Tix's	fast	HList	widget	for
drawing	trees.

Tkinter3000	Widget	Construction	Kit	(WCK)
is	a	library	that	allows	you	to	write	new	Tkinter	widgets	in	pure	Python.
The	WCK	framework	gives	you	full	control	over	widget	creation,
configuration,	screen	appearance,	and	event	handling.	WCK	widgets	can	be
very	fast	and	light-weight,	since	they	can	operate	directly	on	Python	data
structures,	without	having	to	transfer	data	through	the	Tk/Tcl	layer.

Tk	is	not	the	only	GUI	for	Python,	but	is	however	the	most	commonly	used	one.

wxWindows
is	a	GUI	toolkit	that	combines	the	most	attractive	attributes	of	Qt,	Tk,
Motif,	and	GTK+	in	one	powerful	and	efficient	package.	It	is	implemented
in	C++.	wxWindows	supports	two	flavors	of	UNIX	implementation:	GTK+
and	Motif,	and	under	Windows,	it	has	a	standard	Microsoft	Foundation
Classes	(MFC)	appearance,	because	it	uses	Win32	widgets.	There	is	a

http://pmw.sourceforge.net/
http://tkinter.effbot.org/
http://www.wxwindows.org

Python	class	wrapper,	independent	of	Tkinter.

wxWindows	is	much	richer	in	widgets	than	Tkinter,	with	its	help
system,	sophisticated	HTML	and	image	viewers,	and	other	specialized
widgets,	extensive	documentation,	and	printing	capabilities.

PyQt
PyQt	is	a	sip-wrapped	binding	to	the	Qt	toolkit.	Qt	is	an	extensive	C++
GUI	toolkit	that	is	available	for	UNIX,	Windows	and	Mac	OS	X.	sip	is	a	tool
for	generating	bindings	for	C++	libraries	as	Python	classes,	and	is
specifically	designed	for	Python.	An	online	manual	is	available	at
http://www.opendocspublishing.com/pyqt/	(errata	are	located	at
http://www.valdyas.org/python/book.html).

PyKDE
PyKDE	is	a	sip-wrapped	interface	to	the	KDE	desktop	libraries.	KDE	is	a
desktop	environment	for	UNIX	computers;	the	graphical	components	are
based	on	Qt.

FXPy
is	a	Python	extension	module	which	provides	an	interface	to	the	FOX	GUI.
FOX	is	a	C++	based	Toolkit	for	developing	Graphical	User	Interfaces
easily	and	effectively.	It	offers	a	wide,	and	growing,	collection	of	Controls,
and	provides	state	of	the	art	facilities	such	as	drag	and	drop,	selection,	as
well	as	OpenGL	widgets	for	3D	graphical	manipulation.	FOX	also
implements	icons,	images,	and	user-convenience	features	such	as	status	line
help,	and	tooltips.

Even	though	FOX	offers	a	large	collection	of	controls	already,	FOX
leverages	C++	to	allow	programmers	to	easily	build	additional	Controls	and
GUI	elements,	simply	by	taking	existing	controls,	and	creating	a	derived
class	which	simply	adds	or	redefines	the	desired	behavior.

PyGTK
is	a	set	of	bindings	for	the	GTK	widget	set.	It	provides	an	object	oriented
interface	that	is	slightly	higher	level	than	the	C	one.	It	automatically	does
all	the	type	casting	and	reference	counting	that	you	would	have	to	do
normally	with	the	C	API.	There	are	also	bindings	to	GNOME,	and	a	tutorial
is	available.

http://www.opendocspublishing.com/pyqt/
http://www.valdyas.org/python/book.html
http://www.riverbankcomputing.co.uk/pykde/index.php
http://fxpy.sourceforge.net/
http://www.cfdrc.com/FOX/fox.html
http://www.daa.com.au/~james/software/pygtk/
http://www.gtk.org/
http://www.daa.com.au/~james/gnome/
http://www.gnome.org
http://laguna.fmedic.unam.mx/~daniel/pygtutorial/pygtutorial/index.html

Python	Library	Reference
Previous:	16.5.3.1	Command	line	usage	Up:	16.	Graphical	User	Interfaces
Next:	17.	Restricted	Execution

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.6	Other	Graphical	User	Up:	Python	Library	Reference	Next:	17.1
rexec

17.	Restricted	Execution

Warning: 	In	Python	2.3	these	modules	have	been	disabled
due	to	various	known	and	not	readily	fixable	security	holes.	The
modules	are	still	documented	here	to	help	in	reading	old	code	that
uses	the	rexec	and	Bastion	modules.

Restricted	execution	is	the	basic	framework	in	Python	that	allows	for	the
segregation	of	trusted	and	untrusted	code.	The	framework	is	based	on	the	notion
that	trusted	Python	code	(a	supervisor)	can	create	a	``padded	cell'	(or
environment)	with	limited	permissions,	and	run	the	untrusted	code	within	this
cell.	The	untrusted	code	cannot	break	out	of	its	cell,	and	can	only	interact	with
sensitive	system	resources	through	interfaces	defined	and	managed	by	the
trusted	code.	The	term	``restricted	execution''	is	favored	over	``safe-Python''
since	true	safety	is	hard	to	define,	and	is	determined	by	the	way	the	restricted
environment	is	created.	Note	that	the	restricted	environments	can	be	nested,	with
inner	cells	creating	subcells	of	lesser,	but	never	greater,	privilege.

An	interesting	aspect	of	Python's	restricted	execution	model	is	that	the	interfaces
presented	to	untrusted	code	usually	have	the	same	names	as	those	presented	to
trusted	code.	Therefore	no	special	interfaces	need	to	be	learned	to	write	code
designed	to	run	in	a	restricted	environment.	And	because	the	exact	nature	of	the
padded	cell	is	determined	by	the	supervisor,	different	restrictions	can	be
imposed,	depending	on	the	application.	For	example,	it	might	be	deemed	``safe''
for	untrusted	code	to	read	any	file	within	a	specified	directory,	but	never	to	write
a	file.	In	this	case,	the	supervisor	may	redefine	the	built-in	open()	function	so
that	it	raises	an	exception	whenever	the	mode	parameter	is	'w'.	It	might	also
perform	a	chroot()-like	operation	on	the	filename	parameter,	such	that	root	is
always	relative	to	some	safe	``sandbox''	area	of	the	filesystem.	In	this	case,	the
untrusted	code	would	still	see	an	built-in	open()	function	in	its	environment,
with	the	same	calling	interface.	The	semantics	would	be	identical	too,	with
IOErrors	being	raised	when	the	supervisor	determined	that	an	unallowable
parameter	is	being	used.

The	Python	run-time	determines	whether	a	particular	code	block	is	executing	in

restricted	execution	mode	based	on	the	identity	of	the	__builtins__	object
in	its	global	variables:	if	this	is	(the	dictionary	of)	the	standard	__builtin__
module,	the	code	is	deemed	to	be	unrestricted,	else	it	is	deemed	to	be	restricted.

Python	code	executing	in	restricted	mode	faces	a	number	of	limitations	that	are
designed	to	prevent	it	from	escaping	from	the	padded	cell.	For	instance,	the
function	object	attribute	func_globals	and	the	class	and	instance	object
attribute	__dict__	are	unavailable.

Two	modules	provide	the	framework	for	setting	up	restricted	execution
environments:

rexec 	 Basic	restricted	execution	framework.
Bastion 	 Providing	restricted	access	to	objects.

See	Also:

Grail	Home	Page
Grail,	an	Internet	browser	written	in	Python,	uses	these	modules	to
support	Python	applets.	More	information	on	the	use	of	Python's
restricted	execution	mode	in	Grail	is	available	on	the	Web	site.

Python	Library	Reference
Previous:	16.6	Other	Graphical	User	Up:	Python	Library	Reference	Next:	17.1
rexec

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://grail.sourceforge.net/

Previous:	17.	Restricted	Execution	Up:	17.	Restricted	Execution	Next:	17.1.1
RExec	Objects

17.1	rexec	--	Restricted	execution
framework
Changed	in	version	2.3:	Disabled	module.

Warning: 	The	documentation	has	been	left	in	place	to	help	in
reading	old	code	that	uses	the	module.

This	module	contains	the	RExec	class,	which	supports	r_eval(),
r_execfile(),	r_exec(),	and	r_import()	methods,	which	are
restricted	versions	of	the	standard	Python	functions	eval(),	execfile()
and	the	exec	and	import	statements.	Code	executed	in	this	restricted
environment	will	only	have	access	to	modules	and	functions	that	are	deemed
safe;	you	can	subclass	RExec	to	add	or	remove	capabilities	as	desired.

Warning: 	While	the	rexec	module	is	designed	to	perform
as	described	below,	it	does	have	a	few	known	vulnerabilities
which	could	be	exploited	by	carefully	written	code.	Thus	it
should	not	be	relied	upon	in	situations	requiring	``production
ready''	security.	In	such	situations,	execution	via	sub-processes	or
very	careful	``cleansing''	of	both	code	and	data	to	be	processed
may	be	necessary.	Alternatively,	help	in	patching	known	rexec
vulnerabilities	would	be	welcomed.

Note: 	The	RExec	class	can	prevent	code	from	performing
unsafe	operations	like	reading	or	writing	disk	files,	or	using
TCP/IP	sockets.	However,	it	does	not	protect	against	code	using
extremely	large	amounts	of	memory	or	processor	time.

class	RExec([hooks[,	verbose]])

Returns	an	instance	of	the	RExec	class.

hooks	is	an	instance	of	the	RHooks	class	or	a	subclass	of	it.	If	it	is	omitted
or	None,	the	default	RHooks	class	is	instantiated.	Whenever	the	rexec
module	searches	for	a	module	(even	a	built-in	one)	or	reads	a	module's
code,	it	doesn't	actually	go	out	to	the	file	system	itself.	Rather,	it	calls
methods	of	an	RHooks	instance	that	was	passed	to	or	created	by	its
constructor.	(Actually,	the	RExec	object	doesn't	make	these	calls	--	they
are	made	by	a	module	loader	object	that's	part	of	the	RExec	object.	This
allows	another	level	of	flexibility,	which	can	be	useful	when	changing	the
mechanics	of	import	within	the	restricted	environment.)

By	providing	an	alternate	RHooks	object,	we	can	control	the	file	system
accesses	made	to	import	a	module,	without	changing	the	actual	algorithm
that	controls	the	order	in	which	those	accesses	are	made.	For	instance,	we
could	substitute	an	RHooks	object	that	passes	all	filesystem	requests	to	a
file	server	elsewhere,	via	some	RPC	mechanism	such	as	ILU.	Grail's	applet
loader	uses	this	to	support	importing	applets	from	a	URL	for	a	directory.

If	verbose	is	true,	additional	debugging	output	may	be	sent	to	standard
output.

It	is	important	to	be	aware	that	code	running	in	a	restricted	environment	can	still
call	the	sys.exit()	function.	To	disallow	restricted	code	from	exiting	the
interpreter,	always	protect	calls	that	cause	restricted	code	to	run	with	a
try/except	statement	that	catches	the	SystemExit	exception.	Removing
the	sys.exit()	function	from	the	restricted	environment	is	not	sufficient	--
the	restricted	code	could	still	use	raise	SystemExit.	Removing
SystemExit	is	not	a	reasonable	option;	some	library	code	makes	use	of	this
and	would	break	were	it	not	available.

See	Also:

Grail	Home	Page
Grail	is	a	Web	browser	written	entirely	in	Python.	It	uses	the	rexec
module	as	a	foundation	for	supporting	Python	applets,	and	can	be	used
as	an	example	usage	of	this	module.

http://grail.sourceforge.net/

Subsections

17.1.1	RExec	Objects
17.1.2	Defining	restricted	environments
17.1.3	An	example

Python	Library	Reference
Previous:	17.	Restricted	Execution	Up:	17.	Restricted	Execution	Next:	17.1.1
RExec	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	17.1	rexec	Up:	17.1	rexec	Next:	17.1.2	Defining	restricted
environments

17.1.1	RExec	Objects
RExec	instances	support	the	following	methods:

r_eval(code)
code	must	either	be	a	string	containing	a	Python	expression,	or	a	compiled
code	object,	which	will	be	evaluated	in	the	restricted	environment's
__main__	module.	The	value	of	the	expression	or	code	object	will	be
returned.

r_exec(code)
code	must	either	be	a	string	containing	one	or	more	lines	of	Python	code,	or
a	compiled	code	object,	which	will	be	executed	in	the	restricted
environment's	__main__	module.

r_execfile(filename)
Execute	the	Python	code	contained	in	the	file	filename	in	the	restricted
environment's	__main__	module.

Methods	whose	names	begin	with	"s_"	are	similar	to	the	functions	beginning
with	"r_",	but	the	code	will	be	granted	access	to	restricted	versions	of	the
standard	I/O	streams	sys.stdin,	sys.stderr,	and	sys.stdout.

s_eval(code)
code	must	be	a	string	containing	a	Python	expression,	which	will	be
evaluated	in	the	restricted	environment.

s_exec(code)
code	must	be	a	string	containing	one	or	more	lines	of	Python	code,	which
will	be	executed	in	the	restricted	environment.

s_execfile(code)
Execute	the	Python	code	contained	in	the	file	filename	in	the	restricted
environment.

RExec	objects	must	also	support	various	methods	which	will	be	implicitly

called	by	code	executing	in	the	restricted	environment.	Overriding	these
methods	in	a	subclass	is	used	to	change	the	policies	enforced	by	a	restricted
environment.

r_import(modulename[,	globals[,	locals[,	fromlist]]])
Import	the	module	modulename,	raising	an	ImportError	exception	if
the	module	is	considered	unsafe.

r_open(filename[,	mode[,	bufsize]])
Method	called	when	open()	is	called	in	the	restricted	environment.	The
arguments	are	identical	to	those	of	open(),	and	a	file	object	(or	a	class
instance	compatible	with	file	objects)	should	be	returned.	RExec's	default
behaviour	is	allow	opening	any	file	for	reading,	but	forbidding	any	attempt
to	write	a	file.	See	the	example	below	for	an	implementation	of	a	less
restrictive	r_open().

r_reload(module)
Reload	the	module	object	module,	re-parsing	and	re-initializing	it.

r_unload(module)
Unload	the	module	object	module	(remove	it	from	the	restricted
environment's	sys.modules	dictionary).

And	their	equivalents	with	access	to	restricted	standard	I/O	streams:

s_import(modulename[,	globals[,	locals[,	fromlist]]])
Import	the	module	modulename,	raising	an	ImportError	exception	if
the	module	is	considered	unsafe.

s_reload(module)
Reload	the	module	object	module,	re-parsing	and	re-initializing	it.

s_unload(module)
Unload	the	module	object	module.

Python	Library	Reference

Previous:	17.1	rexec	Up:	17.1	rexec	Next:	17.1.2	Defining	restricted
environments

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	17.1.1	RExec	Objects	Up:	17.1	rexec	Next:	17.1.3	An	example

17.1.2	Defining	restricted	environments
The	RExec	class	has	the	following	class	attributes,	which	are	used	by	the
__init__()	method.	Changing	them	on	an	existing	instance	won't	have	any
effect;	instead,	create	a	subclass	of	RExec	and	assign	them	new	values	in	the
class	definition.	Instances	of	the	new	class	will	then	use	those	new	values.	All
these	attributes	are	tuples	of	strings.

nok_builtin_names

Contains	the	names	of	built-in	functions	which	will	not	be	available	to
programs	running	in	the	restricted	environment.	The	value	for	RExec	is
('open',	'reload',	'__import__').	(This	gives	the	exceptions,
because	by	far	the	majority	of	built-in	functions	are	harmless.	A	subclass
that	wants	to	override	this	variable	should	probably	start	with	the	value
from	the	base	class	and	concatenate	additional	forbidden	functions	--	when
new	dangerous	built-in	functions	are	added	to	Python,	they	will	also	be
added	to	this	module.)

ok_builtin_modules

Contains	the	names	of	built-in	modules	which	can	be	safely	imported.	The
value	for	RExec	is	('audioop',	'array',	'binascii',
'cmath',	'errno',	'imageop',	'marshal',	'math',

'md5',	'operator',	'parser',	'regex',	'select',

'sha',	'_sre',	'strop',	'struct',	'time').	A	similar
remark	about	overriding	this	variable	applies	--	use	the	value	from	the	base
class	as	a	starting	point.

ok_path

Contains	the	directories	which	will	be	searched	when	an	import	is
performed	in	the	restricted	environment.	The	value	for	RExec	is	the	same
as	sys.path	(at	the	time	the	module	is	loaded)	for	unrestricted	code.

ok_posix_names

Contains	the	names	of	the	functions	in	the	os	module	which	will	be
available	to	programs	running	in	the	restricted	environment.	The	value	for
RExec	is	('error',	'fstat',	'listdir',	'lstat',
'readlink',	'stat',	'times',	'uname',	'getpid',

'getppid',	'getcwd',	'getuid',	'getgid',

'geteuid',	'getegid').

ok_sys_names

Contains	the	names	of	the	functions	and	variables	in	the	sys	module	which
will	be	available	to	programs	running	in	the	restricted	environment.	The
value	for	RExec	is	('ps1',	'ps2',	'copyright',
'version',	'platform',	'exit',	'maxint').

ok_file_types

Contains	the	file	types	from	which	modules	are	allowed	to	be	loaded.	Each
file	type	is	an	integer	constant	defined	in	the	imp	module.	The	meaningful
values	are	PY_SOURCE,	PY_COMPILED,	and	C_EXTENSION.	The	value
for	RExec	is	(C_EXTENSION,	PY_SOURCE).	Adding	PY_COMPILED
in	subclasses	is	not	recommended;	an	attacker	could	exit	the	restricted
execution	mode	by	putting	a	forged	byte-compiled	file	(.pyc)	anywhere	in
your	file	system,	for	example	by	writing	it	to	/tmp	or	uploading	it	to	the
/incoming	directory	of	your	public	FTP	server.

Python	Library	Reference
Previous:	17.1.1	RExec	Objects	Up:	17.1	rexec	Next:	17.1.3	An	example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	17.1.2	Defining	restricted	environments	Up:	17.1	rexec	Next:	17.2
Bastion

17.1.3	An	example
Let	us	say	that	we	want	a	slightly	more	relaxed	policy	than	the	standard	RExec
class.	For	example,	if	we're	willing	to	allow	files	in	/tmp	to	be	written,	we	can
subclass	the	RExec	class:

class	TmpWriterRExec(rexec.RExec):

				def	r_open(self,	file,	mode='r',	buf=-1):

								if	mode	in	('r',	'rb'):

												pass

								elif	mode	in	('w',	'wb',	'a',	'ab'):

												#	check	filename	:	must	begin	with	/tmp/

												if	file[:5]!='/tmp/':	

																raise	IOError,	"can't	write	outside	/tmp"

												elif	(string.find(file,	'/../')	>=	0	or

																	file[:3]	==	'../'	or	file[-3:]	==	'/..'):

																raise	IOError,	"'..'	in	filename	forbidden"

								else:	raise	IOError,	"Illegal	open()	mode"

								return	open(file,	mode,	buf)

Notice	that	the	above	code	will	occasionally	forbid	a	perfectly	valid	filename;
for	example,	code	in	the	restricted	environment	won't	be	able	to	open	a	file
called	/tmp/foo/../bar.	To	fix	this,	the	r_open()	method	would	have	to
simplify	the	filename	to	/tmp/bar,	which	would	require	splitting	apart	the
filename	and	performing	various	operations	on	it.	In	cases	where	security	is	at
stake,	it	may	be	preferable	to	write	simple	code	which	is	sometimes	overly
restrictive,	instead	of	more	general	code	that	is	also	more	complex	and	may
harbor	a	subtle	security	hole.

Python	Library	Reference
Previous:	17.1.2	Defining	restricted	environments	Up:	17.1	rexec	Next:	17.2
Bastion

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	17.1.3	An	example	Up:	17.	Restricted	Execution	Next:	18.	Python
Language	Services

17.2	Bastion	--	Restricting	access
to	objects
Changed	in	version	2.3:	Disabled	module.

Warning: 	The	documentation	has	been	left	in	place	to	help	in
reading	old	code	that	uses	the	module.

According	to	the	dictionary,	a	bastion	is	``a	fortified	area	or	position'',	or
``something	that	is	considered	a	stronghold.''	It's	a	suitable	name	for	this	module,
which	provides	a	way	to	forbid	access	to	certain	attributes	of	an	object.	It	must
always	be	used	with	the	rexec	module,	in	order	to	allow	restricted-mode
programs	access	to	certain	safe	attributes	of	an	object,	while	denying	access	to
other,	unsafe	attributes.

Bastion(object[,	filter[,	name[,	class]]])
Protect	the	object	object,	returning	a	bastion	for	the	object.	Any	attempt	to
access	one	of	the	object's	attributes	will	have	to	be	approved	by	the	filter
function;	if	the	access	is	denied	an	AttributeError	exception	will	be
raised.

If	present,	filter	must	be	a	function	that	accepts	a	string	containing	an
attribute	name,	and	returns	true	if	access	to	that	attribute	will	be	permitted;
if	filter	returns	false,	the	access	is	denied.	The	default	filter	denies	access	to
any	function	beginning	with	an	underscore	("_").	The	bastion's	string
representation	will	be	"<Bastion	for	name>"	if	a	value	for	name	is
provided;	otherwise,	"repr(object)"	will	be	used.

class,	if	present,	should	be	a	subclass	of	BastionClass;	see	the	code	in
bastion.py	for	the	details.	Overriding	the	default	BastionClass	will
rarely	be	required.

class	BastionClass(getfunc,	name)

Class	which	actually	implements	bastion	objects.	This	is	the	default	class
used	by	Bastion().	The	getfunc	parameter	is	a	function	which	returns
the	value	of	an	attribute	which	should	be	exposed	to	the	restricted	execution
environment	when	called	with	the	name	of	the	attribute	as	the	only
parameter.	name	is	used	to	construct	the	repr()	of	the	BastionClass
instance.

Python	Library	Reference
Previous:	17.1.3	An	example	Up:	17.	Restricted	Execution	Next:	18.	Python
Language	Services

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	17.2	Bastion	Up:	Python	Library	Reference	Next:	18.1	parser

18.	Python	Language	Services
Python	provides	a	number	of	modules	to	assist	in	working	with	the	Python
language.	These	module	support	tokenizing,	parsing,	syntax	analysis,	bytecode
disassembly,	and	various	other	facilities.

These	modules	include:

parser 	 Access	parse	trees	for	Python	source	code.
symbol 	 Constants	representing	internal	nodes	of	the	parse	tree.
token 	 Constants	representing	terminal	nodes	of	the	parse	tree.
keyword 	 Test	whether	a	string	is	a	keyword	in	Python.
tokenize 	 Lexical	scanner	for	Python	source	code.

tabnanny 	 Tool	for	detecting	white	space	related	problems	in	Pythonsource	files	in	a	directory	tree.
pyclbr 	 Supports	information	extraction	for	a	Python	class	browser.
py_compile 	 Compile	Python	source	files	to	byte-code	files.

compileall 	 Tools	for	byte-compiling	all	Python	source	files	in	a	directorytree.
dis 	 Disassembler	for	Python	byte	code.

pickletools 	 Contains	extensive	comments	about	the	pickle	protocols	andpickle-machine	opcodes,	as	well	as	some	useful	functions.

distutils 	 Support	for	building	and	installing	Python	modules	into	anexisting	Python	installation.

Python	Library	Reference
Previous:	17.2	Bastion	Up:	Python	Library	Reference	Next:	18.1	parser

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.	Python	Language	Services	Up:	18.	Python	Language	Services
Next:	18.1.1	Creating	AST	Objects

18.1	parser	--	Access	Python	parse
trees
The	parser	module	provides	an	interface	to	Python's	internal	parser	and	byte-
code	compiler.	The	primary	purpose	for	this	interface	is	to	allow	Python	code	to
edit	the	parse	tree	of	a	Python	expression	and	create	executable	code	from	this.
This	is	better	than	trying	to	parse	and	modify	an	arbitrary	Python	code	fragment
as	a	string	because	parsing	is	performed	in	a	manner	identical	to	the	code
forming	the	application.	It	is	also	faster.

There	are	a	few	things	to	note	about	this	module	which	are	important	to	making
use	of	the	data	structures	created.	This	is	not	a	tutorial	on	editing	the	parse	trees
for	Python	code,	but	some	examples	of	using	the	parser	module	are	presented.

Most	importantly,	a	good	understanding	of	the	Python	grammar	processed	by	the
internal	parser	is	required.	For	full	information	on	the	language	syntax,	refer	to
the	Python	Language	Reference.	The	parser	itself	is	created	from	a	grammar
specification	defined	in	the	file	Grammar/Grammar	in	the	standard	Python
distribution.	The	parse	trees	stored	in	the	AST	objects	created	by	this	module	are
the	actual	output	from	the	internal	parser	when	created	by	the	expr()	or
suite()	functions,	described	below.	The	AST	objects	created	by
sequence2ast()	faithfully	simulate	those	structures.	Be	aware	that	the
values	of	the	sequences	which	are	considered	``correct''	will	vary	from	one
version	of	Python	to	another	as	the	formal	grammar	for	the	language	is	revised.
However,	transporting	code	from	one	Python	version	to	another	as	source	text
will	always	allow	correct	parse	trees	to	be	created	in	the	target	version,	with	the
only	restriction	being	that	migrating	to	an	older	version	of	the	interpreter	will	not
support	more	recent	language	constructs.	The	parse	trees	are	not	typically
compatible	from	one	version	to	another,	whereas	source	code	has	always	been
forward-compatible.

Each	element	of	the	sequences	returned	by	ast2list()	or	ast2tuple()
has	a	simple	form.	Sequences	representing	non-terminal	elements	in	the
grammar	always	have	a	length	greater	than	one.	The	first	element	is	an	integer
which	identifies	a	production	in	the	grammar.	These	integers	are	given	symbolic
names	in	the	C	header	file	Include/graminit.h	and	the	Python	module	symbol.

Each	additional	element	of	the	sequence	represents	a	component	of	the
production	as	recognized	in	the	input	string:	these	are	always	sequences	which
have	the	same	form	as	the	parent.	An	important	aspect	of	this	structure	which
should	be	noted	is	that	keywords	used	to	identify	the	parent	node	type,	such	as
the	keyword	if	in	an	if_stmt,	are	included	in	the	node	tree	without	any
special	treatment.	For	example,	the	if	keyword	is	represented	by	the	tuple	(1,
'if'),	where	1	is	the	numeric	value	associated	with	all	NAME	tokens,
including	variable	and	function	names	defined	by	the	user.	In	an	alternate	form
returned	when	line	number	information	is	requested,	the	same	token	might	be
represented	as	(1,	'if',	12),	where	the	12	represents	the	line	number	at
which	the	terminal	symbol	was	found.

Terminal	elements	are	represented	in	much	the	same	way,	but	without	any	child
elements	and	the	addition	of	the	source	text	which	was	identified.	The	example
of	the	if	keyword	above	is	representative.	The	various	types	of	terminal
symbols	are	defined	in	the	C	header	file	Include/token.h	and	the	Python	module
token.

The	AST	objects	are	not	required	to	support	the	functionality	of	this	module,	but
are	provided	for	three	purposes:	to	allow	an	application	to	amortize	the	cost	of
processing	complex	parse	trees,	to	provide	a	parse	tree	representation	which
conserves	memory	space	when	compared	to	the	Python	list	or	tuple
representation,	and	to	ease	the	creation	of	additional	modules	in	C	which
manipulate	parse	trees.	A	simple	``wrapper''	class	may	be	created	in	Python	to
hide	the	use	of	AST	objects.

The	parser	module	defines	functions	for	a	few	distinct	purposes.	The	most
important	purposes	are	to	create	AST	objects	and	to	convert	AST	objects	to
other	representations	such	as	parse	trees	and	compiled	code	objects,	but	there	are
also	functions	which	serve	to	query	the	type	of	parse	tree	represented	by	an	AST
object.

See	Also:

Module	symbol:
Useful	constants	representing	internal	nodes	of	the	parse	tree.

Module	token:

Useful	constants	representing	leaf	nodes	of	the	parse	tree	and
functions	for	testing	node	values.

Subsections

18.1.1	Creating	AST	Objects
18.1.2	Converting	AST	Objects
18.1.3	Queries	on	AST	Objects
18.1.4	Exceptions	and	Error	Handling
18.1.5	AST	Objects
18.1.6	Examples

18.1.6.1	Emulation	of	compile()
18.1.6.2	Information	Discovery

Python	Library	Reference
Previous:	18.	Python	Language	Services	Up:	18.	Python	Language	Services
Next:	18.1.1	Creating	AST	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.1	parser	Up:	18.1	parser	Next:	18.1.2	Converting	AST	Objects

18.1.1	Creating	AST	Objects
AST	objects	may	be	created	from	source	code	or	from	a	parse	tree.	When
creating	an	AST	object	from	source,	different	functions	are	used	to	create	the
'eval'	and	'exec'	forms.

expr(source)
The	expr()	function	parses	the	parameter	source	as	if	it	were	an	input	to
"compile(source,	'file.py',	'eval')".	If	the	parse	succeeds,	an
AST	object	is	created	to	hold	the	internal	parse	tree	representation,
otherwise	an	appropriate	exception	is	thrown.

suite(source)
The	suite()	function	parses	the	parameter	source	as	if	it	were	an	input	to
"compile(source,	'file.py',	'exec')".	If	the	parse	succeeds,	an
AST	object	is	created	to	hold	the	internal	parse	tree	representation,
otherwise	an	appropriate	exception	is	thrown.

sequence2ast(sequence)
This	function	accepts	a	parse	tree	represented	as	a	sequence	and	builds	an
internal	representation	if	possible.	If	it	can	validate	that	the	tree	conforms	to
the	Python	grammar	and	all	nodes	are	valid	node	types	in	the	host	version
of	Python,	an	AST	object	is	created	from	the	internal	representation	and
returned	to	the	called.	If	there	is	a	problem	creating	the	internal
representation,	or	if	the	tree	cannot	be	validated,	a	ParserError
exception	is	thrown.	An	AST	object	created	this	way	should	not	be
assumed	to	compile	correctly;	normal	exceptions	thrown	by	compilation
may	still	be	initiated	when	the	AST	object	is	passed	to	compileast().
This	may	indicate	problems	not	related	to	syntax	(such	as	a
MemoryError	exception),	but	may	also	be	due	to	constructs	such	as	the
result	of	parsing	del	f(0),	which	escapes	the	Python	parser	but	is
checked	by	the	bytecode	compiler.

Sequences	representing	terminal	tokens	may	be	represented	as	either	two-
element	lists	of	the	form	(1,	'name')	or	as	three-element	lists	of	the
form	(1,	'name',	56).	If	the	third	element	is	present,	it	is	assumed	to

be	a	valid	line	number.	The	line	number	may	be	specified	for	any	subset	of
the	terminal	symbols	in	the	input	tree.

tuple2ast(sequence)
This	is	the	same	function	as	sequence2ast().	This	entry	point	is
maintained	for	backward	compatibility.

Python	Library	Reference
Previous:	18.1	parser	Up:	18.1	parser	Next:	18.1.2	Converting	AST	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.1.1	Creating	AST	Objects	Up:	18.1	parser	Next:	18.1.3	Queries
on	AST

18.1.2	Converting	AST	Objects
AST	objects,	regardless	of	the	input	used	to	create	them,	may	be	converted	to
parse	trees	represented	as	list-	or	tuple-	trees,	or	may	be	compiled	into
executable	code	objects.	Parse	trees	may	be	extracted	with	or	without	line
numbering	information.

ast2list(ast[,	line_info])
This	function	accepts	an	AST	object	from	the	caller	in	ast	and	returns	a
Python	list	representing	the	equivalent	parse	tree.	The	resulting	list
representation	can	be	used	for	inspection	or	the	creation	of	a	new	parse	tree
in	list	form.	This	function	does	not	fail	so	long	as	memory	is	available	to
build	the	list	representation.	If	the	parse	tree	will	only	be	used	for
inspection,	ast2tuple()	should	be	used	instead	to	reduce	memory
consumption	and	fragmentation.	When	the	list	representation	is	required,
this	function	is	significantly	faster	than	retrieving	a	tuple	representation	and
converting	that	to	nested	lists.

If	line_info	is	true,	line	number	information	will	be	included	for	all	terminal
tokens	as	a	third	element	of	the	list	representing	the	token.	Note	that	the
line	number	provided	specifies	the	line	on	which	the	token	ends.	This
information	is	omitted	if	the	flag	is	false	or	omitted.

ast2tuple(ast[,	line_info])
This	function	accepts	an	AST	object	from	the	caller	in	ast	and	returns	a
Python	tuple	representing	the	equivalent	parse	tree.	Other	than	returning	a
tuple	instead	of	a	list,	this	function	is	identical	to	ast2list().

If	line_info	is	true,	line	number	information	will	be	included	for	all	terminal
tokens	as	a	third	element	of	the	list	representing	the	token.	This	information
is	omitted	if	the	flag	is	false	or	omitted.

compileast(ast[,	filename	=	'<ast>'])
The	Python	byte	compiler	can	be	invoked	on	an	AST	object	to	produce
code	objects	which	can	be	used	as	part	of	an	exec	statement	or	a	call	to	the
built-in	eval()	function.	This	function	provides	the	interface	to	the

compiler,	passing	the	internal	parse	tree	from	ast	to	the	parser,	using	the
source	file	name	specified	by	the	filename	parameter.	The	default	value
supplied	for	filename	indicates	that	the	source	was	an	AST	object.

Compiling	an	AST	object	may	result	in	exceptions	related	to	compilation;
an	example	would	be	a	SyntaxError	caused	by	the	parse	tree	for	del
f(0):	this	statement	is	considered	legal	within	the	formal	grammar	for
Python	but	is	not	a	legal	language	construct.	The	SyntaxError	raised	for
this	condition	is	actually	generated	by	the	Python	byte-compiler	normally,
which	is	why	it	can	be	raised	at	this	point	by	the	parser	module.	Most
causes	of	compilation	failure	can	be	diagnosed	programmatically	by
inspection	of	the	parse	tree.

Python	Library	Reference
Previous:	18.1.1	Creating	AST	Objects	Up:	18.1	parser	Next:	18.1.3	Queries
on	AST

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.1.2	Converting	AST	Objects	Up:	18.1	parser	Next:	18.1.4
Exceptions	and	Error

18.1.3	Queries	on	AST	Objects
Two	functions	are	provided	which	allow	an	application	to	determine	if	an	AST
was	created	as	an	expression	or	a	suite.	Neither	of	these	functions	can	be	used	to
determine	if	an	AST	was	created	from	source	code	via	expr()	or	suite()	or
from	a	parse	tree	via	sequence2ast().

isexpr(ast)
When	ast	represents	an	'eval'	form,	this	function	returns	true,	otherwise
it	returns	false.	This	is	useful,	since	code	objects	normally	cannot	be
queried	for	this	information	using	existing	built-in	functions.	Note	that	the
code	objects	created	by	compileast()	cannot	be	queried	like	this	either,
and	are	identical	to	those	created	by	the	built-in	compile()	function.

issuite(ast)
This	function	mirrors	isexpr()	in	that	it	reports	whether	an	AST	object
represents	an	'exec'	form,	commonly	known	as	a	``suite.''	It	is	not	safe	to
assume	that	this	function	is	equivalent	to	"not	isexpr(ast)",	as
additional	syntactic	fragments	may	be	supported	in	the	future.

Python	Library	Reference
Previous:	18.1.2	Converting	AST	Objects	Up:	18.1	parser	Next:	18.1.4
Exceptions	and	Error

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.1.3	Queries	on	AST	Up:	18.1	parser	Next:	18.1.5	AST	Objects

18.1.4	Exceptions	and	Error	Handling
The	parser	module	defines	a	single	exception,	but	may	also	pass	other	built-in
exceptions	from	other	portions	of	the	Python	runtime	environment.	See	each
function	for	information	about	the	exceptions	it	can	raise.

exception	ParserError
Exception	raised	when	a	failure	occurs	within	the	parser	module.	This	is
generally	produced	for	validation	failures	rather	than	the	built	in
SyntaxError	thrown	during	normal	parsing.	The	exception	argument	is
either	a	string	describing	the	reason	of	the	failure	or	a	tuple	containing	a
sequence	causing	the	failure	from	a	parse	tree	passed	to
sequence2ast()	and	an	explanatory	string.	Calls	to
sequence2ast()	need	to	be	able	to	handle	either	type	of	exception,
while	calls	to	other	functions	in	the	module	will	only	need	to	be	aware	of
the	simple	string	values.

Note	that	the	functions	compileast(),	expr(),	and	suite()	may	throw
exceptions	which	are	normally	thrown	by	the	parsing	and	compilation	process.
These	include	the	built	in	exceptions	MemoryError,	OverflowError,
SyntaxError,	and	SystemError.	In	these	cases,	these	exceptions	carry	all
the	meaning	normally	associated	with	them.	Refer	to	the	descriptions	of	each
function	for	detailed	information.

Python	Library	Reference
Previous:	18.1.3	Queries	on	AST	Up:	18.1	parser	Next:	18.1.5	AST	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.1.4	Exceptions	and	Error	Up:	18.1	parser	Next:	18.1.6	Examples

18.1.5	AST	Objects
Ordered	and	equality	comparisons	are	supported	between	AST	objects.	Pickling
of	AST	objects	(using	the	pickle	module)	is	also	supported.

ASTType

The	type	of	the	objects	returned	by	expr(),	suite()	and
sequence2ast().

AST	objects	have	the	following	methods:

compile([filename])
Same	as	compileast(ast,	filename).

isexpr()
Same	as	isexpr(ast).

issuite()
Same	as	issuite(ast).

tolist([line_info])
Same	as	ast2list(ast,	line_info).

totuple([line_info])
Same	as	ast2tuple(ast,	line_info).

Python	Library	Reference
Previous:	18.1.4	Exceptions	and	Error	Up:	18.1	parser	Next:	18.1.6	Examples

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.1.5	AST	Objects	Up:	18.1	parser	Next:	18.1.6.1	Emulation	of
compile()

18.1.6	Examples
The	parser	modules	allows	operations	to	be	performed	on	the	parse	tree	of
Python	source	code	before	the	bytecode	is	generated,	and	provides	for	inspection
of	the	parse	tree	for	information	gathering	purposes.	Two	examples	are
presented.	The	simple	example	demonstrates	emulation	of	the	compile()
built-in	function	and	the	complex	example	shows	the	use	of	a	parse	tree	for
information	discovery.

Subsections

18.1.6.1	Emulation	of	compile()
18.1.6.2	Information	Discovery

Python	Library	Reference
Previous:	18.1.5	AST	Objects	Up:	18.1	parser	Next:	18.1.6.1	Emulation	of
compile()

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.1.6.2	Information	Discovery	Up:	18.	Python	Language	Services
Next:	18.3	token

18.2	symbol	--	Constants	used	with
Python	parse	trees
This	module	provides	constants	which	represent	the	numeric	values	of	internal
nodes	of	the	parse	tree.	Unlike	most	Python	constants,	these	use	lower-case
names.	Refer	to	the	file	Grammar/Grammar	in	the	Python	distribution	for	the
definitions	of	the	names	in	the	context	of	the	language	grammar.	The	specific
numeric	values	which	the	names	map	to	may	change	between	Python	versions.

This	module	also	provides	one	additional	data	object:

sym_name

Dictionary	mapping	the	numeric	values	of	the	constants	defined	in	this
module	back	to	name	strings,	allowing	more	human-readable	representation
of	parse	trees	to	be	generated.

See	Also:

Module	parser:
The	second	example	for	the	parser	module	shows	how	to	use	the
symbol	module.

Python	Library	Reference
Previous:	18.1.6.2	Information	Discovery	Up:	18.	Python	Language	Services
Next:	18.3	token

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.2	symbol	Up:	18.	Python	Language	Services	Next:	18.4	keyword

18.3	token	--	Constants	used	with
Python	parse	trees
This	module	provides	constants	which	represent	the	numeric	values	of	leaf
nodes	of	the	parse	tree	(terminal	tokens).	Refer	to	the	file	Grammar/Grammar
in	the	Python	distribution	for	the	definitions	of	the	names	in	the	context	of	the
language	grammar.	The	specific	numeric	values	which	the	names	map	to	may
change	between	Python	versions.

This	module	also	provides	one	data	object	and	some	functions.	The	functions
mirror	definitions	in	the	Python	C	header	files.

tok_name

Dictionary	mapping	the	numeric	values	of	the	constants	defined	in	this
module	back	to	name	strings,	allowing	more	human-readable	representation
of	parse	trees	to	be	generated.

ISTERMINAL(x)
Return	true	for	terminal	token	values.

ISNONTERMINAL(x)
Return	true	for	non-terminal	token	values.

ISEOF(x)
Return	true	if	x	is	the	marker	indicating	the	end	of	input.

See	Also:

Module	parser:
The	second	example	for	the	parser	module	shows	how	to	use	the
symbol	module.

Python	Library	Reference
Previous:	18.2	symbol	Up:	18.	Python	Language	Services	Next:	18.4	keyword

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.3	token	Up:	18.	Python	Language	Services	Next:	18.5	tokenize

18.4	keyword	--	Testing	for	Python
keywords
This	module	allows	a	Python	program	to	determine	if	a	string	is	a	keyword.

iskeyword(s)
Return	true	if	s	is	a	Python	keyword.

kwlist

Sequence	containing	all	the	keywords	defined	for	the	interpreter.	If	any
keywords	are	defined	to	only	be	active	when	particular	__future__
statements	are	in	effect,	these	will	be	included	as	well.

Python	Library	Reference
Previous:	18.3	token	Up:	18.	Python	Language	Services	Next:	18.5	tokenize

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.4	keyword	Up:	18.	Python	Language	Services	Next:	18.6
tabnanny

18.5	tokenize	--	Tokenizer	for
Python	source
The	tokenize	module	provides	a	lexical	scanner	for	Python	source	code,
implemented	in	Python.	The	scanner	in	this	module	returns	comments	as	tokens
as	well,	making	it	useful	for	implementing	``pretty-printers,''	including	colorizers
for	on-screen	displays.

The	primary	entry	point	is	a	generator:

generate_tokens(readline)
The	generate_tokens()	generator	requires	one	argment,	readline,
which	must	be	a	callable	object	which	provides	the	same	interface	as	the
readline()	method	of	built-in	file	objects	(see	section	2.3.9).	Each	call
to	the	function	should	return	one	line	of	input	as	a	string.

The	generator	produces	5-tuples	with	these	members:	the	token	type;	the
token	string;	a	2-tuple	(srow,	scol)	of	ints	specifying	the	row	and	column
where	the	token	begins	in	the	source;	a	2-tuple	(erow,	ecol)	of	ints
specifying	the	row	and	column	where	the	token	ends	in	the	source;	and	the
line	on	which	the	token	was	found.	The	line	passed	is	the	logical	line;
continuation	lines	are	included.	New	in	version	2.2.

An	older	entry	point	is	retained	for	backward	compatibility:

tokenize(readline[,	tokeneater])
The	tokenize()	function	accepts	two	parameters:	one	representing	the
input	stream,	and	one	providing	an	output	mechanism	for	tokenize().

The	first	parameter,	readline,	must	be	a	callable	object	which	provides	the
same	interface	as	the	readline()	method	of	built-in	file	objects	(see
section	2.3.9).	Each	call	to	the	function	should	return	one	line	of	input	as	a
string.

The	second	parameter,	tokeneater,	must	also	be	a	callable	object.	It	is	called

once	for	each	token,	with	five	arguments,	corresponding	to	the	tuples
generated	by	generate_tokens().

All	constants	from	the	token	module	are	also	exported	from	tokenize,	as
are	two	additional	token	type	values	that	might	be	passed	to	the	tokeneater
function	by	tokenize():

COMMENT

Token	value	used	to	indicate	a	comment.

NL

Token	value	used	to	indicate	a	non-terminating	newline.	The	NEWLINE
token	indicates	the	end	of	a	logical	line	of	Python	code;	NL	tokens	are
generated	when	a	logical	line	of	code	is	continued	over	multiple	physical
lines.

Python	Library	Reference
Previous:	18.4	keyword	Up:	18.	Python	Language	Services	Next:	18.6
tabnanny

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.5	tokenize	Up:	18.	Python	Language	Services	Next:	18.7	pyclbr

18.6	tabnanny	--	Detection	of
ambiguous	indentation
For	the	time	being	this	module	is	intended	to	be	called	as	a	script.	However	it	is
possible	to	import	it	into	an	IDE	and	use	the	function	check()	described
below.

Warning:	The	API	provided	by	this	module	is	likely	to	change	in	future
releases;	such	changes	may	not	be	backward	compatible.

check(file_or_dir)
If	file_or_dir	is	a	directory	and	not	a	symbolic	link,	then	recursively
descend	the	directory	tree	named	by	file_or_dir,	checking	all	.py	files	along
the	way.	If	file_or_dir	is	an	ordinary	Python	source	file,	it	is	checked	for
whitespace	related	problems.	The	diagnostic	messages	are	written	to
standard	output	using	the	print	statement.

verbose

Flag	indicating	whether	to	print	verbose	messages.	This	is	incremented	by
the	-v	option	if	called	as	a	script.

filename_only

Flag	indicating	whether	to	print	only	the	filenames	of	files	containing
whitespace	related	problems.	This	is	set	to	true	by	the	-q	option	if	called	as
a	script.

exception	NannyNag
Raised	by	tokeneater()	if	detecting	an	ambiguous	indent.	Captured
and	handled	in	check().

tokeneater(type,	token,	start,	end,	line)
This	function	is	used	by	check()	as	a	callback	parameter	to	the	function
tokenize.tokenize().

See	Also:

Module	tokenize:
Lexical	scanner	for	Python	source	code.

Python	Library	Reference
Previous:	18.5	tokenize	Up:	18.	Python	Language	Services	Next:	18.7	pyclbr

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.6	tabnanny	Up:	18.	Python	Language	Services	Next:	18.7.1
Class	Descriptor	Objects

18.7	pyclbr	--	Python	class	browser
support
The	pyclbr	can	be	used	to	determine	some	limited	information	about	the
classes,	methods	and	top-level	functions	defined	in	a	module.	The	information
provided	is	sufficient	to	implement	a	traditional	three-pane	class	browser.	The
information	is	extracted	from	the	source	code	rather	than	by	importing	the
module,	so	this	module	is	safe	to	use	with	untrusted	source	code.	This	restriction
makes	it	impossible	to	use	this	module	with	modules	not	implemented	in
Python,	including	many	standard	and	optional	extension	modules.

readmodule(module[,	path])
Read	a	module	and	return	a	dictionary	mapping	class	names	to	class
descriptor	objects.	The	parameter	module	should	be	the	name	of	a	module
as	a	string;	it	may	be	the	name	of	a	module	within	a	package.	The	path
parameter	should	be	a	sequence,	and	is	used	to	augment	the	value	of
sys.path,	which	is	used	to	locate	module	source	code.

readmodule_ex(module[,	path])
Like	readmodule(),	but	the	returned	dictionary,	in	addition	to	mapping
class	names	to	class	descriptor	objects,	also	maps	top-level	function	names
to	function	descriptor	objects.	Moreover,	if	the	module	being	read	is	a
package,	the	key	'__path__'	in	the	returned	dictionary	has	as	its	value	a
list	which	contains	the	package	search	path.

Subsections

18.7.1	Class	Descriptor	Objects
18.7.2	Function	Descriptor	Objects

Python	Library	Reference
Previous:	18.6	tabnanny	Up:	18.	Python	Language	Services	Next:	18.7.1
Class	Descriptor	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.7	pyclbr	Up:	18.7	pyclbr	Next:	18.7.2	Function	Descriptor	Objects

18.7.1	Class	Descriptor	Objects
The	class	descriptor	objects	used	as	values	in	the	dictionary	returned	by
readmodule()	and	readmodule_ex()	provide	the	following	data
members:

module

The	name	of	the	module	defining	the	class	described	by	the	class	descriptor.

name

The	name	of	the	class.

super

A	list	of	class	descriptors	which	describe	the	immediate	base	classes	of	the
class	being	described.	Classes	which	are	named	as	superclasses	but	which
are	not	discoverable	by	readmodule()	are	listed	as	a	string	with	the
class	name	instead	of	class	descriptors.

methods

A	dictionary	mapping	method	names	to	line	numbers.

file

Name	of	the	file	containing	the	class	statement	defining	the	class.

lineno

The	line	number	of	the	class	statement	within	the	file	named	by	file.

Python	Library	Reference
Previous:	18.7	pyclbr	Up:	18.7	pyclbr	Next:	18.7.2	Function	Descriptor	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.7.1	Class	Descriptor	Objects	Up:	18.7	pyclbr	Next:	18.8
py_compile

18.7.2	Function	Descriptor	Objects
The	function	descriptor	objects	used	as	values	in	the	dictionary	returned	by
readmodule_ex()	provide	the	following	data	members:

module

The	name	of	the	module	defining	the	function	described	by	the	function
descriptor.

name

The	name	of	the	function.

file

Name	of	the	file	containing	the	def	statement	defining	the	function.

lineno

The	line	number	of	the	def	statement	within	the	file	named	by	file.

Python	Library	Reference
Previous:	18.7.1	Class	Descriptor	Objects	Up:	18.7	pyclbr	Next:	18.8
py_compile

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.7.2	Function	Descriptor	Objects	Up:	18.	Python	Language
Services	Next:	18.9	compileall

18.8	py_compile	--	Compile	Python
source	files
The	py_compile	module	provides	a	function	to	generate	a	byte-code	file	from
a	source	file,	and	another	function	used	when	the	module	source	file	is	invoked
as	a	script.

Though	not	often	needed,	this	function	can	be	useful	when	installing	modules
for	shared	use,	especially	if	some	of	the	users	may	not	have	permission	to	write
the	byte-code	cache	files	in	the	directory	containing	the	source	code.

exception	PyCompileError
Exception	raised	when	an	error	occurs	while	attempting	to	compile	the	file.

compile(file[,	cfile[,	dfile[,	doraise]]])
Compile	a	source	file	to	byte-code	and	write	out	the	byte-code	cache	file.
The	source	code	is	loaded	from	the	file	name	file.	The	byte-code	is	written
to	cfile,	which	defaults	to	file	+	'c'	('o'	if	optimization	is	enabled	in	the
current	interpreter).	If	dfile	is	specified,	it	is	used	as	the	name	of	the	source
file	in	error	messages	instead	of	file.	If	doraise	=	True,	a	PyCompileError	is
raised	when	an	error	is	encountered	while	compiling	file.	If	doraise	=	False
(the	default),	an	error	string	is	written	to	sys.stderr,	but	no	exception	is
raised.

main([args])
Compile	several	source	files.	The	files	named	in	args	(or	on	the	command
line,	if	args	is	not	specified)	are	compiled	and	the	resulting	bytecode	is
cached	in	the	normal	manner.	This	function	does	not	search	a	directory
structure	to	locate	source	files;	it	only	compiles	files	named	explicitly.

When	this	module	is	run	as	a	script,	the	main()	is	used	to	compile	all	the	files
named	on	the	command	line.

See	Also:

Module	compileall:
Utilities	to	compile	all	Python	source	files	in	a	directory	tree.

Python	Library	Reference
Previous:	18.7.2	Function	Descriptor	Objects	Up:	18.	Python	Language
Services	Next:	18.9	compileall

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.8	py_compile	Up:	18.	Python	Language	Services	Next:	18.10	dis

18.9	compileall	--	Byte-compile
Python	libraries
This	module	provides	some	utility	functions	to	support	installing	Python
libraries.	These	functions	compile	Python	source	files	in	a	directory	tree,
allowing	users	without	permission	to	write	to	the	libraries	to	take	advantage	of
cached	byte-code	files.

The	source	file	for	this	module	may	also	be	used	as	a	script	to	compile	Python
sources	in	directories	named	on	the	command	line	or	in	sys.path.

compile_dir(dir[,	maxlevels[,	ddir[,	force[,	rx[,	quiet]]]]])
Recursively	descend	the	directory	tree	named	by	dir,	compiling	all	.py	files
along	the	way.	The	maxlevels	parameter	is	used	to	limit	the	depth	of	the
recursion;	it	defaults	to	10.	If	ddir	is	given,	it	is	used	as	the	base	path	from
which	the	filenames	used	in	error	messages	will	be	generated.	If	force	is
true,	modules	are	re-compiled	even	if	the	timestamps	are	up	to	date.

If	rx	is	given,	it	specifies	a	regular	expression	of	file	names	to	exclude	from
the	search;	that	expression	is	searched	for	in	the	full	path.

If	quiet	is	true,	nothing	is	printed	to	the	standard	output	in	normal
operation.

compile_path([skip_curdir[,	maxlevels[,	force]]])
Byte-compile	all	the	.py	files	found	along	sys.path.	If	skip_curdir	is
true	(the	default),	the	current	directory	is	not	included	in	the	search.	The
maxlevels	and	force	parameters	default	to	0	and	are	passed	to	the
compile_dir()	function.

See	Also:

Module	py_compile:
Byte-compile	a	single	source	file.

Python	Library	Reference
Previous:	18.8	py_compile	Up:	18.	Python	Language	Services	Next:	18.10	dis

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.9	compileall	Up:	18.	Python	Language	Services	Next:	18.10.1
Python	Byte	Code

18.10	dis	--	Disassembler	for
Python	byte	code
The	dis	module	supports	the	analysis	of	Python	byte	code	by	disassembling	it.
Since	there	is	no	Python	assembler,	this	module	defines	the	Python	assembly
language.	The	Python	byte	code	which	this	module	takes	as	an	input	is	defined
in	the	file	Include/opcode.h	and	used	by	the	compiler	and	the	interpreter.

Example:	Given	the	function	myfunc:

def	myfunc(alist):

				return	len(alist)

the	following	command	can	be	used	to	get	the	disassembly	of	myfunc():

>>>	dis.dis(myfunc)

		2											0	LOAD_GLOBAL														0	(len)

														3	LOAD_FAST																0	(alist)

														6	CALL_FUNCTION												1

														9	RETURN_VALUE								

													10	LOAD_CONST															0	(None)

													13	RETURN_VALUE

(The	``2''	is	a	line	number).

The	dis	module	defines	the	following	functions	and	constants:

dis([bytesource])
Disassemble	the	bytesource	object.	bytesource	can	denote	either	a	module,
a	class,	a	method,	a	function,	or	a	code	object.	For	a	module,	it
disassembles	all	functions.	For	a	class,	it	disassembles	all	methods.	For	a
single	code	sequence,	it	prints	one	line	per	byte	code	instruction.	If	no
object	is	provided,	it	disassembles	the	last	traceback.

distb([tb])
Disassembles	the	top-of-stack	function	of	a	traceback,	using	the	last
traceback	if	none	was	passed.	The	instruction	causing	the	exception	is
indicated.

disassemble(code[,	lasti])
Disassembles	a	code	object,	indicating	the	last	instruction	if	lasti	was
provided.	The	output	is	divided	in	the	following	columns:

1.	 the	line	number,	for	the	first	instruction	of	each	line
2.	 the	current	instruction,	indicated	as	"-->",
3.	 a	labelled	instruction,	indicated	with	">>",
4.	 the	address	of	the	instruction,
5.	 the	operation	code	name,
6.	 operation	parameters,	and
7.	 interpretation	of	the	parameters	in	parentheses.

The	parameter	interpretation	recognizes	local	and	global	variable	names,
constant	values,	branch	targets,	and	compare	operators.

disco(code[,	lasti])
A	synonym	for	disassemble.	It	is	more	convenient	to	type,	and	kept	for
compatibility	with	earlier	Python	releases.

opname

Sequence	of	operation	names,	indexable	using	the	byte	code.

cmp_op

Sequence	of	all	compare	operation	names.

hasconst

Sequence	of	byte	codes	that	have	a	constant	parameter.

hasfree

Sequence	of	byte	codes	that	access	a	free	variable.

hasname

Sequence	of	byte	codes	that	access	an	attribute	by	name.

hasjrel

Sequence	of	byte	codes	that	have	a	relative	jump	target.

hasjabs

Sequence	of	byte	codes	that	have	an	absolute	jump	target.

haslocal

Sequence	of	byte	codes	that	access	a	local	variable.

hascompare

Sequence	of	byte	codes	of	Boolean	operations.

Subsections

18.10.1	Python	Byte	Code	Instructions

Python	Library	Reference
Previous:	18.9	compileall	Up:	18.	Python	Language	Services	Next:	18.10.1
Python	Byte	Code

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.10	dis	Up:	18.10	dis	Next:	18.11	pickletools

18.10.1	Python	Byte	Code	Instructions
The	Python	compiler	currently	generates	the	following	byte	code	instructions.

STOP_CODE

Indicates	end-of-code	to	the	compiler,	not	used	by	the	interpreter.

POP_TOP

Removes	the	top-of-stack	(TOS)	item.

ROT_TWO

Swaps	the	two	top-most	stack	items.

ROT_THREE

Lifts	second	and	third	stack	item	one	position	up,	moves	top	down	to
position	three.

ROT_FOUR

Lifts	second,	third	and	forth	stack	item	one	position	up,	moves	top	down	to
position	four.

DUP_TOP

Duplicates	the	reference	on	top	of	the	stack.

Unary	Operations	take	the	top	of	the	stack,	apply	the	operation,	and	push	the
result	back	on	the	stack.

UNARY_POSITIVE

Implements	TOS	=	+TOS.

UNARY_NEGATIVE

Implements	TOS	=	-TOS.

UNARY_NOT

Implements	TOS	=	not	TOS.

UNARY_CONVERT

Implements	TOS	=	`TOS`.

UNARY_INVERT

Implements	TOS	=	~TOS.

GET_ITER

Implements	TOS	=	iter(TOS).

Binary	operations	remove	the	top	of	the	stack	(TOS)	and	the	second	top-most
stack	item	(TOS1)	from	the	stack.	They	perform	the	operation,	and	put	the	result
back	on	the	stack.

BINARY_POWER

Implements	TOS	=	TOS1	**	TOS.

BINARY_MULTIPLY

Implements	TOS	=	TOS1	*	TOS.

BINARY_DIVIDE

Implements	TOS	=	TOS1	/	TOS	when	from	__future__	import
division	is	not	in	effect.

BINARY_FLOOR_DIVIDE

Implements	TOS	=	TOS1	//	TOS.

BINARY_TRUE_DIVIDE

Implements	TOS	=	TOS1	/	TOS	when	from	__future__	import
division	is	in	effect.

BINARY_MODULO

Implements	TOS	=	TOS1	%	TOS.

BINARY_ADD

Implements	TOS	=	TOS1	+	TOS.

BINARY_SUBTRACT

Implements	TOS	=	TOS1	-	TOS.

BINARY_SUBSCR

Implements	TOS	=	TOS1[TOS].

BINARY_LSHIFT

Implements	TOS	=	TOS1	<<	TOS.

BINARY_RSHIFT

Implements	TOS	=	TOS1	>>	TOS.

BINARY_AND

Implements	TOS	=	TOS1	&	TOS.

BINARY_XOR

Implements	TOS	=	TOS1	^	TOS.

BINARY_OR

Implements	TOS	=	TOS1	|	TOS.

In-place	operations	are	like	binary	operations,	in	that	they	remove	TOS	and
TOS1,	and	push	the	result	back	on	the	stack,	but	the	operation	is	done	in-place
when	TOS1	supports	it,	and	the	resulting	TOS	may	be	(but	does	not	have	to	be)
the	original	TOS1.

INPLACE_POWER

Implements	in-place	TOS	=	TOS1	**	TOS.

INPLACE_MULTIPLY

Implements	in-place	TOS	=	TOS1	*	TOS.

INPLACE_DIVIDE

Implements	in-place	TOS	=	TOS1	/	TOS	when	from	__future__
import	division	is	not	in	effect.

INPLACE_FLOOR_DIVIDE

Implements	in-place	TOS	=	TOS1	//	TOS.

INPLACE_TRUE_DIVIDE

Implements	in-place	TOS	=	TOS1	/	TOS	when	from	__future__
import	division	is	in	effect.

INPLACE_MODULO

Implements	in-place	TOS	=	TOS1	%	TOS.

INPLACE_ADD

Implements	in-place	TOS	=	TOS1	+	TOS.

INPLACE_SUBTRACT

Implements	in-place	TOS	=	TOS1	-	TOS.

INPLACE_LSHIFT

Implements	in-place	TOS	=	TOS1	<<	TOS.

INPLACE_RSHIFT

Implements	in-place	TOS	=	TOS1	>>	TOS.

INPLACE_AND

Implements	in-place	TOS	=	TOS1	&	TOS.

INPLACE_XOR

Implements	in-place	TOS	=	TOS1	^	TOS.

INPLACE_OR

Implements	in-place	TOS	=	TOS1	|	TOS.

The	slice	opcodes	take	up	to	three	parameters.

SLICE+0

Implements	TOS	=	TOS[:].

SLICE+1

Implements	TOS	=	TOS1[TOS:].

SLICE+2

Implements	TOS	=	TOS1[:TOS].

SLICE+3

Implements	TOS	=	TOS2[TOS1:TOS].

Slice	assignment	needs	even	an	additional	parameter.	As	any	statement,	they	put
nothing	on	the	stack.

STORE_SLICE+0

Implements	TOS[:]	=	TOS1.

STORE_SLICE+1

Implements	TOS1[TOS:]	=	TOS2.

STORE_SLICE+2

Implements	TOS1[:TOS]	=	TOS2.

STORE_SLICE+3

Implements	TOS2[TOS1:TOS]	=	TOS3.

DELETE_SLICE+0

Implements	del	TOS[:].

DELETE_SLICE+1

Implements	del	TOS1[TOS:].

DELETE_SLICE+2

Implements	del	TOS1[:TOS].

DELETE_SLICE+3

Implements	del	TOS2[TOS1:TOS].

STORE_SUBSCR

Implements	TOS1[TOS]	=	TOS2.

DELETE_SUBSCR

Implements	del	TOS1[TOS].

Miscellaneous	opcodes.

PRINT_EXPR

Implements	the	expression	statement	for	the	interactive	mode.	TOS	is
removed	from	the	stack	and	printed.	In	non-interactive	mode,	an	expression
statement	is	terminated	with	POP_STACK.

PRINT_ITEM

Prints	TOS	to	the	file-like	object	bound	to	sys.stdout.	There	is	one
such	instruction	for	each	item	in	the	print	statement.

PRINT_ITEM_TO

Like	PRINT_ITEM,	but	prints	the	item	second	from	TOS	to	the	file-like

object	at	TOS.	This	is	used	by	the	extended	print	statement.

PRINT_NEWLINE

Prints	a	new	line	on	sys.stdout.	This	is	generated	as	the	last	operation
of	a	print	statement,	unless	the	statement	ends	with	a	comma.

PRINT_NEWLINE_TO

Like	PRINT_NEWLINE,	but	prints	the	new	line	on	the	file-like	object	on
the	TOS.	This	is	used	by	the	extended	print	statement.

BREAK_LOOP

Terminates	a	loop	due	to	a	break	statement.

CONTINUE_LOOP				target
Continues	a	loop	due	to	a	continue	statement.	target	is	the	address	to
jump	to	(which	should	be	a	FOR_ITER	instruction).

LOAD_LOCALS

Pushes	a	reference	to	the	locals	of	the	current	scope	on	the	stack.	This	is
used	in	the	code	for	a	class	definition:	After	the	class	body	is	evaluated,	the
locals	are	passed	to	the	class	definition.

RETURN_VALUE

Returns	with	TOS	to	the	caller	of	the	function.

YIELD_VALUE

Pops	TOS	and	yields	it	from	a	generator.

IMPORT_STAR

Loads	all	symbols	not	starting	with	"_"	directly	from	the	module	TOS	to
the	local	namespace.	The	module	is	popped	after	loading	all	names.	This
opcode	implements	from	module	import	*.

EXEC_STMT

Implements	exec	TOS2,TOS1,TOS.	The	compiler	fills	missing	optional
parameters	with	None.

POP_BLOCK

Removes	one	block	from	the	block	stack.	Per	frame,	there	is	a	stack	of

blocks,	denoting	nested	loops,	try	statements,	and	such.

END_FINALLY

Terminates	a	finally	clause.	The	interpreter	recalls	whether	the
exception	has	to	be	re-raised,	or	whether	the	function	returns,	and	continues
with	the	outer-next	block.

BUILD_CLASS

Creates	a	new	class	object.	TOS	is	the	methods	dictionary,	TOS1	the	tuple
of	the	names	of	the	base	classes,	and	TOS2	the	class	name.

All	of	the	following	opcodes	expect	arguments.	An	argument	is	two	bytes,	with
the	more	significant	byte	last.

STORE_NAME				namei
Implements	name	=	TOS.	namei	is	the	index	of	name	in	the	attribute
co_names	of	the	code	object.	The	compiler	tries	to	use	STORE_LOCAL
or	STORE_GLOBAL	if	possible.

DELETE_NAME				namei
Implements	del	name,	where	namei	is	the	index	into	co_names
attribute	of	the	code	object.

UNPACK_SEQUENCE				count
Unpacks	TOS	into	count	individual	values,	which	are	put	onto	the	stack
right-to-left.

DUP_TOPX				count
Duplicate	count	items,	keeping	them	in	the	same	order.	Due	to
implementation	limits,	count	should	be	between	1	and	5	inclusive.

STORE_ATTR				namei
Implements	TOS.name	=	TOS1,	where	namei	is	the	index	of	name	in
co_names.

DELETE_ATTR				namei
Implements	del	TOS.name,	using	namei	as	index	into	co_names.

STORE_GLOBAL				namei

Works	as	STORE_NAME,	but	stores	the	name	as	a	global.

DELETE_GLOBAL				namei
Works	as	DELETE_NAME,	but	deletes	a	global	name.

LOAD_CONST				consti
Pushes	"co_consts[consti]"	onto	the	stack.

LOAD_NAME				namei
Pushes	the	value	associated	with	"co_names[namei]"	onto	the	stack.

BUILD_TUPLE				count
Creates	a	tuple	consuming	count	items	from	the	stack,	and	pushes	the
resulting	tuple	onto	the	stack.

BUILD_LIST				count
Works	as	BUILD_TUPLE,	but	creates	a	list.

BUILD_MAP				zero
Pushes	a	new	empty	dictionary	object	onto	the	stack.	The	argument	is
ignored	and	set	to	zero	by	the	compiler.

LOAD_ATTR				namei
Replaces	TOS	with	getattr(TOS,	co_names[namei]).

COMPARE_OP				opname
Performs	a	Boolean	operation.	The	operation	name	can	be	found	in
cmp_op[opname].

IMPORT_NAME				namei
Imports	the	module	co_names[namei].	The	module	object	is	pushed
onto	the	stack.	The	current	namespace	is	not	affected:	for	a	proper	import
statement,	a	subsequent	STORE_FAST	instruction	modifies	the	namespace.

IMPORT_FROM				namei
Loads	the	attribute	co_names[namei]	from	the	module	found	in	TOS.
The	resulting	object	is	pushed	onto	the	stack,	to	be	subsequently	stored	by	a
STORE_FAST	instruction.

JUMP_FORWARD				delta
Increments	byte	code	counter	by	delta.

JUMP_IF_TRUE				delta
If	TOS	is	true,	increment	the	byte	code	counter	by	delta.	TOS	is	left	on	the
stack.

JUMP_IF_FALSE				delta
If	TOS	is	false,	increment	the	byte	code	counter	by	delta.	TOS	is	not
changed.

JUMP_ABSOLUTE				target
Set	byte	code	counter	to	target.

FOR_ITER				delta
TOS	is	an	iterator.	Call	its	next()	method.	If	this	yields	a	new	value,	push
it	on	the	stack	(leaving	the	iterator	below	it).	If	the	iterator	indicates	it	is
exhausted	TOS	is	popped,	and	the	byte	code	counter	is	incremented	by
delta.

LOAD_GLOBAL				namei
Loads	the	global	named	co_names[namei]	onto	the	stack.

SETUP_LOOP				delta
Pushes	a	block	for	a	loop	onto	the	block	stack.	The	block	spans	from	the
current	instruction	with	a	size	of	delta	bytes.

SETUP_EXCEPT				delta
Pushes	a	try	block	from	a	try-except	clause	onto	the	block	stack.	delta
points	to	the	first	except	block.

SETUP_FINALLY				delta
Pushes	a	try	block	from	a	try-except	clause	onto	the	block	stack.	delta
points	to	the	finally	block.

LOAD_FAST				var_num
Pushes	a	reference	to	the	local	co_varnames[var_num]	onto	the	stack.

STORE_FAST				var_num

Stores	TOS	into	the	local	co_varnames[var_num].

DELETE_FAST				var_num
Deletes	local	co_varnames[var_num].

LOAD_CLOSURE				i
Pushes	a	reference	to	the	cell	contained	in	slot	i	of	the	cell	and	free	variable
storage.	The	name	of	the	variable	is	co_cellvars[i]	if	i	is	less	than	the
length	of	co_cellvars.	Otherwise	it	is	co_freevars[i	-
len(co_cellvars)].

LOAD_DEREF				i
Loads	the	cell	contained	in	slot	i	of	the	cell	and	free	variable	storage.
Pushes	a	reference	to	the	object	the	cell	contains	on	the	stack.

STORE_DEREF				i
Stores	TOS	into	the	cell	contained	in	slot	i	of	the	cell	and	free	variable
storage.

SET_LINENO				lineno
This	opcode	is	obsolete.

RAISE_VARARGS				argc
Raises	an	exception.	argc	indicates	the	number	of	parameters	to	the	raise
statement,	ranging	from	0	to	3.	The	handler	will	find	the	traceback	as
TOS2,	the	parameter	as	TOS1,	and	the	exception	as	TOS.

CALL_FUNCTION				argc
Calls	a	function.	The	low	byte	of	argc	indicates	the	number	of	positional
parameters,	the	high	byte	the	number	of	keyword	parameters.	On	the	stack,
the	opcode	finds	the	keyword	parameters	first.	For	each	keyword	argument,
the	value	is	on	top	of	the	key.	Below	the	keyword	parameters,	the	positional
parameters	are	on	the	stack,	with	the	right-most	parameter	on	top.	Below
the	parameters,	the	function	object	to	call	is	on	the	stack.

MAKE_FUNCTION				argc
Pushes	a	new	function	object	on	the	stack.	TOS	is	the	code	associated	with
the	function.	The	function	object	is	defined	to	have	argc	default	parameters,
which	are	found	below	TOS.

MAKE_CLOSURE				argc
Creates	a	new	function	object,	sets	its	func_closure	slot,	and	pushes	it	on
the	stack.	TOS	is	the	code	associated	with	the	function.	If	the	code	object
has	N	free	variables,	the	next	N	items	on	the	stack	are	the	cells	for	these
variables.	The	function	also	has	argc	default	parameters,	where	are	found
before	the	cells.

BUILD_SLICE				argc
Pushes	a	slice	object	on	the	stack.	argc	must	be	2	or	3.	If	it	is	2,
slice(TOS1,	TOS)	is	pushed;	if	it	is	3,	slice(TOS2,	TOS1,
TOS)	is	pushed.	See	the	slice()	built-in	function	for	more	information.

EXTENDED_ARG				ext
Prefixes	any	opcode	which	has	an	argument	too	big	to	fit	into	the	default
two	bytes.	ext	holds	two	additional	bytes	which,	taken	together	with	the
subsequent	opcode's	argument,	comprise	a	four-byte	argument,	ext	being
the	two	most-significant	bytes.

CALL_FUNCTION_VAR				argc
Calls	a	function.	argc	is	interpreted	as	in	CALL_FUNCTION.	The	top
element	on	the	stack	contains	the	variable	argument	list,	followed	by
keyword	and	positional	arguments.

CALL_FUNCTION_KW				argc
Calls	a	function.	argc	is	interpreted	as	in	CALL_FUNCTION.	The	top
element	on	the	stack	contains	the	keyword	arguments	dictionary,	followed
by	explicit	keyword	and	positional	arguments.

CALL_FUNCTION_VAR_KW				argc
Calls	a	function.	argc	is	interpreted	as	in	CALL_FUNCTION.	The	top
element	on	the	stack	contains	the	keyword	arguments	dictionary,	followed
by	the	variable-arguments	tuple,	followed	by	explicit	keyword	and
positional	arguments.

Python	Library	Reference
Previous:	18.10	dis	Up:	18.10	dis	Next:	18.11	pickletools

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.10.1	Python	Byte	Code	Up:	18.	Python	Language	Services	Next:
18.12	distutils

18.11	pickletools	--	Tools	for
pickle	developers.
This	module	contains	various	constants	relating	to	the	intimate	details	of	the
pickle	module,	some	lengthy	comments	about	the	implementation,	and	a	few
useful	functions	for	analyzing	pickled	data.	The	contents	of	this	module	are
useful	for	Python	core	developers	who	are	working	on	the	pickle	and
cPickle	implementations;	ordinary	users	of	the	pickle	module	probably
won't	find	the	pickletools	module	relevant.

dis(pickle[,	out=None,	memo=None,	indentlevel=4])
Outputs	a	symbolic	disassembly	of	the	pickle	to	the	file-like	object	out,
defaulting	to	sys.stdout.	pickle	can	be	a	string	or	a	file-like	object.
memo	can	be	a	Python	dictionary	that	will	be	used	as	the	pickle's	memo;	it
can	be	used	to	perform	disassemblies	across	multiple	pickles	created	by	the
same	pickler.	Successive	levels,	indicated	by	MARK	opcodes	in	the	stream,
are	indented	by	indentlevel	spaces.

genops(pickle)
Provides	an	iterator	over	all	of	the	opcodes	in	a	pickle,	returning	a	sequence
of	(opcode,	arg,	pos)	triples.	opcode	is	an	instance	of	an
OpcodeInfo	class;	arg	is	the	decoded	value,	as	a	Python	object,	of	the
opcode's	argument;	pos	is	the	position	at	which	this	opcode	is	located.
pickle	can	be	a	string	or	a	file-like	object.

Python	Library	Reference
Previous:	18.10.1	Python	Byte	Code	Up:	18.	Python	Language	Services	Next:
18.12	distutils

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.11	pickletools	Up:	18.	Python	Language	Services	Next:	19.
Python	compiler	package

18.12	distutils	--	Building	and
installing	Python	modules
The	distutils	package	provides	support	for	building	and	installing
additional	modules	into	a	Python	installation.	The	new	modules	may	be	either
100%-pure	Python,	or	may	be	extension	modules	written	in	C,	or	may	be
collections	of	Python	packages	which	include	modules	coded	in	both	Python	and
C.

This	package	is	discussed	in	two	separate	documents	which	are	included	in	the
Python	documentation	package.	To	learn	about	distributing	new	modules	using
the	distutils	facilities,	read	Distributing	Python	Modules;	this	includes
documentation	needed	to	extend	distutils.	To	learn	about	installing	Python
modules,	whether	or	not	the	author	made	use	of	the	distutils	package,	read
Installing	Python	Modules.

See	Also:

Distributing	Python	Modules
The	manual	for	developers	and	packagers	of	Python	modules.	This
describes	how	to	prepare	distutils-based	packages	so	that	they
may	be	easily	installed	into	an	existing	Python	installation.

Installing	Python	Modules
An	``administrators''	manual	which	includes	information	on	installing
modules	into	an	existing	Python	installation.	You	do	not	need	to	be	a
Python	programmer	to	read	this	manual.

Python	Library	Reference
Previous:	18.11	pickletools	Up:	18.	Python	Language	Services	Next:	19.
Python	compiler	package

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.12	distutils	Up:	Python	Library	Reference	Next:	19.1	The	basic
interface

19.	Python	compiler	package
The	Python	compiler	package	is	a	tool	for	analyzing	Python	source	code	and
generating	Python	bytecode.	The	compiler	contains	libraries	to	generate	an
abstract	syntax	tree	from	Python	source	code	and	to	generate	Python	bytecode
from	the	tree.

The	compiler	package	is	a	Python	source	to	bytecode	translator	written	in
Python.	It	uses	the	built-in	parser	and	standard	parser	module	to	generated	a
concrete	syntax	tree.	This	tree	is	used	to	generate	an	abstract	syntax	tree	(AST)
and	then	Python	bytecode.

The	full	functionality	of	the	package	duplicates	the	builtin	compiler	provided
with	the	Python	interpreter.	It	is	intended	to	match	its	behavior	almost	exactly.
Why	implement	another	compiler	that	does	the	same	thing?	The	package	is
useful	for	a	variety	of	purposes.	It	can	be	modified	more	easily	than	the	builtin
compiler.	The	AST	it	generates	is	useful	for	analyzing	Python	source	code.

This	chapter	explains	how	the	various	components	of	the	compiler	package
work.	It	blends	reference	material	with	a	tutorial.

The	following	modules	are	part	of	the	compiler	package:

compiler 	
compiler.ast 	
compiler.visitor 	

Python	Library	Reference
Previous:	18.12	distutils	Up:	Python	Library	Reference	Next:	19.1	The	basic
interface

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	19.	Python	compiler	package	Up:	19.	Python	compiler	package
Next:	19.2	Limitations

19.1	The	basic	interface
The	top-level	of	the	package	defines	four	functions.	If	you	import	compiler,
you	will	get	these	functions	and	a	collection	of	modules	contained	in	the
package.

parse(buf)
Returns	an	abstract	syntax	tree	for	the	Python	source	code	in	buf.	The
function	raises	SyntaxError	if	there	is	an	error	in	the	source	code.	The
return	value	is	a	compiler.ast.Module	instance	that	contains	the	tree.

parseFile(path)
Return	an	abstract	syntax	tree	for	the	Python	source	code	in	the	file
specified	by	path.	It	is	equivalent	to	parse(open(path).read()).

walk(ast,	visitor[,	verbose])
Do	a	pre-order	walk	over	the	abstract	syntax	tree	ast.	Call	the	appropriate
method	on	the	visitor	instance	for	each	node	encountered.

compile(source,	filename,	mode,	flags=None,	dont_inherit=None)
Compile	the	string	source,	a	Python	module,	statement	or	expression,	into	a
code	object	that	can	be	executed	by	the	exec	statement	or	eval().	This
function	is	a	replacement	for	the	built-in	compile()	function.

The	filename	will	be	used	for	run-time	error	messages.

The	mode	must	be	'exec'	to	compile	a	module,	'single'	to	compile	a	single
(interactive)	statement,	or	'eval'	to	compile	an	expression.

The	flags	and	dont_inherit	arguments	affect	future-related	statements,	but
are	not	supported	yet.

compileFile(source)
Compiles	the	file	source	and	generates	a	.pyc	file.

The	compiler	package	contains	the	following	modules:	ast,	consts,

future,	misc,	pyassem,	pycodegen,	symbols,	transformer,	and
visitor.

Python	Library	Reference
Previous:	19.	Python	compiler	package	Up:	19.	Python	compiler	package
Next:	19.2	Limitations

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	19.1	The	basic	interface	Up:	19.	Python	compiler	package	Next:
19.3	Python	Abstract	Syntax

19.2	Limitations
There	are	some	problems	with	the	error	checking	of	the	compiler	package.	The
interpreter	detects	syntax	errors	in	two	distinct	phases.	One	set	of	errors	is
detected	by	the	interpreter's	parser,	the	other	set	by	the	compiler.	The	compiler
package	relies	on	the	interpreter's	parser,	so	it	get	the	first	phases	of	error
checking	for	free.	It	implements	the	second	phase	itself,	and	that	implementation
is	incomplete.	For	example,	the	compiler	package	does	not	raise	an	error	if	a
name	appears	more	than	once	in	an	argument	list:	def	f(x,	x):	...

A	future	version	of	the	compiler	should	fix	these	problems.

Python	Library	Reference
Previous:	19.1	The	basic	interface	Up:	19.	Python	compiler	package	Next:
19.3	Python	Abstract	Syntax

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	19.2	Limitations	Up:	19.	Python	compiler	package	Next:	19.3.1	AST
Nodes

19.3	Python	Abstract	Syntax
The	compiler.ast	module	defines	an	abstract	syntax	for	Python.	In	the
abstract	syntax	tree,	each	node	represents	a	syntactic	construct.	The	root	of	the
tree	is	Module	object.

The	abstract	syntax	offers	a	higher	level	interface	to	parsed	Python	source	code.
The	parser	module	and	the	compiler	written	in	C	for	the	Python	interpreter
use	a	concrete	syntax	tree.	The	concrete	syntax	is	tied	closely	to	the	grammar
description	used	for	the	Python	parser.	Instead	of	a	single	node	for	a	construct,
there	are	often	several	levels	of	nested	nodes	that	are	introduced	by	Python's
precedence	rules.

The	abstract	syntax	tree	is	created	by	the	compiler.transformer	module.
The	transformer	relies	on	the	builtin	Python	parser	to	generate	a	concrete	syntax
tree.	It	generates	an	abstract	syntax	tree	from	the	concrete	tree.

The	transformer	module	was	created	by	Greg	Stein	and	Bill	Tutt	for	an
experimental	Python-to-C	compiler.	The	current	version	contains	a	number	of
modifications	and	improvements,	but	the	basic	form	of	the	abstract	syntax	and	of
the	transformer	are	due	to	Stein	and	Tutt.

Subsections

19.3.1	AST	Nodes
19.3.2	Assignment	nodes
19.3.3	Examples

Python	Library	Reference
Previous:	19.2	Limitations	Up:	19.	Python	compiler	package	Next:	19.3.1	AST
Nodes

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/doc/current/lib/module-parser.html

Previous:	19.3	Python	Abstract	Syntax	Up:	19.3	Python	Abstract	Syntax	Next:
19.3.2	Assignment	nodes

19.3.1	AST	Nodes
The	compiler.ast	module	is	generated	from	a	text	file	that	describes	each
node	type	and	its	elements.	Each	node	type	is	represented	as	a	class	that	inherits
from	the	abstract	base	class	compiler.ast.Node	and	defines	a	set	of	named
attributes	for	child	nodes.

class	Node()

The	Node	instances	are	created	automatically	by	the	parser	generator.	The
recommended	interface	for	specific	Node	instances	is	to	use	the	public
attributes	to	access	child	nodes.	A	public	attribute	may	be	bound	to	a	single
node	or	to	a	sequence	of	nodes,	depending	on	the	Node	type.	For	example,
the	bases	attribute	of	the	Class	node,	is	bound	to	a	list	of	base	class
nodes,	and	the	doc	attribute	is	bound	to	a	single	node.

Each	Node	instance	has	a	lineno	attribute	which	may	be	None.	XXX
Not	sure	what	the	rules	are	for	which	nodes	will	have	a	useful	lineno.

All	Node	objects	offer	the	following	methods:

getChildren()
Returns	a	flattened	list	of	the	child	nodes	and	objects	in	the	order	they
occur.	Specifically,	the	order	of	the	nodes	is	the	order	in	which	they	appear
in	the	Python	grammar.	Not	all	of	the	children	are	Node	instances.	The
names	of	functions	and	classes,	for	example,	are	plain	strings.

getChildNodes()
Returns	a	flattened	list	of	the	child	nodes	in	the	order	they	occur.	This
method	is	like	getChildren(),	except	that	it	only	returns	those	children
that	are	Node	instances.

Two	examples	illustrate	the	general	structure	of	Node	classes.	The	while
statement	is	defined	by	the	following	grammar	production:

while_stmt:					"while"	expression	":"	suite

															["else"	":"	suite]

The	While	node	has	three	attributes:	test,	body,	and	else_.	(If	the	natural
name	for	an	attribute	is	also	a	Python	reserved	word,	it	can't	be	used	as	an
attribute	name.	An	underscore	is	appended	to	the	word	to	make	it	a	legal
identifier,	hence	else_	instead	of	else.)

The	if	statement	is	more	complicated	because	it	can	include	several	tests.

if_stmt:	'if'	test	':'	suite	('elif'	test	':'	suite)*	['else'	':'	suite]

The	If	node	only	defines	two	attributes:	tests	and	else_.	The	tests
attribute	is	a	sequence	of	test	expression,	consequent	body	pairs.	There	is	one
pair	for	each	if/elif	clause.	The	first	element	of	the	pair	is	the	test	expression.
The	second	elements	is	a	Stmt	node	that	contains	the	code	to	execute	if	the	test
is	true.

The	getChildren()	method	of	If	returns	a	flat	list	of	child	nodes.	If	there
are	three	if/elif	clauses	and	no	else	clause,	then	getChildren()	will
return	a	list	of	six	elements:	the	first	test	expression,	the	first	Stmt,	the	second
text	expression,	etc.

The	following	table	lists	each	of	the	Node	subclasses	defined	in
compiler.ast	and	each	of	the	public	attributes	available	on	their	instances.
The	values	of	most	of	the	attributes	are	themselves	Node	instances	or	sequences
of	instances.	When	the	value	is	something	other	than	an	instance,	the	type	is
noted	in	the	comment.	The	attributes	are	listed	in	the	order	in	which	they	are
returned	by	getChildren()	and	getChildNodes().

Node	type Attribute Value
Add left left	operand

right right	operand
And nodes list	of	operands
AssAttr attribute	as	target	of	assignment

expr expression	on	the	left-hand	side	of	the	dot
attrname the	attribute	name,	a	string
flags XXX

AssList nodes list	of	list	elements	being	assigned	to
AssName name name	being	assigned	to

flags XXX
AssTuple nodes list	of	tuple	elements	being	assigned	to
Assert test the	expression	to	be	tested

fail the	value	of	the	AssertionError
Assign nodes a	list	of	assignment	targets,	one	per	equal

sign
expr the	value	being	assigned

AugAssign node

op

expr

Backquote expr

Bitand nodes

Bitor nodes

Bitxor nodes

Break

CallFunc node expression	for	the	callee
args a	list	of	arguments
star_args the	extended	*-arg	value
dstar_args the	extended	**-arg	value

Class name the	name	of	the	class,	a	string
bases a	list	of	base	classes
doc doc	string,	a	string	or	None
code the	body	of	the	class	statement

Compare expr

ops

Const value

Continue

Decorators nodes List	of	function	decorator	expressions
Dict items

Discard expr

Div left

right

Ellipsis

Exec expr

locals

globals

For assign

list

body

else_

From modname

names

Function decorators Decorators	or	None
name name	used	in	def,	a	string
argnames list	of	argument	names,	as	strings
defaults list	of	default	values
flags xxx
doc doc	string,	a	string	or	None
code the	body	of	the	function

Getattr expr

attrname

Global names

If tests

else_

Import names

Invert expr

Keyword name

expr

Lambda argnames

defaults

flags

code

LeftShift left

right

List nodes

ListComp expr

quals

ListCompFor assign

list

ifs

ListCompIf test

Mod left

right

Module doc doc	string,	a	string	or	None
node body	of	the	module,	a	Stmt

Mul left

right

Name name

Not expr

Or nodes

Pass

Power left

right

Print nodes

dest

Printnl nodes

dest

Raise expr1

expr2

expr3

Return value

RightShift left

right

Slice expr

flags

lower

upper

Sliceobj nodes list	of	statements
Stmt nodes

Sub left

right

Subscript expr

flags

subs

TryExcept body

handlers

else_

TryFinally body

final

Tuple nodes

UnaryAdd expr

UnarySub expr

While test

body

else_

Yield value

Python	Library	Reference
Previous:	19.3	Python	Abstract	Syntax	Up:	19.3	Python	Abstract	Syntax	Next:
19.3.2	Assignment	nodes

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	19.3.1	AST	Nodes	Up:	19.3	Python	Abstract	Syntax	Next:	19.3.3
Examples

19.3.2	Assignment	nodes
There	is	a	collection	of	nodes	used	to	represent	assignments.	Each	assignment
statement	in	the	source	code	becomes	a	single	Assign	node	in	the	AST.	The
nodes	attribute	is	a	list	that	contains	a	node	for	each	assignment	target.	This	is
necessary	because	assignment	can	be	chained,	e.g.	a	=	b	=	2.	Each	Node	in
the	list	will	be	one	of	the	following	classes:	AssAttr,	AssList,	AssName,
or	AssTuple.

Each	target	assignment	node	will	describe	the	kind	of	object	being	assigned	to:
AssName	for	a	simple	name,	e.g.	a	=	1.	AssAttr	for	an	attribute	assigned,
e.g.	a.x	=	1.	AssList	and	AssTuple	for	list	and	tuple	expansion
respectively,	e.g.	a,	b,	c	=	a_tuple.

The	target	assignment	nodes	also	have	a	flags	attribute	that	indicates	whether
the	node	is	being	used	for	assignment	or	in	a	delete	statement.	The	AssName	is
also	used	to	represent	a	delete	statement,	e.g.	del	x.

When	an	expression	contains	several	attribute	references,	an	assignment	or
delete	statement	will	contain	only	one	AssAttr	node	-	for	the	final	attribute
reference.	The	other	attribute	references	will	be	represented	as	Getattr	nodes
in	the	expr	attribute	of	the	AssAttr	instance.

Python	Library	Reference
Previous:	19.3.1	AST	Nodes	Up:	19.3	Python	Abstract	Syntax	Next:	19.3.3
Examples

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	19.3.2	Assignment	nodes	Up:	19.3	Python	Abstract	Syntax	Next:
19.4	Using	Visitors	to

19.3.3	Examples
This	section	shows	several	simple	examples	of	ASTs	for	Python	source	code.
The	examples	demonstrate	how	to	use	the	parse()	function,	what	the	repr	of
an	AST	looks	like,	and	how	to	access	attributes	of	an	AST	node.

The	first	module	defines	a	single	function.	Assume	it	is	stored	in
/tmp/doublelib.py.

"""This	is	an	example	module.

This	is	the	docstring.

"""

def	double(x):

				"Return	twice	the	argument"

				return	x	*	2

In	the	interactive	interpreter	session	below,	I	have	reformatted	the	long	AST
reprs	for	readability.	The	AST	reprs	use	unqualified	class	names.	If	you	want	to
create	an	instance	from	a	repr,	you	must	import	the	class	names	from	the
compiler.ast	module.

>>>	import	compiler

>>>	mod	=	compiler.parseFile("/tmp/doublelib.py")

>>>	mod

Module('This	is	an	example	module.\n\nThis	is	the	docstring.\n',	

							Stmt([Function(None,	'double',	['x'],	[],	0,

																						'Return	twice	the	argument',	

																						Stmt([Return(Mul((Name('x'),	Const(2))))]))]))

>>>	from	compiler.ast	import	*

>>>	Module('This	is	an	example	module.\n\nThis	is	the	docstring.\n',	

...				Stmt([Function(None,	'double',	['x'],	[],	0,

...																			'Return	twice	the	argument',	

...																			Stmt([Return(Mul((Name('x'),	Const(2))))]))]))

Module('This	is	an	example	module.\n\nThis	is	the	docstring.\n',	

							Stmt([Function(None,	'double',	['x'],	[],	0,

																						'Return	twice	the	argument',	

																						Stmt([Return(Mul((Name('x'),	Const(2))))]))]))

>>>	mod.doc

'This	is	an	example	module.\n\nThis	is	the	docstring.\n'

>>>	for	node	in	mod.node.nodes:

...					print	node

...	

Function(None,	'double',	['x'],	[],	0,	'Return	twice	the	argument',

									Stmt([Return(Mul((Name('x'),	Const(2))))]))

>>>	func	=	mod.node.nodes[0]

>>>	func.code

Stmt([Return(Mul((Name('x'),	Const(2))))])

Python	Library	Reference
Previous:	19.3.2	Assignment	nodes	Up:	19.3	Python	Abstract	Syntax	Next:
19.4	Using	Visitors	to

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	19.3.3	Examples	Up:	19.	Python	compiler	package	Next:	19.5
Bytecode	Generation

19.4	Using	Visitors	to	Walk	ASTs
The	visitor	pattern	is	...	The	compiler	package	uses	a	variant	on	the	visitor
pattern	that	takes	advantage	of	Python's	introspection	features	to	elminiate	the
need	for	much	of	the	visitor's	infrastructure.

The	classes	being	visited	do	not	need	to	be	programmed	to	accept	visitors.	The
visitor	need	only	define	visit	methods	for	classes	it	is	specifically	interested	in;	a
default	visit	method	can	handle	the	rest.

XXX	The	magic	visit()	method	for	visitors.

walk(tree,	visitor[,	verbose])

class	ASTVisitor()

The	ASTVisitor	is	responsible	for	walking	over	the	tree	in	the	correct
order.	A	walk	begins	with	a	call	to	preorder().	For	each	node,	it	checks
the	visitor	argument	to	preorder()	for	a	method	named	`visitNodeType,'
where	NodeType	is	the	name	of	the	node's	class,	e.g.	for	a	While	node	a
visitWhile()	would	be	called.	If	the	method	exists,	it	is	called	with	the
node	as	its	first	argument.

The	visitor	method	for	a	particular	node	type	can	control	how	child	nodes
are	visited	during	the	walk.	The	ASTVisitor	modifies	the	visitor
argument	by	adding	a	visit	method	to	the	visitor;	this	method	can	be	used	to
visit	a	particular	child	node.	If	no	visitor	is	found	for	a	particular	node	type,
the	default()	method	is	called.

ASTVisitor	objects	have	the	following	methods:

XXX	describe	extra	arguments

default(node[,	...])

dispatch(node[,	...])

preorder(tree,	visitor)

Python	Library	Reference
Previous:	19.3.3	Examples	Up:	19.	Python	compiler	package	Next:	19.5
Bytecode	Generation

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	19.4	Using	Visitors	to	Up:	19.	Python	compiler	package	Next:	20.
SGI	IRIX	Specific

19.5	Bytecode	Generation
The	code	generator	is	a	visitor	that	emits	bytecodes.	Each	visit	method	can	call
the	emit()	method	to	emit	a	new	bytecode.	The	basic	code	generator	is
specialized	for	modules,	classes,	and	functions.	An	assembler	converts	that
emitted	instructions	to	the	low-level	bytecode	format.	It	handles	things	like
generator	of	constant	lists	of	code	objects	and	calculation	of	jump	offsets.

Python	Library	Reference
Previous:	19.4	Using	Visitors	to	Up:	19.	Python	compiler	package	Next:	20.
SGI	IRIX	Specific

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	19.5	Bytecode	Generation	Up:	Python	Library	Reference	Next:	20.1
al

20.	SGI	IRIX	Specific	Services
The	modules	described	in	this	chapter	provide	interfaces	to	features	that	are
unique	to	SGI's	IRIX	operating	system	(versions	4	and	5).

al 	 Audio	functions	on	the	SGI.
AL 	 Constants	used	with	the	al	module.
cd 	 Interface	to	the	CD-ROM	on	Silicon	Graphics	systems.
fl 	 FORMS	library	for	applications	with	graphical	user	interfaces.
FL 	 Constants	used	with	the	fl	module.
flp 	 Functions	for	loading	stored	FORMS	designs.
fm 	 Font	Manager	interface	for	SGI	workstations.
gl 	 Functions	from	the	Silicon	Graphics	Graphics	Library.
DEVICE 	 Constants	used	with	the	gl	module.
GL 	 Constants	used	with	the	gl	module.
imgfile 	 Support	for	SGI	imglib	files.
jpeg 	 Read	and	write	image	files	in	compressed	JPEG	format.

Python	Library	Reference
Previous:	19.5	Bytecode	Generation	Up:	Python	Library	Reference	Next:	20.1
al

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.	SGI	IRIX	Specific	Up:	20.	SGI	IRIX	Specific	Next:	20.1.1
Configuration	Objects

20.1	al	--	Audio	functions	on	the	SGI
Availability:	IRIX.

This	module	provides	access	to	the	audio	facilities	of	the	SGI	Indy	and	Indigo
workstations.	See	section	3A	of	the	IRIX	man	pages	for	details.	You'll	need	to
read	those	man	pages	to	understand	what	these	functions	do!	Some	of	the
functions	are	not	available	in	IRIX	releases	before	4.0.5.	Again,	see	the	manual
to	check	whether	a	specific	function	is	available	on	your	platform.

All	functions	and	methods	defined	in	this	module	are	equivalent	to	the	C
functions	with	"AL"	prefixed	to	their	name.

Symbolic	constants	from	the	C	header	file	<audio.h>	are	defined	in	the
standard	module	AL,	see	below.

Warning:	The	current	version	of	the	audio	library	may	dump	core	when	bad
argument	values	are	passed	rather	than	returning	an	error	status.	Unfortunately,
since	the	precise	circumstances	under	which	this	may	happen	are	undocumented
and	hard	to	check,	the	Python	interface	can	provide	no	protection	against	this
kind	of	problems.	(One	example	is	specifying	an	excessive	queue	size	--	there	is
no	documented	upper	limit.)

The	module	defines	the	following	functions:

openport(name,	direction[,	config])
The	name	and	direction	arguments	are	strings.	The	optional	config
argument	is	a	configuration	object	as	returned	by	newconfig().	The
return	value	is	an	audio	port	object;	methods	of	audio	port	objects	are
described	below.

newconfig()
The	return	value	is	a	new	audio	configuration	object;	methods	of	audio
configuration	objects	are	described	below.

queryparams(device)

The	device	argument	is	an	integer.	The	return	value	is	a	list	of	integers
containing	the	data	returned	by	ALqueryparams().

getparams(device,	list)
The	device	argument	is	an	integer.	The	list	argument	is	a	list	such	as
returned	by	queryparams();	it	is	modified	in	place	(!).

setparams(device,	list)
The	device	argument	is	an	integer.	The	list	argument	is	a	list	such	as
returned	by	queryparams().

Subsections

20.1.1	Configuration	Objects
20.1.2	Port	Objects

Python	Library	Reference
Previous:	20.	SGI	IRIX	Specific	Up:	20.	SGI	IRIX	Specific	Next:	20.1.1
Configuration	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.1	al	Up:	20.1	al	Next:	20.1.2	Port	Objects

20.1.1	Configuration	Objects
Configuration	objects	returned	by	newconfig()	have	the	following	methods:

getqueuesize()
Return	the	queue	size.

setqueuesize(size)
Set	the	queue	size.

getwidth()
Get	the	sample	width.

setwidth(width)
Set	the	sample	width.

getchannels()
Get	the	channel	count.

setchannels(nchannels)
Set	the	channel	count.

getsampfmt()
Get	the	sample	format.

setsampfmt(sampfmt)
Set	the	sample	format.

getfloatmax()
Get	the	maximum	value	for	floating	sample	formats.

setfloatmax(floatmax)
Set	the	maximum	value	for	floating	sample	formats.

Python	Library	Reference
Previous:	20.1	al	Up:	20.1	al	Next:	20.1.2	Port	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.1.1	Configuration	Objects	Up:	20.1	al	Next:	20.2	AL

20.1.2	Port	Objects
Port	objects,	as	returned	by	openport(),	have	the	following	methods:

closeport()
Close	the	port.

getfd()
Return	the	file	descriptor	as	an	int.

getfilled()
Return	the	number	of	filled	samples.

getfillable()
Return	the	number	of	fillable	samples.

readsamps(nsamples)
Read	a	number	of	samples	from	the	queue,	blocking	if	necessary.	Return
the	data	as	a	string	containing	the	raw	data,	(e.g.,	2	bytes	per	sample	in	big-
endian	byte	order	(high	byte,	low	byte)	if	you	have	set	the	sample	width	to
2	bytes).

writesamps(samples)
Write	samples	into	the	queue,	blocking	if	necessary.	The	samples	are
encoded	as	described	for	the	readsamps()	return	value.

getfillpoint()
Return	the	`fill	point'.

setfillpoint(fillpoint)
Set	the	`fill	point'.

getconfig()
Return	a	configuration	object	containing	the	current	configuration	of	the
port.

setconfig(config)
Set	the	configuration	from	the	argument,	a	configuration	object.

getstatus(list)
Get	status	information	on	last	error.

Python	Library	Reference
Previous:	20.1.1	Configuration	Objects	Up:	20.1	al	Next:	20.2	AL

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.1.2	Port	Objects	Up:	20.	SGI	IRIX	Specific	Next:	20.3	cd

20.2	AL	--	Constants	used	with	the
al	module
Availability:	IRIX.

This	module	defines	symbolic	constants	needed	to	use	the	built-in	module	al
(see	above);	they	are	equivalent	to	those	defined	in	the	C	header	file
<audio.h>	except	that	the	name	prefix	"AL_"	is	omitted.	Read	the	module
source	for	a	complete	list	of	the	defined	names.	Suggested	use:

import	al

from	AL	import	*

Python	Library	Reference
Previous:	20.1.2	Port	Objects	Up:	20.	SGI	IRIX	Specific	Next:	20.3	cd

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.2	AL	Up:	20.	SGI	IRIX	Specific	Next:	20.3.1	Player	Objects

20.3	cd	--	CD-ROM	access	on	SGI
systems
Availability:	IRIX.

This	module	provides	an	interface	to	the	Silicon	Graphics	CD	library.	It	is
available	only	on	Silicon	Graphics	systems.

The	way	the	library	works	is	as	follows.	A	program	opens	the	CD-ROM	device
with	open()	and	creates	a	parser	to	parse	the	data	from	the	CD	with
createparser().	The	object	returned	by	open()	can	be	used	to	read	data
from	the	CD,	but	also	to	get	status	information	for	the	CD-ROM	device,	and	to
get	information	about	the	CD,	such	as	the	table	of	contents.	Data	from	the	CD	is
passed	to	the	parser,	which	parses	the	frames,	and	calls	any	callback	functions
that	have	previously	been	added.

An	audio	CD	is	divided	into	tracks	or	programs	(the	terms	are	used
interchangeably).	Tracks	can	be	subdivided	into	indices.	An	audio	CD	contains	a
table	of	contents	which	gives	the	starts	of	the	tracks	on	the	CD.	Index	0	is
usually	the	pause	before	the	start	of	a	track.	The	start	of	the	track	as	given	by	the
table	of	contents	is	normally	the	start	of	index	1.

Positions	on	a	CD	can	be	represented	in	two	ways.	Either	a	frame	number	or	a
tuple	of	three	values,	minutes,	seconds	and	frames.	Most	functions	use	the	latter
representation.	Positions	can	be	both	relative	to	the	beginning	of	the	CD,	and	to
the	beginning	of	the	track.

Module	cd	defines	the	following	functions	and	constants:

createparser()
Create	and	return	an	opaque	parser	object.	The	methods	of	the	parser	object
are	described	below.

msftoframe(minutes,	seconds,	frames)
Converts	a	(minutes,	seconds,	frames)	triple	representing	time	in
absolute	time	code	into	the	corresponding	CD	frame	number.

open([device[,	mode]])
Open	the	CD-ROM	device.	The	return	value	is	an	opaque	player	object;
methods	of	the	player	object	are	described	below.	The	device	is	the	name	of
the	SCSI	device	file,	e.g.	'/dev/scsi/sc0d4l0',	or	None.	If	omitted
or	None,	the	hardware	inventory	is	consulted	to	locate	a	CD-ROM	drive.
The	mode,	if	not	omited,	should	be	the	string	'r'.

The	module	defines	the	following	variables:

exception	error
Exception	raised	on	various	errors.

DATASIZE

The	size	of	one	frame's	worth	of	audio	data.	This	is	the	size	of	the	audio
data	as	passed	to	the	callback	of	type	audio.

BLOCKSIZE

The	size	of	one	uninterpreted	frame	of	audio	data.

The	following	variables	are	states	as	returned	by	getstatus():

READY

The	drive	is	ready	for	operation	loaded	with	an	audio	CD.

NODISC

The	drive	does	not	have	a	CD	loaded.

CDROM

The	drive	is	loaded	with	a	CD-ROM.	Subsequent	play	or	read	operations
will	return	I/O	errors.

ERROR

An	error	occurred	while	trying	to	read	the	disc	or	its	table	of	contents.

PLAYING

The	drive	is	in	CD	player	mode	playing	an	audio	CD	through	its	audio
jacks.

PAUSED

The	drive	is	in	CD	layer	mode	with	play	paused.

STILL

The	equivalent	of	PAUSED	on	older	(non	3301)	model	Toshiba	CD-ROM
drives.	Such	drives	have	never	been	shipped	by	SGI.

audio

pnum

index

ptime

atime

catalog

ident

control

Integer	constants	describing	the	various	types	of	parser	callbacks	that	can
be	set	by	the	addcallback()	method	of	CD	parser	objects	(see	below).

Subsections

20.3.1	Player	Objects
20.3.2	Parser	Objects

Python	Library	Reference
Previous:	20.2	AL	Up:	20.	SGI	IRIX	Specific	Next:	20.3.1	Player	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.3	cd	Up:	20.3	cd	Next:	20.3.2	Parser	Objects

20.3.1	Player	Objects
Player	objects	(returned	by	open())	have	the	following	methods:

allowremoval()
Unlocks	the	eject	button	on	the	CD-ROM	drive	permitting	the	user	to	eject
the	caddy	if	desired.

bestreadsize()
Returns	the	best	value	to	use	for	the	num_frames	parameter	of	the
readda()	method.	Best	is	defined	as	the	value	that	permits	a	continuous
flow	of	data	from	the	CD-ROM	drive.

close()
Frees	the	resources	associated	with	the	player	object.	After	calling
close(),	the	methods	of	the	object	should	no	longer	be	used.

eject()
Ejects	the	caddy	from	the	CD-ROM	drive.

getstatus()
Returns	information	pertaining	to	the	current	state	of	the	CD-ROM	drive.
The	returned	information	is	a	tuple	with	the	following	values:	state,	track,
rtime,	atime,	ttime,	first,	last,	scsi_audio,	cur_block.	rtime	is	the	time
relative	to	the	start	of	the	current	track;	atime	is	the	time	relative	to	the
beginning	of	the	disc;	ttime	is	the	total	time	on	the	disc.	For	more
information	on	the	meaning	of	the	values,	see	the	man	page
CDgetstatus(3dm).	The	value	of	state	is	one	of	the	following:	ERROR,
NODISC,	READY,	PLAYING,	PAUSED,	STILL,	or	CDROM.

gettrackinfo(track)
Returns	information	about	the	specified	track.	The	returned	information	is	a
tuple	consisting	of	two	elements,	the	start	time	of	the	track	and	the	duration
of	the	track.

msftoblock(min,	sec,	frame)

Converts	a	minutes,	seconds,	frames	triple	representing	a	time	in	absolute
time	code	into	the	corresponding	logical	block	number	for	the	given	CD-
ROM	drive.	You	should	use	msftoframe()	rather	than
msftoblock()	for	comparing	times.	The	logical	block	number	differs
from	the	frame	number	by	an	offset	required	by	certain	CD-ROM	drives.

play(start,	play)
Starts	playback	of	an	audio	CD	in	the	CD-ROM	drive	at	the	specified	track.
The	audio	output	appears	on	the	CD-ROM	drive's	headphone	and	audio
jacks	(if	fitted).	Play	stops	at	the	end	of	the	disc.	start	is	the	number	of	the
track	at	which	to	start	playing	the	CD;	if	play	is	0,	the	CD	will	be	set	to	an
initial	paused	state.	The	method	togglepause()	can	then	be	used	to
commence	play.

playabs(minutes,	seconds,	frames,	play)
Like	play(),	except	that	the	start	is	given	in	minutes,	seconds,	and	frames
instead	of	a	track	number.

playtrack(start,	play)
Like	play(),	except	that	playing	stops	at	the	end	of	the	track.

playtrackabs(track,	minutes,	seconds,	frames,	play)
Like	play(),	except	that	playing	begins	at	the	specified	absolute	time	and
ends	at	the	end	of	the	specified	track.

preventremoval()
Locks	the	eject	button	on	the	CD-ROM	drive	thus	preventing	the	user	from
arbitrarily	ejecting	the	caddy.

readda(num_frames)
Reads	the	specified	number	of	frames	from	an	audio	CD	mounted	in	the
CD-ROM	drive.	The	return	value	is	a	string	representing	the	audio	frames.
This	string	can	be	passed	unaltered	to	the	parseframe()	method	of	the
parser	object.

seek(minutes,	seconds,	frames)
Sets	the	pointer	that	indicates	the	starting	point	of	the	next	read	of	digital

audio	data	from	a	CD-ROM.	The	pointer	is	set	to	an	absolute	time	code
location	specified	in	minutes,	seconds,	and	frames.	The	return	value	is	the
logical	block	number	to	which	the	pointer	has	been	set.

seekblock(block)
Sets	the	pointer	that	indicates	the	starting	point	of	the	next	read	of	digital
audio	data	from	a	CD-ROM.	The	pointer	is	set	to	the	specified	logical	block
number.	The	return	value	is	the	logical	block	number	to	which	the	pointer
has	been	set.

seektrack(track)
Sets	the	pointer	that	indicates	the	starting	point	of	the	next	read	of	digital
audio	data	from	a	CD-ROM.	The	pointer	is	set	to	the	specified	track.	The
return	value	is	the	logical	block	number	to	which	the	pointer	has	been	set.

stop()
Stops	the	current	playing	operation.

togglepause()
Pauses	the	CD	if	it	is	playing,	and	makes	it	play	if	it	is	paused.

Python	Library	Reference
Previous:	20.3	cd	Up:	20.3	cd	Next:	20.3.2	Parser	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.3.1	Player	Objects	Up:	20.3	cd	Next:	20.4	fl

20.3.2	Parser	Objects
Parser	objects	(returned	by	createparser())	have	the	following	methods:

addcallback(type,	func,	arg)
Adds	a	callback	for	the	parser.	The	parser	has	callbacks	for	eight	different
types	of	data	in	the	digital	audio	data	stream.	Constants	for	these	types	are
defined	at	the	cd	module	level	(see	above).	The	callback	is	called	as
follows:	func(arg,	type,	data),	where	arg	is	the	user	supplied
argument,	type	is	the	particular	type	of	callback,	and	data	is	the	data
returned	for	this	type	of	callback.	The	type	of	the	data	depends	on	the	type
of	callback	as	follows:

Type Value
audio String	which	can	be	passed	unmodified	to

al.writesamps().
pnum Integer	giving	the	program	(track)	number.
index Integer	giving	the	index	number.
ptime Tuple	consisting	of	the	program	time	in	minutes,	seconds,

and	frames.
atime Tuple	consisting	of	the	absolute	time	in	minutes,	seconds,

and	frames.
catalog String	of	13	characters,	giving	the	catalog	number	of	the	CD.
ident String	of	12	characters,	giving	the	ISRC	identification

number	of	the	recording.	The	string	consists	of	two
characters	country	code,	three	characters	owner	code,	two
characters	giving	the	year,	and	five	characters	giving	a	serial
number.

control Integer	giving	the	control	bits	from	the	CD	subcode	data

deleteparser()
Deletes	the	parser	and	frees	the	memory	it	was	using.	The	object	should	not
be	used	after	this	call.	This	call	is	done	automatically	when	the	last
reference	to	the	object	is	removed.

parseframe(frame)
Parses	one	or	more	frames	of	digital	audio	data	from	a	CD	such	as	returned
by	readda().	It	determines	which	subcodes	are	present	in	the	data.	If
these	subcodes	have	changed	since	the	last	frame,	then	parseframe()
executes	a	callback	of	the	appropriate	type	passing	to	it	the	subcode	data
found	in	the	frame.	Unlike	the	C	function,	more	than	one	frame	of	digital
audio	data	can	be	passed	to	this	method.

removecallback(type)
Removes	the	callback	for	the	given	type.

resetparser()
Resets	the	fields	of	the	parser	used	for	tracking	subcodes	to	an	initial	state.
resetparser()	should	be	called	after	the	disc	has	been	changed.

Python	Library	Reference
Previous:	20.3.1	Player	Objects	Up:	20.3	cd	Next:	20.4	fl

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.3.2	Parser	Objects	Up:	20.	SGI	IRIX	Specific	Next:	20.4.1
Functions	Defined	in

20.4	fl	--	FORMS	library	for
graphical	user	interfaces
Availability:	IRIX.

This	module	provides	an	interface	to	the	FORMS	Library	by	Mark	Overmars.
The	source	for	the	library	can	be	retrieved	by	anonymous	ftp	from	host
"ftp.cs.ruu.nl",	directory	SGI/FORMS.	It	was	last	tested	with	version
2.0b.

Most	functions	are	literal	translations	of	their	C	equivalents,	dropping	the	initial
"fl_"	from	their	name.	Constants	used	by	the	library	are	defined	in	module	FL
described	below.

The	creation	of	objects	is	a	little	different	in	Python	than	in	C:	instead	of	the
`current	form'	maintained	by	the	library	to	which	new	FORMS	objects	are
added,	all	functions	that	add	a	FORMS	object	to	a	form	are	methods	of	the
Python	object	representing	the	form.	Consequently,	there	are	no	Python
equivalents	for	the	C	functions	fl_addto_form()	and	fl_end_form(),
and	the	equivalent	of	fl_bgn_form()	is	called	fl.make_form().

Watch	out	for	the	somewhat	confusing	terminology:	FORMS	uses	the	word
object	for	the	buttons,	sliders	etc.	that	you	can	place	in	a	form.	In	Python,
`object'	means	any	value.	The	Python	interface	to	FORMS	introduces	two	new
Python	object	types:	form	objects	(representing	an	entire	form)	and	FORMS
objects	(representing	one	button,	slider	etc.).	Hopefully	this	isn't	too	confusing.

There	are	no	`free	objects'	in	the	Python	interface	to	FORMS,	nor	is	there	an
easy	way	to	add	object	classes	written	in	Python.	The	FORMS	interface	to	GL
event	handling	is	available,	though,	so	you	can	mix	FORMS	with	pure	GL
windows.

Please	note:	importing	fl	implies	a	call	to	the	GL	function	foreground()
and	to	the	FORMS	routine	fl_init().

Subsections

20.4.1	Functions	Defined	in	Module	fl
20.4.2	Form	Objects
20.4.3	FORMS	Objects

Python	Library	Reference
Previous:	20.3.2	Parser	Objects	Up:	20.	SGI	IRIX	Specific	Next:	20.4.1
Functions	Defined	in

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.4	fl	Up:	20.4	fl	Next:	20.4.2	Form	Objects

20.4.1	Functions	Defined	in	Module	fl

Module	fl	defines	the	following	functions.	For	more	information	about	what
they	do,	see	the	description	of	the	equivalent	C	function	in	the	FORMS
documentation:

make_form(type,	width,	height)
Create	a	form	with	given	type,	width	and	height.	This	returns	a	form	object,
whose	methods	are	described	below.

do_forms()
The	standard	FORMS	main	loop.	Returns	a	Python	object	representing	the
FORMS	object	needing	interaction,	or	the	special	value	FL.EVENT.

check_forms()
Check	for	FORMS	events.	Returns	what	do_forms()	above	returns,	or
None	if	there	is	no	event	that	immediately	needs	interaction.

set_event_call_back(function)
Set	the	event	callback	function.

set_graphics_mode(rgbmode,	doublebuffering)
Set	the	graphics	modes.

get_rgbmode()
Return	the	current	rgb	mode.	This	is	the	value	of	the	C	global	variable
fl_rgbmode.

show_message(str1,	str2,	str3)
Show	a	dialog	box	with	a	three-line	message	and	an	OK	button.

show_question(str1,	str2,	str3)
Show	a	dialog	box	with	a	three-line	message	and	YES	and	NO	buttons.	It
returns	1	if	the	user	pressed	YES,	0	if	NO.

show_choice(str1,	str2,	str3,	but1[,	but2[,	but3]])
Show	a	dialog	box	with	a	three-line	message	and	up	to	three	buttons.	It
returns	the	number	of	the	button	clicked	by	the	user	(1,	2	or	3).

show_input(prompt,	default)
Show	a	dialog	box	with	a	one-line	prompt	message	and	text	field	in	which
the	user	can	enter	a	string.	The	second	argument	is	the	default	input	string.
It	returns	the	string	value	as	edited	by	the	user.

show_file_selector(message,	directory,	pattern,	default)
Show	a	dialog	box	in	which	the	user	can	select	a	file.	It	returns	the	absolute
filename	selected	by	the	user,	or	None	if	the	user	presses	Cancel.

get_directory()
get_pattern()
get_filename()

These	functions	return	the	directory,	pattern	and	filename	(the	tail	part	only)
selected	by	the	user	in	the	last	show_file_selector()	call.

qdevice(dev)
unqdevice(dev)
isqueued(dev)
qtest()
qread()
qreset()
qenter(dev,	val)
get_mouse()
tie(button,	valuator1,	valuator2)

These	functions	are	the	FORMS	interfaces	to	the	corresponding	GL
functions.	Use	these	if	you	want	to	handle	some	GL	events	yourself	when
using	fl.do_events().	When	a	GL	event	is	detected	that	FORMS
cannot	handle,	fl.do_forms()	returns	the	special	value	FL.EVENT
and	you	should	call	fl.qread()	to	read	the	event	from	the	queue.	Don't
use	the	equivalent	GL	functions!

color()
mapcolor()
getmcolor()

See	the	description	in	the	FORMS	documentation	of	fl_color(),
fl_mapcolor()	and	fl_getmcolor().

Python	Library	Reference
Previous:	20.4	fl	Up:	20.4	fl	Next:	20.4.2	Form	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.4.1	Functions	Defined	in	Up:	20.4	fl	Next:	20.4.3	FORMS	Objects

20.4.2	Form	Objects
Form	objects	(returned	by	make_form()	above)	have	the	following	methods.
Each	method	corresponds	to	a	C	function	whose	name	is	prefixed	with	"fl_";
and	whose	first	argument	is	a	form	pointer;	please	refer	to	the	official	FORMS
documentation	for	descriptions.

All	the	add_*()	methods	return	a	Python	object	representing	the	FORMS
object.	Methods	of	FORMS	objects	are	described	below.	Most	kinds	of	FORMS
object	also	have	some	methods	specific	to	that	kind;	these	methods	are	listed
here.

show_form(placement,	bordertype,	name)
Show	the	form.

hide_form()
Hide	the	form.

redraw_form()
Redraw	the	form.

set_form_position(x,	y)
Set	the	form's	position.

freeze_form()
Freeze	the	form.

unfreeze_form()
Unfreeze	the	form.

activate_form()
Activate	the	form.

deactivate_form()
Deactivate	the	form.

bgn_group()
Begin	a	new	group	of	objects;	return	a	group	object.

end_group()
End	the	current	group	of	objects.

find_first()
Find	the	first	object	in	the	form.

find_last()
Find	the	last	object	in	the	form.

add_box(type,	x,	y,	w,	h,	name)
Add	a	box	object	to	the	form.	No	extra	methods.

add_text(type,	x,	y,	w,	h,	name)
Add	a	text	object	to	the	form.	No	extra	methods.

add_clock(type,	x,	y,	w,	h,	name)
Add	a	clock	object	to	the	form.	
Method:	get_clock().

add_button(type,	x,	y,	w,	h,	name)
Add	a	button	object	to	the	form.	
Methods:	get_button(),	set_button().

add_lightbutton(type,	x,	y,	w,	h,	name)
Add	a	lightbutton	object	to	the	form.	
Methods:	get_button(),	set_button().

add_roundbutton(type,	x,	y,	w,	h,	name)
Add	a	roundbutton	object	to	the	form.	
Methods:	get_button(),	set_button().

add_slider(type,	x,	y,	w,	h,	name)
Add	a	slider	object	to	the	form.	
Methods:	set_slider_value(),	get_slider_value(),

set_slider_bounds(),	get_slider_bounds(),
set_slider_return(),	set_slider_size(),
set_slider_precision(),	set_slider_step().

add_valslider(type,	x,	y,	w,	h,	name)
Add	a	valslider	object	to	the	form.	
Methods:	set_slider_value(),	get_slider_value(),
set_slider_bounds(),	get_slider_bounds(),
set_slider_return(),	set_slider_size(),
set_slider_precision(),	set_slider_step().

add_dial(type,	x,	y,	w,	h,	name)
Add	a	dial	object	to	the	form.	
Methods:	set_dial_value(),	get_dial_value(),
set_dial_bounds(),	get_dial_bounds().

add_positioner(type,	x,	y,	w,	h,	name)
Add	a	positioner	object	to	the	form.	
Methods:	set_positioner_xvalue(),
set_positioner_yvalue(),	set_positioner_xbounds(),
set_positioner_ybounds(),	get_positioner_xvalue(),
get_positioner_yvalue(),	get_positioner_xbounds(),
get_positioner_ybounds().

add_counter(type,	x,	y,	w,	h,	name)
Add	a	counter	object	to	the	form.	
Methods:	set_counter_value(),	get_counter_value(),
set_counter_bounds(),	set_counter_step(),
set_counter_precision(),	set_counter_return().

add_input(type,	x,	y,	w,	h,	name)
Add	a	input	object	to	the	form.	
Methods:	set_input(),	get_input(),	set_input_color(),
set_input_return().

add_menu(type,	x,	y,	w,	h,	name)
Add	a	menu	object	to	the	form.	

Methods:	set_menu(),	get_menu(),	addto_menu().

add_choice(type,	x,	y,	w,	h,	name)
Add	a	choice	object	to	the	form.	
Methods:	set_choice(),	get_choice(),	clear_choice(),
addto_choice(),	replace_choice(),	delete_choice(),
get_choice_text(),	set_choice_fontsize(),
set_choice_fontstyle().

add_browser(type,	x,	y,	w,	h,	name)
Add	a	browser	object	to	the	form.	
Methods:	set_browser_topline(),	clear_browser(),
add_browser_line(),	addto_browser(),
insert_browser_line(),	delete_browser_line(),
replace_browser_line(),	get_browser_line(),
load_browser(),	get_browser_maxline(),
select_browser_line(),	deselect_browser_line(),
deselect_browser(),	isselected_browser_line(),
get_browser(),	set_browser_fontsize(),
set_browser_fontstyle(),	set_browser_specialkey().

add_timer(type,	x,	y,	w,	h,	name)
Add	a	timer	object	to	the	form.	
Methods:	set_timer(),	get_timer().

Form	objects	have	the	following	data	attributes;	see	the	FORMS	documentation:

Name C	Type Meaning
window int	(read-only) GL	window	id
w float form	width
h float form	height
x float form	x	origin
y float form	y	origin
deactivated int nonzero	if	form	is	deactivated
visible int nonzero	if	form	is	visible
frozen int nonzero	if	form	is	frozen

doublebuf int nonzero	if	double	buffering	on

Python	Library	Reference
Previous:	20.4.1	Functions	Defined	in	Up:	20.4	fl	Next:	20.4.3	FORMS	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.4.2	Form	Objects	Up:	20.4	fl	Next:	20.5	FL

20.4.3	FORMS	Objects
Besides	methods	specific	to	particular	kinds	of	FORMS	objects,	all	FORMS
objects	also	have	the	following	methods:

set_call_back(function,	argument)
Set	the	object's	callback	function	and	argument.	When	the	object	needs
interaction,	the	callback	function	will	be	called	with	two	arguments:	the
object,	and	the	callback	argument.	(FORMS	objects	without	a	callback
function	are	returned	by	fl.do_forms()	or	fl.check_forms()
when	they	need	interaction.)	Call	this	method	without	arguments	to	remove
the	callback	function.

delete_object()
Delete	the	object.

show_object()
Show	the	object.

hide_object()
Hide	the	object.

redraw_object()
Redraw	the	object.

freeze_object()
Freeze	the	object.

unfreeze_object()
Unfreeze	the	object.

FORMS	objects	have	these	data	attributes;	see	the	FORMS	documentation:

Name C	Type Meaning
objclass int	(read-only) object	class
type int	(read-only) object	type

boxtype int box	type
x float x	origin
y float y	origin
w float width
h float height
col1 int primary	color
col2 int secondary	color
align int alignment
lcol int label	color
lsize float label	font	size
label string label	string
lstyle int label	style
pushed int	(read-only) (see	FORMS	docs)
focus int	(read-only) (see	FORMS	docs)
belowmouse int	(read-only) (see	FORMS	docs)
frozen int	(read-only) (see	FORMS	docs)
active int	(read-only) (see	FORMS	docs)
input int	(read-only) (see	FORMS	docs)
visible int	(read-only) (see	FORMS	docs)
radio int	(read-only) (see	FORMS	docs)
automatic int	(read-only) (see	FORMS	docs)

Python	Library	Reference
Previous:	20.4.2	Form	Objects	Up:	20.4	fl	Next:	20.5	FL

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.4.3	FORMS	Objects	Up:	20.	SGI	IRIX	Specific	Next:	20.6	flp

20.5	FL	--	Constants	used	with	the
fl	module
Availability:	IRIX.

This	module	defines	symbolic	constants	needed	to	use	the	built-in	module	fl
(see	above);	they	are	equivalent	to	those	defined	in	the	C	header	file
<forms.h>	except	that	the	name	prefix	"FL_"	is	omitted.	Read	the	module
source	for	a	complete	list	of	the	defined	names.	Suggested	use:

import	fl

from	FL	import	*

Python	Library	Reference
Previous:	20.4.3	FORMS	Objects	Up:	20.	SGI	IRIX	Specific	Next:	20.6	flp

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.5	FL	Up:	20.	SGI	IRIX	Specific	Next:	20.7	fm

20.6	flp	--	Functions	for	loading
stored	FORMS	designs
Availability:	IRIX.

This	module	defines	functions	that	can	read	form	definitions	created	by	the
`form	designer'	(fdesign)	program	that	comes	with	the	FORMS	library	(see
module	fl	above).

For	now,	see	the	file	flp.doc	in	the	Python	library	source	directory	for	a
description.

XXX	A	complete	description	should	be	inserted	here!

Python	Library	Reference
Previous:	20.5	FL	Up:	20.	SGI	IRIX	Specific	Next:	20.7	fm

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.6	flp	Up:	20.	SGI	IRIX	Specific	Next:	20.8	gl

20.7	fm	--	Font	Manager	interface
Availability:	IRIX.

This	module	provides	access	to	the	IRIS	Font	Manager	library.	It	is	available
only	on	Silicon	Graphics	machines.	See	also:	4Sight	User's	Guide,	section	1,
chapter	5:	``Using	the	IRIS	Font	Manager.''

This	is	not	yet	a	full	interface	to	the	IRIS	Font	Manager.	Among	the	unsupported
features	are:	matrix	operations;	cache	operations;	character	operations	(use	string
operations	instead);	some	details	of	font	info;	individual	glyph	metrics;	and
printer	matching.

It	supports	the	following	operations:

init()
Initialization	function.	Calls	fminit().	It	is	normally	not	necessary	to
call	this	function,	since	it	is	called	automatically	the	first	time	the	fm
module	is	imported.

findfont(fontname)
Return	a	font	handle	object.	Calls	fmfindfont(fontname).

enumerate()
Returns	a	list	of	available	font	names.	This	is	an	interface	to
fmenumerate().

prstr(string)
Render	a	string	using	the	current	font	(see	the	setfont()	font	handle
method	below).	Calls	fmprstr(string).

setpath(string)
Sets	the	font	search	path.	Calls	fmsetpath(string).	(XXX	Does	not
work!?!)

fontpath()

Returns	the	current	font	search	path.

Font	handle	objects	support	the	following	operations:

scalefont(factor)
Returns	a	handle	for	a	scaled	version	of	this	font.	Calls
fmscalefont(fh,	factor).

setfont()
Makes	this	font	the	current	font.	Note:	the	effect	is	undone	silently	when
the	font	handle	object	is	deleted.	Calls	fmsetfont(fh).

getfontname()
Returns	this	font's	name.	Calls	fmgetfontname(fh).

getcomment()
Returns	the	comment	string	associated	with	this	font.	Raises	an	exception	if
there	is	none.	Calls	fmgetcomment(fh).

getfontinfo()
Returns	a	tuple	giving	some	pertinent	data	about	this	font.	This	is	an
interface	to	fmgetfontinfo().	The	returned	tuple	contains	the
following	numbers:	(printermatched,	fixed_width,	xorig,	yorig,	xsize,	ysize,
height,	nglyphs).

getstrwidth(string)
Returns	the	width,	in	pixels,	of	string	when	drawn	in	this	font.	Calls
fmgetstrwidth(fh,	string).

Python	Library	Reference
Previous:	20.6	flp	Up:	20.	SGI	IRIX	Specific	Next:	20.8	gl

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.7	fm	Up:	20.	SGI	IRIX	Specific	Next:	20.9	DEVICE

20.8	gl	--	Graphics	Library	interface
Availability:	IRIX.

This	module	provides	access	to	the	Silicon	Graphics	Graphics	Library.	It	is
available	only	on	Silicon	Graphics	machines.

Warning:	Some	illegal	calls	to	the	GL	library	cause	the	Python	interpreter	to
dump	core.	In	particular,	the	use	of	most	GL	calls	is	unsafe	before	the	first
window	is	opened.

The	module	is	too	large	to	document	here	in	its	entirety,	but	the	following	should
help	you	to	get	started.	The	parameter	conventions	for	the	C	functions	are
translated	to	Python	as	follows:

All	(short,	long,	unsigned)	int	values	are	represented	by	Python	integers.
All	float	and	double	values	are	represented	by	Python	floating	point
numbers.	In	most	cases,	Python	integers	are	also	allowed.
All	arrays	are	represented	by	one-dimensional	Python	lists.	In	most	cases,
tuples	are	also	allowed.
All	string	and	character	arguments	are	represented	by	Python	strings,	for
instance,	winopen('Hi	There!')	and	rotate(900,	'z').
All	(short,	long,	unsigned)	integer	arguments	or	return	values	that	are	only
used	to	specify	the	length	of	an	array	argument	are	omitted.	For	example,
the	C	call

lmdef(deftype,	index,	np,	props)

is	translated	to	Python	as

lmdef(deftype,	index,	props)

Output	arguments	are	omitted	from	the	argument	list;	they	are	transmitted
as	function	return	values	instead.	If	more	than	one	value	must	be	returned,
the	return	value	is	a	tuple.	If	the	C	function	has	both	a	regular	return	value
(that	is	not	omitted	because	of	the	previous	rule)	and	an	output	argument,
the	return	value	comes	first	in	the	tuple.	Examples:	the	C	call

getmcolor(i,	&red,	&green,	&blue)

is	translated	to	Python	as

red,	green,	blue	=	getmcolor(i)

The	following	functions	are	non-standard	or	have	special	argument	conventions:

varray(argument)
Equivalent	to	but	faster	than	a	number	of	v3d()	calls.	The	argument	is	a
list	(or	tuple)	of	points.	Each	point	must	be	a	tuple	of	coordinates	(x,	y,
z)	or	(x,	y).	The	points	may	be	2-	or	3-dimensional	but	must	all	have	the
same	dimension.	Float	and	int	values	may	be	mixed	however.	The	points
are	always	converted	to	3D	double	precision	points	by	assuming	z	=	0.0
if	necessary	(as	indicated	in	the	man	page),	and	for	each	point	v3d()	is
called.

nvarray()
Equivalent	to	but	faster	than	a	number	of	n3f	and	v3f	calls.	The	argument
is	an	array	(list	or	tuple)	of	pairs	of	normals	and	points.	Each	pair	is	a	tuple
of	a	point	and	a	normal	for	that	point.	Each	point	or	normal	must	be	a	tuple
of	coordinates	(x,	y,	z).	Three	coordinates	must	be	given.	Float	and	int
values	may	be	mixed.	For	each	pair,	n3f()	is	called	for	the	normal,	and
then	v3f()	is	called	for	the	point.

vnarray()
Similar	to	nvarray()	but	the	pairs	have	the	point	first	and	the	normal
second.

nurbssurface(s_k,	t_k,	ctl,	s_ord,	t_ord,	type)
Defines	a	nurbs	surface.	The	dimensions	of	ctl[][]	are	computed	as
follows:	[len(s_k)	-	s_ord],	[len(t_k)	-	t_ord].

nurbscurve(knots,	ctlpoints,	order,	type)
Defines	a	nurbs	curve.	The	length	of	ctlpoints	is	len(knots)	-	order.

pwlcurve(points,	type)
Defines	a	piecewise-linear	curve.	points	is	a	list	of	points.	type	must	be

N_ST.

pick(n)
select(n)

The	only	argument	to	these	functions	specifies	the	desired	size	of	the	pick
or	select	buffer.

endpick()
endselect()

These	functions	have	no	arguments.	They	return	a	list	of	integers
representing	the	used	part	of	the	pick/select	buffer.	No	method	is	provided
to	detect	buffer	overrun.

Here	is	a	tiny	but	complete	example	GL	program	in	Python:

import	gl,	GL,	time

def	main():

				gl.foreground()

				gl.prefposition(500,	900,	500,	900)

				w	=	gl.winopen('CrissCross')

				gl.ortho2(0.0,	400.0,	0.0,	400.0)

				gl.color(GL.WHITE)

				gl.clear()

				gl.color(GL.RED)

				gl.bgnline()

				gl.v2f(0.0,	0.0)

				gl.v2f(400.0,	400.0)

				gl.endline()

				gl.bgnline()

				gl.v2f(400.0,	0.0)

				gl.v2f(0.0,	400.0)

				gl.endline()

				time.sleep(5)

main()

See	Also:

PyOpenGL:	The	Python	OpenGL	Binding
An	interface	to	OpenGL	is	also	available;	see	information	about	the
PyOpenGL	project	online	at	http://pyopengl.sourceforge.net/.	This

http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/

may	be	a	better	option	if	support	for	SGI	hardware	from	before	about
1996	is	not	required.

Python	Library	Reference
Previous:	20.7	fm	Up:	20.	SGI	IRIX	Specific	Next:	20.9	DEVICE

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.8	gl	Up:	20.	SGI	IRIX	Specific	Next:	20.10	GL

20.9	DEVICE	--	Constants	used	with
the	gl	module
Availability:	IRIX.

This	modules	defines	the	constants	used	by	the	Silicon	Graphics	Graphics
Library	that	C	programmers	find	in	the	header	file	<gl/device.h>.	Read	the
module	source	file	for	details.

Python	Library	Reference
Previous:	20.8	gl	Up:	20.	SGI	IRIX	Specific	Next:	20.10	GL

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.9	DEVICE	Up:	20.	SGI	IRIX	Specific	Next:	20.11	imgfile

20.10	GL	--	Constants	used	with	the
gl	module
Availability:	IRIX.

This	module	contains	constants	used	by	the	Silicon	Graphics	Graphics	Library
from	the	C	header	file	<gl/gl.h>.	Read	the	module	source	file	for	details.

Python	Library	Reference
Previous:	20.9	DEVICE	Up:	20.	SGI	IRIX	Specific	Next:	20.11	imgfile

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.10	GL	Up:	20.	SGI	IRIX	Specific	Next:	20.12	jpeg

20.11	imgfile	--	Support	for	SGI
imglib	files
Availability:	IRIX.

The	imgfile	module	allows	Python	programs	to	access	SGI	imglib	image	files
(also	known	as	.rgb	files).	The	module	is	far	from	complete,	but	is	provided
anyway	since	the	functionality	that	there	is	enough	in	some	cases.	Currently,
colormap	files	are	not	supported.

The	module	defines	the	following	variables	and	functions:

exception	error
This	exception	is	raised	on	all	errors,	such	as	unsupported	file	type,	etc.

getsizes(file)
This	function	returns	a	tuple	(x,	y,	z)	where	x	and	y	are	the	size	of	the
image	in	pixels	and	z	is	the	number	of	bytes	per	pixel.	Only	3	byte	RGB
pixels	and	1	byte	greyscale	pixels	are	currently	supported.

read(file)
This	function	reads	and	decodes	the	image	on	the	specified	file,	and	returns
it	as	a	Python	string.	The	string	has	either	1	byte	greyscale	pixels	or	4	byte
RGBA	pixels.	The	bottom	left	pixel	is	the	first	in	the	string.	This	format	is
suitable	to	pass	to	gl.lrectwrite(),	for	instance.

readscaled(file,	x,	y,	filter[,	blur])
This	function	is	identical	to	read	but	it	returns	an	image	that	is	scaled	to	the
given	x	and	y	sizes.	If	the	filter	and	blur	parameters	are	omitted	scaling	is
done	by	simply	dropping	or	duplicating	pixels,	so	the	result	will	be	less
than	perfect,	especially	for	computer-generated	images.

Alternatively,	you	can	specify	a	filter	to	use	to	smoothen	the	image	after
scaling.	The	filter	forms	supported	are	'impulse',	'box',
'triangle',	'quadratic'	and	'gaussian'.	If	a	filter	is	specified

blur	is	an	optional	parameter	specifying	the	blurriness	of	the	filter.	It
defaults	to	1.0.

readscaled()	makes	no	attempt	to	keep	the	aspect	ratio	correct,	so	that
is	the	users'	responsibility.

ttob(flag)
This	function	sets	a	global	flag	which	defines	whether	the	scan	lines	of	the
image	are	read	or	written	from	bottom	to	top	(flag	is	zero,	compatible	with
SGI	GL)	or	from	top	to	bottom(flag	is	one,	compatible	with	X).	The	default
is	zero.

write(file,	data,	x,	y,	z)
This	function	writes	the	RGB	or	greyscale	data	in	data	to	image	file	file.	x
and	y	give	the	size	of	the	image,	z	is	1	for	1	byte	greyscale	images	or	3	for
RGB	images	(which	are	stored	as	4	byte	values	of	which	only	the	lower
three	bytes	are	used).	These	are	the	formats	returned	by
gl.lrectread().

Python	Library	Reference
Previous:	20.10	GL	Up:	20.	SGI	IRIX	Specific	Next:	20.12	jpeg

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	20.11	imgfile	Up:	20.	SGI	IRIX	Specific	Next:	21.	SunOS	Specific
Services

20.12	jpeg	--	Read	and	write	JPEG
files
Availability:	IRIX.

The	module	jpeg	provides	access	to	the	jpeg	compressor	and	decompressor
written	by	the	Independent	JPEG	Group	(IJG).	JPEG	is	a	standard	for
compressing	pictures;	it	is	defined	in	ISO	10918.	For	details	on	JPEG	or	the
Independent	JPEG	Group	software	refer	to	the	JPEG	standard	or	the
documentation	provided	with	the	software.

A	portable	interface	to	JPEG	image	files	is	available	with	the	Python	Imaging
Library	(PIL)	by	Fredrik	Lundh.	Information	on	PIL	is	available	at
http://www.pythonware.com/products/pil/.

The	jpeg	module	defines	an	exception	and	some	functions.

exception	error
Exception	raised	by	compress()	and	decompress()	in	case	of	errors.

compress(data,	w,	h,	b)
Treat	data	as	a	pixmap	of	width	w	and	height	h,	with	b	bytes	per	pixel.	The
data	is	in	SGI	GL	order,	so	the	first	pixel	is	in	the	lower-left	corner.	This
means	that	gl.lrectread()	return	data	can	immediately	be	passed	to
compress().	Currently	only	1	byte	and	4	byte	pixels	are	allowed,	the
former	being	treated	as	greyscale	and	the	latter	as	RGB	color.
compress()	returns	a	string	that	contains	the	compressed	picture,	in	JFIF
format.

decompress(data)
Data	is	a	string	containing	a	picture	in	JFIF	format.	It	returns	a	tuple
(data,	width,	height,	bytesperpixel).	Again,	the	data	is	suitable	to	pass
to	gl.lrectwrite().

setoption(name,	value)

http://www.pythonware.com/products/pil/

Set	various	options.	Subsequent	compress()	and	decompress()	calls
will	use	these	options.	The	following	options	are	available:

Option Effect
'forcegray' Force	output	to	be	grayscale,	even	if	input	is	RGB.
'quality' Set	the	quality	of	the	compressed	image	to	a	value

between	0	and	100	(default	is	75).	This	only	affects
compression.

'optimize' Perform	Huffman	table	optimization.	Takes	longer,	but
results	in	smaller	compressed	image.	This	only	affects
compression.

'smooth' Perform	inter-block	smoothing	on	uncompressed
image.	Only	useful	for	low-quality	images.	This	only
affects	decompression.

See	Also:

JPEG	Still	Image	Data	Compression	Standard
The	canonical	reference	for	the	JPEG	image	format,	by	Pennebaker
and	Mitchell.

Information	Technology	-	Digital	Compression	and	Coding	of	Continuous-
tone	Still	Images	-	Requirements	and	Guidelines

The	ISO	standard	for	JPEG	is	also	published	as	ITU	T.81.	This	is
available	online	in	PDF	form.

Python	Library	Reference
Previous:	20.11	imgfile	Up:	20.	SGI	IRIX	Specific	Next:	21.	SunOS	Specific
Services

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.w3.org/Graphics/JPEG/itu-t81.pdf

Previous:	20.12	jpeg	Up:	Python	Library	Reference	Next:	21.1	sunaudiodev

21.	SunOS	Specific	Services
The	modules	described	in	this	chapter	provide	interfaces	to	features	that	are
unique	to	SunOS	5	(also	known	as	Solaris	version	2).

Subsections

21.1	sunaudiodev	--	Access	to	Sun	audio	hardware
21.1.1	Audio	Device	Objects

21.2	SUNAUDIODEV	--	Constants	used	with	sunaudiodev

Python	Library	Reference
Previous:	20.12	jpeg	Up:	Python	Library	Reference	Next:	21.1	sunaudiodev

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	21.	SunOS	Specific	Services	Up:	21.	SunOS	Specific	Services
Next:	21.1.1	Audio	Device	Objects

21.1	sunaudiodev	--	Access	to	Sun
audio	hardware
Availability:	SunOS.

This	module	allows	you	to	access	the	Sun	audio	interface.	The	Sun	audio
hardware	is	capable	of	recording	and	playing	back	audio	data	in	u-LAW	format
with	a	sample	rate	of	8K	per	second.	A	full	description	can	be	found	in	the
audio(7I)	manual	page.

The	module	SUNAUDIODEV	defines	constants	which	may	be	used	with	this
module.

This	module	defines	the	following	variables	and	functions:

exception	error
This	exception	is	raised	on	all	errors.	The	argument	is	a	string	describing
what	went	wrong.

open(mode)
This	function	opens	the	audio	device	and	returns	a	Sun	audio	device	object.
This	object	can	then	be	used	to	do	I/O	on.	The	mode	parameter	is	one	of
'r'	for	record-only	access,	'w'	for	play-only	access,	'rw'	for	both	and
'control'	for	access	to	the	control	device.	Since	only	one	process	is
allowed	to	have	the	recorder	or	player	open	at	the	same	time	it	is	a	good
idea	to	open	the	device	only	for	the	activity	needed.	See	audio(7I)	for
details.

As	per	the	manpage,	this	module	first	looks	in	the	environment	variable
AUDIODEV	for	the	base	audio	device	filename.	If	not	found,	it	falls	back	to
/dev/audio.	The	control	device	is	calculated	by	appending	``ctl''	to	the	base
audio	device.

Subsections

21.1.1	Audio	Device	Objects

Python	Library	Reference
Previous:	21.	SunOS	Specific	Services	Up:	21.	SunOS	Specific	Services
Next:	21.1.1	Audio	Device	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	21.1	sunaudiodev	Up:	21.1	sunaudiodev	Next:	21.2
SUNAUDIODEV

21.1.1	Audio	Device	Objects
The	audio	device	objects	are	returned	by	open()	define	the	following	methods
(except	control	objects	which	only	provide	getinfo(),	setinfo(),
fileno(),	and	drain()):

close()
This	method	explicitly	closes	the	device.	It	is	useful	in	situations	where
deleting	the	object	does	not	immediately	close	it	since	there	are	other
references	to	it.	A	closed	device	should	not	be	used	again.

fileno()
Returns	the	file	descriptor	associated	with	the	device.	This	can	be	used	to
set	up	SIGPOLL	notification,	as	described	below.

drain()
This	method	waits	until	all	pending	output	is	processed	and	then	returns.
Calling	this	method	is	often	not	necessary:	destroying	the	object	will
automatically	close	the	audio	device	and	this	will	do	an	implicit	drain.

flush()
This	method	discards	all	pending	output.	It	can	be	used	avoid	the	slow
response	to	a	user's	stop	request	(due	to	buffering	of	up	to	one	second	of
sound).

getinfo()
This	method	retrieves	status	information	like	input	and	output	volume,	etc.
and	returns	it	in	the	form	of	an	audio	status	object.	This	object	has	no
methods	but	it	contains	a	number	of	attributes	describing	the	current	device
status.	The	names	and	meanings	of	the	attributes	are	described	in
<sun/audioio.h>	and	in	the	audio(7I)	manual	page.	Member	names
are	slightly	different	from	their	C	counterparts:	a	status	object	is	only	a
single	structure.	Members	of	the	play	substructure	have	"o_"	prepended
to	their	name	and	members	of	the	record	structure	have	"i_".	So,	the	C
member	play.sample_rate	is	accessed	as	o_sample_rate,
record.gain	as	i_gain	and	monitor_gain	plainly	as

monitor_gain.

ibufcount()
This	method	returns	the	number	of	samples	that	are	buffered	on	the
recording	side,	i.e.	the	program	will	not	block	on	a	read()	call	of	so
many	samples.

obufcount()
This	method	returns	the	number	of	samples	buffered	on	the	playback	side.
Unfortunately,	this	number	cannot	be	used	to	determine	a	number	of
samples	that	can	be	written	without	blocking	since	the	kernel	output	queue
length	seems	to	be	variable.

read(size)
This	method	reads	size	samples	from	the	audio	input	and	returns	them	as	a
Python	string.	The	function	blocks	until	enough	data	is	available.

setinfo(status)
This	method	sets	the	audio	device	status	parameters.	The	status	parameter
is	an	device	status	object	as	returned	by	getinfo()	and	possibly
modified	by	the	program.

write(samples)
Write	is	passed	a	Python	string	containing	audio	samples	to	be	played.	If
there	is	enough	buffer	space	free	it	will	immediately	return,	otherwise	it
will	block.

The	audio	device	supports	asynchronous	notification	of	various	events,	through
the	SIGPOLL	signal.	Here's	an	example	of	how	you	might	enable	this	in	Python:

def	handle_sigpoll(signum,	frame):

				print	'I	got	a	SIGPOLL	update'

import	fcntl,	signal,	STROPTS

signal.signal(signal.SIGPOLL,	handle_sigpoll)

fcntl.ioctl(audio_obj.fileno(),	STROPTS.I_SETSIG,	STROPTS.S_MSG)

Python	Library	Reference

Previous:	21.1	sunaudiodev	Up:	21.1	sunaudiodev	Next:	21.2
SUNAUDIODEV

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	21.1.1	Audio	Device	Objects	Up:	21.	SunOS	Specific	Services	Next:
22.	MS	Windows	Specific

21.2	SUNAUDIODEV	--	Constants	used
with	sunaudiodev
Availability:	SunOS.

This	is	a	companion	module	to	sunaudiodev	which	defines	useful	symbolic
constants	like	MIN_GAIN,	MAX_GAIN,	SPEAKER,	etc.	The	names	of	the
constants	are	the	same	names	as	used	in	the	C	include	file
<sun/audioio.h>,	with	the	leading	string	"AUDIO_"stripped.

Python	Library	Reference
Previous:	21.1.1	Audio	Device	Objects	Up:	21.	SunOS	Specific	Services	Next:
22.	MS	Windows	Specific

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	21.2	SUNAUDIODEV	Up:	Python	Library	Reference	Next:	22.1
msvcrt	-	Useful

22.	MS	Windows	Specific	Services
This	chapter	describes	modules	that	are	only	available	on	MS	Windows
platforms.

msvcrt 	 Miscellaneous	useful	routines	from	the	MS	VC++	runtime.
_winreg 	 Routines	and	objects	for	manipulating	the	Windows	registry.
winsound 	 Access	to	the	sound-playing	machinery	for	Windows.

Python	Library	Reference
Previous:	21.2	SUNAUDIODEV	Up:	Python	Library	Reference	Next:	22.1
msvcrt	-	Useful

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	22.	MS	Windows	Specific	Up:	22.	MS	Windows	Specific	Next:
22.1.1	File	Operations

22.1	msvcrt	-	Useful	routines	from
the	MS	VC++	runtime
Availability:	Windows.

These	functions	provide	access	to	some	useful	capabilities	on	Windows
platforms.	Some	higher-level	modules	use	these	functions	to	build	the	Windows
implementations	of	their	services.	For	example,	the	getpass	module	uses	this
in	the	implementation	of	the	getpass()	function.

Further	documentation	on	these	functions	can	be	found	in	the	Platform	API
documentation.

Subsections

22.1.1	File	Operations
22.1.2	Console	I/O
22.1.3	Other	Functions

Python	Library	Reference
Previous:	22.	MS	Windows	Specific	Up:	22.	MS	Windows	Specific	Next:
22.1.1	File	Operations

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	22.1	msvcrt	-	Useful	Up:	22.1	msvcrt	-	Useful	Next:	22.1.2	Console
I/O

22.1.1	File	Operations

locking(fd,	mode,	nbytes)
Lock	part	of	a	file	based	on	file	descriptor	fd	from	the	C	runtime.	Raises
IOError	on	failure.	The	locked	region	of	the	file	extends	from	the	current
file	position	for	nbytes	bytes,	and	may	continue	beyond	the	end	of	the	file.
mode	must	be	one	of	the	LK_*	constants	listed	below.	Multiple	regions	in	a
file	may	be	locked	at	the	same	time,	but	may	not	overlap.	Adjacent	regions
are	not	merged;	they	must	be	unlocked	individually.

LK_LOCK

LK_RLCK

Locks	the	specified	bytes.	If	the	bytes	cannot	be	locked,	the	program
immediately	tries	again	after	1	second.	If,	after	10	attempts,	the	bytes
cannot	be	locked,	IOError	is	raised.

LK_NBLCK

LK_NBRLCK

Locks	the	specified	bytes.	If	the	bytes	cannot	be	locked,	IOError	is
raised.

LK_UNLCK

Unlocks	the	specified	bytes,	which	must	have	been	previously	locked.

setmode(fd,	flags)
Set	the	line-end	translation	mode	for	the	file	descriptor	fd.	To	set	it	to	text
mode,	flags	should	be	os.O_TEXT;	for	binary,	it	should	be
os.O_BINARY.

open_osfhandle(handle,	flags)
Create	a	C	runtime	file	descriptor	from	the	file	handle	handle.	The	flags
parameter	should	be	a	bit-wise	OR	of	os.O_APPEND,	os.O_RDONLY,
and	os.O_TEXT.	The	returned	file	descriptor	may	be	used	as	a	parameter
to	os.fdopen()	to	create	a	file	object.

get_osfhandle(fd)

Return	the	file	handle	for	the	file	descriptor	fd.	Raises	IOError	if	fd	is	not
recognized.

Python	Library	Reference
Previous:	22.1	msvcrt	-	Useful	Up:	22.1	msvcrt	-	Useful	Next:	22.1.2	Console
I/O

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	22.1.1	File	Operations	Up:	22.1	msvcrt	-	Useful	Next:	22.1.3	Other
Functions

22.1.2	Console	I/O

kbhit()
Return	true	if	a	keypress	is	waiting	to	be	read.

getch()
Read	a	keypress	and	return	the	resulting	character.	Nothing	is	echoed	to	the
console.	This	call	will	block	if	a	keypress	is	not	already	available,	but	will
not	wait	for	Enter	to	be	pressed.	If	the	pressed	key	was	a	special	function
key,	this	will	return	'\000'	or	'\xe0';	the	next	call	will	return	the
keycode.	The	Control-C	keypress	cannot	be	read	with	this	function.

getche()
Similar	to	getch(),	but	the	keypress	will	be	echoed	if	it	represents	a
printable	character.

putch(char)
Print	the	character	char	to	the	console	without	buffering.

ungetch(char)
Cause	the	character	char	to	be	``pushed	back''	into	the	console	buffer;	it
will	be	the	next	character	read	by	getch()	or	getche().

Python	Library	Reference
Previous:	22.1.1	File	Operations	Up:	22.1	msvcrt	-	Useful	Next:	22.1.3	Other
Functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	22.1.2	Console	I/O	Up:	22.1	msvcrt	-	Useful	Next:	22.2	_winreg	-
Windows

22.1.3	Other	Functions

heapmin()
Force	the	malloc()	heap	to	clean	itself	up	and	return	unused	blocks	to
the	operating	system.	This	only	works	on	Windows	NT.	On	failure,	this
raises	IOError.

Python	Library	Reference
Previous:	22.1.2	Console	I/O	Up:	22.1	msvcrt	-	Useful	Next:	22.2	_winreg	-
Windows

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	22.1.3	Other	Functions	Up:	22.	MS	Windows	Specific	Next:	22.2.1
Registry	Handle	Objects

22.2	_winreg	-	Windows	registry
access
Availability:	Windows.

New	in	version	2.0.

These	functions	expose	the	Windows	registry	API	to	Python.	Instead	of	using	an
integer	as	the	registry	handle,	a	handle	object	is	used	to	ensure	that	the	handles
are	closed	correctly,	even	if	the	programmer	neglects	to	explicitly	close	them.

This	module	exposes	a	very	low-level	interface	to	the	Windows	registry;	it	is
expected	that	in	the	future	a	new	winreg	module	will	be	created	offering	a
higher-level	interface	to	the	registry	API.

This	module	offers	the	following	functions:

CloseKey(hkey)
Closes	a	previously	opened	registry	key.	The	hkey	argument	specifies	a
previously	opened	key.

Note	that	if	hkey	is	not	closed	using	this	method,	(or	the
handle.Close()	closed	when	the	hkey	object	is	destroyed	by	Python.

ConnectRegistry(computer_name,	key)
Establishes	a	connection	to	a	predefined	registry	handle	on	another
computer,	and	returns	a	handle	object

computer_name	is	the	name	of	the	remote	computer,	of	the	form
r"\\computername".	If	None,	the	local	computer	is	used.

key	is	the	predefined	handle	to	connect	to.

The	return	value	is	the	handle	of	the	opened	key.	If	the	function	fails,	an
EnvironmentError	exception	is	raised.

CreateKey(key,	sub_key)
Creates	or	opens	the	specified	key,	returning	a	handle	object

key	is	an	already	open	key,	or	one	of	the	predefined	HKEY_*	constants.

sub_key	is	a	string	that	names	the	key	this	method	opens	or	creates.

If	key	is	one	of	the	predefined	keys,	sub_key	may	be	None.	In	that	case,	the
handle	returned	is	the	same	key	handle	passed	in	to	the	function.

If	the	key	already	exists,	this	function	opens	the	existing	key

The	return	value	is	the	handle	of	the	opened	key.	If	the	function	fails,	an
EnvironmentError	exception	is	raised.

DeleteKey(key,	sub_key)
Deletes	the	specified	key.

key	is	an	already	open	key,	or	any	one	of	the	predefined	HKEY_*	constants.

sub_key	is	a	string	that	must	be	a	subkey	of	the	key	identified	by	the	key
parameter.	This	value	must	not	be	None,	and	the	key	may	not	have
subkeys.

This	method	can	not	delete	keys	with	subkeys.

If	the	method	succeeds,	the	entire	key,	including	all	of	its	values,	is
removed.	If	the	method	fails,	an	EnvironmentError	exception	is
raised.

DeleteValue(key,	value)
Removes	a	named	value	from	a	registry	key.

key	is	an	already	open	key,	or	one	of	the	predefined	HKEY_*	constants.

value	is	a	string	that	identifies	the	value	to	remove.

EnumKey(key,	index)
Enumerates	subkeys	of	an	open	registry	key,	returning	a	string.

key	is	an	already	open	key,	or	any	one	of	the	predefined	HKEY_*	constants.

index	is	an	integer	that	identifies	the	index	of	the	key	to	retrieve.

The	function	retrieves	the	name	of	one	subkey	each	time	it	is	called.	It	is
typically	called	repeatedly	until	an	EnvironmentError	exception	is
raised,	indicating,	no	more	values	are	available.

EnumValue(key,	index)
Enumerates	values	of	an	open	registry	key,	returning	a	tuple.

key	is	an	already	open	key,	or	any	one	of	the	predefined	HKEY_*	constants.

index	is	an	integer	that	identifies	the	index	of	the	value	to	retrieve.

The	function	retrieves	the	name	of	one	subkey	each	time	it	is	called.	It	is
typically	called	repeatedly,	until	an	EnvironmentError	exception	is
raised,	indicating	no	more	values.

The	result	is	a	tuple	of	3	items:

Index Meaning
0 A	string	that	identifies	the	value	name
1 An	object	that	holds	the	value	data,	and	whose	type	depends	on

the	underlying	registry	type
2 An	integer	that	identifies	the	type	of	the	value	data

FlushKey(key)
Writes	all	the	attributes	of	a	key	to	the	registry.

key	is	an	already	open	key,	or	one	of	the	predefined	HKEY_*	constants.

It	is	not	necessary	to	call	RegFlushKey	to	change	a	key.	Registry	changes
are	flushed	to	disk	by	the	registry	using	its	lazy	flusher.	Registry	changes
are	also	flushed	to	disk	at	system	shutdown.	Unlike	CloseKey(),	the
FlushKey()	method	returns	only	when	all	the	data	has	been	written	to
the	registry.	An	application	should	only	call	FlushKey()	if	it	requires
absolute	certainty	that	registry	changes	are	on	disk.

If	you	don't	know	whether	a	FlushKey()	call	is	required,	it	probably
isn't.

RegLoadKey(key,	sub_key,	file_name)
Creates	a	subkey	under	the	specified	key	and	stores	registration	information
from	a	specified	file	into	that	subkey.

key	is	an	already	open	key,	or	any	of	the	predefined	HKEY_*	constants.

sub_key	is	a	string	that	identifies	the	sub_key	to	load

file_name	is	the	name	of	the	file	to	load	registry	data	from.	This	file	must
have	been	created	with	the	SaveKey()	function.	Under	the	file	allocation
table	(FAT)	file	system,	the	filename	may	not	have	an	extension.

A	call	to	LoadKey()	fails	if	the	calling	process	does	not	have	the
SE_RESTORE_PRIVILEGE	privilege.	Note	that	privileges	are	different
than	permissions	-	see	the	Win32	documentation	for	more	details.

If	key	is	a	handle	returned	by	ConnectRegistry(),	then	the	path
specified	in	fileName	is	relative	to	the	remote	computer.

The	Win32	documentation	implies	key	must	be	in	the	HKEY_USER	or
HKEY_LOCAL_MACHINE	tree.	This	may	or	may	not	be	true.

OpenKey(key,	sub_key[,	res	=	0][,	sam	=	KEY_READ])
Opens	the	specified	key,	returning	a	handle	object

key	is	an	already	open	key,	or	any	one	of	the	predefined	HKEY_*	constants.

sub_key	is	a	string	that	identifies	the	sub_key	to	open

res	is	a	reserved	integer,	and	must	be	zero.	The	default	is	zero.

sam	is	an	integer	that	specifies	an	access	mask	that	describes	the	desired
security	access	for	the	key.	Default	is	KEY_READ

The	result	is	a	new	handle	to	the	specified	key

If	the	function	fails,	EnvironmentError	is	raised.

OpenKeyEx()
The	functionality	of	OpenKeyEx()	is	provided	via	OpenKey(),	by	the
use	of	default	arguments.

QueryInfoKey(key)
Returns	information	about	a	key,	as	a	tuple.

key	is	an	already	open	key,	or	one	of	the	predefined	HKEY_*	constants.

The	result	is	a	tuple	of	3	items:

Index Meaning
0 An	integer	giving	the	number	of	sub	keys	this	key	has.
1 An	integer	giving	the	number	of	values	this	key	has.
2 A	long	integer	giving	when	the	key	was	last	modified	(if

available)	as	100's	of	nanoseconds	since	Jan	1,	1600.

QueryValue(key,	sub_key)
Retrieves	the	unnamed	value	for	a	key,	as	a	string

key	is	an	already	open	key,	or	one	of	the	predefined	HKEY_*	constants.

sub_key	is	a	string	that	holds	the	name	of	the	subkey	with	which	the	value
is	associated.	If	this	parameter	is	None	or	empty,	the	function	retrieves	the
value	set	by	the	SetValue()	method	for	the	key	identified	by	key.

Values	in	the	registry	have	name,	type,	and	data	components.	This	method
retrieves	the	data	for	a	key's	first	value	that	has	a	NULL	name.	But	the
underlying	API	call	doesn't	return	the	type,	Lame	Lame	Lame,	DO	NOT
USE	THIS!!!

QueryValueEx(key,	value_name)
Retrieves	the	type	and	data	for	a	specified	value	name	associated	with	an
open	registry	key.

key	is	an	already	open	key,	or	one	of	the	predefined	HKEY_*	constants.

value_name	is	a	string	indicating	the	value	to	query.

The	result	is	a	tuple	of	2	items:

Index Meaning
0 The	value	of	the	registry	item.
1 An	integer	giving	the	registry	type	for	this	value.

SaveKey(key,	file_name)
Saves	the	specified	key,	and	all	its	subkeys	to	the	specified	file.

key	is	an	already	open	key,	or	one	of	the	predefined	HKEY_*	constants.

file_name	is	the	name	of	the	file	to	save	registry	data	to.	This	file	cannot
already	exist.	If	this	filename	includes	an	extension,	it	cannot	be	used	on
file	allocation	table	(FAT)	file	systems	by	the	LoadKey(),
ReplaceKey()	or	RestoreKey()	methods.

If	key	represents	a	key	on	a	remote	computer,	the	path	described	by
file_name	is	relative	to	the	remote	computer.	The	caller	of	this	method	must
possess	the	SeBackupPrivilege	security	privilege.	Note	that
privileges	are	different	than	permissions	-	see	the	Win32	documentation	for
more	details.

This	function	passes	NULL	for	security_attributes	to	the	API.

SetValue(key,	sub_key,	type,	value)
Associates	a	value	with	a	specified	key.

key	is	an	already	open	key,	or	one	of	the	predefined	HKEY_*	constants.

sub_key	is	a	string	that	names	the	subkey	with	which	the	value	is
associated.

type	is	an	integer	that	specifies	the	type	of	the	data.	Currently	this	must	be
REG_SZ,	meaning	only	strings	are	supported.	Use	the	SetValueEx()
function	for	support	for	other	data	types.

value	is	a	string	that	specifies	the	new	value.

If	the	key	specified	by	the	sub_key	parameter	does	not	exist,	the	SetValue
function	creates	it.

Value	lengths	are	limited	by	available	memory.	Long	values	(more	than
2048	bytes)	should	be	stored	as	files	with	the	filenames	stored	in	the
configuration	registry.	This	helps	the	registry	perform	efficiently.

The	key	identified	by	the	key	parameter	must	have	been	opened	with
KEY_SET_VALUE	access.

SetValueEx(key,	value_name,	reserved,	type,	value)
Stores	data	in	the	value	field	of	an	open	registry	key.

key	is	an	already	open	key,	or	one	of	the	predefined	HKEY_*	constants.

sub_key	is	a	string	that	names	the	subkey	with	which	the	value	is
associated.

type	is	an	integer	that	specifies	the	type	of	the	data.	This	should	be	one	of
the	following	constants	defined	in	this	module:

Constant Meaning
REG_BINARY Binary	data	in	any	form.
REG_DWORD A	32-bit	number.
REG_DWORD_LITTLE_ENDIAN A	32-bit	number	in	little-endian

format.
REG_DWORD_BIG_ENDIAN A	32-bit	number	in	big-endian

format.
REG_EXPAND_SZ Null-terminated	string	containing

references	to	environment	variables
("%PATH%").

REG_LINK A	Unicode	symbolic	link.
REG_MULTI_SZ A	sequence	of	null-terminated

strings,	terminated	by	two	null
characters.	(Python	handles	this
termination	automatically.)

REG_NONE No	defined	value	type.
REG_RESOURCE_LIST A	device-driver	resource	list.

REG_SZ A	null-terminated	string.

reserved	can	be	anything	-	zero	is	always	passed	to	the	API.

value	is	a	string	that	specifies	the	new	value.

This	method	can	also	set	additional	value	and	type	information	for	the
specified	key.	The	key	identified	by	the	key	parameter	must	have	been
opened	with	KEY_SET_VALUE	access.

To	open	the	key,	use	the	CreateKeyEx()	or	OpenKey()	methods.

Value	lengths	are	limited	by	available	memory.	Long	values	(more	than
2048	bytes)	should	be	stored	as	files	with	the	filenames	stored	in	the
configuration	registry.	This	helps	the	registry	perform	efficiently.

Subsections

22.2.1	Registry	Handle	Objects

Python	Library	Reference
Previous:	22.1.3	Other	Functions	Up:	22.	MS	Windows	Specific	Next:	22.2.1
Registry	Handle	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	22.2	_winreg	-	Windows	Up:	22.2	_winreg	-	Windows	Next:	22.3
winsound

22.2.1	Registry	Handle	Objects
This	object	wraps	a	Windows	HKEY	object,	automatically	closing	it	when	the
object	is	destroyed.	To	guarantee	cleanup,	you	can	call	either	the	Close()
method	on	the	object,	or	the	CloseKey()	function.

All	registry	functions	in	this	module	return	one	of	these	objects.

All	registry	functions	in	this	module	which	accept	a	handle	object	also	accept	an
integer,	however,	use	of	the	handle	object	is	encouraged.

Handle	objects	provide	semantics	for	__nonzero__()	-	thus

				if	handle:

								print	"Yes"

will	print	Yes	if	the	handle	is	currently	valid	(has	not	been	closed	or	detached).

The	object	also	support	comparison	semantics,	so	handle	objects	will	compare
true	if	they	both	reference	the	same	underlying	Windows	handle	value.

Handle	objects	can	be	converted	to	an	integer	(eg,	using	the	builtin	int()
function,	in	which	case	the	underlying	Windows	handle	value	is	returned.	You
can	also	use	the	Detach()	method	to	return	the	integer	handle,	and	also
disconnect	the	Windows	handle	from	the	handle	object.

Close()
Closes	the	underlying	Windows	handle.

If	the	handle	is	already	closed,	no	error	is	raised.

Detach()
Detaches	the	Windows	handle	from	the	handle	object.

The	result	is	an	integer	(or	long	on	64	bit	Windows)	that	holds	the	value	of
the	handle	before	it	is	detached.	If	the	handle	is	already	detached	or	closed,
this	will	return	zero.

After	calling	this	function,	the	handle	is	effectively	invalidated,	but	the

handle	is	not	closed.	You	would	call	this	function	when	you	need	the
underlying	Win32	handle	to	exist	beyond	the	lifetime	of	the	handle	object.

Python	Library	Reference
Previous:	22.2	_winreg	-	Windows	Up:	22.2	_winreg	-	Windows	Next:	22.3
winsound

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	22.2.1	Registry	Handle	Objects	Up:	22.	MS	Windows	Specific	Next:
A.	Undocumented	Modules

22.3	winsound	--	Sound-playing
interface	for	Windows
Availability:	Windows.

New	in	version	1.5.2.

The	winsound	module	provides	access	to	the	basic	sound-playing	machinery
provided	by	Windows	platforms.	It	includes	functions	and	several	constants.

Beep(frequency,	duration)
Beep	the	PC's	speaker.	The	frequency	parameter	specifies	frequency,	in
hertz,	of	the	sound,	and	must	be	in	the	range	37	through	32,767.	The
duration	parameter	specifies	the	number	of	milliseconds	the	sound	should
last.	If	the	system	is	not	able	to	beep	the	speaker,	RuntimeError	is
raised.	Note:	Under	Windows	95	and	98,	the	Windows	Beep()	function
exists	but	is	useless	(it	ignores	its	arguments).	In	that	case	Python	simulates
it	via	direct	port	manipulation	(added	in	version	2.1).	It's	unknown	whether
that	will	work	on	all	systems.	New	in	version	1.6.

PlaySound(sound,	flags)
Call	the	underlying	PlaySound()	function	from	the	Platform	API.	The
sound	parameter	may	be	a	filename,	audio	data	as	a	string,	or	None.	Its
interpretation	depends	on	the	value	of	flags,	which	can	be	a	bit-wise	ORed
combination	of	the	constants	described	below.	If	the	system	indicates	an
error,	RuntimeError	is	raised.

MessageBeep([type=MB_OK])
Call	the	underlying	MessageBeep()	function	from	the	Platform	API.
This	plays	a	sound	as	specified	in	the	registry.	The	type	argument	specifies
which	sound	to	play;	possible	values	are	-1,	MB_ICONASTERISK,
MB_ICONEXCLAMATION,	MB_ICONHAND,	MB_ICONQUESTION,	and
MB_OK,	all	described	below.	The	value	-1	produces	a	``simple	beep'';	this
is	the	final	fallback	if	a	sound	cannot	be	played	otherwise.	New	in	version
2.3.

SND_FILENAME

The	sound	parameter	is	the	name	of	a	WAV	file.	Do	not	use	with
SND_ALIAS.

SND_ALIAS

The	sound	parameter	is	a	sound	association	name	from	the	registry.	If	the
registry	contains	no	such	name,	play	the	system	default	sound	unless
SND_NODEFAULT	is	also	specified.	If	no	default	sound	is	registered,	raise
RuntimeError.	Do	not	use	with	SND_FILENAME.

All	Win32	systems	support	at	least	the	following;	most	systems	support
many	more:

PlaySound()	name Corresponding	Control	Panel	Sound
name

'SystemAsterisk' Asterisk
'SystemExclamation' Exclamation
'SystemExit' Exit	Windows
'SystemHand' Critical	Stop
'SystemQuestion' Question

For	example:

import	winsound

#	Play	Windows	exit	sound.

winsound.PlaySound("SystemExit",	winsound.SND_ALIAS)

#	Probably	play	Windows	default	sound,	if	any	is	registered	(because

#	"*"	probably	isn't	the	registered	name	of	any	sound).

winsound.PlaySound("*",	winsound.SND_ALIAS)

SND_LOOP

Play	the	sound	repeatedly.	The	SND_ASYNC	flag	must	also	be	used	to
avoid	blocking.	Cannot	be	used	with	SND_MEMORY.

SND_MEMORY

The	sound	parameter	to	PlaySound()	is	a	memory	image	of	a	WAV	file,
as	a	string.

Note:	This	module	does	not	support	playing	from	a	memory	image

asynchronously,	so	a	combination	of	this	flag	and	SND_ASYNC	will	raise
RuntimeError.

SND_PURGE

Stop	playing	all	instances	of	the	specified	sound.

SND_ASYNC

Return	immediately,	allowing	sounds	to	play	asynchronously.

SND_NODEFAULT

If	the	specified	sound	cannot	be	found,	do	not	play	the	system	default
sound.

SND_NOSTOP

Do	not	interrupt	sounds	currently	playing.

SND_NOWAIT

Return	immediately	if	the	sound	driver	is	busy.

MB_ICONASTERISK

Play	the	SystemDefault	sound.

MB_ICONEXCLAMATION

Play	the	SystemExclamation	sound.

MB_ICONHAND

Play	the	SystemHand	sound.

MB_ICONQUESTION

Play	the	SystemQuestion	sound.

MB_OK

Play	the	SystemDefault	sound.

Python	Library	Reference
Previous:	22.2.1	Registry	Handle	Objects	Up:	22.	MS	Windows	Specific	Next:
A.	Undocumented	Modules

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	22.3	winsound	Up:	Python	Library	Reference	Next:	A.1	Frameworks

A.	Undocumented	Modules
Here's	a	quick	listing	of	modules	that	are	currently	undocumented,	but	that
should	be	documented.	Feel	free	to	contribute	documentation	for	them!	(Send
via	email	to	docs@python.org.)

The	idea	and	original	contents	for	this	chapter	were	taken	from	a	posting	by
Fredrik	Lundh;	the	specific	contents	of	this	chapter	have	been	substantially
revised.

Subsections

A.1	Frameworks
A.2	Miscellaneous	useful	utilities
A.3	Platform	specific	modules
A.4	Multimedia
A.5	Obsolete
A.6	SGI-specific	Extension	modules

Python	Library	Reference
Previous:	22.3	winsound	Up:	Python	Library	Reference	Next:	A.1	Frameworks

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.	Undocumented	Modules	Up:	A.	Undocumented	Modules	Next:
A.2	Miscellaneous	useful	utilities

A.1	Frameworks
Frameworks	tend	to	be	harder	to	document,	but	are	well	worth	the	effort	spent.

None	at	this	time.

Python	Library	Reference
Previous:	A.	Undocumented	Modules	Up:	A.	Undocumented	Modules	Next:
A.2	Miscellaneous	useful	utilities

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.1	Frameworks	Up:	A.	Undocumented	Modules	Next:	A.3	Platform
specific	modules

A.2	Miscellaneous	useful	utilities
Some	of	these	are	very	old	and/or	not	very	robust;	marked	with	``hmm.''

bdb

--	A	generic	Python	debugger	base	class	(used	by	pdb).

ihooks

--	Import	hook	support	(for	rexec;	may	become	obsolete).

Python	Library	Reference
Previous:	A.1	Frameworks	Up:	A.	Undocumented	Modules	Next:	A.3	Platform
specific	modules

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.2	Miscellaneous	useful	utilities	Up:	A.	Undocumented	Modules
Next:	A.4	Multimedia

A.3	Platform	specific	modules
These	modules	are	used	to	implement	the	os.path	module,	and	are	not
documented	beyond	this	mention.	There's	little	need	to	document	these.

ntpath

--	Implementation	of	os.path	on	Win32,	Win64,	WinCE,	and	OS/2
platforms.

posixpath

--	Implementation	of	os.path	on	POSIX.

bsddb185

--	Backwards	compatibility	module	for	systems	which	still	use	the	Berkeley
DB	1.85	module.	It	is	normally	only	available	on	certain	BSD	Unix-based
systems.	It	should	never	be	used	directly.

Python	Library	Reference
Previous:	A.2	Miscellaneous	useful	utilities	Up:	A.	Undocumented	Modules
Next:	A.4	Multimedia

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3	Platform	specific	modules	Up:	A.	Undocumented	Modules	Next:
A.5	Obsolete

A.4	Multimedia
audiodev

--	Platform-independent	API	for	playing	audio	data.

linuxaudiodev

--	Play	audio	data	on	the	Linux	audio	device.	Replaced	in	Python	2.3	by	the
ossaudiodev	module.

sunaudio

--	Interpret	Sun	audio	headers	(may	become	obsolete	or	a	tool/demo).

toaiff

--	Convert	"arbitrary"	sound	files	to	AIFF	files;	should	probably	become	a
tool	or	demo.	Requires	the	external	program	sox.

ossaudiodev

--	Play	audio	data	via	the	Open	Sound	System	API.	This	is	usable	on	Linux,
some	flavors	of	BSD,	and	some	commercial	UNIX	platforms.

Python	Library	Reference
Previous:	A.3	Platform	specific	modules	Up:	A.	Undocumented	Modules	Next:
A.5	Obsolete

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.4	Multimedia	Up:	A.	Undocumented	Modules	Next:	A.6	SGI-
specific	Extension	modules

A.5	Obsolete
These	modules	are	not	normally	available	for	import;	additional	work	must	be
done	to	make	them	available.

Those	which	are	written	in	Python	will	be	installed	into	the	directory	lib-old/
installed	as	part	of	the	standard	library.	To	use	these,	the	directory	must	be	added
to	sys.path,	possibly	using	PYTHONPATH.

Obsolete	extension	modules	written	in	C	are	not	built	by	default.	Under	UNIX,
these	must	be	enabled	by	uncommenting	the	appropriate	lines	in
Modules/Setup	in	the	build	tree	and	either	rebuilding	Python	if	the	modules	are
statically	linked,	or	building	and	installing	the	shared	object	if	using
dynamically-loaded	extensions.

addpack

--	Alternate	approach	to	packages.	Use	the	built-in	package	support	instead.

cmp

--	File	comparison	function.	Use	the	newer	filecmp	instead.

cmpcache

--	Caching	version	of	the	obsolete	cmp	module.	Use	the	newer	filecmp
instead.

codehack

--	Extract	function	name	or	line	number	from	a	function	code	object	(these
are	now	accessible	as	attributes:	co.co_name,	func.func_name,
co.co_firstlineno).

dircmp

--	Class	to	build	directory	diff	tools	on	(may	become	a	demo	or	tool).
Deprecated	since	release	2.0.	The	filecmp	module	replaces	dircmp.

dump

--	Print	python	code	that	reconstructs	a	variable.

fmt

--	Text	formatting	abstractions	(too	slow).

lockfile

--	Wrapper	around	FCNTL	file	locking	(use	fcntl.lockf()/flock()
instead;	see	fcntl).

newdir

--	New	dir()	function	(the	standard	dir()	is	now	just	as	good).

Para

--	Helper	for	fmt.

poly

--	Polynomials.

regex

--	Emacs-style	regular	expression	support;	may	still	be	used	in	some	old
code	(extension	module).	Refer	to	the	Python	1.6	Documentation	for
documentation.

regsub

--	Regular	expression	based	string	replacement	utilities,	for	use	with
regex	(extension	module).	Refer	to	the	Python	1.6	Documentation	for
documentation.

tb

--	Print	tracebacks,	with	a	dump	of	local	variables	(use	pdb.pm()	or
traceback	instead).

timing

--	Measure	time	intervals	to	high	resolution	(use	time.clock()	instead).
(This	is	an	extension	module.)

tzparse

--	Parse	a	timezone	specification	(unfinished;	may	disappear	in	the	future,
and	does	not	work	when	the	TZ	environment	variable	is	not	set).

util

--	Useful	functions	that	don't	fit	elsewhere.

http://www.python.org/doc/1.6/lib/module-regex.html
http://www.python.org/doc/1.6/lib/module-regsub.html

whatsound

--	Recognize	sound	files;	use	sndhdr	instead.

zmod

--	Compute	properties	of	mathematical	``fields.''

The	following	modules	are	obsolete,	but	are	likely	to	re-surface	as	tools	or
scripts:

find

--	Find	files	matching	pattern	in	directory	tree.

grep

--	grep	implementation	in	Python.

packmail

--	Create	a	self-unpacking	UNIX	shell	archive.

The	following	modules	were	documented	in	previous	versions	of	this	manual,
but	are	now	considered	obsolete.	The	source	for	the	documentation	is	still
available	as	part	of	the	documentation	source	archive.

ni

--	Import	modules	in	``packages.''	Basic	package	support	is	now	built	in.
The	built-in	support	is	very	similar	to	what	is	provided	in	this	module.

rand

--	Old	interface	to	the	random	number	generator.

soundex

--	Algorithm	for	collapsing	names	which	sound	similar	to	a	shared	key.	The
specific	algorithm	doesn't	seem	to	match	any	published	algorithm.	(This	is
an	extension	module.)

Python	Library	Reference
Previous:	A.4	Multimedia	Up:	A.	Undocumented	Modules	Next:	A.6	SGI-
specific	Extension	modules

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.5	Obsolete	Up:	A.	Undocumented	Modules	Next:	B.	Reporting
Bugs

A.6	SGI-specific	Extension	modules
The	following	are	SGI	specific,	and	may	be	out	of	touch	with	the	current	version
of	reality.

cl

--	Interface	to	the	SGI	compression	library.

sv

--	Interface	to	the	``simple	video''	board	on	SGI	Indigo	(obsolete	hardware).

Python	Library	Reference
Previous:	A.5	Obsolete	Up:	A.	Undocumented	Modules	Next:	B.	Reporting
Bugs

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.6	SGI-specific	Extension	modules	Up:	Python	Library	Reference
Next:	C.	History	and	License

B.	Reporting	Bugs
Python	is	a	mature	programming	language	which	has	established	a	reputation	for
stability.	In	order	to	maintain	this	reputation,	the	developers	would	like	to	know
of	any	deficiencies	you	find	in	Python	or	its	documentation.

Before	submitting	a	report,	you	will	be	required	to	log	into	SourceForge;	this
will	make	it	possible	for	the	developers	to	contact	you	for	additional	information
if	needed.	It	is	not	possible	to	submit	a	bug	report	anonymously.

All	bug	reports	should	be	submitted	via	the	Python	Bug	Tracker	on	SourceForge
(http://sourceforge.net/bugs/?group_id=5470).	The	bug	tracker	offers	a	Web
form	which	allows	pertinent	information	to	be	entered	and	submitted	to	the
developers.

The	first	step	in	filing	a	report	is	to	determine	whether	the	problem	has	already
been	reported.	The	advantage	in	doing	so,	aside	from	saving	the	developers	time,
is	that	you	learn	what	has	been	done	to	fix	it;	it	may	be	that	the	problem	has
already	been	fixed	for	the	next	release,	or	additional	information	is	needed	(in
which	case	you	are	welcome	to	provide	it	if	you	can!).	To	do	this,	search	the	bug
database	using	the	search	box	on	the	left	side	of	the	page.

If	the	problem	you're	reporting	is	not	already	in	the	bug	tracker,	go	back	to	the
Python	Bug	Tracker	(http://sourceforge.net/bugs/?group_id=5470).	Select
the	``Submit	a	Bug''	link	at	the	top	of	the	page	to	open	the	bug	reporting	form.

The	submission	form	has	a	number	of	fields.	The	only	fields	that	are	required	are
the	``Summary''	and	``Details''	fields.	For	the	summary,	enter	a	very	short
description	of	the	problem;	less	than	ten	words	is	good.	In	the	Details	field,
describe	the	problem	in	detail,	including	what	you	expected	to	happen	and	what
did	happen.	Be	sure	to	include	the	version	of	Python	you	used,	whether	any
extension	modules	were	involved,	and	what	hardware	and	software	platform	you
were	using	(including	version	information	as	appropriate).

The	only	other	field	that	you	may	want	to	set	is	the	``Category''	field,	which
allows	you	to	place	the	bug	report	into	a	broad	category	(such	as
``Documentation''	or	``Library'').

http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/bugs/?group_id=5470

Each	bug	report	will	be	assigned	to	a	developer	who	will	determine	what	needs
to	be	done	to	correct	the	problem.	You	will	receive	an	update	each	time	action	is
taken	on	the	bug.

See	Also:

How	to	Report	Bugs	Effectively
Article	which	goes	into	some	detail	about	how	to	create	a	useful	bug
report.	This	describes	what	kind	of	information	is	useful	and	why	it	is
useful.

Bug	Writing	Guidelines
Information	about	writing	a	good	bug	report.	Some	of	this	is	specific
to	the	Mozilla	project,	but	describes	general	good	practices.

Python	Library	Reference
Previous:	A.6	SGI-specific	Extension	modules	Up:	Python	Library	Reference
Next:	C.	History	and	License

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www-mice.cs.ucl.ac.uk/multimedia/software/documentation/ReportingBugs.html
http://www.mozilla.org/quality/bug-writing-guidelines.html

Previous:	B.	Reporting	Bugs	Up:	Python	Library	Reference	Next:	C.1	History
of	the

C.	History	and	License

Subsections

C.1	History	of	the	software
C.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
C.3	Licenses	and	Acknowledgements	for	Incorporated	Software

C.3.1	Mersenne	Twister
C.3.2	Sockets
C.3.3	Floating	point	exception	control
C.3.4	MD5	message	digest	algorithm
C.3.5	Asynchronous	socket	services
C.3.6	Cookie	management
C.3.7	Profiling
C.3.8	Execution	tracing
C.3.9	UUencode	and	UUdecode	functions
C.3.10	XML	Remote	Procedure	Calls

Python	Library	Reference
Previous:	B.	Reporting	Bugs	Up:	Python	Library	Reference	Next:	C.1	History
of	the

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	C.	History	and	License	Up:	C.	History	and	License	Next:	C.2	Terms
and	conditions

C.1	History	of	the	software
Python	was	created	in	the	early	1990s	by	Guido	van	Rossum	at	Stichting
Mathematisch	Centrum	(CWI,	see	http://www.cwi.nl/)	in	the	Netherlands	as	a
successor	of	a	language	called	ABC.	Guido	remains	Python's	principal	author,
although	it	includes	many	contributions	from	others.

In	1995,	Guido	continued	his	work	on	Python	at	the	Corporation	for	National
Research	Initiatives	(CNRI,	see	http://www.cnri.reston.va.us/)	in	Reston,
Virginia	where	he	released	several	versions	of	the	software.

In	May	2000,	Guido	and	the	Python	core	development	team	moved	to
BeOpen.com	to	form	the	BeOpen	PythonLabs	team.	In	October	of	the	same
year,	the	PythonLabs	team	moved	to	Digital	Creations	(now	Zope	Corporation;
see	http://www.zope.com/).	In	2001,	the	Python	Software	Foundation	(PSF,	see
http://www.python.org/psf/)	was	formed,	a	non-profit	organization	created
specifically	to	own	Python-related	Intellectual	Property.	Zope	Corporation	is	a
sponsoring	member	of	the	PSF.

All	Python	releases	are	Open	Source	(see	http://www.opensource.org/	for	the
Open	Source	Definition).	Historically,	most,	but	not	all,	Python	releases	have
also	been	GPL-compatible;	the	table	below	summarizes	the	various	releases.

Release Derived
from

Year Owner GPL
compatible?

0.9.0	thru
1.2

n/a 1991-
1995

CWI yes

1.3	thru
1.5.2

1.2 1995-
1999

CNRI yes

1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-

2003
PSF yes

2.3 2.2.2 2002-
2003

PSF yes

2.3.1 2.3 2002-
2003

PSF yes

2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes

Note:	GPL-compatible	doesn't	mean	that	we're	distributing	Python	under	the
GPL.	All	Python	licenses,	unlike	the	GPL,	let	you	distribute	a	modified	version
without	making	your	changes	open	source.	The	GPL-compatible	licenses	make
it	possible	to	combine	Python	with	other	software	that	is	released	under	the
GPL;	the	others	don't.

Thanks	to	the	many	outside	volunteers	who	have	worked	under	Guido's	direction
to	make	these	releases	possible.

Python	Library	Reference
Previous:	C.	History	and	License	Up:	C.	History	and	License	Next:	C.2	Terms
and	conditions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	C.1	History	of	the	Up:	C.	History	and	License	Next:	C.3	Licenses
and	Acknowledgements

C.2	Terms	and	conditions	for
accessing	or	otherwise	using
Python

PSF	LICENSE	AGREEMENT	FOR	PYTHON	2.4

1.	 This	LICENSE	AGREEMENT	is	between	the	Python	Software	Foundation
(``PSF''),	and	the	Individual	or	Organization	(``Licensee'')	accessing	and
otherwise	using	Python	2.4	software	in	source	or	binary	form	and	its
associated	documentation.

2.	 Subject	to	the	terms	and	conditions	of	this	License	Agreement,	PSF	hereby
grants	Licensee	a	nonexclusive,	royalty-free,	world-wide	license	to
reproduce,	analyze,	test,	perform	and/or	display	publicly,	prepare	derivative
works,	distribute,	and	otherwise	use	Python	2.4	alone	or	in	any	derivative
version,	provided,	however,	that	PSF's	License	Agreement	and	PSF's	notice
of	copyright,	i.e.,	``Copyright	©	2001-2004	Python	Software	Foundation;
All	Rights	Reserved''	are	retained	in	Python	2.4	alone	or	in	any	derivative
version	prepared	by	Licensee.

3.	 In	the	event	Licensee	prepares	a	derivative	work	that	is	based	on	or
incorporates	Python	2.4	or	any	part	thereof,	and	wants	to	make	the
derivative	work	available	to	others	as	provided	herein,	then	Licensee
hereby	agrees	to	include	in	any	such	work	a	brief	summary	of	the	changes
made	to	Python	2.4.

4.	 PSF	is	making	Python	2.4	available	to	Licensee	on	an	``AS	IS''	basis.	PSF
MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,	EXPRESS	OR
IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT	LIMITATION,	PSF
MAKES	NO	AND	DISCLAIMS	ANY	REPRESENTATION	OR
WARRANTY	OF	MERCHANTABILITY	OR	FITNESS	FOR	ANY
PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF	PYTHON	2.4	WILL
NOT	INFRINGE	ANY	THIRD	PARTY	RIGHTS.

5.	 PSF	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER	USERS

OF	PYTHON	2.4	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF
MODIFYING,	DISTRIBUTING,	OR	OTHERWISE	USING	PYTHON	2.4,
OR	ANY	DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE
POSSIBILITY	THEREOF.

6.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

7.	 Nothing	in	this	License	Agreement	shall	be	deemed	to	create	any
relationship	of	agency,	partnership,	or	joint	venture	between	PSF	and
Licensee.	This	License	Agreement	does	not	grant	permission	to	use	PSF
trademarks	or	trade	name	in	a	trademark	sense	to	endorse	or	promote
products	or	services	of	Licensee,	or	any	third	party.

8.	 By	copying,	installing	or	otherwise	using	Python	2.4,	Licensee	agrees	to	be
bound	by	the	terms	and	conditions	of	this	License	Agreement.

BEOPEN.COM	LICENSE	AGREEMENT	FOR	PYTHON	2.0

BEOPEN	PYTHON	OPEN	SOURCE	LICENSE	AGREEMENT	VERSION
1

1.	 This	LICENSE	AGREEMENT	is	between	BeOpen.com	(``BeOpen''),
having	an	office	at	160	Saratoga	Avenue,	Santa	Clara,	CA	95051,	and	the
Individual	or	Organization	(``Licensee'')	accessing	and	otherwise	using	this
software	in	source	or	binary	form	and	its	associated	documentation	(``the
Software'').

2.	 Subject	to	the	terms	and	conditions	of	this	BeOpen	Python	License
Agreement,	BeOpen	hereby	grants	Licensee	a	non-exclusive,	royalty-free,
world-wide	license	to	reproduce,	analyze,	test,	perform	and/or	display
publicly,	prepare	derivative	works,	distribute,	and	otherwise	use	the
Software	alone	or	in	any	derivative	version,	provided,	however,	that	the
BeOpen	Python	License	is	retained	in	the	Software,	alone	or	in	any
derivative	version	prepared	by	Licensee.

3.	 BeOpen	is	making	the	Software	available	to	Licensee	on	an	``AS	IS''	basis.
BEOPEN	MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,
EXPRESS	OR	IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT

LIMITATION,	BEOPEN	MAKES	NO	AND	DISCLAIMS	ANY
REPRESENTATION	OR	WARRANTY	OF	MERCHANTABILITY	OR
FITNESS	FOR	ANY	PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF
THE	SOFTWARE	WILL	NOT	INFRINGE	ANY	THIRD	PARTY
RIGHTS.

4.	 BEOPEN	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER
USERS	OF	THE	SOFTWARE	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF	USING,
MODIFYING	OR	DISTRIBUTING	THE	SOFTWARE,	OR	ANY
DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY
THEREOF.

5.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

6.	 This	License	Agreement	shall	be	governed	by	and	interpreted	in	all	respects
by	the	law	of	the	State	of	California,	excluding	conflict	of	law	provisions.
Nothing	in	this	License	Agreement	shall	be	deemed	to	create	any
relationship	of	agency,	partnership,	or	joint	venture	between	BeOpen	and
Licensee.	This	License	Agreement	does	not	grant	permission	to	use
BeOpen	trademarks	or	trade	names	in	a	trademark	sense	to	endorse	or
promote	products	or	services	of	Licensee,	or	any	third	party.	As	an
exception,	the	``BeOpen	Python''	logos	available	at
http://www.pythonlabs.com/logos.html	may	be	used	according	to	the
permissions	granted	on	that	web	page.

7.	 By	copying,	installing	or	otherwise	using	the	software,	Licensee	agrees	to
be	bound	by	the	terms	and	conditions	of	this	License	Agreement.

CNRI	LICENSE	AGREEMENT	FOR	PYTHON	1.6.1

1.	 This	LICENSE	AGREEMENT	is	between	the	Corporation	for	National
Research	Initiatives,	having	an	office	at	1895	Preston	White	Drive,	Reston,
VA	20191	(``CNRI''),	and	the	Individual	or	Organization	(``Licensee'')
accessing	and	otherwise	using	Python	1.6.1	software	in	source	or	binary
form	and	its	associated	documentation.

2.	 Subject	to	the	terms	and	conditions	of	this	License	Agreement,	CNRI
hereby	grants	Licensee	a	nonexclusive,	royalty-free,	world-wide	license	to

reproduce,	analyze,	test,	perform	and/or	display	publicly,	prepare	derivative
works,	distribute,	and	otherwise	use	Python	1.6.1	alone	or	in	any	derivative
version,	provided,	however,	that	CNRI's	License	Agreement	and	CNRI's
notice	of	copyright,	i.e.,	``Copyright	©	1995-2001	Corporation	for	National
Research	Initiatives;	All	Rights	Reserved''	are	retained	in	Python	1.6.1
alone	or	in	any	derivative	version	prepared	by	Licensee.	Alternately,	in	lieu
of	CNRI's	License	Agreement,	Licensee	may	substitute	the	following	text
(omitting	the	quotes):	``Python	1.6.1	is	made	available	subject	to	the	terms
and	conditions	in	CNRI's	License	Agreement.	This	Agreement	together
with	Python	1.6.1	may	be	located	on	the	Internet	using	the	following
unique,	persistent	identifier	(known	as	a	handle):	1895.22/1013.	This
Agreement	may	also	be	obtained	from	a	proxy	server	on	the	Internet	using
the	following	URL:	http://hdl.handle.net/1895.22/1013.''

3.	 In	the	event	Licensee	prepares	a	derivative	work	that	is	based	on	or
incorporates	Python	1.6.1	or	any	part	thereof,	and	wants	to	make	the
derivative	work	available	to	others	as	provided	herein,	then	Licensee
hereby	agrees	to	include	in	any	such	work	a	brief	summary	of	the	changes
made	to	Python	1.6.1.

4.	 CNRI	is	making	Python	1.6.1	available	to	Licensee	on	an	``AS	IS''	basis.
CNRI	MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,	EXPRESS
OR	IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT	LIMITATION,	CNRI
MAKES	NO	AND	DISCLAIMS	ANY	REPRESENTATION	OR
WARRANTY	OF	MERCHANTABILITY	OR	FITNESS	FOR	ANY
PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF	PYTHON	1.6.1	WILL
NOT	INFRINGE	ANY	THIRD	PARTY	RIGHTS.

5.	 CNRI	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER
USERS	OF	PYTHON	1.6.1	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF
MODIFYING,	DISTRIBUTING,	OR	OTHERWISE	USING	PYTHON
1.6.1,	OR	ANY	DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE
POSSIBILITY	THEREOF.

6.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

7.	 This	License	Agreement	shall	be	governed	by	the	federal	intellectual

http://hdl.handle.net/1895.22/1013

property	law	of	the	United	States,	including	without	limitation	the	federal
copyright	law,	and,	to	the	extent	such	U.S.	federal	law	does	not	apply,	by
the	law	of	the	Commonwealth	of	Virginia,	excluding	Virginia's	conflict	of
law	provisions.	Notwithstanding	the	foregoing,	with	regard	to	derivative
works	based	on	Python	1.6.1	that	incorporate	non-separable	material	that
was	previously	distributed	under	the	GNU	General	Public	License	(GPL),
the	law	of	the	Commonwealth	of	Virginia	shall	govern	this	License
Agreement	only	as	to	issues	arising	under	or	with	respect	to	Paragraphs	4,
5,	and	7	of	this	License	Agreement.	Nothing	in	this	License	Agreement
shall	be	deemed	to	create	any	relationship	of	agency,	partnership,	or	joint
venture	between	CNRI	and	Licensee.	This	License	Agreement	does	not
grant	permission	to	use	CNRI	trademarks	or	trade	name	in	a	trademark
sense	to	endorse	or	promote	products	or	services	of	Licensee,	or	any	third
party.

8.	 By	clicking	on	the	``ACCEPT''	button	where	indicated,	or	by	copying,
installing	or	otherwise	using	Python	1.6.1,	Licensee	agrees	to	be	bound	by
the	terms	and	conditions	of	this	License	Agreement.

ACCEPT

CWI	LICENSE	AGREEMENT	FOR	PYTHON	0.9.0	THROUGH	1.2

Copyright	©	1991	-	1995,	Stichting	Mathematisch	Centrum	Amsterdam,	The
Netherlands.	All	rights	reserved.

Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its
documentation	for	any	purpose	and	without	fee	is	hereby	granted,	provided	that
the	above	copyright	notice	appear	in	all	copies	and	that	both	that	copyright
notice	and	this	permission	notice	appear	in	supporting	documentation,	and	that
the	name	of	Stichting	Mathematisch	Centrum	or	CWI	not	be	used	in	advertising
or	publicity	pertaining	to	distribution	of	the	software	without	specific,	written
prior	permission.

STICHTING	MATHEMATISCH	CENTRUM	DISCLAIMS	ALL
WARRANTIES	WITH	REGARD	TO	THIS	SOFTWARE,	INCLUDING	ALL
IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS,	IN	NO
EVENT	SHALL	STICHTING	MATHEMATISCH	CENTRUM	BE	LIABLE
FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR

ANY	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,
DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF	CONTRACT,
NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN
CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS
SOFTWARE.

Python	Library	Reference
Previous:	C.1	History	of	the	Up:	C.	History	and	License	Next:	C.3	Licenses
and	Acknowledgements

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	C.2	Terms	and	conditions	Up:	C.	History	and	License	Next:	C.3.1
Mersenne	Twister

C.3	Licenses	and
Acknowledgements	for	Incorporated
Software
This	section	is	an	incomplete,	but	growing	list	of	licenses	and
acknowledgements	for	third-party	software	incorporated	in	the	Python
distribution.

Subsections

C.3.1	Mersenne	Twister
C.3.2	Sockets
C.3.3	Floating	point	exception	control
C.3.4	MD5	message	digest	algorithm
C.3.5	Asynchronous	socket	services
C.3.6	Cookie	management
C.3.7	Profiling
C.3.8	Execution	tracing
C.3.9	UUencode	and	UUdecode	functions
C.3.10	XML	Remote	Procedure	Calls

Python	Library	Reference
Previous:	C.2	Terms	and	conditions	Up:	C.	History	and	License	Next:	C.3.1
Mersenne	Twister

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	C.3	Licenses	and	Acknowledgements	Up:	C.3	Licenses	and
Acknowledgements	Next:	C.3.2	Sockets

C.3.1	Mersenne	Twister
The	_random	module	includes	code	based	on	a	download	from
http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html.	The
following	are	the	verbatim	comments	from	the	original	code:

A	C-program	for	MT19937,	with	initialization	improved	2002/1/26.

Coded	by	Takuji	Nishimura	and	Makoto	Matsumoto.

Before	using,	initialize	the	state	by	using	init_genrand(seed)

or	init_by_array(init_key,	key_length).

Copyright	(C)	1997	-	2002,	Makoto	Matsumoto	and	Takuji	Nishimura,

All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

	1.	Redistributions	of	source	code	must	retain	the	above	copyright

				notice,	this	list	of	conditions	and	the	following	disclaimer.

	2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

				notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

				documentation	and/or	other	materials	provided	with	the	distribution.

	3.	The	names	of	its	contributors	may	not	be	used	to	endorse	or	promote

				products	derived	from	this	software	without	specific	prior	written

				permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND	CONTRIBUTORS

"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT

LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR

A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	COPYRIGHT	OWNER	OR

CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,

EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,

PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR

PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF

LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING

NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS

SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Any	feedback	is	very	welcome.

http://www.math.keio.ac.jp/matumoto/emt.html

email:	matumoto@math.keio.ac.jp

http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html

Python	Library	Reference
Previous:	C.3	Licenses	and	Acknowledgements	Up:	C.3	Licenses	and
Acknowledgements	Next:	C.3.2	Sockets

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	C.3.1	Mersenne	Twister	Up:	C.3	Licenses	and	Acknowledgements
Next:	C.3.3	Floating	point	exception

C.3.2	Sockets
The	socket	module	uses	the	functions,	getaddrinfo,	and	getnameinfo,
which	are	coded	in	separate	source	files	from	the	WIDE	Project,
http://www.wide.ad.jp/about/index.html.

						

Copyright	(C)	1995,	1996,	1997,	and	1998	WIDE	Project.

All	rights	reserved.

	

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

1.	Redistributions	of	source	code	must	retain	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer.

2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

			documentation	and/or	other	materials	provided	with	the	distribution.

3.	Neither	the	name	of	the	project	nor	the	names	of	its	contributors

			may	be	used	to	endorse	or	promote	products	derived	from	this	software

			without	specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	PROJECT	AND	CONTRIBUTORS	``AS	IS''	AND

GAI_ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	PROJECT	OR	CONTRIBUTORS	BE	LIABLE

FOR	GAI_ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL

DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS

OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

HOWEVER	CAUSED	AND	ON	GAI_ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT

LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	GAI_ANY	WAY

OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF

SUCH	DAMAGE.

Python	Library	Reference
Previous:	C.3.1	Mersenne	Twister	Up:	C.3	Licenses	and	Acknowledgements
Next:	C.3.3	Floating	point	exception

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.wide.ad.jp/about/index.html

Previous:	C.3.2	Sockets	Up:	C.3	Licenses	and	Acknowledgements	Next:	C.3.4
MD5	message	digest

C.3.3	Floating	point	exception	control
The	source	for	the	fpectl	module	includes	the	following	notice:

				/																							Copyright	(c)	1996.																											\	

			|										The	Regents	of	the	University	of	California.																	|

			|																								All	rights	reserved.																											|

			|																																																																							|

			|			Permission	to	use,	copy,	modify,	and	distribute	this	software	for			|

			|			any	purpose	without	fee	is	hereby	granted,	provided	that	this	en-			|

			|			tire	notice	is	included	in	all	copies	of	any	software	which	is	or			|

			|			includes		a		copy		or		modification		of		this	software	and	in	all			|

			|			copies	of	the	supporting	documentation	for	such	software.											|

			|																																																																							|

			|			This		work	was	produced	at	the	University	of	California,	Lawrence			|

			|			Livermore	National	Laboratory	under		contract		no.		W-7405-ENG-48			|

			|			between		the		U.S.		Department		of		Energy	and	The	Regents	of	the			|

			|			University	of	California	for	the	operation	of	UC	LLNL.														|

			|																																																																							|

			|																														DISCLAIMER																															|

			|																																																																							|

			|			This		software	was	prepared	as	an	account	of	work	sponsored	by	an			|

			|			agency	of	the	United	States	Government.	Neither	the	United	States			|

			|			Government		nor	the	University	of	California	nor	any	of	their	em-			|

			|			ployees,	makes	any	warranty,	express	or	implied,	or		assumes		any			|

			|			liability		or		responsibility		for	the	accuracy,	completeness,	or			|

			|			usefulness	of	any	information,		apparatus,		product,		or		process			|

			|			disclosed,			or		represents		that		its		use		would		not		infringe			|

			|			privately-owned	rights.	Reference	herein	to	any	specific		commer-			|

			|			cial		products,		process,		or		service		by	trade	name,	trademark,			|

			|			manufacturer,	or	otherwise,	does	not		necessarily		constitute		or			|

			|			imply		its	endorsement,	recommendation,	or	favoring	by	the	United			|

			|			States	Government	or	the	University	of	California.	The	views		and			|

			|			opinions		of	authors	expressed	herein	do	not	necessarily	state	or			|

			|			reflect	those	of	the	United	States	Government	or		the		University			|

			|			of		California,		and	shall	not	be	used	for	advertising	or	product			|

				\		endorsement	purposes.																																														/	

Python	Library	Reference
Previous:	C.3.2	Sockets	Up:	C.3	Licenses	and	Acknowledgements	Next:	C.3.4
MD5	message	digest

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	C.3.3	Floating	point	exception	Up:	C.3	Licenses	and
Acknowledgements	Next:	C.3.5	Asynchronous	socket	services

C.3.4	MD5	message	digest	algorithm
The	source	code	for	the	md5	module	contains	the	following	notice:

Copyright	(C)	1991-2,	RSA	Data	Security,	Inc.	Created	1991.	All

rights	reserved.

License	to	copy	and	use	this	software	is	granted	provided	that	it

is	identified	as	the	"RSA	Data	Security,	Inc.	MD5	Message-Digest

Algorithm"	in	all	material	mentioning	or	referencing	this	software

or	this	function.

License	is	also	granted	to	make	and	use	derivative	works	provided

that	such	works	are	identified	as	"derived	from	the	RSA	Data

Security,	Inc.	MD5	Message-Digest	Algorithm"	in	all	material

mentioning	or	referencing	the	derived	work.

RSA	Data	Security,	Inc.	makes	no	representations	concerning	either

the	merchantability	of	this	software	or	the	suitability	of	this

software	for	any	particular	purpose.	It	is	provided	"as	is"

without	express	or	implied	warranty	of	any	kind.

These	notices	must	be	retained	in	any	copies	of	any	part	of	this

documentation	and/or	software.

Python	Library	Reference
Previous:	C.3.3	Floating	point	exception	Up:	C.3	Licenses	and
Acknowledgements	Next:	C.3.5	Asynchronous	socket	services

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	C.3.4	MD5	message	digest	Up:	C.3	Licenses	and
Acknowledgements	Next:	C.3.6	Cookie	management

C.3.5	Asynchronous	socket	services
The	asynchat	and	asyncore	modules	contain	the	following	notice:

						

	Copyright	1996	by	Sam	Rushing

																									All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and

	its	documentation	for	any	purpose	and	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appear	in	all

	copies	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of	Sam

	Rushing	not	be	used	in	advertising	or	publicity	pertaining	to

	distribution	of	the	software	without	specific,	written	prior

	permission.

	SAM	RUSHING	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS	SOFTWARE,

	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS,	IN

	NO	EVENT	SHALL	SAM	RUSHING	BE	LIABLE	FOR	ANY	SPECIAL,	INDIRECT	OR

	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS

	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF	CONTRACT,

	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN

	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

Python	Library	Reference
Previous:	C.3.4	MD5	message	digest	Up:	C.3	Licenses	and
Acknowledgements	Next:	C.3.6	Cookie	management

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	C.3.5	Asynchronous	socket	services	Up:	C.3	Licenses	and
Acknowledgements	Next:	C.3.7	Profiling

C.3.6	Cookie	management
The	Cookie	module	contains	the	following	notice:

	Copyright	2000	by	Timothy	O'Malley	<timo@alum.mit.edu>

																All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software

	and	its	documentation	for	any	purpose	and	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appear	in	all

	copies	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of

	Timothy	O'Malley		not	be	used	in	advertising	or	publicity

	pertaining	to	distribution	of	the	software	without	specific,	written

	prior	permission.

	Timothy	O'Malley	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS

	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY

	AND	FITNESS,	IN	NO	EVENT	SHALL	Timothy	O'Malley	BE	LIABLE	FOR

	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES

	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,

	WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS

	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR

	PERFORMANCE	OF	THIS	SOFTWARE.

Python	Library	Reference
Previous:	C.3.5	Asynchronous	socket	services	Up:	C.3	Licenses	and
Acknowledgements	Next:	C.3.7	Profiling

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	C.3.6	Cookie	management	Up:	C.3	Licenses	and
Acknowledgements	Next:	C.3.8	Execution	tracing

C.3.7	Profiling
The	profile	and	pstats	modules	contain	the	following	notice:

	Copyright	1994,	by	InfoSeek	Corporation,	all	rights	reserved.

	Written	by	James	Roskind

	Permission	to	use,	copy,	modify,	and	distribute	this	Python	software

	and	its	associated	documentation	for	any	purpose	(subject	to	the

	restriction	in	the	following	sentence)	without	fee	is	hereby	granted,

	provided	that	the	above	copyright	notice	appears	in	all	copies,	and

	that	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	InfoSeek	not	be	used	in

	advertising	or	publicity	pertaining	to	distribution	of	the	software

	without	specific,	written	prior	permission.		This	permission	is

	explicitly	restricted	to	the	copying	and	modification	of	the	software

	to	remain	in	Python,	compiled	Python,	or	other	languages	(such	as	C)

	wherein	the	modified	or	derived	code	is	exclusively	imported	into	a

	Python	module.

	INFOSEEK	CORPORATION	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS

	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND

	FITNESS.	IN	NO	EVENT	SHALL	INFOSEEK	CORPORATION	BE	LIABLE	FOR	ANY

	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES	WHATSOEVER

	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF

	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN

	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

Python	Library	Reference
Previous:	C.3.6	Cookie	management	Up:	C.3	Licenses	and
Acknowledgements	Next:	C.3.8	Execution	tracing

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	C.3.7	Profiling	Up:	C.3	Licenses	and	Acknowledgements	Next:
C.3.9	UUencode	and	UUdecode

C.3.8	Execution	tracing
The	trace	module	contains	the	following	notice:

	portions	copyright	2001,	Autonomous	Zones	Industries,	Inc.,	all	rights...

	err...		reserved	and	offered	to	the	public	under	the	terms	of	the

	Python	2.2	license.

	Author:	Zooko	O'Whielacronx

	http://zooko.com/

	mailto:zooko@zooko.com

	Copyright	2000,	Mojam	Media,	Inc.,	all	rights	reserved.

	Author:	Skip	Montanaro

	Copyright	1999,	Bioreason,	Inc.,	all	rights	reserved.

	Author:	Andrew	Dalke

	Copyright	1995-1997,	Automatrix,	Inc.,	all	rights	reserved.

	Author:	Skip	Montanaro

	Copyright	1991-1995,	Stichting	Mathematisch	Centrum,	all	rights	reserved.

	Permission	to	use,	copy,	modify,	and	distribute	this	Python	software	and

	its	associated	documentation	for	any	purpose	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appears	in	all	copies,

	and	that	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	neither	Automatrix,

	Bioreason	or	Mojam	Media	be	used	in	advertising	or	publicity	pertaining	to

	distribution	of	the	software	without	specific,	written	prior	permission.

Python	Library	Reference
Previous:	C.3.7	Profiling	Up:	C.3	Licenses	and	Acknowledgements	Next:
C.3.9	UUencode	and	UUdecode

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	C.3.8	Execution	tracing	Up:	C.3	Licenses	and	Acknowledgements
Next:	C.3.10	XML	Remote	Procedure

C.3.9	UUencode	and	UUdecode	functions
The	uu	module	contains	the	following	notice:

	Copyright	1994	by	Lance	Ellinghouse

	Cathedral	City,	California	Republic,	United	States	of	America.

																								All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its

	documentation	for	any	purpose	and	without	fee	is	hereby	granted,

	provided	that	the	above	copyright	notice	appear	in	all	copies	and	that

	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	Lance	Ellinghouse

	not	be	used	in	advertising	or	publicity	pertaining	to	distribution

	of	the	software	without	specific,	written	prior	permission.

	LANCE	ELLINGHOUSE	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO

	THIS	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND

	FITNESS,	IN	NO	EVENT	SHALL	LANCE	ELLINGHOUSE	CENTRUM	BE	LIABLE

	FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES

	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN

	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT

	OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

	Modified	by	Jack	Jansen,	CWI,	July	1995:

	-	Use	binascii	module	to	do	the	actual	line-by-line	conversion

			between	ascii	and	binary.	This	results	in	a	1000-fold	speedup.	The	C

			version	is	still	5	times	faster,	though.

	-	Arguments	more	compliant	with	python	standard

Python	Library	Reference
Previous:	C.3.8	Execution	tracing	Up:	C.3	Licenses	and	Acknowledgements
Next:	C.3.10	XML	Remote	Procedure

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	C.3.9	UUencode	and	UUdecode	Up:	C.3	Licenses	and
Acknowledgements	Next:	Module	Index

C.3.10	XML	Remote	Procedure	Calls
The	xmlrpclib	module	contains	the	following	notice:

					The	XML-RPC	client	interface	is

	Copyright	(c)	1999-2002	by	Secret	Labs	AB

	Copyright	(c)	1999-2002	by	Fredrik	Lundh

	By	obtaining,	using,	and/or	copying	this	software	and/or	its

	associated	documentation,	you	agree	that	you	have	read,	understood,

	and	will	comply	with	the	following	terms	and	conditions:

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and

	its	associated	documentation	for	any	purpose	and	without	fee	is

	hereby	granted,	provided	that	the	above	copyright	notice	appears	in

	all	copies,	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of

	Secret	Labs	AB	or	the	author	not	be	used	in	advertising	or	publicity

	pertaining	to	distribution	of	the	software	without	specific,	written

	prior	permission.

	SECRET	LABS	AB	AND	THE	AUTHOR	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD

	TO	THIS	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANT-

	ABILITY	AND	FITNESS.		IN	NO	EVENT	SHALL	SECRET	LABS	AB	OR	THE	AUTHOR

	BE	LIABLE	FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY

	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,

	WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS

	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE

	OF	THIS	SOFTWARE.

Python	Library	Reference
Previous:	C.3.9	UUencode	and	UUdecode	Up:	C.3	Licenses	and
Acknowledgements	Next:	Module	Index

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Module	Index	Up:	Python	Library	Reference	Next:	About	this
document	...

Index

Symbols	|	_	|	a	|	b	|	c	|	d	|	e	|	f	|	g	|	h	|	i	|	j	|	k	|	l	|	m	|	n	|	o	|	p	|	q	|	r	|	s	|	t	|	u	|	v	|	w
|	x	|	y	|	z

Symbols

.ini
file

.pdbrc
file

.pythonrc.py
file

<protocol>_proxy	(environment
variable)

%	formatting
%	interpolation
==	operator

_	(underscore)

__abs__()	(in	module	operator)
__add__()	(AddressList	method)
__add__()	(in	module	operator)
__and__()	(in	module	operator)
__bases__	(class	attribute)
__builtin__	(built-in	module)
__call__()	(Generator	method)
__class__	(instance	attribute)
__cmp__()	(instance	method)
__concat__()	(in	module	operator)
__contains__()	(in	module	operator)
__contains__()	(Message	method)
__copy__()	(copy	protocol)
__deepcopy__()	(copy	protocol)
__delitem__()	(in	module	operator)
__delitem__()	(Message	method)
__delslice__()	(in	module	operator)
__dict__	(instance	attribute)
__dict__	(object	attribute)
__displayhook__	(in	module	sys)
__div__()	(in	module	operator)
__eq__()	(Charset	method)
__eq__()	(Header	method)
__eq__()	(in	module	operator)
__excepthook__	(in	module	sys)
__floordiv__()	(in	module	operator)
__future__	(standard	module)
__ge__()	(in	module	operator)
__getinitargs__()	(copy	protocol)
__getitem__()	(in	module	operator)
__getitem__()	(Message	method)
__getnewargs__()	(copy	protocol)
__getslice__()	(in	module	operator)
__getstate__()	(copy	protocol)

__len__()	(AddressList	method)
__len__()	(Message	method)
__lshift__()	(in	module	operator)
__lt__()	(in	module	operator)
__main__	(built-in	module)
__members__	(object	attribute)
__methods__	(object	attribute)
__mod__()	(in	module	operator)
__mul__()	(in	module	operator)
__name__	(class	attribute)
__ne__()	(Header	method),	[Link]
__ne__()	(in	module	operator)
__neg__()	(in	module	operator)
__not__()	(in	module	operator)
__or__()	(in	module	operator)
__pos__()	(in	module	operator)
__pow__()	(in	module	operator)
__repeat__()	(in	module	operator)
__repr__()	(netrc	method)
__rshift__()	(in	module	operator)
__setitem__()	(in	module	operator)
__setitem__()	(Message	method)
__setslice__()	(in	module	operator)
__setstate__()	(copy	protocol)
__stderr__	(in	module	sys)
__stdin__	(in	module	sys)
__stdout__	(in	module	sys)
__str__()	(AddressList	method)
__str__()	(Charset	method)
__str__()	(date	method)
__str__()	(datetime	method)
__str__()	(Header	method)
__str__()	(Message	method)
__str__()	(time	method)

__gt__()	(in	module	operator)
__iadd__()	(AddressList	method)
__import__()	(built-in	function)
__init__()	(in	module	difflib)
__init__()	(instance	constructor)
__init__()	(NullTranslations	method)
__init__()	(Textbox	method)
__inv__()	(in	module	operator)
__invert__()	(in	module	operator)
__isub__()	(AddressList	method)
__iter__()	(container	method)
__iter__()	(iterator	method)
__le__()	(in	module	operator)

__sub__()	(AddressList	method)
__sub__()	(in	module	operator)
__truediv__()	(in	module	operator)
__unicode__()	(Header	method)
__xor__()	(in	module	operator)
_exit()	(in	module	os)
_getframe()	(in	module	sys)
_locale	(built-in	module)
_parse()	(NullTranslations	method)
_structure()	(in	module	email.Iterators)
_urlopener	(in	module	urllib)
_winreg	(extension	module)

A

A-LAW,	[Link]
a2b_base64()	(in	module
binascii)
a2b_hex()	(in	module	binascii)
a2b_hqx()	(in	module	binascii)
a2b_qp()	(in	module	binascii)
a2b_uu()	(in	module	binascii)
ABDAY_1	...	ABDAY_7	(in
module	locale)
ABMON_1	...	ABMON_12	(in
module	locale)
abort()	(FTP	method)
abort()	(in	module	os)
above()	(Textbox	method)
abs()	(built-in	function)
abs()	(Context	method)
abs()	(in	module	operator)
abspath()	(in	module	os.path)
AbstractBasicAuthHandler
(class	in	urllib2)
AbstractDigestAuthHandler
(class	in	urllib2)
AbstractFormatter	(class	in
formatter)
AbstractWriter	(class	in
formatter)
ac_in_buffer_size	(in	module
asyncore)
ac_out_buffer_size	(in	module
asyncore)
accept()	(dispatcher	method)
accept()	(socket	method)
accept2dyear	(in	module	time)
access()	(in	module	os)

all_errors	(in	module	ftplib)
all_features	(in	module	xml.sax.handler)
all_properties	(in	module	xml.sax.handler)
allocate_lock()	(in	module	thread)
allow_reuse_address	(SocketServer	protocol)
allowed_domains()	(DefaultCookiePolicy
method)
allowremoval()	(CD	player	method)
alt()	(in	module	curses.ascii)
ALT_DIGITS	(in	module	locale)
altsep	(in	module	os)
altzone	(in	module	time)
anchor_bgn()	(HTMLParser	method)
anchor_end()	(HTMLParser	method)
and	operator,	[Link]
and_()	(in	module	operator)
annotate()	(in	module	dircache)

acos()	(in	module	cmath)
acos()	(in	module	math)
acosh()	(in	module	cmath)
acquire()	(Condition	method)
acquire()	(lock	method)
acquire()	(Semaphore	method)
acquire()	(Textbox	method)
acquire()	(Timer	method),
[Link]
acquire_lock()	(in	module	imp)
activate_form()	(form	method)
activeCount()	(in	module
threading)
add()	(Context	method)
add()	(in	module	audioop)
add()	(in	module	operator)
add()	(Stats	method)
add()	(TarFile	method)
add_alias()	(in	module
email.Charset)
add_box()	(form	method)
add_browser()	(form	method)
add_button()	(form	method)
add_charset()	(in	module
email.Charset)
add_choice()	(form	method)
add_clock()	(form	method)
add_codec()	(in	module
email.Charset)
add_cookie_header()
(CookieJar	method)
add_counter()	(form	method)
add_data()	(Request	method)
add_dial()	(form	method)
add_fallback()
(NullTranslations	method)
add_flowing_data()	(formatter
method)
add_handler()	(OpenerDirector

anydbm	(standard	module)
api_version	(in	module	sys)
apop()	(POP3_SSL	method)
append()	(array	method)
append()	(Header	method)
append()	(IMAP4_stream	method)
append()	(list	method)
append()	(SystemRandom	method)
append()	(Template	method)
appendChild()	(Node	method)
appendleft()	(SystemRandom	method)
apply()	(non-essential	built-in	functions)
architecture()	(in	module	platform)
aRepr	(in	module	repr)
argv	(in	module	sys)
arithmetic
ArithmeticError
array	(built-in	module)
array()	(in	module	array)
arrays
ArrayType	(in	module	array)
article()	(NNTPDataError	method)
AS_IS	(in	module	formatter)
as_string()	(Message	method)
as_tuple()	(Decimal	method)
ascii()	(in	module	curses.ascii)
ascii_letters	(in	module	string)
ascii_lowercase	(in	module	string)
ascii_uppercase	(in	module	string)
asctime()	(in	module	time)
asin()	(in	module	cmath)
asin()	(in	module	math)
asinh()	(in	module	cmath)
assert	statement
assert_()	(TestCase	method)
assert_line_data()	(formatter	method)
assertAlmostEqual()	(TestCase	method)
assertEqual()	(TestCase	method)
AssertionError

method)
add_header()	(Message
method)
add_header()	(Request
method)
add_history()	(in	module
readline)
add_hor_rule()	(formatter
method)
add_input()	(form	method)
add_label_data()	(formatter
method)
add_lightbutton()	(form
method)
add_line_break()	(formatter
method)
add_literal_data()	(formatter
method)
add_menu()	(form	method)
add_parent()	(BaseHandler
method)
add_password()
(HTTPPasswordMgr	method)
add_positioner()	(form
method)
add_roundbutton()	(form
method)
add_section()
(SafeConfigParser	method)
add_slider()	(form	method)
add_text()	(form	method)
add_timer()	(form	method)
add_type()	(in	module
mimetypes)
add_unredirected_header()
(Request	method)
add_valslider()	(form	method)
addcallback()	(CD	parser
method)

assertNotAlmostEqual()	(TestCase	method)
assertNotEqual()	(TestCase	method)
assertRaises()	(TestCase	method)
assignment

extended	slice
slice
subscript

ast2list()	(in	module	parser)
ast2tuple()	(in	module	parser)
astimezone()	(datetime	method)
ASTType	(in	module	parser)
ASTVisitor	(class	in	compiler.visitor)
async_chat	(class	in	asynchat)
asynchat	(standard	module)
asyncore	(built-in	module)
atan()	(in	module	cmath)
atan()	(in	module	math)
atan2()	(in	module	math)
atanh()	(in	module	cmath)
atexit	(standard	module)
atime	(in	module	cd)
atof()	(in	module	locale)
atof()	(in	module	string)
atoi()	(in	module	locale)
atoi()	(in	module	string)
atol()	(in	module	string)
attach()	(Message	method)
AttlistDeclHandler()	(xmlparser	method)
attrgetter()	(in	module	operator)
AttributeError
attributes	(Node	attribute)
attributes	(XMLParser	attribute)
AttributesImpl	(class	in	xml.sax.xmlreader)
AttributesNSImpl	(class	in	xml.sax.xmlreader)
attroff()	(window	method)
attron()	(window	method)
attrset()	(window	method)
audio	(in	module	cd)
Audio	Interchange	File	Format

addch()	(window	method)
addError()	(TestResult	method)
addFailure()	(TestResult
method)
addfile()	(TarFile	method)
addFilter()	(Textbox	method),
[Link]
addHandler()	(Textbox
method)
addheader()	(MimeWriter
method)
addinfo()	(Profile	method)
addLevelName()	(in	module
logging)
addnstr()	(window	method)
address_family	(SocketServer
protocol)
address_string()
(BaseHTTPRequestHandler
method)
addresslist	(AddressList
attribute)
AddressList	(class	in	rfc822)
addstr()	(window	method)
addSuccess()	(TestResult
method)
addTest()	(TestSuite	method)
addTests()	(TestSuite	method)
adjusted()	(Decimal	method)
adler32()	(in	module	zlib)
ADPCM,	Intel/DVI
adpcm2lin()	(in	module
audioop)
adpcm32lin()	(in	module
audioop)
AF_INET	(in	module	socket)
AF_INET6	(in	module	socket)
AF_UNIX	(in	module	socket)
AI_*	(in	module	socket)

AUDIO_FILE_ENCODING_ADPCM_G721
(in	module	sunau)
AUDIO_FILE_ENCODING_ADPCM_G722
(in	module	sunau)
AUDIO_FILE_ENCODING_ADPCM_G723_3
(in	module	sunau)
AUDIO_FILE_ENCODING_ADPCM_G723_5
(in	module	sunau)
AUDIO_FILE_ENCODING_ALAW_8	(in
module	sunau)
AUDIO_FILE_ENCODING_DOUBLE	(in
module	sunau)
AUDIO_FILE_ENCODING_FLOAT	(in
module	sunau)
AUDIO_FILE_ENCODING_LINEAR_16	(in
module	sunau)
AUDIO_FILE_ENCODING_LINEAR_24	(in
module	sunau)
AUDIO_FILE_ENCODING_LINEAR_32	(in
module	sunau)
AUDIO_FILE_ENCODING_LINEAR_8	(in
module	sunau)
AUDIO_FILE_ENCODING_MULAW_8	(in
module	sunau)
AUDIO_FILE_MAGIC	(in	module	sunau)
AUDIODEV	(environment	variable)
audioop	(built-in	module)
authenticate()	(IMAP4_stream	method)
authenticators()	(netrc	method)
avg()	(in	module	audioop)
avgpp()	(in	module	audioop)

aifc()	(aifc	method)
aifc	(standard	module)
AIFF,	[Link]
aiff()	(aifc	method)
AIFF-C,	[Link]
al	(built-in	module)
AL	(standard	module),	[Link]
alarm()	(in	module	signal)

B

b16decode()	(in	module	base64)
b16encode()	(in	module	base64)
b2a_base64()	(in	module	binascii)
b2a_hex()	(in	module	binascii)
b2a_hqx()	(in	module	binascii)
b2a_qp()	(in	module	binascii)
b2a_uu()	(in	module	binascii)
b32decode()	(in	module	base64)
b32encode()	(in	module	base64)
b64decode()	(in	module	base64)
b64encode()	(in	module	base64)
BabylMailbox	(class	in	mailbox)
backslashreplace_errors_errors()	(in
module	codecs)
backward()	(in	module	turtle)
backward_compatible	(in	module
imageop)
BadStatusLine
Balloon	(class	in	Tix)
base64

encoding
base64	(standard	module)
BaseCookie	(class	in	Cookie)
BaseHandler	(class	in	urllib2)
BaseHTTPRequestHandler	(class	in
BaseHTTPServer)
BaseHTTPServer	(standard	module)
basename()	(in	module	os.path)
basestring()	(built-in	function)
basicConfig()	(in	module	logging)
BasicContext	(class	in	decimal)
Bastion()	(in	module	Bastion)
Bastion	(standard	module)

blocksize	(in	module	sha)
body()	(NNTPDataError	method)
body_encode()	(Charset	method)
body_encoding	(in	module
email.Charset)
body_line_iterator()	(in	module
email.Iterators)
BOM	(in	module	codecs)
BOM_BE	(in	module	codecs)
BOM_LE	(in	module	codecs)
BOM_UTF16	(in	module	codecs)
BOM_UTF16_BE	(in	module	codecs)
BOM_UTF16_LE	(in	module	codecs)
BOM_UTF32	(in	module	codecs)
BOM_UTF32_BE	(in	module	codecs)
BOM_UTF32_LE	(in	module	codecs)
BOM_UTF8	(in	module	codecs)
bool()	(built-in	function)
Boolean

operations,	[Link]
type
values

boolean()	(in	module	xmlrpclib)
Boolean	object
BooleanType	(in	module	types)
border()	(window	method)
bottom()	(Textbox	method)
bottom_panel()	(in	module
curses.panel)
BoundaryError	(exception	in
email.Errors)
BoundedSemaphore()	(in	module
threading)
box()	(window	method)

BastionClass	(class	in	Bastion)
baudrate()	(in	module	curses)
bdb	(standard	module)
beep()	(in	module	curses)
Beep()	(in	module	winsound)
below()	(Textbox	method)
Benchmarking
benchmarking
bestreadsize()	(CD	player	method)
betavariate()	(in	module	random)
bgn_group()	(form	method)
bias()	(in	module	audioop)
bidirectional()	(in	module	unicodedata)
binary

data,	packing
binary()	(in	module	xmlrpclib)
binary	semaphores
binascii	(built-in	module)
bind()	(dispatcher	method)
bind()	(socket	method)
bind	(widgets)
bind_textdomain_codeset()	(in	module
gettext)
bindtextdomain()	(in	module	gettext)
binhex()	(in	module	binhex)
binhex	(standard	module),	[Link]
bisect()	(in	module	bisect)
bisect	(standard	module)
bisect_left()	(in	module	bisect)
bisect_right()	(in	module	bisect)
bit-string

operations
bkgd()	(window	method)
bkgdset()	(window	method)
blocked_domains()
(DefaultCookiePolicy	method)
BLOCKSIZE	(in	module	cd)

break_long_words	(TextWrapper
attribute)
BROWSER	(environment	variable),
[Link]
bsddb	(built-in	module),	[Link],	[Link]
bsddb	(extension	module)
BsdDbShelf	(class	in	shelve)
btopen()	(in	module	bsddb)
buffer()	(built-in	function),	[Link]
buffer()	(non-essential	built-in
functions)
buffer	object
buffer	size,	I/O
buffer_info()	(array	method)
buffer_size	(xmlparser	attribute)
buffer_text	(xmlparser	attribute)
buffer_used	(xmlparser	attribute)
BufferingHandler	(class	in	logging)
BufferType	(in	module	types)
bufsize()	(audio	device	method)
build_opener()	(in	module	urllib2)
built-in

constants
exceptions
functions
types,	[Link]

builtin_module_names	(in	module	sys)
BuiltinFunctionType	(in	module	types)
BuiltinMethodType	(in	module	types)
ButtonBox	(class	in	Tix)
byte-code

file,	[Link],	[Link]
byteorder	(in	module	sys)
byteswap()	(array	method)
bz2	(built-in	module)
BZ2Compressor	(class	in	bz2)
BZ2Decompressor	(class	in	bz2)
BZ2File	(class	in	bz2)

C

C
language,	[Link]
structures

C_BUILTIN	(in	module	imp)
C_EXTENSION	(in	module	imp)
CacheFTPHandler	(class	in	urllib2)
calcsize()	(in	module	struct)
calendar()	(in	module	calendar)
calendar	(standard	module)
call()	(in	module	subprocess)
call()	(TarInfo	method)
callable()	(built-in	function)
CallableProxyType	(in	module
weakref)
can_change_color()	(in	module	curses)
can_fetch()	(RobotFileParser	method)
cancel()	(scheduler	method)
cancel()	(Timer	method)
CannotSendHeader
CannotSendRequest
capitalize()	(in	module	string)
capitalize()	(string	method)
capwords()	(in	module	string)
cat()	(in	module	nis)
catalog	(in	module	cd)
category()	(in	module	unicodedata)
cbreak()	(in	module	curses)
cd	(built-in	module)
CDROM	(in	module	cd)
ceil()	(in	module	math),	[Link]
center()	(in	module	string)
center()	(string	method)
CGI

debugging

COMMENT	(in	module	tokenize)
comment	(ZipInfo	attribute)
comment_url	(Cookie	attribute)
commenters	(shlex	attribute)
CommentHandler()	(xmlparser	method)
common	(dircmp	attribute)
Common	Gateway	Interface
common_dirs	(dircmp	attribute)
common_files	(dircmp	attribute)
common_funny	(dircmp	attribute)
common_types	(in	module	mimetypes),
[Link]
commonprefix()	(in	module	os.path)
communicate()	(Popen	method)
compare()	(Context	method)
compare()	(Decimal	method)
compare()	(Differ	method)
comparing

objects
comparison

operator
COMPARISON_FLAGS	(in	module
doctest)
comparisons

chaining
compile()	(AST	method)
compile()	(built-in	function),	[Link],
[Link],	[Link],	[Link]
Compile	(class	in	codeop)
compile()	(in	module	compiler)
compile()	(in	module	py_compile)
compile()	(in	module	re)
compile_command()	(in	module	code)

exceptions
protocol
security
tracebacks

cgi	(standard	module)
cgi_directories
(CGIHTTPRequestHandler	attribute)
CGIHTTPRequestHandler	(class	in
CGIHTTPServer)
CGIHTTPServer	(standard	module),
[Link]
cgitb	(standard	module)
CGIXMLRPCRequestHandler	(class	in
SimpleXMLRPCServer)
chain()	(in	module	itertools)
chaining

comparisons
channels()	(audio	device	method)
CHAR_MAX	(in	module	locale)
character
CharacterDataHandler()	(xmlparser
method)
characters()	(ContentHandler	method)
Charset	(class	in	email.Charset)
CHARSET	(in	module	mimify)
charset()	(NullTranslations	method)
chdir()	(in	module	os)
check()	(IMAP4_stream	method)
check()	(in	module	tabnanny)
check_forms()	(in	module	fl)
check_output()	(OutputChecker
method)
checkcache()	(in	module	linecache)
CheckList	(class	in	Tix)
checksum

Cyclic	Redundancy	Check
MD5
SHA

childerr	(Popen4	attribute)

compile_command()	(in	module
codeop)
compile_dir()	(in	module	compileall)
compile_path()	(in	module	compileall)
compileall	(standard	module)
compileast()	(in	module	parser)
compileFile()	(in	module	compiler)
compiler	(module)
compiler.ast	(module)
compiler.visitor	(module)
complete()	(Completer	method)
completedefault()	(Cmd	method)
complex()	(built-in	function),	[Link]
complex	number

literals
complex	number	object
ComplexType	(in	module	types)
compress()	(BZ2Compressor	method)
compress()	(Compress	method)
compress()	(in	module	bz2)
compress()	(in	module	jpeg)
compress()	(in	module	zlib)
compress_size	(ZipInfo	attribute)
compress_type	(ZipInfo	attribute)
CompressionError
compressobj()	(in	module	zlib)
COMSPEC	(environment	variable)
concat()	(in	module	operator)
concatenation

operation
Condition	(class	in	threading)
Condition()	(in	module	threading)
ConfigParser	(class	in	ConfigParser)
ConfigParser	(standard	module)
configuration

file
file,	debugger
file,	path
file,	user

childNodes	(Node	attribute)
chmod()	(in	module	os)
choice()	(in	module	random)
choice()	(in	module	whrandom)
choose_boundary()	(in	module
mimetools)
chown()	(in	module	os)
chr()	(built-in	function)
chroot()	(in	module	os)
Chunk	(class	in	chunk)
chunk	(standard	module)
cipher

DES,	[Link]
IDEA

circle()	(in	module	turtle)
Clamped	(class	in	decimal)
Class	browser
classmethod()	(built-in	function)
classobj()	(in	module	new)
ClassType	(in	module	types)
clear()	(CookieJar	method)
clear()	(dictionary	method)
clear()	(Event	method)
clear()	(in	module	turtle)
clear()	(SystemRandom	method)
clear()	(window	method)
clear_flags()	(Context	method)
clear_history()	(in	module	readline)
clear_memo()	(Pickler	method)
clear_session_cookies()	(CookieJar
method)
clearcache()	(in	module	linecache)
clearok()	(window	method)
client_address
(BaseHTTPRequestHandler	attribute)
clock()	(in	module	time)
clone()	(Generator	method)
clone()	(Template	method)
cloneNode()	(Node	method),	[Link]

confstr()	(in	module	os)
confstr_names	(in	module	os)
conjugate()	(complex	number	method)
connect()	(dispatcher	method)
connect()	(FTP	method)
connect()	(HTTPResponse	method)
connect()	(SMTP	method)
connect()	(socket	method)
connect_ex()	(socket	method)
ConnectRegistry()	(in	module	_winreg)
constants

built-in
constructor()	(in	module	copy_reg)
container

iteration	over
contains()	(in	module	operator)
content	type

MIME
ContentHandler	(class	in
xml.sax.handler)
Context	(class	in	decimal)
context_diff()	(in	module	difflib)
Control	(class	in	Tix)
control	(in	module	cd)
controlnames	(in	module	curses.ascii)
controls()	(mixer	device	method)
ConversionError
conversions

numeric
convert()	(Charset	method)
Cookie	(class	in	cookielib)
Cookie	(standard	module)
CookieError
CookieJar	(class	in	cookielib)
cookiejar	(UnknownHandler	attribute)
cookielib	(standard	module)
CookiePolicy	(class	in	cookielib)
copy()	(Context	method)
copy()	(dictionary	method)

close()	(aifc	method),	[Link]
Close()	(ASTVisitor	method)
close()	(AU_read	method)
close()	(AU_write	method)
close()	(audio	device	method),	[Link]
close()	(BaseHandler	method)
close()	(BZ2File	method)
close()	(CD	player	method)
close()	(Chunk	method)
close()	(dispatcher	method)
close()	(FeedParser	method)
close()	(file	method)
close()	(FileHandler	method)
close()	(FTP	method)
close()	(HTMLParser	method)
close()	(HTTPResponse	method)
close()	(IMAP4_stream	method)
close()	(in	module	fileinput)
close()	(in	module	os)
close()	(IncrementalParser	method)
close()	(MemoryHandler	method)
close()	(mixer	device	method)
close()	(NTEventLogHandler	method)
close()	(Profile	method)
close()	(Queue	method),	[Link]
close()	(SGMLParser	method)
close()	(socket	method)
close()	(SocketHandler	method)
close()	(StringIO	method)
close()	(SysLogHandler	method)
close()	(TarFile	method)
close()	(TarInfo	method)
close()	(Telnet	method)
close()	(Textbox	method)
close()	(Wave_read	method)
close()	(Wave_write	method)
close()	(XMLParser	method)
close()	(ZipFile	method)
close_when_done()	(async_chat

copy()	(hmac	method)
copy()	(IMAP4_stream	method)
copy()	(in	copy)
copy()	(in	module	shutil)
copy()	(md5	method)
copy()	(sha	method)
copy	(standard	module),	[Link]
copy()	(Template	method)
copy2()	(in	module	shutil)
copy_reg	(standard	module)
copybinary()	(in	module	mimetools)
copyfile()	(in	module	shutil)
copyfileobj()	(in	module	shutil)
copying	files
copyliteral()	(in	module	mimetools)
copymessage()	(Folder	method)
copymode()	(in	module	shutil)
copyright	(in	module	sys)
copystat()	(in	module	shutil)
copytree()	(in	module	shutil)
cos()	(in	module	cmath)
cos()	(in	module	math)
cosh()	(in	module	cmath)
cosh()	(in	module	math)
count()	(array	method)
count()	(in	module	itertools)
count()	(in	module	string)
count()	(list	method)
count()	(string	method)
countOf()	(in	module	operator)
countTestCases()	(TestCase	method)
cPickle	(built-in	module),	[Link]
CPU	time
CRC	(ZipInfo	attribute)
crc32()	(in	module	binascii)
crc32()	(in	module	zlib)
crc_hqx()	(in	module	binascii)
create()	(IMAP4_stream	method)
create_decimal()	(Context	method)

method)
closed	(file	attribute)
CloseKey()	(in	module	_winreg)
closelog()	(in	module	syslog)
closeport()	(audio	port	method)
clrtobot()	(window	method)
clrtoeol()	(window	method)
cmath	(built-in	module)
Cmd	(class	in	cmd)
cmd	(standard	module),	[Link]
cmdloop()	(Cmd	method)
cmp()	(built-in	function),	[Link]
cmp()	(in	module	filecmp)
cmp_op	(in	module	dis)
cmpfiles()	(in	module	filecmp)
code	(ExpatError	attribute)
code()	(in	module	new)
code	(standard	module)
code	object,	[Link]
Codecs
decode
encode
codecs	(standard	module)
coded_value	(Morsel	attribute)
codeop	(standard	module)
codepoint2name	(in	module
htmlentitydefs)
CODESET	(in	module	locale)
CodeType	(in	module	types)
coerce()	(non-essential	built-in
functions)
collapse_rfc2231_value()	(in	module
email.Utils)
collect()	(in	module	gc)
collect_incoming_data()	(async_chat
method)
collections	(standard	module)
color()	(in	module	fl)
color()	(in	module	turtle)

create_socket()	(dispatcher	method)
create_system	(ZipInfo	attribute)
create_version	(ZipInfo	attribute)
createAttribute()	(Document	method)
createAttributeNS()	(Document
method)
createComment()	(Document	method)
createElement()	(Document	method)
createElementNS()	(Document	method)
CreateKey()	(in	module	_winreg)
createLock()	(Textbox	method)
createparser()	(in	module	cd)
createProcessingInstruction()
(Document	method)
createTextNode()	(Document	method)
critical()	(in	module	logging)
critical()	(Textbox	method)
CRNCYSTR	(in	module	locale)
crop()	(in	module	imageop)
cross()	(in	module	audioop)
crypt	(built-in	module),	[Link]
crypt()	(in	module	crypt)
crypt(3),	[Link],	[Link]
cryptography,	[Link]
cStringIO	(built-in	module)
csv
csv	(standard	module)
ctermid()	(in	module	os)
ctime()	(date	method)
ctime()	(datetime	method)
ctime()	(in	module	time)
ctrl()	(in	module	curses.ascii)
curdir	(in	module	os)
CurrentByteIndex	(xmlparser	attribute)
CurrentColumnNumber	(xmlparser
attribute)
currentframe()	(in	module	inspect)
CurrentLineNumber	(xmlparser
attribute)

color_content()	(in	module	curses)
color_pair()	(in	module	curses)
colorsys	(standard	module)
COLUMNS	(environment	variable),
[Link]
combine()	(datetime	method)
combining()	(in	module	unicodedata)
ComboBox	(class	in	Tix)
command	(BaseHTTPRequestHandler
attribute)
CommandCompiler	(class	in	codeop)
commands	(standard	module)
comment	(Cookie	attribute)

currentThread()	(in	module	threading)
curs_set()	(in	module	curses)
curses	(standard	module)
curses.ascii	(standard	module)
curses.panel	(standard	module)
curses.textpad	(standard	module)
curses.wrapper	(standard	module)
cursyncup()	(window	method)
cwd()	(FTP	method)
cycle()	(in	module	itertools)
Cyclic	Redundancy	Check

D

D_FMT	(in	module	locale)
D_T_FMT	(in	module	locale)
data

packing	binary
tabular

data	(Binary	attribute)
data	(Comment	attribute)
data	(MutableString	attribute)
data	(ProcessingInstruction	attribute)
data	(Text	attribute)
data	(UserDict	attribute)
data	(UserList	attribute)
database

Unicode
databases
DatagramHandler	(class	in	logging)
DATASIZE	(in	module	cd)
date	(class	in	datetime),	[Link]
date()	(datetime	method)
date()	(NNTPDataError	method)
date_time	(ZipInfo	attribute)
date_time_string()
(BaseHTTPRequestHandler	method)
datetime	(built-in	module)
datetime	(class	in	datetime),	[Link]
day	(date	attribute)
day	(datetime	attribute)
DAY_1	...	DAY_7	(in	module	locale)
daylight	(in	module	time)
Daylight	Saving	Time
DbfilenameShelf	(class	in	shelve)
dbhash	(standard	module),	[Link]
dbm	(built-in	module),	[Link],	[Link],

devnull	(in	module	os)
dgettext()	(in	module	gettext)
Dialect	(class	in	csv)
dict()	(built-in	function)
dictionary

type,	operations	on
dictionary	object
DictionaryType	(in	module	types)
DictMixin	(class	in	UserDict)
DictReader	(class	in	csv)
DictType	(in	module	types)
DictWriter	(class	in	csv)
diff_files	(dircmp	attribute)
Differ	(class	in	difflib),	[Link]
difflib	(standard	module)
digest()	(hmac	method)
digest()	(md5	method)
digest()	(sha	method)
digest_size	(in	module	md5)
digest_size	(in	module	sha)
digit()	(in	module	unicodedata)
digits	(in	module	string)
dir()	(built-in	function)
dir()	(FTP	method)
dircache	(standard	module)
dircmp	(class	in	filecmp)
directory

changing
creating
deleting,	[Link]
site-packages
site-python
traversal
walking

[Link]
deactivate_form()	(form	method)
debug	(IMAP4_stream	attribute)
debug()	(in	module	doctest)
debug()	(in	module	logging)
debug	(shlex	attribute)
debug()	(Template	method)
debug()	(TestCase	method)
debug()	(Textbox	method)
debug	(ZipFile	attribute)
debug=0	(TarFile	attribute)
DEBUG_COLLECTABLE	(in	module
gc)
DEBUG_INSTANCES	(in	module	gc)
DEBUG_LEAK	(in	module	gc)
DEBUG_OBJECTS	(in	module	gc)
DEBUG_SAVEALL	(in	module	gc)
debug_src()	(in	module	doctest)
DEBUG_STATS	(in	module	gc)
DEBUG_UNCOLLECTABLE	(in
module	gc)
debugger,	[Link]
configuration	file
debugging
CGI
DebuggingServer	(class	in	smtpd)
DebugRunner	(class	in	doctest)
Decimal	(class	in	decimal)
decimal()	(in	module	unicodedata)
decimal	(standard	module)
DecimalException	(class	in	decimal)
decode

Codecs
decode()	(Binary	method)
decode()	(in	module	base64)
decode()	(in	module	mimetools)
decode()	(in	module	quopri)
decode()	(in	module	uu)
decode()	(ServerProxy	method)

DirList	(class	in	Tix)
dirname()	(in	module	os.path)
DirSelectBox	(class	in	Tix)
DirSelectDialog	(class	in	Tix)
DirTree	(class	in	Tix)
dis()	(in	module	dis)
dis()	(in	module	pickletools)
dis	(standard	module)
disable()	(in	module	gc)
disable()	(in	module	logging)
disassemble()	(in	module	dis)
discard	(Cookie	attribute)
discard_buffers()	(async_chat	method)
disco()	(in	module	dis)
dispatch()	(ASTVisitor	method)
dispatcher	(class	in	asyncore)
displayhook()	(in	module	sys)
dist()	(in	module	platform)
distb()	(in	module	dis)
distutils	(standard	module)
dither2grey2()	(in	module	imageop)
dither2mono()	(in	module	imageop)
div()	(in	module	operator)
divide()	(Context	method)
division

integer
long	integer

DivisionByZero	(class	in	decimal)
divmod()	(built-in	function)
divmod()	(Context	method)
dl	(extension	module)
dllhandle	(in	module	sys)
dngettext()	(in	module	gettext)
do_command()	(Textbox	method)
do_forms()	(in	module	fl)
do_GET()
(SimpleHTTPRequestHandler	method)
do_HEAD()
(SimpleHTTPRequestHandler	method)

decode()	(string	method)
decode()	(TextWrapper	method)
decode_header()	(in	module
email.Header)
decode_params()	(in	module
email.Utils)
decode_rfc2231()	(in	module
email.Utils)
DecodedGenerator	(class	in
email.Generator)
decodestring()	(in	module	base64)
decodestring()	(in	module	quopri)
decomposition()	(in	module
unicodedata)
decompress()	(BZ2Decompressor
method)
decompress()	(Decompress	method)
decompress()	(in	module	bz2)
decompress()	(in	module	jpeg)
decompress()	(in	module	zlib)
decompressobj()	(in	module	zlib)
dedent()	(in	module	textwrap)
deepcopy()	(in	copy)
def_prog_mode()	(in	module	curses)
def_shell_mode()	(in	module	curses)
default()	(ASTVisitor	method)
default()	(Cmd	method)
default_bufsize	(in	module
xml.dom.pulldom)
default_open()	(BaseHandler	method)
DefaultContext	(class	in	decimal)
DefaultCookiePolicy	(class	in
cookielib)
DefaultHandler()	(xmlparser	method)
DefaultHandlerExpand()	(xmlparser
method)
defaults()	(SafeConfigParser	method)
defaultTestLoader	(in	module	unittest)
defaultTestResult()	(TestCase	method)

do_POST()	(CGIHTTPRequestHandler
method)
doc_header	(Cmd	attribute)
DocCGIXMLRPCRequestHandler
(class	in	DocXMLRPCServer)
DocFileSuite()	(in	module	doctest)
docmd()	(SMTP	method)
docstring	(DocTest	attribute)
docstrings
DocTest	(class	in	doctest)
doctest	(standard	module)
DocTestFailure	(exception	in	doctest)
DocTestFinder	(class	in	doctest)
DocTestParser	(class	in	doctest)
DocTestRunner	(class	in	doctest)
DocTestSuite()	(in	module	doctest)
DOCTYPE	declaration
documentation

generation
online

documentElement	(Document	attribute)
DocXMLRPCRequestHandler	(class	in
DocXMLRPCServer)
DocXMLRPCServer	(class	in
DocXMLRPCServer)
DocXMLRPCServer	(standard	module)
domain_initial_dot	(Cookie	attribute)
domain_return_ok()	(CookiePolicy
method)
domain_specified	(Cookie	attribute)
DomainLiberal	(LWPCookieJar
attribute)
DomainRFC2965Match
(LWPCookieJar	attribute)
DomainStrict	(LWPCookieJar	attribute)
DomainStrictNoDots	(LWPCookieJar
attribute)
DomainStrictNonDomain
(LWPCookieJar	attribute)

defects	(in	module	email.Message)
defpath	(in	module	os)
degrees()	(in	module	math)
degrees()	(in	module	turtle)
degrees()	(RawPen	method)
del	statement,	[Link]
del_param()	(Message	method)
delattr()	(built-in	function)
delay_output()	(in	module	curses)
delayload	(Cookie	attribute)
delch()	(window	method)
dele()	(POP3_SSL	method)
delete()	(FTP	method)
delete()	(IMAP4_stream	method)
delete_object()	(FORMS	object
method)
deleteacl()	(IMAP4_stream	method)
deletefolder()	(MH	method)
DeleteKey()	(in	module	_winreg)
deleteln()	(window	method)
deleteparser()	(CD	parser	method)
DeleteValue()	(in	module	_winreg)
delimiter	(Dialect	attribute)
delitem()	(in	module	operator)
delslice()	(in	module	operator)
demo()	(in	module	turtle)
DeprecationWarning
deque()	(in	module	collections)
dereference	(TarFile	attribute)
derwin()	(window	method)
DES

cipher,	[Link]
description()	(NNTPDataError	method)
descriptions()	(NNTPDataError
method)
descriptor,	file
Detach()	(ASTVisitor	method)
deterministic	profiling
DEVICE	(standard	module)

DOMEventStream	(class	in
xml.dom.pulldom)
DOMException
DomstringSizeErr
done()	(Unpacker	method)
DONT_ACCEPT_BLANKLINE	(in
module	doctest)
DONT_ACCEPT_TRUE_FOR_1	(in
module	doctest)
doRollover()	(RotatingFileHandler
method)
doRollover()
(TimedRotatingFileHandler	method)
DOTALL	(in	module	re)
doublequote	(Dialect	attribute)
doupdate()	(in	module	curses)
down()	(in	module	turtle)
drain()	(audio	device	method)
dropwhile()	(in	module	itertools)
dst()	(datetime	method)
dst()	(time	method),	[Link]
DTDHandler	(class	in	xml.sax.handler)
dumbdbm	(standard	module),	[Link]
DumbWriter	(class	in	formatter)
dummy_thread	(standard	module)
dummy_threading	(standard	module)
dump()	(in	module	marshal)
dump()	(in	module	pickle)
dump()	(Pickler	method)
dump_address_pair()	(in	module
rfc822)
dump_stats()	(Stats	method)
dumps()	(in	module	marshal)
dumps()	(in	module	pickle)
dumps()	(in	module	xmlrpclib)
dup()	(in	module	os)
dup()	(posixfile	method)
dup2()	(in	module	os)
dup2()	(posixfile	method)

DuplicateSectionError

E

e	(in	module	cmath)
e	(in	module	math)
E2BIG	(in	module	errno)
EACCES	(in	module	errno)
EADDRINUSE	(in	module	errno)
EADDRNOTAVAIL	(in	module	errno)
EADV	(in	module	errno)
EAFNOSUPPORT	(in	module	errno)
EAGAIN	(in	module	errno)
EAI_*	(in	module	socket)
EALREADY	(in	module	errno)
east_asian_width()	(in	module
unicodedata)
EBADE	(in	module	errno)
EBADF	(in	module	errno)
EBADFD	(in	module	errno)
EBADMSG	(in	module	errno)
EBADR	(in	module	errno)
EBADRQC	(in	module	errno)
EBADSLT	(in	module	errno)
EBFONT	(in	module	errno)
EBUSY	(in	module	errno)
ECHILD	(in	module	errno)
echo()	(in	module	curses)
echochar()	(window	method)
ECHRNG	(in	module	errno)
ECOMM	(in	module	errno)
ECONNABORTED	(in	module	errno)
ECONNREFUSED	(in	module	errno)
ECONNRESET	(in	module	errno)
EDEADLK	(in	module	errno)
EDEADLOCK	(in	module	errno)
EDESTADDRREQ	(in	module	errno)
edit()	(Textbox	method)

environment	variables	(continued)
LANGUAGE,	[Link]
LC_ALL,	[Link]
LC_MESSAGES,	[Link]
LINES,	[Link]
LNAME
LOGNAME,	[Link]
MIXERDEV
PAGER
PATH,	[Link],	[Link],	[Link],
[Link],	[Link],	[Link],	[Link],
[Link]
PYTHON_DOM
PYTHONDOCS
PYTHONPATH,	[Link],	[Link],
[Link]
PYTHONSTARTUP,	[Link],
[Link]
PYTHONY2K,	[Link],	[Link]
setting
TEMP
TIX_LIBRARY
TMP,	[Link]
TMPDIR,	[Link]
TZ,	[Link],	[Link],	[Link],	[Link],
[Link]
USER
USERNAME
Wimp$ScrapDir

EnvironmentError
ENXIO	(in	module	errno)
eof	(shlex	attribute)
EOFError
EOPNOTSUPP	(in	module	errno)

EDOM	(in	module	errno)
EDOTDOT	(in	module	errno)
EDQUOT	(in	module	errno)
EEXIST	(in	module	errno)
EFAULT	(in	module	errno)
EFBIG	(in	module	errno)
ehlo()	(SMTP	method)
EHOSTDOWN	(in	module	errno)
EHOSTUNREACH	(in	module	errno)
EIDRM	(in	module	errno)
EILSEQ	(in	module	errno)
EINPROGRESS	(in	module	errno)
EINTR	(in	module	errno)
EINVAL	(in	module	errno)
EIO	(in	module	errno)
EISCONN	(in	module	errno)
EISDIR	(in	module	errno)
EISNAM	(in	module	errno)
eject()	(CD	player	method)
EL2HLT	(in	module	errno)
EL2NSYNC	(in	module	errno)
EL3HLT	(in	module	errno)
EL3RST	(in	module	errno)
ElementDeclHandler()	(xmlparser
method)
elements	(XMLParser	attribute)
ELIBACC	(in	module	errno)
ELIBBAD	(in	module	errno)
ELIBEXEC	(in	module	errno)
ELIBMAX	(in	module	errno)
ELIBSCN	(in	module	errno)
Ellinghouse,	Lance
Ellipsis	(built-in	warning)
ELLIPSIS	(in	module	doctest)
EllipsisType	(in	module	types)
ELNRNG	(in	module	errno)
ELOOP	(in	module	errno)
email	(standard	module)
email.Charset	(standard	module)

EOVERFLOW	(in	module	errno)
EPERM	(in	module	errno)
EPFNOSUPPORT	(in	module	errno)
epilogue	(in	module	email.Message)
EPIPE	(in	module	errno)
epoch
EPROTO	(in	module	errno)
EPROTONOSUPPORT	(in	module
errno)
EPROTOTYPE	(in	module	errno)
eq()	(in	module	operator)
ERA	(in	module	locale)
ERA_D_FMT	(in	module	locale)
ERA_D_T_FMT	(in	module	locale)
ERA_YEAR	(in	module	locale)
ERANGE	(in	module	errno)
erase()	(window	method)
erasechar()	(in	module	curses)
EREMCHG	(in	module	errno)
EREMOTE	(in	module	errno)
EREMOTEIO	(in	module	errno)
ERESTART	(in	module	errno)
EROFS	(in	module	errno)
ERR	(in	module	curses)
errcode	(ServerProxy	attribute)
errmsg	(ServerProxy	attribute)
errno	(built-in	module),	[Link]
errno	(standard	module)
Error,	[Link],	[Link],	[Link],	[Link],
[Link],	[Link],	[Link],	[Link],	[Link]
error,	[Link],	[Link],	[Link],	[Link],
[Link],	[Link],	[Link],	[Link],	[Link],
[Link],	[Link],	[Link],	[Link],	[Link],
[Link],	[Link],	[Link],	[Link],	[Link],
[Link],	[Link],	[Link],	[Link],	[Link],
[Link]
error()	(ErrorHandler	method)
Error	(exception	in	uu)
error()	(Folder	method)

email.Encoders	(standard	module)
email.Errors	(standard	module)
email.Generator	(standard	module)
email.Header	(standard	module)
email.Iterators	(standard	module)
email.Message	(standard	module)
email.Parser	(standard	module)
email.Utils	(standard	module)
EMFILE	(in	module	errno)
emit()	(BufferingHandler	method)
emit()	(DatagramHandler	method)
emit()	(FileHandler	method)
emit()	(HTTPHandler	method)
emit()	(NTEventLogHandler	method)
emit()	(RotatingFileHandler	method)
emit()	(SMTPHandler	method)
emit()	(SocketHandler	method)
emit()	(StreamHandler	method)
emit()	(SysLogHandler	method)
emit()	(Textbox	method)
emit()	(TimedRotatingFileHandler
method)
EMLINK	(in	module	errno)
Empty
empty()	(Queue	method)
empty()	(scheduler	method)
EMPTY_NAMESPACE	(in	module
xml.dom)
emptyline()	(Cmd	method)
EMSGSIZE	(in	module	errno)
EMULTIHOP	(in	module	errno)
enable()	(in	module	cgitb)
enable()	(in	module	gc)
ENAMETOOLONG	(in	module	errno)
ENAVAIL	(in	module	errno)
enclose()	(window	method)
encode

Codecs
encode()	(Binary	method)

ERROR	(in	module	cd)
error()	(in	module	logging)
error()	(MH	method)
error()	(OpenerDirector	method)
error()	(Textbox	method)
error_leader()	(shlex	method)
error_message_format
(BaseHTTPRequestHandler	attribute)
error_perm
error_proto,	[Link]
error_reply
error_temp
ErrorByteIndex	(xmlparser	attribute)
errorcode	(in	module	errno)
ErrorCode	(xmlparser	attribute)
ErrorColumnNumber	(xmlparser
attribute)
ErrorHandler	(class	in	xml.sax.handler)
errorlevel	(TarFile	attribute)
ErrorLineNumber	(xmlparser	attribute)
Errors

logging
errors	(TestResult	attribute)
ErrorString()	(in	module
xml.parsers.expat)
escape()	(in	module	cgi)
escape()	(in	module	re)
escape()	(in	module	xml.sax.saxutils)
escape	(shlex	attribute)
escapechar	(Dialect	attribute)
escapedquotes	(shlex	attribute)
ESHUTDOWN	(in	module	errno)
ESOCKTNOSUPPORT	(in	module
errno)
ESPIPE	(in	module	errno)
ESRCH	(in	module	errno)
ESRMNT	(in	module	errno)
ESTALE	(in	module	errno)
ESTRPIPE	(in	module	errno)

encode()	(Header	method)
encode()	(in	module	base64)
encode()	(in	module	mimetools)
encode()	(in	module	quopri)
encode()	(in	module	uu)
encode()	(ServerProxy	method),	[Link]
encode()	(string	method)
encode()	(TextWrapper	method)
encode_7or8bit()	(in	module
email.Encoders)
encode_base64()	(in	module
email.Encoders)
encode_noop()	(in	module
email.Encoders)
encode_quopri()	(in	module
email.Encoders)
encode_rfc2231()	(in	module
email.Utils)
encoded_header_len()	(Charset
method)
EncodedFile()	(in	module	codecs)
encodePriority()	(SysLogHandler
method)
encodestring()	(in	module	base64)
encodestring()	(in	module	quopri)
encoding

base64
quoted-printable

encoding	(file	attribute)
encodings.idna	(standard	module)
encodings_map	(in	module
mimetypes),	[Link]
end()	(Template	method)
end_group()	(form	method)
end_headers()
(BaseHTTPRequestHandler	method)
end_marker()	(MultiFile	method)
end_paragraph()	(formatter	method)
EndCdataSectionHandler()	(xmlparser

ETIME	(in	module	errno)
ETIMEDOUT	(in	module	errno)
Etiny()	(Context	method)
ETOOMANYREFS	(in	module	errno)
Etop()	(Context	method)
ETXTBSY	(in	module	errno)
EUCLEAN	(in	module	errno)
EUNATCH	(in	module	errno)
EUSERS	(in	module	errno)
eval()	(built-in	function),	[Link],
[Link],	[Link],	[Link],	[Link]
Event	(class	in	threading)
Event()	(in	module	threading)
event	scheduling
events	(widgets)
EWOULDBLOCK	(in	module	errno)
EX_CANTCREAT	(in	module	os)
EX_CONFIG	(in	module	os)
EX_DATAERR	(in	module	os)
EX_IOERR	(in	module	os)
EX_NOHOST	(in	module	os)
EX_NOINPUT	(in	module	os)
EX_NOPERM	(in	module	os)
EX_NOTFOUND	(in	module	os)
EX_NOUSER	(in	module	os)
EX_OK	(in	module	os)
EX_OSERR	(in	module	os)
EX_OSFILE	(in	module	os)
EX_PROTOCOL	(in	module	os)
EX_SOFTWARE	(in	module	os)
EX_TEMPFAIL	(in	module	os)
EX_UNAVAILABLE	(in	module	os)
EX_USAGE	(in	module	os)
Example	(class	in	doctest)
example	(DocTestFailure	attribute)
example	(UnexpectedException
attribute)
examples	(DocTest	attribute)
exc_clear()	(in	module	sys)

method)
EndDoctypeDeclHandler()	(xmlparser
method)
endDocument()	(ContentHandler
method)
endElement()	(ContentHandler	method)
EndElementHandler()	(xmlparser
method)
endElementNS()	(ContentHandler
method)
endheaders()	(HTTPResponse	method)
EndNamespaceDeclHandler()
(xmlparser	method)
endpick()	(in	module	gl)
endpos	(MatchObject	attribute)
endPrefixMapping()	(ContentHandler
method)
endselect()	(in	module	gl)
endswith()	(string	method)
endwin()	(in	module	curses)
ENETDOWN	(in	module	errno)
ENETRESET	(in	module	errno)
ENETUNREACH	(in	module	errno)
ENFILE	(in	module	errno)
ENOANO	(in	module	errno)
ENOBUFS	(in	module	errno)
ENOCSI	(in	module	errno)
ENODATA	(in	module	errno)
ENODEV	(in	module	errno)
ENOENT	(in	module	errno)
ENOEXEC	(in	module	errno)
ENOLCK	(in	module	errno)
ENOLINK	(in	module	errno)
ENOMEM	(in	module	errno)
ENOMSG	(in	module	errno)
ENONET	(in	module	errno)
ENOPKG	(in	module	errno)
ENOPROTOOPT	(in	module	errno)
ENOSPC	(in	module	errno)

exc_info()	(in	module	sys)
exc_info	(UnexpectedException
attribute)
exc_msg	(Example	attribute)
exc_traceback	(in	module	sys)
exc_type	(in	module	sys)
exc_value	(in	module	sys)
except	statement
excepthook()	(in	module	sys),	[Link]
Exception
exception()	(in	module	logging)
exception()	(Textbox	method)
exceptions

built-in
in	CGI	scripts

exceptions	(standard	module)
EXDEV	(in	module	errno)
exec	statement
exec_prefix	(in	module	sys)
execfile()	(built-in	function),	[Link]
execl()	(in	module	os)
execle()	(in	module	os)
execlp()	(in	module	os)
execlpe()	(in	module	os)
executable	(in	module	sys)
execv()	(in	module	os)
execve()	(in	module	os)
execvp()	(in	module	os)
execvpe()	(in	module	os)
ExFileSelectBox	(class	in	Tix)
EXFULL	(in	module	errno)
exists()	(in	module	os.path)
exit()	(in	module	sys)
exit()	(in	module	thread)
exitfunc	(in	module	sys)
exitfunc	(in	sys)
exp()	(in	module	cmath)
exp()	(in	module	math)
expand()	(MatchObject	method)

ENOSR	(in	module	errno)
ENOSTR	(in	module	errno)
ENOSYS	(in	module	errno)
ENOTBLK	(in	module	errno)
ENOTCONN	(in	module	errno)
ENOTDIR	(in	module	errno)
ENOTEMPTY	(in	module	errno)
ENOTNAM	(in	module	errno)
ENOTSOCK	(in	module	errno)
ENOTTY	(in	module	errno)
ENOTUNIQ	(in	module	errno)
enter()	(scheduler	method)
enterabs()	(scheduler	method)
entities	(DocumentType	attribute)
ENTITY	declaration
EntityDeclHandler()	(xmlparser
method)
entitydefs	(in	module	htmlentitydefs)
entitydefs	(XMLParser	attribute)
EntityResolver	(class	in
xml.sax.handler)
enumerate()	(built-in	function)
enumerate()	(in	module	fm)
enumerate()	(in	module	threading)
EnumKey()	(in	module	_winreg)
EnumValue()	(in	module	_winreg)
environ	(in	module	os)
environ	(in	module	posix)
environment	variables

<protocol>_proxy
AUDIODEV
BROWSER,	[Link]
COLUMNS,	[Link]
COMSPEC
ftp_proxy
gopher_proxy
HOME,	[Link]
http_proxy,	[Link]
KDEDIR

expand_tabs	(TextWrapper	attribute)
expandNode()	(DOMEventStream
method)
expandtabs()	(in	module	string)
expandtabs()	(string	method)
expanduser()	(in	module	os.path)
expandvars()	(in	module	os.path)
Expat
ExpatError
expect()	(Telnet	method)
expires	(Cookie	attribute)
expovariate()	(in	module	random)
expr()	(in	module	parser)
expunge()	(IMAP4_stream	method)
extend()	(array	method)
extend()	(list	method)
extend()	(SystemRandom	method)
extend_path()	(in	module	pkgutil)
extended	slice

assignment
operation

ExtendedContext	(class	in	decimal)
extendleft()	(SystemRandom	method)
Extensible	Markup	Language
extensions_map
(SimpleHTTPRequestHandler
attribute)
External	Data	Representation,	[Link]
external_attr	(ZipInfo	attribute)
ExternalEntityParserCreate()
(xmlparser	method)
ExternalEntityRefHandler()	(xmlparser
method)
extra	(ZipInfo	attribute)
extract()	(TarFile	method)
extract_cookies()	(CookieJar	method)
extract_stack()	(in	module	traceback)
extract_tb()	(in	module	traceback)
extract_version	(ZipInfo	attribute)

LANG,	[Link],	[Link],	[Link],
[Link]

ExtractError
extractfile()	(TarFile	method)
extsep	(in	module	os)

F

F_BAVAIL	(in	module	statvfs)
F_BFREE	(in	module	statvfs)
F_BLOCKS	(in	module	statvfs)
F_BSIZE	(in	module	statvfs)
F_FAVAIL	(in	module	statvfs)
F_FFREE	(in	module	statvfs)
F_FILES	(in	module	statvfs)
F_FLAG	(in	module	statvfs)
F_FRSIZE	(in	module	statvfs)
F_NAMEMAX	(in	module	statvfs)
F_OK	(in	module	os)
fabs()	(in	module	math)
fail()	(TestCase	method)
failIf()	(TestCase	method)
failIfAlmostEqual()	(TextTestRunner
method)
failIfEqual()	(TextTestRunner	method)
failUnless()	(TextTestRunner	method)
failUnlessAlmostEqual()
(TextTestRunner	method)
failUnlessEqual()	(TextTestRunner
method)
failUnlessRaises()	(TextTestRunner
method)
failureException	(TestCase	attribute)
failures	(TestResult	attribute)
False,	[Link]
false
False	(Built-in	object)
False	(built-in	warning)
FancyURLopener	(class	in	urllib)
fatalError()	(ErrorHandler	method)
faultCode	(ServerProxy	attribute)
faultString	(ServerProxy	attribute)

findmax()	(in	module	audioop)
finish()	(SocketServer	protocol)
finish_request()	(SocketServer
protocol)
first()	(dbhash	method)
first()	(fifo	method)
first()	(Queue	method)
firstChild	(Node	attribute)
firstkey()	(in	module	gdbm)
firstweekday()	(in	module	calendar)
fix()	(in	module	fpformat)
fix_sentence_endings	(TextWrapper
attribute)
fl	(built-in	module)
FL	(standard	module)
flag_bits	(ZipInfo	attribute)
flags()	(posixfile	method)
flags	(RegexObject	attribute)
flash()	(in	module	curses)
flatten()	(Generator	method)
flattening

objects
float()	(built-in	function),	[Link],
[Link]
floating	point

literals
floating	point	object
FloatingPointError,	[Link]
FloatType	(in	module	types)
flock()	(in	module	fcntl)

fchdir()	(in	module	os)
fcntl	(built-in	module),	[Link]
fcntl()	(in	module	fcntl),	[Link]
fdatasync()	(in	module	os)
fdopen()	(in	module	os)
feature_external_ges	(in	module
xml.sax.handler)
feature_external_pes	(in	module
xml.sax.handler)
feature_namespace_prefixes	(in	module
xml.sax.handler)
feature_namespaces	(in	module
xml.sax.handler)
feature_string_interning	(in	module
xml.sax.handler)
feature_validation	(in	module
xml.sax.handler)
feed()	(FeedParser	method)
feed()	(HTMLParser	method)
feed()	(IncrementalParser	method)
feed()	(SGMLParser	method)
feed()	(XMLParser	method)
FeedParser	(class	in	email.Parser)
fetch()	(IMAP4_stream	method)
fifo	(class	in	asynchat)
file

.ini

.pdbrc

.pythonrc.py
byte-code,	[Link],	[Link]
configuration
copying
debugger	configuration
large	files
mime.types
path	configuration
temporary
user	configuration

file()	(built-in	function),	[Link]

floor()	(in	module	math),	[Link]
floordiv()	(in	module	operator)
flp	(standard	module)
flush()	(audio	device	method)
flush()	(BufferingHandler	method)
flush()	(BZ2Compressor	method)
flush()	(Compress	method)
flush()	(Decompress	method)
flush()	(file	method)
flush()	(MemoryHandler	method)
flush()	(Queue	method)
flush()	(StreamHandler	method)
flush()	(Textbox	method)
flush()	(writer	method)
flush_softspace()	(formatter	method)
flushheaders()	(MimeWriter	method)
flushinp()	(in	module	curses)
FlushKey()	(in	module	_winreg)
fm	(built-in	module)
fmod()	(in	module	math)
fnmatch()	(in	module	fnmatch)
fnmatch	(standard	module)
fnmatchcase()	(in	module	fnmatch)
Folder	(class	in	mhlib)
Font	Manager,	IRIS
fontpath()	(in	module	fm)
forget()	(in	module	statcache)
forget()	(in	module	test.test_support)
forget_dir()	(in	module	statcache)
forget_except_prefix()	(in	module
statcache)
forget_prefix()	(in	module	statcache)
fork()	(in	module	os)
fork()	(in	module	pty)
forkpty()	(in	module	os)
Form	(class	in	Tix)
format()	(Formatter	method)
format()	(in	module	locale)
format()	(PrettyPrinter	method)

file	(class	descriptor	attribute)
file	(function	descriptor	attribute)
file()	(posixfile	method)
file	control

Unix
file	descriptor
file	name

temporary
file	object
POSIX
file_offset	(ZipInfo	attribute)
file_open()	(FileHandler	method)
file_size	(ZipInfo	attribute)
filecmp	(standard	module)
fileConfig()	(in	module	logging)
FileCookieJar	(class	in	cookielib)
FileEntry	(class	in	Tix)
FileHandler	(class	in	logging)
FileHandler	(class	in	urllib2)
FileInput	(class	in	fileinput)
fileinput	(standard	module)
filelineno()	(in	module	fileinput)
filename	(Cookie	attribute)
filename	(DocTest	attribute)
filename()	(in	module	fileinput)
filename	(ZipInfo	attribute)
filename_only	(in	module	tabnanny)
filenames

pathname	expansion
wildcard	expansion

fileno()	(audio	device	method),	[Link]
fileno()	(file	method)
fileno()	(mixer	device	method)
fileno()	(Profile	method)
fileno()	(socket	method)
fileno()	(SocketServer	protocol)
fileno()	(Telnet	method)
fileopen()	(in	module	posixfile)
FileSelectBox	(class	in	Tix)

format()	(Textbox	method)
format_exc()	(in	module	traceback)
format_exception()	(in	module
traceback)
format_exception_only()	(in	module
traceback)
format_list()	(in	module	traceback)
format_stack()	(in	module	traceback)
format_tb()	(in	module	traceback)
formataddr()	(in	module	email.Utils)
formatargspec()	(in	module	inspect)
formatargvalues()	(in	module	inspect)
formatdate()	(in	module	email.Utils)
formatException()	(Formatter	method)
Formatter	(class	in	logging)
formatter	(HTMLParser	attribute)
formatter	(standard	module),	[Link]
formatTime()	(Formatter	method)
formatting,	string	(%)
formatwarning()	(in	module	warnings)
forward()	(in	module	turtle)
found_terminator()	(async_chat
method)
fp	(AddressList	attribute)
fpathconf()	(in	module	os)
fpectl	(extension	module)
fpformat	(standard	module)
frame	(ScrolledText	attribute)
FrameType	(in	module	types)
freeze_form()	(form	method)
freeze_object()	(FORMS	object
method)
frexp()	(in	module	math)
from_splittable()	(Charset	method)
frombuf()	(TarInfo	method)
fromchild	(Popen4	attribute)
fromfd()	(in	module	socket)
fromfile()	(array	method)
fromkeys()	(dictionary	method)

FileType	(in	module	types)
fill()	(in	module	textwrap)
fill()	(in	module	turtle)
fill()	(TextWrapper	method)
filter()	(built-in	function)
Filter	(class	in	logging)
filter()	(Filter	method)
filter()	(in	module	curses)
filter()	(in	module	fnmatch)
filter()	(Textbox	method),	[Link]
filterwarnings()	(in	module	warnings)
find()	(DocTestFinder	method)
find()	(in	module	gettext)
find()	(in	module	string)
find()	(Queue	method)
find()	(string	method)
find_first()	(form	method)
find_last()	(form	method)
find_longest_match()
(SequenceMatcher	method)
find_module()	(in	module	imp)
find_prefix_at_end()	(in	module
asynchat)
find_user_password()
(HTTPPasswordMgr	method)
findall()	(in	module	re)
findall()	(RegexObject	method)
findCaller()	(Textbox	method)
findfactor()	(in	module	audioop)
findfile()	(in	module	test.test_support)
findfit()	(in	module	audioop)
findfont()	(in	module	fm)
finditer()	(in	module	re)
finditer()	(RegexObject	method)
findmatch()	(in	module	mailcap)

fromlist()	(array	method)
fromordinal()	(date	method)
fromordinal()	(datetime	method)
fromstring()	(array	method)
fromtimestamp()	(date	method)
fromtimestamp()	(datetime	method)
fromunicode()	(array	method)
fromutc()	(time	method)
frozenset()	(built-in	function)
fstat()	(in	module	os)
fstatvfs()	(in	module	os)
fsync()	(in	module	os)
FTP
ftplib	(standard	module)
protocol,	[Link]
FTP	(class	in	ftplib)
ftp_open()	(FTPHandler	method)
ftp_proxy	(environment	variable)
FTPHandler	(class	in	urllib2)
ftplib	(standard	module)
ftpmirror.py
ftruncate()	(in	module	os)
Full
full()	(Queue	method)
func_code	(function	object	attribute)
function()	(in	module	new)
functions

built-in
FunctionTestCase	(class	in	unittest)
FunctionType	(in	module	types)
funny_files	(dircmp	attribute)
FutureWarning

G

G.722
gaierror
gammavariate()	(in	module	random)
garbage	(in	module	gc)
gather()	(Textbox	method)
gauss()	(in	module	random)
gc	(extension	module)
gdbm	(built-in	module),	[Link],	[Link]
ge()	(in	module	operator)
generate_tokens()	(in	module	tokenize)
Generator	(class	in	email.Generator)
GeneratorType	(in	module	types)
genops()	(in	module	pickletools)
get()	(AddressList	method)
get()	(dictionary	method)
get()	(in	module	webbrowser)
get()	(Message	method)
get()	(mixer	device	method)
get()	(Queue	method)
get()	(SafeConfigParser	method),
[Link]
get_all()	(Message	method)
get_begidx()	(in	module	readline)
get_body_encoding()	(Charset	method)
get_boundary()	(Message	method)
get_buffer()	(Packer	method)
get_buffer()	(Unpacker	method)
get_charset()	(Message	method)
get_charsets()	(Message	method)
get_close_matches()	(in	module	difflib)
get_completer()	(in	module	readline)
get_completer_delims()	(in	module
readline)
get_content_charset()	(Message

GetInputContext()	(xmlparser	method)
getint()	(SafeConfigParser	method)
getitem()	(in	module	operator)
getkey()	(window	method)
getlast()	(Folder	method)
getLength()	(Attributes	method)
getLevelName()	(in	module	logging)
getline()	(in	module	linecache)
getLineNumber()	(Locator	method)
getlist()	(FieldStorage	method)
getloadavg()	(in	module	os)
getlocale()	(in	module	locale)
getLogger()	(in	module	logging)
getLoggerClass()	(in	module	logging)
getlogin()	(in	module	os)
getmaintype()	(Message	method)
getmark()	(aifc	method)
getmark()	(AU_read	method)
getmark()	(Wave_read	method)
getmarkers()	(aifc	method)
getmarkers()	(AU_read	method)
getmarkers()	(Wave_read	method)
getmaxyx()	(window	method)
getmcolor()	(in	module	fl)

method)
get_content_maintype()	(Message
method)
get_content_subtype()	(Message
method)
get_content_type()	(Message	method)
get_current_history_length()	(in
module	readline)
get_data()	(Request	method)
get_debug()	(in	module	gc)
get_default_type()	(Message	method)
get_dialect()	(in	module	csv)
get_directory()	(in	module	fl)
get_doctest()	(DocTestParser	method)
get_endidx()	(in	module	readline)
get_examples()	(DocTestParser
method)
get_filename()	(in	module	fl)
get_filename()	(Message	method)
get_full_url()	(Request	method)
get_grouped_opcodes()
(SequenceMatcher	method)
get_history_item()	(in	module	readline)
get_history_length()	(in	module
readline)
get_host()	(Request	method)
get_ident()	(in	module	thread)
get_line_buffer()	(in	module	readline)
get_magic()	(in	module	imp)
get_main_type()	(Message	method)
get_matching_blocks()
(SequenceMatcher	method)
get_method()	(Request	method)
get_mouse()	(in	module	fl)
get_nonstandard_attr()	(Cookie
method)
get_nowait()	(Queue	method)
get_objects()	(in	module	gc)
get_opcodes()	(SequenceMatcher

getmember()	(TarFile	method)
getmembers()	(in	module	inspect)
getmembers()	(TarFile	method)
getMessage()	(SAXException	method)
getmessagefilename()	(Folder	method)
getMessageID()	(NTEventLogHandler
method)
getmodule()	(in	module	inspect)
getmoduleinfo()	(in	module	inspect)
getmodulename()	(in	module	inspect)
getmouse()	(in	module	curses)
getmro()	(in	module	inspect)
getmtime()	(in	module	os.path)
getname()	(Chunk	method)
getName()	(Thread	method)
getNameByQName()	(AttributesNS
method)
getnameinfo()	(in	module	socket)
getNames()	(Attributes	method)
getnames()	(TarFile	method)
getnamespace()	(XMLParser	method)
getnchannels()	(aifc	method)
getnchannels()	(AU_read	method)
getnchannels()	(Wave_read	method)
getnframes()	(aifc	method)
getnframes()	(AU_read	method)
getnframes()	(Wave_read	method)
getopt()	(in	module	getopt)
getopt	(standard	module)
GetoptError
getouterframes()	(in	module	inspect)
getoutput()	(in	module	commands)
getpagesize()	(in	module	resource)
getparam()	(Message	method)
getparams()	(aifc	method)
getparams()	(AU_read	method)
getparams()	(in	module	al)
getparams()	(Wave_read	method)
getparyx()	(window	method)

method)
get_origin_req_host()	(Request
method)
get_osfhandle()	(in	module	msvcrt)
get_output_charset()	(Charset	method)
get_param()	(Message	method)
get_params()	(Message	method)
get_pattern()	(in	module	fl)
get_payload()	(Message	method)
get_position()	(Unpacker	method)
get_recsrc()	(mixer	device	method)
get_referents()	(in	module	gc)
get_referrers()	(in	module	gc)
get_request()	(SocketServer	protocol)
get_rgbmode()	(in	module	fl)
get_selector()	(Request	method)
get_socket()	(Telnet	method)
get_starttag_text()	(HTMLParser
method)
get_starttag_text()	(SGMLParser
method)
get_subtype()	(Message	method)
get_suffixes()	(in	module	imp)
get_terminator()	(async_chat	method)
get_threshold()	(in	module	gc)
get_token()	(shlex	method)
get_type()	(Message	method)
get_type()	(Request	method)
get_unixfrom()	(Message	method)
getacl()	(IMAP4_stream	method)
getaddr()	(AddressList	method)
getaddresses()	(in	module	email.Utils)
getaddrinfo()	(in	module	socket)
getaddrlist()	(AddressList	method)
getallmatchingheaders()	(AddressList
method)
getargspec()	(in	module	inspect)
getargvalues()	(in	module	inspect)
getatime()	(in	module	os.path)

getpass()	(in	module	getpass)
getpass	(standard	module)
getpath()	(MH	method)
getpeername()	(socket	method)
getpgid()	(in	module	os)
getpgrp()	(in	module	os)
getpid()	(in	module	os)
getplist()	(Message	method)
getpos()	(HTMLParser	method)
getppid()	(in	module	os)
getpreferredencoding()	(in	module
locale)
getprofile()	(MH	method)
getProperty()	(XMLReader	method)
getprotobyname()	(in	module	socket)
getPublicId()	(InputSource	method)
getPublicId()	(Locator	method)
getpwall()	(in	module	pwd)
getpwnam()	(in	module	pwd)
getpwuid()	(in	module	pwd)
getQNameByName()	(AttributesNS
method)
getQNames()	(AttributesNS	method)
getqueuesize()	(audio	configuration
method)
getquota()	(IMAP4_stream	method)
getquotaroot()	(IMAP4_stream
method)
getrandbits()	(in	module	random)
getrawheader()	(AddressList	method)
getreader()	(in	module	codecs)
getrecursionlimit()	(in	module	sys)
getrefcount()	(in	module	sys)
getresponse()	(HTTPResponse	method)
getrlimit()	(in	module	resource)
getrusage()	(in	module	resource)
getsampfmt()	(audio	configuration
method)
getsample()	(in	module	audioop)

getattr()	(built-in	function)
getAttribute()	(Element	method)
getAttributeNode()	(Element	method)
getAttributeNodeNS()	(Element
method)
getAttributeNS()	(Element	method)
GetBase()	(xmlparser	method)
getbegyx()	(window	method)
getboolean()	(SafeConfigParser
method)
getByteStream()	(InputSource	method)
getcaps()	(in	module	mailcap)
getch()	(in	module	msvcrt)
getch()	(window	method)
getchannels()	(audio	configuration
method)
getCharacterStream()	(InputSource
method)
getche()	(in	module	msvcrt)
getcheckinterval()	(in	module	sys)
getChildNodes()	(Node	method)
getChildren()	(Node	method)
getclasstree()	(in	module	inspect)
getColumnNumber()	(Locator	method)
getcomment()	(font	handle	method)
getcomments()	(in	module	inspect)
getcompname()	(aifc	method)
getcompname()	(AU_read	method)
getcompname()	(Wave_read	method)
getcomptype()	(aifc	method)
getcomptype()	(AU_read	method)
getcomptype()	(Wave_read	method)
getconfig()	(audio	port	method)
getContentHandler()	(XMLReader
method)
getcontext()	(in	module	decimal)
getcontext()	(MH	method)
getctime()	(in	module	os.path)
getcurrent()	(Folder	method)

getsampwidth()	(aifc	method)
getsampwidth()	(AU_read	method)
getsampwidth()	(Wave_read	method)
getsequences()	(Folder	method)
getsequencesfilename()	(Folder
method)
getservbyname()	(in	module	socket)
getservbyport()	(in	module	socket)
getsid()	(in	module	os)
getsignal()	(in	module	signal)
getsize()	(Chunk	method)
getsize()	(in	module	os.path)
getsizes()	(in	module	imgfile)
getslice()	(in	module	operator)
getsockname()	(socket	method)
getsockopt()	(socket	method)
getsource()	(in	module	inspect)
getsourcefile()	(in	module	inspect)
getsourcelines()	(in	module	inspect)
getstate()	(in	module	random)
getstatus()	(audio	port	method)
getstatus()	(CD	player	method)
getstatus()	(in	module	commands)
getstatusoutput()	(in	module
commands)
getstr()	(window	method)
getstrwidth()	(font	handle	method)
getSubject()	(SMTPHandler	method)
getsubtype()	(Message	method)
getSystemId()	(InputSource	method)
getSystemId()	(Locator	method)
getsyx()	(in	module	curses)
gettarinfo()	(TarFile	method)
gettempdir()	(in	module	tempfile)
gettempprefix()	(in	module	tempfile)
getTestCaseNames()	(TestLoader
method)
gettext()	(GNUTranslations	method)
gettext()	(in	module	gettext)

getcwd()	(in	module	os)
getcwdu()	(in	module	os)
getdate()	(AddressList	method)
getdate_tz()	(AddressList	method)
getdecoder()	(in	module	codecs)
getdefaultencoding()	(in	module	sys)
getdefaultlocale()	(in	module	locale)
getdefaulttimeout()	(in	module	socket)
getdlopenflags()	(in	module	sys)
getdoc()	(in	module	inspect)
getDOMImplementation()	(in	module
xml.dom)
getDTDHandler()	(XMLReader
method)
getEffectiveLevel()	(Textbox	method)
getegid()	(in	module	os)
getElementsByTagName()	(Document
method)
getElementsByTagName()	(Element
method)
getElementsByTagNameNS()
(Document	method)
getElementsByTagNameNS()	(Element
method)
getencoder()	(in	module	codecs)
getEncoding()	(InputSource	method)
getencoding()	(Message	method)
getEntityResolver()	(XMLReader
method)
getenv()	(in	module	os)
getErrorHandler()	(XMLReader
method)
geteuid()	(in	module	os)
getEvent()	(DOMEventStream	method)
getEventCategory()
(NTEventLogHandler	method)
getEventType()	(NTEventLogHandler
method)
getException()	(SAXException

gettext()	(NullTranslations	method)
gettext	(standard	module)
gettimeout()	(socket	method)
gettrackinfo()	(CD	player	method)
getType()	(Attributes	method)
gettype()	(Message	method)
getuid()	(in	module	os)
getuser()	(in	module	getpass)
getValue()	(Attributes	method)
getvalue()	(StringIO	method)
getValueByQName()	(AttributesNS
method)
getweakrefcount()	(in	module	weakref)
getweakrefs()	(in	module	weakref)
getwelcome()	(FTP	method)
getwelcome()	(NNTPDataError
method)
getwelcome()	(POP3_SSL	method)
getwidth()	(audio	configuration
method)
getwin()	(in	module	curses)
getwindowsversion()	(in	module	sys)
getwriter()	(in	module	codecs)
getyx()	(window	method)
gid	(TarInfo	attribute)
gl	(built-in	module)
GL	(standard	module)
glob()	(in	module	glob)
glob	(standard	module),	[Link]
globals()	(built-in	function)
globs	(DocTest	attribute)
gmtime()	(in	module	time)
gname	(TarInfo	attribute)
GNOME
gnu_getopt()	(in	module	getopt)
Gopher

protocol,	[Link],	[Link]
gopher_open()	(GopherHandler
method)

method)
getfd()	(audio	port	method)
getFeature()	(XMLReader	method)
getfile()	(in	module	inspect)
getfilesystemencoding()	(in	module
sys)
getfillable()	(audio	port	method)
getfilled()	(audio	port	method)
getfillpoint()	(audio	port	method)
getfirst()	(FieldStorage	method)
getfirstmatchingheader()	(AddressList
method)
getfloat()	(SafeConfigParser	method)
getfloatmax()	(audio	configuration
method)
getfmts()	(audio	device	method)
getfontinfo()	(font	handle	method)
getfontname()	(font	handle	method)
getfqdn()	(in	module	socket)
getframeinfo()	(in	module	inspect)
getframerate()	(aifc	method)
getframerate()	(AU_read	method)
getframerate()	(Wave_read	method)
getfullname()	(Folder	method)
getgid()	(in	module	os)
getgrall()	(in	module	grp)
getgrgid()	(in	module	grp)
getgrnam()	(in	module	grp)
getgroups()	(in	module	os)
getheader()	(AddressList	method)
getheader()	(HTTPResponse	method)
getheaders()	(HTTPResponse	method)
gethostbyaddr()	(in	module	socket),
[Link]
gethostbyname()	(in	module	socket)
gethostbyname_ex()	(in	module	socket)
gethostname()	(in	module	socket),
[Link]
getinfo()	(audio	device	method)

gopher_proxy	(environment	variable)
GopherError
GopherHandler	(class	in	urllib2)
gopherlib	(standard	module)
got	(DocTestFailure	attribute)
goto()	(in	module	turtle)
Graphical	User	Interface
Greenwich	Mean	Time
grey22grey()	(in	module	imageop)
grey2grey2()	(in	module	imageop)
grey2grey4()	(in	module	imageop)
grey2mono()	(in	module	imageop)
grey42grey()	(in	module	imageop)
group()	(MatchObject	method)
group()	(NNTPDataError	method)
groupby()	(in	module	itertools)
groupdict()	(MatchObject	method)
groupindex	(RegexObject	attribute)
groups()	(MatchObject	method)
grp	(built-in	module)
gt()	(in	module	operator)
guess_all_extensions()	(in	module
mimetypes)
guess_extension()	(in	module
mimetypes)
guess_extension()	(MimeTypes
method)
guess_type()	(in	module	mimetypes)
guess_type()	(MimeTypes	method)
GUI
gzip	(standard	module)
GzipFile	(class	in	gzip)

getinfo()	(ZipFile	method)
getinnerframes()	(in	module	inspect)

H

halfdelay()	(in	module	curses)
handle()	(BaseHTTPRequestHandler
method)
handle()	(SocketServer	protocol)
handle()	(Textbox	method),	[Link]
handle_accept()	(dispatcher	method)
handle_authentication_request()
(AbstractBasicAuthHandler	method)
handle_authentication_request()
(AbstractDigestAuthHandler	method)
handle_cdata()	(XMLParser	method)
handle_charref()	(HTMLParser
method)
handle_charref()	(SGMLParser
method)
handle_charref()	(XMLParser	method)
handle_close()	(async_chat	method)
handle_close()	(dispatcher	method)
handle_comment()	(HTMLParser
method)
handle_comment()	(SGMLParser
method)
handle_comment()	(XMLParser
method)
handle_connect()	(dispatcher	method)
handle_data()	(HTMLParser	method)
handle_data()	(SGMLParser	method)
handle_data()	(XMLParser	method)
handle_decl()	(HTMLParser	method)
handle_decl()	(SGMLParser	method)
handle_doctype()	(XMLParser	method)
handle_endtag()	(HTMLParser	method)
handle_endtag()	(SGMLParser	method)
handle_endtag()	(XMLParser	method)

headers	(BaseHTTPRequestHandler
attribute)
headers	(ServerProxy	attribute)
heapify()	(in	module	heapq)
heapmin()	(in	module	msvcrt)
heappop()	(in	module	heapq)
heappush()	(in	module	heapq)
heapq	(standard	module)
heapreplace()	(in	module	heapq)
helo()	(SMTP	method)
help

online
help()	(built-in	function)
help()	(NNTPDataError	method)
herror
hex()	(built-in	function)
hexadecimal

literals
hexbin()	(in	module	binhex)
hexdigest()	(hmac	method)
hexdigest()	(md5	method)
hexdigest()	(sha	method)
hexdigits	(in	module	string)
hexlify()	(in	module	binascii)
hexversion	(in	module	sys)
hidden()	(Textbox	method)
hide()	(Textbox	method)
hide_cookie2	(LWPCookieJar	attribute)
hide_form()	(form	method)
hide_object()	(FORMS	object	method)
HierarchyRequestErr
HIGHEST_PROTOCOL	(in	module
pickle)

handle_entityref()	(HTMLParser
method)
handle_entityref()	(SGMLParser
method)
handle_error()	(dispatcher	method)
handle_error()	(SocketServer	protocol)
handle_expt()	(dispatcher	method)
handle_image()	(HTMLParser	method)
handle_one_request()
(BaseHTTPRequestHandler	method)
handle_pi()	(HTMLParser	method)
handle_proc()	(XMLParser	method)
handle_read()	(async_chat	method)
handle_read()	(dispatcher	method)
handle_request()
(SimpleXMLRPCRequestHandler
method)
handle_request()	(SocketServer
protocol)
handle_special()	(XMLParser	method)
handle_startendtag()	(HTMLParser
method)
handle_starttag()	(HTMLParser
method)
handle_starttag()	(SGMLParser
method)
handle_starttag()	(XMLParser	method)
handle_write()	(async_chat	method)
handle_write()	(dispatcher	method)
handle_xml()	(XMLParser	method)
handleError()	(SocketHandler	method),
[Link]
handleError()	(Textbox	method)
handler()	(in	module	cgitb)
has_colors()	(in	module	curses)
has_data()	(Request	method)
has_extn()	(SMTP	method)
has_header()	(Request	method)
has_header()	(Sniffer	method)

hline()	(window	method)
HList	(class	in	Tix)
hls_to_rgb()	(in	module	colorsys)
hmac	(standard	module)
HOME	(environment	variable),	[Link]
hosts	(netrc	attribute)
hotshot	(standard	module)
hotshot.stats	(standard	module)
hour	(datetime	attribute)
hour	(time	attribute)
hsv_to_rgb()	(in	module	colorsys)
HTML,	[Link],	[Link]
HtmlDiff	(class	in	difflib)
htmlentitydefs	(standard	module)
htmllib	(standard	module),	[Link]
HTMLParseError,	[Link]
HTMLParser	(class	in	htmllib),	[Link]
HTMLParser	(class	in	HTMLParser)
HTMLParser	(standard	module)
htonl()	(in	module	socket)
htons()	(in	module	socket)
HTTP

httplib	(standard	module)
protocol,	[Link],	[Link],	[Link],
[Link]

http_error_301()
(HTTPRedirectHandler	method)
http_error_302()
(HTTPRedirectHandler	method)
http_error_303()
(HTTPRedirectHandler	method)
http_error_307()
(HTTPRedirectHandler	method)
http_error_401()
(HTTPBasicAuthHandler	method)
http_error_401()
(HTTPDigestAuthHandler	method)
http_error_407()
(ProxyBasicAuthHandler	method)

has_ic()	(in	module	curses)
has_il()	(in	module	curses)
has_ipv6	(in	module	socket)
has_key()	(dictionary	method)
has_key()	(in	module	curses)
has_key()	(Message	method)
has_key()	(Queue	method)
has_nonstandard_attr()	(Cookie
method)
has_option()	(SafeConfigParser
method)
has_section()	(SafeConfigParser
method)
hasattr()	(built-in	function)
hasAttributes()	(Node	method)
hasChildNodes()	(Node	method)
hascompare	(in	module	dis)
hasconst	(in	module	dis)
hasFeature()	(DOMImplementation
method)
hasfree	(in	module	dis)
hash()	(built-in	function)
hashopen()	(in	module	bsddb)
hasjabs	(in	module	dis)
hasjrel	(in	module	dis)
haslocal	(in	module	dis)
hasname	(in	module	dis)
have_unicode	(in	module
test.test_support)
head()	(NNTPDataError	method)
Header	(class	in	email.Header)
header_encode()	(Charset	method)
header_encoding	(in	module
email.Charset)
header_offset	(ZipInfo	attribute)
HeaderParseError	(exception	in
email.Errors)
headers

MIME,	[Link]

http_error_407()
(ProxyDigestAuthHandler	method)
http_error_\varnnn()	(BaseHandler
method)
http_error_default()	(BaseHandler
method)
http_open()	(HTTPHandler	method)
HTTP_PORT	(in	module	httplib)
http_proxy	(environment	variable),
[Link]
HTTPBasicAuthHandler	(class	in
urllib2)
HTTPConnection	(class	in	httplib)
HTTPCookieProcessor	(class	in
urllib2)
httpd
HTTPDefaultErrorHandler	(class	in
urllib2)
HTTPDigestAuthHandler	(class	in
urllib2)
HTTPError
HTTPException
HTTPHandler	(class	in	logging)
HTTPHandler	(class	in	urllib2)
httplib	(standard	module)
HTTPPasswordMgr	(class	in	urllib2)
HTTPPasswordMgrWithDefaultRealm
(class	in	urllib2)
HTTPRedirectHandler	(class	in	urllib2)
HTTPResponse	(class	in	httplib)
https_open()	(HTTPSHandler	method)
HTTPS_PORT	(in	module	httplib)
HTTPSConnection	(class	in	httplib)
HTTPServer	(class	in
BaseHTTPServer)
HTTPSHandler	(class	in	urllib2)
hypertext
hypot()	(in	module	math)

headers	(AddressList	attribute)

I

I	(in	module	re)
I/O	control

buffering,	[Link],	[Link]
POSIX
tty
Unix

ibufcount()	(audio	device	method)
id()	(built-in	function)
id()	(TestCase	method)
idcok()	(window	method)
IDEA

cipher
ident	(in	module	cd)
identchars	(Cmd	attribute)
Idle
idlok()	(window	method)
IEEE-754
if	statement
ifilter()	(in	module	itertools)
ifilterfalse()	(in	module	itertools)
ignorableWhitespace()
(ContentHandler	method)
ignore()	(Stats	method)
ignore_errors()	(in	module	codecs)
IGNORE_EXCEPTION_DETAIL	(in
module	doctest)
ignore_zeros	(TarFile	attribute)
IGNORECASE	(in	module	re)
ihave()	(NNTPDataError	method)
ihooks	(standard	module)
imageop	(built-in	module)
imap()	(in	module	itertools)
IMAP4

protocol

interpolation,	string	(%)
InterpolationDepthError
InterpolationError
InterpolationMissingOptionError
InterpolationSyntaxError
interpreter	prompts
interrupt_main()	(in	module	thread)
intro	(Cmd	attribute)
IntType	(in	module	types)
InuseAttributeErr
inv()	(in	module	operator)
InvalidAccessErr
InvalidCharacterErr
InvalidModificationErr
InvalidOperation	(class	in	decimal)
InvalidStateErr
InvalidURL
invert()	(in	module	operator)
ioctl()	(in	module	fcntl)
IOError
IP_*	(in	module	socket)
IPPORT_*	(in	module	socket)
IPPROTO_*	(in	module	socket)
IPV6_*	(in	module	socket)
IRIS	Font	Manager
IRIX

threads
is	not	operator
is	operator
is_()	(in	module	operator)

IMAP4	(class	in	imaplib)
IMAP4.abort
IMAP4.error
IMAP4.readonly
IMAP4_SSL

protocol
IMAP4_SSL	(class	in	imaplib)
IMAP4_stream

protocol
IMAP4_stream	(class	in	imaplib)
imaplib	(standard	module)
imgfile	(built-in	module)
imghdr	(standard	module)
immedok()	(window	method)
ImmutableSet	(class	in	sets)
imp	(built-in	module),	[Link]
Import	module
import	statement,	[Link]
ImportError
ImproperConnectionState
in	operator,	[Link]
in_table_a1()	(in	module	stringprep)
in_table_b1()	(in	module	stringprep)
in_table_c11()	(in	module	stringprep)
in_table_c11_c12()	(in	module
stringprep)
in_table_c12()	(in	module	stringprep)
in_table_c21()	(in	module	stringprep)
in_table_c21_c22()	(in	module
stringprep)
in_table_c22()	(in	module	stringprep)
in_table_c3()	(in	module	stringprep)
in_table_c4()	(in	module	stringprep)
in_table_c5()	(in	module	stringprep)
in_table_c6()	(in	module	stringprep)
in_table_c7()	(in	module	stringprep)
in_table_c8()	(in	module	stringprep)
in_table_c9()	(in	module	stringprep)
in_table_d1()	(in	module	stringprep)

is_blocked()	(DefaultCookiePolicy
method)
is_builtin()	(in	module	imp)
IS_CHARACTER_JUNK()	(in	module
difflib)
is_data()	(MultiFile	method)
is_empty()	(fifo	method)
is_expired()	(Cookie	method)
is_frozen()	(in	module	imp)
is_jython	(in	module	test.test_support)
IS_LINE_JUNK()	(in	module	difflib)
is_linetouched()	(window	method)
is_multipart()	(Message	method)
is_not()	(in	module	operator)
is_not_allowed()	(DefaultCookiePolicy
method)
is_resource_enabled()	(in	module
test.test_support)
is_tarfile()	(in	module	tarfile)
is_unverifiable()	(Request	method)
is_wintouched()	(window	method)
is_zipfile()	(in	module	zipfile)
isabs()	(in	module	os.path)
isAlive()	(Thread	method)
isalnum()	(in	module	curses.ascii)
isalnum()	(string	method)
isalpha()	(in	module	curses.ascii)
isalpha()	(string	method)
isascii()	(in	module	curses.ascii)
isatty()	(Chunk	method)
isatty()	(file	method)
isatty()	(in	module	os)
isblank()	(in	module	curses.ascii)
isblk()	(TarInfo	method)
isbuiltin()	(in	module	inspect)
isCallable()	(in	module	operator)
ischr()	(TarInfo	method)
isclass()	(in	module	inspect)
iscntrl()	(in	module	curses.ascii)

in_table_d2()	(in	module	stringprep)
INADDR_*	(in	module	socket)
inch()	(window	method)
Incomplete
IncompleteRead
IncrementalParser	(class	in
xml.sax.xmlreader)
indent	(Example	attribute)
indentation
Independent	JPEG	Group
index()	(array	method)
index	(in	module	cd)
index()	(in	module	string)
index()	(list	method)
index()	(string	method)
IndexError
indexOf()	(in	module	operator)
IndexSizeErr
inet_aton()	(in	module	socket)
inet_ntoa()	(in	module	socket)
inet_ntop()	(in	module	socket)
inet_pton()	(in	module	socket)
Inexact	(class	in	decimal)
infile	(shlex	attribute)
Infinity,	[Link]
info()	(in	module	logging)
info()	(NullTranslations	method)
info()	(Textbox	method)
infolist()	(ZipFile	method)
InfoSeek	Corporation
ini	file
init()	(in	module	fm)
init()	(in	module	mimetypes)
init_builtin()	(in	module	imp)
init_color()	(in	module	curses)
init_frozen()	(in	module	imp)
init_pair()	(in	module	curses)
inited	(in	module	mimetypes)
initial_indent	(TextWrapper	attribute)

iscode()	(in	module	inspect)
iscomment()	(AddressList	method)
isctrl()	(in	module	curses.ascii)
isDaemon()	(Thread	method)
isdatadescriptor()	(in	module	inspect)
isdev()	(TarInfo	method)
isdigit()	(in	module	curses.ascii)
isdigit()	(string	method)
isdir()	(in	module	os.path)
isdir()	(TarInfo	method)
isenabled()	(in	module	gc)
isEnabledFor()	(Textbox	method)
isendwin()	(in	module	curses)
ISEOF()	(in	module	token)
isexpr()	(AST	method)
isexpr()	(in	module	parser)
isfifo()	(TarInfo	method)
isfile()	(in	module	os.path)
isfile()	(TarInfo	method)
isfirstline()	(in	module	fileinput)
isframe()	(in	module	inspect)
isfunction()	(in	module	inspect)
isgraph()	(in	module	curses.ascii)
isheader()	(AddressList	method)
isinstance()	(built-in	function)
iskeyword()	(in	module	keyword)
islast()	(AddressList	method)
isleap()	(in	module	calendar)
islice()	(in	module	itertools)
islink()	(in	module	os.path)
islnk()	(TarInfo	method)
islower()	(in	module	curses.ascii)
islower()	(string	method)
isMappingType()	(in	module	operator)
ismeta()	(in	module	curses.ascii)
ismethod()	(in	module	inspect)
ismethoddescriptor()	(in	module
inspect)
ismodule()	(in	module	inspect)

initscr()	(in	module	curses)
input()	(built-in	function),	[Link]
input()	(in	module	fileinput)
input_charset	(in	module
email.Charset)
input_codec	(in	module	email.Charset)
InputOnly	(class	in	Tix)
InputSource	(class	in
xml.sax.xmlreader)
InputType	(in	module	cStringIO)
insch()	(window	method)
insdelln()	(window	method)
insert()	(array	method)
insert()	(list	method)
insert_text()	(in	module	readline)
insertBefore()	(Node	method)
insertln()	(window	method)
insnstr()	(window	method)
insort()	(in	module	bisect)
insort_left()	(in	module	bisect)
insort_right()	(in	module	bisect)
inspect	(standard	module)
insstr()	(window	method)
install()	(in	module	gettext)
install()	(NullTranslations	method)
install_opener()	(in	module	urllib2)
instance()	(in	module	new)
instancemethod()	(in	module	new)
InstanceType	(in	module	types)
instr()	(window	method)
instream	(shlex	attribute)
int()	(built-in	function),	[Link]
Int2AP()	(in	module	imaplib)
integer

division
division,	long
literals
literals,	long
types,	operations	on

ismount()	(in	module	os.path)
ISNONTERMINAL()	(in	module
token)
isNumberType()	(in	module	operator)
isocalendar()	(date	method)
isocalendar()	(datetime	method)
isoformat()	(date	method)
isoformat()	(datetime	method)
isoformat()	(time	method)
isoweekday()	(date	method)
isoweekday()	(datetime	method)
isprint()	(in	module	curses.ascii)
ispunct()	(in	module	curses.ascii)
isqueued()	(in	module	fl)
isreadable()	(in	module	pprint)
isreadable()	(PrettyPrinter	method)
isrecursive()	(in	module	pprint)
isrecursive()	(PrettyPrinter	method)
isreg()	(TarInfo	method)
isReservedKey()	(Morsel	method)
isroutine()	(in	module	inspect)
isSameNode()	(Node	method)
isSequenceType()	(in	module	operator)
isSet()	(Event	method)
isspace()	(in	module	curses.ascii)
isspace()	(string	method)
isstdin()	(in	module	fileinput)
issubclass()	(built-in	function)
issuite()	(AST	method)
issuite()	(in	module	parser)
issym()	(TarInfo	method)
ISTERMINAL()	(in	module	token)
istitle()	(string	method)
istraceback()	(in	module	inspect)
isupper()	(in	module	curses.ascii)
isupper()	(string	method)
isxdigit()	(in	module	curses.ascii)
item()	(NamedNodeMap	method)
item()	(NodeList	method)

integer	object
Integrated	Developement	Environment
Intel/DVI	ADPCM
interact()	(in	module	code)
interact()	(InteractiveConsole	method)
interact()	(Telnet	method)
InteractiveConsole	(class	in	code)
InteractiveInterpreter	(class	in	code)
intern()	(non-essential	built-in
functions)
internal_attr	(ZipInfo	attribute)
Internaldate2tuple()	(in	module
imaplib)
internalSubset	(DocumentType
attribute)
Internet
Internet	Config

itemgetter()	(in	module	operator)
items()	(dictionary	method)
items()	(Message	method)
items()	(SafeConfigParser	method),
[Link]
itemsize	(array	attribute)
iter()	(built-in	function)
iterator	protocol
iteritems()	(dictionary	method)
iterkeys()	(dictionary	method)
itertools	(standard	module)
itervalues()	(dictionary	method)
izip()	(in	module	itertools)

J

Jansen,	Jack
java_ver()	(in	module	platform)
JFIF,	[Link]
join()	(in	module	os.path)
join()	(in	module	string)
join()	(string	method)

join()	(Thread	method)
joinfields()	(in	module	string)
jpeg	(built-in	module)
js_output()	(BaseCookie	method)
js_output()	(Morsel	method)
jumpahead()	(in	module	random)

K

kbhit()	(in	module	msvcrt)
KDEDIR	(environment	variable)
key	(Morsel	attribute)
KeyboardInterrupt
KeyError
keyname()	(in	module	curses)
keypad()	(window	method)
keys()	(dictionary	method)
keys()	(Message	method)

keys()	(Queue	method)
keyword	(standard	module)
kill()	(in	module	os)
killchar()	(in	module	curses)
killpg()	(in	module	os)
knee	(module)
knownfiles	(in	module	mimetypes)
Kuchling,	Andrew
kwlist	(in	module	keyword)

L

L	(in	module	re)
LabelEntry	(class	in	Tix)
LabelFrame	(class	in	Tix)
LambdaType	(in	module	types)
LANG	(environment	variable),	[Link],
[Link],	[Link],	[Link]
language

C,	[Link]
LANGUAGE	(environment	variable),
[Link]
large	files
last()	(dbhash	method)
last	(MultiFile	attribute)
last()	(NNTPDataError	method)
last()	(Queue	method)
last_traceback	(in	module	sys)
last_type	(in	module	sys)
last_value	(in	module	sys)
lastChild	(Node	attribute)
lastcmd	(Cmd	attribute)
lastgroup	(MatchObject	attribute)
lastindex	(MatchObject	attribute)
lastpart()	(MimeWriter	method)
LC_ALL	(environment	variable),
[Link]
LC_ALL	(in	module	locale)
LC_COLLATE	(in	module	locale)
LC_CTYPE	(in	module	locale)
LC_MESSAGES	(environment
variable),	[Link]
LC_MESSAGES	(in	module	locale)
LC_MONETARY	(in	module	locale)

literals	(continued)
numeric
octal

ljust()	(in	module	string)
ljust()	(string	method)
LK_LOCK	(in	module	msvcrt)
LK_NBLCK	(in	module	msvcrt)
LK_NBRLCK	(in	module	msvcrt)
LK_RLCK	(in	module	msvcrt)
LK_UNLCK	(in	module	msvcrt)
LNAME	(environment	variable)
lngettext()	(GNUTranslations	method)
lngettext()	(in	module	gettext)
lngettext()	(NullTranslations	method)
load()	(BaseCookie	method)
load()	(FileCookieJar	method)
load()	(in	module	hotshot.stats)
load()	(in	module	marshal)
load()	(in	module	pickle)
load()	(Unpickler	method)
load_compiled()	(in	module	imp)
load_dynamic()	(in	module	imp)
load_module()	(in	module	imp)
load_source()	(in	module	imp)
LoadError
loads()	(in	module	marshal)
loads()	(in	module	pickle)
loads()	(in	module	xmlrpclib)
loadTestsFromModule()	(TestLoader
method)
loadTestsFromName()	(TestLoader
method)
loadTestsFromNames()	(TestLoader
method)

LC_NUMERIC	(in	module	locale)
LC_TIME	(in	module	locale)
lchown()	(in	module	os)
ldexp()	(in	module	math)
ldgettext()	(in	module	gettext)
ldngettext()	(in	module	gettext)
le()	(in	module	operator)
leapdays()	(in	module	calendar)
leaveok()	(window	method)
left()	(in	module	turtle)
left_list	(dircmp	attribute)
left_only	(dircmp	attribute)
len()	(built-in	function),	[Link],	[Link]
length	(NamedNodeMap	attribute)
length	(NodeList	attribute)
letters	(in	module	string)
level	(MultiFile	attribute)
lexists()	(in	module	os.path)
lgettext()	(GNUTranslations	method)
lgettext()	(in	module	gettext)
lgettext()	(NullTranslations	method)
libc_ver()	(in	module	platform)
library	(in	module	dbm)
light-weight	processes
lin2adpcm()	(in	module	audioop)
lin2adpcm3()	(in	module	audioop)
lin2lin()	(in	module	audioop)
lin2ulaw()	(in	module	audioop)
line-buffered	I/O
linecache	(standard	module)
lineno	(class	descriptor	attribute)
lineno	(DocTest	attribute)
lineno	(Example	attribute)
lineno	(ExpatError	attribute)
lineno	(function	descriptor	attribute)
lineno()	(in	module	fileinput)
lineno	(shlex	attribute)
LINES	(environment	variable),	[Link]
linesep	(in	module	os)

loadTestsFromTestCase()	(TestLoader
method)
local	(class	in	threading)
LOCALE	(in	module	re)
locale	(standard	module)
localeconv()	(in	module	locale)
localName	(Attr	attribute)
localName	(Node	attribute)
locals()	(built-in	function)
localtime()	(in	module	time)
Locator	(class	in	xml.sax.xmlreader)
Lock()	(in	module	threading)
lock()	(mutex	method)
lock()	(posixfile	method)
lock_held()	(in	module	imp)
locked()	(lock	method)
lockf()	(in	module	fcntl),	[Link]
locking()	(in	module	msvcrt)
LockType	(in	module	thread)
log()	(in	module	cmath)
log()	(in	module	logging)
log()	(in	module	math)
log()	(Textbox	method)
log10()	(in	module	cmath)
log10()	(in	module	math)
log_data_time_string()
(BaseHTTPRequestHandler	method)
log_error()	(BaseHTTPRequestHandler
method)
log_message()
(BaseHTTPRequestHandler	method)
log_request()
(BaseHTTPRequestHandler	method)
logging

Errors
logging	(standard	module)
login()	(FTP	method)
login()	(IMAP4_stream	method)
login()	(SMTP	method)

lineterminator	(Dialect	attribute)
link()	(in	module	os)
linkname	(TarInfo	attribute)
list

type,	operations	on
list()	(built-in	function)
list()	(IMAP4_stream	method)
list()	(NNTPDataError	method)
list()	(POP3_SSL	method)
list()	(TarFile	method)
list	object,	[Link]
list_dialects()	(in	module	csv)
listallfolders()	(MH	method)
listallsubfolders()	(MH	method)
listdir()	(in	module	dircache)
listdir()	(in	module	os)
listen()	(dispatcher	method)
listen()	(in	module	logging)
listen()	(socket	method)
listfolders()	(MH	method)
listmessages()	(Folder	method)
ListNoteBook	(class	in	Tix)
listsubfolders()	(MH	method)
ListType	(in	module	types)
literals

complex	number
floating	point
hexadecimal
integer
long	integer

login_cram_md5()	(IMAP4_stream
method)
LOGNAME	(environment	variable),
[Link]
lognormvariate()	(in	module	random)
logout()	(IMAP4_stream	method)
LogRecord	(class	in	logging)
long

integer	division
integer	literals

long()	(built-in	function),	[Link],	[Link]
long	integer	object
longimagedata()	(in	module	rgbimg)
longname()	(in	module	curses)
longstoimage()	(in	module	rgbimg)
LongType	(in	module	types)
lookup()	(in	module	codecs)
lookup()	(in	module	unicodedata)
lookup_error()	(in	module	codecs)
LookupError
loop()	(in	module	asyncore)
lower()	(in	module	string)
lower()	(string	method)
lowercase	(in	module	string)
lseek()	(in	module	os)
lshift()	(in	module	operator)
lstat()	(in	module	os)
lstrip()	(in	module	string)
lstrip()	(string	method)
lsub()	(IMAP4_stream	method)
lt()	(in	module	operator)
Lundh,	Fredrik
LWPCookieJar	(class	in	cookielib)

M

M	(in	module	re)
mac_ver()	(in	module	platform)
machine()	(in	module	platform)
macros	(netrc	attribute)
mailbox	(standard	module),	[Link]
mailcap	(standard	module)
Maildir	(class	in	mailbox)
MailmanProxy	(class	in	smtpd)
main()	(in	module	py_compile)
main()	(in	module	unittest)
major()	(in	module	os)
make_cookies()	(CookieJar	method)
make_file()	(in	module	difflib)
make_form()	(in	module	fl)
make_header()	(in	module
email.Header)
make_msgid()	(in	module	email.Utils)
make_parser()	(in	module	xml.sax)
make_table()	(in	module	difflib)
makedev()	(in	module	os)
makedirs()	(in	module	os)
makefile()	(socket	method)
makefolder()	(MH	method)
makeLogRecord()	(in	module	logging)
makePickle()	(SocketHandler	method)
makeRecord()	(Textbox	method)
makeSocket()	(DatagramHandler
method)
makeSocket()	(SocketHandler	method)
maketrans()	(in	module	string)
map()	(built-in	function)
map_table_b2()	(in	module	stringprep)
map_table_b3()	(in	module	stringprep)
mapcolor()	(in	module	fl)

MIME	(continued)
quoted-printable	encoding

mime_decode_header()	(in	module
mimify)
mime_encode_header()	(in	module
mimify)
MIMEAudio	(class	in	email.Generator)
MIMEBase	(class	in	email.Generator)
MIMEImage	(class	in	email.Generator)
MIMEMessage	(class	in
email.Generator)
MIMEMultipart	(class	in
email.Generator)
MIMENonMultipart	(class	in
email.Generator)
MIMEText	(class	in	email.Generator)
mimetools	(standard	module),	[Link]
MimeTypes	(class	in	mimetypes)
mimetypes	(standard	module)
MimeWriter	(class	in	MimeWriter)
MimeWriter	(standard	module)
mimify()	(in	module	mimify)
mimify	(standard	module)
min()	(built-in	function),	[Link]
min()	(Context	method)
min	(date	attribute)
min	(datetime	attribute)
min()	(Decimal	method)
min	(time	attribute)
min	(timedelta	attribute)

mapping
types,	operations	on

mapping	object
maps()	(in	module	nis)
marshal	(built-in	module)
marshalling

objects
masking

operations
match()	(in	module	nis)
match()	(in	module	re)
match()	(RegexObject	method)
math	(built-in	module),	[Link],	[Link]
max()	(built-in	function),	[Link]
max()	(Context	method)
max	(date	attribute)
max	(datetime	attribute)
max()	(Decimal	method)
max()	(in	module	audioop)
max	(time	attribute)
max	(timedelta	attribute)
MAX_INTERPOLATION_DEPTH	(in
module	ConfigParser)
maxarray	(Repr	attribute)
maxdeque	(Repr	attribute)
maxdict	(Repr	attribute)
maxfrozenset	(Repr	attribute)
maxint	(in	module	sys)
MAXLEN	(in	module	mimify)
maxlevel	(Repr	attribute)
maxlist	(Repr	attribute)
maxlong	(Repr	attribute)
maxother	(Repr	attribute)
maxpp()	(in	module	audioop)
maxset	(Repr	attribute)
maxstring	(Repr	attribute)
maxtuple	(Repr	attribute)
maxunicode	(in	module	sys)
MAXYEAR	(in	module	datetime)

minmax()	(in	module	audioop)
minor()	(in	module	os)
minus()	(Context	method)
minute	(datetime	attribute)
minute	(time	attribute)
MINYEAR	(in	module	datetime)
mirrored()	(in	module	unicodedata)
misc_header	(Cmd	attribute)
MissingSectionHeaderError
MIXERDEV	(environment	variable)
mkd()	(FTP	method)
mkdir()	(in	module	os)
mkdtemp()	(in	module	tempfile)
mkfifo()	(in	module	os)
mknod()	(in	module	os)
mkstemp()	(in	module	tempfile)
mktemp()	(in	module	tempfile)
mktime()	(in	module	time)
mktime_tz()	(in	module	email.Utils)
mktime_tz()	(in	module	rfc822)
mmap	(built-in	module)
mmap()	(in	module	mmap)
MmdfMailbox	(class	in	mailbox)
mod()	(in	module	operator)
mode	(file	attribute)
mode	(TarInfo	attribute)
modf()	(in	module	math)
modified()	(RobotFileParser	method)
module

search	path,	[Link],	[Link]
module	(class	descriptor	attribute)
module	(function	descriptor	attribute)
module()	(in	module	new)
modules	(in	module	sys)
ModuleType	(in	module	types)
MON_1	...	MON_12	(in	module	locale)
mono2grey()	(in	module	imageop)
month	(date	attribute)
month	(datetime	attribute)

MB_ICONASTERISK	(in	module
winsound)
MB_ICONEXCLAMATION	(in
module	winsound)
MB_ICONHAND	(in	module
winsound)
MB_ICONQUESTION	(in	module
winsound)
MB_OK	(in	module	winsound)
md5	(built-in	module)
md5()	(in	module	md5)
MemoryError
MemoryHandler	(class	in	logging)
Message	(class	in	email.Message)
Message	(class	in	mhlib)
Message	(class	in	mimetools)
Message	(class	in	rfc822)
Message	(in	module	mimetools)
message	digest,	MD5
message_from_file()	(in	module
email.Parser)
message_from_string()	(in	module
email.Parser)
MessageBeep()	(in	module	winsound)
MessageClass
(BaseHTTPRequestHandler	attribute)
MessageError	(exception	in
email.Errors)
MessageParseError	(exception	in
email.Errors)
meta()	(in	module	curses)
Meter	(class	in	Tix)
method	object
methods	(class	descriptor	attribute)
MethodType	(in	module	types)
MH	(class	in	mhlib)
mhlib	(standard	module)
MHMailbox	(class	in	mailbox)
microsecond	(datetime	attribute)

month()	(in	module	calendar)
monthcalendar()	(in	module	calendar)
monthrange()	(in	module	calendar)
more()	(simple_producer	method)
Morsel	(class	in	Cookie)
mouseinterval()	(in	module	curses)
mousemask()	(in	module	curses)
move()	(in	module	shutil)
move()	(Queue	method)
move()	(Textbox	method)
move()	(window	method)
movemessage()	(Folder	method)
MozillaCookieJar	(class	in	cookielib)
msftoblock()	(CD	player	method)
msftoframe()	(in	module	cd)
msg	(in	module	httplib)
msg()	(Telnet	method)
MSG_*	(in	module	socket)
msvcrt	(built-in	module)
mt_interact()	(Telnet	method)
mtime()	(RobotFileParser	method)
mtime	(TarInfo	attribute)
mul()	(in	module	audioop)
mul()	(in	module	operator)
MultiCall	(class	in	xmlrpclib)
MultiFile	(class	in	multifile)
multifile	(standard	module)
MULTILINE	(in	module	re)
MultipartConversionError	(exception	in
email.Errors)
multiply()	(Context	method)
mutable

sequence	types
sequence	types,	operations	on

MutableString	(class	in	UserString)
mutex	(class	in	mutex)
mutex	(standard	module)
mvderwin()	(window	method)
mvwin()	(window	method)

microsecond	(time	attribute)
MIME

base64	encoding
content	type
headers,	[Link]

myrights()	(IMAP4_stream	method)

N

name	(Attr	attribute)
name	(class	descriptor	attribute)
name	(Cookie	attribute)
name	(DocTest	attribute)
name	(DocumentType	attribute)
name	(file	attribute)
name	(function	descriptor	attribute)
name	(in	module	os)
name()	(in	module	unicodedata)
name	(TarInfo	attribute)
name2codepoint	(in	module
htmlentitydefs)
NamedTemporaryFile()	(in	module
tempfile)
NameError
namelist()	(ZipFile	method)
nameprep()	(in	module	encodings.idna)
namespace()	(IMAP4_stream	method)
NamespaceErr
namespaces

XML
namespaceURI	(Node	attribute)
NaN,	[Link]
NannyNag
napms()	(in	module	curses)
ndiff()	(in	module	difflib)
ne()	(in	module	operator)
neg()	(in	module	operator)
netrc	(class	in	netrc)
netrc	(standard	module)
NetrcParseError
netscape	(LWPCookieJar	attribute)
Network	News	Transfer	Protocol
new	(built-in	module)

NNTPPermanentError	(class	in	nntplib)
NNTPProtocolError	(class	in	nntplib)
NNTPReplyError	(class	in	nntplib)
NNTPTemporaryError	(class	in
nntplib)
nocbreak()	(in	module	curses)
NoDataAllowedErr
Node	(class	in	compiler.ast)
node()	(in	module	platform)
nodelay()	(window	method)
nodeName	(Node	attribute)
nodeType	(Node	attribute)
nodeValue	(Node	attribute)
NODISC	(in	module	cd)
noecho()	(in	module	curses)
NOEXPR	(in	module	locale)
nofill	(HTMLParser	attribute)
nok_builtin_names	(RExec	attribute)
noload()	(Unpickler	method)
NoModificationAllowedErr
nonblock()	(audio	device	method)
None	(Built-in	object)
None	(built-in	warning)
NoneType	(in	module	types)
nonl()	(in	module	curses)
noop()	(IMAP4_stream	method)
noop()	(POP3_SSL	method)
NoOptionError
noqiflush()	(in	module	curses)
noraw()	(in	module	curses)
normalize()	(Context	method)
normalize()	(Decimal	method)
normalize()	(in	module	locale)
normalize()	(in	module	unicodedata)

new()	(in	module	hmac)
new()	(in	module	md5)
new()	(in	module	sha)
new_alignment()	(writer	method)
new_font()	(writer	method)
new_margin()	(writer	method)
new_module()	(in	module	imp)
new_panel()	(in	module	curses.panel)
new_spacing()	(writer	method)
new_styles()	(writer	method)
newconfig()	(in	module	al)
newgroups()	(NNTPDataError	method)
newlines	(file	attribute)
newnews()	(NNTPDataError	method)
newpad()	(in	module	curses)
newwin()	(in	module	curses)
next()	(csv	reader	method)
next()	(dbhash	method)
next()	(file	method)
next()	(iterator	method)
next()	(mailbox	method)
next()	(MultiFile	method)
next()	(NNTPDataError	method)
next()	(Queue	method)
next()	(TarFile	method)
nextfile()	(in	module	fileinput)
nextkey()	(in	module	gdbm)
nextpart()	(MimeWriter	method)
nextSibling	(Node	attribute)
ngettext()	(GNUTranslations	method)
ngettext()	(in	module	gettext)
ngettext()	(NullTranslations	method)
NI_*	(in	module	socket)
nice()	(in	module	os)
nis	(extension	module)
NIST
nl()	(in	module	curses)
NL	(in	module	tokenize)
nl_langinfo()	(in	module	locale)

normalize()	(Node	method)
NORMALIZE_WHITESPACE	(in
module	doctest)
normalvariate()	(in	module	random)
normcase()	(in	module	os.path)
normpath()	(in	module	os.path)
NoSectionError
not	in	operator,	[Link]
not	operator
not_()	(in	module	operator)
NotANumber
notationDecl()	(DTDHandler	method)
NotationDeclHandler()	(xmlparser
method)
notations	(DocumentType	attribute)
NotConnected
NoteBook	(class	in	Tix)
NotFoundErr
notify()	(Condition	method)
notifyAll()	(Condition	method)
notimeout()	(window	method)
NotImplemented	(built-in	warning)
NotImplementedError
NotStandaloneHandler()	(xmlparser
method)
NotSupportedErr
noutrefresh()	(window	method)
now()	(datetime	method)
NSIG	(in	module	signal)
nsmallest()	(in	module	heapq)
NTEventLogHandler	(class	in	logging)
ntohl()	(in	module	socket)
ntohs()	(in	module	socket)
ntransfercmd()	(FTP	method)
NullFormatter	(class	in	formatter)
NullWriter	(class	in	formatter)
numeric

conversions
literals

nlargest()	(in	module	heapq)
nlst()	(FTP	method)
NNTP

protocol
NNTP	(class	in	nntplib)
NNTPDataError	(class	in	nntplib)
NNTPError	(class	in	nntplib)
nntplib	(standard	module)

object
types,	operations	on

numeric()	(in	module	unicodedata)
numeric	object
Numerical	Python
nurbscurve()	(in	module	gl)
nurbssurface()	(in	module	gl)
nvarray()	(in	module	gl)

O

O_APPEND	(in	module	os)
O_BINARY	(in	module	os)
O_CREAT	(in	module	os)
O_DSYNC	(in	module	os)
O_EXCL	(in	module	os)
O_NDELAY	(in	module	os)
O_NOCTTY	(in	module	os)
O_NOINHERIT	(in	module	os)
O_NONBLOCK	(in	module	os)
O_RANDOM	(in	module	os)
O_RDONLY	(in	module	os)
O_RDWR	(in	module	os)
O_RSYNC	(in	module	os)
O_SEQUENTIAL	(in	module	os)
O_SHORT_LIVED	(in	module	os)
O_SYNC	(in	module	os)
O_TEMPORARY	(in	module	os)
O_TEXT	(in	module	os)
O_TRUNC	(in	module	os)
O_WRONLY	(in	module	os)
object

Boolean
buffer
code,	[Link]
complex	number
dictionary
file
floating	point
integer
list,	[Link]
long	integer

open()	(in	module	tarfile)
open()	(in	module	wave)
open()	(in	module	webbrowser),	[Link]
open()	(OpenerDirector	method)
open()	(TarFile	method)
open()	(Telnet	method)
open()	(Template	method)
open()	(URLopener	method)
open_new()	(in	module	webbrowser),
[Link]
open_osfhandle()	(in	module	msvcrt)
open_unknown()	(URLopener	method)
opendir()	(in	module	dircache)
OpenerDirector	(class	in	urllib2)
openfolder()	(MH	method)
openfp()	(in	module	sunau)
openfp()	(in	module	wave)
OpenGL
OpenKey()	(in	module	_winreg)
OpenKeyEx()	(in	module	_winreg)
openlog()	(in	module	syslog)
openmessage()	(Message	method)
openmixer()	(in	module	ossaudiodev)
openport()	(in	module	al)
openpty()	(in	module	os)
openpty()	(in	module	pty)
operation

concatenation
extended	slice
repetition
slice
subscript

operations
bit-string

mapping
method
numeric,	[Link]
sequence
set
socket
string
traceback,	[Link]
tuple
type
Unicode
xrange,	[Link]

object()	(built-in	function)
objects

comparing
flattening
marshalling
persistent
pickling
serializing

obufcount()	(audio	device	method),
[Link]
obuffree()	(audio	device	method)
oct()	(built-in	function)
octal

literals
octdigits	(in	module	string)
offset	(ExpatError	attribute)
OK	(in	module	curses)
ok_builtin_modules	(RExec	attribute)
ok_file_types	(RExec	attribute)
ok_path	(RExec	attribute)
ok_posix_names	(RExec	attribute)
ok_sys_names	(RExec	attribute)
onecmd()	(Cmd	method)
open()	(built-in	function)
open()	(IMAP4_stream	method)
open()	(in	module	aifc)
open()	(in	module	anydbm)

Boolean,	[Link]
masking
shifting

operations	on
dictionary	type
integer	types
list	type
mapping	types
mutable	sequence	types
numeric	types
sequence	types,	[Link]

operator
==
and,	[Link]
comparison
in,	[Link]
is
is	not
not
not	in,	[Link]
or,	[Link]

operator	(built-in	module)
opname	(in	module	dis)
OptionMenu	(class	in	Tix)
options	(Example	attribute)
options()	(SafeConfigParser	method)
optionxform()	(SafeConfigParser
method)
optparse	(standard	module)
or	operator,	[Link]
or_()	(in	module	operator)
ord()	(built-in	function)
ordered_attributes	(xmlparser	attribute)
os	(standard	module),	[Link],	[Link]
os.path	(standard	module)
OSError
ossaudiodev	(built-in	module)
OSSAudioError
output()	(BaseCookie	method)

open()	(in	module	cd)
open()	(in	module	codecs)
open()	(in	module	dbhash)
open()	(in	module	dbm)
open()	(in	module	dl)
open()	(in	module	dumbdbm)
open()	(in	module	gdbm)
open()	(in	module	gzip)
open()	(in	module	os)
open()	(in	module	ossaudiodev)
open()	(in	module	posixfile)
open()	(in	module	shelve)
open()	(in	module	sunau)
open()	(in	module	sunaudiodev)

output()	(Morsel	method)
output_charset	(in	module
email.Charset)
output_charset()	(NullTranslations
method)
output_codec	(in	module
email.Charset)
output_difference()	(OutputChecker
method)
OutputChecker	(class	in	doctest)
OutputString()	(Morsel	method)
OutputType	(in	module	cStringIO)
Overflow	(class	in	decimal)
OverflowError
overlay()	(window	method)
Overmars,	Mark
overwrite()	(window	method)

P

P_DETACH	(in	module	os)
P_NOWAIT	(in	module	os)
P_NOWAITO	(in	module	os)
P_OVERLAY	(in	module	os)
P_WAIT	(in	module	os)
pack()	(in	module	struct)
pack_array()	(Packer	method)
pack_bytes()	(Packer	method)
pack_double()	(Packer	method)
pack_farray()	(Packer	method)
pack_float()	(Packer	method)
pack_fopaque()	(Packer	method)
pack_fstring()	(Packer	method)
pack_list()	(Packer	method)
pack_opaque()	(Packer	method)
pack_string()	(Packer	method)
package
Packer	(class	in	xdrlib)
packing

binary	data
packing	(widgets)
PAGER	(environment	variable)
pair_content()	(in	module	curses)
pair_number()	(in	module	curses)
PanedWindow	(class	in	Tix)
pardir	(in	module	os)
parent	(BaseHandler	attribute)
parentNode	(Node	attribute)

port_specified	(Cookie	attribute)
PortableUnixMailbox	(class	in
mailbox)
pos()	(in	module	operator)
pos	(MatchObject	attribute)
POSIX

file	object
I/O	control
threads

posix	(built-in	module)
posix	(TarFile	attribute)
posixfile	(built-in	module)
post()	(audio	device	method)
post()	(NNTPDataError	method)
post_mortem()	(in	module	pdb)
postcmd()	(Cmd	method)
postloop()	(Cmd	method)
pow()	(built-in	function)
pow()	(in	module	math)
pow()	(in	module	operator)
power()	(Context	method)
pprint()	(in	module	pprint)
pprint()	(PrettyPrinter	method)
pprint	(standard	module)
prcal()	(in	module	calendar)
preamble	(in	module	email.Message)
precmd()	(Cmd	method)
prefix	(Attr	attribute)
prefix	(in	module	sys)
prefix	(Node	attribute)
preloop()	(Cmd	method)
preorder()	(ASTVisitor	method)
prepare_input_source()	(in	module
xml.sax.saxutils)

paretovariate()	(in	module	random)
parse()	(DocTestParser	method)
parse()	(in	module	cgi)
parse()	(in	module	compiler)
parse()	(in	module	xml.dom.minidom)
parse()	(in	module	xml.dom.pulldom)
parse()	(in	module	xml.sax)
parse()	(Parser	method)
parse()	(RobotFileParser	method)
Parse()	(xmlparser	method)
parse()	(XMLReader	method)
parse_and_bind()	(in	module	readline)
parse_header()	(in	module	cgi)
parse_multipart()	(in	module	cgi)
parse_qs()	(in	module	cgi)
parse_qsl()	(in	module	cgi)
parseaddr()	(in	module	email.Utils)
parseaddr()	(in	module	rfc822)
parsedate()	(in	module	email.Utils)
parsedate()	(in	module	rfc822)
parsedate_tz()	(in	module	email.Utils)
parsedate_tz()	(in	module	rfc822)
parseFile()	(in	module	compiler)
ParseFile()	(xmlparser	method)
ParseFlags()	(in	module	imaplib)
parseframe()	(CD	parser	method)
parser	(built-in	module)
Parser	(class	in	email.Parser)
ParserCreate()	(in	module
xml.parsers.expat)
ParserError
parsesequence()	(Folder	method)
parsestr()	(Parser	method)
parseString()	(in	module
xml.dom.minidom)
parseString()	(in	module
xml.dom.pulldom)
parseString()	(in	module	xml.sax)
parsing

prepend()	(Template	method)
Pretty	Good	Privacy
PrettyPrinter	(class	in	pprint)
preventremoval()	(CD	player	method)
previous()	(dbhash	method)
previous()	(Queue	method)
previousSibling	(Node	attribute)
print	statement
print_callees()	(Stats	method)
print_callers()	(Stats	method)
print_directory()	(in	module	cgi)
print_environ()	(in	module	cgi)
print_environ_usage()	(in	module	cgi)
print_exc()	(in	module	traceback)
print_exc()	(Timer	method)
print_exception()	(in	module	traceback)
print_form()	(in	module	cgi)
print_last()	(in	module	traceback)
print_stack()	(in	module	traceback)
print_stats()	(Stats	method)
print_tb()	(in	module	traceback)
printable	(in	module	string)
printdir()	(ZipFile	method)
printf-style	formatting
prmonth()	(in	module	calendar)
process

group,	[Link]
id
id	of	parent
killing,	[Link]
signalling,	[Link]

process_message()	(SMTPServer
method)
process_request()	(SocketServer
protocol)
processes,	light-weight
processingInstruction()
(ContentHandler	method)
ProcessingInstructionHandler()

Python	source	code
URL

ParsingError
partial()	(IMAP4_stream	method)
pass_()	(POP3_SSL	method)
path

configuration	file
module	search,	[Link],	[Link]
operations

path	(BaseHTTPRequestHandler
attribute)
path	(Cookie	attribute)
PATH	(environment	variable),	[Link],
[Link],	[Link],	[Link],	[Link],	[Link],
[Link],	[Link]
path	(in	module	os)
path	(in	module	sys)
Path	browser
path_return_ok()	(CookiePolicy
method)
pathconf()	(in	module	os)
pathconf_names	(in	module	os)
pathname2url()	(in	module	urllib)
pathsep	(in	module	os)
pattern	(RegexObject	attribute)
pause()	(in	module	signal)
PAUSED	(in	module	cd)
Pdb	(class	in	pdb)
pdb	(standard	module)
Pen	(class	in	turtle)
PendingDeprecationWarning
Performance
persistence
persistent

objects
pformat()	(in	module	pprint)
pformat()	(PrettyPrinter	method)
PGP
pi	(in	module	cmath)

(xmlparser	method)
processor()	(in	module	platform)
processor	time
Profile	(class	in	hotshot)
profile	(standard	module)
profile	function,	[Link]
profiler
profiling,	deterministic
prompt	(Cmd	attribute)
prompt_user_passwd()
(FancyURLopener	method)
prompts,	interpreter
propagate	(in	module	logging)
property()	(built-in	function)
property_declaration_handler	(in
module	xml.sax.handler)
property_dom_node	(in	module
xml.sax.handler)
property_lexical_handler	(in	module
xml.sax.handler)
property_xml_string	(in	module
xml.sax.handler)
protocol

CGI
FTP,	[Link]
Gopher,	[Link],	[Link]
HTTP,	[Link],	[Link],	[Link],
[Link]
IMAP4
IMAP4_SSL
IMAP4_stream
iterator
NNTP
POP3
SMTP
Telnet

protocol_version
(BaseHTTPRequestHandler	attribute)
PROTOCOL_VERSION

pi	(in	module	math)
pick()	(in	module	gl)
pickle()	(in	module	copy_reg)
pickle	(standard	module),	[Link],
[Link],	[Link],	[Link],	[Link]
PickleError
Pickler	(class	in	pickle)
pickletools	(standard	module)
pickling

objects
PicklingError
pid	(Popen	attribute)
pid	(Popen4	attribute)
PIL	(the	Python	Imaging	Library)
pipe()	(in	module	os)
pipes	(standard	module)
PKG_DIRECTORY	(in	module	imp)
pkgutil	(standard	module)
platform()	(in	module	platform)
platform	(in	module	sys)
platform	(standard	module)
play()	(CD	player	method)
playabs()	(CD	player	method)
PLAYING	(in	module	cd)
PlaySound()	(in	module	winsound)
playtrack()	(CD	player	method)
playtrackabs()	(CD	player	method)
plock()	(in	module	os)
plus()	(Context	method)
pm()	(in	module	pdb)
pnum	(in	module	cd)
poll()	(in	module	select)
poll()	(LogRecord	method)
poll()	(Popen	method)
poll()	(Popen4	method)
pop()	(array	method)
pop()	(dictionary	method)
pop()	(fifo	method)
pop()	(list	method)

(IMAP4_stream	attribute)
proxy()	(in	module	weakref)
proxyauth()	(IMAP4_stream	method)
ProxyBasicAuthHandler	(class	in
urllib2)
ProxyDigestAuthHandler	(class	in
urllib2)
ProxyHandler	(class	in	urllib2)
ProxyType	(in	module	weakref)
ProxyTypes	(in	module	weakref)
prstr()	(in	module	fm)
ps1	(in	module	sys)
ps2	(in	module	sys)
pstats	(standard	module)
pthreads
ptime	(in	module	cd)
pty	(standard	module),	[Link]
publicId	(DocumentType	attribute)
PullDOM	(class	in	xml.dom.pulldom)
punctuation	(in	module	string)
PureProxy	(class	in	smtpd)
push()	(async_chat	method)
push()	(fifo	method)
push()	(InteractiveConsole	method)
push()	(MultiFile	method)
push_alignment()	(formatter	method)
push_font()	(formatter	method)
push_margin()	(formatter	method)
push_source()	(shlex	method)
push_style()	(formatter	method)
push_token()	(shlex	method)
push_with_producer()	(async_chat
method)
put()	(Queue	method)
put_nowait()	(Queue	method)
putch()	(in	module	msvcrt)
putenv()	(in	module	os)
putheader()	(HTTPResponse	method)
putp()	(in	module	curses)

pop()	(MultiFile	method)
pop()	(SystemRandom	method)
POP3

protocol
POP3	(class	in	poplib)
POP3_SSL	(class	in	poplib)
pop_alignment()	(formatter	method)
pop_font()	(formatter	method)
pop_margin()	(formatter	method)
pop_source()	(shlex	method)
pop_style()	(formatter	method)
Popen	(class	in	subprocess)
popen()	(in	module	os),	[Link]
popen()	(in	module	platform)
popen2()	(in	module	os)
popen2()	(in	module	popen2)
popen2	(standard	module)
Popen3	(class	in	popen2)
popen3()	(in	module	os)
popen3()	(in	module	popen2)
Popen4	(class	in	popen2)
popen4()	(in	module	os)
popen4()	(in	module	popen2)
popitem()	(dictionary	method)
popleft()	(SystemRandom	method)
poplib	(standard	module)
PopupMenu	(class	in	Tix)
port	(Cookie	attribute)

putrequest()	(HTTPResponse	method)
putsequences()	(Folder	method)
putwin()	(window	method)
pwd	(built-in	module),	[Link]
pwd()	(FTP	method)
pwlcurve()	(in	module	gl)
py_compile	(standard	module)
PY_COMPILED	(in	module	imp)
PY_FROZEN	(in	module	imp)
PY_RESOURCE	(in	module	imp)
PY_SOURCE	(in	module	imp)
pyclbr	(standard	module)
PyCompileError
pydoc	(standard	module)
pyexpat	(built-in	module)
PyOpenGL
Python	Editor
Python	Imaging	Library
python_build()	(in	module	platform)
python_compiler()	(in	module
platform)
PYTHON_DOM	(environment
variable)
python_version()	(in	module	platform)
python_version_tuple()	(in	module
platform)
PYTHONDOCS	(environment
variable)
PYTHONPATH	(environment
variable),	[Link],	[Link],	[Link]
PYTHONSTARTUP	(environment
variable),	[Link],	[Link]
PYTHONY2K	(environment	variable),
[Link],	[Link]
PyZipFile	(class	in	zipfile)

Q

qdevice()	(in	module	fl)
qenter()	(in	module	fl)
qiflush()	(in	module	curses)
qread()	(in	module	fl)
qreset()	(in	module	fl)
qsize()	(Queue	method)
qtest()	(in	module	fl)
quantize()	(Context	method)
quantize()	(Decimal	method)
QueryInfoKey()	(in	module	_winreg)
queryparams()	(in	module	al)
QueryValue()	(in	module	_winreg)
QueryValueEx()	(in	module	_winreg)
Queue	(class	in	Queue)
Queue	(standard	module)
quick_ratio()	(SequenceMatcher
method)
quit()	(FTP	method)

quit()	(NNTPDataError	method)
quit()	(POP3_SSL	method)
quit()	(SMTP	method)
quopri	(standard	module)
quote()	(in	module	email.Utils)
quote()	(in	module	rfc822)
quote()	(in	module	urllib)
QUOTE_ALL	(in	module	csv)
QUOTE_MINIMAL	(in	module	csv)
QUOTE_NONE	(in	module	csv)
QUOTE_NONNUMERIC	(in	module
csv)
quote_plus()	(in	module	urllib)
quoteattr()	(in	module	xml.sax.saxutils)
quotechar	(Dialect	attribute)
quoted-printable

encoding
quotes	(shlex	attribute)
quoting	(Dialect	attribute)

R

r_eval()	(RExec	method)
r_exec()	(RExec	method)
r_execfile()	(RExec	method)
r_import()	(RExec	method)
R_OK	(in	module	os)
r_open()	(RExec	method)
r_reload()	(RExec	method)
r_unload()	(RExec	method)
radians()	(in	module	math)
radians()	(in	module	turtle)
RADIXCHAR	(in	module	locale)
raise	statement
randint()	(in	module	random)
randint()	(in	module	whrandom)
random()	(in	module	random)
random()	(in	module	whrandom)
random	(standard	module)
randrange()	(in	module	random)
range()	(built-in	function)
ratecv()	(in	module	audioop)
ratio()	(SequenceMatcher	method)
raw()	(in	module	curses)
raw_input()	(built-in	function),	[Link]
raw_input()	(InteractiveConsole
method)
RawConfigParser	(class	in
ConfigParser)
RawPen	(class	in	turtle)
re	(MatchObject	attribute)
re	(standard	module),	[Link],	[Link],
[Link]
read()	(array	method)
read()	(audio	device	method),	[Link]
read()	(BZ2File	method)

replace()	(Textbox	method)
replace()	(time	method)
replace_errors()	(in	module	codecs)
replace_header()	(Message	method)
replace_history_item()	(in	module
readline)
replace_whitespace	(TextWrapper
attribute)
replaceChild()	(Node	method)
report()	(dircmp	method)
REPORT_CDIFF	(in	module	doctest)
report_failure()	(DocTestRunner
method)
report_full_closure()	(dircmp	method)
REPORT_NDIFF	(in	module	doctest)
REPORT_ONLY_FIRST_FAILURE
(in	module	doctest)
report_partial_closure()	(dircmp
method)
report_start()	(DocTestRunner	method)
report_success()	(DocTestRunner
method)
REPORT_UDIFF	(in	module	doctest)
report_unbalanced()	(SGMLParser
method)
report_unexpected_exception()
(DocTestRunner	method)
REPORTING_FLAGS	(in	module
doctest)
repr()	(built-in	function)
Repr	(class	in	repr)

read()	(Chunk	method)
read()	(file	method)
read()	(HTTPResponse	method)
read()	(IMAP4_stream	method)
read()	(in	module	imgfile)
read()	(in	module	os)
read()	(LogRecord	method)
read()	(MimeTypes	method)
read()	(MultiFile	method)
read()	(Queue	method)
read()	(RobotFileParser	method)
read()	(SafeConfigParser	method)
read()	(StreamReader	method)
read()	(ZipFile	method)
read_all()	(Telnet	method)
read_byte()	(Queue	method)
read_eager()	(Telnet	method)
read_history_file()	(in	module	readline)
read_init_file()	(in	module	readline)
read_lazy()	(Telnet	method)
read_mime_types()	(in	module
mimetypes)
read_sb_data()	(Telnet	method)
read_some()	(Telnet	method)
read_token()	(shlex	method)
read_until()	(Telnet	method)
read_very_eager()	(Telnet	method)
read_very_lazy()	(Telnet	method)
readable()	(async_chat	method)
readable()	(dispatcher	method)
readda()	(CD	player	method)
reader()	(in	module	csv)
ReadError
readfp()	(MimeTypes	method)
readfp()	(SafeConfigParser	method)
readframes()	(aifc	method)
readframes()	(AU_read	method)
readframes()	(Wave_read	method)
readline	(built-in	module)

repr()	(in	module	repr)
repr()	(Repr	method)
repr	(standard	module)
repr1()	(Repr	method)
Request	(class	in	urllib2)
request()	(HTTPResponse	method)
request_queue_size	(SocketServer
protocol)
request_version
(BaseHTTPRequestHandler	attribute)
RequestHandlerClass	(SocketServer
protocol)
requires()	(in	module	test.test_support)
reserved	(ZipInfo	attribute)
reset()	(audio	device	method)
reset()	(DOMEventStream	method)
reset()	(HTMLParser	method)
reset()	(in	module	statcache)
reset()	(in	module	turtle)
reset()	(IncrementalParser	method)
reset()	(Packer	method)
reset()	(SGMLParser	method)
reset()	(StreamReader	method)
reset()	(StreamWriter	method)
reset()	(Template	method)
reset()	(Unpacker	method)
reset()	(XMLParser	method)
reset_prog_mode()	(in	module	curses)
reset_shell_mode()	(in	module	curses)
resetbuffer()	(InteractiveConsole
method)
resetlocale()	(in	module	locale)
resetparser()	(CD	parser	method)
resetwarnings()	(in	module	warnings)
resize()	(Queue	method)
resolution	(date	attribute)
resolution	(datetime	attribute)
resolution	(time	attribute)
resolution	(timedelta	attribute)

readline()	(BZ2File	method)
readline()	(file	method)
readline()	(IMAP4_stream	method)
readline()	(MultiFile	method)
readline()	(Queue	method)
readline()	(StreamReader	method)
readlines()	(BZ2File	method)
readlines()	(file	method)
readlines()	(MultiFile	method)
readlines()	(StreamReader	method)
readlink()	(in	module	os)
readmodule()	(in	module	pyclbr)
readmodule_ex()	(in	module	pyclbr)
readsamps()	(audio	port	method)
readscaled()	(in	module	imgfile)
READY	(in	module	cd)
Real	Media	File	Format
real_quick_ratio()	(SequenceMatcher
method)
realpath()	(in	module	os.path)
reason	(in	module	httplib)
reccontrols()	(mixer	device	method)
recent()	(IMAP4_stream	method)
rectangle()	(in	module	curses.textpad)
recv()	(dispatcher	method)
recv()	(socket	method)
recvfrom()	(socket	method)
redirect_request()
(HTTPRedirectHandler	method)
redisplay()	(in	module	readline)
redraw_form()	(form	method)
redraw_object()	(FORMS	object
method)
redrawln()	(window	method)
redrawwin()	(window	method)
reduce()	(built-in	function)
ref	(class	in	weakref)
ReferenceError,	[Link]
ReferenceType	(in	module	weakref)

resolveEntity()	(EntityResolver
method)
resource	(built-in	module)
ResourceDenied
response()	(IMAP4_stream	method)
ResponseNotReady
responses	(BaseHTTPRequestHandler
attribute)
restore()	(in	module	difflib)
retr()	(POP3_SSL	method)
retrbinary()	(FTP	method)
retrieve()	(URLopener	method)
retrlines()	(FTP	method)
return_ok()	(CookiePolicy	method)
returncode	(Popen	attribute)
returns_unicode	(xmlparser	attribute)
reverse()	(array	method)
reverse()	(in	module	audioop)
reverse()	(list	method)
reverse_order()	(Stats	method)
reversed()	(built-in	function)
revert()	(FileCookieJar	method)
rewind()	(aifc	method)
rewind()	(AU_read	method)
rewind()	(Wave_read	method)
rewindbody()	(AddressList	method)
RExec	(class	in	rexec)
rexec	(standard	module),	[Link]
rfc2965	(LWPCookieJar	attribute)
rfc822	(standard	module),	[Link]
rfile	(BaseHTTPRequestHandler
attribute)
rfind()	(in	module	string)
rfind()	(string	method)
rgb_to_hls()	(in	module	colorsys)
rgb_to_hsv()	(in	module	colorsys)
rgb_to_yiq()	(in	module	colorsys)
rgbimg	(built-in	module)
right()	(in	module	turtle)

refilemessages()	(Folder	method)
refill_buffer()	(async_chat	method)
refresh()	(window	method)
register()	(in	module	atexit)
register()	(in	module	codecs)
register()	(in	module	webbrowser)
register()	(LogRecord	method)
register_dialect()	(in	module	csv)
register_error()	(in	module	codecs)
register_function()
(SimpleXMLRPCRequestHandler
method)
register_function()
(SimpleXMLRPCServer	method)
register_instance()
(SimpleXMLRPCRequestHandler
method)
register_instance()
(SimpleXMLRPCServer	method)
register_introspection_functions()
(SimpleXMLRPCRequestHandler
method),	[Link]
register_multicall_functions()
(SimpleXMLRPCRequestHandler
method),	[Link]
register_optionflag()	(in	module
doctest)
registerDOMImplementation()	(in
module	xml.dom)
RegLoadKey()	(in	module	_winreg)
relative

URL
release()	(Condition	method)
release()	(in	module	platform)
release()	(lock	method)
release()	(Semaphore	method)
release()	(Textbox	method)
release()	(Timer	method),	[Link]
release_lock()	(in	module	imp)

right_list	(dircmp	attribute)
right_only	(dircmp	attribute)
rindex()	(in	module	string)
rindex()	(string	method)
rjust()	(in	module	string)
rjust()	(string	method)
rlcompleter	(standard	module)
rlecode_hqx()	(in	module	binascii)
rledecode_hqx()	(in	module	binascii)
RLIMIT_AS	(in	module	resource)
RLIMIT_CORE	(in	module	resource)
RLIMIT_CPU	(in	module	resource)
RLIMIT_DATA	(in	module	resource)
RLIMIT_FSIZE	(in	module	resource)
RLIMIT_MEMLOCK	(in	module
resource)
RLIMIT_NOFILE	(in	module
resource)
RLIMIT_NPROC	(in	module	resource)
RLIMIT_OFILE	(in	module	resource)
RLIMIT_RSS	(in	module	resource)
RLIMIT_STACK	(in	module	resource)
RLIMIT_VMEM	(in	module	resource)
RLock()	(in	module	threading)
rmd()	(FTP	method)
rmdir()	(in	module	os)
RMFF
rms()	(in	module	audioop)
rmtree()	(in	module	shutil)
rnopen()	(in	module	bsddb)
RobotFileParser	(class	in	robotparser)
robotparser	(standard	module)
robots.txt
rotate()	(SystemRandom	method)
RotatingFileHandler	(class	in	logging)
round()	(built-in	function)
Rounded	(class	in	decimal)
rpop()	(POP3_SSL	method)
rset()	(POP3_SSL	method)

reload()	(built-in	function),	[Link],
[Link],	[Link]
remainder()	(Context	method)
remainder_near()	(Context	method)
remainder_near()	(Decimal	method)
remove()	(array	method)
remove()	(in	module	os)
remove()	(list	method)
remove_history_item()	(in	module
readline)
remove_option()	(SafeConfigParser
method)
remove_section()	(SafeConfigParser
method)
removeAttribute()	(Element	method)
removeAttributeNode()	(Element
method)
removeAttributeNS()	(Element
method)
removecallback()	(CD	parser	method)
removeChild()	(Node	method)
removedirs()	(in	module	os)
removeFilter()	(Textbox	method),
[Link]
removeHandler()	(Textbox	method)
removemessages()	(Folder	method)
rename()	(FTP	method)
rename()	(IMAP4_stream	method)
rename()	(in	module	os)
renames()	(in	module	os)
reorganize()	(in	module	gdbm)
repeat()	(in	module	itertools)
repeat()	(in	module	operator)
repeat()	(Timer	method)
repetition

operation
replace()	(date	method)
replace()	(datetime	method)
replace()	(in	module	string)

rshift()	(in	module	operator)
rsplit()	(in	module	string)
rsplit()	(string	method)
rstrip()	(in	module	string)
rstrip()	(string	method)
RTLD_LAZY	(in	module	dl)
RTLD_NOW	(in	module	dl)
ruler	(Cmd	attribute)
run()	(DocTestRunner	method)
run()	(in	module	pdb)
run()	(in	module	profile)
run()	(Profile	method)
run()	(scheduler	method)
run()	(TestCase	method)
run()	(TestSuite	method)
run()	(Thread	method)
Run	script
run_docstring_examples()	(in	module
doctest)
run_suite()	(in	module
test.test_support)
run_unittest()	(in	module
test.test_support)
runcall()	(in	module	pdb)
runcall()	(Profile	method)
runcode()	(InteractiveConsole	method)
runctx()	(in	module	profile)
runctx()	(Profile	method)
runeval()	(in	module	pdb)
runsource()	(InteractiveConsole
method)
RuntimeError
RuntimeWarning
RUSAGE_BOTH	(in	module	resource)
RUSAGE_CHILDREN	(in	module
resource)
RUSAGE_SELF	(in	module	resource)

replace()	(string	method)

S

S	(in	module	re)
s_eval()	(RExec	method)
s_exec()	(RExec	method)
s_execfile()	(RExec	method)
S_IFMT()	(in	module	stat)
S_IMODE()	(in	module	stat)
s_import()	(RExec	method)
S_ISBLK()	(in	module	stat)
S_ISCHR()	(in	module	stat)
S_ISDIR()	(in	module	stat)
S_ISFIFO()	(in	module	stat)
S_ISLNK()	(in	module	stat)
S_ISREG()	(in	module	stat)
S_ISSOCK()	(in	module	stat)
s_reload()	(RExec	method)
s_unload()	(RExec	method)
safe_substitute()	(Template	method)
SafeConfigParser	(class	in
ConfigParser)
saferepr()	(in	module	pprint)
same_files	(dircmp	attribute)
same_quantum()	(Context	method)
same_quantum()	(Decimal	method)
samefile()	(in	module	os.path)
sameopenfile()	(in	module	os.path)
samestat()	(in	module	os.path)
sample()	(in	module	random)
save()	(FileCookieJar	method)
save_bgn()	(HTMLParser	method)
save_end()	(HTMLParser	method)
SaveKey()	(in	module	_winreg)
SAX2DOM	(class	in
xml.dom.pulldom)
SAXException	(exception	in	xml.sax)

show_question()	(in	module	fl)
showsyntaxerror()	(InteractiveConsole
method)
showtraceback()	(InteractiveConsole
method)
showwarning()	(in	module	warnings)
shuffle()	(in	module	random)
shutdown()	(IMAP4_stream	method)
shutdown()	(in	module	logging)
shutdown()	(socket	method)
shutil	(standard	module)
SIG*	(in	module	signal)
SIG_DFL	(in	module	signal)
SIG_IGN	(in	module	signal)
signal	(built-in	module),	[Link]
signal()	(in	module	signal)
Simple	Mail	Transfer	Protocol
simple_producer	(class	in	asynchat)
SimpleCookie	(class	in	Cookie)
SimpleHTTPRequestHandler	(class	in
SimpleHTTPServer)
SimpleHTTPServer	(standard	module),
[Link]
SimpleXMLRPCRequestHandler	(class
in	SimpleXMLRPCServer)
SimpleXMLRPCServer	(class	in
SimpleXMLRPCServer)
SimpleXMLRPCServer	(standard
module)
sin()	(in	module	cmath)

SAXNotRecognizedException
(exception	in	xml.sax)
SAXNotSupportedException
(exception	in	xml.sax)
SAXParseException	(exception	in
xml.sax)
scale()	(in	module	imageop)
scalefont()	(font	handle	method)
scanf()	(in	module	re)
sched	(standard	module)
scheduler	(class	in	sched)
sci()	(in	module	fpformat)
script_from_examples()	(in	module
doctest)
scroll()	(window	method)
ScrolledText	(standard	module)
scrollok()	(window	method)
search

path,	module,	[Link],	[Link]
search()	(IMAP4_stream	method)
search()	(in	module	re)
search()	(RegexObject	method)
SEARCH_ERROR	(in	module	imp)
second	(datetime	attribute)
second	(time	attribute)
section_divider()	(MultiFile	method)
sections()	(SafeConfigParser	method)
secure	(Cookie	attribute)
Secure	Hash	Algorithm
security

CGI
seed()	(in	module	random)
seed()	(in	module	whrandom)
seed()	(whrandom	method)
seek()	(BZ2File	method)
seek()	(CD	player	method)
seek()	(Chunk	method)
seek()	(file	method)
seek()	(MultiFile	method)

sin()	(in	module	math)
sinh()	(in	module	cmath)
sinh()	(in	module	math)
site	(standard	module)
site-packages

directory
site-python

directory
sitecustomize	(module),	[Link]
size()	(FTP	method)
size()	(Queue	method)
size	(TarInfo	attribute)
sizeofimage()	(in	module	rgbimg)
skip()	(Chunk	method)
skipinitialspace	(Dialect	attribute)
skippedEntity()	(ContentHandler
method)
slave()	(NNTPDataError	method)
sleep()	(in	module	time)
slice

assignment
operation

slice()	(built-in	function),	[Link],
[Link]
SliceType	(in	module	types)
SmartCookie	(class	in	Cookie)
SMTP

protocol
SMTP	(class	in	smtplib)
SMTPConnectError
smtpd	(standard	module)
SMTPDataError
SMTPException
SMTPHandler	(class	in	logging)
SMTPHeloError
smtplib	(standard	module)
SMTPRecipientsRefused
SMTPResponseException
SMTPSenderRefused

seek()	(Queue	method)
SEEK_CUR	(in	module	posixfile)
SEEK_END	(in	module	posixfile)
SEEK_SET	(in	module	posixfile)
seekblock()	(CD	player	method)
seektrack()	(CD	player	method)
select	(built-in	module)
Select	(class	in	Tix)
select()	(IMAP4_stream	method)
select()	(in	module	gl)
select()	(in	module	select)
Semaphore	(class	in	threading)
Semaphore()	(in	module	threading)
semaphores,	binary
send()	(DatagramHandler	method)
send()	(dispatcher	method)
send()	(HTTPResponse	method)
send()	(IMAP4_stream	method)
send()	(socket	method)
send()	(SocketHandler	method)
send_error()
(BaseHTTPRequestHandler	method)
send_flowing_data()	(writer	method)
send_header()
(BaseHTTPRequestHandler	method)
send_hor_rule()	(writer	method)
send_label_data()	(writer	method)
send_line_break()	(writer	method)
send_literal_data()	(writer	method)
send_paragraph()	(writer	method)
send_query()	(in	module	gopherlib)
send_response()
(BaseHTTPRequestHandler	method)
send_selector()	(in	module	gopherlib)
sendall()	(socket	method)
sendcmd()	(FTP	method)
sendmail()	(SMTP	method)
sendto()	(socket	method)
sep	(in	module	os)

SMTPServer	(class	in	smtpd)
SMTPServerDisconnected
SND_ALIAS	(in	module	winsound)
SND_ASYNC	(in	module	winsound)
SND_FILENAME	(in	module
winsound)
SND_LOOP	(in	module	winsound)
SND_MEMORY	(in	module	winsound)
SND_NODEFAULT	(in	module
winsound)
SND_NOSTOP	(in	module	winsound)
SND_NOWAIT	(in	module	winsound)
SND_PURGE	(in	module	winsound)
sndhdr	(standard	module)
sniff()	(Sniffer	method)
Sniffer	(class	in	csv)
SO_*	(in	module	socket)
SOCK_DGRAM	(in	module	socket)
SOCK_RAW	(in	module	socket)
SOCK_RDM	(in	module	socket)
SOCK_SEQPACKET	(in	module
socket)
SOCK_STREAM	(in	module	socket)
socket	(built-in	module),	[Link],	[Link]
socket()	(IMAP4_stream	method)
socket()	(in	module	socket),	[Link]
socket	(SocketServer	protocol)
socket	object
socket_type	(SocketServer	protocol)
SocketHandler	(class	in	logging)
socketpair()	(in	module	socket)
SocketServer	(standard	module)
SocketType	(in	module	socket)
softspace	(file	attribute)
SOL_*	(in	module	socket)
SOMAXCONN	(in	module	socket)
sort()	(IMAP4_stream	method)
sort()	(list	method)
sort_stats()	(Stats	method)

sequence
iteration
types,	mutable
types,	operations	on,	[Link]
types,	operations	on	mutable

sequence	object
sequence2ast()	(in	module	parser)
sequenceIncludes()	(in	module
operator)
SequenceMatcher	(class	in	difflib),
[Link]
SerialCookie	(class	in	Cookie)
serializing

objects
serve_forever()	(SocketServer	protocol)
server

WWW,	[Link]
server_activate()	(SocketServer
protocol)
server_address	(SocketServer	protocol)
server_bind()	(SocketServer	protocol)
server_version
(BaseHTTPRequestHandler	attribute)
server_version
(SimpleHTTPRequestHandler
attribute)
ServerProxy	(class	in	xmlrpclib)
set()	(built-in	function)
Set	(class	in	sets)
set()	(Event	method)
set()	(mixer	device	method)
set()	(Morsel	method)
set()	(SafeConfigParser	method),
[Link]
set	object
set_allowed_domains()
(DefaultCookiePolicy	method)
set_blocked_domains()
(DefaultCookiePolicy	method)

sorted()	(built-in	function)
sortTestMethodsUsing	(TestLoader
attribute)
source	(Example	attribute)
source	(shlex	attribute)
sourcehook()	(shlex	method)
span()	(MatchObject	method)
spawn()	(in	module	pty)
spawnl()	(in	module	os)
spawnle()	(in	module	os)
spawnlp()	(in	module	os)
spawnlpe()	(in	module	os)
spawnv()	(in	module	os)
spawnve()	(in	module	os)
spawnvp()	(in	module	os)
spawnvpe()	(in	module	os)
specified_attributes	(xmlparser
attribute)
speed()	(audio	device	method)
split()	(in	module	os.path)
split()	(in	module	re)
split()	(in	module	shlex)
split()	(in	module	string)
split()	(RegexObject	method)
split()	(string	method)
splitdrive()	(in	module	os.path)
splitext()	(in	module	os.path)
splitfields()	(in	module	string)
splitlines()	(string	method)
sprintf-style	formatting
sqrt()	(Context	method)
sqrt()	(Decimal	method)
sqrt()	(in	module	cmath)
sqrt()	(in	module	math)
ssl()	(IMAP4_stream	method)
ssl()	(in	module	socket)
ST_ATIME	(in	module	stat)
ST_CTIME	(in	module	stat)
ST_DEV	(in	module	stat)

set_boundary()	(Message	method)
set_call_back()	(FORMS	object
method)
set_charset()	(Message	method)
set_completer()	(in	module	readline)
set_completer_delims()	(in	module
readline)
set_cookie()	(CookieJar	method)
set_cookie_if_ok()	(CookieJar	method)
set_debug()	(in	module	gc)
set_debuglevel()	(FTP	method)
set_debuglevel()	(HTTPResponse
method)
set_debuglevel()	(NNTPDataError
method)
set_debuglevel()	(POP3_SSL	method)
set_debuglevel()	(SMTP	method)
set_debuglevel()	(Telnet	method)
set_default_type()	(Message	method)
set_event_call_back()	(in	module	fl)
set_form_position()	(form	method)
set_graphics_mode()	(in	module	fl)
set_history_length()	(in	module
readline)
set_location()	(Queue	method)
set_nonstandard_attr()	(Cookie
method)
set_ok()	(CookiePolicy	method)
set_option_negotiation_callback()
(Telnet	method)
set_output_charset()	(NullTranslations
method)
set_param()	(Message	method)
set_pasv()	(FTP	method)
set_payload()	(Message	method)
set_policy()	(CookieJar	method)
set_position()	(Unpacker	method)
set_pre_input_hook()	(in	module
readline)

ST_GID	(in	module	stat)
ST_INO	(in	module	stat)
ST_MODE	(in	module	stat)
ST_MTIME	(in	module	stat)
ST_NLINK	(in	module	stat)
ST_SIZE	(in	module	stat)
ST_UID	(in	module	stat)
stack()	(in	module	inspect)
stack	viewer
stackable

streams
standard_b64decode()	(in	module
base64)
standard_b64encode()	(in	module
base64)
StandardError
standend()	(window	method)
standout()	(window	method)
starmap()	(in	module	itertools)
start()	(MatchObject	method)
start()	(Profile	method)
start()	(Thread	method)
start_color()	(in	module	curses)
start_new_thread()	(in	module	thread)
startbody()	(MimeWriter	method)
StartCdataSectionHandler()	(xmlparser
method)
StartDoctypeDeclHandler()	(xmlparser
method)
startDocument()	(ContentHandler
method)
startElement()	(ContentHandler
method)
StartElementHandler()	(xmlparser
method)
startElementNS()	(ContentHandler
method)
startfile()	(in	module	os)
startmultipartbody()	(MimeWriter

set_proxy()	(Request	method)
set_recsrc()	(mixer	device	method)
set_seq1()	(SequenceMatcher	method)
set_seq2()	(SequenceMatcher	method)
set_seqs()	(SequenceMatcher	method)
set_server_documentation()
(DocXMLRPCRequestHandler
method),	[Link]
set_server_name()
(DocXMLRPCRequestHandler
method),	[Link]
set_server_title()
(DocXMLRPCRequestHandler
method),	[Link]
set_spacing()	(formatter	method)
set_startup_hook()	(in	module	readline)
set_terminator()	(async_chat	method)
set_threshold()	(in	module	gc)
set_trace()	(in	module	pdb)
set_type()	(Message	method)
set_unittest_reportflags()	(in	module
doctest)
set_unixfrom()	(Message	method)
set_url()	(RobotFileParser	method)
set_userptr()	(Textbox	method)
setacl()	(IMAP4_stream	method)
setattr()	(built-in	function)
setAttribute()	(Element	method)
setAttributeNode()	(Element	method)
setAttributeNodeNS()	(Element
method)
setAttributeNS()	(Element	method)
SetBase()	(xmlparser	method)
setblocking()	(socket	method)
setByteStream()	(InputSource	method)
setcbreak()	(in	module	tty)
setchannels()	(audio	configuration
method)
setCharacterStream()	(InputSource

method)
StartNamespaceDeclHandler()
(xmlparser	method)
startPrefixMapping()	(ContentHandler
method)
startswith()	(string	method)
startTest()	(TestResult	method)
starttls()	(SMTP	method)
stat()	(in	module	os)
stat()	(in	module	statcache)
stat()	(NNTPDataError	method)
stat()	(POP3_SSL	method)
stat	(standard	module),	[Link]
stat_float_times()	(in	module	os)
statcache	(standard	module)
statement

assert
del,	[Link]
except
exec
if
import,	[Link]
print
raise
try
while

staticmethod()	(built-in	function)
Stats	(class	in	profile)
status()	(IMAP4_stream	method)
status	(in	module	httplib)
statvfs()	(in	module	os)
statvfs	(standard	module),	[Link]
StdButtonBox	(class	in	Tix)
stderr	(in	module	sys)
stderr	(Popen	attribute)
stdin	(in	module	sys)
stdin	(Popen	attribute)
stdout	(in	module	sys)
stdout	(Popen	attribute)

method)
setcheckinterval()	(in	module	sys)
setcomptype()	(aifc	method)
setcomptype()	(AU_write	method)
setcomptype()	(Wave_write	method)
setconfig()	(audio	port	method)
setContentHandler()	(XMLReader
method)
setcontext()	(in	module	decimal)
setcontext()	(MH	method)
setcurrent()	(Folder	method)
setDaemon()	(Thread	method)
setdefault()	(dictionary	method)
setdefaultencoding()	(in	module	sys)
setdefaulttimeout()	(in	module	socket)
setdlopenflags()	(in	module	sys)
setDocumentLocator()
(ContentHandler	method)
setDTDHandler()	(XMLReader
method)
setegid()	(in	module	os)
setEncoding()	(InputSource	method)
setEntityResolver()	(XMLReader
method)
setErrorHandler()	(XMLReader
method)
seteuid()	(in	module	os)
setFeature()	(XMLReader	method)
setfillpoint()	(audio	port	method)
setfirstweekday()	(in	module	calendar)
setfloatmax()	(audio	configuration
method)
setfmt()	(audio	device	method)
setfont()	(font	handle	method)
setFormatter()	(Textbox	method)
setframerate()	(aifc	method)
setframerate()	(AU_write	method)
setframerate()	(Wave_write	method)
setgid()	(in	module	os)

Stein,	Greg
stereocontrols()	(mixer	device	method)
STILL	(in	module	cd)
stop()	(CD	player	method)
stop()	(Profile	method)
stop()	(TestResult	method)
StopIteration
stopListening()	(in	module	logging)
stopTest()	(TestResult	method)
storbinary()	(FTP	method)
store()	(IMAP4_stream	method)
storlines()	(FTP	method)
str()	(built-in	function)
str()	(in	module	locale)
strcoll()	(in	module	locale)
StreamError
StreamHandler	(class	in	logging)
StreamReader	(class	in	codecs)
StreamReaderWriter	(class	in	codecs)
StreamRecoder	(class	in	codecs)
streams
stackable
StreamWriter	(class	in	codecs)
strerror()	(in	module	os)
strftime()	(date	method)
strftime()	(datetime	method)
strftime()	(in	module	time)
strftime()	(time	method)
strict_domain	(LWPCookieJar
attribute)
strict_errors()	(in	module	codecs)
strict_ns_domain	(LWPCookieJar
attribute)
strict_ns_set_initial_dollar
(LWPCookieJar	attribute)
strict_ns_set_path	(LWPCookieJar
attribute)
strict_ns_unverifiable	(LWPCookieJar
attribute)

setgroups()	(in	module	os)
setinfo()	(audio	device	method)
setitem()	(in	module	operator)
setlast()	(Folder	method)
setLevel()	(Textbox	method),	[Link]
setliteral()	(SGMLParser	method)
setliteral()	(XMLParser	method)
setlocale()	(in	module	locale)
setLocale()	(XMLReader	method)
setLoggerClass()	(in	module	logging)
setlogmask()	(in	module	syslog)
setmark()	(aifc	method)
setMaxConns()	(CacheFTPHandler
method)
setmode()	(in	module	msvcrt)
setName()	(Thread	method)
setnchannels()	(aifc	method)
setnchannels()	(AU_write	method)
setnchannels()	(Wave_write	method)
setnframes()	(aifc	method)
setnframes()	(AU_write	method)
setnframes()	(Wave_write	method)
setnomoretags()	(SGMLParser	method)
setnomoretags()	(XMLParser	method)
setoption()	(in	module	jpeg)
setparameters()	(audio	device	method)
setparams()	(aifc	method)
setparams()	(AU_write	method)
setparams()	(in	module	al)
setparams()	(Wave_write	method)
setpath()	(in	module	fm)
setpgid()	(in	module	os)
setpgrp()	(in	module	os)
setpos()	(aifc	method)
setpos()	(AU_read	method)
setpos()	(Wave_read	method)
setprofile()	(in	module	sys)
setprofile()	(in	module	threading)
setProperty()	(XMLReader	method)

strict_rfc2965_unverifiable
(LWPCookieJar	attribute)
string

documentation
formatting
interpolation

string	(MatchObject	attribute)
string	(standard	module),	[Link],
[Link],	[Link]
string	object
StringIO	(class	in	StringIO)
StringIO	(standard	module)
stringprep	(standard	module)
StringType	(in	module	types)
StringTypes	(in	module	types)
strip()	(in	module	string)
strip()	(string	method)
strip_dirs()	(Stats	method)
stripspaces	(Textbox	attribute)
strptime()	(in	module	time)
struct	(built-in	module),	[Link]
struct_time	(in	module	time)
structures

C
strxfrm()	(in	module	locale)
sub()	(in	module	operator)
sub()	(in	module	re)
sub()	(RegexObject	method)
subdirs	(dircmp	attribute)
subn()	(in	module	re)
subn()	(RegexObject	method)
Subnormal	(class	in	decimal)
subpad()	(window	method)
subprocess	(standard	module)
subscribe()	(IMAP4_stream	method)
subscript

assignment
operation

subsequent_indent	(TextWrapper

setPublicId()	(InputSource	method)
setqueuesize()	(audio	configuration
method)
setquota()	(IMAP4_stream	method)
setraw()	(in	module	tty)
setrecursionlimit()	(in	module	sys)
setregid()	(in	module	os)
setreuid()	(in	module	os)
setrlimit()	(in	module	resource)
sets	(standard	module)
setsampfmt()	(audio	configuration
method)
setsampwidth()	(aifc	method)
setsampwidth()	(AU_write	method)
setsampwidth()	(Wave_write	method)
setscrreg()	(window	method)
setsid()	(in	module	os)
setslice()	(in	module	operator)
setsockopt()	(socket	method)
setstate()	(in	module	random)
setSystemId()	(InputSource	method)
setsyx()	(in	module	curses)
setTarget()	(MemoryHandler	method)
setTimeout()	(CacheFTPHandler
method)
settimeout()	(socket	method)
settrace()	(in	module	sys)
settrace()	(in	module	threading)
settscdump()	(in	module	sys)
setuid()	(in	module	os)
setup()	(SocketServer	protocol)
setUp()	(TestCase	method)
setupterm()	(in	module	curses)
SetValue()	(in	module	_winreg)
SetValueEx()	(in	module	_winreg)
setwidth()	(audio	configuration
method)
SGML
sgmllib	(standard	module),	[Link]

attribute)
substitute()	(Template	method)
substract()	(Context	method)
subwin()	(window	method)
suffix_map	(in	module	mimetypes),
[Link]
suite()	(in	module	parser)
suiteClass	(TestLoader	attribute)
sum()	(built-in	function)
summarize()	(DocTestRunner	method)
sunau	(standard	module)
sunaudiodev	(built-in	module),	[Link]
SUNAUDIODEV	(standard	module),
[Link]
super()	(built-in	function)
super	(class	descriptor	attribute)
supports_unicode_filenames	(in
module	os.path)
swapcase()	(in	module	string)
swapcase()	(string	method)
sym()	(TarInfo	method)
sym_name	(in	module	symbol)
symbol	(standard	module)
symbol	table
symlink()	(in	module	os)
sync()	(audio	device	method)
sync()	(dbhash	method)
sync()	(in	module	gdbm)
sync()	(Queue	method),	[Link]
syncdown()	(window	method)
syncok()	(window	method)
syncup()	(window	method)
syntax_error()	(XMLParser	method)
SyntaxErr
SyntaxError
SyntaxWarning
sys	(built-in	module)
sys_version
(BaseHTTPRequestHandler	attribute)

SGMLParseError
SGMLParser	(class	in	sgmllib)
SGMLParser	(in	module	sgmllib)
sha	(built-in	module)
Shelf	(class	in	shelve)
shelve	(standard	module),	[Link]
shifting

operations
shlex	(class	in	shlex)
shlex	(standard	module)
shortDescription()	(TestCase	method)
shouldFlush()	(BufferingHandler
method)
shouldFlush()	(MemoryHandler
method)
show()	(Textbox	method)
show_choice()	(in	module	fl)
show_file_selector()	(in	module	fl)
show_form()	(form	method)
show_input()	(in	module	fl)
show_message()	(in	module	fl)
show_object()	(FORMS	object	method)

sysconf()	(in	module	os)
sysconf_names	(in	module	os)
syslog	(built-in	module)
syslog()	(in	module	syslog)
SysLogHandler	(class	in	logging)
system()	(in	module	os)
system()	(in	module	platform)
system.listMethods()	(ServerProxy
method)
system.methodHelp()	(ServerProxy
method)
system.methodSignature()
(ServerProxy	method)
system_alias()	(in	module	platform)
SystemError
SystemExit
systemId	(DocumentType	attribute)
SystemRandom	(class	in	random)

T

T_FMT	(in	module	locale)
T_FMT_AMPM	(in	module	locale)
tabnanny	(standard	module)
tabular

data
tagName	(Element	attribute)
takewhile()	(in	module	itertools)
tan()	(in	module	cmath)
tan()	(in	module	math)
tanh()	(in	module	cmath)
tanh()	(in	module	math)
TAR_GZIPPED	(in	module	tarfile)
TAR_PLAIN	(in	module	tarfile)
TarError
TarFile	(class	in	tarfile),	[Link]
tarfile	(standard	module)
TarFileCompat	(class	in	tarfile)
target	(ProcessingInstruction	attribute)
TarInfo	(class	in	tarfile)
tb_lineno()	(in	module	traceback)
tcdrain()	(in	module	termios)
tcflow()	(in	module	termios)
tcflush()	(in	module	termios)
tcgetattr()	(in	module	termios)
tcgetpgrp()	(in	module	os)
Tcl()	(in	module	Tkinter)
TCP_*	(in	module	socket)
tcsendbreak()	(in	module	termios)
tcsetattr()	(in	module	termios)
tcsetpgrp()	(in	module	os)
tearDown()	(TestCase	method)

tix_filedialog()	(tixCommand	method)
tix_getbitmap()	(tixCommand	method)
tix_getimage()	(tixCommand	method)
TIX_LIBRARY	(environment	variable)
tix_option_get()	(tixCommand	method)
tix_resetoptions()	(tixCommand
method)
tixCommand	(class	in	Tix)
Tk
Tk	(class	in	Tkinter)
Tk	Option	Data	Types
Tkinter
Tkinter	(standard	module)
TList	(class	in	Tix)
TMP	(environment	variable),	[Link]
TMP_MAX	(in	module	os)
TMPDIR	(environment	variable),
[Link]
tmpfile()	(in	module	os)
tmpnam()	(in	module	os)
to_eng_string()	(Context	method)
to_eng_string()	(Decimal	method)
to_integral()	(Context	method)
to_integral()	(Decimal	method)
to_sci_string()	(Context	method)
to_splittable()	(Charset	method)
ToASCII()	(in	module	encodings.idna)
tobuf()	(TarInfo	method)
tochild	(Popen4	attribute)
today()	(date	method)
today()	(datetime	method)
tofile()	(array	method)
togglepause()	(CD	player	method)
tok_name	(in	module	token)

tee()	(in	module	itertools)
tell()	(aifc	method),	[Link]
tell()	(AU_read	method)
tell()	(AU_write	method)
tell()	(BZ2File	method)
tell()	(Chunk	method)
tell()	(file	method)
tell()	(MultiFile	method)
tell()	(Queue	method)
tell()	(Wave_read	method)
tell()	(Wave_write	method)
Telnet	(class	in	telnetlib)
telnetlib	(standard	module)
TEMP	(environment	variable)
tempdir	(in	module	tempfile)
tempfile	(standard	module)
Template	(class	in	pipes)
Template	(class	in	string)
template	(in	module	tempfile)
template	(string	attribute)
tempnam()	(in	module	os)
temporary

file
file	name

TemporaryFile()	(in	module	tempfile)
termattrs()	(in	module	curses)
termios	(built-in	module)
termname()	(in	module	curses)
test	(DocTestFailure	attribute)
test()	(in	module	cgi)
test()	(mutex	method)
test	(standard	module)
test	(UnexpectedException	attribute)
test.test_support	(standard	module)
testandset()	(mutex	method)
TestCase	(class	in	unittest)
TestFailed
testfile()	(in	module	doctest)
TESTFN	(in	module	test.test_support)

token	(shlex	attribute)
token	(standard	module)
tokeneater()	(in	module	tabnanny)
tokenize()	(in	module	tokenize)
tokenize	(standard	module)
tolist()	(array	method)
tolist()	(AST	method)
tomono()	(in	module	audioop)
toordinal()	(date	method)
toordinal()	(datetime	method)
top()	(POP3_SSL	method)
top()	(Textbox	method)
top_panel()	(in	module	curses.panel)
toprettyxml()	(Node	method)
tostereo()	(in	module	audioop)
tostring()	(array	method)
totuple()	(AST	method)
touchline()	(window	method)
touchwin()	(window	method)
tounicode()	(array	method)
ToUnicode()	(in	module
encodings.idna)
tovideo()	(in	module	imageop)
toxml()	(Node	method)
tparm()	(in	module	curses)
trace()	(in	module	inspect)
trace	function,	[Link]
traceback	(standard	module)
traceback	object,	[Link]
tracebacklimit	(in	module	sys)
tracebacks

in	CGI	scripts
TracebackType	(in	module	types)
tracer()	(in	module	turtle)
transfercmd()	(FTP	method)
translate()	(in	module	string)
translate()	(string	method)
translate_references()	(XMLParser
method)

TestLoader	(class	in	unittest)
testMethodPrefix	(TestLoader	attribute)
testmod()	(in	module	doctest)
tests	(in	module	imghdr)
TestSkipped
testsource()	(in	module	doctest)
testsRun	(TestResult	attribute)
TestSuite	(class	in	unittest)
testzip()	(ZipFile	method)
Textbox	(class	in	curses.textpad)
textdomain()	(in	module	gettext)
TextTestRunner	(class	in	unittest)
textwrap	(standard	module)
TextWrapper	(class	in	textwrap)
THOUSEP	(in	module	locale)
thread	(built-in	module)
Thread	(class	in	threading),	[Link]
thread()	(IMAP4_stream	method)
threading	(standard	module)
threads

IRIX
POSIX

tie()	(in	module	fl)
tigetflag()	(in	module	curses)
tigetnum()	(in	module	curses)
tigetstr()	(in	module	curses)
time	(built-in	module)
time	(class	in	datetime),	[Link]
time()	(datetime	method)
time()	(in	module	time)
Time2Internaldate()	(in	module
imaplib)
timedelta	(class	in	datetime),	[Link]
TimedRotatingFileHandler	(class	in
logging)
timegm()	(in	module	calendar)
timeit	(standard	module)
timeit()	(Timer	method)
timeout

translation()	(in	module	gettext)
Tree	(class	in	Tix)
True,	[Link]
true
True	(built-in	warning)
truediv()	(in	module	operator)
truncate()	(file	method)
truth

value
truth()	(in	module	operator)
try	statement
ttob()	(in	module	imgfile)
ttob()	(in	module	rgbimg)
tty

I/O	control
tty	(standard	module)
ttyname()	(in	module	os)
tuple()	(built-in	function)
tuple	object
tuple2ast()	(in	module	parser)
TupleType	(in	module	types)
turnoff_sigfpe()	(in	module	fpectl)
turnon_sigfpe()	(in	module	fpectl)
turtle	(standard	module)
Tutt,	Bill
type

Boolean
operations	on	dictionary
operations	on	list

type()	(built-in	function),	[Link],	[Link]
type	(TarInfo	attribute)
type	object
typeahead()	(in	module	curses)
typecode	(array	attribute)
typed_subpart_iterator()	(in	module
email.Iterators)
TypeError
types

built-in,	[Link]

timeout()	(window	method)
Timer	(class	in	threading),	[Link]
Timer	(class	in	timeit)
times()	(in	module	os)
timetuple()	(date	method)
timetuple()	(datetime	method)
timetz()	(datetime	method)
timezone	(in	module	time)
title()	(string	method)
Tix
Tix	(class	in	Tix)
Tix	(standard	module)
tix_addbitmapdir()	(tixCommand
method)
tix_cget()	(tixCommand	method)
tix_configure()	(tixCommand	method)

mutable	sequence
operations	on	integer
operations	on	mapping
operations	on	mutable	sequence
operations	on	numeric
operations	on	sequence,	[Link]

types	(standard	module),	[Link],	[Link]
types_map	(in	module	mimetypes),
[Link]
TypeType	(in	module	types)
TZ	(environment	variable),	[Link],
[Link],	[Link],	[Link],	[Link]
tzinfo	(class	in	datetime)
tzinfo	(datetime	attribute)
tzinfo	(time	attribute)
tzname()	(datetime	method)
tzname	(in	module	time)
tzname()	(time	method),	[Link]
tzset()	(in	module	time)

U

U	(in	module	re)
u-LAW,	[Link],	[Link],	[Link]
ugettext()	(GNUTranslations	method)
ugettext()	(NullTranslations	method)
uid()	(IMAP4_stream	method)
uid	(TarInfo	attribute)
uidl()	(POP3_SSL	method)
ulaw2lin()	(in	module	audioop)
umask()	(in	module	os)
uname()	(in	module	os)
uname()	(in	module	platform)
uname	(TarInfo	attribute)
UnboundLocalError
UnboundMethodType	(in	module
types)
unbuffered	I/O
UNC	paths

and	os.makedirs()
unconsumed_tail	(Queue	attribute)
unctrl()	(in	module	curses)
unctrl()	(in	module	curses.ascii)
Underflow	(class	in	decimal)
undoc_header	(Cmd	attribute)
unescape()	(in	module	xml.sax.saxutils)
UnexpectedException	(exception	in
doctest)
unfreeze_form()	(form	method)
unfreeze_object()	(FORMS	object
method)
ungetch()	(in	module	curses)
ungetch()	(in	module	msvcrt)
ungetmouse()	(in	module	curses)
ungettext()	(GNUTranslations	method)
ungettext()	(NullTranslations	method)

unpack_list()	(Unpacker	method)
unpack_opaque()	(Unpacker	method)
unpack_string()	(Unpacker	method)
Unpacker	(class	in	xdrlib)
unparsedEntityDecl()	(DTDHandler
method)
UnparsedEntityDeclHandler()
(xmlparser	method)
Unpickler	(class	in	pickle)
UnpicklingError
unqdevice()	(in	module	fl)
unquote()	(in	module	email.Utils)
unquote()	(in	module	rfc822)
unquote()	(in	module	urllib)
unquote_plus()	(in	module	urllib)
unregister()	(LogRecord	method)
unregister_dialect()	(in	module	csv)
unsubscribe()	(IMAP4_stream	method)
untouchwin()	(window	method)
unused_data	(Queue	attribute)
up()	(in	module	turtle)
update()	(dictionary	method)
update()	(hmac	method)
update()	(md5	method)
update()	(sha	method)
update_panels()	(in	module
curses.panel)
upper()	(in	module	string)
upper()	(string	method)

unhexlify()	(in	module	binascii)
unichr()	(built-in	function)
Unicode,	[Link]
database
unicode()	(built-in	function)
UNICODE	(in	module	re)
Unicode	object
unicodedata	(standard	module)
UnicodeDecodeError
UnicodeEncodeError
UnicodeError
UnicodeTranslateError
UnicodeType	(in	module	types)
unidata_version	(in	module
unicodedata)
unified_diff()	(in	module	difflib)
uniform()	(in	module	random)
uniform()	(in	module	whrandom)
UnimplementedFileMode
unittest	(standard	module)
Unix

file	control
I/O	control

unixfrom	(AddressList	attribute)
UnixMailbox	(class	in	mailbox)
unknown_charref()	(SGMLParser
method)
unknown_charref()	(XMLParser
method)
unknown_endtag()	(SGMLParser
method)
unknown_endtag()	(XMLParser
method)
unknown_entityref()	(SGMLParser
method)
unknown_entityref()	(XMLParser
method)
unknown_open()	(BaseHandler
method)

uppercase	(in	module	string)
urandom()	(in	module	os)
URL,	[Link],	[Link],	[Link],	[Link]
parsing
relative
url	(ServerProxy	attribute)
url2pathname()	(in	module	urllib)
urlcleanup()	(in	module	urllib)
urldefrag()	(in	module	urlparse)
urlencode()	(in	module	urllib)
URLError
urljoin()	(in	module	urlparse)
urllib	(standard	module),	[Link]
urllib2	(standard	module)
urlopen()	(in	module	urllib)
urlopen()	(in	module	urllib2)
URLopener	(class	in	urllib)
urlparse()	(in	module	urlparse)
urlparse	(standard	module),	[Link]
urlretrieve()	(in	module	urllib)
urlsafe_b64decode()	(in	module
base64)
urlsafe_b64encode()	(in	module
base64)
urlsplit()	(in	module	urlparse)
urlunparse()	(in	module	urlparse)
urlunsplit()	(in	module	urlparse)
use_default_colors()	(in	module	curses)
use_env()	(in	module	curses)
use_rawinput	(Cmd	attribute)
UseForeignDTD()	(xmlparser	method)
user

configuration	file
effective	id
id
id,	setting

USER	(environment	variable)
user()	(POP3_SSL	method)
user	(standard	module)

unknown_open()	(HTTPErrorProcessor
method)
unknown_open()	(UnknownHandler
method)
unknown_starttag()	(SGMLParser
method)
unknown_starttag()	(XMLParser
method)
UnknownHandler	(class	in	urllib2)
UnknownProtocol
UnknownTransferEncoding
unlink()	(in	module	os)
unlink()	(Node	method)
unlock()	(mutex	method)
unmimify()	(in	module	mimify)
unpack()	(in	module	struct)
unpack_array()	(Unpacker	method)
unpack_bytes()	(Unpacker	method)
unpack_double()	(Unpacker	method)
unpack_farray()	(Unpacker	method)
unpack_float()	(Unpacker	method)
unpack_fopaque()	(Unpacker	method)
unpack_fstring()	(Unpacker	method)

UserDict	(class	in	UserDict)
UserDict	(standard	module)
UserList	(class	in	UserList)
UserList	(standard	module)
USERNAME	(environment	variable)
userptr()	(Textbox	method)
UserString	(class	in	UserString)
UserString	(standard	module)
UserWarning
UTC
utcfromtimestamp()	(datetime	method)
utcnow()	(datetime	method)
utcoffset()	(datetime	method)
utcoffset()	(time	method),	[Link]
utctimetuple()	(datetime	method)
utime()	(in	module	os)
uu	(standard	module),	[Link]

V

value
truth

value	(Cookie	attribute)
value	(Morsel	attribute)
value_decode()	(BaseCookie	method)
value_encode()	(BaseCookie	method)
ValueError
values

Boolean
values()	(dictionary	method)
values()	(Message	method)
varray()	(in	module	gl)
vars()	(built-in	function)
vbar	(ScrolledText	attribute)
VERBOSE	(in	module	re)
verbose	(in	module	tabnanny)
verbose	(in	module	test.test_support)
verify()	(SMTP	method)

verify_request()	(SocketServer
protocol)
version	(Cookie	attribute)
version	(in	module	curses)
version	(in	module	httplib)
version	(in	module	marshal)
version()	(in	module	platform)
version	(in	module	sys)
version	(URLopener	attribute)
version_info	(in	module	sys)
version_string()
(BaseHTTPRequestHandler	method)
vline()	(window	method)
vnarray()	(in	module	gl)
voidcmd()	(FTP	method)
volume	(ZipInfo	attribute)
vonmisesvariate()	(in	module	random)

W

W_OK	(in	module	os)
wait()	(Condition	method)
wait()	(Event	method)
wait()	(in	module	os)
wait()	(Popen	method)
wait()	(Popen4	method)
waitpid()	(in	module	os)
walk()	(in	module	compiler)
walk()	(in	module	compiler.visitor)
walk()	(in	module	os)
walk()	(in	module	os.path)
walk()	(Message	method)
want	(Example	attribute)
warn()	(in	module	warnings)
warn_explicit()	(in	module	warnings)
Warning
warning()	(ErrorHandler	method)
warning()	(in	module	logging)
warning()	(Textbox	method)
warnings
warnings	(standard	module)
warnoptions	(in	module	sys)
wasSuccessful()	(TestResult	method)
wave	(standard	module)
WCONTINUED	(in	module	os)
WCOREDUMP()	(in	module	os)
WeakKeyDictionary	(class	in	weakref)
weakref	(extension	module)
WeakValueDictionary	(class	in
weakref)
webbrowser	(standard	module)
weekday()	(date	method)
weekday()	(datetime	method)
weekday()	(in	module	calendar)

window()	(Textbox	method)
window	manager	(widgets)
Windows	ini	file
WindowsError
WinSock
winsound	(built-in	module)
winver	(in	module	sys)
WNOHANG	(in	module	os)
wordchars	(shlex	attribute)
World	Wide	Web,	[Link],	[Link],
[Link]
wrap()	(in	module	textwrap)
wrap()	(TextWrapper	method)
wrapper()	(in	module	curses.wrapper)
writable()	(async_chat	method)
writable()	(dispatcher	method)
write()	(array	method)
write()	(audio	device	method),	[Link]
write()	(BZ2File	method)
write()	(file	method)
write()	(Generator	method)
write()	(in	module	imgfile)
write()	(in	module	os)
write()	(in	module	turtle)
write()	(InteractiveConsole	method)
write()	(LogRecord	method)
write()	(Queue	method)
write()	(SafeConfigParser	method)
write()	(StreamWriter	method)
write()	(Telnet	method)
write()	(ZipFile	method)
write_byte()	(Queue	method)
write_history_file()	(in	module
readline)

weibullvariate()	(in	module	random)
WEXITSTATUS()	(in	module	os)
wfile	(BaseHTTPRequestHandler
attribute)
what()	(in	module	imghdr)
what()	(in	module	sndhdr)
whathdr()	(in	module	sndhdr)
whichdb()	(in	module	whichdb)
whichdb	(standard	module)
while	statement
whitespace	(in	module	string)
whitespace	(shlex	attribute)
whitespace_split	(shlex	attribute)
whrandom	(standard	module)
whseed()	(in	module	random)
WichmannHill	(class	in	random)
width()	(in	module	turtle)
width	(TextWrapper	attribute)
WIFCONTINUED()	(in	module	os)
WIFEXITED()	(in	module	os)
WIFSIGNALED()	(in	module	os)
WIFSTOPPED()	(in	module	os)
Wimp$ScrapDir	(environment
variable)
win32_ver()	(in	module	platform)

writeall()	(audio	device	method)
writeframes()	(aifc	method)
writeframes()	(AU_write	method)
writeframes()	(Wave_write	method)
writeframesraw()	(aifc	method)
writeframesraw()	(AU_write	method)
writeframesraw()	(Wave_write	method)
writelines()	(BZ2File	method)
writelines()	(file	method)
writelines()	(StreamWriter	method)
writepy()	(PyZipFile	method)
writer	(formatter	attribute)
writer()	(in	module	csv)
writerow()	(csv	writer	method)
writerows()	(csv	writer	method)
writesamps()	(audio	port	method)
writestr()	(ZipFile	method)
writexml()	(Node	method)
WrongDocumentErr
WSTOPSIG()	(in	module	os)
WTERMSIG()	(in	module	os)
WUNTRACED	(in	module	os)
WWW,	[Link],	[Link],	[Link]
server,	[Link]

X

X	(in	module	re)
X_OK	(in	module	os)
xatom()	(IMAP4_stream	method)
XDR,	[Link]
xdrlib	(standard	module)
xgtitle()	(NNTPDataError	method)
xhdr()	(NNTPDataError	method)
XHTML
XHTML_NAMESPACE	(in	module
xml.dom)
XML
namespaces
xml.dom	(standard	module)
xml.dom.minidom	(standard	module)
xml.dom.pulldom	(standard	module)
xml.parsers.expat	(standard	module)
xml.sax	(standard	module)
xml.sax.handler	(standard	module)
xml.sax.saxutils	(standard	module)
xml.sax.xmlreader	(standard	module)

XML_NAMESPACE	(in	module
xml.dom)
xmlcharrefreplace_errors_errors()	(in
module	codecs)
XmlDeclHandler()	(xmlparser	method)
XMLFilterBase	(class	in
xml.sax.saxutils)
XMLGenerator	(class	in
xml.sax.saxutils)
xmllib	(standard	module)
XMLNS_NAMESPACE	(in	module
xml.dom)
XMLParser	(class	in	xmllib)
XMLParserType	(in	module
xml.parsers.expat)
XMLReader	(class	in
xml.sax.xmlreader)
xmlrpclib	(standard	module)
xor()	(in	module	operator)
xover()	(NNTPDataError	method)
xpath()	(NNTPDataError	method)
xrange()	(built-in	function),	[Link],
[Link]
xrange	object,	[Link]
XRangeType	(in	module	types)
xreadlines()	(BZ2File	method)
xreadlines()	(file	method)

Y

Y2K
year	(date	attribute)
year	(datetime	attribute)
Year	2000

Year	2038
YESEXPR	(in	module	locale)
yiq_to_rgb()	(in	module	colorsys)

Z

ZeroDivisionError
zfill()	(in	module	string)
zfill()	(string	method)
zip()	(built-in	function)
ZIP_DEFLATED	(in	module	zipfile)

ZIP_STORED	(in	module	zipfile)
ZipFile	(class	in	zipfile),	[Link]
zipfile	(standard	module)
ZipInfo	(class	in	zipfile)
zlib	(built-in	module)

Python	Library	Reference
Previous:	Module	Index	Up:	Python	Library	Reference	Next:	About	this
document	...

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Up:	Python	Documentation	Index	Next:	Front	Matter

Python	Reference	Manual
Guido	van	Rossum	

Fred	L.	Drake,	Jr.,	editor
Python	Software	Foundation	
Email:	docs@python.org

Release	2.4
29	November	2004

Front	Matter
Contents
1.	Introduction

1.1	Notation
2.	Lexical	analysis

2.1	Line	structure
2.1.1	Logical	lines
2.1.2	Physical	lines
2.1.3	Comments
2.1.4	Encoding	declarations
2.1.5	Explicit	line	joining
2.1.6	Implicit	line	joining
2.1.7	Blank	lines
2.1.8	Indentation
2.1.9	Whitespace	between	tokens

2.2	Other	tokens
2.3	Identifiers	and	keywords

2.3.1	Keywords
2.3.2	Reserved	classes	of	identifiers

2.4	Literals
2.4.1	String	literals
2.4.2	String	literal	concatenation

2.4.3	Numeric	literals
2.4.4	Integer	and	long	integer	literals
2.4.5	Floating	point	literals
2.4.6	Imaginary	literals

2.5	Operators
2.6	Delimiters

3.	Data	model
3.1	Objects,	values	and	types
3.2	The	standard	type	hierarchy
3.3	Special	method	names

3.3.1	Basic	customization
3.3.2	Customizing	attribute	access
3.3.3	Customizing	class	creation
3.3.4	Emulating	callable	objects
3.3.5	Emulating	container	types
3.3.6	Additional	methods	for	emulation	of	sequence	types
3.3.7	Emulating	numeric	types
3.3.8	Coercion	rules

4.	Execution	model
4.1	Naming	and	binding

4.1.1	Interaction	with	dynamic	features
4.2	Exceptions

5.	Expressions
5.1	Arithmetic	conversions
5.2	Atoms

5.2.1	Identifiers	(Names)
5.2.2	Literals
5.2.3	Parenthesized	forms
5.2.4	List	displays
5.2.5	Generator	expressions
5.2.6	Dictionary	displays
5.2.7	String	conversions

5.3	Primaries
5.3.1	Attribute	references
5.3.2	Subscriptions
5.3.3	Slicings
5.3.4	Calls

5.4	The	power	operator
5.5	Unary	arithmetic	operations

5.6	Binary	arithmetic	operations
5.7	Shifting	operations
5.8	Binary	bit-wise	operations
5.9	Comparisons
5.10	Boolean	operations
5.11	Lambdas
5.12	Expression	lists
5.13	Evaluation	order
5.14	Summary

6.	Simple	statements
6.1	Expression	statements
6.2	Assert	statements
6.3	Assignment	statements

6.3.1	Augmented	assignment	statements
6.4	The	pass	statement
6.5	The	del	statement
6.6	The	print	statement
6.7	The	return	statement
6.8	The	yield	statement
6.9	The	raise	statement
6.10	The	break	statement
6.11	The	continue	statement
6.12	The	import	statement

6.12.1	Future	statements
6.13	The	global	statement
6.14	The	exec	statement

7.	Compound	statements
7.1	The	if	statement
7.2	The	while	statement
7.3	The	for	statement
7.4	The	try	statement
7.5	Function	definitions
7.6	Class	definitions

8.	Top-level	components
8.1	Complete	Python	programs
8.2	File	input
8.3	Interactive	input
8.4	Expression	input

A.	History	and	License
A.1	History	of	the	software
A.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
A.3	Licenses	and	Acknowledgements	for	Incorporated	Software

A.3.1	Mersenne	Twister
A.3.2	Sockets
A.3.3	Floating	point	exception	control
A.3.4	MD5	message	digest	algorithm
A.3.5	Asynchronous	socket	services
A.3.6	Cookie	management
A.3.7	Profiling
A.3.8	Execution	tracing
A.3.9	UUencode	and	UUdecode	functions
A.3.10	XML	Remote	Procedure	Calls

Index
About	this	document	...

Python	Reference	Manual
Up:	Python	Documentation	Index	Next:	Front	Matter

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Python	Reference	Manual	Up:	Python	Reference	Manual	Next:
Contents

Front	Matter
Copyright	©	2001-2004	Python	Software	Foundation.	All	rights	reserved.

Copyright	©	2000	BeOpen.com.	All	rights	reserved.

Copyright	©	1995-2000	Corporation	for	National	Research	Initiatives.	All	rights
reserved.

Copyright	©	1991-1995	Stichting	Mathematisch	Centrum.	All	rights	reserved.

See	the	end	of	this	document	for	complete	license	and	permissions	information.

Abstract:

Python	is	an	interpreted,	object-oriented,	high-level	programming	language	with
dynamic	semantics.	Its	high-level	built	in	data	structures,	combined	with
dynamic	typing	and	dynamic	binding,	make	it	very	attractive	for	rapid
application	development,	as	well	as	for	use	as	a	scripting	or	glue	language	to
connect	existing	components	together.	Python's	simple,	easy	to	learn	syntax
emphasizes	readability	and	therefore	reduces	the	cost	of	program	maintenance.
Python	supports	modules	and	packages,	which	encourages	program	modularity
and	code	reuse.	The	Python	interpreter	and	the	extensive	standard	library	are
available	in	source	or	binary	form	without	charge	for	all	major	platforms,	and
can	be	freely	distributed.

This	reference	manual	describes	the	syntax	and	``core	semantics''	of	the
language.	It	is	terse,	but	attempts	to	be	exact	and	complete.	The	semantics	of
non-essential	built-in	object	types	and	of	the	built-in	functions	and	modules	are
described	in	the	Python	Library	Reference.	For	an	informal	introduction	to	the
language,	see	the	Python	Tutorial.	For	C	or	C++	programmers,	two	additional
manuals	exist:	Extending	and	Embedding	the	Python	Interpreter	describes	the
high-level	picture	of	how	to	write	a	Python	extension	module,	and	the	Python/C
API	Reference	Manual	describes	the	interfaces	available	to	C/C++	programmers
in	detail.

Python	Reference	Manual
Previous:	Python	Reference	Manual	Up:	Python	Reference	Manual	Next:
Contents

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Contents	Up:	Python	Reference	Manual	Next:	1.1	Notation

1.	Introduction
This	reference	manual	describes	the	Python	programming	language.	It	is	not
intended	as	a	tutorial.

While	I	am	trying	to	be	as	precise	as	possible,	I	chose	to	use	English	rather	than
formal	specifications	for	everything	except	syntax	and	lexical	analysis.	This
should	make	the	document	more	understandable	to	the	average	reader,	but	will
leave	room	for	ambiguities.	Consequently,	if	you	were	coming	from	Mars	and
tried	to	re-implement	Python	from	this	document	alone,	you	might	have	to	guess
things	and	in	fact	you	would	probably	end	up	implementing	quite	a	different
language.	On	the	other	hand,	if	you	are	using	Python	and	wonder	what	the
precise	rules	about	a	particular	area	of	the	language	are,	you	should	definitely	be
able	to	find	them	here.	If	you	would	like	to	see	a	more	formal	definition	of	the
language,	maybe	you	could	volunteer	your	time	--	or	invent	a	cloning	machine	:-
).

It	is	dangerous	to	add	too	many	implementation	details	to	a	language	reference
document	--	the	implementation	may	change,	and	other	implementations	of	the
same	language	may	work	differently.	On	the	other	hand,	there	is	currently	only
one	Python	implementation	in	widespread	use	(although	a	second	one	now
exists!),	and	its	particular	quirks	are	sometimes	worth	being	mentioned,
especially	where	the	implementation	imposes	additional	limitations.	Therefore,
you'll	find	short	``implementation	notes''	sprinkled	throughout	the	text.

Every	Python	implementation	comes	with	a	number	of	built-in	and	standard
modules.	These	are	not	documented	here,	but	in	the	separate	Python	Library
Reference	document.	A	few	built-in	modules	are	mentioned	when	they	interact	in
a	significant	way	with	the	language	definition.

Subsections

1.1	Notation

Python	Reference	Manual
Previous:	Contents	Up:	Python	Reference	Manual	Next:	1.1	Notation

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.	Introduction	Up:	1.	Introduction	Next:	2.	Lexical	analysis

1.1	Notation
The	descriptions	of	lexical	analysis	and	syntax	use	a	modified	BNF	grammar
notation.	This	uses	the	following	style	of	definition:

name:											lc_letter	(lc_letter	|	"_")*

lc_letter:						"a"..."z"

The	first	line	says	that	a	name	is	an	lc_letter	followed	by	a	sequence	of
zero	or	more	lc_letters	and	underscores.	An	lc_letter	in	turn	is	any	of
the	single	characters	"a"	through	"z".	(This	rule	is	actually	adhered	to	for	the
names	defined	in	lexical	and	grammar	rules	in	this	document.)

Each	rule	begins	with	a	name	(which	is	the	name	defined	by	the	rule)	and	a
colon.	A	vertical	bar	(|)	is	used	to	separate	alternatives;	it	is	the	least	binding
operator	in	this	notation.	A	star	(*)	means	zero	or	more	repetitions	of	the
preceding	item;	likewise,	a	plus	(+)	means	one	or	more	repetitions,	and	a	phrase
enclosed	in	square	brackets	([])	means	zero	or	one	occurrences	(in	other
words,	the	enclosed	phrase	is	optional).	The	*	and	+	operators	bind	as	tightly	as
possible;	parentheses	are	used	for	grouping.	Literal	strings	are	enclosed	in
quotes.	White	space	is	only	meaningful	to	separate	tokens.	Rules	are	normally
contained	on	a	single	line;	rules	with	many	alternatives	may	be	formatted
alternatively	with	each	line	after	the	first	beginning	with	a	vertical	bar.

In	lexical	definitions	(as	the	example	above),	two	more	conventions	are	used:
Two	literal	characters	separated	by	three	dots	mean	a	choice	of	any	single
character	in	the	given	(inclusive)	range	of	ASCII	characters.	A	phrase	between
angular	brackets	(<...>)	gives	an	informal	description	of	the	symbol	defined;
e.g.,	this	could	be	used	to	describe	the	notion	of	`control	character'	if	needed.

Even	though	the	notation	used	is	almost	the	same,	there	is	a	big	difference
between	the	meaning	of	lexical	and	syntactic	definitions:	a	lexical	definition
operates	on	the	individual	characters	of	the	input	source,	while	a	syntax
definition	operates	on	the	stream	of	tokens	generated	by	the	lexical	analysis.	All
uses	of	BNF	in	the	next	chapter	(``Lexical	Analysis'')	are	lexical	definitions;
uses	in	subsequent	chapters	are	syntactic	definitions.

Python	Reference	Manual
Previous:	1.	Introduction	Up:	1.	Introduction	Next:	2.	Lexical	analysis

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.1	Notation	Up:	Python	Reference	Manual	Next:	2.1	Line	structure

2.	Lexical	analysis
A	Python	program	is	read	by	a	parser.	Input	to	the	parser	is	a	stream	of	tokens,
generated	by	the	lexical	analyzer.	This	chapter	describes	how	the	lexical
analyzer	breaks	a	file	into	tokens.

Python	uses	the	7-bit	ASCII	character	set	for	program	text.	New	in	version	2.3:
An	encoding	declaration	can	be	used	to	indicate	that	string	literals	and	comments
use	an	encoding	different	from	ASCII..	For	compatibility	with	older	versions,
Python	only	warns	if	it	finds	8-bit	characters;	those	warnings	should	be	corrected
by	either	declaring	an	explicit	encoding,	or	using	escape	sequences	if	those	bytes
are	binary	data,	instead	of	characters.

The	run-time	character	set	depends	on	the	I/O	devices	connected	to	the	program
but	is	generally	a	superset	of	ASCII.

Future	compatibility	note:	It	may	be	tempting	to	assume	that	the	character	set
for	8-bit	characters	is	ISO	Latin-1	(an	ASCII	superset	that	covers	most	western
languages	that	use	the	Latin	alphabet),	but	it	is	possible	that	in	the	future
Unicode	text	editors	will	become	common.	These	generally	use	the	UTF-8
encoding,	which	is	also	an	ASCII	superset,	but	with	very	different	use	for	the
characters	with	ordinals	128-255.	While	there	is	no	consensus	on	this	subject
yet,	it	is	unwise	to	assume	either	Latin-1	or	UTF-8,	even	though	the	current
implementation	appears	to	favor	Latin-1.	This	applies	both	to	the	source
character	set	and	the	run-time	character	set.

Subsections

2.1	Line	structure
2.1.1	Logical	lines
2.1.2	Physical	lines
2.1.3	Comments
2.1.4	Encoding	declarations
2.1.5	Explicit	line	joining
2.1.6	Implicit	line	joining

2.1.7	Blank	lines
2.1.8	Indentation
2.1.9	Whitespace	between	tokens

2.2	Other	tokens
2.3	Identifiers	and	keywords

2.3.1	Keywords
2.3.2	Reserved	classes	of	identifiers

2.4	Literals
2.4.1	String	literals
2.4.2	String	literal	concatenation
2.4.3	Numeric	literals
2.4.4	Integer	and	long	integer	literals
2.4.5	Floating	point	literals
2.4.6	Imaginary	literals

2.5	Operators
2.6	Delimiters

Python	Reference	Manual
Previous:	1.1	Notation	Up:	Python	Reference	Manual	Next:	2.1	Line	structure

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.	Lexical	analysis	Up:	2.	Lexical	analysis	Next:	2.1.1	Logical	lines

2.1	Line	structure
A	Python	program	is	divided	into	a	number	of	logical	lines.

Subsections

2.1.1	Logical	lines
2.1.2	Physical	lines
2.1.3	Comments
2.1.4	Encoding	declarations
2.1.5	Explicit	line	joining
2.1.6	Implicit	line	joining
2.1.7	Blank	lines
2.1.8	Indentation
2.1.9	Whitespace	between	tokens

Python	Reference	Manual
Previous:	2.	Lexical	analysis	Up:	2.	Lexical	analysis	Next:	2.1.1	Logical	lines

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1	Line	structure	Up:	2.1	Line	structure	Next:	2.1.2	Physical	lines

2.1.1	Logical	lines
The	end	of	a	logical	line	is	represented	by	the	token	NEWLINE.	Statements
cannot	cross	logical	line	boundaries	except	where	NEWLINE	is	allowed	by	the
syntax	(e.g.,	between	statements	in	compound	statements).	A	logical	line	is
constructed	from	one	or	more	physical	lines	by	following	the	explicit	or	implicit
line	joining	rules.

Python	Reference	Manual
Previous:	2.1	Line	structure	Up:	2.1	Line	structure	Next:	2.1.2	Physical	lines

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1.1	Logical	lines	Up:	2.1	Line	structure	Next:	2.1.3	Comments

2.1.2	Physical	lines
A	physical	line	ends	in	whatever	the	current	platform's	convention	is	for
terminating	lines.	On	UNIX,	this	is	the	ASCII	LF	(linefeed)	character.	On
Windows,	it	is	the	ASCII	sequence	CR	LF	(return	followed	by	linefeed).	On
Macintosh,	it	is	the	ASCII	CR	(return)	character.

Python	Reference	Manual
Previous:	2.1.1	Logical	lines	Up:	2.1	Line	structure	Next:	2.1.3	Comments

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1.2	Physical	lines	Up:	2.1	Line	structure	Next:	2.1.4	Encoding
declarations

2.1.3	Comments
A	comment	starts	with	a	hash	character	(#)	that	is	not	part	of	a	string	literal,	and
ends	at	the	end	of	the	physical	line.	A	comment	signifies	the	end	of	the	logical
line	unless	the	implicit	line	joining	rules	are	invoked.	Comments	are	ignored	by
the	syntax;	they	are	not	tokens.

Python	Reference	Manual
Previous:	2.1.2	Physical	lines	Up:	2.1	Line	structure	Next:	2.1.4	Encoding
declarations

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1.3	Comments	Up:	2.1	Line	structure	Next:	2.1.5	Explicit	line
joining

2.1.4	Encoding	declarations
If	a	comment	in	the	first	or	second	line	of	the	Python	script	matches	the	regular
expression	coding[=:]\s*([-\w.]+),	this	comment	is	processed	as	an
encoding	declaration;	the	first	group	of	this	expression	names	the	encoding	of
the	source	code	file.	The	recommended	forms	of	this	expression	are

#	-*-	coding:	<encoding-name>	-*-

which	is	recognized	also	by	GNU	Emacs,	and

#	vim:fileencoding=<encoding-name>

which	is	recognized	by	Bram	Moolenaar's	VIM.	In	addition,	if	the	first	bytes	of
the	file	are	the	UTF-8	byte-order	mark	('\xef\xbb\xbf'),	the	declared	file
encoding	is	UTF-8	(this	is	supported,	among	others,	by	Microsoft's	notepad).

If	an	encoding	is	declared,	the	encoding	name	must	be	recognized	by	Python.
The	encoding	is	used	for	all	lexical	analysis,	in	particular	to	find	the	end	of	a
string,	and	to	interpret	the	contents	of	Unicode	literals.	String	literals	are
converted	to	Unicode	for	syntactical	analysis,	then	converted	back	to	their
original	encoding	before	interpretation	starts.	The	encoding	declaration	must
appear	on	a	line	of	its	own.

Python	Reference	Manual
Previous:	2.1.3	Comments	Up:	2.1	Line	structure	Next:	2.1.5	Explicit	line
joining

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1.4	Encoding	declarations	Up:	2.1	Line	structure	Next:	2.1.6
Implicit	line	joining

2.1.5	Explicit	line	joining
Two	or	more	physical	lines	may	be	joined	into	logical	lines	using	backslash
characters	(\),	as	follows:	when	a	physical	line	ends	in	a	backslash	that	is	not
part	of	a	string	literal	or	comment,	it	is	joined	with	the	following	forming	a
single	logical	line,	deleting	the	backslash	and	the	following	end-of-line
character.	For	example:

if	1900	<	year	<	2100	and	1	<=	month	<=	12	\

			and	1	<=	day	<=	31	and	0	<=	hour	<	24	\

			and	0	<=	minute	<	60	and	0	<=	second	<	60:			#	Looks	like	a	valid	date

								return	1

A	line	ending	in	a	backslash	cannot	carry	a	comment.	A	backslash	does	not
continue	a	comment.	A	backslash	does	not	continue	a	token	except	for	string
literals	(i.e.,	tokens	other	than	string	literals	cannot	be	split	across	physical	lines
using	a	backslash).	A	backslash	is	illegal	elsewhere	on	a	line	outside	a	string
literal.

Python	Reference	Manual
Previous:	2.1.4	Encoding	declarations	Up:	2.1	Line	structure	Next:	2.1.6
Implicit	line	joining

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1.5	Explicit	line	joining	Up:	2.1	Line	structure	Next:	2.1.7	Blank
lines

2.1.6	Implicit	line	joining
Expressions	in	parentheses,	square	brackets	or	curly	braces	can	be	split	over
more	than	one	physical	line	without	using	backslashes.	For	example:

month_names	=	['Januari',	'Februari',	'Maart',						#	These	are	the

															'April',			'Mei',						'Juni',							#	Dutch	names

															'Juli',				'Augustus',	'September',		#	for	the	months

															'Oktober',	'November',	'December']			#	of	the	year

Implicitly	continued	lines	can	carry	comments.	The	indentation	of	the
continuation	lines	is	not	important.	Blank	continuation	lines	are	allowed.	There
is	no	NEWLINE	token	between	implicit	continuation	lines.	Implicitly	continued
lines	can	also	occur	within	triple-quoted	strings	(see	below);	in	that	case	they
cannot	carry	comments.

Python	Reference	Manual
Previous:	2.1.5	Explicit	line	joining	Up:	2.1	Line	structure	Next:	2.1.7	Blank
lines

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1.6	Implicit	line	joining	Up:	2.1	Line	structure	Next:	2.1.8
Indentation

2.1.7	Blank	lines
A	logical	line	that	contains	only	spaces,	tabs,	formfeeds	and	possibly	a	comment,
is	ignored	(i.e.,	no	NEWLINE	token	is	generated).	During	interactive	input	of
statements,	handling	of	a	blank	line	may	differ	depending	on	the	implementation
of	the	read-eval-print	loop.	In	the	standard	implementation,	an	entirely	blank
logical	line	(i.e.	one	containing	not	even	whitespace	or	a	comment)	terminates	a
multi-line	statement.

Python	Reference	Manual
Previous:	2.1.6	Implicit	line	joining	Up:	2.1	Line	structure	Next:	2.1.8
Indentation

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1.7	Blank	lines	Up:	2.1	Line	structure	Next:	2.1.9	Whitespace
between	tokens

2.1.8	Indentation
Leading	whitespace	(spaces	and	tabs)	at	the	beginning	of	a	logical	line	is	used	to
compute	the	indentation	level	of	the	line,	which	in	turn	is	used	to	determine	the
grouping	of	statements.

First,	tabs	are	replaced	(from	left	to	right)	by	one	to	eight	spaces	such	that	the
total	number	of	characters	up	to	and	including	the	replacement	is	a	multiple	of
eight	(this	is	intended	to	be	the	same	rule	as	used	by	UNIX).	The	total	number	of
spaces	preceding	the	first	non-blank	character	then	determines	the	line's
indentation.	Indentation	cannot	be	split	over	multiple	physical	lines	using
backslashes;	the	whitespace	up	to	the	first	backslash	determines	the	indentation.

Cross-platform	compatibility	note:	because	of	the	nature	of	text	editors	on
non-UNIX	platforms,	it	is	unwise	to	use	a	mixture	of	spaces	and	tabs	for	the
indentation	in	a	single	source	file.	It	should	also	be	noted	that	different	platforms
may	explicitly	limit	the	maximum	indentation	level.

A	formfeed	character	may	be	present	at	the	start	of	the	line;	it	will	be	ignored	for
the	indentation	calculations	above.	Formfeed	characters	occurring	elsewhere	in
the	leading	whitespace	have	an	undefined	effect	(for	instance,	they	may	reset	the
space	count	to	zero).

The	indentation	levels	of	consecutive	lines	are	used	to	generate	INDENT	and
DEDENT	tokens,	using	a	stack,	as	follows.

Before	the	first	line	of	the	file	is	read,	a	single	zero	is	pushed	on	the	stack;	this
will	never	be	popped	off	again.	The	numbers	pushed	on	the	stack	will	always	be
strictly	increasing	from	bottom	to	top.	At	the	beginning	of	each	logical	line,	the
line's	indentation	level	is	compared	to	the	top	of	the	stack.	If	it	is	equal,	nothing
happens.	If	it	is	larger,	it	is	pushed	on	the	stack,	and	one	INDENT	token	is
generated.	If	it	is	smaller,	it	must	be	one	of	the	numbers	occurring	on	the	stack;
all	numbers	on	the	stack	that	are	larger	are	popped	off,	and	for	each	number
popped	off	a	DEDENT	token	is	generated.	At	the	end	of	the	file,	a	DEDENT
token	is	generated	for	each	number	remaining	on	the	stack	that	is	larger	than
zero.

Here	is	an	example	of	a	correctly	(though	confusingly)	indented	piece	of	Python

code:

def	perm(l):

								#	Compute	the	list	of	all	permutations	of	l

				if	len(l)	<=	1:

																		return	[l]

				r	=	[]

				for	i	in	range(len(l)):

													s	=	l[:i]	+	l[i+1:]

													p	=	perm(s)

													for	x	in	p:

														r.append(l[i:i+1]	+	x)

				return	r

The	following	example	shows	various	indentation	errors:

	def	perm(l):																							#	error:	first	line	indented

for	i	in	range(len(l)):													#	error:	not	indented

				s	=	l[:i]	+	l[i+1:]

								p	=	perm(l[:i]	+	l[i+1:])			#	error:	unexpected	indent

								for	x	in	p:

																r.append(l[i:i+1]	+	x)

												return	r																#	error:	inconsistent	dedent

(Actually,	the	first	three	errors	are	detected	by	the	parser;	only	the	last	error	is
found	by	the	lexical	analyzer	--	the	indentation	of	return	r	does	not	match	a
level	popped	off	the	stack.)

Python	Reference	Manual
Previous:	2.1.7	Blank	lines	Up:	2.1	Line	structure	Next:	2.1.9	Whitespace
between	tokens

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1.8	Indentation	Up:	2.1	Line	structure	Next:	2.2	Other	tokens

2.1.9	Whitespace	between	tokens
Except	at	the	beginning	of	a	logical	line	or	in	string	literals,	the	whitespace
characters	space,	tab	and	formfeed	can	be	used	interchangeably	to	separate
tokens.	Whitespace	is	needed	between	two	tokens	only	if	their	concatenation
could	otherwise	be	interpreted	as	a	different	token	(e.g.,	ab	is	one	token,	but	a	b
is	two	tokens).

Python	Reference	Manual
Previous:	2.1.8	Indentation	Up:	2.1	Line	structure	Next:	2.2	Other	tokens

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1.9	Whitespace	between	tokens	Up:	2.	Lexical	analysis	Next:	2.3
Identifiers	and	keywords

2.2	Other	tokens
Besides	NEWLINE,	INDENT	and	DEDENT,	the	following	categories	of	tokens
exist:	identifiers,	keywords,	literals,	operators,	and	delimiters.	Whitespace
characters	(other	than	line	terminators,	discussed	earlier)	are	not	tokens,	but
serve	to	delimit	tokens.	Where	ambiguity	exists,	a	token	comprises	the	longest
possible	string	that	forms	a	legal	token,	when	read	from	left	to	right.

Python	Reference	Manual
Previous:	2.1.9	Whitespace	between	tokens	Up:	2.	Lexical	analysis	Next:	2.3
Identifiers	and	keywords

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.2	Other	tokens	Up:	2.	Lexical	analysis	Next:	2.3.1	Keywords

2.3	Identifiers	and	keywords
Identifiers	(also	referred	to	as	names)	are	described	by	the	following	lexical
definitions:

identifier ::= (letter|"_")	(letter	|	digit

|	"_")*

letter ::= lowercase	|	uppercase

lowercase ::= "a"..."z"

uppercase ::= "A"..."Z"

digit ::= "0"..."9"

Download	entire	grammar	as	text.

Identifiers	are	unlimited	in	length.	Case	is	significant.

Subsections

2.3.1	Keywords
2.3.2	Reserved	classes	of	identifiers

Python	Reference	Manual
Previous:	2.2	Other	tokens	Up:	2.	Lexical	analysis	Next:	2.3.1	Keywords

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3	Identifiers	and	keywords	Up:	2.3	Identifiers	and	keywords	Next:
2.3.2	Reserved	classes	of

2.3.1	Keywords
The	following	identifiers	are	used	as	reserved	words,	or	keywords	of	the
language,	and	cannot	be	used	as	ordinary	identifiers.	They	must	be	spelled
exactly	as	written	here:

and							del							for							is								raise				

assert				elif						from						lambda				return			

break					else						global				not							try						

class					except				if								or								while				

continue		exec						import				pass						yield				

def							finally			in								print

Note	that	although	the	identifier	as	can	be	used	as	part	of	the	syntax	of	import
statements,	it	is	not	currently	a	reserved	word.

In	some	future	version	of	Python,	the	identifiers	as	and	None	will	both	become
keywords.

Python	Reference	Manual
Previous:	2.3	Identifiers	and	keywords	Up:	2.3	Identifiers	and	keywords	Next:
2.3.2	Reserved	classes	of

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.1	Keywords	Up:	2.3	Identifiers	and	keywords	Next:	2.4	Literals

2.3.2	Reserved	classes	of	identifiers
Certain	classes	of	identifiers	(besides	keywords)	have	special	meanings.	These
classes	are	identified	by	the	patterns	of	leading	and	trailing	underscore
characters:

_*

Not	imported	by	"from	module	import	*".	The	special	identifier	"_"
is	used	in	the	interactive	interpreter	to	store	the	result	of	the	last	evaluation;
it	is	stored	in	the	__builtin__	module.	When	not	in	interactive	mode,
"_"	has	no	special	meaning	and	is	not	defined.	See	section	6.12,	``The
import	statement.''

Note:	The	name	"_"	is	often	used	in	conjunction	with	internationalization;
refer	to	the	documentation	for	the	gettext	module	for	more	information
on	this	convention.

__*__

System-defined	names.	These	names	are	defined	by	the	interpreter	and	it's
implementation	(including	the	standard	library);	applications	should	not
expect	to	define	additional	names	using	this	convention.	The	set	of	names
of	this	class	defined	by	Python	may	be	extended	in	future	versions.	See
section	3.3,	``Special	method	names.''

__*

Class-private	names.	Names	in	this	category,	when	used	within	the	context
of	a	class	definition,	are	re-written	to	use	a	mangled	form	to	help	avoid
name	clashes	between	``private''	attributes	of	base	and	derived	classes.	See
section	5.2.1,	``Identifiers	(Names).''

Python	Reference	Manual
Previous:	2.3.1	Keywords	Up:	2.3	Identifiers	and	keywords	Next:	2.4	Literals

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.2	Reserved	classes	of	Up:	2.	Lexical	analysis	Next:	2.4.1	String
literals

2.4	Literals
Literals	are	notations	for	constant	values	of	some	built-in	types.

Subsections

2.4.1	String	literals
2.4.2	String	literal	concatenation
2.4.3	Numeric	literals
2.4.4	Integer	and	long	integer	literals
2.4.5	Floating	point	literals
2.4.6	Imaginary	literals

Python	Reference	Manual
Previous:	2.3.2	Reserved	classes	of	Up:	2.	Lexical	analysis	Next:	2.4.1	String
literals

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.4	Literals	Up:	2.4	Literals	Next:	2.4.2	String	literal	concatenation

2.4.1	String	literals
String	literals	are	described	by	the	following	lexical	definitions:

stringliteral ::= [stringprefix]

(shortstring	|

longstring)

stringprefix ::= "r"	|	"u"	|	"ur"	|	"R"	|

"U"	|	"UR"	|	"Ur"	|	"uR"

shortstring ::= "'"	shortstringitem*	"'"

|	'"'	shortstringitem*

'"'

longstring ::= "'''"	longstringitem*

"'''"

|	'"""'	longstringitem*

'"""'

shortstringitem ::= shortstringchar	|

escapeseq

longstringitem ::= longstringchar	|

escapeseq

shortstringchar ::= <any	source	character

except	"\"	or	newline	or

the	quote>

longstringchar ::= <any	source	character

except	"\">

escapeseq ::= "\"	<any	ASCII

character>

Download	entire	grammar	as	text.

One	syntactic	restriction	not	indicated	by	these	productions	is	that	whitespace	is
not	allowed	between	the	stringprefix	and	the	rest	of	the	string	literal.	The
source	character	set	is	defined	by	the	encoding	declaration;	it	is	ASCII	if	no
encoding	declaration	is	given	in	the	source	file;	see	section	2.1.4.

In	plain	English:	String	literals	can	be	enclosed	in	matching	single	quotes	(')	or
double	quotes	(").	They	can	also	be	enclosed	in	matching	groups	of	three	single
or	double	quotes	(these	are	generally	referred	to	as	triple-quoted	strings).	The
backslash	(\)	character	is	used	to	escape	characters	that	otherwise	have	a	special
meaning,	such	as	newline,	backslash	itself,	or	the	quote	character.	String	literals
may	optionally	be	prefixed	with	a	letter	"r"	or	"R";	such	strings	are	called	raw
strings	and	use	different	rules	for	interpreting	backslash	escape	sequences.	A
prefix	of	"u"	or	"U"	makes	the	string	a	Unicode	string.	Unicode	strings	use	the
Unicode	character	set	as	defined	by	the	Unicode	Consortium	and	ISO	10646.
Some	additional	escape	sequences,	described	below,	are	available	in	Unicode
strings.	The	two	prefix	characters	may	be	combined;	in	this	case,	"u"	must
appear	before	"r".

In	triple-quoted	strings,	unescaped	newlines	and	quotes	are	allowed	(and	are
retained),	except	that	three	unescaped	quotes	in	a	row	terminate	the	string.	(A
``quote''	is	the	character	used	to	open	the	string,	i.e.	either	'	or	".)

Unless	an	"r"	or	"R"	prefix	is	present,	escape	sequences	in	strings	are	interpreted
according	to	rules	similar	to	those	used	by	Standard	C.	The	recognized	escape
sequences	are:

Escape
Sequence

Meaning Notes

\newline Ignored
\\ Backslash	(\)
\' Single	quote	(')
\" Double	quote	(")
\a ASCII	Bell	(BEL)
\b ASCII	Backspace	(BS)
\f ASCII	Formfeed	(FF)
\n ASCII	Linefeed	(LF)
\N{name} Character	named	name	in	the	Unicode	database

(Unicode	only)
\r ASCII	Carriage	Return	(CR)
\t ASCII	Horizontal	Tab	(TAB)
\uxxxx Character	with	16-bit	hex	value	xxxx	(Unicode

only)
(1)

\Uxxxxxxxx Character	with	32-bit	hex	value	xxxxxxxx
(Unicode	only)

(2)

\v ASCII	Vertical	Tab	(VT)
\ooo Character	with	octal	value	ooo (3,5)
\xhh Character	with	hex	value	hh (4,5)

Notes:

(1)
Individual	code	units	which	form	parts	of	a	surrogate	pair	can	be	encoded
using	this	escape	sequence.

(2)
Any	Unicode	character	can	be	encoded	this	way,	but	characters	outside	the
Basic	Multilingual	Plane	(BMP)	will	be	encoded	using	a	surrogate	pair	if
Python	is	compiled	to	use	16-bit	code	units	(the	default).	Individual	code
units	which	form	parts	of	a	surrogate	pair	can	be	encoded	using	this	escape
sequence.

(3)
As	in	Standard	C,	up	to	three	octal	digits	are	accepted.

(4)
Unlike	in	Standard	C,	at	most	two	hex	digits	are	accepted.

(5)
In	a	string	literal,	hexadecimal	and	octal	escapes	denote	the	byte	with	the
given	value;	it	is	not	necessary	that	the	byte	encodes	a	character	in	the
source	character	set.	In	a	Unicode	literal,	these	escapes	denote	a	Unicode
character	with	the	given	value.

Unlike	Standard	C,	all	unrecognized	escape	sequences	are	left	in	the	string
unchanged,	i.e.,	the	backslash	is	left	in	the	string.	(This	behavior	is	useful	when
debugging:	if	an	escape	sequence	is	mistyped,	the	resulting	output	is	more	easily
recognized	as	broken.)	It	is	also	important	to	note	that	the	escape	sequences
marked	as	``(Unicode	only)''	in	the	table	above	fall	into	the	category	of
unrecognized	escapes	for	non-Unicode	string	literals.

When	an	"r"	or	"R"	prefix	is	present,	a	character	following	a	backslash	is
included	in	the	string	without	change,	and	all	backslashes	are	left	in	the	string.
For	example,	the	string	literal	r"\n"	consists	of	two	characters:	a	backslash	and
a	lowercase	"n".	String	quotes	can	be	escaped	with	a	backslash,	but	the

backslash	remains	in	the	string;	for	example,	r"\""	is	a	valid	string	literal
consisting	of	two	characters:	a	backslash	and	a	double	quote;	r"\"	is	not	a	valid
string	literal	(even	a	raw	string	cannot	end	in	an	odd	number	of	backslashes).
Specifically,	a	raw	string	cannot	end	in	a	single	backslash	(since	the	backslash
would	escape	the	following	quote	character).	Note	also	that	a	single	backslash
followed	by	a	newline	is	interpreted	as	those	two	characters	as	part	of	the	string,
not	as	a	line	continuation.

When	an	"r"	or	"R"	prefix	is	used	in	conjunction	with	a	"u"	or	"U"	prefix,	then
the	\uXXXX	escape	sequence	is	processed	while	all	other	backslashes	are	left	in
the	string.	For	example,	the	string	literal	ur"\u0062\n"	consists	of	three
Unicode	characters:	`LATIN	SMALL	LETTER	B',	`REVERSE	SOLIDUS',	and
`LATIN	SMALL	LETTER	N'.	Backslashes	can	be	escaped	with	a	preceding
backslash;	however,	both	remain	in	the	string.	As	a	result,	\uXXXX	escape
sequences	are	only	recognized	when	there	are	an	odd	number	of	backslashes.

Python	Reference	Manual
Previous:	2.4	Literals	Up:	2.4	Literals	Next:	2.4.2	String	literal	concatenation

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.4.1	String	literals	Up:	2.4	Literals	Next:	2.4.3	Numeric	literals

2.4.2	String	literal	concatenation
Multiple	adjacent	string	literals	(delimited	by	whitespace),	possibly	using
different	quoting	conventions,	are	allowed,	and	their	meaning	is	the	same	as
their	concatenation.	Thus,	"hello"	'world'	is	equivalent	to
"helloworld".	This	feature	can	be	used	to	reduce	the	number	of	backslashes
needed,	to	split	long	strings	conveniently	across	long	lines,	or	even	to	add
comments	to	parts	of	strings,	for	example:

re.compile("[A-Za-z_]"							#	letter	or	underscore

											"[A-Za-z0-9_]*"			#	letter,	digit	or	underscore

)

Note	that	this	feature	is	defined	at	the	syntactical	level,	but	implemented	at
compile	time.	The	`+'	operator	must	be	used	to	concatenate	string	expressions	at
run	time.	Also	note	that	literal	concatenation	can	use	different	quoting	styles	for
each	component	(even	mixing	raw	strings	and	triple	quoted	strings).

Python	Reference	Manual
Previous:	2.4.1	String	literals	Up:	2.4	Literals	Next:	2.4.3	Numeric	literals

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.4.2	String	literal	concatenation	Up:	2.4	Literals	Next:	2.4.4	Integer
and	long

2.4.3	Numeric	literals
There	are	four	types	of	numeric	literals:	plain	integers,	long	integers,	floating
point	numbers,	and	imaginary	numbers.	There	are	no	complex	literals	(complex
numbers	can	be	formed	by	adding	a	real	number	and	an	imaginary	number).

Note	that	numeric	literals	do	not	include	a	sign;	a	phrase	like	-1	is	actually	an
expression	composed	of	the	unary	operator	`-'	and	the	literal	1.

Python	Reference	Manual
Previous:	2.4.2	String	literal	concatenation	Up:	2.4	Literals	Next:	2.4.4	Integer
and	long

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.4.3	Numeric	literals	Up:	2.4	Literals	Next:	2.4.5	Floating	point
literals

2.4.4	Integer	and	long	integer	literals
Integer	and	long	integer	literals	are	described	by	the	following	lexical
definitions:

longinteger ::= integer	("l"	|	"L")

integer ::= decimalinteger	|

octinteger	|	hexinteger

decimalinteger ::= nonzerodigit	digit*	|	"0"

octinteger ::= "0"	octdigit+

hexinteger ::= "0"	("x"	|	"X")	hexdigit+

nonzerodigit ::= "1"..."9"

octdigit ::= "0"..."7"

hexdigit ::= digit	|	"a"..."f"	|

"A"..."F"

Download	entire	grammar	as	text.

Although	both	lower	case	"l"	and	upper	case	"L"	are	allowed	as	suffix	for	long
integers,	it	is	strongly	recommended	to	always	use	"L",	since	the	letter	"l"	looks
too	much	like	the	digit	"1".

Plain	integer	literals	that	are	above	the	largest	representable	plain	integer	(e.g.,
2147483647	when	using	32-bit	arithmetic)	are	accepted	as	if	they	were	long
integers	instead.2.1	There	is	no	limit	for	long	integer	literals	apart	from	what	can
be	stored	in	available	memory.

Some	examples	of	plain	integer	literals	(first	row)	and	long	integer	literals
(second	and	third	rows):

7					2147483647																								0177

3L				79228162514264337593543950336L				0377L			0x100000000L

						79228162514264337593543950336													0xdeadbeef

Footnotes

...	instead.2.1
In	versions	of	Python	prior	to	2.4,	octal	and	hexadecimal	literals	in	the
range	just	above	the	largest	representable	plain	integer	but	below	the	largest
unsigned	32-bit	number	(on	a	machine	using	32-bit	arithmetic),
4294967296,	were	taken	as	the	negative	plain	integer	obtained	by
subtracting	4294967296	from	their	unsigned	value.

Python	Reference	Manual
Previous:	2.4.3	Numeric	literals	Up:	2.4	Literals	Next:	2.4.5	Floating	point
literals

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.4.4	Integer	and	long	Up:	2.4	Literals	Next:	2.4.6	Imaginary	literals

2.4.5	Floating	point	literals
Floating	point	literals	are	described	by	the	following	lexical	definitions:

floatnumber ::= pointfloat	|	exponentfloat

pointfloat ::= [intpart]	fraction	|

intpart	"."

exponentfloat ::= (intpart	|	pointfloat)

exponent

intpart ::= digit+

fraction ::= "."	digit+

exponent ::= ("e"	|	"E")	["+"	|	"-"]

digit+

Download	entire	grammar	as	text.

Note	that	the	integer	and	exponent	parts	of	floating	point	numbers	can	look	like
octal	integers,	but	are	interpreted	using	radix	10.	For	example,	"077e010"	is
legal,	and	denotes	the	same	number	as	"77e10".	The	allowed	range	of	floating
point	literals	is	implementation-dependent.	Some	examples	of	floating	point
literals:

3.14				10.				.001				1e100				3.14e-10				0e0

Note	that	numeric	literals	do	not	include	a	sign;	a	phrase	like	-1	is	actually	an
expression	composed	of	the	operator	-	and	the	literal	1.

Python	Reference	Manual
Previous:	2.4.4	Integer	and	long	Up:	2.4	Literals	Next:	2.4.6	Imaginary	literals

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.4.5	Floating	point	literals	Up:	2.4	Literals	Next:	2.5	Operators

2.4.6	Imaginary	literals
Imaginary	literals	are	described	by	the	following	lexical	definitions:

imagnumber ::= (floatnumber	|	intpart)	("j"

|	"J")

Download	entire	grammar	as	text.

An	imaginary	literal	yields	a	complex	number	with	a	real	part	of	0.0.	Complex
numbers	are	represented	as	a	pair	of	floating	point	numbers	and	have	the	same
restrictions	on	their	range.	To	create	a	complex	number	with	a	nonzero	real	part,
add	a	floating	point	number	to	it,	e.g.,	(3+4j).	Some	examples	of	imaginary
literals:

3.14j			10.j				10j					.001j			1e100j		3.14e-10j

Python	Reference	Manual
Previous:	2.4.5	Floating	point	literals	Up:	2.4	Literals	Next:	2.5	Operators

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.4.6	Imaginary	literals	Up:	2.	Lexical	analysis	Next:	2.6	Delimiters

2.5	Operators
The	following	tokens	are	operators:

+							-							*							**						/							//						%

<<						>>						&							|							^							~

<							>							<=						>=						==						!=						<>

The	comparison	operators	<>	and	!=	are	alternate	spellings	of	the	same
operator.	!=	is	the	preferred	spelling;	<>	is	obsolescent.

Python	Reference	Manual
Previous:	2.4.6	Imaginary	literals	Up:	2.	Lexical	analysis	Next:	2.6	Delimiters

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.5	Operators	Up:	2.	Lexical	analysis	Next:	3.	Data	model

2.6	Delimiters
The	following	tokens	serve	as	delimiters	in	the	grammar:

()							[]							{							}						@

,							:							.							`							=							;

+=						-=						*=						/=						//=					%=

&=						|=						^=						>>=					<<=					**=

The	period	can	also	occur	in	floating-point	and	imaginary	literals.	A	sequence	of
three	periods	has	a	special	meaning	as	an	ellipsis	in	slices.	The	second	half	of	the
list,	the	augmented	assignment	operators,	serve	lexically	as	delimiters,	but	also
perform	an	operation.

The	following	printing	ASCII	characters	have	special	meaning	as	part	of	other
tokens	or	are	otherwise	significant	to	the	lexical	analyzer:

'							"							#							\

The	following	printing	ASCII	characters	are	not	used	in	Python.	Their
occurrence	outside	string	literals	and	comments	is	an	unconditional	error:

$?

Python	Reference	Manual
Previous:	2.5	Operators	Up:	2.	Lexical	analysis	Next:	3.	Data	model

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.6	Delimiters	Up:	Python	Reference	Manual	Next:	3.1	Objects,
values	and

3.	Data	model

Subsections

3.1	Objects,	values	and	types
3.2	The	standard	type	hierarchy
3.3	Special	method	names

3.3.1	Basic	customization
3.3.2	Customizing	attribute	access

3.3.2.1	More	attribute	access	for	new-style	classes
3.3.2.2	Implementing	Descriptors
3.3.2.3	Invoking	Descriptors
3.3.2.4	__slots__

3.3.3	Customizing	class	creation
3.3.4	Emulating	callable	objects
3.3.5	Emulating	container	types
3.3.6	Additional	methods	for	emulation	of	sequence	types
3.3.7	Emulating	numeric	types
3.3.8	Coercion	rules

Python	Reference	Manual
Previous:	2.6	Delimiters	Up:	Python	Reference	Manual	Next:	3.1	Objects,
values	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.	Data	model	Up:	3.	Data	model	Next:	3.2	The	standard	type

3.1	Objects,	values	and	types
Objects	are	Python's	abstraction	for	data.	All	data	in	a	Python	program	is
represented	by	objects	or	by	relations	between	objects.	(In	a	sense,	and	in
conformance	to	Von	Neumann's	model	of	a	``stored	program	computer,''	code	is
also	represented	by	objects.)

Every	object	has	an	identity,	a	type	and	a	value.	An	object's	identity	never
changes	once	it	has	been	created;	you	may	think	of	it	as	the	object's	address	in
memory.	The	`is'	operator	compares	the	identity	of	two	objects;	the	id()
function	returns	an	integer	representing	its	identity	(currently	implemented	as	its
address).	An	object's	type	is	also	unchangeable.3.1An	object's	type	determines	the
operations	that	the	object	supports	(e.g.,	``does	it	have	a	length?'')	and	also
defines	the	possible	values	for	objects	of	that	type.	The	type()	function	returns
an	object's	type	(which	is	an	object	itself).	The	value	of	some	objects	can
change.	Objects	whose	value	can	change	are	said	to	be	mutable;	objects	whose
value	is	unchangeable	once	they	are	created	are	called	immutable.	(The	value	of
an	immutable	container	object	that	contains	a	reference	to	a	mutable	object	can
change	when	the	latter's	value	is	changed;	however	the	container	is	still
considered	immutable,	because	the	collection	of	objects	it	contains	cannot	be
changed.	So,	immutability	is	not	strictly	the	same	as	having	an	unchangeable
value,	it	is	more	subtle.)	An	object's	mutability	is	determined	by	its	type;	for
instance,	numbers,	strings	and	tuples	are	immutable,	while	dictionaries	and	lists
are	mutable.

Objects	are	never	explicitly	destroyed;	however,	when	they	become	unreachable
they	may	be	garbage-collected.	An	implementation	is	allowed	to	postpone
garbage	collection	or	omit	it	altogether	--	it	is	a	matter	of	implementation	quality
how	garbage	collection	is	implemented,	as	long	as	no	objects	are	collected	that
are	still	reachable.	(Implementation	note:	the	current	implementation	uses	a
reference-counting	scheme	with	(optional)	delayed	detection	of	cyclically	linked
garbage,	which	collects	most	objects	as	soon	as	they	become	unreachable,	but	is
not	guaranteed	to	collect	garbage	containing	circular	references.	See	the	Python
Library	Reference	for	information	on	controlling	the	collection	of	cyclic
garbage.)

Note	that	the	use	of	the	implementation's	tracing	or	debugging	facilities	may

keep	objects	alive	that	would	normally	be	collectable.	Also	note	that	catching	an
exception	with	a	`try...except'	statement	may	keep	objects	alive.

Some	objects	contain	references	to	``external''	resources	such	as	open	files	or
windows.	It	is	understood	that	these	resources	are	freed	when	the	object	is
garbage-collected,	but	since	garbage	collection	is	not	guaranteed	to	happen,	such
objects	also	provide	an	explicit	way	to	release	the	external	resource,	usually	a
close()	method.	Programs	are	strongly	recommended	to	explicitly	close	such
objects.	The	`try...finally'	statement	provides	a	convenient	way	to	do	this.

Some	objects	contain	references	to	other	objects;	these	are	called	containers.
Examples	of	containers	are	tuples,	lists	and	dictionaries.	The	references	are	part
of	a	container's	value.	In	most	cases,	when	we	talk	about	the	value	of	a
container,	we	imply	the	values,	not	the	identities	of	the	contained	objects;
however,	when	we	talk	about	the	mutability	of	a	container,	only	the	identities	of
the	immediately	contained	objects	are	implied.	So,	if	an	immutable	container
(like	a	tuple)	contains	a	reference	to	a	mutable	object,	its	value	changes	if	that
mutable	object	is	changed.

Types	affect	almost	all	aspects	of	object	behavior.	Even	the	importance	of	object
identity	is	affected	in	some	sense:	for	immutable	types,	operations	that	compute
new	values	may	actually	return	a	reference	to	any	existing	object	with	the	same
type	and	value,	while	for	mutable	objects	this	is	not	allowed.	E.g.,	after	"a	=
1;	b	=	1",	a	and	b	may	or	may	not	refer	to	the	same	object	with	the	value
one,	depending	on	the	implementation,	but	after	"c	=	[];	d	=	[]",	c	and	d
are	guaranteed	to	refer	to	two	different,	unique,	newly	created	empty	lists.	(Note
that	"c	=	d	=	[]"	assigns	the	same	object	to	both	c	and	d.)

Footnotes

...	unchangeable.3.1
Since	Python	2.2,	a	gradual	merging	of	types	and	classes	has	been	started
that	makes	this	and	a	few	other	assertions	made	in	this	manual	not	100%
accurate	and	complete:	for	example,	it	is	now	possible	in	some	cases	to
change	an	object's	type,	under	certain	controlled	conditions.	Until	this

manual	undergoes	extensive	revision,	it	must	now	be	taken	as	authoritative
only	regarding	``classic	classes'',	that	are	still	the	default,	for	compatibility
purposes,	in	Python	2.2	and	2.3.

Python	Reference	Manual
Previous:	3.	Data	model	Up:	3.	Data	model	Next:	3.2	The	standard	type

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.1	Objects,	values	and	Up:	3.	Data	model	Next:	3.3	Special	method
names

3.2	The	standard	type	hierarchy
Below	is	a	list	of	the	types	that	are	built	into	Python.	Extension	modules	(written
in	C,	Java,	or	other	languages,	depending	on	the	implementation)	can	define
additional	types.	Future	versions	of	Python	may	add	types	to	the	type	hierarchy
(e.g.,	rational	numbers,	efficiently	stored	arrays	of	integers,	etc.).

Some	of	the	type	descriptions	below	contain	a	paragraph	listing	`special
attributes.'	These	are	attributes	that	provide	access	to	the	implementation	and	are
not	intended	for	general	use.	Their	definition	may	change	in	the	future.

None
This	type	has	a	single	value.	There	is	a	single	object	with	this	value.	This
object	is	accessed	through	the	built-in	name	None.	It	is	used	to	signify	the
absence	of	a	value	in	many	situations,	e.g.,	it	is	returned	from	functions	that
don't	explicitly	return	anything.	Its	truth	value	is	false.

NotImplemented
This	type	has	a	single	value.	There	is	a	single	object	with	this	value.	This
object	is	accessed	through	the	built-in	name	NotImplemented.	Numeric
methods	and	rich	comparison	methods	may	return	this	value	if	they	do	not
implement	the	operation	for	the	operands	provided.	(The	interpreter	will
then	try	the	reflected	operation,	or	some	other	fallback,	depending	on	the
operator.)	Its	truth	value	is	true.

Ellipsis
This	type	has	a	single	value.	There	is	a	single	object	with	this	value.	This
object	is	accessed	through	the	built-in	name	Ellipsis.	It	is	used	to
indicate	the	presence	of	the	"..."	syntax	in	a	slice.	Its	truth	value	is	true.

Numbers
These	are	created	by	numeric	literals	and	returned	as	results	by	arithmetic
operators	and	arithmetic	built-in	functions.	Numeric	objects	are	immutable;
once	created	their	value	never	changes.	Python	numbers	are	of	course
strongly	related	to	mathematical	numbers,	but	subject	to	the	limitations	of
numerical	representation	in	computers.

Python	distinguishes	between	integers,	floating	point	numbers,	and
complex	numbers:

Integers
These	represent	elements	from	the	mathematical	set	of	whole	numbers.

There	are	three	types	of	integers:

Plain	integers
These	represent	numbers	in	the	range	-2147483648	through
2147483647.	(The	range	may	be	larger	on	machines	with	a	larger
natural	word	size,	but	not	smaller.)	When	the	result	of	an
operation	would	fall	outside	this	range,	the	result	is	normally
returned	as	a	long	integer	(in	some	cases,	the	exception
OverflowError	is	raised	instead).	For	the	purpose	of	shift	and
mask	operations,	integers	are	assumed	to	have	a	binary,	2's
complement	notation	using	32	or	more	bits,	and	hiding	no	bits
from	the	user	(i.e.,	all	4294967296	different	bit	patterns
correspond	to	different	values).

Long	integers
These	represent	numbers	in	an	unlimited	range,	subject	to
available	(virtual)	memory	only.	For	the	purpose	of	shift	and
mask	operations,	a	binary	representation	is	assumed,	and	negative
numbers	are	represented	in	a	variant	of	2's	complement	which
gives	the	illusion	of	an	infinite	string	of	sign	bits	extending	to	the
left.

Booleans
These	represent	the	truth	values	False	and	True.	The	two	objects
representing	the	values	False	and	True	are	the	only	Boolean
objects.	The	Boolean	type	is	a	subtype	of	plain	integers,	and
Boolean	values	behave	like	the	values	0	and	1,	respectively,	in
almost	all	contexts,	the	exception	being	that	when	converted	to	a
string,	the	strings	"False"	or	"True"	are	returned,
respectively.

The	rules	for	integer	representation	are	intended	to	give	the	most
meaningful	interpretation	of	shift	and	mask	operations	involving

negative	integers	and	the	least	surprises	when	switching	between	the
plain	and	long	integer	domains.	Any	operation	except	left	shift,	if	it
yields	a	result	in	the	plain	integer	domain	without	causing	overflow,
will	yield	the	same	result	in	the	long	integer	domain	or	when	using
mixed	operands.

Floating	point	numbers
These	represent	machine-level	double	precision	floating	point
numbers.	You	are	at	the	mercy	of	the	underlying	machine	architecture
(and	C	or	Java	implementation)	for	the	accepted	range	and	handling	of
overflow.	Python	does	not	support	single-precision	floating	point
numbers;	the	savings	in	processor	and	memory	usage	that	are	usually
the	reason	for	using	these	is	dwarfed	by	the	overhead	of	using	objects
in	Python,	so	there	is	no	reason	to	complicate	the	language	with	two
kinds	of	floating	point	numbers.

Complex	numbers
These	represent	complex	numbers	as	a	pair	of	machine-level	double
precision	floating	point	numbers.	The	same	caveats	apply	as	for
floating	point	numbers.	The	real	and	imaginary	parts	of	a	complex
number	z	can	be	retrieved	through	the	read-only	attributes	z.real
and	z.imag.

Sequences
These	represent	finite	ordered	sets	indexed	by	non-negative	numbers.	The
built-in	function	len()	returns	the	number	of	items	of	a	sequence.	When
the	length	of	a	sequence	is	n,	the	index	set	contains	the	numbers	0,	1,	...,	n-
1.	Item	i	of	sequence	a	is	selected	by	a[i].

Sequences	also	support	slicing:	a[i:j]	selects	all	items	with	index	k	such
that	i	<=	k	<	j.	When	used	as	an	expression,	a	slice	is	a	sequence	of	the
same	type.	This	implies	that	the	index	set	is	renumbered	so	that	it	starts	at
0.

Some	sequences	also	support	``extended	slicing''	with	a	third	``step''
parameter:	a[i:j:k]	selects	all	items	of	a	with	index	x	where	x	=	i	+
n*k,	n	>=	0	and	i	<=	x	<	j.

Sequences	are	distinguished	according	to	their	mutability:

Immutable	sequences
An	object	of	an	immutable	sequence	type	cannot	change	once	it	is
created.	(If	the	object	contains	references	to	other	objects,	these	other
objects	may	be	mutable	and	may	be	changed;	however,	the	collection
of	objects	directly	referenced	by	an	immutable	object	cannot	change.)

The	following	types	are	immutable	sequences:

Strings
The	items	of	a	string	are	characters.	There	is	no	separate	character
type;	a	character	is	represented	by	a	string	of	one	item.	Characters
represent	(at	least)	8-bit	bytes.	The	built-in	functions	chr()	and
ord()	convert	between	characters	and	nonnegative	integers
representing	the	byte	values.	Bytes	with	the	values	0-127	usually
represent	the	corresponding	ASCII	values,	but	the	interpretation
of	values	is	up	to	the	program.	The	string	data	type	is	also	used	to
represent	arrays	of	bytes,	e.g.,	to	hold	data	read	from	a	file.

(On	systems	whose	native	character	set	is	not	ASCII,	strings	may
use	EBCDIC	in	their	internal	representation,	provided	the
functions	chr()	and	ord()	implement	a	mapping	between
ASCII	and	EBCDIC,	and	string	comparison	preserves	the	ASCII
order.	Or	perhaps	someone	can	propose	a	better	rule?)

Unicode
The	items	of	a	Unicode	object	are	Unicode	code	units.	A	Unicode
code	unit	is	represented	by	a	Unicode	object	of	one	item	and	can
hold	either	a	16-bit	or	32-bit	value	representing	a	Unicode	ordinal
(the	maximum	value	for	the	ordinal	is	given	in
sys.maxunicode,	and	depends	on	how	Python	is	configured
at	compile	time).	Surrogate	pairs	may	be	present	in	the	Unicode
object,	and	will	be	reported	as	two	separate	items.	The	built-in
functions	unichr()	and	ord()	convert	between	code	units
and	nonnegative	integers	representing	the	Unicode	ordinals	as
defined	in	the	Unicode	Standard	3.0.	Conversion	from	and	to
other	encodings	are	possible	through	the	Unicode	method
encode	and	the	built-in	function	unicode().

Tuples

The	items	of	a	tuple	are	arbitrary	Python	objects.	Tuples	of	two	or
more	items	are	formed	by	comma-separated	lists	of	expressions.
A	tuple	of	one	item	(a	`singleton')	can	be	formed	by	affixing	a
comma	to	an	expression	(an	expression	by	itself	does	not	create	a
tuple,	since	parentheses	must	be	usable	for	grouping	of
expressions).	An	empty	tuple	can	be	formed	by	an	empty	pair	of
parentheses.

Mutable	sequences
Mutable	sequences	can	be	changed	after	they	are	created.	The
subscription	and	slicing	notations	can	be	used	as	the	target	of
assignment	and	del	(delete)	statements.

There	is	currently	a	single	intrinsic	mutable	sequence	type:

Lists
The	items	of	a	list	are	arbitrary	Python	objects.	Lists	are	formed
by	placing	a	comma-separated	list	of	expressions	in	square
brackets.	(Note	that	there	are	no	special	cases	needed	to	form	lists
of	length	0	or	1.)

The	extension	module	array	provides	an	additional	example	of	a
mutable	sequence	type.

Mappings
These	represent	finite	sets	of	objects	indexed	by	arbitrary	index	sets.	The
subscript	notation	a[k]	selects	the	item	indexed	by	k	from	the	mapping	a;
this	can	be	used	in	expressions	and	as	the	target	of	assignments	or	del
statements.	The	built-in	function	len()	returns	the	number	of	items	in	a
mapping.

There	is	currently	a	single	intrinsic	mapping	type:

Dictionaries
These	represent	finite	sets	of	objects	indexed	by	nearly	arbitrary
values.	The	only	types	of	values	not	acceptable	as	keys	are	values
containing	lists	or	dictionaries	or	other	mutable	types	that	are
compared	by	value	rather	than	by	object	identity,	the	reason	being	that
the	efficient	implementation	of	dictionaries	requires	a	key's	hash	value

to	remain	constant.	Numeric	types	used	for	keys	obey	the	normal	rules
for	numeric	comparison:	if	two	numbers	compare	equal	(e.g.,	1	and
1.0)	then	they	can	be	used	interchangeably	to	index	the	same
dictionary	entry.

Dictionaries	are	mutable;	they	can	be	created	by	the	{...}	notation
(see	section	5.2.6,	``Dictionary	Displays'').

The	extension	modules	dbm,	gdbm,	bsddb	provide	additional
examples	of	mapping	types.

Callable	types
These	are	the	types	to	which	the	function	call	operation	(see	section	5.3.4,
``Calls'')	can	be	applied:

User-defined	functions
A	user-defined	function	object	is	created	by	a	function	definition	(see
section	7.5,	``Function	definitions'').	It	should	be	called	with	an
argument	list	containing	the	same	number	of	items	as	the	function's
formal	parameter	list.

Special	attributes:

Attribute Meaning
func_doc The	function's	documentation	string,

or	None	if	unavailable
Writable

__doc__ Another	way	of	spelling
func_doc

Writable

func_name The	function's	name Writable
__name__ Another	way	of	spelling

func_name

Writable

__module__ The	name	of	the	module	the
function	was	defined	in,	or	None	if
unavailable.

Writable

func_defaults Atuple	containing	default	argument
values	for	those	arguments	that	have
defaults,	or	None	if	no	arguments
have	a	default	value

Writable

func_code The	code	object	representing	the
compiled	function	body.

Writable

func_globals A	reference	to	the	dictionary	that
holds	the	function's	global	variables
--	the	global	namespace	of	the
module	in	which	the	function	was
defined.

Read-
only

func_dict The	namespace	supporting	arbitrary
function	attributes.

Writable

func_closure None	or	a	tuple	of	cells	that	contain
bindings	for	the	function's	free
variables.

Read-
only

Most	of	the	attributes	labelled	``Writable''	check	the	type	of	the
assigned	value.

Changed	in	version	2.4:	func_name	is	now	writable.

Function	objects	also	support	getting	and	setting	arbitrary	attributes,
which	can	be	used,	for	example,	to	attach	metadata	to	functions.
Regular	attribute	dot-notation	is	used	to	get	and	set	such	attributes.
Note	that	the	current	implementation	only	supports	function	attributes
on	user-defined	functions.	Function	attributes	on	built-in	functions
may	be	supported	in	the	future.

Additional	information	about	a	function's	definition	can	be	retrieved
from	its	code	object;	see	the	description	of	internal	types	below.

User-defined	methods
A	user-defined	method	object	combines	a	class,	a	class	instance	(or
None)	and	any	callable	object	(normally	a	user-defined	function).

Special	read-only	attributes:	im_self	is	the	class	instance	object,
im_func	is	the	function	object;	im_class	is	the	class	of	im_self
for	bound	methods	or	the	class	that	asked	for	the	method	for	unbound
methods;	__doc__	is	the	method's	documentation	(same	as
im_func.__doc__);	__name__	is	the	method	name	(same	as
im_func.__name__);	__module__	is	the	name	of	the	module
the	method	was	defined	in,	or	None	if	unavailable.	Changed	in

version	2.2:	im_self	used	to	refer	to	the	class	that	defined	the
method.

Methods	also	support	accessing	(but	not	setting)	the	arbitrary	function
attributes	on	the	underlying	function	object.

User-defined	method	objects	may	be	created	when	getting	an	attribute
of	a	class	(perhaps	via	an	instance	of	that	class),	if	that	attribute	is	a
user-defined	function	object,	an	unbound	user-defined	method	object,
or	a	class	method	object.	When	the	attribute	is	a	user-defined	method
object,	a	new	method	object	is	only	created	if	the	class	from	which	it	is
being	retrieved	is	the	same	as,	or	a	derived	class	of,	the	class	stored	in
the	original	method	object;	otherwise,	the	original	method	object	is
used	as	it	is.

When	a	user-defined	method	object	is	created	by	retrieving	a	user-
defined	function	object	from	a	class,	its	im_self	attribute	is	None
and	the	method	object	is	said	to	be	unbound.	When	one	is	created	by
retrieving	a	user-defined	function	object	from	a	class	via	one	of	its
instances,	its	im_self	attribute	is	the	instance,	and	the	method	object
is	said	to	be	bound.	In	either	case,	the	new	method's	im_class
attribute	is	the	class	from	which	the	retrieval	takes	place,	and	its
im_func	attribute	is	the	original	function	object.

When	a	user-defined	method	object	is	created	by	retrieving	another
method	object	from	a	class	or	instance,	the	behaviour	is	the	same	as
for	a	function	object,	except	that	the	im_func	attribute	of	the	new
instance	is	not	the	original	method	object	but	its	im_func	attribute.

When	a	user-defined	method	object	is	created	by	retrieving	a	class
method	object	from	a	class	or	instance,	its	im_self	attribute	is	the
class	itself	(the	same	as	the	im_class	attribute),	and	its	im_func
attribute	is	the	function	object	underlying	the	class	method.

When	an	unbound	user-defined	method	object	is	called,	the	underlying
function	(im_func)	is	called,	with	the	restriction	that	the	first
argument	must	be	an	instance	of	the	proper	class	(im_class)	or	of	a
derived	class	thereof.

When	a	bound	user-defined	method	object	is	called,	the	underlying
function	(im_func)	is	called,	inserting	the	class	instance	(im_self)
in	front	of	the	argument	list.	For	instance,	when	C	is	a	class	which
contains	a	definition	for	a	function	f(),	and	x	is	an	instance	of	C,
calling	x.f(1)	is	equivalent	to	calling	C.f(x,	1).

When	a	user-defined	method	object	is	derived	from	a	class	method
object,	the	``class	instance''	stored	in	im_self	will	actually	be	the
class	itself,	so	that	calling	either	x.f(1)	or	C.f(1)	is	equivalent	to
calling	f(C,1)	where	f	is	the	underlying	function.

Note	that	the	transformation	from	function	object	to	(unbound	or
bound)	method	object	happens	each	time	the	attribute	is	retrieved	from
the	class	or	instance.	In	some	cases,	a	fruitful	optimization	is	to	assign
the	attribute	to	a	local	variable	and	call	that	local	variable.	Also	notice
that	this	transformation	only	happens	for	user-defined	functions;	other
callable	objects	(and	all	non-callable	objects)	are	retrieved	without
transformation.	It	is	also	important	to	note	that	user-defined	functions
which	are	attributes	of	a	class	instance	are	not	converted	to	bound
methods;	this	only	happens	when	the	function	is	an	attribute	of	the
class.

Generator	functions
A	function	or	method	which	uses	the	yield	statement	(see
section	6.8,	``The	yield	statement'')	is	called	a	generator	function.
Such	a	function,	when	called,	always	returns	an	iterator	object	which
can	be	used	to	execute	the	body	of	the	function:	calling	the	iterator's
next()	method	will	cause	the	function	to	execute	until	it	provides	a
value	using	the	yield	statement.	When	the	function	executes	a
return	statement	or	falls	off	the	end,	a	StopIteration	exception
is	raised	and	the	iterator	will	have	reached	the	end	of	the	set	of	values
to	be	returned.

Built-in	functions
A	built-in	function	object	is	a	wrapper	around	a	C	function.	Examples
of	built-in	functions	are	len()	and	math.sin()	(math	is	a
standard	built-in	module).	The	number	and	type	of	the	arguments	are
determined	by	the	C	function.	Special	read-only	attributes:	__doc__
is	the	function's	documentation	string,	or	None	if	unavailable;

__name__	is	the	function's	name;	__self__	is	set	to	None	(but	see
the	next	item);	__module__	is	the	name	of	the	module	the	function
was	defined	in	or	None	if	unavailable.

Built-in	methods
This	is	really	a	different	disguise	of	a	built-in	function,	this	time
containing	an	object	passed	to	the	C	function	as	an	implicit	extra
argument.	An	example	of	a	built-in	method	is	alist.append(),
assuming	alist	is	a	list	object.	In	this	case,	the	special	read-only
attribute	__self__	is	set	to	the	object	denoted	by	list.

Class	Types
Class	types,	or	``new-style	classes,''	are	callable.	These	objects
normally	act	as	factories	for	new	instances	of	themselves,	but
variations	are	possible	for	class	types	that	override	__new__().	The
arguments	of	the	call	are	passed	to	__new__()	and,	in	the	typical
case,	to	__init__()	to	initialize	the	new	instance.

Classic	Classes
Class	objects	are	described	below.	When	a	class	object	is	called,	a	new
class	instance	(also	described	below)	is	created	and	returned.	This
implies	a	call	to	the	class's	__init__()	method	if	it	has	one.	Any
arguments	are	passed	on	to	the	__init__()	method.	If	there	is	no
__init__()	method,	the	class	must	be	called	without	arguments.

Class	instances
Class	instances	are	described	below.	Class	instances	are	callable	only
when	the	class	has	a	__call__()	method;	x(arguments)	is	a
shorthand	for	x.__call__(arguments).

Modules
Modules	are	imported	by	the	import	statement	(see	section	6.12,	``The
import	statement'').A	module	object	has	a	namespace	implemented	by	a
dictionary	object	(this	is	the	dictionary	referenced	by	the	func_globals
attribute	of	functions	defined	in	the	module).	Attribute	references	are
translated	to	lookups	in	this	dictionary,	e.g.,	m.x	is	equivalent	to
m.__dict__["x"].	A	module	object	does	not	contain	the	code	object
used	to	initialize	the	module	(since	it	isn't	needed	once	the	initialization	is
done).

Attribute	assignment	updates	the	module's	namespace	dictionary,	e.g.,	"m.x
=	1"	is	equivalent	to	"m.__dict__["x"]	=	1".

Special	read-only	attribute:	__dict__	is	the	module's	namespace	as	a
dictionary	object.

Predefined	(writable)	attributes:	__name__	is	the	module's	name;
__doc__	is	the	module's	documentation	string,	or	None	if	unavailable;
__file__	is	the	pathname	of	the	file	from	which	the	module	was	loaded,
if	it	was	loaded	from	a	file.	The	__file__	attribute	is	not	present	for	C
modules	that	are	statically	linked	into	the	interpreter;	for	extension	modules
loaded	dynamically	from	a	shared	library,	it	is	the	pathname	of	the	shared
library	file.

Classes
Class	objects	are	created	by	class	definitions	(see	section	7.6,	``Class
definitions'').	A	class	has	a	namespace	implemented	by	a	dictionary	object.
Class	attribute	references	are	translated	to	lookups	in	this	dictionary,	e.g.,
"C.x"	is	translated	to	"C.__dict__["x"]".	When	the	attribute	name	is
not	found	there,	the	attribute	search	continues	in	the	base	classes.	The
search	is	depth-first,	left-to-right	in	the	order	of	occurrence	in	the	base	class
list.

When	a	class	attribute	reference	(for	class	C,	say)	would	yield	a	user-
defined	function	object	or	an	unbound	user-defined	method	object	whose
associated	class	is	either	C	or	one	of	its	base	classes,	it	is	transformed	into
an	unbound	user-defined	method	object	whose	im_class	attribute	is	C.
When	it	would	yield	a	class	method	object,	it	is	transformed	into	a	bound
user-defined	method	object	whose	im_class	and	im_self	attributes	are
both	C.	When	it	would	yield	a	static	method	object,	it	is	transformed	into
the	object	wrapped	by	the	static	method	object.	See	section	3.3.2	for
another	way	in	which	attributes	retrieved	from	a	class	may	differ	from	those
actually	contained	in	its	__dict__.

Class	attribute	assignments	update	the	class's	dictionary,	never	the
dictionary	of	a	base	class.

A	class	object	can	be	called	(see	above)	to	yield	a	class	instance	(see
below).

Special	attributes:	__name__	is	the	class	name;	__module__	is	the
module	name	in	which	the	class	was	defined;	__dict__	is	the	dictionary
containing	the	class's	namespace;	__bases__	is	a	tuple	(possibly	empty
or	a	singleton)	containing	the	base	classes,	in	the	order	of	their	occurrence
in	the	base	class	list;	__doc__	is	the	class's	documentation	string,	or	None
if	undefined.

Class	instances
A	class	instance	is	created	by	calling	a	class	object	(see	above).	A	class
instance	has	a	namespace	implemented	as	a	dictionary	which	is	the	first
place	in	which	attribute	references	are	searched.	When	an	attribute	is	not
found	there,	and	the	instance's	class	has	an	attribute	by	that	name,	the
search	continues	with	the	class	attributes.	If	a	class	attribute	is	found	that	is
a	user-defined	function	object	or	an	unbound	user-defined	method	object
whose	associated	class	is	the	class	(call	it	C)	of	the	instance	for	which	the
attribute	reference	was	initiated	or	one	of	its	bases,	it	is	transformed	into	a
bound	user-defined	method	object	whose	im_class	attribute	is	C	whose
im_self	attribute	is	the	instance.	Static	method	and	class	method	objects
are	also	transformed,	as	if	they	had	been	retrieved	from	class	C;	see	above
under	``Classes''.	See	section	3.3.2	for	another	way	in	which	attributes	of	a
class	retrieved	via	its	instances	may	differ	from	the	objects	actually	stored
in	the	class's	__dict__.	If	no	class	attribute	is	found,	and	the	object's
class	has	a	__getattr__()	method,	that	is	called	to	satisfy	the	lookup.

Attribute	assignments	and	deletions	update	the	instance's	dictionary,	never	a
class's	dictionary.	If	the	class	has	a	__setattr__()	or
__delattr__()	method,	this	is	called	instead	of	updating	the	instance
dictionary	directly.

Class	instances	can	pretend	to	be	numbers,	sequences,	or	mappings	if	they
have	methods	with	certain	special	names.	See	section	3.3,	``Special	method
names.''

Special	attributes:	__dict__	is	the	attribute	dictionary;	__class__	is
the	instance's	class.

Files
A	file	object	represents	an	open	file.	File	objects	are	created	by	the
open()	built-in	function,	and	also	by	os.popen(),	os.fdopen(),

and	the	makefile()method	of	socket	objects	(and	perhaps	by	other
functions	or	methods	provided	by	extension	modules).	The	objects
sys.stdin,	sys.stdout	and	sys.stderr	are	initialized	to	file
objects	corresponding	to	the	interpreter's	standard	input,	output	and	error
streams.	See	the	Python	Library	Reference	for	complete	documentation	of
file	objects.

Internal	types
A	few	types	used	internally	by	the	interpreter	are	exposed	to	the	user.	Their
definitions	may	change	with	future	versions	of	the	interpreter,	but	they	are
mentioned	here	for	completeness.

Code	objects
Code	objects	represent	byte-compiled	executable	Python	code,	or
bytecode.	The	difference	between	a	code	object	and	a	function	object
is	that	the	function	object	contains	an	explicit	reference	to	the
function's	globals	(the	module	in	which	it	was	defined),	while	a	code
object	contains	no	context;	also	the	default	argument	values	are	stored
in	the	function	object,	not	in	the	code	object	(because	they	represent
values	calculated	at	run-time).	Unlike	function	objects,	code	objects
are	immutable	and	contain	no	references	(directly	or	indirectly)	to
mutable	objects.

Special	read-only	attributes:	co_name	gives	the	function	name;
co_argcount	is	the	number	of	positional	arguments	(including
arguments	with	default	values);	co_nlocals	is	the	number	of	local
variables	used	by	the	function	(including	arguments);	co_varnames
is	a	tuple	containing	the	names	of	the	local	variables	(starting	with	the
argument	names);	co_cellvars	is	a	tuple	containing	the	names	of
local	variables	that	are	referenced	by	nested	functions;
co_freevars	is	a	tuple	containing	the	names	of	free	variables;
co_code	is	a	string	representing	the	sequence	of	bytecode
instructions;	co_consts	is	a	tuple	containing	the	literals	used	by	the
bytecode;	co_names	is	a	tuple	containing	the	names	used	by	the
bytecode;	co_filename	is	the	filename	from	which	the	code	was
compiled;	co_firstlineno	is	the	first	line	number	of	the	function;
co_lnotab	is	a	string	encoding	the	mapping	from	byte	code	offsets
to	line	numbers	(for	details	see	the	source	code	of	the	interpreter);

co_stacksize	is	the	required	stack	size	(including	local	variables);
co_flags	is	an	integer	encoding	a	number	of	flags	for	the
interpreter.

The	following	flag	bits	are	defined	for	co_flags:	bit	0x04	is	set	if
the	function	uses	the	"*arguments"	syntax	to	accept	an	arbitrary
number	of	positional	arguments;	bit	0x08	is	set	if	the	function	uses
the	"**keywords"	syntax	to	accept	arbitrary	keyword	arguments;	bit
0x20	is	set	if	the	function	is	a	generator.

Future	feature	declarations	("from	__future__	import
division")	also	use	bits	in	co_flags	to	indicate	whether	a	code
object	was	compiled	with	a	particular	feature	enabled:	bit	0x2000	is
set	if	the	function	was	compiled	with	future	division	enabled;	bits
0x10	and	0x1000	were	used	in	earlier	versions	of	Python.

Other	bits	in	co_flags	are	reserved	for	internal	use.

If	a	code	object	represents	a	function,	the	first	item	in	co_consts	is
the	documentation	string	of	the	function,	or	None	if	undefined.

Frame	objects
Frame	objects	represent	execution	frames.	They	may	occur	in
traceback	objects	(see	below).

Special	read-only	attributes:	f_back	is	to	the	previous	stack	frame
(towards	the	caller),	or	None	if	this	is	the	bottom	stack	frame;
f_code	is	the	code	object	being	executed	in	this	frame;	f_locals
is	the	dictionary	used	to	look	up	local	variables;	f_globals	is	used
for	global	variables;	f_builtins	is	used	for	built-in	(intrinsic)
names;	f_restricted	is	a	flag	indicating	whether	the	function	is
executing	in	restricted	execution	mode;	f_lasti	gives	the	precise
instruction	(this	is	an	index	into	the	bytecode	string	of	the	code
object).

Special	writable	attributes:	f_trace,	if	not	None,	is	a	function
called	at	the	start	of	each	source	code	line	(this	is	used	by	the
debugger);	f_exc_type,	f_exc_value,	f_exc_traceback
represent	the	most	recent	exception	caught	in	this	frame;	f_lineno

is	the	current	line	number	of	the	frame	--	writing	to	this	from	within	a
trace	function	jumps	to	the	given	line	(only	for	the	bottom-most
frame).	A	debugger	can	implement	a	Jump	command	(aka	Set	Next
Statement)	by	writing	to	f_lineno.

Traceback	objects
Traceback	objects	represent	a	stack	trace	of	an	exception.	A	traceback
object	is	created	when	an	exception	occurs.	When	the	search	for	an
exception	handler	unwinds	the	execution	stack,	at	each	unwound	level
a	traceback	object	is	inserted	in	front	of	the	current	traceback.	When
an	exception	handler	is	entered,	the	stack	trace	is	made	available	to	the
program.	(See	section	7.4,	``The	try	statement.'')	It	is	accessible	as
sys.exc_traceback,	and	also	as	the	third	item	of	the	tuple
returned	by	sys.exc_info().	The	latter	is	the	preferred	interface,
since	it	works	correctly	when	the	program	is	using	multiple	threads.
When	the	program	contains	no	suitable	handler,	the	stack	trace	is
written	(nicely	formatted)	to	the	standard	error	stream;	if	the
interpreter	is	interactive,	it	is	also	made	available	to	the	user	as
sys.last_traceback.

Special	read-only	attributes:	tb_next	is	the	next	level	in	the	stack
trace	(towards	the	frame	where	the	exception	occurred),	or	None	if
there	is	no	next	level;	tb_frame	points	to	the	execution	frame	of	the
current	level;	tb_lineno	gives	the	line	number	where	the	exception
occurred;	tb_lasti	indicates	the	precise	instruction.	The	line
number	and	last	instruction	in	the	traceback	may	differ	from	the	line
number	of	its	frame	object	if	the	exception	occurred	in	a	try
statement	with	no	matching	except	clause	or	with	a	finally	clause.

Slice	objects
Slice	objects	are	used	to	represent	slices	when	extended	slice	syntax	is
used.	This	is	a	slice	using	two	colons,	or	multiple	slices	or	ellipses
separated	by	commas,	e.g.,	a[i:j:step],	a[i:j,	k:l],	or
a[...,	i:j].	They	are	also	created	by	the	built-in	slice()
function.

Special	read-only	attributes:	start	is	the	lower	bound;	stop	is	the
upper	bound;	step	is	the	step	value;	each	is	None	if	omitted.	These
attributes	can	have	any	type.

Slice	objects	support	one	method:

indices(self,	length)
This	method	takes	a	single	integer	argument	length	and	computes
information	about	the	extended	slice	that	the	slice	object	would
describe	if	applied	to	a	sequence	of	length	items.	It	returns	a	tuple
of	three	integers;	respectively	these	are	the	start	and	stop	indices
and	the	step	or	stride	length	of	the	slice.	Missing	or	out-of-bounds
indices	are	handled	in	a	manner	consistent	with	regular	slices.
New	in	version	2.3.

Static	method	objects
Static	method	objects	provide	a	way	of	defeating	the	transformation	of
function	objects	to	method	objects	described	above.	A	static	method
object	is	a	wrapper	around	any	other	object,	usually	a	user-defined
method	object.	When	a	static	method	object	is	retrieved	from	a	class	or
a	class	instance,	the	object	actually	returned	is	the	wrapped	object,
which	is	not	subject	to	any	further	transformation.	Static	method
objects	are	not	themselves	callable,	although	the	objects	they	wrap
usually	are.	Static	method	objects	are	created	by	the	built-in
staticmethod()	constructor.

Class	method	objects
A	class	method	object,	like	a	static	method	object,	is	a	wrapper	around
another	object	that	alters	the	way	in	which	that	object	is	retrieved	from
classes	and	class	instances.	The	behaviour	of	class	method	objects
upon	such	retrieval	is	described	above,	under	``User-defined	methods''.
Class	method	objects	are	created	by	the	built-in	classmethod()
constructor.

Python	Reference	Manual
Previous:	3.1	Objects,	values	and	Up:	3.	Data	model	Next:	3.3	Special	method
names

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.2	The	standard	type	Up:	3.	Data	model	Next:	3.3.1	Basic
customization

3.3	Special	method	names
A	class	can	implement	certain	operations	that	are	invoked	by	special	syntax
(such	as	arithmetic	operations	or	subscripting	and	slicing)	by	defining	methods
with	special	names.This	is	Python's	approach	to	operator	overloading,	allowing
classes	to	define	their	own	behavior	with	respect	to	language	operators.	For
instance,	if	a	class	defines	a	method	named	__getitem__(),	and	x	is	an
instance	of	this	class,	then	x[i]	is	equivalent	to	x.__getitem__(i).
Except	where	mentioned,	attempts	to	execute	an	operation	raise	an	exception
when	no	appropriate	method	is	defined.

When	implementing	a	class	that	emulates	any	built-in	type,	it	is	important	that
the	emulation	only	be	implemented	to	the	degree	that	it	makes	sense	for	the
object	being	modelled.	For	example,	some	sequences	may	work	well	with
retrieval	of	individual	elements,	but	extracting	a	slice	may	not	make	sense.	(One
example	of	this	is	the	NodeList	interface	in	the	W3C's	Document	Object
Model.)

Subsections

3.3.1	Basic	customization
3.3.2	Customizing	attribute	access

3.3.2.1	More	attribute	access	for	new-style	classes
3.3.2.2	Implementing	Descriptors
3.3.2.3	Invoking	Descriptors
3.3.2.4	__slots__

3.3.3	Customizing	class	creation
3.3.4	Emulating	callable	objects
3.3.5	Emulating	container	types
3.3.6	Additional	methods	for	emulation	of	sequence	types
3.3.7	Emulating	numeric	types
3.3.8	Coercion	rules

Python	Reference	Manual
Previous:	3.2	The	standard	type	Up:	3.	Data	model	Next:	3.3.1	Basic
customization

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3	Special	method	names	Up:	3.3	Special	method	names	Next:
3.3.2	Customizing	attribute	access

3.3.1	Basic	customization

__init__(self[,	...])
Called	when	the	instance	is	created.	The	arguments	are	those	passed	to	the
class	constructor	expression.	If	a	base	class	has	an	__init__()	method,
the	derived	class's	__init__()	method,	if	any,	must	explicitly	call	it	to
ensure	proper	initialization	of	the	base	class	part	of	the	instance;	for
example:	"BaseClass.__init__(self,	[args...])".	As	a	special
constraint	on	constructors,	no	value	may	be	returned;	doing	so	will	cause	a
TypeError	to	be	raised	at	runtime.

__del__(self)
Called	when	the	instance	is	about	to	be	destroyed.	This	is	also	called	a
destructor.	If	a	base	class	has	a	__del__()	method,	the	derived	class's
__del__()	method,	if	any,	must	explicitly	call	it	to	ensure	proper
deletion	of	the	base	class	part	of	the	instance.	Note	that	it	is	possible
(though	not	recommended!)	for	the	__del__()	method	to	postpone
destruction	of	the	instance	by	creating	a	new	reference	to	it.	It	may	then	be
called	at	a	later	time	when	this	new	reference	is	deleted.	It	is	not	guaranteed
that	__del__()	methods	are	called	for	objects	that	still	exist	when	the
interpreter	exits.

Note: 	"del	x"	doesn't	directly	call	x.__del__()	--	the
former	decrements	the	reference	count	for	x	by	one,	and	the
latter	is	only	called	when	x's	reference	count	reaches	zero.
Some	common	situations	that	may	prevent	the	reference
count	of	an	object	from	going	to	zero	include:	circular
references	between	objects	(e.g.,	a	doubly-linked	list	or	a
tree	data	structure	with	parent	and	child	pointers);	a
reference	to	the	object	on	the	stack	frame	of	a	function	that
caught	an	exception	(the	traceback	stored	in
sys.exc_traceback	keeps	the	stack	frame	alive);	or	a
reference	to	the	object	on	the	stack	frame	that	raised	an
unhandled	exception	in	interactive	mode	(the	traceback
stored	in	sys.last_traceback	keeps	the	stack	frame

alive).	The	first	situation	can	only	be	remedied	by	explicitly
breaking	the	cycles;	the	latter	two	situations	can	be	resolved
by	storing	None	in	sys.exc_traceback	or
sys.last_traceback.	Circular	references	which	are
garbage	are	detected	when	the	option	cycle	detector	is
enabled	(it's	on	by	default),	but	can	only	be	cleaned	up	if
there	are	no	Python-level	__del__()	methods	involved.
Refer	to	the	documentation	for	the	gc	module	for	more
information	about	how	__del__()	methods	are	handled
by	the	cycle	detector,	particularly	the	description	of	the
garbage	value.

Warning: 	Due	to	the	precarious	circumstances	under
which	__del__()	methods	are	invoked,	exceptions	that
occur	during	their	execution	are	ignored,	and	a	warning	is
printed	to	sys.stderr	instead.	Also,	when	__del__()
is	invoked	in	response	to	a	module	being	deleted	(e.g.,	when
execution	of	the	program	is	done),	other	globals	referenced
by	the	__del__()	method	may	already	have	been	deleted.
For	this	reason,	__del__()	methods	should	do	the
absolute	minimum	needed	to	maintain	external	invariants.
Starting	with	version	1.5,	Python	guarantees	that	globals
whose	name	begins	with	a	single	underscore	are	deleted
from	their	module	before	other	globals	are	deleted;	if	no
other	references	to	such	globals	exist,	this	may	help	in
assuring	that	imported	modules	are	still	available	at	the	time
when	the	__del__()	method	is	called.

__repr__(self)
Called	by	the	repr()	built-in	function	and	by	string	conversions	(reverse
quotes)	to	compute	the	``official''	string	representation	of	an	object.	If	at	all
possible,	this	should	look	like	a	valid	Python	expression	that	could	be	used
to	recreate	an	object	with	the	same	value	(given	an	appropriate
environment).	If	this	is	not	possible,	a	string	of	the	form	"<...some	useful
description...>"	should	be	returned.	The	return	value	must	be	a	string

object.	If	a	class	defines	__repr__()	but	not	__str__(),	then
__repr__()	is	also	used	when	an	``informal''	string	representation	of
instances	of	that	class	is	required.

This	is	typically	used	for	debugging,	so	it	is	important	that	the
representation	is	information-rich	and	unambiguous.

__str__(self)
Called	by	the	str()	built-in	function	and	by	the	print	statement	to
compute	the	``informal''	string	representation	of	an	object.	This	differs	from
__repr__()	in	that	it	does	not	have	to	be	a	valid	Python	expression:	a
more	convenient	or	concise	representation	may	be	used	instead.	The	return
value	must	be	a	string	object.

__lt__(self,	other)
__le__(self,	other)
__eq__(self,	other)
__ne__(self,	other)
__gt__(self,	other)
__ge__(self,	other)

New	in	version	2.1.	These	are	the	so-called	``rich	comparison''	methods,
and	are	called	for	comparison	operators	in	preference	to	__cmp__()
below.	The	correspondence	between	operator	symbols	and	method	names	is
as	follows:	x<y	calls	x.__lt__(y),	x<=y	calls	x.__le__(y),	x==y
calls	x.__eq__(y),	x!=y	and	x<>y	call	x.__ne__(y),	x>y	calls
x.__gt__(y),	and	x>=y	calls	x.__ge__(y).	These	methods	can	return
any	value,	but	if	the	comparison	operator	is	used	in	a	Boolean	context,	the
return	value	should	be	interpretable	as	a	Boolean	value,	else	a	TypeError
will	be	raised.	By	convention,	False	is	used	for	false	and	True	for	true.

There	are	no	implied	relationships	among	the	comparison	operators.	The
truth	of	x==y	does	not	imply	that	x!=y	is	false.	Accordingly,	when	defining
__eq__,	one	should	also	define	__ne__	so	that	the	operators	will	behave
as	expected.

There	are	no	reflected	(swapped-argument)	versions	of	these	methods	(to	be
used	when	the	left	argument	does	not	support	the	operation	but	the	right

argument	does);	rather,	__lt__()	and	__gt__()	are	each	other's
reflection,	__le__()	and	__ge__()	are	each	other's	reflection,	and
__eq__()	and	__ne__()	are	their	own	reflection.

Arguments	to	rich	comparison	methods	are	never	coerced.	A	rich
comparison	method	may	return	NotImplemented	if	it	does	not
implement	the	operation	for	a	given	pair	of	arguments.

__cmp__(self,	other)
Called	by	comparison	operations	if	rich	comparison	(see	above)	is	not
defined.	Should	return	a	negative	integer	if	self	<	other,	zero	if	self
==	other,	a	positive	integer	if	self	>	other.	If	no	__cmp__(),
__eq__()	or	__ne__()	operation	is	defined,	class	instances	are
compared	by	object	identity	(``address'').	See	also	the	description	of
__hash__()	for	some	important	notes	on	creating	objects	which	support
custom	comparison	operations	and	are	usable	as	dictionary	keys.	(Note:	the
restriction	that	exceptions	are	not	propagated	by	__cmp__()	has	been
removed	since	Python	1.5.)

__rcmp__(self,	other)
Changed	in	version	2.1:	No	longer	supported.

__hash__(self)
Called	for	the	key	object	for	dictionary	operations,	and	by	the	built-in
function	hash().	Should	return	a	32-bit	integer	usable	as	a	hash	value	for
dictionary	operations.	The	only	required	property	is	that	objects	which
compare	equal	have	the	same	hash	value;	it	is	advised	to	somehow	mix
together	(e.g.,	using	exclusive	or)	the	hash	values	for	the	components	of	the
object	that	also	play	a	part	in	comparison	of	objects.	If	a	class	does	not
define	a	__cmp__()	method	it	should	not	define	a	__hash__()
operation	either;	if	it	defines	__cmp__()	or	__eq__()	but	not
__hash__(),	its	instances	will	not	be	usable	as	dictionary	keys.	If	a	class
defines	mutable	objects	and	implements	a	__cmp__()	or	__eq__()
method,	it	should	not	implement	__hash__(),	since	the	dictionary
implementation	requires	that	a	key's	hash	value	is	immutable	(if	the	object's
hash	value	changes,	it	will	be	in	the	wrong	hash	bucket).

__nonzero__(self)

Called	to	implement	truth	value	testing,	and	the	built-in	operation	bool();
should	return	False	or	True,	or	their	integer	equivalents	0	or	1.	When
this	method	is	not	defined,	__len__()	is	called,	if	it	is	defined	(see
below).	If	a	class	defines	neither	__len__()	nor	__nonzero__(),	all
its	instances	are	considered	true.

__unicode__(self)
Called	to	implement	unicode()	builtin;	should	return	a	Unicode	object.
When	this	method	is	not	defined,	string	conversion	is	attempted,	and	the
result	of	string	conversion	is	converted	to	Unicode	using	the	system	default
encoding.

Python	Reference	Manual
Previous:	3.3	Special	method	names	Up:	3.3	Special	method	names	Next:
3.3.2	Customizing	attribute	access

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3.1	Basic	customization	Up:	3.3	Special	method	names	Next:
3.3.2.1	More	attribute	access

3.3.2	Customizing	attribute	access
The	following	methods	can	be	defined	to	customize	the	meaning	of	attribute
access	(use	of,	assignment	to,	or	deletion	of	x.name)	for	class	instances.

__getattr__(self,	name)
Called	when	an	attribute	lookup	has	not	found	the	attribute	in	the	usual
places	(i.e.	it	is	not	an	instance	attribute	nor	is	it	found	in	the	class	tree	for
self).	name	is	the	attribute	name.	This	method	should	return	the
(computed)	attribute	value	or	raise	an	AttributeError	exception.

Note	that	if	the	attribute	is	found	through	the	normal	mechanism,
__getattr__()	is	not	called.	(This	is	an	intentional	asymmetry	between
__getattr__()	and	__setattr__().)	This	is	done	both	for
efficiency	reasons	and	because	otherwise	__setattr__()	would	have
no	way	to	access	other	attributes	of	the	instance.	Note	that	at	least	for
instance	variables,	you	can	fake	total	control	by	not	inserting	any	values	in
the	instance	attribute	dictionary	(but	instead	inserting	them	in	another
object).	See	the	__getattribute__()	method	below	for	a	way	to
actually	get	total	control	in	new-style	classes.

__setattr__(self,	name,	value)
Called	when	an	attribute	assignment	is	attempted.	This	is	called	instead	of
the	normal	mechanism	(i.e.	store	the	value	in	the	instance	dictionary).	name
is	the	attribute	name,	value	is	the	value	to	be	assigned	to	it.

If	__setattr__()	wants	to	assign	to	an	instance	attribute,	it	should	not
simply	execute	"self.name	=	value"	--	this	would	cause	a	recursive
call	to	itself.	Instead,	it	should	insert	the	value	in	the	dictionary	of	instance
attributes,	e.g.,	"self.__dict__[name]	=	value".	For	new-style
classes,	rather	than	accessing	the	instance	dictionary,	it	should	call	the	base
class	method	with	the	same	name,	for	example,
"object.__setattr__(self,	name,	value)".

__delattr__(self,	name)
Like	__setattr__()	but	for	attribute	deletion	instead	of	assignment.

This	should	only	be	implemented	if	"del	obj.name"	is	meaningful	for
the	object.

Subsections

3.3.2.1	More	attribute	access	for	new-style	classes
3.3.2.2	Implementing	Descriptors
3.3.2.3	Invoking	Descriptors
3.3.2.4	__slots__

Python	Reference	Manual
Previous:	3.3.1	Basic	customization	Up:	3.3	Special	method	names	Next:
3.3.2.1	More	attribute	access

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3.2.4	__slots__	Up:	3.3	Special	method	names	Next:	3.3.4
Emulating	callable	objects

3.3.3	Customizing	class	creation
By	default,	new-style	classes	are	constructed	using	type().	A	class	definition
is	read	into	a	separate	namespace	and	the	value	of	class	name	is	bound	to	the
result	of	type(name,	bases,	dict).

When	the	class	definition	is	read,	if	__metaclass__	is	defined	then	the	callable
assigned	to	it	will	be	called	instead	of	type().	The	allows	classes	or	functions
to	be	written	which	monitor	or	alter	the	class	creation	process:

Modifying	the	class	dictionary	prior	to	the	class	being	created.
Returning	an	instance	of	another	class	-	essentially	performing	the	role	of	a
factory	function.

__metaclass__

This	variable	can	be	any	callable	accepting	arguments	for	name,	bases,
and	dict.	Upon	class	creation,	the	callable	is	used	instead	of	the	built-in
type().	New	in	version	2.2.

The	appropriate	metaclass	is	determined	by	the	following	precedence	rules:

If	dict['__metaclass__']	exists,	it	is	used.

Otherwise,	if	there	is	at	least	one	base	class,	its	metaclass	is	used	(this	looks
for	a	__class__	attribute	first	and	if	not	found,	uses	its	type).

Otherwise,	if	a	global	variable	named	__metaclass__	exists,	it	is	used.

Otherwise,	the	old-style,	classic	metaclass	(types.ClassType)	is	used.

The	potential	uses	for	metaclasses	are	boundless.	Some	ideas	that	have	been
explored	including	logging,	interface	checking,	automatic	delegation,	automatic
property	creation,	proxies,	frameworks,	and	automatic	resource
locking/synchronization.

Python	Reference	Manual
Previous:	3.3.2.4	__slots__	Up:	3.3	Special	method	names	Next:	3.3.4

Emulating	callable	objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3.3	Customizing	class	creation	Up:	3.3	Special	method	names
Next:	3.3.5	Emulating	container	types

3.3.4	Emulating	callable	objects

__call__(self[,	args...])
Called	when	the	instance	is	``called''	as	a	function;	if	this	method	is	defined,
x(arg1,	arg2,	...)	is	a	shorthand	for	x.__call__(arg1,
arg2,	...).

Python	Reference	Manual
Previous:	3.3.3	Customizing	class	creation	Up:	3.3	Special	method	names
Next:	3.3.5	Emulating	container	types

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3.4	Emulating	callable	objects	Up:	3.3	Special	method	names
Next:	3.3.6	Additional	methods	for

3.3.5	Emulating	container	types
The	following	methods	can	be	defined	to	implement	container	objects.
Containers	usually	are	sequences	(such	as	lists	or	tuples)	or	mappings	(like
dictionaries),	but	can	represent	other	containers	as	well.	The	first	set	of	methods
is	used	either	to	emulate	a	sequence	or	to	emulate	a	mapping;	the	difference	is
that	for	a	sequence,	the	allowable	keys	should	be	the	integers	k	for	which	0	<=
k	<	N	where	N	is	the	length	of	the	sequence,	or	slice	objects,	which	define	a
range	of	items.	(For	backwards	compatibility,	the	method	__getslice__()
(see	below)	can	also	be	defined	to	handle	simple,	but	not	extended	slices.)	It	is
also	recommended	that	mappings	provide	the	methods	keys(),	values(),
items(),	has_key(),	get(),	clear(),	setdefault(),
iterkeys(),	itervalues(),	iteritems(),	pop(),	popitem(),
copy(),	and	update()	behaving	similar	to	those	for	Python's	standard
dictionary	objects.	The	UserDict	module	provides	a	DictMixin	class	to
help	create	those	methods	from	a	base	set	of	__getitem__(),
__setitem__(),	__delitem__(),	and	keys().	Mutable	sequences
should	provide	methods	append(),	count(),	index(),	extend(),
insert(),	pop(),	remove(),	reverse()	and	sort(),	like	Python
standard	list	objects.	Finally,	sequence	types	should	implement	addition
(meaning	concatenation)	and	multiplication	(meaning	repetition)	by	defining	the
methods	__add__(),	__radd__(),	__iadd__(),	__mul__(),
__rmul__()	and	__imul__()	described	below;	they	should	not	define
__coerce__()	or	other	numerical	operators.	It	is	recommended	that	both
mappings	and	sequences	implement	the	__contains__()	method	to	allow
efficient	use	of	the	in	operator;	for	mappings,	in	should	be	equivalent	of
has_key();	for	sequences,	it	should	search	through	the	values.	It	is	further
recommended	that	both	mappings	and	sequences	implement	the	__iter__()
method	to	allow	efficient	iteration	through	the	container;	for	mappings,
__iter__()	should	be	the	same	as	iterkeys();	for	sequences,	it	should
iterate	through	the	values.

__len__(self)
Called	to	implement	the	built-in	function	len().	Should	return	the	length
of	the	object,	an	integer	>=	0.	Also,	an	object	that	doesn't	define	a
__nonzero__()	method	and	whose	__len__()	method	returns	zero	is

considered	to	be	false	in	a	Boolean	context.

__getitem__(self,	key)
Called	to	implement	evaluation	of	self[key].	For	sequence	types,	the
accepted	keys	should	be	integers	and	slice	objects.	Note	that	the	special
interpretation	of	negative	indexes	(if	the	class	wishes	to	emulate	a	sequence
type)	is	up	to	the	__getitem__()	method.	If	key	is	of	an	inappropriate
type,	TypeError	may	be	raised;	if	of	a	value	outside	the	set	of	indexes
for	the	sequence	(after	any	special	interpretation	of	negative	values),
IndexError	should	be	raised.	Note:	for	loops	expect	that	an
IndexError	will	be	raised	for	illegal	indexes	to	allow	proper	detection	of
the	end	of	the	sequence.

__setitem__(self,	key,	value)
Called	to	implement	assignment	to	self[key].	Same	note	as	for
__getitem__().	This	should	only	be	implemented	for	mappings	if	the
objects	support	changes	to	the	values	for	keys,	or	if	new	keys	can	be	added,
or	for	sequences	if	elements	can	be	replaced.	The	same	exceptions	should
be	raised	for	improper	key	values	as	for	the	__getitem__()	method.

__delitem__(self,	key)
Called	to	implement	deletion	of	self[key].	Same	note	as	for
__getitem__().	This	should	only	be	implemented	for	mappings	if	the
objects	support	removal	of	keys,	or	for	sequences	if	elements	can	be
removed	from	the	sequence.	The	same	exceptions	should	be	raised	for
improper	key	values	as	for	the	__getitem__()	method.

__iter__(self)
This	method	is	called	when	an	iterator	is	required	for	a	container.	This
method	should	return	a	new	iterator	object	that	can	iterate	over	all	the
objects	in	the	container.	For	mappings,	it	should	iterate	over	the	keys	of	the
container,	and	should	also	be	made	available	as	the	method	iterkeys().

Iterator	objects	also	need	to	implement	this	method;	they	are	required	to
return	themselves.	For	more	information	on	iterator	objects,	see	``Iterator
Types''	in	the	Python	Library	Reference.

The	membership	test	operators	(in	and	not	in)	are	normally	implemented	as

an	iteration	through	a	sequence.	However,	container	objects	can	supply	the
following	special	method	with	a	more	efficient	implementation,	which	also	does
not	require	the	object	be	a	sequence.

__contains__(self,	item)
Called	to	implement	membership	test	operators.	Should	return	true	if	item	is
in	self,	false	otherwise.	For	mapping	objects,	this	should	consider	the	keys
of	the	mapping	rather	than	the	values	or	the	key-item	pairs.

Python	Reference	Manual
Previous:	3.3.4	Emulating	callable	objects	Up:	3.3	Special	method	names
Next:	3.3.6	Additional	methods	for

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3.5	Emulating	container	types	Up:	3.3	Special	method	names
Next:	3.3.7	Emulating	numeric	types

3.3.6	Additional	methods	for	emulation	of
sequence	types
The	following	optional	methods	can	be	defined	to	further	emulate	sequence
objects.	Immutable	sequences	methods	should	at	most	only	define
__getslice__();	mutable	sequences	might	define	all	three	methods.

__getslice__(self,	i,	j)
Deprecated	since	release	2.0.	Support	slice	objects	as	parameters	to	the
__getitem__()	method.

Called	to	implement	evaluation	of	self[i:j].	The	returned	object	should	be
of	the	same	type	as	self.	Note	that	missing	i	or	j	in	the	slice	expression	are
replaced	by	zero	or	sys.maxint,	respectively.	If	negative	indexes	are
used	in	the	slice,	the	length	of	the	sequence	is	added	to	that	index.	If	the
instance	does	not	implement	the	__len__()	method,	an
AttributeError	is	raised.	No	guarantee	is	made	that	indexes	adjusted
this	way	are	not	still	negative.	Indexes	which	are	greater	than	the	length	of
the	sequence	are	not	modified.	If	no	__getslice__()	is	found,	a	slice
object	is	created	instead,	and	passed	to	__getitem__()	instead.

__setslice__(self,	i,	j,	sequence)
Called	to	implement	assignment	to	self[i:j].	Same	notes	for	i	and	j	as	for
__getslice__().

This	method	is	deprecated.	If	no	__setslice__()	is	found,	or	for
extended	slicing	of	the	form	self[i:j:k],	a	slice	object	is	created,	and
passed	to	__setitem__(),	instead	of	__setslice__()	being	called.

__delslice__(self,	i,	j)
Called	to	implement	deletion	of	self[i:j].	Same	notes	for	i	and	j	as	for
__getslice__().	This	method	is	deprecated.	If	no	__delslice__()
is	found,	or	for	extended	slicing	of	the	form	self[i:j:k],	a	slice	object	is
created,	and	passed	to	__delitem__(),	instead	of	__delslice__()
being	called.

Notice	that	these	methods	are	only	invoked	when	a	single	slice	with	a	single
colon	is	used,	and	the	slice	method	is	available.	For	slice	operations	involving
extended	slice	notation,	or	in	absence	of	the	slice	methods,	__getitem__(),
__setitem__()	or	__delitem__()	is	called	with	a	slice	object	as
argument.

The	following	example	demonstrate	how	to	make	your	program	or	module
compatible	with	earlier	versions	of	Python	(assuming	that	methods
__getitem__(),	__setitem__()	and	__delitem__()	support	slice
objects	as	arguments):

class	MyClass:

				...

				def	__getitem__(self,	index):

								...

				def	__setitem__(self,	index,	value):

								...

				def	__delitem__(self,	index):

								...

				if	sys.version_info	<	(2,	0):

								#	They	won't	be	defined	if	version	is	at	least	2.0	final

								def	__getslice__(self,	i,	j):

												return	self[max(0,	i):max(0,	j):]

								def	__setslice__(self,	i,	j,	seq):

												self[max(0,	i):max(0,	j):]	=	seq

								def	__delslice__(self,	i,	j):

												del	self[max(0,	i):max(0,	j):]

				...

Note	the	calls	to	max();	these	are	necessary	because	of	the	handling	of	negative
indices	before	the	__*slice__()	methods	are	called.	When	negative	indexes
are	used,	the	__*item__()	methods	receive	them	as	provided,	but	the
__*slice__()	methods	get	a	``cooked''	form	of	the	index	values.	For	each
negative	index	value,	the	length	of	the	sequence	is	added	to	the	index	before
calling	the	method	(which	may	still	result	in	a	negative	index);	this	is	the
customary	handling	of	negative	indexes	by	the	built-in	sequence	types,	and	the
__*item__()	methods	are	expected	to	do	this	as	well.	However,	since	they
should	already	be	doing	that,	negative	indexes	cannot	be	passed	in;	they	must	be
constrained	to	the	bounds	of	the	sequence	before	being	passed	to	the
__*item__()	methods.	Calling	max(0,	i)	conveniently	returns	the	proper
value.

Python	Reference	Manual
Previous:	3.3.5	Emulating	container	types	Up:	3.3	Special	method	names
Next:	3.3.7	Emulating	numeric	types

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3.6	Additional	methods	for	Up:	3.3	Special	method	names	Next:
3.3.8	Coercion	rules

3.3.7	Emulating	numeric	types
The	following	methods	can	be	defined	to	emulate	numeric	objects.	Methods
corresponding	to	operations	that	are	not	supported	by	the	particular	kind	of
number	implemented	(e.g.,	bitwise	operations	for	non-integral	numbers)	should
be	left	undefined.

__add__(self,	other)
__sub__(self,	other)
__mul__(self,	other)
__floordiv__(self,	other)
__mod__(self,	other)
__divmod__(self,	other)
__pow__(self,	other[,	modulo])
__lshift__(self,	other)
__rshift__(self,	other)
__and__(self,	other)
__xor__(self,	other)
__or__(self,	other)

These	methods	are	called	to	implement	the	binary	arithmetic	operations	(+,
-,	*,	//,	%,	divmod(),	pow(),	**,	<<,	>>,	&,	^,	|).	For	instance,	to
evaluate	the	expression	x+y,	where	x	is	an	instance	of	a	class	that	has	an
__add__()	method,	x.__add__(y)	is	called.	The	__divmod__()
method	should	be	the	equivalent	to	using	__floordiv__()	and
__mod__();	it	should	not	be	related	to	__truediv__()	(described
below).	Note	that	__pow__()	should	be	defined	to	accept	an	optional
third	argument	if	the	ternary	version	of	the	built-in	pow()	function	is	to	be
supported.

__div__(self,	other)
__truediv__(self,	other)

The	division	operator	(/)	is	implemented	by	these	methods.	The
__truediv__()	method	is	used	when	__future__.division	is	in

effect,	otherwise	__div__()	is	used.	If	only	one	of	these	two	methods	is
defined,	the	object	will	not	support	division	in	the	alternate	context;
TypeError	will	be	raised	instead.

__radd__(self,	other)
__rsub__(self,	other)
__rmul__(self,	other)
__rdiv__(self,	other)
__rtruediv__(self,	other)
__rfloordiv__(self,	other)
__rmod__(self,	other)
__rdivmod__(self,	other)
__rpow__(self,	other)
__rlshift__(self,	other)
__rrshift__(self,	other)
__rand__(self,	other)
__rxor__(self,	other)
__ror__(self,	other)

These	methods	are	called	to	implement	the	binary	arithmetic	operations	(+,
-,	*,	/,	%,	divmod(),	pow(),	**,	<<,	>>,	&,	^,	|)	with	reflected
(swapped)	operands.	These	functions	are	only	called	if	the	left	operand	does
not	support	the	corresponding	operation.	For	instance,	to	evaluate	the
expression	x-y,	where	y	is	an	instance	of	a	class	that	has	an	__rsub__()
method,	y.__rsub__(x)	is	called.	Note	that	ternary	pow()	will	not	try
calling	__rpow__()	(the	coercion	rules	would	become	too	complicated).

__iadd__(self,	other)
__isub__(self,	other)
__imul__(self,	other)
__idiv__(self,	other)
__itruediv__(self,	other)
__ifloordiv__(self,	other)

__imod__(self,	other)
__ipow__(self,	other[,	modulo])
__ilshift__(self,	other)
__irshift__(self,	other)
__iand__(self,	other)
__ixor__(self,	other)
__ior__(self,	other)

These	methods	are	called	to	implement	the	augmented	arithmetic
operations	(+=,	-=,	*=,	/=,	%=,	**=,	<<=,	>>=,	&=,	^=,	|=).	These
methods	should	attempt	to	do	the	operation	in-place	(modifying	self)	and
return	the	result	(which	could	be,	but	does	not	have	to	be,	self).	If	a	specific
method	is	not	defined,	the	augmented	operation	falls	back	to	the	normal
methods.	For	instance,	to	evaluate	the	expression	x+=y,	where	x	is	an
instance	of	a	class	that	has	an	__iadd__()	method,	x.__iadd__(y)	is
called.	If	x	is	an	instance	of	a	class	that	does	not	define	a	__iadd()
method,	x.__add__(y)	and	y.__radd__(x)	are	considered,	as	with
the	evaluation	of	x+y.

__neg__(self)
__pos__(self)
__abs__(self)
__invert__(self)

Called	to	implement	the	unary	arithmetic	operations	(-,	+,	abs()	and	~).

__complex__(self)
__int__(self)
__long__(self)
__float__(self)

Called	to	implement	the	built-in	functions	complex(),	int(),	long(),
and	float().	Should	return	a	value	of	the	appropriate	type.

__oct__(self)
__hex__(self)

Called	to	implement	the	built-in	functions	oct()	and	hex().	Should
return	a	string	value.

__coerce__(self,	other)
Called	to	implement	``mixed-mode''	numeric	arithmetic.	Should	either
return	a	2-tuple	containing	self	and	other	converted	to	a	common	numeric
type,	or	None	if	conversion	is	impossible.	When	the	common	type	would
be	the	type	of	other,	it	is	sufficient	to	return	None,	since	the	interpreter
will	also	ask	the	other	object	to	attempt	a	coercion	(but	sometimes,	if	the
implementation	of	the	other	type	cannot	be	changed,	it	is	useful	to	do	the
conversion	to	the	other	type	here).	A	return	value	of	NotImplemented	is
equivalent	to	returning	None.

Python	Reference	Manual
Previous:	3.3.6	Additional	methods	for	Up:	3.3	Special	method	names	Next:
3.3.8	Coercion	rules

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3.7	Emulating	numeric	types	Up:	3.3	Special	method	names	Next:
4.	Execution	model

3.3.8	Coercion	rules
This	section	used	to	document	the	rules	for	coercion.	As	the	language	has
evolved,	the	coercion	rules	have	become	hard	to	document	precisely;
documenting	what	one	version	of	one	particular	implementation	does	is
undesirable.	Instead,	here	are	some	informal	guidelines	regarding	coercion.	In
Python	3.0,	coercion	will	not	be	supported.

If	the	left	operand	of	a	%	operator	is	a	string	or	Unicode	object,	no	coercion
takes	place	and	the	string	formatting	operation	is	invoked	instead.

It	is	no	longer	recommended	to	define	a	coercion	operation.	Mixed-mode
operations	on	types	that	don't	define	coercion	pass	the	original	arguments	to
the	operation.

New-style	classes	(those	derived	from	object)	never	invoke	the
__coerce__()	method	in	response	to	a	binary	operator;	the	only	time
__coerce__()	is	invoked	is	when	the	built-in	function	coerce()	is
called.

For	most	intents	and	purposes,	an	operator	that	returns	NotImplemented
is	treated	the	same	as	one	that	is	not	implemented	at	all.

Below,	__op__()	and	__rop__()	are	used	to	signify	the	generic
method	names	corresponding	to	an	operator;	__iop__	is	used	for	the
corresponding	in-place	operator.	For	example,	for	the	operator	`+',
__add__()	and	__radd__()	are	used	for	the	left	and	right	variant	of
the	binary	operator,	and	__iadd__	for	the	in-place	variant.

For	objects	x	and	y,	first	x.__op__(y)	is	tried.	If	this	is	not	implemented
or	returns	NotImplemented,	y.__rop__(x)	is	tried.	If	this	is	also	not
implemented	or	returns	NotImplemented,	a	TypeError	exception	is
raised.	But	see	the	following	exception:

Exception	to	the	previous	item:	if	the	left	operand	is	an	instance	of	a	built-
in	type	or	a	new-style	class,	and	the	right	operand	is	an	instance	of	a	proper
subclass	of	that	type	or	class,	the	right	operand's	__rop__()	method	is

tried	before	the	left	operand's	__op__()	method.	This	is	done	so	that	a
subclass	can	completely	override	binary	operators.	Otherwise,	the	left
operand's	__op__	method	would	always	accept	the	right	operand:	when	an
instance	of	a	given	class	is	expected,	an	instance	of	a	subclass	of	that	class
is	always	acceptable.

When	either	operand	type	defines	a	coercion,	this	coercion	is	called	before
that	type's	__op__()	or	__rop__()	method	is	called,	but	no	sooner.	If
the	coercion	returns	an	object	of	a	different	type	for	the	operand	whose
coercion	is	invoked,	part	of	the	process	is	redone	using	the	new	object.

When	an	in-place	operator	(like	`+=')	is	used,	if	the	left	operand
implements	__iop__(),	it	is	invoked	without	any	coercion.	When	the
operation	falls	back	to	__op__()	and/or	__rop__(),	the	normal
coercion	rules	apply.

In	x+y,	if	x	is	a	sequence	that	implements	sequence	concatenation,	sequence
concatenation	is	invoked.

In	x*y,	if	one	operator	is	a	sequence	that	implements	sequence	repetition,
and	the	other	is	an	integer	(int	or	long),	sequence	repetition	is	invoked.

Rich	comparisons	(implemented	by	methods	__eq__()	and	so	on)	never
use	coercion.	Three-way	comparison	(implemented	by	__cmp__())	does
use	coercion	under	the	same	conditions	as	other	binary	operations	use	it.

In	the	current	implementation,	the	built-in	numeric	types	int,	long	and
float	do	not	use	coercion;	the	type	complex	however	does	use	it.	The
difference	can	become	apparent	when	subclassing	these	types.	Over	time,
the	type	complex	may	be	fixed	to	avoid	coercion.	All	these	types
implement	a	__coerce__()	method,	for	use	by	the	built-in	coerce()
function.

Python	Reference	Manual
Previous:	3.3.7	Emulating	numeric	types	Up:	3.3	Special	method	names	Next:
4.	Execution	model

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3.8	Coercion	rules	Up:	Python	Reference	Manual	Next:	4.1
Naming	and	binding

4.	Execution	model

Subsections

4.1	Naming	and	binding
4.1.1	Interaction	with	dynamic	features

4.2	Exceptions

Python	Reference	Manual
Previous:	3.3.8	Coercion	rules	Up:	Python	Reference	Manual	Next:	4.1
Naming	and	binding

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.	Execution	model	Up:	4.	Execution	model	Next:	4.1.1	Interaction
with	dynamic

4.1	Naming	and	binding
Names	refer	to	objects.	Names	are	introduced	by	name	binding	operations.	Each
occurrence	of	a	name	in	the	program	text	refers	to	the	binding	of	that	name
established	in	the	innermost	function	block	containing	the	use.

A	block	is	a	piece	of	Python	program	text	that	is	executed	as	a	unit.	The
following	are	blocks:	a	module,	a	function	body,	and	a	class	definition.	Each
command	typed	interactively	is	a	block.	A	script	file	(a	file	given	as	standard
input	to	the	interpreter	or	specified	on	the	interpreter	command	line	the	first
argument)	is	a	code	block.	A	script	command	(a	command	specified	on	the
interpreter	command	line	with	the	`-c'	option)	is	a	code	block.	The	file	read	by
the	built-in	function	execfile()	is	a	code	block.	The	string	argument	passed
to	the	built-in	function	eval()	and	to	the	exec	statement	is	a	code	block.	The
expression	read	and	evaluated	by	the	built-in	function	input()	is	a	code	block.

A	code	block	is	executed	in	an	execution	frame.	A	frame	contains	some
administrative	information	(used	for	debugging)	and	determines	where	and	how
execution	continues	after	the	code	block's	execution	has	completed.

A	scope	defines	the	visibility	of	a	name	within	a	block.	If	a	local	variable	is
defined	in	a	block,	its	scope	includes	that	block.	If	the	definition	occurs	in	a
function	block,	the	scope	extends	to	any	blocks	contained	within	the	defining
one,	unless	a	contained	block	introduces	a	different	binding	for	the	name.	The
scope	of	names	defined	in	a	class	block	is	limited	to	the	class	block;	it	does	not
extend	to	the	code	blocks	of	methods.

When	a	name	is	used	in	a	code	block,	it	is	resolved	using	the	nearest	enclosing
scope.	The	set	of	all	such	scopes	visible	to	a	code	block	is	called	the	block's
environment.

If	a	name	is	bound	in	a	block,	it	is	a	local	variable	of	that	block.	If	a	name	is
bound	at	the	module	level,	it	is	a	global	variable.	(The	variables	of	the	module
code	block	are	local	and	global.)	If	a	variable	is	used	in	a	code	block	but	not
defined	there,	it	is	a	free	variable.

When	a	name	is	not	found	at	all,	a	NameError	exception	is	raised.	If	the	name

refers	to	a	local	variable	that	has	not	been	bound,	a	UnboundLocalError
exception	is	raised.	UnboundLocalError	is	a	subclass	of	NameError.

The	following	constructs	bind	names:	formal	parameters	to	functions,	import
statements,	class	and	function	definitions	(these	bind	the	class	or	function	name
in	the	defining	block),	and	targets	that	are	identifiers	if	occurring	in	an
assignment,	for	loop	header,	or	in	the	second	position	of	an	except	clause
header.	The	import	statement	of	the	form	``"from	...import	*"''	binds
all	names	defined	in	the	imported	module,	except	those	beginning	with	an
underscore.	This	form	may	only	be	used	at	the	module	level.

A	target	occurring	in	a	del	statement	is	also	considered	bound	for	this	purpose
(though	the	actual	semantics	are	to	unbind	the	name).	It	is	illegal	to	unbind	a
name	that	is	referenced	by	an	enclosing	scope;	the	compiler	will	report	a
SyntaxError.

Each	assignment	or	import	statement	occurs	within	a	block	defined	by	a	class	or
function	definition	or	at	the	module	level	(the	top-level	code	block).

If	a	name	binding	operation	occurs	anywhere	within	a	code	block,	all	uses	of	the
name	within	the	block	are	treated	as	references	to	the	current	block.	This	can
lead	to	errors	when	a	name	is	used	within	a	block	before	it	is	bound.	This	rule	is
subtle.	Python	lacks	declarations	and	allows	name	binding	operations	to	occur
anywhere	within	a	code	block.	The	local	variables	of	a	code	block	can	be
determined	by	scanning	the	entire	text	of	the	block	for	name	binding	operations.

If	the	global	statement	occurs	within	a	block,	all	uses	of	the	name	specified	in
the	statement	refer	to	the	binding	of	that	name	in	the	top-level	namespace.
Names	are	resolved	in	the	top-level	namespace	by	searching	the	global
namespace,	i.e.	the	namespace	of	the	module	containing	the	code	block,	and	the
builtin	namespace,	the	namespace	of	the	module	__builtin__.	The	global
namespace	is	searched	first.	If	the	name	is	not	found	there,	the	builtin	namespace
is	searched.	The	global	statement	must	precede	all	uses	of	the	name.

The	built-in	namespace	associated	with	the	execution	of	a	code	block	is	actually
found	by	looking	up	the	name	__builtins__	in	its	global	namespace;	this
should	be	a	dictionary	or	a	module	(in	the	latter	case	the	module's	dictionary	is
used).	Normally,	the	__builtins__	namespace	is	the	dictionary	of	the	built-
in	module	__builtin__	(note:	no	`s').	If	it	isn't,	restricted	execution	mode	is

in	effect.

The	namespace	for	a	module	is	automatically	created	the	first	time	a	module	is
imported.	The	main	module	for	a	script	is	always	called	__main__.

The	global	statement	has	the	same	scope	as	a	name	binding	operation	in	the
same	block.	If	the	nearest	enclosing	scope	for	a	free	variable	contains	a	global
statement,	the	free	variable	is	treated	as	a	global.

A	class	definition	is	an	executable	statement	that	may	use	and	define	names.
These	references	follow	the	normal	rules	for	name	resolution.	The	namespace	of
the	class	definition	becomes	the	attribute	dictionary	of	the	class.	Names	defined
at	the	class	scope	are	not	visible	in	methods.

Subsections

4.1.1	Interaction	with	dynamic	features

Python	Reference	Manual
Previous:	4.	Execution	model	Up:	4.	Execution	model	Next:	4.1.1	Interaction
with	dynamic

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.1	Naming	and	binding	Up:	4.1	Naming	and	binding	Next:	4.2
Exceptions

4.1.1	Interaction	with	dynamic	features
There	are	several	cases	where	Python	statements	are	illegal	when	used	in
conjunction	with	nested	scopes	that	contain	free	variables.

If	a	variable	is	referenced	in	an	enclosing	scope,	it	is	illegal	to	delete	the	name.
An	error	will	be	reported	at	compile	time.

If	the	wild	card	form	of	import	--	"import	*"	--	is	used	in	a	function	and	the
function	contains	or	is	a	nested	block	with	free	variables,	the	compiler	will	raise
a	SyntaxError.

If	exec	is	used	in	a	function	and	the	function	contains	or	is	a	nested	block	with
free	variables,	the	compiler	will	raise	a	SyntaxError	unless	the	exec
explicitly	specifies	the	local	namespace	for	the	exec.	(In	other	words,	"exec
obj"would	be	illegal,	but	"exec	obj	in	ns"	would	be	legal.)

The	eval(),	execfile(),	and	input()	functions	and	the	exec	statement
do	not	have	access	to	the	full	environment	for	resolving	names.	Names	may	be
resolved	in	the	local	and	global	namespaces	of	the	caller.	Free	variables	are	not
resolved	in	the	nearest	enclosing	namespace,	but	in	the	global	namespace.4.1The
exec	statement	and	the	eval()	and	execfile()	functions	have	optional
arguments	to	override	the	global	and	local	namespace.	If	only	one	namespace	is
specified,	it	is	used	for	both.

Footnotes

...	namespace.4.1
This	limitation	occurs	because	the	code	that	is	executed	by	these	operations
is	not	available	at	the	time	the	module	is	compiled.

Python	Reference	Manual

Previous:	4.1	Naming	and	binding	Up:	4.1	Naming	and	binding	Next:	4.2
Exceptions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.1.1	Interaction	with	dynamic	Up:	4.	Execution	model	Next:	5.
Expressions

4.2	Exceptions
Exceptions	are	a	means	of	breaking	out	of	the	normal	flow	of	control	of	a	code
block	in	order	to	handle	errors	or	other	exceptional	conditions.	An	exception	is
raised	at	the	point	where	the	error	is	detected;	it	may	be	handled	by	the
surrounding	code	block	or	by	any	code	block	that	directly	or	indirectly	invoked
the	code	block	where	the	error	occurred.

The	Python	interpreter	raises	an	exception	when	it	detects	a	run-time	error	(such
as	division	by	zero).	A	Python	program	can	also	explicitly	raise	an	exception
with	the	raise	statement.	Exception	handlers	are	specified	with	the	try	...
except	statement.	The	try	...	finally	statement	specifies	cleanup	code
which	does	not	handle	the	exception,	but	is	executed	whether	an	exception
occurred	or	not	in	the	preceding	code.

Python	uses	the	``termination''	model	of	error	handling:	an	exception	handler	can
find	out	what	happened	and	continue	execution	at	an	outer	level,	but	it	cannot
repair	the	cause	of	the	error	and	retry	the	failing	operation	(except	by	re-entering
the	offending	piece	of	code	from	the	top).

When	an	exception	is	not	handled	at	all,	the	interpreter	terminates	execution	of
the	program,	or	returns	to	its	interactive	main	loop.	In	either	case,	it	prints	a
stack	backtrace,	except	when	the	exception	is	SystemExit.

Exceptions	are	identified	by	class	instances.	Selection	of	a	matching	except
clause	is	based	on	object	identity.	The	except	clause	must	reference	the	same
class	or	a	base	class	of	it.

When	an	exception	is	raised,	an	object	(maybe	None)	is	passed	as	the
exception's	value;	this	object	does	not	affect	the	selection	of	an	exception
handler,	but	is	passed	to	the	selected	exception	handler	as	additional	information.
For	class	exceptions,	this	object	must	be	an	instance	of	the	exception	class	being
raised.

Warning: 	Messages	to	exceptions	are	not	part	of	the	Python
API.	Their	contents	may	change	from	one	version	of	Python	to

the	next	without	warning	and	should	not	be	relied	on	by	code
which	will	run	under	multiple	versions	of	the	interpreter.

See	also	the	description	of	the	try	statement	in	section	7.4	and	raise
statement	in	section	6.9.

Python	Reference	Manual
Previous:	4.1.1	Interaction	with	dynamic	Up:	4.	Execution	model	Next:	5.
Expressions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.2	Exceptions	Up:	Python	Reference	Manual	Next:	5.1	Arithmetic
conversions

5.	Expressions
This	chapter	explains	the	meaning	of	the	elements	of	expressions	in	Python.

Syntax	Notes:	In	this	and	the	following	chapters,	extended	BNF	notation	will	be
used	to	describe	syntax,	not	lexical	analysis.	When	(one	alternative	of)	a	syntax
rule	has	the	form

name ::= othername

and	no	semantics	are	given,	the	semantics	of	this	form	of	name	are	the	same	as
for	othername.

Subsections

5.1	Arithmetic	conversions
5.2	Atoms

5.2.1	Identifiers	(Names)
5.2.2	Literals
5.2.3	Parenthesized	forms
5.2.4	List	displays
5.2.5	Generator	expressions
5.2.6	Dictionary	displays
5.2.7	String	conversions

5.3	Primaries
5.3.1	Attribute	references
5.3.2	Subscriptions
5.3.3	Slicings
5.3.4	Calls

5.4	The	power	operator
5.5	Unary	arithmetic	operations
5.6	Binary	arithmetic	operations
5.7	Shifting	operations
5.8	Binary	bit-wise	operations

5.9	Comparisons
5.10	Boolean	operations
5.11	Lambdas
5.12	Expression	lists
5.13	Evaluation	order
5.14	Summary

Python	Reference	Manual
Previous:	4.2	Exceptions	Up:	Python	Reference	Manual	Next:	5.1	Arithmetic
conversions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.	Expressions	Up:	5.	Expressions	Next:	5.2	Atoms

5.1	Arithmetic	conversions
When	a	description	of	an	arithmetic	operator	below	uses	the	phrase	``the
numeric	arguments	are	converted	to	a	common	type,''	the	arguments	are	coerced
using	the	coercion	rules	listed	at	the	end	of	chapter	3.	If	both	arguments	are
standard	numeric	types,	the	following	coercions	are	applied:

If	either	argument	is	a	complex	number,	the	other	is	converted	to	complex;
otherwise,	if	either	argument	is	a	floating	point	number,	the	other	is
converted	to	floating	point;
otherwise,	if	either	argument	is	a	long	integer,	the	other	is	converted	to	long
integer;
otherwise,	both	must	be	plain	integers	and	no	conversion	is	necessary.

Some	additional	rules	apply	for	certain	operators	(e.g.,	a	string	left	argument	to
the	`%'	operator).	Extensions	can	define	their	own	coercions.

Python	Reference	Manual
Previous:	5.	Expressions	Up:	5.	Expressions	Next:	5.2	Atoms

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.1	Arithmetic	conversions	Up:	5.	Expressions	Next:	5.2.1	Identifiers
(Names)

5.2	Atoms
Atoms	are	the	most	basic	elements	of	expressions.	The	simplest	atoms	are
identifiers	or	literals.	Forms	enclosed	in	reverse	quotes	or	in	parentheses,
brackets	or	braces	are	also	categorized	syntactically	as	atoms.	The	syntax	for
atoms	is:

atom ::= identifier	|	literal	|

enclosure

enclosure ::= parenth_form	|	list_display

|	generator_expression	|

dict_display

|	string_conversion

Download	entire	grammar	as	text.

Subsections

5.2.1	Identifiers	(Names)
5.2.2	Literals
5.2.3	Parenthesized	forms
5.2.4	List	displays
5.2.5	Generator	expressions
5.2.6	Dictionary	displays
5.2.7	String	conversions

Python	Reference	Manual
Previous:	5.1	Arithmetic	conversions	Up:	5.	Expressions	Next:	5.2.1	Identifiers
(Names)

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2	Atoms	Up:	5.2	Atoms	Next:	5.2.2	Literals

5.2.1	Identifiers	(Names)
An	identifier	occurring	as	an	atom	is	a	name.	See	section	4.1	for	documentation
of	naming	and	binding.

When	the	name	is	bound	to	an	object,	evaluation	of	the	atom	yields	that	object.
When	a	name	is	not	bound,	an	attempt	to	evaluate	it	raises	a	NameError
exception.

Private	name	mangling:	When	an	identifier	that	textually	occurs	in	a	class
definition	begins	with	two	or	more	underscore	characters	and	does	not	end	in
two	or	more	underscores,	it	is	considered	a	private	name	of	that	class.	Private
names	are	transformed	to	a	longer	form	before	code	is	generated	for	them.	The
transformation	inserts	the	class	name	in	front	of	the	name,	with	leading
underscores	removed,	and	a	single	underscore	inserted	in	front	of	the	class	name.
For	example,	the	identifier	__spam	occurring	in	a	class	named	Ham	will	be
transformed	to	_Ham__spam.	This	transformation	is	independent	of	the
syntactical	context	in	which	the	identifier	is	used.	If	the	transformed	name	is
extremely	long	(longer	than	255	characters),	implementation	defined	truncation
may	happen.	If	the	class	name	consists	only	of	underscores,	no	transformation	is
done.

Python	Reference	Manual
Previous:	5.2	Atoms	Up:	5.2	Atoms	Next:	5.2.2	Literals

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.1	Identifiers	(Names)	Up:	5.2	Atoms	Next:	5.2.3	Parenthesized
forms

5.2.2	Literals
Python	supports	string	literals	and	various	numeric	literals:

literal ::= stringliteral	|	integer	|

longinteger

|	floatnumber	|	imagnumber

Download	entire	grammar	as	text.

Evaluation	of	a	literal	yields	an	object	of	the	given	type	(string,	integer,	long
integer,	floating	point	number,	complex	number)	with	the	given	value.	The	value
may	be	approximated	in	the	case	of	floating	point	and	imaginary	(complex)
literals.	See	section	2.4	for	details.

All	literals	correspond	to	immutable	data	types,	and	hence	the	object's	identity	is
less	important	than	its	value.	Multiple	evaluations	of	literals	with	the	same	value
(either	the	same	occurrence	in	the	program	text	or	a	different	occurrence)	may
obtain	the	same	object	or	a	different	object	with	the	same	value.

Python	Reference	Manual
Previous:	5.2.1	Identifiers	(Names)	Up:	5.2	Atoms	Next:	5.2.3	Parenthesized
forms

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.2	Literals	Up:	5.2	Atoms	Next:	5.2.4	List	displays

5.2.3	Parenthesized	forms
A	parenthesized	form	is	an	optional	expression	list	enclosed	in	parentheses:

parenth_form ::= "("	[expression_list]	")"

Download	entire	grammar	as	text.

A	parenthesized	expression	list	yields	whatever	that	expression	list	yields:	if	the
list	contains	at	least	one	comma,	it	yields	a	tuple;	otherwise,	it	yields	the	single
expression	that	makes	up	the	expression	list.

An	empty	pair	of	parentheses	yields	an	empty	tuple	object.	Since	tuples	are
immutable,	the	rules	for	literals	apply	(i.e.,	two	occurrences	of	the	empty	tuple
may	or	may	not	yield	the	same	object).

Note	that	tuples	are	not	formed	by	the	parentheses,	but	rather	by	use	of	the
comma	operator.	The	exception	is	the	empty	tuple,	for	which	parentheses	are
required	--	allowing	unparenthesized	``nothing''	in	expressions	would	cause
ambiguities	and	allow	common	typos	to	pass	uncaught.

Python	Reference	Manual
Previous:	5.2.2	Literals	Up:	5.2	Atoms	Next:	5.2.4	List	displays

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.3	Parenthesized	forms	Up:	5.2	Atoms	Next:	5.2.5	Generator
expressions

5.2.4	List	displays
A	list	display	is	a	possibly	empty	series	of	expressions	enclosed	in	square
brackets:

test ::= and_test	("or"	and_test)*

|	lambda_form

testlist ::= test	(","	test)*	[","]

list_display ::= "["	[listmaker]	"]"

listmaker ::= expression	(list_for	|	(

","	expression)*	[","])

list_iter ::= list_for	|	list_if

list_for ::= "for"	expression_list	"in"

testlist	[list_iter]

list_if ::= "if"	test	[list_iter]

Download	entire	grammar	as	text.

A	list	display	yields	a	new	list	object.	Its	contents	are	specified	by	providing
either	a	list	of	expressions	or	a	list	comprehension.	When	a	comma-separated	list
of	expressions	is	supplied,	its	elements	are	evaluated	from	left	to	right	and
placed	into	the	list	object	in	that	order.	When	a	list	comprehension	is	supplied,	it
consists	of	a	single	expression	followed	by	at	least	one	for	clause	and	zero	or
more	for	or	if	clauses.	In	this	case,	the	elements	of	the	new	list	are	those	that
would	be	produced	by	considering	each	of	the	for	or	if	clauses	a	block,
nesting	from	left	to	right,	and	evaluating	the	expression	to	produce	a	list	element
each	time	the	innermost	block	is	reached5.1.

Footnotes

...	reached5.1
In	Python	2.3,	a	list	comprehension	"leaks"	the	control	variables	of	each

"for"	it	contains	into	the	containing	scope.	However,	this	behavior	is
deprecated,	and	relying	on	it	will	not	work	once	this	bug	is	fixed	in	a	future
release

Python	Reference	Manual
Previous:	5.2.3	Parenthesized	forms	Up:	5.2	Atoms	Next:	5.2.5	Generator
expressions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.4	List	displays	Up:	5.2	Atoms	Next:	5.2.6	Dictionary	displays

5.2.5	Generator	expressions
A	generator	expression	is	a	compact	generator	notation	in	parentheses:

generator_expression ::= "("	test

genexpr_for	")"

genexpr_for ::= "for"

expression_list

"in"	test

[genexpr_iter]

genexpr_iter ::= genexpr_for	|

genexpr_if

genexpr_if ::= "if"	test

[genexpr_iter]

Download	entire	grammar	as	text.

A	generator	expression	yields	a	new	generator	object.	It	consists	of	a	single
expression	followed	by	at	least	one	for	clause	and	zero	or	more	for	or	if
clauses.	The	iterating	values	of	the	new	generator	are	those	that	would	be
produced	by	considering	each	of	the	for	or	if	clauses	a	block,	nesting	from
left	to	right,	and	evaluating	the	expression	to	yield	a	value	that	is	reached	the
innermost	block	for	each	iteration.

Variables	used	in	the	generator	expression	are	evaluated	lazily	when	the
next()	method	is	called	for	generator	object	(in	the	same	fashion	as	normal
generators).	However,	the	leftmost	for	clause	is	immediately	evaluated	so	that
error	produced	by	it	can	be	seen	before	any	other	possible	error	in	the	code	that
handles	the	generator	expression.	Subsequent	for	clauses	cannot	be	evaluated
immediately	since	they	may	depend	on	the	previous	for	loop.	For	example:	"
(x*y	for	x	in	range(10)	for	y	in	bar(x))".

The	parentheses	can	be	omitted	on	calls	with	only	one	argument.	See	section
5.3.4	for	the	detail.

Python	Reference	Manual

Previous:	5.2.4	List	displays	Up:	5.2	Atoms	Next:	5.2.6	Dictionary	displays

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.5	Generator	expressions	Up:	5.2	Atoms	Next:	5.2.7	String
conversions

5.2.6	Dictionary	displays
A	dictionary	display	is	a	possibly	empty	series	of	key/datum	pairs	enclosed	in
curly	braces:

dict_display ::= "{"	[key_datum_list]	"}"

key_datum_list ::= key_datum	(","

key_datum)*	[","]

key_datum ::= expression	":"	expression

Download	entire	grammar	as	text.

A	dictionary	display	yields	a	new	dictionary	object.

The	key/datum	pairs	are	evaluated	from	left	to	right	to	define	the	entries	of	the
dictionary:	each	key	object	is	used	as	a	key	into	the	dictionary	to	store	the
corresponding	datum.

Restrictions	on	the	types	of	the	key	values	are	listed	earlier	in	section	3.2.	(To
summarize,the	key	type	should	be	hashable,	which	excludes	all	mutable	objects.)
Clashes	between	duplicate	keys	are	not	detected;	the	last	datum	(textually
rightmost	in	the	display)	stored	for	a	given	key	value	prevails.

Python	Reference	Manual
Previous:	5.2.5	Generator	expressions	Up:	5.2	Atoms	Next:	5.2.7	String
conversions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.6	Dictionary	displays	Up:	5.2	Atoms	Next:	5.3	Primaries

5.2.7	String	conversions
A	string	conversion	is	an	expression	list	enclosed	in	reverse	(a.k.a.	backward)
quotes:

string_conversion ::= "`"	expression_list

"`"

Download	entire	grammar	as	text.

A	string	conversion	evaluates	the	contained	expression	list	and	converts	the
resulting	object	into	a	string	according	to	rules	specific	to	its	type.

If	the	object	is	a	string,	a	number,	None,	or	a	tuple,	list	or	dictionary	containing
only	objects	whose	type	is	one	of	these,	the	resulting	string	is	a	valid	Python
expression	which	can	be	passed	to	the	built-in	function	eval()	to	yield	an
expression	with	the	same	value	(or	an	approximation,	if	floating	point	numbers
are	involved).

(In	particular,	converting	a	string	adds	quotes	around	it	and	converts	``funny''
characters	to	escape	sequences	that	are	safe	to	print.)

Recursive	objects	(for	example,	lists	or	dictionaries	that	contain	a	reference	to
themselves,	directly	or	indirectly)	use	"..."	to	indicate	a	recursive	reference,
and	the	result	cannot	be	passed	to	eval()	to	get	an	equal	value
(SyntaxError	will	be	raised	instead).

The	built-in	function	repr()	performs	exactly	the	same	conversion	in	its
argument	as	enclosing	it	in	parentheses	and	reverse	quotes	does.	The	built-in
function	str()	performs	a	similar	but	more	user-friendly	conversion.

Python	Reference	Manual
Previous:	5.2.6	Dictionary	displays	Up:	5.2	Atoms	Next:	5.3	Primaries

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.7	String	conversions	Up:	5.	Expressions	Next:	5.3.1	Attribute
references

5.3	Primaries
Primaries	represent	the	most	tightly	bound	operations	of	the	language.	Their
syntax	is:

primary ::= atom	|	attributeref	|

subscription	|	slicing	|	call

Download	entire	grammar	as	text.

Subsections

5.3.1	Attribute	references
5.3.2	Subscriptions
5.3.3	Slicings
5.3.4	Calls

Python	Reference	Manual
Previous:	5.2.7	String	conversions	Up:	5.	Expressions	Next:	5.3.1	Attribute
references

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3	Primaries	Up:	5.3	Primaries	Next:	5.3.2	Subscriptions

5.3.1	Attribute	references
An	attribute	reference	is	a	primary	followed	by	a	period	and	a	name:

attributeref ::= primary	"."	identifier

Download	entire	grammar	as	text.

The	primary	must	evaluate	to	an	object	of	a	type	that	supports	attribute
references,	e.g.,	a	module,	list,	or	an	instance.	This	object	is	then	asked	to
produce	the	attribute	whose	name	is	the	identifier.	If	this	attribute	is	not
available,	the	exception	AttributeError	is	raised.	Otherwise,	the	type	and
value	of	the	object	produced	is	determined	by	the	object.	Multiple	evaluations	of
the	same	attribute	reference	may	yield	different	objects.

Python	Reference	Manual
Previous:	5.3	Primaries	Up:	5.3	Primaries	Next:	5.3.2	Subscriptions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3.1	Attribute	references	Up:	5.3	Primaries	Next:	5.3.3	Slicings

5.3.2	Subscriptions
A	subscription	selects	an	item	of	a	sequence	(string,	tuple	or	list)	or	mapping
(dictionary)	object:

subscription ::= primary	"["	expression_list

"]"

Download	entire	grammar	as	text.

The	primary	must	evaluate	to	an	object	of	a	sequence	or	mapping	type.

If	the	primary	is	a	mapping,	the	expression	list	must	evaluate	to	an	object	whose
value	is	one	of	the	keys	of	the	mapping,	and	the	subscription	selects	the	value	in
the	mapping	that	corresponds	to	that	key.	(The	expression	list	is	a	tuple	except	if
it	has	exactly	one	item.)

If	the	primary	is	a	sequence,	the	expression	(list)	must	evaluate	to	a	plain	integer.
If	this	value	is	negative,	the	length	of	the	sequence	is	added	to	it	(so	that,	e.g.,
x[-1]	selects	the	last	item	of	x.)	The	resulting	value	must	be	a	nonnegative
integer	less	than	the	number	of	items	in	the	sequence,	and	the	subscription
selects	the	item	whose	index	is	that	value	(counting	from	zero).

A	string's	items	are	characters.	A	character	is	not	a	separate	data	type	but	a	string
of	exactly	one	character.

Python	Reference	Manual
Previous:	5.3.1	Attribute	references	Up:	5.3	Primaries	Next:	5.3.3	Slicings

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3.2	Subscriptions	Up:	5.3	Primaries	Next:	5.3.4	Calls

5.3.3	Slicings
A	slicing	selects	a	range	of	items	in	a	sequence	object	(e.g.,	a	string,	tuple	or
list).	Slicings	may	be	used	as	expressions	or	as	targets	in	assignment	or	del
statements.	The	syntax	for	a	slicing:

slicing ::= simple_slicing	|

extended_slicing

simple_slicing ::= primary	"["	short_slice

"]"

extended_slicing ::= primary	"["	slice_list

"]"

slice_list ::= slice_item	(","

slice_item)*	[","]

slice_item ::= expression	|

proper_slice	|	ellipsis

proper_slice ::= short_slice	|

long_slice

short_slice ::= [lower_bound]	":"

[upper_bound]

long_slice ::= short_slice	":"

[stride]

lower_bound ::= expression

upper_bound ::= expression

stride ::= expression

ellipsis ::= "..."

Download	entire	grammar	as	text.

There	is	ambiguity	in	the	formal	syntax	here:	anything	that	looks	like	an
expression	list	also	looks	like	a	slice	list,	so	any	subscription	can	be	interpreted
as	a	slicing.	Rather	than	further	complicating	the	syntax,	this	is	disambiguated
by	defining	that	in	this	case	the	interpretation	as	a	subscription	takes	priority
over	the	interpretation	as	a	slicing	(this	is	the	case	if	the	slice	list	contains	no
proper	slice	nor	ellipses).	Similarly,	when	the	slice	list	has	exactly	one	short	slice

and	no	trailing	comma,	the	interpretation	as	a	simple	slicing	takes	priority	over
that	as	an	extended	slicing.

The	semantics	for	a	simple	slicing	are	as	follows.	The	primary	must	evaluate	to	a
sequence	object.	The	lower	and	upper	bound	expressions,	if	present,	must
evaluate	to	plain	integers;	defaults	are	zero	and	the	sys.maxint,	respectively.
If	either	bound	is	negative,	the	sequence's	length	is	added	to	it.	The	slicing	now
selects	all	items	with	index	k	such	that	i	<=	k	<	j	where	i	and	j	are	the
specified	lower	and	upper	bounds.	This	may	be	an	empty	sequence.	It	is	not	an
error	if	i	or	j	lie	outside	the	range	of	valid	indexes	(such	items	don't	exist	so	they
aren't	selected).

The	semantics	for	an	extended	slicing	are	as	follows.	The	primary	must	evaluate
to	a	mapping	object,	and	it	is	indexed	with	a	key	that	is	constructed	from	the
slice	list,	as	follows.	If	the	slice	list	contains	at	least	one	comma,	the	key	is	a
tuple	containing	the	conversion	of	the	slice	items;	otherwise,	the	conversion	of
the	lone	slice	item	is	the	key.	The	conversion	of	a	slice	item	that	is	an	expression
is	that	expression.	The	conversion	of	an	ellipsis	slice	item	is	the	built-in
Ellipsis	object.	The	conversion	of	a	proper	slice	is	a	slice	object	(see	section
3.2)	whose	start,	stop	and	step	attributes	are	the	values	of	the	expressions
given	as	lower	bound,	upper	bound	and	stride,	respectively,	substituting	None
for	missing	expressions.

Python	Reference	Manual
Previous:	5.3.2	Subscriptions	Up:	5.3	Primaries	Next:	5.3.4	Calls

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3.3	Slicings	Up:	5.3	Primaries	Next:	5.4	The	power	operator

5.3.4	Calls
A	call	calls	a	callable	object	(e.g.,	a	function)	with	a	possibly	empty	series	of
arguments:

primary	"("	[argument_list	[","]	|	testgenexpr_for]
")"
call ::= primary	"("

[argument_list	[","]]	")"

argument_list ::= positional_arguments	[","

keyword_arguments]

																					[","

"*"	expression]

																					[","

"**"	expression]

|	keyword_arguments	[","

"*"	expression]

																				[","

"**"	expression]

|	"*"	expression	[","

"**"	expression]

|	"**"	expression

positional_arguments ::= expression	(","

expression)*

keyword_arguments ::= keyword_item	(","

keyword_item)*

keyword_item ::= identifier	"="	expression

Download	entire	grammar	as	text.

A	trailing	comma	may	be	present	after	the	positional	and	keyword	arguments	but
does	not	affect	the	semantics.

The	primary	must	evaluate	to	a	callable	object	(user-defined	functions,	built-in
functions,	methods	of	built-in	objects,	class	objects,	methods	of	class	instances,

and	certain	class	instances	themselves	are	callable;	extensions	may	define
additional	callable	object	types).	All	argument	expressions	are	evaluated	before
the	call	is	attempted.	Please	refer	to	section	7.5	for	the	syntax	of	formal
parameter	lists.

If	keyword	arguments	are	present,	they	are	first	converted	to	positional
arguments,	as	follows.	First,	a	list	of	unfilled	slots	is	created	for	the	formal
parameters.	If	there	are	N	positional	arguments,	they	are	placed	in	the	first	N
slots.	Next,	for	each	keyword	argument,	the	identifier	is	used	to	determine	the
corresponding	slot	(if	the	identifier	is	the	same	as	the	first	formal	parameter
name,	the	first	slot	is	used,	and	so	on).	If	the	slot	is	already	filled,	a	TypeError
exception	is	raised.	Otherwise,	the	value	of	the	argument	is	placed	in	the	slot,
filling	it	(even	if	the	expression	is	None,	it	fills	the	slot).	When	all	arguments
have	been	processed,	the	slots	that	are	still	unfilled	are	filled	with	the
corresponding	default	value	from	the	function	definition.	(Default	values	are
calculated,	once,	when	the	function	is	defined;	thus,	a	mutable	object	such	as	a
list	or	dictionary	used	as	default	value	will	be	shared	by	all	calls	that	don't
specify	an	argument	value	for	the	corresponding	slot;	this	should	usually	be
avoided.)	If	there	are	any	unfilled	slots	for	which	no	default	value	is	specified,	a
TypeError	exception	is	raised.	Otherwise,	the	list	of	filled	slots	is	used	as	the
argument	list	for	the	call.

If	there	are	more	positional	arguments	than	there	are	formal	parameter	slots,	a
TypeError	exception	is	raised,	unless	a	formal	parameter	using	the	syntax
"*identifier"	is	present;	in	this	case,	that	formal	parameter	receives	a	tuple
containing	the	excess	positional	arguments	(or	an	empty	tuple	if	there	were	no
excess	positional	arguments).

If	any	keyword	argument	does	not	correspond	to	a	formal	parameter	name,	a
TypeError	exception	is	raised,	unless	a	formal	parameter	using	the	syntax
"**identifier"	is	present;	in	this	case,	that	formal	parameter	receives	a
dictionary	containing	the	excess	keyword	arguments	(using	the	keywords	as
keys	and	the	argument	values	as	corresponding	values),	or	a	(new)	empty
dictionary	if	there	were	no	excess	keyword	arguments.

If	the	syntax	"*expression"	appears	in	the	function	call,	"expression"
must	evaluate	to	a	sequence.	Elements	from	this	sequence	are	treated	as	if	they
were	additional	positional	arguments;	if	there	are	postional	arguments	x1,...,xN	,
and	"expression"	evaluates	to	a	sequence	y1,...,yM,	this	is	equivalent	to	a

call	with	M+N	positional	arguments	x1,...,xN,y1,...,yM.

A	consequence	of	this	is	that	although	the	"*expression"	syntax	appears
after	any	keyword	arguments,	it	is	processed	before	the	keyword	arguments	(and
the	"**expression"	argument,	if	any	-	see	below).	So:

>>>	def	f(a,	b):

...		print	a,	b

...

>>>	f(b=1,	*(2,))

2	1

>>>	f(a=1,	*(2,))

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

TypeError:	f()	got	multiple	values	for	keyword	argument	'a'

>>>	f(1,	*(2,))

1	2

It	is	unusual	for	both	keyword	arguments	and	the	"*expression"	syntax	to	be
used	in	the	same	call,	so	in	practice	this	confusion	does	not	arise.

If	the	syntax	"**expression"	appears	in	the	function	call,	"expression"
must	evaluate	to	a	(subclass	of)	dictionary,	the	contents	of	which	are	treated	as
additional	keyword	arguments.	In	the	case	of	a	keyword	appearing	in	both
"expression"	and	as	an	explicit	keyword	argument,	a	TypeError
exception	is	raised.

Formal	parameters	using	the	syntax	"*identifier"	or	"**identifier"
cannot	be	used	as	positional	argument	slots	or	as	keyword	argument	names.
Formal	parameters	using	the	syntax	"(sublist)"	cannot	be	used	as	keyword
argument	names;	the	outermost	sublist	corresponds	to	a	single	unnamed
argument	slot,	and	the	argument	value	is	assigned	to	the	sublist	using	the	usual
tuple	assignment	rules	after	all	other	parameter	processing	is	done.

A	call	always	returns	some	value,	possibly	None,	unless	it	raises	an	exception.
How	this	value	is	computed	depends	on	the	type	of	the	callable	object.

If	it	is--

a	user-defined	function:
The	code	block	for	the	function	is	executed,	passing	it	the	argument	list.
The	first	thing	the	code	block	will	do	is	bind	the	formal	parameters	to	the

arguments;	this	is	described	in	section	7.5.	When	the	code	block	executes	a
return	statement,	this	specifies	the	return	value	of	the	function	call.

a	built-in	function	or	method:
The	result	is	up	to	the	interpreter;	see	the	Python	Library	Reference	for	the
descriptions	of	built-in	functions	and	methods.

a	class	object:
A	new	instance	of	that	class	is	returned.

a	class	instance	method:
The	corresponding	user-defined	function	is	called,	with	an	argument	list
that	is	one	longer	than	the	argument	list	of	the	call:	the	instance	becomes
the	first	argument.

a	class	instance:
The	class	must	define	a	__call__()	method;	the	effect	is	then	the	same
as	if	that	method	was	called.

Python	Reference	Manual
Previous:	5.3.3	Slicings	Up:	5.3	Primaries	Next:	5.4	The	power	operator

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3.4	Calls	Up:	5.	Expressions	Next:	5.5	Unary	arithmetic	operations

5.4	The	power	operator
The	power	operator	binds	more	tightly	than	unary	operators	on	its	left;	it	binds
less	tightly	than	unary	operators	on	its	right.	The	syntax	is:

power ::= primary	["**"	u_expr]

Download	entire	grammar	as	text.

Thus,	in	an	unparenthesized	sequence	of	power	and	unary	operators,	the
operators	are	evaluated	from	right	to	left	(this	does	not	constrain	the	evaluation
order	for	the	operands).

The	power	operator	has	the	same	semantics	as	the	built-in	pow()	function,
when	called	with	two	arguments:	it	yields	its	left	argument	raised	to	the	power	of
its	right	argument.	The	numeric	arguments	are	first	converted	to	a	common	type.
The	result	type	is	that	of	the	arguments	after	coercion.

With	mixed	operand	types,	the	coercion	rules	for	binary	arithmetic	operators
apply.	For	int	and	long	int	operands,	the	result	has	the	same	type	as	the	operands
(after	coercion)	unless	the	second	argument	is	negative;	in	that	case,	all
arguments	are	converted	to	float	and	a	float	result	is	delivered.	For	example,
10**2	returns	100,	but	10**-2	returns	0.01.	(This	last	feature	was	added	in
Python	2.2.	In	Python	2.1	and	before,	if	both	arguments	were	of	integer	types
and	the	second	argument	was	negative,	an	exception	was	raised).

Raising	0.0	to	a	negative	power	results	in	a	ZeroDivisionError.	Raising	a
negative	number	to	a	fractional	power	results	in	a	ValueError.

Python	Reference	Manual
Previous:	5.3.4	Calls	Up:	5.	Expressions	Next:	5.5	Unary	arithmetic	operations

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.4	The	power	operator	Up:	5.	Expressions	Next:	5.6	Binary
arithmetic	operations

5.5	Unary	arithmetic	operations
All	unary	arithmetic	(and	bit-wise)	operations	have	the	same	priority:

u_expr ::= power	|	"-"	u_expr	|	"+"	u_expr	|

"~"	u_expr

Download	entire	grammar	as	text.

The	unary	-	(minus)	operator	yields	the	negation	of	its	numeric	argument.

The	unary	+	(plus)	operator	yields	its	numeric	argument	unchanged.

The	unary	~	(invert)	operator	yields	the	bit-wise	inversion	of	its	plain	or	long
integer	argument.	The	bit-wise	inversion	of	x	is	defined	as	-(x+1).	It	only
applies	to	integral	numbers.

In	all	three	cases,	if	the	argument	does	not	have	the	proper	type,	a	TypeError
exception	is	raised.

Python	Reference	Manual
Previous:	5.4	The	power	operator	Up:	5.	Expressions	Next:	5.6	Binary
arithmetic	operations

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.5	Unary	arithmetic	operations	Up:	5.	Expressions	Next:	5.7
Shifting	operations

5.6	Binary	arithmetic	operations
The	binary	arithmetic	operations	have	the	conventional	priority	levels.	Note	that
some	of	these	operations	also	apply	to	certain	non-numeric	types.	Apart	from	the
power	operator,	there	are	only	two	levels,	one	for	multiplicative	operators	and
one	for	additive	operators:

m_expr ::= u_expr	|	m_expr	"*"	u_expr	|

m_expr	"//"	u_expr	|	m_expr	"/"

u_expr

|	m_expr	"%"	u_expr

a_expr ::= m_expr	|	a_expr	"+"	m_expr	|

a_expr	"-"	m_expr

Download	entire	grammar	as	text.

The	*	(multiplication)	operator	yields	the	product	of	its	arguments.	The
arguments	must	either	both	be	numbers,	or	one	argument	must	be	an	integer
(plain	or	long)	and	the	other	must	be	a	sequence.	In	the	former	case,	the	numbers
are	converted	to	a	common	type	and	then	multiplied	together.	In	the	latter	case,
sequence	repetition	is	performed;	a	negative	repetition	factor	yields	an	empty
sequence.

The	/	(division)	and	//	(floor	division)	operators	yield	the	quotient	of	their
arguments.	The	numeric	arguments	are	first	converted	to	a	common	type.	Plain
or	long	integer	division	yields	an	integer	of	the	same	type;	the	result	is	that	of
mathematical	division	with	the	`floor'	function	applied	to	the	result.	Division	by
zero	raises	the	ZeroDivisionError	exception.

The	%	(modulo)	operator	yields	the	remainder	from	the	division	of	the	first
argument	by	the	second.	The	numeric	arguments	are	first	converted	to	a	common
type.	A	zero	right	argument	raises	the	ZeroDivisionError	exception.	The
arguments	may	be	floating	point	numbers,	e.g.,	3.14%0.7	equals	0.34	(since
3.14	equals	4*0.7	+	0.34.)	The	modulo	operator	always	yields	a	result
with	the	same	sign	as	its	second	operand	(or	zero);	the	absolute	value	of	the
result	is	strictly	smaller	than	the	absolute	value	of	the	second	operand5.2.

The	integer	division	and	modulo	operators	are	connected	by	the	following
identity:	x	==	(x/y)*y	+	(x%y).	Integer	division	and	modulo	are	also
connected	with	the	built-in	function	divmod():	divmod(x,	y)	==
(x/y,	x%y).	These	identities	don't	hold	for	floating	point	numbers;	there
similar	identities	hold	approximately	where	x/y	is	replaced	by	floor(x/y)
or	floor(x/y)	-	15.3.

Deprecated	since	release	2.3.	The	floor	division	operator,	the	modulo	operator,
and	the	divmod()	function	are	no	longer	defined	for	complex	numbers.
Instead,	convert	to	a	floating	point	number	using	the	abs()	function	if
appropriate.

The	+	(addition)	operator	yields	the	sum	of	its	arguments.	The	arguments	must
either	both	be	numbers	or	both	sequences	of	the	same	type.	In	the	former	case,
the	numbers	are	converted	to	a	common	type	and	then	added	together.	In	the
latter	case,	the	sequences	are	concatenated.

The	-	(subtraction)	operator	yields	the	difference	of	its	arguments.	The	numeric
arguments	are	first	converted	to	a	common	type.

Footnotes

...	operand5.2
While	abs(x%y)	<	abs(y)	is	true	mathematically,	for	floats	it	may	not
be	true	numerically	due	to	roundoff.	For	example,	and	assuming	a	platform
on	which	a	Python	float	is	an	IEEE	754	double-precision	number,	in	order
that	-1e-100	%	1e100	have	the	same	sign	as	1e100,	the	computed
result	is	-1e-100	+	1e100,	which	is	numerically	exactly	equal	to
1e100.	Function	fmod()	in	the	math	module	returns	a	result	whose	sign
matches	the	sign	of	the	first	argument	instead,	and	so	returns	-1e-100	in
this	case.	Which	approach	is	more	appropriate	depends	on	the	application.

...	15.3
If	x	is	very	close	to	an	exact	integer	multiple	of	y,	it's	possible	for
floor(x/y)	to	be	one	larger	than	(x-x%y)/y	due	to	rounding.	In	such

cases,	Python	returns	the	latter	result,	in	order	to	preserve	that
divmod(x,y)[0]	*	y	+	x	%	y	be	very	close	to	x.

Python	Reference	Manual
Previous:	5.5	Unary	arithmetic	operations	Up:	5.	Expressions	Next:	5.7
Shifting	operations

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.6	Binary	arithmetic	operations	Up:	5.	Expressions	Next:	5.8	Binary
bit-wise	operations

5.7	Shifting	operations
The	shifting	operations	have	lower	priority	than	the	arithmetic	operations:

shift_expr ::= a_expr	|	shift_expr	("<<"	|

">>")	a_expr

Download	entire	grammar	as	text.

These	operators	accept	plain	or	long	integers	as	arguments.	The	arguments	are
converted	to	a	common	type.	They	shift	the	first	argument	to	the	left	or	right	by
the	number	of	bits	given	by	the	second	argument.

A	right	shift	by	n	bits	is	defined	as	division	by	pow(2,n).	A	left	shift	by	n	bits
is	defined	as	multiplication	with	pow(2,n);	for	plain	integers	there	is	no
overflow	check	so	in	that	case	the	operation	drops	bits	and	flips	the	sign	if	the
result	is	not	less	than	pow(2,31)	in	absolute	value.	Negative	shift	counts	raise
a	ValueError	exception.

Python	Reference	Manual
Previous:	5.6	Binary	arithmetic	operations	Up:	5.	Expressions	Next:	5.8	Binary
bit-wise	operations

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.7	Shifting	operations	Up:	5.	Expressions	Next:	5.9	Comparisons

5.8	Binary	bit-wise	operations
Each	of	the	three	bitwise	operations	has	a	different	priority	level:

and_expr ::= shift_expr	|	and_expr	"&"

shift_expr

xor_expr ::= and_expr	|	xor_expr	"^"

and_expr

or_expr ::= xor_expr	|	or_expr	"|"	xor_expr

Download	entire	grammar	as	text.

The	&	operator	yields	the	bitwise	AND	of	its	arguments,	which	must	be	plain	or
long	integers.	The	arguments	are	converted	to	a	common	type.

The	^	operator	yields	the	bitwise	XOR	(exclusive	OR)	of	its	arguments,	which
must	be	plain	or	long	integers.	The	arguments	are	converted	to	a	common	type.

The	|	operator	yields	the	bitwise	(inclusive)	OR	of	its	arguments,	which	must	be
plain	or	long	integers.	The	arguments	are	converted	to	a	common	type.

Python	Reference	Manual
Previous:	5.7	Shifting	operations	Up:	5.	Expressions	Next:	5.9	Comparisons

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.8	Binary	bit-wise	operations	Up:	5.	Expressions	Next:	5.10
Boolean	operations

5.9	Comparisons
Unlike	C,	all	comparison	operations	in	Python	have	the	same	priority,	which	is
lower	than	that	of	any	arithmetic,	shifting	or	bitwise	operation.	Also	unlike	C,
expressions	like	a	<	b	<	c	have	the	interpretation	that	is	conventional	in
mathematics:

comparison ::= or_expr	(comp_operator

or_expr)*

comp_operator ::= "<"	|	">"	|	"=="	|	">="	|

"<="	|	"<>"	|	"!="

|	"is"	["not"]	|	["not"]

"in"

Download	entire	grammar	as	text.

Comparisons	yield	boolean	values:	True	or	False.

Comparisons	can	be	chained	arbitrarily,	e.g.,	x	<	y	<=	z	is	equivalent	to	x	<
y	and	y	<=	z,	except	that	y	is	evaluated	only	once	(but	in	both	cases	z	is
not	evaluated	at	all	when	x	<	y	is	found	to	be	false).

Formally,	if	a,	b,	c,	...,	y,	z	are	expressions	and	opa,	opb,	...,	opy	are	comparison
operators,	then	a	opa	b	opb	c	...y	opy	z	is	equivalent	to	a	opa	b	and	b	opb	c	and
...	y	opy	z,	except	that	each	expression	is	evaluated	at	most	once.

Note	that	a	opa	b	opb	c	doesn't	imply	any	kind	of	comparison	between	a	and	c,
so	that,	e.g.,	x	<	y	>	z	is	perfectly	legal	(though	perhaps	not	pretty).

The	forms	<>	and	!=	are	equivalent;	for	consistency	with	C,	!=	is	preferred;
where	!=	is	mentioned	below	<>	is	also	accepted.	The	<>	spelling	is	considered
obsolescent.

The	operators	<,	>,	==,	>=,	<=,	and	!=	compare	the	values	of	two	objects.	The
objects	need	not	have	the	same	type.	If	both	are	numbers,	they	are	converted	to	a
common	type.	Otherwise,	objects	of	different	types	always	compare	unequal,
and	are	ordered	consistently	but	arbitrarily.

(This	unusual	definition	of	comparison	was	used	to	simplify	the	definition	of
operations	like	sorting	and	the	in	and	not	in	operators.	In	the	future,	the
comparison	rules	for	objects	of	different	types	are	likely	to	change.)

Comparison	of	objects	of	the	same	type	depends	on	the	type:

Numbers	are	compared	arithmetically.

Strings	are	compared	lexicographically	using	the	numeric	equivalents	(the
result	of	the	built-in	function	ord())	of	their	characters.	Unicode	and	8-bit
strings	are	fully	interoperable	in	this	behavior.

Tuples	and	lists	are	compared	lexicographically	using	comparison	of
corresponding	elements.	This	means	that	to	compare	equal,	each	element
must	compare	equal	and	the	two	sequences	must	be	of	the	same	type	and
have	the	same	length.

If	not	equal,	the	sequences	are	ordered	the	same	as	their	first	differing
elements.	For	example,	cmp([1,2,x],	[1,2,y])	returns	the	same	as
cmp(x,y).	If	the	corresponding	element	does	not	exist,	the	shorter
sequence	is	ordered	first	(for	example,	[1,2]	<	[1,2,3]).

Mappings	(dictionaries)	compare	equal	if	and	only	if	their	sorted	(key,
value)	lists	compare	equal.5.4Outcomes	other	than	equality	are	resolved
consistently,	but	are	not	otherwise	defined.5.5

Most	other	types	compare	unequal	unless	they	are	the	same	object;	the
choice	whether	one	object	is	considered	smaller	or	larger	than	another	one
is	made	arbitrarily	but	consistently	within	one	execution	of	a	program.

The	operators	in	and	not	in	test	for	set	membership.	x	in	s	evaluates	to
true	if	x	is	a	member	of	the	set	s,	and	false	otherwise.	x	not	in	s	returns	the
negation	of	x	in	s.	The	set	membership	test	has	traditionally	been	bound	to
sequences;	an	object	is	a	member	of	a	set	if	the	set	is	a	sequence	and	contains	an
element	equal	to	that	object.	However,	it	is	possible	for	an	object	to	support
membership	tests	without	being	a	sequence.	In	particular,	dictionaries	support
memership	testing	as	a	nicer	way	of	spelling	key	in	dict;	other	mapping	types
may	follow	suit.

For	the	list	and	tuple	types,	x	in	y	is	true	if	and	only	if	there	exists	an	index	i
such	that	x	==	y[i]	is	true.

For	the	Unicode	and	string	types,	x	in	y	is	true	if	and	only	if	x	is	a	substring	of
y.	An	equivalent	test	is	y.find(x)	!=	-1.	Note,	x	and	y	need	not	be	the
same	type;	consequently,	u'ab'	in	'abc'	will	return	True.	Empty	strings
are	always	considered	to	be	a	substring	of	any	other	string,	so	""	in	"abc"
will	return	True.	Changed	in	version	2.3:	Previously,	x	was	required	to	be	a
string	of	length	1.

For	user-defined	classes	which	define	the	__contains__()	method,	x	in	y
is	true	if	and	only	if	y.__contains__(x)	is	true.

For	user-defined	classes	which	do	not	define	__contains__()	and	do	define
__getitem__(),	x	in	y	is	true	if	and	only	if	there	is	a	non-negative	integer
index	i	such	that	x	==	y[i],	and	all	lower	integer	indices	do	not	raise
IndexError	exception.	(If	any	other	exception	is	raised,	it	is	as	if	in	raised
that	exception).

The	operator	not	in	is	defined	to	have	the	inverse	true	value	of	in.

The	operators	is	and	is	not	test	for	object	identity:	x	is	y	is	true	if	and
only	if	x	and	y	are	the	same	object.	x	is	not	y	yields	the	inverse	truth	value.

Footnotes

...	equal.5.4
The	implementation	computes	this	efficiently,	without	constructing	lists	or
sorting.

...	defined.5.5
Earlier	versions	of	Python	used	lexicographic	comparison	of	the	sorted
(key,	value)	lists,	but	this	was	very	expensive	for	the	common	case	of
comparing	for	equality.	An	even	earlier	version	of	Python	compared
dictionaries	by	identity	only,	but	this	caused	surprises	because	people
expected	to	be	able	to	test	a	dictionary	for	emptiness	by	comparing	it	to	{}.

Python	Reference	Manual
Previous:	5.8	Binary	bit-wise	operations	Up:	5.	Expressions	Next:	5.10
Boolean	operations

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.9	Comparisons	Up:	5.	Expressions	Next:	5.11	Lambdas

5.10	Boolean	operations
Boolean	operations	have	the	lowest	priority	of	all	Python	operations:

expression ::= or_test	|	lambda_form

or_test ::= and_test	|	or_test	"or"

and_test

and_test ::= not_test	|	and_test	"and"

not_test

not_test ::= comparison	|	"not"	not_test

Download	entire	grammar	as	text.

In	the	context	of	Boolean	operations,	and	also	when	expressions	are	used	by
control	flow	statements,	the	following	values	are	interpreted	as	false:	None,
numeric	zero	of	all	types,	empty	sequences	(strings,	tuples	and	lists),	and	empty
mappings	(dictionaries).	All	other	values	are	interpreted	as	true.

The	operator	not	yields	True	if	its	argument	is	false,	False	otherwise.

The	expression	x	and	y	first	evaluates	x;	if	x	is	false,	its	value	is	returned;
otherwise,	y	is	evaluated	and	the	resulting	value	is	returned.

The	expression	x	or	y	first	evaluates	x;	if	x	is	true,	its	value	is	returned;
otherwise,	y	is	evaluated	and	the	resulting	value	is	returned.

(Note	that	neither	and	nor	or	restrict	the	value	and	type	they	return	to	False
and	True,	but	rather	return	the	last	evaluated	argument.	This	is	sometimes
useful,	e.g.,	if	s	is	a	string	that	should	be	replaced	by	a	default	value	if	it	is
empty,	the	expression	s	or	'foo'	yields	the	desired	value.	Because	not	has
to	invent	a	value	anyway,	it	does	not	bother	to	return	a	value	of	the	same	type	as
its	argument,	so	e.g.,	not	'foo'	yields	False,	not	''.)

Python	Reference	Manual
Previous:	5.9	Comparisons	Up:	5.	Expressions	Next:	5.11	Lambdas

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.10	Boolean	operations	Up:	5.	Expressions	Next:	5.12	Expression
lists

5.11	Lambdas
lambda_form ::= "lambda"	[parameter_list]:

expression

Download	entire	grammar	as	text.

Lambda	forms	(lambda	expressions)	have	the	same	syntactic	position	as
expressions.	They	are	a	shorthand	to	create	anonymous	functions;	the	expression
lambda	arguments:	expression	yields	a	function	object.	The	unnamed	object
behaves	like	a	function	object	defined	with

def	name(arguments):

				return	expression

See	section	7.5	for	the	syntax	of	parameter	lists.	Note	that	functions	created	with
lambda	forms	cannot	contain	statements.

Python	Reference	Manual
Previous:	5.10	Boolean	operations	Up:	5.	Expressions	Next:	5.12	Expression
lists

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.11	Lambdas	Up:	5.	Expressions	Next:	5.13	Evaluation	order

5.12	Expression	lists
expression_list ::= expression	(","

expression)*	[","]

Download	entire	grammar	as	text.

An	expression	list	containing	at	least	one	comma	yields	a	tuple.	The	length	of
the	tuple	is	the	number	of	expressions	in	the	list.	The	expressions	are	evaluated
from	left	to	right.

The	trailing	comma	is	required	only	to	create	a	single	tuple	(a.k.a.	a	singleton);	it
is	optional	in	all	other	cases.	A	single	expression	without	a	trailing	comma
doesn't	create	a	tuple,	but	rather	yields	the	value	of	that	expression.	(To	create	an
empty	tuple,	use	an	empty	pair	of	parentheses:	().)

Python	Reference	Manual
Previous:	5.11	Lambdas	Up:	5.	Expressions	Next:	5.13	Evaluation	order

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.12	Expression	lists	Up:	5.	Expressions	Next:	5.14	Summary

5.13	Evaluation	order
Python	evaluates	expressions	from	left	to	right.	Notice	that	while	evaluating	an
assignment,	the	right-hand	side	is	evaluated	before	the	left-hand	side.

In	the	following	lines,	expressions	will	be	evaluated	in	the	arithmetic	order	of
their	suffixes:

expr1,	expr2,	expr3,	expr4

(expr1,	expr2,	expr3,	expr4)

{expr1:	expr2,	expr3:	expr4}

expr1	+	expr2	*	(expr3	-	expr4)

func(expr1,	expr2,	*expr3,	**expr4)

expr3,	expr4	=	expr1,	expr2

Python	Reference	Manual
Previous:	5.12	Expression	lists	Up:	5.	Expressions	Next:	5.14	Summary

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.13	Evaluation	order	Up:	5.	Expressions	Next:	6.	Simple
statements

5.14	Summary
The	following	table	summarizes	the	operator	precedences	in	Python,	from
lowest	precedence	(least	binding)	to	highest	precedence	(most	binding).
Operators	in	the	same	box	have	the	same	precedence.	Unless	the	syntax	is
explicitly	given,	operators	are	binary.	Operators	in	the	same	box	group	left	to
right	(except	for	comparisons,	including	tests,	which	all	have	the	same
precedence	and	chain	from	left	to	right	--	see	section	5.9	-	and	exponentiation,
which	groups	from	right	to	left).

Operator Description
lambda Lambda	expression
or Boolean	OR
and Boolean	AND
not	x Boolean	NOT

in,	not	in Membership	tests
is,	is	not Identity	tests

<,	<=,	>,	>=,	<>,	!=,	== Comparisons
| Bitwise	OR
^ Bitwise	XOR
& Bitwise	AND

<<,	>> Shifts
+,	- Addition	and	subtraction
*,	/,	% Multiplication,	division,	remainder
+x,	-x Positive,	negative
~x Bitwise	not
** Exponentiation

x.attribute Attribute	reference
x[index] Subscription

x[index:index] Slicing
f(arguments...) Function	call
(expressions...) Binding	or	tuple	display
[expressions...] List	display

{key:datum...} Dictionary	display
`expressions...` String	conversion

Python	Reference	Manual
Previous:	5.13	Evaluation	order	Up:	5.	Expressions	Next:	6.	Simple
statements

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.14	Summary	Up:	Python	Reference	Manual	Next:	6.1	Expression
statements

6.	Simple	statements
Simple	statements	are	comprised	within	a	single	logical	line.	Several	simple
statements	may	occur	on	a	single	line	separated	by	semicolons.	The	syntax	for
simple	statements	is:

simple_stmt ::= expression_stmt

|	assert_stmt

|	assignment_stmt

|	augmented_assignment_stmt

|	pass_stmt

|	del_stmt

|	print_stmt

|	return_stmt

|	yield_stmt

|	raise_stmt

|	break_stmt

|	continue_stmt

|	import_stmt

|	global_stmt

|	exec_stmt

Download	entire	grammar	as	text.

Subsections

6.1	Expression	statements
6.2	Assert	statements
6.3	Assignment	statements

6.3.1	Augmented	assignment	statements
6.4	The	pass	statement

6.5	The	del	statement
6.6	The	print	statement
6.7	The	return	statement
6.8	The	yield	statement
6.9	The	raise	statement
6.10	The	break	statement
6.11	The	continue	statement
6.12	The	import	statement

6.12.1	Future	statements
6.13	The	global	statement
6.14	The	exec	statement

Python	Reference	Manual
Previous:	5.14	Summary	Up:	Python	Reference	Manual	Next:	6.1	Expression
statements

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.	Simple	statements	Up:	6.	Simple	statements	Next:	6.2	Assert
statements

6.1	Expression	statements
Expression	statements	are	used	(mostly	interactively)	to	compute	and	write	a
value,	or	(usually)	to	call	a	procedure	(a	function	that	returns	no	meaningful
result;	in	Python,	procedures	return	the	value	None).	Other	uses	of	expression
statements	are	allowed	and	occasionally	useful.	The	syntax	for	an	expression
statement	is:

expression_stmt ::= expression_list

Download	entire	grammar	as	text.

An	expression	statement	evaluates	the	expression	list	(which	may	be	a	single
expression).

In	interactive	mode,	if	the	value	is	not	None,	it	is	converted	to	a	string	using	the
built-in	repr()function	and	the	resulting	string	is	written	to	standard	output
(see	section	6.6)	on	a	line	by	itself.	(Expression	statements	yielding	None	are
not	written,	so	that	procedure	calls	do	not	cause	any	output.)

Python	Reference	Manual
Previous:	6.	Simple	statements	Up:	6.	Simple	statements	Next:	6.2	Assert
statements

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.1	Expression	statements	Up:	6.	Simple	statements	Next:	6.3
Assignment	statements

6.2	Assert	statements
Assert	statements	are	a	convenient	way	to	insert	debugging	assertions	into	a
program:

assert_stmt ::= "assert"	expression	[","

expression]

Download	entire	grammar	as	text.

The	simple	form,	"assert	expression",	is	equivalent	to

if	__debug__:

			if	not	expression:	raise	AssertionError

The	extended	form,	"assert	expression1,	expression2",	is
equivalent	to

if	__debug__:

			if	not	expression1:	raise	AssertionError,	expression2

These	equivalences	assume	that	__debug__	and	AssertionError	refer	to
the	built-in	variables	with	those	names.	In	the	current	implementation,	the	built-
in	variable	__debug__	is	1	under	normal	circumstances,	0	when	optimization
is	requested	(command	line	option	-O).	The	current	code	generator	emits	no
code	for	an	assert	statement	when	optimization	is	requested	at	compile	time.
Note	that	it	is	unnecessary	to	include	the	source	code	for	the	expression	that
failed	in	the	error	message;	it	will	be	displayed	as	part	of	the	stack	trace.

Assignments	to	__debug__	are	illegal.	The	value	for	the	built-in	variable	is
determined	when	the	interpreter	starts.

Python	Reference	Manual
Previous:	6.1	Expression	statements	Up:	6.	Simple	statements	Next:	6.3
Assignment	statements

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.2	Assert	statements	Up:	6.	Simple	statements	Next:	6.3.1
Augmented	assignment	statements

6.3	Assignment	statements
Assignment	statements	are	used	to	(re)bind	names	to	values	and	to	modify
attributes	or	items	of	mutable	objects:

assignment_stmt ::= (target_list	"=")+

expression_list

target_list ::= target	(","	target)*

[","]

target ::= identifier

|	"("	target_list	")"

|	"["	target_list	"]"

|	attributeref

|	subscription

|	slicing

Download	entire	grammar	as	text.

(See	section	5.3	for	the	syntax	definitions	for	the	last	three	symbols.)

An	assignment	statement	evaluates	the	expression	list	(remember	that	this	can	be
a	single	expression	or	a	comma-separated	list,	the	latter	yielding	a	tuple)	and
assigns	the	single	resulting	object	to	each	of	the	target	lists,	from	left	to	right.

Assignment	is	defined	recursively	depending	on	the	form	of	the	target	(list).
When	a	target	is	part	of	a	mutable	object	(an	attribute	reference,	subscription	or
slicing),	the	mutable	object	must	ultimately	perform	the	assignment	and	decide
about	its	validity,	and	may	raise	an	exception	if	the	assignment	is	unacceptable.
The	rules	observed	by	various	types	and	the	exceptions	raised	are	given	with	the
definition	of	the	object	types	(see	section	3.2).

Assignment	of	an	object	to	a	target	list	is	recursively	defined	as	follows.

If	the	target	list	is	a	single	target:	The	object	is	assigned	to	that	target.

If	the	target	list	is	a	comma-separated	list	of	targets:	The	object	must	be	a

sequence	with	the	same	number	of	items	as	there	are	targets	in	the	target
list,	and	the	items	are	assigned,	from	left	to	right,	to	the	corresponding
targets.	(This	rule	is	relaxed	as	of	Python	1.5;	in	earlier	versions,	the	object
had	to	be	a	tuple.	Since	strings	are	sequences,	an	assignment	like	"a,	b	=
"xy""	is	now	legal	as	long	as	the	string	has	the	right	length.)

Assignment	of	an	object	to	a	single	target	is	recursively	defined	as	follows.

If	the	target	is	an	identifier	(name):

If	the	name	does	not	occur	in	a	global	statement	in	the	current	code
block:	the	name	is	bound	to	the	object	in	the	current	local	namespace.

Otherwise:	the	name	is	bound	to	the	object	in	the	current	global
namespace.

The	name	is	rebound	if	it	was	already	bound.	This	may	cause	the	reference
count	for	the	object	previously	bound	to	the	name	to	reach	zero,	causing	the
object	to	be	deallocated	and	its	destructor	(if	it	has	one)	to	be	called.

If	the	target	is	a	target	list	enclosed	in	parentheses	or	in	square	brackets:
The	object	must	be	a	sequence	with	the	same	number	of	items	as	there	are
targets	in	the	target	list,	and	its	items	are	assigned,	from	left	to	right,	to	the
corresponding	targets.

If	the	target	is	an	attribute	reference:	The	primary	expression	in	the
reference	is	evaluated.	It	should	yield	an	object	with	assignable	attributes;	if
this	is	not	the	case,	TypeError	is	raised.	That	object	is	then	asked	to
assign	the	assigned	object	to	the	given	attribute;	if	it	cannot	perform	the
assignment,	it	raises	an	exception	(usually	but	not	necessarily
AttributeError).

If	the	target	is	a	subscription:	The	primary	expression	in	the	reference	is
evaluated.	It	should	yield	either	a	mutable	sequence	object	(e.g.,	a	list)	or	a
mapping	object	(e.g.,	a	dictionary).	Next,	the	subscript	expression	is
evaluated.

If	the	primary	is	a	mutable	sequence	object	(e.g.,	a	list),	the	subscript	must
yield	a	plain	integer.	If	it	is	negative,	the	sequence's	length	is	added	to	it.
The	resulting	value	must	be	a	nonnegative	integer	less	than	the	sequence's

length,	and	the	sequence	is	asked	to	assign	the	assigned	object	to	its	item
with	that	index.	If	the	index	is	out	of	range,	IndexError	is	raised
(assignment	to	a	subscripted	sequence	cannot	add	new	items	to	a	list).

If	the	primary	is	a	mapping	object	(e.g.,	a	dictionary),	the	subscript	must
have	a	type	compatible	with	the	mapping's	key	type,	and	the	mapping	is
then	asked	to	create	a	key/datum	pair	which	maps	the	subscript	to	the
assigned	object.	This	can	either	replace	an	existing	key/value	pair	with	the
same	key	value,	or	insert	a	new	key/value	pair	(if	no	key	with	the	same
value	existed).

If	the	target	is	a	slicing:	The	primary	expression	in	the	reference	is
evaluated.	It	should	yield	a	mutable	sequence	object	(e.g.,	a	list).	The
assigned	object	should	be	a	sequence	object	of	the	same	type.	Next,	the
lower	and	upper	bound	expressions	are	evaluated,	insofar	they	are	present;
defaults	are	zero	and	the	sequence's	length.	The	bounds	should	evaluate	to
(small)	integers.	If	either	bound	is	negative,	the	sequence's	length	is	added
to	it.	The	resulting	bounds	are	clipped	to	lie	between	zero	and	the
sequence's	length,	inclusive.	Finally,	the	sequence	object	is	asked	to	replace
the	slice	with	the	items	of	the	assigned	sequence.	The	length	of	the	slice
may	be	different	from	the	length	of	the	assigned	sequence,	thus	changing
the	length	of	the	target	sequence,	if	the	object	allows	it.

(In	the	current	implementation,	the	syntax	for	targets	is	taken	to	be	the	same	as
for	expressions,	and	invalid	syntax	is	rejected	during	the	code	generation	phase,
causing	less	detailed	error	messages.)

WARNING:	Although	the	definition	of	assignment	implies	that	overlaps
between	the	left-hand	side	and	the	right-hand	side	are	`safe'	(e.g.,	"a,	b	=	b,
a"	swaps	two	variables),	overlaps	within	the	collection	of	assigned-to	variables
are	not	safe!	For	instance,	the	following	program	prints	"[0,	2]":

x	=	[0,	1]

i	=	0

i,	x[i]	=	1,	2

print	x

Subsections

6.3.1	Augmented	assignment	statements

Python	Reference	Manual
Previous:	6.2	Assert	statements	Up:	6.	Simple	statements	Next:	6.3.1
Augmented	assignment	statements

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.3	Assignment	statements	Up:	6.3	Assignment	statements	Next:
6.4	The	pass	statement

6.3.1	Augmented	assignment	statements
Augmented	assignment	is	the	combination,	in	a	single	statement,	of	a	binary
operation	and	an	assignment	statement:

augmented_assignment_stmt ::= target	augop

expression_list

augop ::= "+="	|	"-="	|

"*="	|	"/="	|

"%="	|	"**="

|	">>="	|	"<<="

|	"&="	|	"^="	|

"|="

Download	entire	grammar	as	text.

(See	section	5.3	for	the	syntax	definitions	for	the	last	three	symbols.)

An	augmented	assignment	evaluates	the	target	(which,	unlike	normal	assignment
statements,	cannot	be	an	unpacking)	and	the	expression	list,	performs	the	binary
operation	specific	to	the	type	of	assignment	on	the	two	operands,	and	assigns	the
result	to	the	original	target.	The	target	is	only	evaluated	once.

An	augmented	assignment	expression	like	x	+=	1	can	be	rewritten	as	x	=	x
+	1	to	achieve	a	similar,	but	not	exactly	equal	effect.	In	the	augmented	version,
x	is	only	evaluated	once.	Also,	when	possible,	the	actual	operation	is	performed
in-place,	meaning	that	rather	than	creating	a	new	object	and	assigning	that	to	the
target,	the	old	object	is	modified	instead.

With	the	exception	of	assigning	to	tuples	and	multiple	targets	in	a	single
statement,	the	assignment	done	by	augmented	assignment	statements	is	handled
the	same	way	as	normal	assignments.	Similarly,	with	the	exception	of	the
possible	in-place	behavior,	the	binary	operation	performed	by	augmented
assignment	is	the	same	as	the	normal	binary	operations.

For	targets	which	are	attribute	references,	the	initial	value	is	retrieved	with	a
getattr()	and	the	result	is	assigned	with	a	setattr().	Notice	that	the	two
methods	do	not	necessarily	refer	to	the	same	variable.	When	getattr()	refers

to	a	class	variable,	setattr()	still	writes	to	an	instance	variable.	For	example:

class	A:

				x	=	3				#	class	variable

a	=	A()

a.x	+=	1					#	writes	a.x	as	4	leaving	A.x	as	3

Python	Reference	Manual
Previous:	6.3	Assignment	statements	Up:	6.3	Assignment	statements	Next:
6.4	The	pass	statement

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.3.1	Augmented	assignment	statements	Up:	6.	Simple	statements
Next:	6.5	The	del	statement

6.4	The	pass	statement
pass_stmt ::= "pass"

Download	entire	grammar	as	text.

pass	is	a	null	operation	--	when	it	is	executed,	nothing	happens.	It	is	useful	as	a
placeholder	when	a	statement	is	required	syntactically,	but	no	code	needs	to	be
executed,	for	example:

def	f(arg):	pass				#	a	function	that	does	nothing	(yet)

class	C:	pass							#	a	class	with	no	methods	(yet)

Python	Reference	Manual
Previous:	6.3.1	Augmented	assignment	statements	Up:	6.	Simple	statements
Next:	6.5	The	del	statement

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.4	The	pass	statement	Up:	6.	Simple	statements	Next:	6.6	The
print	statement

6.5	The	del	statement
del_stmt ::= "del"	target_list

Download	entire	grammar	as	text.

Deletion	is	recursively	defined	very	similar	to	the	way	assignment	is	defined.
Rather	that	spelling	it	out	in	full	details,	here	are	some	hints.

Deletion	of	a	target	list	recursively	deletes	each	target,	from	left	to	right.

Deletion	of	a	name	removes	the	binding	of	that	name	from	the	local	or	global
namespace,	depending	on	whether	the	name	occurs	in	a	global	statement	in
the	same	code	block.	If	the	name	is	unbound,	a	NameError	exception	will	be
raised.

It	is	illegal	to	delete	a	name	from	the	local	namespace	if	it	occurs	as	a	free
variable	in	a	nested	block.

Deletion	of	attribute	references,	subscriptions	and	slicings	is	passed	to	the
primary	object	involved;	deletion	of	a	slicing	is	in	general	equivalent	to
assignment	of	an	empty	slice	of	the	right	type	(but	even	this	is	determined	by	the
sliced	object).

Python	Reference	Manual
Previous:	6.4	The	pass	statement	Up:	6.	Simple	statements	Next:	6.6	The
print	statement

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.5	The	del	statement	Up:	6.	Simple	statements	Next:	6.7	The	return
statement

6.6	The	print	statement

print_stmt ::= "print"	([expression	(","

expression)*	[","]]

|	">>"	expression	[(","

expression)+	[","]])

Download	entire	grammar	as	text.

print	evaluates	each	expression	in	turn	and	writes	the	resulting	object	to
standard	output	(see	below).	If	an	object	is	not	a	string,	it	is	first	converted	to	a
string	using	the	rules	for	string	conversions.	The	(resulting	or	original)	string	is
then	written.	A	space	is	written	before	each	object	is	(converted	and)	written,
unless	the	output	system	believes	it	is	positioned	at	the	beginning	of	a	line.	This
is	the	case	(1)	when	no	characters	have	yet	been	written	to	standard	output,	(2)
when	the	last	character	written	to	standard	output	is	"\n",	or	(3)	when	the	last
write	operation	on	standard	output	was	not	a	print	statement.	(In	some	cases	it
may	be	functional	to	write	an	empty	string	to	standard	output	for	this	reason.)
Note:	Objects	which	act	like	file	objects	but	which	are	not	the	built-in	file
objects	often	do	not	properly	emulate	this	aspect	of	the	file	object's	behavior,	so
it	is	best	not	to	rely	on	this.

A	"\n"	character	is	written	at	the	end,	unless	the	print	statement	ends	with	a
comma.	This	is	the	only	action	if	the	statement	contains	just	the	keyword
print.

Standard	output	is	defined	as	the	file	object	named	stdout	in	the	built-in
module	sys.	If	no	such	object	exists,	or	if	it	does	not	have	a	write()	method,
a	RuntimeError	exception	is	raised.

print	also	has	an	extended	form,	defined	by	the	second	portion	of	the	syntax
described	above.	This	form	is	sometimes	referred	to	as	``print	chevron.''	In
this	form,	the	first	expression	after	the	>>	must	evaluate	to	a	``file-like''	object,
specifically	an	object	that	has	a	write()	method	as	described	above.	With	this
extended	form,	the	subsequent	expressions	are	printed	to	this	file	object.	If	the
first	expression	evaluates	to	None,	then	sys.stdout	is	used	as	the	file	for

output.

Python	Reference	Manual
Previous:	6.5	The	del	statement	Up:	6.	Simple	statements	Next:	6.7	The	return
statement

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.6	The	print	statement	Up:	6.	Simple	statements	Next:	6.8	The
yield	statement

6.7	The	return	statement
return_stmt ::= "return"	[expression_list]

Download	entire	grammar	as	text.

return	may	only	occur	syntactically	nested	in	a	function	definition,	not	within
a	nested	class	definition.

If	an	expression	list	is	present,	it	is	evaluated,	else	None	is	substituted.

return	leaves	the	current	function	call	with	the	expression	list	(or	None)	as
return	value.

When	return	passes	control	out	of	a	try	statement	with	a	finally	clause,
that	finally	clause	is	executed	before	really	leaving	the	function.

In	a	generator	function,	the	return	statement	is	not	allowed	to	include	an
expression_list.	In	that	context,	a	bare	return	indicates	that	the
generator	is	done	and	will	cause	StopIteration	to	be	raised.

Python	Reference	Manual
Previous:	6.6	The	print	statement	Up:	6.	Simple	statements	Next:	6.8	The
yield	statement

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.7	The	return	statement	Up:	6.	Simple	statements	Next:	6.9	The
raise	statement

6.8	The	yield	statement
yield_stmt ::= "yield"	expression_list

Download	entire	grammar	as	text.

The	yield	statement	is	only	used	when	defining	a	generator	function,	and	is
only	used	in	the	body	of	the	generator	function.	Using	a	yield	statement	in	a
function	definition	is	sufficient	to	cause	that	definition	to	create	a	generator
function	instead	of	a	normal	function.

When	a	generator	function	is	called,	it	returns	an	iterator	known	as	a	generator
iterator,	or	more	commonly,	a	generator.	The	body	of	the	generator	function	is
executed	by	calling	the	generator's	next()	method	repeatedly	until	it	raises	an
exception.

When	a	yield	statement	is	executed,	the	state	of	the	generator	is	frozen	and	the
value	of	expression_list	is	returned	to	next()'s	caller.	By	``frozen''	we
mean	that	all	local	state	is	retained,	including	the	current	bindings	of	local
variables,	the	instruction	pointer,	and	the	internal	evaluation	stack:	enough
information	is	saved	so	that	the	next	time	next()	is	invoked,	the	function	can
proceed	exactly	as	if	the	yield	statement	were	just	another	external	call.

The	yield	statement	is	not	allowed	in	the	try	clause	of	a	try	...	finally
construct.	The	difficulty	is	that	there's	no	guarantee	the	generator	will	ever	be
resumed,	hence	no	guarantee	that	the	finally	block	will	ever	get	executed.

Note: 	In	Python	2.2,	the	yield	statement	is	only	allowed
when	the	generators	feature	has	been	enabled.	It	will	always
be	enabled	in	Python	2.3.	This	__future__	import	statment
can	be	used	to	enable	the	feature:

from	__future__	import	generators

See	Also:

PEP	0255,	Simple	Generators
The	proposal	for	adding	generators	and	the	yield	statement	to
Python.

Python	Reference	Manual
Previous:	6.7	The	return	statement	Up:	6.	Simple	statements	Next:	6.9	The
raise	statement

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/peps/pep-0255.html

Previous:	6.8	The	yield	statement	Up:	6.	Simple	statements	Next:	6.10	The
break	statement

6.9	The	raise	statement
raise_stmt ::= "raise"	[expression	[","

expression	[","	expression]]]

Download	entire	grammar	as	text.

If	no	expressions	are	present,	raise	re-raises	the	last	expression	that	was	active
in	the	current	scope.	If	no	exception	is	active	in	the	current	scope,	an	exception
is	raised	indicating	this	error.

Otherwise,	raise	evaluates	the	expressions	to	get	three	objects,	using	None	as
the	value	of	omitted	expressions.	The	first	two	objects	are	used	to	determine	the
type	and	value	of	the	exception.

If	the	first	object	is	an	instance,	the	type	of	the	exception	is	the	class	of	the
instance,	the	instance	itself	is	the	value,	and	the	second	object	must	be	None.

If	the	first	object	is	a	class,	it	becomes	the	type	of	the	exception.	The	second
object	is	used	to	determine	the	exception	value:	If	it	is	an	instance	of	the	class,
the	instance	becomes	the	exception	value.	If	the	second	object	is	a	tuple,	it	is
used	as	the	argument	list	for	the	class	constructor;	if	it	is	None,	an	empty
argument	list	is	used,	and	any	other	object	is	treated	as	a	single	argument	to	the
constructor.	The	instance	so	created	by	calling	the	constructor	is	used	as	the
exception	value.

If	a	third	object	is	present	and	not	None,	it	must	be	a	traceback	object	(see
section	3.2),	and	it	is	substituted	instead	of	the	current	location	as	the	place
where	the	exception	occurred.	If	the	third	object	is	present	and	not	a	traceback
object	or	None,	a	TypeError	exception	is	raised.	The	three-expression	form
of	raise	is	useful	to	re-raise	an	exception	transparently	in	an	except	clause,	but
raise	with	no	expressions	should	be	preferred	if	the	exception	to	be	re-raised
was	the	most	recently	active	exception	in	the	current	scope.

Additional	information	on	exceptions	can	be	found	in	section	4.2,	and
information	about	handling	exceptions	is	in	section	7.4.

Python	Reference	Manual
Previous:	6.8	The	yield	statement	Up:	6.	Simple	statements	Next:	6.10	The
break	statement

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.9	The	raise	statement	Up:	6.	Simple	statements	Next:	6.11	The
continue	statement

6.10	The	break	statement
break_stmt ::= "break"

Download	entire	grammar	as	text.

break	may	only	occur	syntactically	nested	in	a	for	or	while	loop,	but	not
nested	in	a	function	or	class	definition	within	that	loop.

It	terminates	the	nearest	enclosing	loop,	skipping	the	optional	else	clause	if	the
loop	has	one.

If	a	for	loop	is	terminated	by	break,	the	loop	control	target	keeps	its	current
value.

When	break	passes	control	out	of	a	try	statement	with	a	finally	clause,
that	finally	clause	is	executed	before	really	leaving	the	loop.

Python	Reference	Manual
Previous:	6.9	The	raise	statement	Up:	6.	Simple	statements	Next:	6.11	The
continue	statement

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.10	The	break	statement	Up:	6.	Simple	statements	Next:	6.12	The
import	statement

6.11	The	continue	statement
continue_stmt ::= "continue"

Download	entire	grammar	as	text.

continue	may	only	occur	syntactically	nested	in	a	for	or	while	loop,	but
not	nested	in	a	function	or	class	definition	or	try	statement	within	that	loop.6.1It
continues	with	the	next	cycle	of	the	nearest	enclosing	loop.

Footnotes

...	loop.6.1
It	may	occur	within	an	except	or	else	clause.	The	restriction	on
occurring	in	the	try	clause	is	implementor's	laziness	and	will	eventually	be
lifted.

Python	Reference	Manual
Previous:	6.10	The	break	statement	Up:	6.	Simple	statements	Next:	6.12	The
import	statement

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.11	The	continue	statement	Up:	6.	Simple	statements	Next:	6.12.1
Future	statements

6.12	The	import	statement
import_stmt ::= "import"	module	["as"	name]

(","	module	["as"	name])*

|	"from"	module	"import"

identifier	["as"	name]

		(","	identifier	["as"

name])*

|	"from"	module	"import"	"("

identifier	["as"	name]

		(","	identifier	["as"

name])*	[","]	")"

|	"from"	module	"import"	"*"

module ::= (identifier	".")*	identifier

Download	entire	grammar	as	text.

Import	statements	are	executed	in	two	steps:	(1)	find	a	module,	and	initialize	it	if
necessary;	(2)	define	a	name	or	names	in	the	local	namespace	(of	the	scope
where	the	import	statement	occurs).	The	first	form	(without	from)	repeats
these	steps	for	each	identifier	in	the	list.	The	form	with	from	performs	step	(1)
once,	and	then	performs	step	(2)	repeatedly.

In	this	context,	to	``initialize''	a	built-in	or	extension	module	means	to	call	an
initialization	function	that	the	module	must	provide	for	the	purpose	(in	the
reference	implementation,	the	function's	name	is	obtained	by	prepending	string
``init''	to	the	module's	name);	to	``initialize''	a	Python-coded	module	means	to
execute	the	module's	body.

The	system	maintains	a	table	of	modules	that	have	been	or	are	being	initialized,
indexed	by	module	name.	This	table	is	accessible	as	sys.modules.	When	a
module	name	is	found	in	this	table,	step	(1)	is	finished.	If	not,	a	search	for	a
module	definition	is	started.	When	a	module	is	found,	it	is	loaded.	Details	of	the
module	searching	and	loading	process	are	implementation	and	platform	specific.
It	generally	involves	searching	for	a	``built-in''	module	with	the	given	name	and
then	searching	a	list	of	locations	given	as	sys.path.

If	a	built-in	module	is	found,	its	built-in	initialization	code	is	executed	and	step
(1)	is	finished.	If	no	matching	file	is	found,	ImportError	is	raised.	If	a	file	is
found,	it	is	parsed,	yielding	an	executable	code	block.	If	a	syntax	error	occurs,
SyntaxError	is	raised.	Otherwise,	an	empty	module	of	the	given	name	is
created	and	inserted	in	the	module	table,	and	then	the	code	block	is	executed	in
the	context	of	this	module.	Exceptions	during	this	execution	terminate	step	(1).

When	step	(1)	finishes	without	raising	an	exception,	step	(2)	can	begin.

The	first	form	of	import	statement	binds	the	module	name	in	the	local
namespace	to	the	module	object,	and	then	goes	on	to	import	the	next	identifier,	if
any.	If	the	module	name	is	followed	by	as,	the	name	following	as	is	used	as	the
local	name	for	the	module.

The	from	form	does	not	bind	the	module	name:	it	goes	through	the	list	of
identifiers,	looks	each	one	of	them	up	in	the	module	found	in	step	(1),	and	binds
the	name	in	the	local	namespace	to	the	object	thus	found.	As	with	the	first	form
of	import,	an	alternate	local	name	can	be	supplied	by	specifying	"as
localname".	If	a	name	is	not	found,	ImportError	is	raised.	If	the	list	of
identifiers	is	replaced	by	a	star	("*"),	all	public	names	defined	in	the	module	are
bound	in	the	local	namespace	of	the	import	statement..

The	public	names	defined	by	a	module	are	determined	by	checking	the	module's
namespace	for	a	variable	named	__all__;	if	defined,	it	must	be	a	sequence	of
strings	which	are	names	defined	or	imported	by	that	module.	The	names	given	in
__all__	are	all	considered	public	and	are	required	to	exist.	If	__all__	is	not
defined,	the	set	of	public	names	includes	all	names	found	in	the	module's
namespace	which	do	not	begin	with	an	underscore	character	("_").	__all__
should	contain	the	entire	public	API.	It	is	intended	to	avoid	accidentally
exporting	items	that	are	not	part	of	the	API	(such	as	library	modules	which	were
imported	and	used	within	the	module).

The	from	form	with	"*"	may	only	occur	in	a	module	scope.	If	the	wild	card
form	of	import	--	"import	*"	--	is	used	in	a	function	and	the	function	contains
or	is	a	nested	block	with	free	variables,	the	compiler	will	raise	a
SyntaxError.

Hierarchical	module	names:when	the	module	names	contains	one	or	more
dots,	the	module	search	path	is	carried	out	differently.	The	sequence	of

identifiers	up	to	the	last	dot	is	used	to	find	a	``package'';	the	final	identifier	is
then	searched	inside	the	package.	A	package	is	generally	a	subdirectory	of	a
directory	on	sys.path	that	has	a	file	__init__.py.	[XXX	Can't	be	bothered	to
spell	this	out	right	now;	see	the	URL
http://www.python.org/doc/essays/packages.html	for	more	details,	also
about	how	the	module	search	works	from	inside	a	package.]

The	built-in	function	__import__()	is	provided	to	support	applications	that
determine	which	modules	need	to	be	loaded	dynamically;	refer	to	Built-in
Functions	in	the	Python	Library	Reference	for	additional	information.

Subsections

6.12.1	Future	statements

Python	Reference	Manual
Previous:	6.11	The	continue	statement	Up:	6.	Simple	statements	Next:	6.12.1
Future	statements

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/doc/essays/packages.html

Previous:	6.12	The	import	statement	Up:	6.12	The	import	statement	Next:	6.13
The	global	statement

6.12.1	Future	statements
A	future	statement	is	a	directive	to	the	compiler	that	a	particular	module	should
be	compiled	using	syntax	or	semantics	that	will	be	available	in	a	specified	future
release	of	Python.	The	future	statement	is	intended	to	ease	migration	to	future
versions	of	Python	that	introduce	incompatible	changes	to	the	language.	It
allows	use	of	the	new	features	on	a	per-module	basis	before	the	release	in	which
the	feature	becomes	standard.

future_statement ::= "from"	"__future__"

"import"	feature	["as"

name]	(","	feature

["as"	name])*

|	"from"	"__future__"

"import"	"("	feature

["as"	name]	(","

feature	["as"	name])*

[","]	")"

feature ::= identifier

name ::= identifier

A	future	statement	must	appear	near	the	top	of	the	module.	The	only	lines	that
can	appear	before	a	future	statement	are:

the	module	docstring	(if	any),
comments,
blank	lines,	and
other	future	statements.

The	features	recognized	by	Python	2.3	are	"generators",	"division"	and
"nested_scopes".	"generators"	and	"nested_scopes"	are	redundant
in	2.3	because	they	are	always	enabled.

A	future	statement	is	recognized	and	treated	specially	at	compile	time:	Changes
to	the	semantics	of	core	constructs	are	often	implemented	by	generating	different
code.	It	may	even	be	the	case	that	a	new	feature	introduces	new	incompatible

syntax	(such	as	a	new	reserved	word),	in	which	case	the	compiler	may	need	to
parse	the	module	differently.	Such	decisions	cannot	be	pushed	off	until	runtime.

For	any	given	release,	the	compiler	knows	which	feature	names	have	been
defined,	and	raises	a	compile-time	error	if	a	future	statement	contains	a	feature
not	known	to	it.

The	direct	runtime	semantics	are	the	same	as	for	any	import	statement:	there	is	a
standard	module	__future__,	described	later,	and	it	will	be	imported	in	the
usual	way	at	the	time	the	future	statement	is	executed.

The	interesting	runtime	semantics	depend	on	the	specific	feature	enabled	by	the
future	statement.

Note	that	there	is	nothing	special	about	the	statement:

import	__future__	[as	name]

That	is	not	a	future	statement;	it's	an	ordinary	import	statement	with	no	special
semantics	or	syntax	restrictions.

Code	compiled	by	an	exec	statement	or	calls	to	the	builtin	functions
compile()	and	execfile()	that	occur	in	a	module	M	containing	a	future
statement	will,	by	default,	use	the	new	syntax	or	semantics	associated	with	the
future	statement.	This	can,	starting	with	Python	2.2	be	controlled	by	optional
arguments	to	compile()	--	see	the	documentation	of	that	function	in	the
library	reference	for	details.

A	future	statement	typed	at	an	interactive	interpreter	prompt	will	take	effect	for
the	rest	of	the	interpreter	session.	If	an	interpreter	is	started	with	the	-i	option,	is
passed	a	script	name	to	execute,	and	the	script	includes	a	future	statement,	it	will
be	in	effect	in	the	interactive	session	started	after	the	script	is	executed.

Python	Reference	Manual
Previous:	6.12	The	import	statement	Up:	6.12	The	import	statement	Next:	6.13
The	global	statement

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.12.1	Future	statements	Up:	6.	Simple	statements	Next:	6.14	The
exec	statement

6.13	The	global	statement
global_stmt ::= "global"	identifier	(","

identifier)*

Download	entire	grammar	as	text.

The	global	statement	is	a	declaration	which	holds	for	the	entire	current	code
block.	It	means	that	the	listed	identifiers	are	to	be	interpreted	as	globals.	It	would
be	impossible	to	assign	to	a	global	variable	without	global,	although	free
variables	may	refer	to	globals	without	being	declared	global.

Names	listed	in	a	global	statement	must	not	be	used	in	the	same	code	block
textually	preceding	that	global	statement.

Names	listed	in	a	global	statement	must	not	be	defined	as	formal	parameters
or	in	a	for	loop	control	target,	class	definition,	function	definition,	or
import	statement.

(The	current	implementation	does	not	enforce	the	latter	two	restrictions,	but
programs	should	not	abuse	this	freedom,	as	future	implementations	may	enforce
them	or	silently	change	the	meaning	of	the	program.)

Programmer's	note:	the	global	is	a	directive	to	the	parser.	It	applies	only	to
code	parsed	at	the	same	time	as	the	global	statement.	In	particular,	a	global
statement	contained	in	an	exec	statement	does	not	affect	the	code	block
containing	the	exec	statement,	and	code	contained	in	an	exec	statement	is
unaffected	by	global	statements	in	the	code	containing	the	exec	statement.
The	same	applies	to	the	eval(),	execfile()	and	compile()	functions.

Python	Reference	Manual
Previous:	6.12.1	Future	statements	Up:	6.	Simple	statements	Next:	6.14	The
exec	statement

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.13	The	global	statement	Up:	6.	Simple	statements	Next:	7.
Compound	statements

6.14	The	exec	statement
exec_stmt ::= "exec"	expression	["in"

expression	[","	expression]]

Download	entire	grammar	as	text.

This	statement	supports	dynamic	execution	of	Python	code.	The	first	expression
should	evaluate	to	either	a	string,	an	open	file	object,	or	a	code	object.	If	it	is	a
string,	the	string	is	parsed	as	a	suite	of	Python	statements	which	is	then	executed
(unless	a	syntax	error	occurs).	If	it	is	an	open	file,	the	file	is	parsed	until	EOF
and	executed.	If	it	is	a	code	object,	it	is	simply	executed.

In	all	cases,	if	the	optional	parts	are	omitted,	the	code	is	executed	in	the	current
scope.	If	only	the	first	expression	after	in	is	specified,	it	should	be	a	dictionary,
which	will	be	used	for	both	the	global	and	the	local	variables.	If	two	expressions
are	given,	they	are	used	for	the	global	and	local	variables,	respectively.	If
provided,	locals	can	be	any	mapping	object.	Changed	in	version	2.4:	formerly
locals	was	required	to	be	a	dictionary.

As	a	side	effect,	an	implementation	may	insert	additional	keys	into	the
dictionaries	given	besides	those	corresponding	to	variable	names	set	by	the
executed	code.	For	example,	the	current	implementation	may	add	a	reference	to
the	dictionary	of	the	built-in	module	__builtin__	under	the	key
__builtins__	(!).

Programmer's	hints:	dynamic	evaluation	of	expressions	is	supported	by	the
built-in	function	eval().	The	built-in	functions	globals()	and	locals()
return	the	current	global	and	local	dictionary,	respectively,	which	may	be	useful
to	pass	around	for	use	by	exec.

Python	Reference	Manual
Previous:	6.13	The	global	statement	Up:	6.	Simple	statements	Next:	7.
Compound	statements

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.14	The	exec	statement	Up:	Python	Reference	Manual	Next:	7.1
The	if	statement

7.	Compound	statements
Compound	statements	contain	(groups	of)	other	statements;	they	affect	or
control	the	execution	of	those	other	statements	in	some	way.	In	general,
compound	statements	span	multiple	lines,	although	in	simple	incarnations	a
whole	compound	statement	may	be	contained	in	one	line.

The	if,	while	and	for	statements	implement	traditional	control	flow
constructs.	try	specifies	exception	handlers	and/or	cleanup	code	for	a	group	of
statements.	Function	and	class	definitions	are	also	syntactically	compound
statements.

Compound	statements	consist	of	one	or	more	`clauses.'	A	clause	consists	of	a
header	and	a	`suite.'	The	clause	headers	of	a	particular	compound	statement	are
all	at	the	same	indentation	level.	Each	clause	header	begins	with	a	uniquely
identifying	keyword	and	ends	with	a	colon.	A	suite	is	a	group	of	statements
controlled	by	a	clause.	A	suite	can	be	one	or	more	semicolon-separated	simple
statements	on	the	same	line	as	the	header,	following	the	header's	colon,	or	it	can
be	one	or	more	indented	statements	on	subsequent	lines.	Only	the	latter	form	of
suite	can	contain	nested	compound	statements;	the	following	is	illegal,	mostly
because	it	wouldn't	be	clear	to	which	if	clause	a	following	else	clause	would
belong:

if	test1:	if	test2:	print	x

Also	note	that	the	semicolon	binds	tighter	than	the	colon	in	this	context,	so	that
in	the	following	example,	either	all	or	none	of	the	print	statements	are
executed:

if	x	<	y	<	z:	print	x;	print	y;	print	z

Summarizing:

compound_stmt ::= if_stmt

|	while_stmt

|	for_stmt

|	try_stmt

|	funcdef

|	classdef

suite ::= stmt_list	NEWLINE	|

NEWLINE	INDENT	statement+

DEDENT

statement ::= stmt_list	NEWLINE	|

compound_stmt

stmt_list ::= simple_stmt	(";"

simple_stmt)*	[";"]

Download	entire	grammar	as	text.

Note	that	statements	always	end	in	a	NEWLINE	possibly	followed	by	a	DEDENT.
Also	note	that	optional	continuation	clauses	always	begin	with	a	keyword	that
cannot	start	a	statement,	thus	there	are	no	ambiguities	(the	`dangling	else'
problem	is	solved	in	Python	by	requiring	nested	if	statements	to	be	indented).

The	formatting	of	the	grammar	rules	in	the	following	sections	places	each	clause
on	a	separate	line	for	clarity.

Subsections

7.1	The	if	statement
7.2	The	while	statement
7.3	The	for	statement
7.4	The	try	statement
7.5	Function	definitions
7.6	Class	definitions

Python	Reference	Manual
Previous:	6.14	The	exec	statement	Up:	Python	Reference	Manual	Next:	7.1
The	if	statement

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.	Compound	statements	Up:	7.	Compound	statements	Next:	7.2
The	while	statement

7.1	The	if	statement
The	if	statement	is	used	for	conditional	execution:

if_stmt ::= "if"	expression	":"	suite

("elif"	expression	":"	suite)*

["else"	":"	suite]

Download	entire	grammar	as	text.

It	selects	exactly	one	of	the	suites	by	evaluating	the	expressions	one	by	one	until
one	is	found	to	be	true	(see	section	5.10	for	the	definition	of	true	and	false);	then
that	suite	is	executed	(and	no	other	part	of	the	if	statement	is	executed	or
evaluated).	If	all	expressions	are	false,	the	suite	of	the	else	clause,	if	present,	is
executed.

Python	Reference	Manual
Previous:	7.	Compound	statements	Up:	7.	Compound	statements	Next:	7.2
The	while	statement

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.1	The	if	statement	Up:	7.	Compound	statements	Next:	7.3	The	for
statement

7.2	The	while	statement
The	while	statement	is	used	for	repeated	execution	as	long	as	an	expression	is
true:

while_stmt ::= "while"	expression	":"	suite

["else"	":"	suite]

Download	entire	grammar	as	text.

This	repeatedly	tests	the	expression	and,	if	it	is	true,	executes	the	first	suite;	if
the	expression	is	false	(which	may	be	the	first	time	it	is	tested)	the	suite	of	the
else	clause,	if	present,	is	executed	and	the	loop	terminates.

A	break	statement	executed	in	the	first	suite	terminates	the	loop	without
executing	the	else	clause's	suite.	A	continue	statement	executed	in	the	first
suite	skips	the	rest	of	the	suite	and	goes	back	to	testing	the	expression.

Python	Reference	Manual
Previous:	7.1	The	if	statement	Up:	7.	Compound	statements	Next:	7.3	The	for
statement

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.2	The	while	statement	Up:	7.	Compound	statements	Next:	7.4	The
try	statement

7.3	The	for	statement
The	for	statement	is	used	to	iterate	over	the	elements	of	a	sequence	(such	as	a
string,	tuple	or	list)	or	other	iterable	object:

for_stmt ::= "for"	target_list	"in"

expression_list	":"	suite

["else"	":"	suite]

Download	entire	grammar	as	text.

The	expression	list	is	evaluated	once;	it	should	yield	an	iterable	object.	An
iterator	is	created	for	the	result	of	the	expression_list.	The	suite	is	then
executed	once	for	each	item	provided	by	the	iterator,	in	the	order	of	ascending
indices.	Each	item	in	turn	is	assigned	to	the	target	list	using	the	standard	rules	for
assignments,	and	then	the	suite	is	executed.	When	the	items	are	exhausted
(which	is	immediately	when	the	sequence	is	empty),	the	suite	in	the	else
clause,	if	present,	is	executed,	and	the	loop	terminates.

A	break	statement	executed	in	the	first	suite	terminates	the	loop	without
executing	the	else	clause's	suite.	A	continue	statement	executed	in	the	first
suite	skips	the	rest	of	the	suite	and	continues	with	the	next	item,	or	with	the
else	clause	if	there	was	no	next	item.

The	suite	may	assign	to	the	variable(s)	in	the	target	list;	this	does	not	affect	the
next	item	assigned	to	it.

The	target	list	is	not	deleted	when	the	loop	is	finished,	but	if	the	sequence	is
empty,	it	will	not	have	been	assigned	to	at	all	by	the	loop.	Hint:	the	built-in
function	range()	returns	a	sequence	of	integers	suitable	to	emulate	the	effect
of	Pascal's	for	i	:=	a	to	b	do;	e.g.,	range(3)	returns	the	list	[0,	1,
2].

Warning:	There	is	a	subtlety	when	the	sequence	is	being	modified	by	the	loop
(this	can	only	occur	for	mutable	sequences,	i.e.	lists).	An	internal	counter	is	used
to	keep	track	of	which	item	is	used	next,	and	this	is	incremented	on	each
iteration.	When	this	counter	has	reached	the	length	of	the	sequence	the	loop

terminates.	This	means	that	if	the	suite	deletes	the	current	(or	a	previous)	item
from	the	sequence,	the	next	item	will	be	skipped	(since	it	gets	the	index	of	the
current	item	which	has	already	been	treated).	Likewise,	if	the	suite	inserts	an
item	in	the	sequence	before	the	current	item,	the	current	item	will	be	treated
again	the	next	time	through	the	loop.	This	can	lead	to	nasty	bugs	that	can	be
avoided	by	making	a	temporary	copy	using	a	slice	of	the	whole	sequence,	e.g.,

for	x	in	a[:]:

				if	x	<	0:	a.remove(x)

Python	Reference	Manual
Previous:	7.2	The	while	statement	Up:	7.	Compound	statements	Next:	7.4	The
try	statement

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.3	The	for	statement	Up:	7.	Compound	statements	Next:	7.5
Function	definitions

7.4	The	try	statement
The	try	statement	specifies	exception	handlers	and/or	cleanup	code	for	a	group
of	statements:

try_stmt ::= try_exc_stmt	|	try_fin_stmt

try_exc_stmt ::= "try"	":"	suite

("except"	[expression	[","

target]]	":"	suite)+

["else"	":"	suite]

try_fin_stmt ::= "try"	":"	suite	"finally"

":"	suite

Download	entire	grammar	as	text.

There	are	two	forms	of	try	statement:	try...except	and	try...finally.
These	forms	cannot	be	mixed	(but	they	can	be	nested	in	each	other).

The	try...except	form	specifies	one	or	more	exception	handlers	(the	except
clauses).	When	no	exception	occurs	in	the	try	clause,	no	exception	handler	is
executed.	When	an	exception	occurs	in	the	try	suite,	a	search	for	an	exception
handler	is	started.	This	search	inspects	the	except	clauses	in	turn	until	one	is
found	that	matches	the	exception.	An	expression-less	except	clause,	if	present,
must	be	last;	it	matches	any	exception.	For	an	except	clause	with	an	expression,
that	expression	is	evaluated,	and	the	clause	matches	the	exception	if	the	resulting
object	is	``compatible''	with	the	exception.	An	object	is	compatible	with	an
exception	if	it	is	either	the	object	that	identifies	the	exception,	or	(for	exceptions
that	are	classes)	it	is	a	base	class	of	the	exception,	or	it	is	a	tuple	containing	an
item	that	is	compatible	with	the	exception.	Note	that	the	object	identities	must
match,	i.e.	it	must	be	the	same	object,	not	just	an	object	with	the	same	value.

If	no	except	clause	matches	the	exception,	the	search	for	an	exception	handler
continues	in	the	surrounding	code	and	on	the	invocation	stack.

If	the	evaluation	of	an	expression	in	the	header	of	an	except	clause	raises	an
exception,	the	original	search	for	a	handler	is	canceled	and	a	search	starts	for	the

new	exception	in	the	surrounding	code	and	on	the	call	stack	(it	is	treated	as	if	the
entire	try	statement	raised	the	exception).

When	a	matching	except	clause	is	found,	the	exception's	parameter	is	assigned	to
the	target	specified	in	that	except	clause,	if	present,	and	the	except	clause's	suite
is	executed.	All	except	clauses	must	have	an	executable	block.	When	the	end	of
this	block	is	reached,	execution	continues	normally	after	the	entire	try	statement.
(This	means	that	if	two	nested	handlers	exist	for	the	same	exception,	and	the
exception	occurs	in	the	try	clause	of	the	inner	handler,	the	outer	handler	will	not
handle	the	exception.)

Before	an	except	clause's	suite	is	executed,	details	about	the	exception	are
assigned	to	three	variables	in	the	sys	module:	sys.exc_type	receives	the
object	identifying	the	exception;	sys.exc_value	receives	the	exception's
parameter;	sys.exc_traceback	receives	a	traceback	object	(see	section	3.2)
identifying	the	point	in	the	program	where	the	exception	occurred.	These	details
are	also	available	through	the	sys.exc_info()	function,	which	returns	a
tuple	(exc_type,	exc_value,	exc_traceback).	Use	of	the	corresponding
variables	is	deprecated	in	favor	of	this	function,	since	their	use	is	unsafe	in	a
threaded	program.	As	of	Python	1.5,	the	variables	are	restored	to	their	previous
values	(before	the	call)	when	returning	from	a	function	that	handled	an
exception.

The	optional	else	clause	is	executed	if	and	when	control	flows	off	the	end	of
the	try	clause.7.1	Exceptions	in	the	else	clause	are	not	handled	by	the
preceding	except	clauses.

The	try...finally	form	specifies	a	`cleanup'	handler.	The	try	clause	is
executed.	When	no	exception	occurs,	the	finally	clause	is	executed.	When	an
exception	occurs	in	the	try	clause,	the	exception	is	temporarily	saved,	the
finally	clause	is	executed,	and	then	the	saved	exception	is	re-raised.	If	the
finally	clause	raises	another	exception	or	executes	a	return	or	break
statement,	the	saved	exception	is	lost.	A	continue	statement	is	illegal	in	the
finally	clause.	(The	reason	is	a	problem	with	the	current	implementation	-
this	restriction	may	be	lifted	in	the	future).	The	exception	information	is	not
available	to	the	program	during	execution	of	the	finally	clause.

When	a	return,	break	or	continue	statement	is	executed	in	the	try	suite

of	a	try...finally	statement,	the	finally	clause	is	also	executed	`on	the
way	out.'	A	continue	statement	is	illegal	in	the	finally	clause.	(The	reason
is	a	problem	with	the	current	implementation	--	this	restriction	may	be	lifted	in
the	future).

Additional	information	on	exceptions	can	be	found	in	section	4.2,	and
information	on	using	the	raise	statement	to	generate	exceptions	may	be	found
in	section	6.9.

Footnotes

...	clause.7.1
Currently,	control	``flows	off	the	end''	except	in	the	case	of	an	exception	or
the	execution	of	a	return,	continue,	or	break	statement.

Python	Reference	Manual
Previous:	7.3	The	for	statement	Up:	7.	Compound	statements	Next:	7.5
Function	definitions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.4	The	try	statement	Up:	7.	Compound	statements	Next:	7.6	Class
definitions

7.5	Function	definitions
A	function	definition	defines	a	user-defined	function	object	(see	section	3.2):

funcdef ::= [decorators]	"def"

funcname	"("

[parameter_list]	")"	":"

suite

decorators ::= decorator+

decorator ::= "@"	dotted_name	["("

[argument_list	[","]]

")"]	NEWLINE

parameter_list ::= (defparameter	",")*

("*"	identifier	[,	"**"

identifier]

	|	"**"	identifier

	|	defparameter	[","])

defparameter ::= parameter	["="

expression]

sublist ::= parameter	(","

parameter)*	[","]

parameter ::= identifier	|	"("	sublist

")"

funcname ::= identifier

Download	entire	grammar	as	text.

A	function	definition	is	an	executable	statement.	Its	execution	binds	the	function
name	in	the	current	local	namespace	to	a	function	object	(a	wrapper	around	the
executable	code	for	the	function).	This	function	object	contains	a	reference	to
the	current	global	namespace	as	the	global	namespace	to	be	used	when	the
function	is	called.

The	function	definition	does	not	execute	the	function	body;	this	gets	executed
only	when	the	function	is	called.

A	function	definition	may	be	wrapped	by	one	or	more	decorator	expressions.
Decorator	expressions	are	evaluated	when	the	function	is	defined,	in	the	scope
that	contains	the	function	definition.	The	result	must	be	a	callable,	which	is
invoked	with	the	function	object	as	the	only	argument.	The	returned	value	is
bound	to	the	function	name	instead	of	the	function	object.	Multiple	decorators
are	applied	in	nested	fashion.	For	example,	the	following	code:

@f1(arg)

@f2

def	func():	pass

is	equivalent	to:

def	func():	pass

func	=	f1(arg)(f2(func))

When	one	or	more	top-level	parameters	have	the	form	parameter	=	expression,
the	function	is	said	to	have	``default	parameter	values.''	For	a	parameter	with	a
default	value,	the	corresponding	argument	may	be	omitted	from	a	call,	in	which
case	the	parameter's	default	value	is	substituted.	If	a	parameter	has	a	default
value,	all	following	parameters	must	also	have	a	default	value	--	this	is	a
syntactic	restriction	that	is	not	expressed	by	the	grammar.

Default	parameter	values	are	evaluated	when	the	function	definition	is
executed.	This	means	that	the	expression	is	evaluated	once,	when	the	function	is
defined,	and	that	that	same	``pre-computed''	value	is	used	for	each	call.	This	is
especially	important	to	understand	when	a	default	parameter	is	a	mutable	object,
such	as	a	list	or	a	dictionary:	if	the	function	modifies	the	object	(e.g.	by
appending	an	item	to	a	list),	the	default	value	is	in	effect	modified.	This	is
generally	not	what	was	intended.	A	way	around	this	is	to	use	None	as	the
default,	and	explicitly	test	for	it	in	the	body	of	the	function,	e.g.:

def	whats_on_the_telly(penguin=None):

				if	penguin	is	None:

								penguin	=	[]

				penguin.append("property	of	the	zoo")

				return	penguin

Function	call	semantics	are	described	in	more	detail	in	section	5.3.4.	A	function
call	always	assigns	values	to	all	parameters	mentioned	in	the	parameter	list,
either	from	position	arguments,	from	keyword	arguments,	or	from	default
values.	If	the	form	``*identifier''	is	present,	it	is	initialized	to	a	tuple

receiving	any	excess	positional	parameters,	defaulting	to	the	empty	tuple.	If	the
form	``**identifier''	is	present,	it	is	initialized	to	a	new	dictionary
receiving	any	excess	keyword	arguments,	defaulting	to	a	new	empty	dictionary.

It	is	also	possible	to	create	anonymous	functions	(functions	not	bound	to	a
name),	for	immediate	use	in	expressions.	This	uses	lambda	forms,	described	in
section	5.11.	Note	that	the	lambda	form	is	merely	a	shorthand	for	a	simplified
function	definition;	a	function	defined	in	a	``def''	statement	can	be	passed
around	or	assigned	to	another	name	just	like	a	function	defined	by	a	lambda
form.	The	``def''	form	is	actually	more	powerful	since	it	allows	the	execution	of
multiple	statements.

Programmer's	note:	Functions	are	first-class	objects.	A	``def''	form	executed
inside	a	function	definition	defines	a	local	function	that	can	be	returned	or
passed	around.	Free	variables	used	in	the	nested	function	can	access	the	local
variables	of	the	function	containing	the	def.	See	section	4.1	for	details.

Python	Reference	Manual
Previous:	7.4	The	try	statement	Up:	7.	Compound	statements	Next:	7.6	Class
definitions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5	Function	definitions	Up:	7.	Compound	statements	Next:	8.	Top-
level	components

7.6	Class	definitions
A	class	definition	defines	a	class	object	(see	section	3.2):

classdef ::= "class"	classname

[inheritance]	":"	suite

inheritance ::= "("	expression_list	")"

classname ::= identifier

Download	entire	grammar	as	text.

A	class	definition	is	an	executable	statement.	It	first	evaluates	the	inheritance
list,	if	present.	Each	item	in	the	inheritance	list	should	evaluate	to	a	class	object
or	class	type	which	allows	subclassing.	The	class's	suite	is	then	executed	in	a
new	execution	frame	(see	section	4.1),	using	a	newly	created	local	namespace
and	the	original	global	namespace.	(Usually,	the	suite	contains	only	function
definitions.)	When	the	class's	suite	finishes	execution,	its	execution	frame	is
discarded	but	its	local	namespace	is	saved.	A	class	object	is	then	created	using
the	inheritance	list	for	the	base	classes	and	the	saved	local	namespace	for	the
attribute	dictionary.	The	class	name	is	bound	to	this	class	object	in	the	original
local	namespace.

Programmer's	note:	Variables	defined	in	the	class	definition	are	class	variables;
they	are	shared	by	all	instances.	To	define	instance	variables,	they	must	be	given
a	value	in	the	__init__()	method	or	in	another	method.	Both	class	and
instance	variables	are	accessible	through	the	notation	``self.name'',	and	an
instance	variable	hides	a	class	variable	with	the	same	name	when	accessed	in
this	way.	Class	variables	with	immutable	values	can	be	used	as	defaults	for
instance	variables.	For	new-style	classes,	descriptors	can	be	used	to	create
instance	variables	with	different	implementation	details.

Python	Reference	Manual
Previous:	7.5	Function	definitions	Up:	7.	Compound	statements	Next:	8.	Top-
level	components

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.6	Class	definitions	Up:	Python	Reference	Manual	Next:	8.1
Complete	Python	programs

8.	Top-level	components
The	Python	interpreter	can	get	its	input	from	a	number	of	sources:	from	a	script
passed	to	it	as	standard	input	or	as	program	argument,	typed	in	interactively,
from	a	module	source	file,	etc.	This	chapter	gives	the	syntax	used	in	these	cases.

Subsections

8.1	Complete	Python	programs
8.2	File	input
8.3	Interactive	input
8.4	Expression	input

Python	Reference	Manual
Previous:	7.6	Class	definitions	Up:	Python	Reference	Manual	Next:	8.1
Complete	Python	programs

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.	Top-level	components	Up:	8.	Top-level	components	Next:	8.2	File
input

8.1	Complete	Python	programs
While	a	language	specification	need	not	prescribe	how	the	language	interpreter
is	invoked,	it	is	useful	to	have	a	notion	of	a	complete	Python	program.	A
complete	Python	program	is	executed	in	a	minimally	initialized	environment:	all
built-in	and	standard	modules	are	available,	but	none	have	been	initialized,
except	for	sys	(various	system	services),	__builtin__	(built-in	functions,
exceptions	and	None)	and	__main__.	The	latter	is	used	to	provide	the	local
and	global	namespace	for	execution	of	the	complete	program.

The	syntax	for	a	complete	Python	program	is	that	for	file	input,	described	in	the
next	section.

The	interpreter	may	also	be	invoked	in	interactive	mode;	in	this	case,	it	does	not
read	and	execute	a	complete	program	but	reads	and	executes	one	statement
(possibly	compound)	at	a	time.	The	initial	environment	is	identical	to	that	of	a
complete	program;	each	statement	is	executed	in	the	namespace	of	__main__.

Under	UNIX,	a	complete	program	can	be	passed	to	the	interpreter	in	three	forms:
with	the	-c	string	command	line	option,	as	a	file	passed	as	the	first	command	line
argument,	or	as	standard	input.	If	the	file	or	standard	input	is	a	tty	device,	the
interpreter	enters	interactive	mode;	otherwise,	it	executes	the	file	as	a	complete
program.

Python	Reference	Manual
Previous:	8.	Top-level	components	Up:	8.	Top-level	components	Next:	8.2	File
input

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.1	Complete	Python	programs	Up:	8.	Top-level	components	Next:
8.3	Interactive	input

8.2	File	input
All	input	read	from	non-interactive	files	has	the	same	form:

file_input ::= (NEWLINE	|	statement)*

Download	entire	grammar	as	text.

This	syntax	is	used	in	the	following	situations:

when	parsing	a	complete	Python	program	(from	a	file	or	from	a	string);

when	parsing	a	module;

when	parsing	a	string	passed	to	the	exec	statement;

Python	Reference	Manual
Previous:	8.1	Complete	Python	programs	Up:	8.	Top-level	components	Next:
8.3	Interactive	input

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.2	File	input	Up:	8.	Top-level	components	Next:	8.4	Expression
input

8.3	Interactive	input
Input	in	interactive	mode	is	parsed	using	the	following	grammar:

interactive_input ::= [stmt_list]	NEWLINE	|

compound_stmt	NEWLINE

Download	entire	grammar	as	text.

Note	that	a	(top-level)	compound	statement	must	be	followed	by	a	blank	line	in
interactive	mode;	this	is	needed	to	help	the	parser	detect	the	end	of	the	input.

Python	Reference	Manual
Previous:	8.2	File	input	Up:	8.	Top-level	components	Next:	8.4	Expression
input

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.3	Interactive	input	Up:	8.	Top-level	components	Next:	A.	History
and	License

8.4	Expression	input
There	are	two	forms	of	expression	input.	Both	ignore	leading	whitespace.	The
string	argument	to	eval()	must	have	the	following	form:

eval_input ::= expression_list	NEWLINE*

Download	entire	grammar	as	text.

The	input	line	read	by	input()	must	have	the	following	form:

input_input ::= expression_list	NEWLINE

Download	entire	grammar	as	text.

Note:	to	read	`raw'	input	line	without	interpretation,	you	can	use	the	built-in
function	raw_input()	or	the	readline()	method	of	file	objects.

Python	Reference	Manual
Previous:	8.3	Interactive	input	Up:	8.	Top-level	components	Next:	A.	History
and	License

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.4	Expression	input	Up:	Python	Reference	Manual	Next:	A.1
History	of	the

A.	History	and	License

Subsections

A.1	History	of	the	software
A.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
A.3	Licenses	and	Acknowledgements	for	Incorporated	Software

A.3.1	Mersenne	Twister
A.3.2	Sockets
A.3.3	Floating	point	exception	control
A.3.4	MD5	message	digest	algorithm
A.3.5	Asynchronous	socket	services
A.3.6	Cookie	management
A.3.7	Profiling
A.3.8	Execution	tracing
A.3.9	UUencode	and	UUdecode	functions
A.3.10	XML	Remote	Procedure	Calls

Python	Reference	Manual
Previous:	8.4	Expression	input	Up:	Python	Reference	Manual	Next:	A.1
History	of	the

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.	History	and	License	Up:	A.	History	and	License	Next:	A.2	Terms
and	conditions

A.1	History	of	the	software
Python	was	created	in	the	early	1990s	by	Guido	van	Rossum	at	Stichting
Mathematisch	Centrum	(CWI,	see	http://www.cwi.nl/)	in	the	Netherlands	as	a
successor	of	a	language	called	ABC.	Guido	remains	Python's	principal	author,
although	it	includes	many	contributions	from	others.

In	1995,	Guido	continued	his	work	on	Python	at	the	Corporation	for	National
Research	Initiatives	(CNRI,	see	http://www.cnri.reston.va.us/)	in	Reston,
Virginia	where	he	released	several	versions	of	the	software.

In	May	2000,	Guido	and	the	Python	core	development	team	moved	to
BeOpen.com	to	form	the	BeOpen	PythonLabs	team.	In	October	of	the	same
year,	the	PythonLabs	team	moved	to	Digital	Creations	(now	Zope	Corporation;
see	http://www.zope.com/).	In	2001,	the	Python	Software	Foundation	(PSF,	see
http://www.python.org/psf/)	was	formed,	a	non-profit	organization	created
specifically	to	own	Python-related	Intellectual	Property.	Zope	Corporation	is	a
sponsoring	member	of	the	PSF.

All	Python	releases	are	Open	Source	(see	http://www.opensource.org/	for	the
Open	Source	Definition).	Historically,	most,	but	not	all,	Python	releases	have
also	been	GPL-compatible;	the	table	below	summarizes	the	various	releases.

Release Derived
from

Year Owner GPL
compatible?

0.9.0	thru
1.2

n/a 1991-
1995

CWI yes

1.3	thru
1.5.2

1.2 1995-
1999

CNRI yes

1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-

2003
PSF yes

2.3 2.2.2 2002-
2003

PSF yes

2.3.1 2.3 2002-
2003

PSF yes

2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes

Note:	GPL-compatible	doesn't	mean	that	we're	distributing	Python	under	the
GPL.	All	Python	licenses,	unlike	the	GPL,	let	you	distribute	a	modified	version
without	making	your	changes	open	source.	The	GPL-compatible	licenses	make
it	possible	to	combine	Python	with	other	software	that	is	released	under	the
GPL;	the	others	don't.

Thanks	to	the	many	outside	volunteers	who	have	worked	under	Guido's	direction
to	make	these	releases	possible.

Python	Reference	Manual
Previous:	A.	History	and	License	Up:	A.	History	and	License	Next:	A.2	Terms
and	conditions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.1	History	of	the	Up:	A.	History	and	License	Next:	A.3	Licenses
and	Acknowledgements

A.2	Terms	and	conditions	for
accessing	or	otherwise	using
Python

PSF	LICENSE	AGREEMENT	FOR	PYTHON	2.4

1.	 This	LICENSE	AGREEMENT	is	between	the	Python	Software	Foundation
(``PSF''),	and	the	Individual	or	Organization	(``Licensee'')	accessing	and
otherwise	using	Python	2.4	software	in	source	or	binary	form	and	its
associated	documentation.

2.	 Subject	to	the	terms	and	conditions	of	this	License	Agreement,	PSF	hereby
grants	Licensee	a	nonexclusive,	royalty-free,	world-wide	license	to
reproduce,	analyze,	test,	perform	and/or	display	publicly,	prepare	derivative
works,	distribute,	and	otherwise	use	Python	2.4	alone	or	in	any	derivative
version,	provided,	however,	that	PSF's	License	Agreement	and	PSF's	notice
of	copyright,	i.e.,	``Copyright	©	2001-2004	Python	Software	Foundation;
All	Rights	Reserved''	are	retained	in	Python	2.4	alone	or	in	any	derivative
version	prepared	by	Licensee.

3.	 In	the	event	Licensee	prepares	a	derivative	work	that	is	based	on	or
incorporates	Python	2.4	or	any	part	thereof,	and	wants	to	make	the
derivative	work	available	to	others	as	provided	herein,	then	Licensee
hereby	agrees	to	include	in	any	such	work	a	brief	summary	of	the	changes
made	to	Python	2.4.

4.	 PSF	is	making	Python	2.4	available	to	Licensee	on	an	``AS	IS''	basis.	PSF
MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,	EXPRESS	OR
IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT	LIMITATION,	PSF
MAKES	NO	AND	DISCLAIMS	ANY	REPRESENTATION	OR
WARRANTY	OF	MERCHANTABILITY	OR	FITNESS	FOR	ANY
PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF	PYTHON	2.4	WILL
NOT	INFRINGE	ANY	THIRD	PARTY	RIGHTS.

5.	 PSF	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER	USERS

OF	PYTHON	2.4	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF
MODIFYING,	DISTRIBUTING,	OR	OTHERWISE	USING	PYTHON	2.4,
OR	ANY	DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE
POSSIBILITY	THEREOF.

6.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

7.	 Nothing	in	this	License	Agreement	shall	be	deemed	to	create	any
relationship	of	agency,	partnership,	or	joint	venture	between	PSF	and
Licensee.	This	License	Agreement	does	not	grant	permission	to	use	PSF
trademarks	or	trade	name	in	a	trademark	sense	to	endorse	or	promote
products	or	services	of	Licensee,	or	any	third	party.

8.	 By	copying,	installing	or	otherwise	using	Python	2.4,	Licensee	agrees	to	be
bound	by	the	terms	and	conditions	of	this	License	Agreement.

BEOPEN.COM	LICENSE	AGREEMENT	FOR	PYTHON	2.0

BEOPEN	PYTHON	OPEN	SOURCE	LICENSE	AGREEMENT	VERSION
1

1.	 This	LICENSE	AGREEMENT	is	between	BeOpen.com	(``BeOpen''),
having	an	office	at	160	Saratoga	Avenue,	Santa	Clara,	CA	95051,	and	the
Individual	or	Organization	(``Licensee'')	accessing	and	otherwise	using	this
software	in	source	or	binary	form	and	its	associated	documentation	(``the
Software'').

2.	 Subject	to	the	terms	and	conditions	of	this	BeOpen	Python	License
Agreement,	BeOpen	hereby	grants	Licensee	a	non-exclusive,	royalty-free,
world-wide	license	to	reproduce,	analyze,	test,	perform	and/or	display
publicly,	prepare	derivative	works,	distribute,	and	otherwise	use	the
Software	alone	or	in	any	derivative	version,	provided,	however,	that	the
BeOpen	Python	License	is	retained	in	the	Software,	alone	or	in	any
derivative	version	prepared	by	Licensee.

3.	 BeOpen	is	making	the	Software	available	to	Licensee	on	an	``AS	IS''	basis.
BEOPEN	MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,
EXPRESS	OR	IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT

LIMITATION,	BEOPEN	MAKES	NO	AND	DISCLAIMS	ANY
REPRESENTATION	OR	WARRANTY	OF	MERCHANTABILITY	OR
FITNESS	FOR	ANY	PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF
THE	SOFTWARE	WILL	NOT	INFRINGE	ANY	THIRD	PARTY
RIGHTS.

4.	 BEOPEN	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER
USERS	OF	THE	SOFTWARE	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF	USING,
MODIFYING	OR	DISTRIBUTING	THE	SOFTWARE,	OR	ANY
DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY
THEREOF.

5.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

6.	 This	License	Agreement	shall	be	governed	by	and	interpreted	in	all	respects
by	the	law	of	the	State	of	California,	excluding	conflict	of	law	provisions.
Nothing	in	this	License	Agreement	shall	be	deemed	to	create	any
relationship	of	agency,	partnership,	or	joint	venture	between	BeOpen	and
Licensee.	This	License	Agreement	does	not	grant	permission	to	use
BeOpen	trademarks	or	trade	names	in	a	trademark	sense	to	endorse	or
promote	products	or	services	of	Licensee,	or	any	third	party.	As	an
exception,	the	``BeOpen	Python''	logos	available	at
http://www.pythonlabs.com/logos.html	may	be	used	according	to	the
permissions	granted	on	that	web	page.

7.	 By	copying,	installing	or	otherwise	using	the	software,	Licensee	agrees	to
be	bound	by	the	terms	and	conditions	of	this	License	Agreement.

CNRI	LICENSE	AGREEMENT	FOR	PYTHON	1.6.1

1.	 This	LICENSE	AGREEMENT	is	between	the	Corporation	for	National
Research	Initiatives,	having	an	office	at	1895	Preston	White	Drive,	Reston,
VA	20191	(``CNRI''),	and	the	Individual	or	Organization	(``Licensee'')
accessing	and	otherwise	using	Python	1.6.1	software	in	source	or	binary
form	and	its	associated	documentation.

2.	 Subject	to	the	terms	and	conditions	of	this	License	Agreement,	CNRI
hereby	grants	Licensee	a	nonexclusive,	royalty-free,	world-wide	license	to

reproduce,	analyze,	test,	perform	and/or	display	publicly,	prepare	derivative
works,	distribute,	and	otherwise	use	Python	1.6.1	alone	or	in	any	derivative
version,	provided,	however,	that	CNRI's	License	Agreement	and	CNRI's
notice	of	copyright,	i.e.,	``Copyright	©	1995-2001	Corporation	for	National
Research	Initiatives;	All	Rights	Reserved''	are	retained	in	Python	1.6.1
alone	or	in	any	derivative	version	prepared	by	Licensee.	Alternately,	in	lieu
of	CNRI's	License	Agreement,	Licensee	may	substitute	the	following	text
(omitting	the	quotes):	``Python	1.6.1	is	made	available	subject	to	the	terms
and	conditions	in	CNRI's	License	Agreement.	This	Agreement	together
with	Python	1.6.1	may	be	located	on	the	Internet	using	the	following
unique,	persistent	identifier	(known	as	a	handle):	1895.22/1013.	This
Agreement	may	also	be	obtained	from	a	proxy	server	on	the	Internet	using
the	following	URL:	http://hdl.handle.net/1895.22/1013.''

3.	 In	the	event	Licensee	prepares	a	derivative	work	that	is	based	on	or
incorporates	Python	1.6.1	or	any	part	thereof,	and	wants	to	make	the
derivative	work	available	to	others	as	provided	herein,	then	Licensee
hereby	agrees	to	include	in	any	such	work	a	brief	summary	of	the	changes
made	to	Python	1.6.1.

4.	 CNRI	is	making	Python	1.6.1	available	to	Licensee	on	an	``AS	IS''	basis.
CNRI	MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,	EXPRESS
OR	IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT	LIMITATION,	CNRI
MAKES	NO	AND	DISCLAIMS	ANY	REPRESENTATION	OR
WARRANTY	OF	MERCHANTABILITY	OR	FITNESS	FOR	ANY
PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF	PYTHON	1.6.1	WILL
NOT	INFRINGE	ANY	THIRD	PARTY	RIGHTS.

5.	 CNRI	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER
USERS	OF	PYTHON	1.6.1	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF
MODIFYING,	DISTRIBUTING,	OR	OTHERWISE	USING	PYTHON
1.6.1,	OR	ANY	DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE
POSSIBILITY	THEREOF.

6.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

7.	 This	License	Agreement	shall	be	governed	by	the	federal	intellectual

http://hdl.handle.net/1895.22/1013

property	law	of	the	United	States,	including	without	limitation	the	federal
copyright	law,	and,	to	the	extent	such	U.S.	federal	law	does	not	apply,	by
the	law	of	the	Commonwealth	of	Virginia,	excluding	Virginia's	conflict	of
law	provisions.	Notwithstanding	the	foregoing,	with	regard	to	derivative
works	based	on	Python	1.6.1	that	incorporate	non-separable	material	that
was	previously	distributed	under	the	GNU	General	Public	License	(GPL),
the	law	of	the	Commonwealth	of	Virginia	shall	govern	this	License
Agreement	only	as	to	issues	arising	under	or	with	respect	to	Paragraphs	4,
5,	and	7	of	this	License	Agreement.	Nothing	in	this	License	Agreement
shall	be	deemed	to	create	any	relationship	of	agency,	partnership,	or	joint
venture	between	CNRI	and	Licensee.	This	License	Agreement	does	not
grant	permission	to	use	CNRI	trademarks	or	trade	name	in	a	trademark
sense	to	endorse	or	promote	products	or	services	of	Licensee,	or	any	third
party.

8.	 By	clicking	on	the	``ACCEPT''	button	where	indicated,	or	by	copying,
installing	or	otherwise	using	Python	1.6.1,	Licensee	agrees	to	be	bound	by
the	terms	and	conditions	of	this	License	Agreement.

ACCEPT

CWI	LICENSE	AGREEMENT	FOR	PYTHON	0.9.0	THROUGH	1.2

Copyright	©	1991	-	1995,	Stichting	Mathematisch	Centrum	Amsterdam,	The
Netherlands.	All	rights	reserved.

Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its
documentation	for	any	purpose	and	without	fee	is	hereby	granted,	provided	that
the	above	copyright	notice	appear	in	all	copies	and	that	both	that	copyright
notice	and	this	permission	notice	appear	in	supporting	documentation,	and	that
the	name	of	Stichting	Mathematisch	Centrum	or	CWI	not	be	used	in	advertising
or	publicity	pertaining	to	distribution	of	the	software	without	specific,	written
prior	permission.

STICHTING	MATHEMATISCH	CENTRUM	DISCLAIMS	ALL
WARRANTIES	WITH	REGARD	TO	THIS	SOFTWARE,	INCLUDING	ALL
IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS,	IN	NO
EVENT	SHALL	STICHTING	MATHEMATISCH	CENTRUM	BE	LIABLE
FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR

ANY	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,
DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF	CONTRACT,
NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN
CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS
SOFTWARE.

Python	Reference	Manual
Previous:	A.1	History	of	the	Up:	A.	History	and	License	Next:	A.3	Licenses
and	Acknowledgements

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.2	Terms	and	conditions	Up:	A.	History	and	License	Next:	A.3.1
Mersenne	Twister

A.3	Licenses	and
Acknowledgements	for	Incorporated
Software
This	section	is	an	incomplete,	but	growing	list	of	licenses	and
acknowledgements	for	third-party	software	incorporated	in	the	Python
distribution.

Subsections

A.3.1	Mersenne	Twister
A.3.2	Sockets
A.3.3	Floating	point	exception	control
A.3.4	MD5	message	digest	algorithm
A.3.5	Asynchronous	socket	services
A.3.6	Cookie	management
A.3.7	Profiling
A.3.8	Execution	tracing
A.3.9	UUencode	and	UUdecode	functions
A.3.10	XML	Remote	Procedure	Calls

Python	Reference	Manual
Previous:	A.2	Terms	and	conditions	Up:	A.	History	and	License	Next:	A.3.1
Mersenne	Twister

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3	Licenses	and	Acknowledgements	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.2	Sockets

A.3.1	Mersenne	Twister
The	_random	module	includes	code	based	on	a	download	from
http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html.	The
following	are	the	verbatim	comments	from	the	original	code:

A	C-program	for	MT19937,	with	initialization	improved	2002/1/26.

Coded	by	Takuji	Nishimura	and	Makoto	Matsumoto.

Before	using,	initialize	the	state	by	using	init_genrand(seed)

or	init_by_array(init_key,	key_length).

Copyright	(C)	1997	-	2002,	Makoto	Matsumoto	and	Takuji	Nishimura,

All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

	1.	Redistributions	of	source	code	must	retain	the	above	copyright

				notice,	this	list	of	conditions	and	the	following	disclaimer.

	2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

				notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

				documentation	and/or	other	materials	provided	with	the	distribution.

	3.	The	names	of	its	contributors	may	not	be	used	to	endorse	or	promote

				products	derived	from	this	software	without	specific	prior	written

				permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND	CONTRIBUTORS

"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT

LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR

A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	COPYRIGHT	OWNER	OR

CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,

EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,

PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR

PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF

LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING

NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS

SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Any	feedback	is	very	welcome.

http://www.math.keio.ac.jp/matumoto/emt.html

email:	matumoto@math.keio.ac.jp

http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html

Python	Reference	Manual
Previous:	A.3	Licenses	and	Acknowledgements	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.2	Sockets

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.1	Mersenne	Twister	Up:	A.3	Licenses	and	Acknowledgements
Next:	A.3.3	Floating	point	exception

A.3.2	Sockets
The	socket	module	uses	the	functions,	getaddrinfo,	and	getnameinfo,
which	are	coded	in	separate	source	files	from	the	WIDE	Project,
http://www.wide.ad.jp/about/index.html.

						

Copyright	(C)	1995,	1996,	1997,	and	1998	WIDE	Project.

All	rights	reserved.

	

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

1.	Redistributions	of	source	code	must	retain	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer.

2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

			documentation	and/or	other	materials	provided	with	the	distribution.

3.	Neither	the	name	of	the	project	nor	the	names	of	its	contributors

			may	be	used	to	endorse	or	promote	products	derived	from	this	software

			without	specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	PROJECT	AND	CONTRIBUTORS	``AS	IS''	AND

GAI_ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	PROJECT	OR	CONTRIBUTORS	BE	LIABLE

FOR	GAI_ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL

DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS

OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

HOWEVER	CAUSED	AND	ON	GAI_ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT

LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	GAI_ANY	WAY

OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF

SUCH	DAMAGE.

Python	Reference	Manual
Previous:	A.3.1	Mersenne	Twister	Up:	A.3	Licenses	and	Acknowledgements
Next:	A.3.3	Floating	point	exception

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.wide.ad.jp/about/index.html

Previous:	A.3.2	Sockets	Up:	A.3	Licenses	and	Acknowledgements	Next:	A.3.4
MD5	message	digest

A.3.3	Floating	point	exception	control
The	source	for	the	fpectl	module	includes	the	following	notice:

				/																							Copyright	(c)	1996.																											\	

			|										The	Regents	of	the	University	of	California.																	|

			|																								All	rights	reserved.																											|

			|																																																																							|

			|			Permission	to	use,	copy,	modify,	and	distribute	this	software	for			|

			|			any	purpose	without	fee	is	hereby	granted,	provided	that	this	en-			|

			|			tire	notice	is	included	in	all	copies	of	any	software	which	is	or			|

			|			includes		a		copy		or		modification		of		this	software	and	in	all			|

			|			copies	of	the	supporting	documentation	for	such	software.											|

			|																																																																							|

			|			This		work	was	produced	at	the	University	of	California,	Lawrence			|

			|			Livermore	National	Laboratory	under		contract		no.		W-7405-ENG-48			|

			|			between		the		U.S.		Department		of		Energy	and	The	Regents	of	the			|

			|			University	of	California	for	the	operation	of	UC	LLNL.														|

			|																																																																							|

			|																														DISCLAIMER																															|

			|																																																																							|

			|			This		software	was	prepared	as	an	account	of	work	sponsored	by	an			|

			|			agency	of	the	United	States	Government.	Neither	the	United	States			|

			|			Government		nor	the	University	of	California	nor	any	of	their	em-			|

			|			ployees,	makes	any	warranty,	express	or	implied,	or		assumes		any			|

			|			liability		or		responsibility		for	the	accuracy,	completeness,	or			|

			|			usefulness	of	any	information,		apparatus,		product,		or		process			|

			|			disclosed,			or		represents		that		its		use		would		not		infringe			|

			|			privately-owned	rights.	Reference	herein	to	any	specific		commer-			|

			|			cial		products,		process,		or		service		by	trade	name,	trademark,			|

			|			manufacturer,	or	otherwise,	does	not		necessarily		constitute		or			|

			|			imply		its	endorsement,	recommendation,	or	favoring	by	the	United			|

			|			States	Government	or	the	University	of	California.	The	views		and			|

			|			opinions		of	authors	expressed	herein	do	not	necessarily	state	or			|

			|			reflect	those	of	the	United	States	Government	or		the		University			|

			|			of		California,		and	shall	not	be	used	for	advertising	or	product			|

				\		endorsement	purposes.																																														/	

Python	Reference	Manual
Previous:	A.3.2	Sockets	Up:	A.3	Licenses	and	Acknowledgements	Next:	A.3.4
MD5	message	digest

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.3	Floating	point	exception	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.5	Asynchronous	socket	services

A.3.4	MD5	message	digest	algorithm
The	source	code	for	the	md5	module	contains	the	following	notice:

Copyright	(C)	1991-2,	RSA	Data	Security,	Inc.	Created	1991.	All

rights	reserved.

License	to	copy	and	use	this	software	is	granted	provided	that	it

is	identified	as	the	"RSA	Data	Security,	Inc.	MD5	Message-Digest

Algorithm"	in	all	material	mentioning	or	referencing	this	software

or	this	function.

License	is	also	granted	to	make	and	use	derivative	works	provided

that	such	works	are	identified	as	"derived	from	the	RSA	Data

Security,	Inc.	MD5	Message-Digest	Algorithm"	in	all	material

mentioning	or	referencing	the	derived	work.

RSA	Data	Security,	Inc.	makes	no	representations	concerning	either

the	merchantability	of	this	software	or	the	suitability	of	this

software	for	any	particular	purpose.	It	is	provided	"as	is"

without	express	or	implied	warranty	of	any	kind.

These	notices	must	be	retained	in	any	copies	of	any	part	of	this

documentation	and/or	software.

Python	Reference	Manual
Previous:	A.3.3	Floating	point	exception	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.5	Asynchronous	socket	services

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.4	MD5	message	digest	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.6	Cookie	management

A.3.5	Asynchronous	socket	services
The	asynchat	and	asyncore	modules	contain	the	following	notice:

						

	Copyright	1996	by	Sam	Rushing

																									All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and

	its	documentation	for	any	purpose	and	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appear	in	all

	copies	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of	Sam

	Rushing	not	be	used	in	advertising	or	publicity	pertaining	to

	distribution	of	the	software	without	specific,	written	prior

	permission.

	SAM	RUSHING	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS	SOFTWARE,

	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS,	IN

	NO	EVENT	SHALL	SAM	RUSHING	BE	LIABLE	FOR	ANY	SPECIAL,	INDIRECT	OR

	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS

	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF	CONTRACT,

	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN

	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

Python	Reference	Manual
Previous:	A.3.4	MD5	message	digest	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.6	Cookie	management

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.5	Asynchronous	socket	services	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.7	Profiling

A.3.6	Cookie	management
The	Cookie	module	contains	the	following	notice:

	Copyright	2000	by	Timothy	O'Malley	<timo@alum.mit.edu>

																All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software

	and	its	documentation	for	any	purpose	and	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appear	in	all

	copies	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of

	Timothy	O'Malley		not	be	used	in	advertising	or	publicity

	pertaining	to	distribution	of	the	software	without	specific,	written

	prior	permission.

	Timothy	O'Malley	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS

	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY

	AND	FITNESS,	IN	NO	EVENT	SHALL	Timothy	O'Malley	BE	LIABLE	FOR

	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES

	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,

	WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS

	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR

	PERFORMANCE	OF	THIS	SOFTWARE.

Python	Reference	Manual
Previous:	A.3.5	Asynchronous	socket	services	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.7	Profiling

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.6	Cookie	management	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.8	Execution	tracing

A.3.7	Profiling
The	profile	and	pstats	modules	contain	the	following	notice:

	Copyright	1994,	by	InfoSeek	Corporation,	all	rights	reserved.

	Written	by	James	Roskind

	Permission	to	use,	copy,	modify,	and	distribute	this	Python	software

	and	its	associated	documentation	for	any	purpose	(subject	to	the

	restriction	in	the	following	sentence)	without	fee	is	hereby	granted,

	provided	that	the	above	copyright	notice	appears	in	all	copies,	and

	that	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	InfoSeek	not	be	used	in

	advertising	or	publicity	pertaining	to	distribution	of	the	software

	without	specific,	written	prior	permission.		This	permission	is

	explicitly	restricted	to	the	copying	and	modification	of	the	software

	to	remain	in	Python,	compiled	Python,	or	other	languages	(such	as	C)

	wherein	the	modified	or	derived	code	is	exclusively	imported	into	a

	Python	module.

	INFOSEEK	CORPORATION	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS

	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND

	FITNESS.	IN	NO	EVENT	SHALL	INFOSEEK	CORPORATION	BE	LIABLE	FOR	ANY

	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES	WHATSOEVER

	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF

	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN

	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

Python	Reference	Manual
Previous:	A.3.6	Cookie	management	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.8	Execution	tracing

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.7	Profiling	Up:	A.3	Licenses	and	Acknowledgements	Next:	A.3.9
UUencode	and	UUdecode

A.3.8	Execution	tracing
The	trace	module	contains	the	following	notice:

	portions	copyright	2001,	Autonomous	Zones	Industries,	Inc.,	all	rights...

	err...		reserved	and	offered	to	the	public	under	the	terms	of	the

	Python	2.2	license.

	Author:	Zooko	O'Whielacronx

	http://zooko.com/

	mailto:zooko@zooko.com

	Copyright	2000,	Mojam	Media,	Inc.,	all	rights	reserved.

	Author:	Skip	Montanaro

	Copyright	1999,	Bioreason,	Inc.,	all	rights	reserved.

	Author:	Andrew	Dalke

	Copyright	1995-1997,	Automatrix,	Inc.,	all	rights	reserved.

	Author:	Skip	Montanaro

	Copyright	1991-1995,	Stichting	Mathematisch	Centrum,	all	rights	reserved.

	Permission	to	use,	copy,	modify,	and	distribute	this	Python	software	and

	its	associated	documentation	for	any	purpose	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appears	in	all	copies,

	and	that	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	neither	Automatrix,

	Bioreason	or	Mojam	Media	be	used	in	advertising	or	publicity	pertaining	to

	distribution	of	the	software	without	specific,	written	prior	permission.

Python	Reference	Manual
Previous:	A.3.7	Profiling	Up:	A.3	Licenses	and	Acknowledgements	Next:	A.3.9
UUencode	and	UUdecode

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.8	Execution	tracing	Up:	A.3	Licenses	and	Acknowledgements
Next:	A.3.10	XML	Remote	Procedure

A.3.9	UUencode	and	UUdecode	functions
The	uu	module	contains	the	following	notice:

	Copyright	1994	by	Lance	Ellinghouse

	Cathedral	City,	California	Republic,	United	States	of	America.

																								All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its

	documentation	for	any	purpose	and	without	fee	is	hereby	granted,

	provided	that	the	above	copyright	notice	appear	in	all	copies	and	that

	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	Lance	Ellinghouse

	not	be	used	in	advertising	or	publicity	pertaining	to	distribution

	of	the	software	without	specific,	written	prior	permission.

	LANCE	ELLINGHOUSE	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO

	THIS	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND

	FITNESS,	IN	NO	EVENT	SHALL	LANCE	ELLINGHOUSE	CENTRUM	BE	LIABLE

	FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES

	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN

	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT

	OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

	Modified	by	Jack	Jansen,	CWI,	July	1995:

	-	Use	binascii	module	to	do	the	actual	line-by-line	conversion

			between	ascii	and	binary.	This	results	in	a	1000-fold	speedup.	The	C

			version	is	still	5	times	faster,	though.

	-	Arguments	more	compliant	with	python	standard

Python	Reference	Manual
Previous:	A.3.8	Execution	tracing	Up:	A.3	Licenses	and	Acknowledgements
Next:	A.3.10	XML	Remote	Procedure

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.9	UUencode	and	UUdecode	Up:	A.3	Licenses	and
Acknowledgements	Next:	Index

A.3.10	XML	Remote	Procedure	Calls
The	xmlrpclib	module	contains	the	following	notice:

					The	XML-RPC	client	interface	is

	Copyright	(c)	1999-2002	by	Secret	Labs	AB

	Copyright	(c)	1999-2002	by	Fredrik	Lundh

	By	obtaining,	using,	and/or	copying	this	software	and/or	its

	associated	documentation,	you	agree	that	you	have	read,	understood,

	and	will	comply	with	the	following	terms	and	conditions:

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and

	its	associated	documentation	for	any	purpose	and	without	fee	is

	hereby	granted,	provided	that	the	above	copyright	notice	appears	in

	all	copies,	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of

	Secret	Labs	AB	or	the	author	not	be	used	in	advertising	or	publicity

	pertaining	to	distribution	of	the	software	without	specific,	written

	prior	permission.

	SECRET	LABS	AB	AND	THE	AUTHOR	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD

	TO	THIS	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANT-

	ABILITY	AND	FITNESS.		IN	NO	EVENT	SHALL	SECRET	LABS	AB	OR	THE	AUTHOR

	BE	LIABLE	FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY

	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,

	WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS

	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE

	OF	THIS	SOFTWARE.

Python	Reference	Manual
Previous:	A.3.9	UUencode	and	UUdecode	Up:	A.3	Licenses	and
Acknowledgements	Next:	Index

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.10	XML	Remote	Procedure	Up:	Python	Reference	Manual	Next:
About	this	document	...

Index

_	|	a	|	b	|	c	|	d	|	e	|	f	|	g	|	h	|	i	|	j	|	k	|	l	|	m	|	n	|	o	|	p	|	q	|	r	|	s	|	t	|	u	|	v	|	w	|	x	|	y	|	z

_	(underscore)

__abs__()	(numeric	object	method)
__add__()	(numeric	object	method)
__add__()	(sequence	object	method)
__all__	(optional	module	attribute)
__and__()	(numeric	object	method)
__bases__	(class	attribute)
__builtin__	(built-in	module),	[Link]
__builtins__
__call__()	(object	method),	[Link]
__class__	(instance	attribute)
__cmp__()	(object	method),	[Link]
__coerce__()	(numeric	object	method),
[Link]
__complex__()	(numeric	object
method)
__contains__()	(container	object
method)
__contains__()	(mapping	object
method)
__contains__()	(sequence	object
method)
__debug__
__del__()	(object	method)
__delattr__()	(object	method)
__delete__()	(object	method)
__delitem__()	(container	object
method)
__delslice__()	(sequence	object
method)
__dict__	(class	attribute)
__dict__	(function	attribute)
__dict__	(instance	attribute),	[Link]
__dict__	(module	attribute)
__div__()	(numeric	object	method)

__ipow__()	(numeric	object	method)
__irshift__()	(numeric	object	method)
__isub__()	(numeric	object	method)
__iter__()	(container	object	method)
__iter__()	(sequence	object	method)
__itruediv__()	(numeric	object	method)
__ixor__()	(numeric	object	method)
__le__()	(object	method)
__len__()	(container	object	method)
__len__()	(mapping	object	method)
__long__()	(numeric	object	method)
__lshift__()	(numeric	object	method)
__lt__()	(object	method)
__main__	(built-in	module),	[Link],
[Link]
__metaclass__
__mod__()	(numeric	object	method)
__module__	(class	attribute)
__module__	(function	attribute)
__module__	(method	attribute)
__mul__()	(numeric	object	method)
__mul__()	(sequence	object	method)
__name__	(class	attribute)
__name__	(function	attribute)
__name__	(method	attribute)
__name__	(module	attribute)
__ne__()	(object	method)
__neg__()	(numeric	object	method)
__nonzero__()	(object	method),	[Link]
__oct__()	(numeric	object	method)
__or__()	(numeric	object	method)

__divmod__()	(numeric	object	method)
__doc__	(class	attribute)
__doc__	(function	attribute)
__doc__	(method	attribute)
__doc__	(module	attribute)
__eq__()	(object	method)
__file__	(module	attribute)
__float__()	(numeric	object	method)
__floordiv__()	(numeric	object
method)
__ge__()	(object	method)
__get__()	(object	method)
__getattr__()	(object	method)
__getattribute__()	(object	method)
__getitem__()	(container	object
method)
__getitem__()	(mapping	object
method)
__getslice__()	(sequence	object
method)
__gt__()	(object	method)
__hash__()	(object	method)
__hex__()	(numeric	object	method)
__iadd__()	(numeric	object	method)
__iadd__()	(sequence	object	method)
__iand__()	(numeric	object	method)
__idiv__()	(numeric	object	method)
__ifloordiv__()	(numeric	object
method)
__ilshift__()	(numeric	object	method)
__imod__()	(numeric	object	method)
__import__()	(built-in	function)
__imul__()	(numeric	object	method)
__imul__()	(sequence	object	method)
__init__()	(object	method),	[Link]
__init__.py
__int__()	(numeric	object	method)
__invert__()	(numeric	object	method)
__ior__()	(numeric	object	method)

__pos__()	(numeric	object	method)
__pow__()	(numeric	object	method)
__radd__()	(numeric	object	method)
__radd__()	(sequence	object	method)
__rand__()	(numeric	object	method)
__rcmp__()	(object	method)
__rdiv__()	(numeric	object	method)
__rdivmod__()	(numeric	object
method)
__repr__()	(object	method)
__rfloordiv__()	(numeric	object
method)
__rlshift__()	(numeric	object	method)
__rmod__()	(numeric	object	method)
__rmul__()	(numeric	object	method)
__rmul__()	(sequence	object	method)
__ror__()	(numeric	object	method)
__rpow__()	(numeric	object	method)
__rrshift__()	(numeric	object	method)
__rshift__()	(numeric	object	method)
__rsub__()	(numeric	object	method)
__rtruediv__()	(numeric	object	method)
__rxor__()	(numeric	object	method)
__set__()	(object	method)
__setattr__()	(object	method),	[Link]
__setitem__()	(container	object
method)
__setslice__()	(sequence	object
method)
__slots__
__str__()	(object	method)
__sub__()	(numeric	object	method)
__truediv__()	(numeric	object	method)
__unicode__()	(object	method)
__xor__()	(numeric	object	method)

A

abs()	(built-in	function)
addition
and

bit-wise
and	operator
anonymous

function
append()	(sequence	object	method)
argument

function
arithmetic

conversion
operation,	binary
operation,	unary

array	(standard	module)
ASCII,	[Link],	[Link],	[Link],	[Link],
[Link]
assert	statement
AssertionError	exception
assertions

debugging
assignment

attribute,	[Link]
augmented
class	attribute

assignment	(continued)
class	instance	attribute
slicing
statement,	[Link]
subscription
target	list

atom
attribute
assignment,	[Link]
assignment,	class
assignment,	class	instance
class
class	instance
deletion
generic	special
reference
special
AttributeError	exception
augmented

assignment

B

back-quotes,	[Link]
backslash	character
backward

quotes,	[Link]
binary

arithmetic	operation
bit-wise	operation

binding
global	name
name,	[Link],	[Link],	[Link],
[Link],	[Link]

bit-wise
and
operation,	binary
operation,	unary
or
xor

blank	line
block

block	(continued)
code

BNF,	[Link]
Boolean

operation
Boolean	object
break	statement,	[Link],	[Link],	[Link],
[Link]
bsddb	(standard	module)
built-in

method
module

built-in	function
call

built-in	function	object,	[Link]
built-in	method

call
built-in	method	object,	[Link]
byte
bytecode

C

C
language,	[Link],	[Link],	[Link]
call
built-in	function
built-in	method
class	instance
class	object,	[Link],	[Link],	[Link]
function,	[Link],	[Link]
instance,	[Link]
method
procedure
user-defined	function
callable	object,	[Link]
chaining

comparisons
character,	[Link],	[Link]
character	set
chr()	(built-in	function),	[Link]
class

attribute
attribute	assignment
constructor
definition,	[Link]
instance
name

class	instance
attribute
attribute	assignment
call

class	instance	object,	[Link],	[Link],
[Link]
class	object,	[Link],	[Link],	[Link]
call,	[Link],	[Link],	[Link]

co_filename	(code	object	attribute)
co_firstlineno	(code	object	attribute)
co_flags	(code	object	attribute)
co_freevars	(code	object	attribute)
co_lnotab	(code	object	attribute)
co_name	(code	object	attribute)
co_names	(code	object	attribute)
co_nlocals	(code	object	attribute)
co_stacksize	(code	object	attribute)
co_varnames	(code	object	attribute)
code

block
code	block
code	object
comma
trailing,	[Link]
command	line
comment
comparison
string
comparisons
chaining
compile()	(built-in	function)
complex

literal
number

complex()	(built-in	function)
complex	object
compound

statement
comprehensions

list,	[Link]
constant
constructor

class	statement
clause
clear()	(mapping	object	method)
cmp()	(built-in	function)
co_argcount	(code	object	attribute)
co_cellvars	(code	object	attribute)
co_code	(code	object	attribute)
co_consts	(code	object	attribute)

class
container,	[Link]
continue	statement,	[Link],	[Link],
[Link],	[Link]
conversion

arithmetic
string,	[Link],	[Link]

copy()	(mapping	object	method)
count()	(sequence	object	method)

D

dangling
else

data
type
type,	immutable
datum
dbm	(standard	module)
debugging

assertions
decimal	literal
DEDENT	token,	[Link]
def	statement
default

parameter	value
definition

class,	[Link]
function,	[Link]

del	statement,	[Link],	[Link]

delete
deletion

attribute
target
target	list

delimiters
destructor,	[Link]
dictionary

display
dictionary	object,	[Link],	[Link],
[Link],	[Link],	[Link]
display

dictionary
list
tuple

division
divmod()	(built-in	function),	[Link]
documentation	string

E

EBCDIC
elif

keyword
Ellipsis	object
else

dangling
keyword,	[Link],	[Link],	[Link],
[Link]

empty
list
tuple,	[Link]

encodings
environment
error	handling
errors
escape	sequence
eval()	(built-in	function),	[Link],	[Link]
evaluation

order
exc_info	(in	module	sys)
exc_traceback	(in	module	sys),	[Link]
exc_type	(in	module	sys)
exc_value	(in	module	sys)
except

keyword
exception,	[Link]
AssertionError
AttributeError
handler
ImportError,	[Link]
NameError
raising

exception	(continued)
RuntimeError
StopIteration
SyntaxError
TypeError
ValueError
ZeroDivisionError

exception	handler
exclusive

or
exec	statement,	[Link]
execfile()	(built-in	function)
execution

frame,	[Link]
restricted
stack

execution	model
expression
generator
lambda
list,	[Link],	[Link]
statement
extend()	(sequence	object	method)
extended

slicing
extended	print	statement
extended	slicing
extension

filename
module

F

f_back	(frame	attribute)
f_builtins	(frame	attribute)
f_code	(frame	attribute)
f_exc_traceback	(frame	attribute)
f_exc_type	(frame	attribute)
f_exc_value	(frame	attribute)
f_globals	(frame	attribute)
f_lasti	(frame	attribute)
f_lineno	(frame	attribute)
f_locals	(frame	attribute)
f_restricted	(frame	attribute)
f_trace	(frame	attribute)
False
file	object,	[Link]
filename

extension
finally

keyword,	[Link],	[Link],	[Link]
float()	(built-in	function)
floating	point

number
floating	point	literal
floating	point	object
for	statement,	[Link],	[Link]
form

lambda,	[Link]

frame
execution,	[Link]

frame	object
free

variable,	[Link]
from

keyword,	[Link]
from	statement,	[Link]
func_closure	(function	attribute)
func_code	(function	attribute)
func_defaults	(function	attribute)
func_dict	(function	attribute)
func_doc	(function	attribute)
func_globals	(function	attribute)
function

anonymous
argument
call,	[Link],	[Link]
call,	user-defined
definition,	[Link]
generator
name
user-defined

function	object,	[Link],	[Link],	[Link],
[Link]
future

statement

G

garbage	collection
gdbm	(standard	module)
generator

expression
function,	[Link]
iterator,	[Link]

generator	expression	object
generator	object,	[Link]
generic

special	attribute

get()	(mapping	object	method)
global

name	binding
namespace

global	statement,	[Link],	[Link]
globals()	(built-in	function)
grammar
grouping

H

handle	an	exception
handler

exception
has_key()	(mapping	object	method)
hash()	(built-in	function)
hash	character

hex()	(built-in	function)
hexadecimal	literal
hierarchical

module	names
hierarchy

type

I

id()	(built-in	function)
identifier,	[Link]
identity

test
identity	of	an	object
if	statement
im_class	(method	attribute),	[Link]
im_func	(method	attribute),	[Link],
[Link],	[Link]
im_self	(method	attribute),	[Link],
[Link]
imaginary	literal
immutable

data	type
object,	[Link]

immutable	object,	[Link]
immutable	sequence	object
import	statement,	[Link]
ImportError	exception,	[Link]
in

keyword
in	operator
inclusive

or
INDENT	token
indentation
index()	(sequence	object	method)
index	operation
indices()	(slice	method)
inheritance
initialization

module
input

input	(continued)
raw

input()	(built-in	function)
insert()	(sequence	object	method)
instance

call,	[Link]
class

instance	object,	[Link],	[Link],	[Link]
int()	(built-in	function)
integer
representation
integer	literal
integer	object
interactive	mode
internal	type
interpreter
inversion
invocation
is	not	operator
is	operator
item

sequence
string

item	selection
items()	(mapping	object	method)
iteritems()	(mapping	object	method)
iterkeys()	(mapping	object	method)
itervalues()	(mapping	object	method)

J

Java
language

K

key
key/datum	pair
keys()	(mapping	object	method)
keyword
elif

keyword	(continued)
else,	[Link],	[Link],	[Link],	[Link]
except
finally,	[Link],	[Link],	[Link]
from,	[Link]
in

L

lambda
expression
form,	[Link]

language
C,	[Link],	[Link],	[Link]
Java
Pascal

last_traceback	(in	module	sys)
leading	whitespace
len()	(built-in	function),	[Link],	[Link]
lexical	analysis
lexical	definitions
line	continuation
line	joining,	[Link]
line	structure
list

assignment,	target
comprehensions,	[Link]

list	(continued)
deletion	target
display
empty
expression,	[Link],	[Link]
target,	[Link]

list	object,	[Link],	[Link],	[Link],
[Link],	[Link]
literal,	[Link]
locals()	(built-in	function)
logical	line
long()	(built-in	function)
long	integer	literal
long	integer	object
loop

over	mutable	sequence
statement,	[Link],	[Link],	[Link]

loop	control
target

M

makefile()	(socket	method)
mangling

name
mapping	object,	[Link],	[Link],	[Link]
membership

test
method

built-in
call
user-defined

method	object,	[Link],	[Link]
minus
module

built-in
extension
importing
initialization

module	(continued)
name
names,	hierarchical
namespace
search	path
user-defined

module	object,	[Link]
modules	(in	module	sys)
modulo
multiplication
mutable	object,	[Link],	[Link],	[Link]
mutable	sequence

loop	over
mutable	sequence	object

N

name,	[Link],	[Link]
binding,	[Link],	[Link],	[Link],	[Link],
[Link]
binding,	global
class
function
mangling
module
rebinding
unbinding
NameError	exception
names

hierarchical	module
private

namespace
global
module

negation
newline

suppression
NEWLINE	token,	[Link]
None	object,	[Link]
not	in	operator
not	operator
notation
NotImplemented	object
null

operation
number
complex
floating	point
numeric	literal
numeric	object,	[Link]

O

object
Boolean
built-in	function,	[Link]
built-in	method,	[Link]
callable,	[Link]
class,	[Link],	[Link],	[Link]
class	instance,	[Link],	[Link],	[Link]
code
complex
dictionary,	[Link],	[Link],	[Link],
[Link],	[Link]
Ellipsis
file,	[Link]
floating	point
frame
function,	[Link],	[Link],	[Link],	[Link]
generator,	[Link]
generator	expression
immutable,	[Link],	[Link]
immutable	sequence
instance,	[Link],	[Link],	[Link]
integer
list,	[Link],	[Link],	[Link],	[Link],
[Link]
long	integer
mapping,	[Link],	[Link],	[Link]
method,	[Link],	[Link]
module,	[Link]
mutable,	[Link],	[Link]
mutable	sequence
None,	[Link]
NotImplemented

object	(continued)
traceback,	[Link],	[Link]
tuple,	[Link],	[Link],	[Link]
unicode
user-defined	function,	[Link],
[Link]
user-defined	method

oct()	(built-in	function)
octal	literal
open()	(built-in	function)
operation

binary	arithmetic
binary	bit-wise
Boolean
null
shifting
unary	arithmetic
unary	bit-wise

operator
and
in
is
is	not
not
not	in
or
overloading
precedence

operators
or

bit-wise
exclusive
inclusive

or	operator

numeric,	[Link]
plain	integer
recursive
sequence,	[Link],	[Link],	[Link],
[Link],	[Link],	[Link]
slice
string,	[Link],	[Link]

ord()	(built-in	function),	[Link],	[Link]
order

evaluation
output,	[Link]
standard,	[Link]
OverflowError	(built-in	exception)
overloading

operator

P

packages
parameter

value,	default
parenthesized	form
parser
Pascal

language
pass	statement
path

module	search
physical	line,	[Link],	[Link]
plain	integer	literal
plain	integer	object
plus

pop()	(mapping	object	method)
pop()	(sequence	object	method)
popen()	(in	module	os)
popitem()	(mapping	object	method)
pow()	(built-in	function),	[Link],
[Link],	[Link]
precedence

operator
primary
print	statement,	[Link]
private

names
procedure

call
program

Q

quotes
backward,	[Link]

quotes	(continued)
reverse,	[Link]

R

raise	an	exception
raise	statement
raising

exception
range()	(built-in	function)
raw	input
raw	string
raw_input()	(built-in	function)
readline()	(file	method)
rebinding

name
recursive	object
reference

attribute

reference	counting
remove()	(sequence	object	method)
repr()	(built-in	function),	[Link],	[Link]
representation

integer
reserved	word
restricted

execution
return	statement,	[Link],	[Link]
reverse

quotes,	[Link]
reverse()	(sequence	object	method)
RuntimeError	exception

S

scope,	[Link]
search

path,	module
sequence

item
sequence	object,	[Link],	[Link],	[Link],
[Link],	[Link],	[Link]
setdefault()	(mapping	object	method)
shifting

operation
simple

statement
singleton

tuple
slice
slice()	(built-in	function)
slice	object
slicing,	[Link],	[Link]
assignment
extended
sort()	(sequence	object	method)
source	character	set
space
special

attribute
attribute,	generic

stack
execution
trace

standard
output,	[Link]

Standard	C
standard	input
start	(slice	object	attribute),	[Link]

statement	(continued)
import,	[Link]
loop,	[Link],	[Link],	[Link]
pass
print,	[Link]
raise
return,	[Link],	[Link]
simple
try,	[Link]
while,	[Link],	[Link]
yield

statement	grouping
stderr	(in	module	sys)
stdin	(in	module	sys)
stdio
stdout	(in	module	sys),	[Link]
step	(slice	object	attribute),	[Link]
stop	(slice	object	attribute),	[Link]
StopIteration	exception
str()	(built-in	function),	[Link]
string

comparison
conversion,	[Link],	[Link]
item
Unicode

string	literal
string	object,	[Link],	[Link]
subscription,	[Link],	[Link],	[Link]
assignment

statement
assert
assignment,	[Link]
assignment,	augmented
break,	[Link],	[Link],	[Link],
[Link]
class
compound
continue,	[Link],	[Link],	[Link],
[Link]
def
del,	[Link],	[Link]
exec,	[Link]
expression
for,	[Link],	[Link]
from,	[Link]
future
global,	[Link],	[Link]
if

subtraction
suite
suppression

newline
syntax,	[Link]
SyntaxError	exception
sys	(built-in	module),	[Link],	[Link],
[Link]
sys.exc_info
sys.exc_traceback
sys.last_traceback
sys.modules
sys.stderr
sys.stdin
sys.stdout

T

tab
target
deletion
list,	[Link]
list	assignment
list,	deletion
loop	control
tb_frame	(traceback	attribute)
tb_lasti	(traceback	attribute)
tb_lineno	(traceback	attribute)
tb_next	(traceback	attribute)
termination	model
test

identity
membership

token
trace

stack
traceback	object,	[Link],	[Link]

trailing
comma,	[Link]

triple-quoted	string
True
try	statement,	[Link]
tuple

display
empty,	[Link]
singleton

tuple	object,	[Link],	[Link],	[Link]
type
data
hierarchy
immutable	data
type()	(built-in	function)
type	of	an	object
TypeError	exception
types,	internal

U

unary
arithmetic	operation
bit-wise	operation

unbinding
name

UnboundLocalError
unichr()	(built-in	function)
Unicode
unicode()	(built-in	function),	[Link]
Unicode	Consortium
unicode	object
UNIX

unreachable	object
unrecognized	escape	sequence
update()	(mapping	object	method)
user-defined

function
function	call
method
module

user-defined	function	object,	[Link],
[Link]
user-defined	method	object

V

value
default	parameter

value	of	an	object
ValueError	exception

values
writing,	[Link]

values()	(mapping	object	method)
variable

free,	[Link]

W

while	statement,	[Link],	[Link]
whitespace

writing
values,	[Link]

X

xor
bit-wise

Y

yield	statement

Z

ZeroDivisionError	exception

Python	Reference	Manual
Previous:	A.3.10	XML	Remote	Procedure	Up:	Python	Reference	Manual	Next:
About	this	document	...

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Up:	Python	Documentation	Index	Next:	Front	Matter

Macintosh	Library	Modules
Guido	van	Rossum	

Fred	L.	Drake,	Jr.,	editor
Python	Software	Foundation	
Email:	docs@python.org

Release	2.4
29	November	2004

Front	Matter
Contents
1.	Using	Python	on	a	Mac	OS	9	Macintosh

1.1	Getting	and	Installing	MacPython-OSX
1.1.1	How	to	run	a	Python	script
1.1.2	Running	scripts	with	a	GUI
1.1.3	configuration

1.2	Getting	and	Installing	MacPython-OS9
1.2.1	Entering	the	interactive	Interpreter
1.2.2	How	to	run	a	Python	script
1.2.3	Simulating	command	line	arguments
1.2.4	Creating	a	Python	script
1.2.5	Configuration

1.3	The	IDE
1.3.1	Using	the	``Python	Interactive''	window
1.3.2	Writing	a	Python	Script
1.3.3	Executing	a	script	from	within	the	IDE
1.3.4	``Save	as''	versus	``Save	as	Applet''

2.	MacPython	Modules
2.1	mac	--	Implementations	for	the	os	module
2.2	macpath	--	MacOS	path	manipulation	functions
2.3	macfs	--	Various	file	system	services

2.3.1	FSSpec	Objects
2.3.2	Alias	Objects
2.3.3	FInfo	Objects

2.4	ic	--	Access	to	Internet	Config
2.4.1	IC	Objects

2.5	MacOS	--	Access	to	Mac	OS	interpreter	features
2.6	macostools	--	Convenience	routines	for	file	manipulation
2.7	findertools	--	The	finder's	Apple	Events	interface
2.8	EasyDialogs	--	Basic	Macintosh	dialogs

2.8.1	ProgressBar	Objects
2.9	FrameWork	--	Interactive	application	framework

2.9.1	Application	Objects
2.9.2	Window	Objects
2.9.3	ControlsWindow	Object
2.9.4	ScrolledWindow	Object
2.9.5	DialogWindow	Objects

2.10	autoGIL	--	Global	Interpreter	Lock	handling	in	event	loops
3.	MacPython	OSA	Modules

3.1	gensuitemodule	--	Generate	OSA	stub	packages
3.2	aetools	--	OSA	client	support
3.3	aepack	--	Conversion	between	Python	variables	and	AppleEvent
data	containers
3.4	aetypes	--	AppleEvent	objects
3.5	MiniAEFrame	--	Open	Scripting	Architecture	server	support

3.5.1	AEServer	Objects
4.	MacOS	Toolbox	Modules

4.1	Carbon.AE	--	Apple	Events
4.2	Carbon.AH	--	Apple	Help
4.3	Carbon.App	--	Appearance	Manager
4.4	Carbon.CF	--	Core	Foundation
4.5	Carbon.CG	--	Core	Graphics
4.6	Carbon.CarbonEvt	--	Carbon	Event	Manager
4.7	Carbon.Cm	--	Component	Manager
4.8	Carbon.Ctl	--	Control	Manager
4.9	Carbon.Dlg	--	Dialog	Manager
4.10	Carbon.Evt	--	Event	Manager
4.11	Carbon.Fm	--	Font	Manager
4.12	Carbon.Folder	--	Folder	Manager

4.13	Carbon.Help	--	Help	Manager
4.14	Carbon.List	--	List	Manager
4.15	Carbon.Menu	--	Menu	Manager
4.16	Carbon.Mlte	--	MultiLingual	Text	Editor
4.17	Carbon.Qd	--	QuickDraw
4.18	Carbon.Qdoffs	--	QuickDraw	Offscreen
4.19	Carbon.Qt	--	QuickTime
4.20	Carbon.Res	--	Resource	Manager	and	Handles
4.21	Carbon.Scrap	--	Scrap	Manager
4.22	Carbon.Snd	--	Sound	Manager
4.23	Carbon.TE	--	TextEdit
4.24	Carbon.Win	--	Window	Manager
4.25	ColorPicker	--	Color	selection	dialog

5.	Undocumented	Modules
5.1	applesingle	--	AppleSingle	decoder
5.2	buildtools	--	Helper	module	for	BuildApplet	and	Friends
5.3	py_resource	--	Resources	from	Python	code
5.4	cfmfile	--	Code	Fragment	Resource	module
5.5	icopen	--	Internet	Config	replacement	for	open()
5.6	macerrors	--	Mac	OS	Errors
5.7	macresource	--	Locate	script	resources
5.8	Nav	--	NavServices	calls
5.9	mkcwproject	--	Create	CodeWarrior	projects
5.10	nsremote	--	Wrapper	around	Netscape	OSA	modules
5.11	PixMapWrapper	--	Wrapper	for	PixMap	objects
5.12	preferences	--	Application	preferences	manager
5.13	pythonprefs	--	Preferences	manager	for	Python
5.14	quietconsole	--	Non-visible	standard	output
5.15	videoreader	--	Read	QuickTime	movies
5.16	W	--	Widgets	built	on	FrameWork
5.17	waste	--	non-Apple	TextEdit	replacement

A.	History	and	License
A.1	History	of	the	software
A.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
A.3	Licenses	and	Acknowledgements	for	Incorporated	Software

A.3.1	Mersenne	Twister
A.3.2	Sockets

A.3.3	Floating	point	exception	control
A.3.4	MD5	message	digest	algorithm
A.3.5	Asynchronous	socket	services
A.3.6	Cookie	management
A.3.7	Profiling
A.3.8	Execution	tracing
A.3.9	UUencode	and	UUdecode	functions
A.3.10	XML	Remote	Procedure	Calls

Module	Index
Index
About	this	document	...

Macintosh	Library	Modules
Up:	Python	Documentation	Index	Next:	Front	Matter

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Macintosh	Library	Modules	Up:	Macintosh	Library	Modules	Next:
Contents

Front	Matter
Copyright	©	2001-2004	Python	Software	Foundation.	All	rights	reserved.

Copyright	©	2000	BeOpen.com.	All	rights	reserved.

Copyright	©	1995-2000	Corporation	for	National	Research	Initiatives.	All	rights
reserved.

Copyright	©	1991-1995	Stichting	Mathematisch	Centrum.	All	rights	reserved.

See	the	end	of	this	document	for	complete	license	and	permissions	information.

Abstract:

This	library	reference	manual	documents	Python's	extensions	for	the	Macintosh.
It	should	be	used	in	conjunction	with	the	Python	Library	Reference,	which
documents	the	standard	library	and	built-in	types.

This	manual	assumes	basic	knowledge	about	the	Python	language.	For	an
informal	introduction	to	Python,	see	the	Python	Tutorial;	the	Python	Reference
Manual	remains	the	highest	authority	on	syntactic	and	semantic	questions.
Finally,	the	manual	entitled	Extending	and	Embedding	the	Python	Interpreter
describes	how	to	add	new	extensions	to	Python	and	how	to	embed	it	in	other
applications.

Macintosh	Library	Modules
Previous:	Macintosh	Library	Modules	Up:	Macintosh	Library	Modules	Next:
Contents

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Contents	Up:	Macintosh	Library	Modules	Next:	1.1	Getting	and
Installing

1.	Using	Python	on	a	Mac	OS	9
Macintosh
Using	Python	on	a	Macintosh,	especially	on	Mac	OS	9	(MacPython-OSX
includes	a	complete	UNIX	Python)	can	seem	like	something	completely	different
than	using	it	on	a	UNIX-like	or	Windows	system.	Most	of	the	Python
documentation,	both	the	``official''	documentation	and	published	books,	describe
only	how	Python	is	used	on	these	systems,	causing	confusion	for	the	new	user	of
MacPython-OS9.	This	chapter	gives	a	brief	introduction	to	the	specifics	of	using
Python	on	a	Macintosh.

The	section	on	the	IDE	(see	Section	1.3)	is	relevant	to	MacPython-OSX	too.

Subsections

1.1	Getting	and	Installing	MacPython-OSX
1.1.1	How	to	run	a	Python	script
1.1.2	Running	scripts	with	a	GUI
1.1.3	configuration

1.2	Getting	and	Installing	MacPython-OS9
1.2.1	Entering	the	interactive	Interpreter
1.2.2	How	to	run	a	Python	script

1.2.2.1	Drag	and	drop
1.2.2.2	Set	Creator	and	Double	Click

1.2.3	Simulating	command	line	arguments
1.2.4	Creating	a	Python	script

1.2.4.1	In	an	editor
1.2.4.2	Editors	with	Python	modes
1.2.4.3	BBedit

1.2.5	Configuration
1.2.5.1	EditPythonPrefs
1.2.5.2	Adding	modules	to	the	Module	Search	Path
1.2.5.3	Default	startup	options

1.3	The	IDE

1.3.1	Using	the	``Python	Interactive''	window
1.3.2	Writing	a	Python	Script
1.3.3	Executing	a	script	from	within	the	IDE
1.3.4	``Save	as''	versus	``Save	as	Applet''

Macintosh	Library	Modules
Previous:	Contents	Up:	Macintosh	Library	Modules	Next:	1.1	Getting	and
Installing

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.	Using	Python	on	Up:	1.	Using	Python	on	Next:	1.1.1	How	to	run

1.1	Getting	and	Installing
MacPython-OSX
As	of	Python	2.3a2	the	only	sure	way	of	getting	MacPython-OSX	on	your
machine	is	getting	a	source	distribution	and	building	what	is	called	a	"framework
Python".	The	details	are	in	the	file	Mac/OSX/README.

As	binary	installers	become	available	the	details	will	be	posted	to
http://www.cwi.nl/~jack/macpython.html.

What	you	get	after	installing	is	a	number	of	things:

A	MacPython-2.3	folder	in	your	Applications	folder.	In	here	you	find	the
PythonIDE	Integrated	Development	Environment;	PythonLauncher,	which
handles	double-clicking	Python	scripts	from	the	Finder;	and	the	Package
Manager.

A	fairly	standard	UNIX	commandline	Python	interpreter	in
/usr/local/bin/python,	but	without	the	usual	/usr/local/lib/python.

A	framework	/Library/Frameworks/Python.framework,	where	all	the
action	really	is,	but	which	you	usually	do	not	have	to	be	aware	of.

To	uninstall	MacPython	you	can	simply	remove	these	three	things.

PythonIDE	contains	an	Apple	Help	Viewer	book	called	"MacPython	Help"
which	you	can	access	through	its	help	menu.	If	you	are	completely	new	to
Python	you	should	start	reading	the	IDE	introduction	in	that	document.

If	you	are	familiar	with	Python	on	other	UNIX	platforms	you	should	read	the
section	on	running	Python	scripts	from	the	UNIX	shell.

Subsections

http://www.cwi.nl/~jack/macpython.html

1.1.1	How	to	run	a	Python	script
1.1.2	Running	scripts	with	a	GUI
1.1.3	configuration

Macintosh	Library	Modules
Previous:	1.	Using	Python	on	Up:	1.	Using	Python	on	Next:	1.1.1	How	to	run

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.1	Getting	and	Installing	Up:	1.1	Getting	and	Installing	Next:	1.1.2
Running	scripts	with

1.1.1	How	to	run	a	Python	script
Your	best	way	to	get	started	with	Python	on	Mac	OS	X	is	through	the
PythonIDE	integrated	development	environment,	see	section	1.3	and	use	the
Help	menu	when	the	IDE	is	running.

If	you	want	to	run	Python	scripts	from	the	Terminal	window	command	line	or
from	the	Finder	you	first	need	an	editor	to	create	your	script.	Mac	OS	X	comes
with	a	number	of	standard	UNIX	command	line	editors,	vi	and	emacs	among
them.	If	you	want	a	more	Mac-like	editor	BBEdit	or	TextWrangler	from	Bare
Bones	Software	(see
http://www.barebones.com/products/bbedit/index.shtml)	are	good	choices.
Their	freeware	BBEdit	Lite	is	officially	discontinued	but	still	available.
AppleWorks	or	any	other	word	processor	that	can	save	files	in	ASCII	is	also	a
possibility,	but	TextEdit	is	not:	it	saves	in	.rtf	format	only.

To	run	your	script	from	the	Terminal	window	you	must	make	sure	that
/usr/local/bin	is	in	your	shell	search	path	before	/usr/bin,	where	the	Apple-
supplied	Python	lives	(which	is	version	2.2,	as	of	Mac	OS	X	10.2.4).

To	run	your	script	from	the	Finder	you	have	two	options:

Drag	it	to	PythonLauncher
Select	PythonLauncher	as	the	default	application	to	open	your	script	(or
any	.py	script)	through	the	finder	Info	window	and	double-click	it.

PythonLauncher	has	various	preferences	to	control	how	your	script	is	launched.
Option-dragging	allows	you	to	change	these	for	one	invocation,	or	use	its
Preferences	menu	to	change	things	globally.

Macintosh	Library	Modules
Previous:	1.1	Getting	and	Installing	Up:	1.1	Getting	and	Installing	Next:	1.1.2
Running	scripts	with

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.barebones.com/products/bbedit/index.shtml

Previous:	1.1.1	How	to	run	Up:	1.1	Getting	and	Installing	Next:	1.1.3
configuration

1.1.2	Running	scripts	with	a	GUI
There	is	one	Mac	OS	X	quirk	that	you	need	to	be	aware	of:	programs	that	talk	to
the	Aqua	window	manager	(in	other	words,	anything	that	has	a	GUI)	need	to	be
run	in	a	special	way.	Use	pythonw	instead	of	python	to	start	such	scripts.

Macintosh	Library	Modules
Previous:	1.1.1	How	to	run	Up:	1.1	Getting	and	Installing	Next:	1.1.3
configuration

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.1.2	Running	scripts	with	Up:	1.1	Getting	and	Installing	Next:	1.2
Getting	and	Installing

1.1.3	configuration
MacPython	honours	all	standard	UNIX	environment	variables	such	as
PYTHONPATH,	but	setting	these	variables	for	programs	started	from	the	Finder
is	non-standard	as	the	Finder	does	not	read	your	.profile	or	.cshrc	at	startup.
You	need	to	create	a	file	~/.MacOSX/environment.plist.	See	Apple's	Technical
Document	QA1067	for	details.

Installing	additional	Python	packages	is	most	easily	done	through	the	Package
Manager,	see	the	MacPython	Help	Book	for	details.

Macintosh	Library	Modules
Previous:	1.1.2	Running	scripts	with	Up:	1.1	Getting	and	Installing	Next:	1.2
Getting	and	Installing

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.1.3	configuration	Up:	1.	Using	Python	on	Next:	1.2.1	Entering	the
interactive

1.2	Getting	and	Installing
MacPython-OS9
The	most	recent	release	version	as	well	as	possible	newer	experimental	versions
are	best	found	at	the	MacPython	page	maintained	by	Jack	Jansen:
http://homepages.cwi.nl/~jack/macpython.html.

Please	refer	to	the	README	included	with	your	distribution	for	the	most	up-to-
date	instructions.

Note	that	MacPython-OS9	runs	fine	on	Mac	OS	X,	and	it	runs	in	native	mode,
not	in	the	Classic	environment.	Unless	you	have	specific	requirements	for	a
CFM-based	Python	there	is	no	reason	not	to	use	MacPython-OSX,	though.

Subsections

1.2.1	Entering	the	interactive	Interpreter
1.2.2	How	to	run	a	Python	script

1.2.2.1	Drag	and	drop
1.2.2.2	Set	Creator	and	Double	Click

1.2.3	Simulating	command	line	arguments
1.2.4	Creating	a	Python	script

1.2.4.1	In	an	editor
1.2.4.2	Editors	with	Python	modes
1.2.4.3	BBedit

1.2.5	Configuration
1.2.5.1	EditPythonPrefs
1.2.5.2	Adding	modules	to	the	Module	Search	Path
1.2.5.3	Default	startup	options

Macintosh	Library	Modules
Previous:	1.1.3	configuration	Up:	1.	Using	Python	on	Next:	1.2.1	Entering	the
interactive

http://homepages.cwi.nl/~jack/macpython.html

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2	Getting	and	Installing	Up:	1.2	Getting	and	Installing	Next:	1.2.2
How	to	run

1.2.1	Entering	the	interactive	Interpreter
The	interactive	interpreter	that	you	will	see	used	in	Python	documentation	is
started	by	double-clicking	the	PythonInterpreter	icon,	which	looks	like	a	16-
ton	weight	falling.	You	should	see	the	version	information	and	the	">>>	"
prompt.	Use	it	exactly	as	described	in	the	standard	documentation.

Macintosh	Library	Modules
Previous:	1.2	Getting	and	Installing	Up:	1.2	Getting	and	Installing	Next:	1.2.2
How	to	run

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2.1	Entering	the	interactive	Up:	1.2	Getting	and	Installing	Next:
1.2.2.1	Drag	and	drop

1.2.2	How	to	run	a	Python	script
There	are	several	ways	to	run	an	existing	Python	script;	two	common	ways	to
run	a	Python	script	are	``drag	and	drop''	and	``double	clicking''.	Other	ways
include	running	it	from	within	the	IDE	(see	Section	1.3),	or	launching	via
AppleScript.

Subsections

1.2.2.1	Drag	and	drop
1.2.2.2	Set	Creator	and	Double	Click

Macintosh	Library	Modules
Previous:	1.2.1	Entering	the	interactive	Up:	1.2	Getting	and	Installing	Next:
1.2.2.1	Drag	and	drop

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2.2.2	Set	Creator	and	Up:	1.2	Getting	and	Installing	Next:	1.2.4
Creating	a	Python

1.2.3	Simulating	command	line	arguments
There	are	two	ways	to	simulate	command-line	arguments	with	MacPython-OS9.

1.	 via	Interpreter	options
Hold	the	option-key	down	when	launching	your	script.	This	will	bring
up	a	dialog	box	of	Python	Interpreter	options.
Click	``Set	UNIX-style	command	line..''	button.
Type	the	arguments	into	the	``Argument''	field.
Click	``OK''
Click	``Run''.

2.	 via	drag	and	drop	If	you	save	the	script	as	an	applet	(see	Section	1.3.4),	you
can	also	simulate	some	command-line	arguments	via	``Drag-and-Drop''.	In
this	case,	the	names	of	the	files	that	were	dropped	onto	the	applet	will	be
appended	to	sys.argv,	so	that	it	will	appear	to	the	script	as	though	they
had	been	typed	on	a	command	line.	As	on	UNIX	systems,	the	first	item	in
sys.srgv	is	the	path	to	the	applet,	and	the	rest	are	the	files	dropped	on
the	applet.

Macintosh	Library	Modules
Previous:	1.2.2.2	Set	Creator	and	Up:	1.2	Getting	and	Installing	Next:	1.2.4
Creating	a	Python

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2.3	Simulating	command	line	Up:	1.2	Getting	and	Installing	Next:
1.2.4.1	In	an	editor

1.2.4	Creating	a	Python	script
Since	Python	scripts	are	simply	text	files,	they	can	be	created	in	any	way	that
text	files	can	be	created,	but	some	special	tools	also	exist	with	extra	features.

Subsections

1.2.4.1	In	an	editor
1.2.4.2	Editors	with	Python	modes
1.2.4.3	BBedit

Macintosh	Library	Modules
Previous:	1.2.3	Simulating	command	line	Up:	1.2	Getting	and	Installing	Next:
1.2.4.1	In	an	editor

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2.4.3	BBedit	Up:	1.2	Getting	and	Installing	Next:	1.2.5.1
EditPythonPrefs

1.2.5	Configuration
The	MacPython	distribution	comes	with	EditPythonPrefs,	an	applet	which	will
help	you	to	customize	the	MacPython	environment	for	your	working	habits.

Subsections

1.2.5.1	EditPythonPrefs
1.2.5.2	Adding	modules	to	the	Module	Search	Path
1.2.5.3	Default	startup	options

Macintosh	Library	Modules
Previous:	1.2.4.3	BBedit	Up:	1.2	Getting	and	Installing	Next:	1.2.5.1
EditPythonPrefs

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2.5.3	Default	startup	options	Up:	1.	Using	Python	on	Next:	1.3.1
Using	the	``Python

1.3	The	IDE
The	Python	IDE	(Integrated	Development	Environment)	is	a	separate
application	that	acts	as	a	text	editor	for	your	Python	code,	a	class	browser,	a
graphical	debugger,	and	more.

Subsections

1.3.1	Using	the	``Python	Interactive''	window
1.3.2	Writing	a	Python	Script
1.3.3	Executing	a	script	from	within	the	IDE
1.3.4	``Save	as''	versus	``Save	as	Applet''

Macintosh	Library	Modules
Previous:	1.2.5.3	Default	startup	options	Up:	1.	Using	Python	on	Next:	1.3.1
Using	the	``Python

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.3	The	IDE	Up:	1.3	The	IDE	Next:	1.3.2	Writing	a	Python

1.3.1	Using	the	``Python	Interactive''	window
Use	this	window	like	you	would	the	PythonInterpreter,	except	that	you	cannot
use	the	``Drag	and	drop''	method	above.	Instead,	dropping	a	script	onto	the
Python	IDE	icon	will	open	the	file	in	a	separate	script	window	(which	you	can
then	execute	manually	-	see	section	1.3.3).

Macintosh	Library	Modules
Previous:	1.3	The	IDE	Up:	1.3	The	IDE	Next:	1.3.2	Writing	a	Python

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.3.1	Using	the	``Python	Up:	1.3	The	IDE	Next:	1.3.3	Executing	a
script

1.3.2	Writing	a	Python	Script
In	addition	to	using	the	Python	IDE	interactively,	you	can	also	type	out	a
complete	Python	program,	saving	it	incrementally,	and	execute	it	or	smaller
selections	of	it.

You	can	create	a	new	script,	open	a	previously	saved	script,	and	save	your
currently	open	script	by	selecting	the	appropriate	item	in	the	``File''	menu.
Dropping	a	Python	script	onto	the	Python	IDE	will	open	it	for	editing.

If	you	try	to	open	a	script	with	the	Python	IDE	but	either	can't	locate	it	from	the
``Open''	dialog	box,	or	you	get	an	error	message	like	``Can't	open	file	of	type	...''
see	section	1.2.2.

When	the	Python	IDE	saves	a	script,	it	uses	the	creator	code	settings	which	are
available	by	clicking	on	the	small	black	triangle	on	the	top	right	of	the	document
window,	and	selecting	``save	options''.	The	default	is	to	save	the	file	with	the
Python	IDE	as	the	creator,	this	means	that	you	can	open	the	file	for	editing	by
simply	double-clicking	on	its	icon.	You	might	want	to	change	this	behaviour	so
that	it	will	be	opened	by	the	PythonInterpreter,	and	run.	To	do	this	simply
choose	``Python	Interpreter''	from	the	``save	options''.	Note	that	these	options	are
associated	with	the	file	not	the	application.

Macintosh	Library	Modules
Previous:	1.3.1	Using	the	``Python	Up:	1.3	The	IDE	Next:	1.3.3	Executing	a
script

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.3.2	Writing	a	Python	Up:	1.3	The	IDE	Next:	1.3.4	``Save	as''
versus

1.3.3	Executing	a	script	from	within	the	IDE
You	can	run	the	script	in	the	frontmost	window	of	the	Python	IDE	by	hitting	the
run	all	button.	You	should	be	aware,	however	that	if	you	use	the	Python
convention	"if	__name__	==	"__main__":"	the	script	will	not	be
``__main__''	by	default.	To	get	that	behaviour	you	must	select	the	``Run	as
__main__''	option	from	the	small	black	triangle	on	the	top	right	of	the	document
window.	Note	that	this	option	is	associated	with	the	file	not	the	application.	It
will	stay	active	after	a	save,	however;	to	shut	this	feature	off	simply	select	it
again.

Macintosh	Library	Modules
Previous:	1.3.2	Writing	a	Python	Up:	1.3	The	IDE	Next:	1.3.4	``Save	as''
versus

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.3.3	Executing	a	script	Up:	1.3	The	IDE	Next:	2.	MacPython
Modules

1.3.4	``Save	as''	versus	``Save	as	Applet''
When	you	are	done	writing	your	Python	script	you	have	the	option	of	saving	it
as	an	``applet''	(by	selecting	``Save	as	applet''	from	the	``File''	menu).	This	has	a
significant	advantage	in	that	you	can	drop	files	or	folders	onto	it,	to	pass	them	to
the	applet	the	way	command-line	users	would	type	them	onto	the	command-line
to	pass	them	as	arguments	to	the	script.	However,	you	should	make	sure	to	save
the	applet	as	a	separate	file,	do	not	overwrite	the	script	you	are	writing,	because
you	will	not	be	able	to	edit	it	again.

Accessing	the	items	passed	to	the	applet	via	``drag-and-drop''	is	done	using	the
standard	sys.argv	mechanism.	See	the	general	documentation	for	more

Note	that	saving	a	script	as	an	applet	will	not	make	it	runnable	on	a	system
without	a	Python	installation.

Macintosh	Library	Modules
Previous:	1.3.3	Executing	a	script	Up:	1.3	The	IDE	Next:	2.	MacPython
Modules

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.3.4	``Save	as''	versus	Up:	Macintosh	Library	Modules	Next:	2.1
mac

2.	MacPython	Modules
The	following	modules	are	only	available	on	the	Macintosh,	and	are	documented
here:

mac 	 Implementations	for	the	os	module.
macpath 	 MacOS	path	manipulation	functions.

macfs 	 Support	for	FSSpec,	the	Alias	Manager,	finder	aliases,	and
the	Standard	File	package.

ic 	 Access	to	Internet	Config.
MacOS 	 Access	to	Mac	OS-specific	interpreter	features.
macostools 	 Convenience	routines	for	file	manipulation.
findertools 	 Wrappers	around	the	finder's	Apple	Events	interface.
EasyDialogs 	 Basic	Macintosh	dialogs.
FrameWork 	 Interactive	application	framework.
autoGIL 	 Global	Interpreter	Lock	handling	in	event	loops.

Macintosh	Library	Modules
Previous:	1.3.4	``Save	as''	versus	Up:	Macintosh	Library	Modules	Next:	2.1
mac

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.	MacPython	Modules	Up:	2.	MacPython	Modules	Next:	2.2
macpath

2.1	mac	--	Implementations	for	the	os
module
Availability:	Macintosh.

This	module	implements	the	Mac	OS	9	operating	system	dependent	functionality
provided	by	the	standard	module	os.	It	is	best	accessed	through	the	os	module.
This	module	is	only	available	in	MacPython-OS9,	on	MacPython-OSX	posix
is	used.

The	following	functions	are	available	in	this	module:	chdir(),	close(),
dup(),	fdopen(),	getcwd(),	lseek(),	listdir(),	mkdir(),
open(),	read(),	rename(),	rmdir(),	stat(),	sync(),	unlink(),
write(),	as	well	as	the	exception	error.	Note	that	the	times	returned	by
stat()	are	floating-point	values,	like	all	time	values	in	MacPython-OS9.

Macintosh	Library	Modules
Previous:	2.	MacPython	Modules	Up:	2.	MacPython	Modules	Next:	2.2
macpath

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1	mac	Up:	2.	MacPython	Modules	Next:	2.3	macfs

2.2	macpath	--	MacOS	path
manipulation	functions
This	module	is	the	Macintosh	implementation	of	the	os.path	module.	It	is
most	portably	accessed	as	os.path.	Refer	to	the	Python	Library	Reference	for
documentation	of	os.path.

The	following	functions	are	available	in	this	module:	normcase(),
normpath(),	isabs(),	join(),	split(),	isdir(),	isfile(),
walk(),	exists().	For	other	functions	available	in	os.path	dummy
counterparts	are	available.

Macintosh	Library	Modules
Previous:	2.1	mac	Up:	2.	MacPython	Modules	Next:	2.3	macfs

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.2	macpath	Up:	2.	MacPython	Modules	Next:	2.3.1	FSSpec
Objects

2.3	macfs	--	Various	file	system
services
Availability:	Macintosh.

Deprecated	since	release	2.3.	The	macfs	module	should	be	considered	obsolete.
For	FSSpec,	FSRef	and	Alias	handling	use	the	Carbon.File	or
Carbon.Folder	module.	For	file	dialogs	use	the	EasyDialogs	module.
Also,	this	module	is	known	to	not	work	correctly	with	UFS	partitions.

This	module	provides	access	to	Macintosh	FSSpec	handling,	the	Alias
Manager,	finder	aliases	and	the	Standard	File	package.

Whenever	a	function	or	method	expects	a	file	argument,	this	argument	can	be
one	of	three	things:	(1)	a	full	or	partial	Macintosh	pathname,	(2)	an	FSSpec
object	or	(3)	a	3-tuple	(wdRefNum,	parID,	name)	as	described	in	Inside
Macintosh:	Files.	An	FSSpec	can	point	to	a	non-existing	file,	as	long	as	the
folder	containing	the	file	exists.	Under	MacPython	the	same	is	true	for	a
pathname,	but	not	under	unix-Pyton	because	of	the	way	pathnames	and	FSRefs
works.	See	Apple's	documentation	for	details.

A	description	of	aliases	and	the	Standard	File	package	can	also	be	found	there.

FSSpec(file)
Create	an	FSSpec	object	for	the	specified	file.

RawFSSpec(data)
Create	an	FSSpec	object	given	the	raw	data	for	the	C	structure	for	the
FSSpec	as	a	string.	This	is	mainly	useful	if	you	have	obtained	an	FSSpec
structure	over	a	network.

RawAlias(data)
Create	an	Alias	object	given	the	raw	data	for	the	C	structure	for	the	alias
as	a	string.	This	is	mainly	useful	if	you	have	obtained	an	FSSpec	structure
over	a	network.

FInfo()
Create	a	zero-filled	FInfo	object.

ResolveAliasFile(file)
Resolve	an	alias	file.	Returns	a	3-tuple	(fsspec,	isfolder,	aliased)	where
fsspec	is	the	resulting	FSSpec	object,	isfolder	is	true	if	fsspec	points	to	a
folder	and	aliased	is	true	if	the	file	was	an	alias	in	the	first	place	(otherwise
the	FSSpec	object	for	the	file	itself	is	returned).

StandardGetFile([type,	...])
Present	the	user	with	a	standard	``open	input	file''	dialog.	Optionally,	you
can	pass	up	to	four	4-character	file	types	to	limit	the	files	the	user	can
choose	from.	The	function	returns	an	FSSpec	object	and	a	flag	indicating
that	the	user	completed	the	dialog	without	cancelling.

PromptGetFile(prompt[,	type,	...])
Similar	to	StandardGetFile()	but	allows	you	to	specify	a	prompt
which	will	be	displayed	at	the	top	of	the	dialog.

StandardPutFile(prompt[,	default])
Present	the	user	with	a	standard	``open	output	file''	dialog.	prompt	is	the
prompt	string,	and	the	optional	default	argument	initializes	the	output	file
name.	The	function	returns	an	FSSpec	object	and	a	flag	indicating	that	the
user	completed	the	dialog	without	cancelling.

GetDirectory([prompt])
Present	the	user	with	a	non-standard	``select	a	directory''	dialog.	You	have
to	first	open	the	directory	before	clicking	on	the	``select	current	directory''
button.	prompt	is	the	prompt	string	which	will	be	displayed	at	the	top	of	the
dialog.	Return	an	FSSpec	object	and	a	success-indicator.

SetFolder([fsspec])
Set	the	folder	that	is	initially	presented	to	the	user	when	one	of	the	file
selection	dialogs	is	presented.	fsspec	should	point	to	a	file	in	the	folder,	not
the	folder	itself	(the	file	need	not	exist,	though).	If	no	argument	is	passed
the	folder	will	be	set	to	the	current	directory,	i.e.	what	os.getcwd()

returns.

Note	that	starting	with	System	7.5	the	user	can	change	Standard	File
behaviour	with	the	``general	controls''	control	panel,	thereby	making	this
call	inoperative.

FindFolder(where,	which,	create)
Locates	one	of	the	``special''	folders	that	Mac	OS	knows	about,	such	as	the
trash	or	the	Preferences	folder.	where	is	the	disk	to	search,	which	is	the	4-
character	string	specifying	which	folder	to	locate.	Setting	create	causes	the
folder	to	be	created	if	it	does	not	exist.	Returns	a	(vrefnum,	dirid)	tuple.

The	constants	for	where	and	which	can	be	obtained	from	the	standard
module	Carbon.Folders.

NewAliasMinimalFromFullPath(pathname)
Return	a	minimal	alias	object	that	points	to	the	given	file,	which	must	be
specified	as	a	full	pathname.	This	is	the	only	way	to	create	an	Alias
pointing	to	a	non-existing	file.

FindApplication(creator)
Locate	the	application	with	4-character	creator	code	creator.	The	function
returns	an	FSSpec	object	pointing	to	the	application.

Subsections

2.3.1	FSSpec	Objects
2.3.2	Alias	Objects
2.3.3	FInfo	Objects

Macintosh	Library	Modules
Previous:	2.2	macpath	Up:	2.	MacPython	Modules	Next:	2.3.1	FSSpec
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3	macfs	Up:	2.3	macfs	Next:	2.3.2	Alias	Objects

2.3.1	FSSpec	Objects
data

The	raw	data	from	the	FSSpec	object,	suitable	for	passing	to	other
applications,	for	instance.

as_pathname()
Return	the	full	pathname	of	the	file	described	by	the	FSSpec	object.

as_tuple()
Return	the	(wdRefNum,	parID,	name)	tuple	of	the	file	described	by	the
FSSpec	object.

NewAlias([file])
Create	an	Alias	object	pointing	to	the	file	described	by	this	FSSpec.	If	the
optional	file	parameter	is	present	the	alias	will	be	relative	to	that	file,
otherwise	it	will	be	absolute.

NewAliasMinimal()
Create	a	minimal	alias	pointing	to	this	file.

GetCreatorType()
Return	the	4-character	creator	and	type	of	the	file.

SetCreatorType(creator,	type)
Set	the	4-character	creator	and	type	of	the	file.

GetFInfo()
Return	a	FInfo	object	describing	the	finder	info	for	the	file.

SetFInfo(finfo)
Set	the	finder	info	for	the	file	to	the	values	given	as	finfo	(an	FInfo
object).

GetDates()

Return	a	tuple	with	three	floating	point	values	representing	the	creation
date,	modification	date	and	backup	date	of	the	file.

SetDates(crdate,	moddate,	backupdate)
Set	the	creation,	modification	and	backup	date	of	the	file.	The	values	are	in
the	standard	floating	point	format	used	for	times	throughout	Python.

Macintosh	Library	Modules
Previous:	2.3	macfs	Up:	2.3	macfs	Next:	2.3.2	Alias	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.1	FSSpec	Objects	Up:	2.3	macfs	Next:	2.3.3	FInfo	Objects

2.3.2	Alias	Objects
data

The	raw	data	for	the	Alias	record,	suitable	for	storing	in	a	resource	or
transmitting	to	other	programs.

Resolve([file])
Resolve	the	alias.	If	the	alias	was	created	as	a	relative	alias	you	should	pass
the	file	relative	to	which	it	is.	Return	the	FSSpec	for	the	file	pointed	to	and
a	flag	indicating	whether	the	Alias	object	itself	was	modified	during	the
search	process.	If	the	file	does	not	exist	but	the	path	leading	up	to	it	does
exist	a	valid	fsspec	is	returned.

GetInfo(num)
An	interface	to	the	C	routine	GetAliasInfo().

Update(file[,	file2])
Update	the	alias	to	point	to	the	file	given.	If	file2	is	present	a	relative	alias
will	be	created.

Note	that	it	is	currently	not	possible	to	directly	manipulate	a	resource	as	an
Alias	object.	Hence,	after	calling	Update()	or	after	Resolve()	indicates
that	the	alias	has	changed	the	Python	program	is	responsible	for	getting	the
data	value	from	the	Alias	object	and	modifying	the	resource.

Macintosh	Library	Modules
Previous:	2.3.1	FSSpec	Objects	Up:	2.3	macfs	Next:	2.3.3	FInfo	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.2	Alias	Objects	Up:	2.3	macfs	Next:	2.4	ic

2.3.3	FInfo	Objects
See	Inside	Macintosh:	Files	for	a	complete	description	of	what	the	various	fields
mean.

Creator

The	4-character	creator	code	of	the	file.

Type

The	4-character	type	code	of	the	file.

Flags

The	finder	flags	for	the	file	as	16-bit	integer.	The	bit	values	in	Flags	are
defined	in	standard	module	MACFS.

Location

A	Point	giving	the	position	of	the	file's	icon	in	its	folder.

Fldr

The	folder	the	file	is	in	(as	an	integer).

Macintosh	Library	Modules
Previous:	2.3.2	Alias	Objects	Up:	2.3	macfs	Next:	2.4	ic

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.3	FInfo	Objects	Up:	2.	MacPython	Modules	Next:	2.4.1	IC
Objects

2.4	ic	--	Access	to	Internet	Config
Availability:	Macintosh.

This	module	provides	access	to	Macintosh	Internet	Config	package,	which	stores
preferences	for	Internet	programs	such	as	mail	address,	default	homepage,	etc.
Also,	Internet	Config	contains	an	elaborate	set	of	mappings	from	Macintosh
creator/type	codes	to	foreign	filename	extensions	plus	information	on	how	to
transfer	files	(binary,	ascii,	etc.).	Since	MacOS	9,	this	module	is	a	control	panel
named	Internet.

There	is	a	low-level	companion	module	icglue	which	provides	the	basic
Internet	Config	access	functionality.	This	low-level	module	is	not	documented,
but	the	docstrings	of	the	routines	document	the	parameters	and	the	routine	names
are	the	same	as	for	the	Pascal	or	C	API	to	Internet	Config,	so	the	standard	IC
programmers'	documentation	can	be	used	if	this	module	is	needed.

The	ic	module	defines	the	error	exception	and	symbolic	names	for	all	error
codes	Internet	Config	can	produce;	see	the	source	for	details.

exception	error
Exception	raised	on	errors	in	the	ic	module.

The	ic	module	defines	the	following	class	and	function:

class	IC([signature[,	ic]])
Create	an	Internet	Config	object.	The	signature	is	a	4-character	creator	code
of	the	current	application	(default	'Pyth')	which	may	influence	some	of
ICs	settings.	The	optional	ic	argument	is	a	low-level
icglue.icinstance	created	beforehand,	this	may	be	useful	if	you
want	to	get	preferences	from	a	different	config	file,	etc.

launchurl(url[,	hint])
parseurl(data[,	start[,	end[,	hint]]])
mapfile(file)

maptypecreator(type,	creator[,	filename])
settypecreator(file)

These	functions	are	``shortcuts''	to	the	methods	of	the	same	name,	described
below.

Subsections

2.4.1	IC	Objects

Macintosh	Library	Modules
Previous:	2.3.3	FInfo	Objects	Up:	2.	MacPython	Modules	Next:	2.4.1	IC
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.4	ic	Up:	2.4	ic	Next:	2.5	MacOS

2.4.1	IC	Objects
IC	objects	have	a	mapping	interface,	hence	to	obtain	the	mail	address	you
simply	get	ic['MailAddress'].	Assignment	also	works,	and	changes	the
option	in	the	configuration	file.

The	module	knows	about	various	datatypes,	and	converts	the	internal	IC
representation	to	a	``logical''	Python	data	structure.	Running	the	ic	module
standalone	will	run	a	test	program	that	lists	all	keys	and	values	in	your	IC
database,	this	will	have	to	serve	as	documentation.

If	the	module	does	not	know	how	to	represent	the	data	it	returns	an	instance	of
the	ICOpaqueData	type,	with	the	raw	data	in	its	data	attribute.	Objects	of
this	type	are	also	acceptable	values	for	assignment.

Besides	the	dictionary	interface,	IC	objects	have	the	following	methods:

launchurl(url[,	hint])
Parse	the	given	URL,	launch	the	correct	application	and	pass	it	the	URL.
The	optional	hint	can	be	a	scheme	name	such	as	'mailto:',	in	which
case	incomplete	URLs	are	completed	with	this	scheme.	If	hint	is	not
provided,	incomplete	URLs	are	invalid.

parseurl(data[,	start[,	end[,	hint]]])
Find	an	URL	somewhere	in	data	and	return	start	position,	end	position	and
the	URL.	The	optional	start	and	end	can	be	used	to	limit	the	search,	so	for
instance	if	a	user	clicks	in	a	long	text	field	you	can	pass	the	whole	text	field
and	the	click-position	in	start	and	this	routine	will	return	the	whole	URL	in
which	the	user	clicked.	As	above,	hint	is	an	optional	scheme	used	to
complete	incomplete	URLs.

mapfile(file)
Return	the	mapping	entry	for	the	given	file,	which	can	be	passed	as	either	a
filename	or	an	macfs.FSSpec()	result,	and	which	need	not	exist.

The	mapping	entry	is	returned	as	a	tuple	(version,	type,	creator,

postcreator,	flags,	extension,	appname,	postappname,	mimetype,
entryname),	where	version	is	the	entry	version	number,	type	is	the	4-
character	filetype,	creator	is	the	4-character	creator	type,	postcreator	is	the
4-character	creator	code	of	an	optional	application	to	post-process	the	file
after	downloading,	flags	are	various	bits	specifying	whether	to	transfer	in
binary	or	ascii	and	such,	extension	is	the	filename	extension	for	this	file
type,	appname	is	the	printable	name	of	the	application	to	which	this	file
belongs,	postappname	is	the	name	of	the	postprocessing	application,
mimetype	is	the	MIME	type	of	this	file	and	entryname	is	the	name	of	this
entry.

maptypecreator(type,	creator[,	filename])
Return	the	mapping	entry	for	files	with	given	4-character	type	and	creator
codes.	The	optional	filename	may	be	specified	to	further	help	finding	the
correct	entry	(if	the	creator	code	is	'????',	for	instance).

The	mapping	entry	is	returned	in	the	same	format	as	for	mapfile.

settypecreator(file)
Given	an	existing	file,	specified	either	as	a	filename	or	as	an
macfs.FSSpec()	result,	set	its	creator	and	type	correctly	based	on	its
extension.	The	finder	is	told	about	the	change,	so	the	finder	icon	will	be
updated	quickly.

Macintosh	Library	Modules
Previous:	2.4	ic	Up:	2.4	ic	Next:	2.5	MacOS

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.4.1	IC	Objects	Up:	2.	MacPython	Modules	Next:	2.6	macostools

2.5	MacOS	--	Access	to	Mac	OS
interpreter	features
Availability:	Macintosh.

This	module	provides	access	to	MacOS	specific	functionality	in	the	Python
interpreter,	such	as	how	the	interpreter	eventloop	functions	and	the	like.	Use
with	care.

Note	the	capitalization	of	the	module	name;	this	is	a	historical	artifact.

runtimemodel

Either'carbon'	or	'macho'.	This	signifies	whether	this	Python	uses	the
Mac	OS	X	and	Mac	OS	9	compatible	CarbonLib	style	or	the	Mac	OS	X-
only	Mach-O	style.	In	earlier	versions	of	Python	the	value	could	also	be
'ppc'	for	the	classic	Mac	OS	8	runtime	model.

linkmodel

The	way	the	interpreter	has	been	linked.	As	extension	modules	may	be
incompatible	between	linking	models,	packages	could	use	this	information
to	give	more	decent	error	messages.	The	value	is	one	of	'static'	for	a
statically	linked	Python,	'framework'	for	Python	in	a	Mac	OS	X
framework,	'shared'	for	Python	in	a	standard	unix	shared	library	and
'cfm'	for	the	Mac	OS	9-compatible	Python.

exception	Error
This	exception	is	raised	on	MacOS	generated	errors,	either	from	functions
in	this	module	or	from	other	mac-specific	modules	like	the	toolbox
interfaces.	The	arguments	are	the	integer	error	code	(the	OSErr	value)	and
a	textual	description	of	the	error	code.	Symbolic	names	for	all	known	error
codes	are	defined	in	the	standard	module	macerrors.

SetEventHandler(handler)
In	the	inner	interpreter	loop	Python	will	occasionally	check	for	events,
unless	disabled	with	ScheduleParams().	With	this	function	you	can
pass	a	Python	event-handler	function	that	will	be	called	if	an	event	is

available.	The	event	is	passed	as	parameter	and	the	function	should	return
non-zero	if	the	event	has	been	fully	processed,	otherwise	event	processing
continues	(by	passing	the	event	to	the	console	window	package,	for
instance).

Call	SetEventHandler()	without	a	parameter	to	clear	the	event
handler.	Setting	an	event	handler	while	one	is	already	set	is	an	error.

Availability:	MacPython-OS9.

SchedParams([doint[,	evtmask[,	besocial[,	interval[,	bgyield]]]]])
Influence	the	interpreter	inner	loop	event	handling.	Interval	specifies	how
often	(in	seconds,	floating	point)	the	interpreter	should	enter	the	event
processing	code.	When	true,	doint	causes	interrupt	(command-dot)
checking	to	be	done.	evtmask	tells	the	interpreter	to	do	event	processing	for
events	in	the	mask	(redraws,	mouseclicks	to	switch	to	other	applications,
etc).	The	besocial	flag	gives	other	processes	a	chance	to	run.	They	are
granted	minimal	runtime	when	Python	is	in	the	foreground	and	bgyield
seconds	per	interval	when	Python	runs	in	the	background.

All	parameters	are	optional,	and	default	to	the	current	value.	The	return
value	of	this	function	is	a	tuple	with	the	old	values	of	these	options.	Initial
defaults	are	that	all	processing	is	enabled,	checking	is	done	every	quarter
second	and	the	processor	is	given	up	for	a	quarter	second	when	in	the
background.

The	most	common	use	case	is	to	call	SchedParams(0,	0)	to
completely	disable	event	handling	in	the	interpreter	mainloop.

Availability:	MacPython-OS9.

HandleEvent(ev)
Pass	the	event	record	ev	back	to	the	Python	event	loop,	or	possibly	to	the
handler	for	the	sys.stdout	window	(based	on	the	compiler	used	to	build
Python).	This	allows	Python	programs	that	do	their	own	event	handling	to
still	have	some	command-period	and	window-switching	capability.

If	you	attempt	to	call	this	function	from	an	event	handler	set	through
SetEventHandler()	you	will	get	an	exception.

Availability:	MacPython-OS9.

GetErrorString(errno)
Return	the	textual	description	of	MacOS	error	code	errno.

splash(resid)
This	function	will	put	a	splash	window	on-screen,	with	the	contents	of	the
DLOG	resource	specified	by	resid.	Calling	with	a	zero	argument	will
remove	the	splash	screen.	This	function	is	useful	if	you	want	an	applet	to
post	a	splash	screen	early	in	initialization	without	first	having	to	load
numerous	extension	modules.

Availability:	MacPython-OS9.

DebugStr(message	[,	object])
On	Mac	OS	9,	drop	to	the	low-level	debugger	with	message	message.	The
optional	object	argument	is	not	used,	but	can	easily	be	inspected	from	the
debugger.	On	Mac	OS	X	the	string	is	simply	printed	to	stderr.

Note	that	you	should	use	this	function	with	extreme	care:	if	no	low-level
debugger	like	MacsBug	is	installed	this	call	will	crash	your	system.	It	is
intended	mainly	for	developers	of	Python	extension	modules.

SysBeep()
Ring	the	bell.

GetTicks()
Get	the	number	of	clock	ticks	(1/60th	of	a	second)	since	system	boot.

GetCreatorAndType(file)
Return	the	file	creator	and	file	type	as	two	four-character	strings.	The	file
parameter	can	be	a	pathname	or	an	FSSpec	or	FSRef	object.

SetCreatorAndType(file,	creator,	type)
Set	the	file	creator	and	file	type.	The	file	parameter	can	be	a	pathname	or	an
FSSpec	or	FSRef	object.	creator	and	type	must	be	four	character	strings.

openrf(name	[,	mode])
Open	the	resource	fork	of	a	file.	Arguments	are	the	same	as	for	the	built-in
function	open().	The	object	returned	has	file-like	semantics,	but	it	is	not	a
Python	file	object,	so	there	may	be	subtle	differences.

WMAvailable()
Checks	whether	the	current	process	has	access	to	the	window	manager.	The
method	will	return	False	if	the	window	manager	is	not	available,	for
instance	when	running	on	Mac	OS	X	Server	or	when	logged	in	via	ssh,	or
when	the	current	interpreter	is	not	running	from	a	fullblown	application
bundle.	A	script	runs	from	an	application	bundle	either	when	it	has	been
started	with	pythonw	instead	of	python	or	when	running	as	an	applet.

On	Mac	OS	9	the	method	always	returns	True.

Macintosh	Library	Modules
Previous:	2.4.1	IC	Objects	Up:	2.	MacPython	Modules	Next:	2.6	macostools

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.5	MacOS	Up:	2.	MacPython	Modules	Next:	2.7	findertools

2.6	macostools	--	Convenience
routines	for	file	manipulation
Availability:	Macintosh.

This	module	contains	some	convenience	routines	for	file-manipulation	on	the
Macintosh.	All	file	parameters	can	be	specified	as	pathnames,	FSRef	or
FSSpec	objects.	This	module	expects	a	filesystem	which	supports	forked	files,
so	it	should	not	be	used	on	UFS	partitions.

The	macostools	module	defines	the	following	functions:

copy(src,	dst[,	createpath[,	copytimes]])
Copy	file	src	to	dst.	If	createpath	is	non-zero	the	folders	leading	to	dst	are
created	if	necessary.	The	method	copies	data	and	resource	fork	and	some
finder	information	(creator,	type,	flags)	and	optionally	the	creation,
modification	and	backup	times	(default	is	to	copy	them).	Custom	icons,
comments	and	icon	position	are	not	copied.

copytree(src,	dst)
Recursively	copy	a	file	tree	from	src	to	dst,	creating	folders	as	needed.	src
and	dst	should	be	specified	as	pathnames.

mkalias(src,	dst)
Create	a	finder	alias	dst	pointing	to	src.

touched(dst)
Tell	the	finder	that	some	bits	of	finder-information	such	as	creator	or	type
for	file	dst	has	changed.	The	file	can	be	specified	by	pathname	or	fsspec.
This	call	should	tell	the	finder	to	redraw	the	files	icon.

BUFSIZ

The	buffer	size	for	copy,	default	1	megabyte.

Note	that	the	process	of	creating	finder	aliases	is	not	specified	in	the	Apple

documentation.	Hence,	aliases	created	with	mkalias()	could	conceivably
have	incompatible	behaviour	in	some	cases.

Macintosh	Library	Modules
Previous:	2.5	MacOS	Up:	2.	MacPython	Modules	Next:	2.7	findertools

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.6	macostools	Up:	2.	MacPython	Modules	Next:	2.8	EasyDialogs

2.7	findertools	--	The	finder's
Apple	Events	interface
Availability:	Macintosh.

This	module	contains	routines	that	give	Python	programs	access	to	some
functionality	provided	by	the	finder.	They	are	implemented	as	wrappers	around
the	AppleEvent	interface	to	the	finder.

All	file	and	folder	parameters	can	be	specified	either	as	full	pathnames,	or	as
FSRef	or	FSSpec	objects.

The	findertools	module	defines	the	following	functions:

launch(file)
Tell	the	finder	to	launch	file.	What	launching	means	depends	on	the	file:
applications	are	started,	folders	are	opened	and	documents	are	opened	in	the
correct	application.

Print(file)
Tell	the	finder	to	print	a	file.	The	behaviour	is	identical	to	selecting	the	file
and	using	the	print	command	in	the	finder's	file	menu.

copy(file,	destdir)
Tell	the	finder	to	copy	a	file	or	folder	file	to	folder	destdir.	The	function
returns	an	Alias	object	pointing	to	the	new	file.

move(file,	destdir)
Tell	the	finder	to	move	a	file	or	folder	file	to	folder	destdir.	The	function
returns	an	Alias	object	pointing	to	the	new	file.

sleep()
Tell	the	finder	to	put	the	Macintosh	to	sleep,	if	your	machine	supports	it.

restart()

Tell	the	finder	to	perform	an	orderly	restart	of	the	machine.

shutdown()
Tell	the	finder	to	perform	an	orderly	shutdown	of	the	machine.

Macintosh	Library	Modules
Previous:	2.6	macostools	Up:	2.	MacPython	Modules	Next:	2.8	EasyDialogs

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.7	findertools	Up:	2.	MacPython	Modules	Next:	2.8.1	ProgressBar
Objects

2.8	EasyDialogs	--	Basic	Macintosh
dialogs
Availability:	Macintosh.

The	EasyDialogs	module	contains	some	simple	dialogs	for	the	Macintosh.
All	routines	take	an	optional	resource	ID	parameter	id	with	which	one	can
override	the	DLOG	resource	used	for	the	dialog,	provided	that	the	dialog	items
correspond	(both	type	and	item	number)	to	those	in	the	default	DLOG	resource.
See	source	code	for	details.

The	EasyDialogs	module	defines	the	following	functions:

Message(str[,	id[,	ok]])
Displays	a	modal	dialog	with	the	message	text	str,	which	should	be	at	most
255	characters	long.	The	button	text	defaults	to	``OK'',	but	is	set	to	the
string	argument	ok	if	the	latter	is	supplied.	Control	is	returned	when	the
user	clicks	the	``OK''	button.

AskString(prompt[,	default[,	id[,	ok[,	cancel]]]])
Asks	the	user	to	input	a	string	value	via	a	modal	dialog.	prompt	is	the
prompt	message,	and	the	optional	default	supplies	the	initial	value	for	the
string	(otherwise	""	is	used).	The	text	of	the	``OK''	and	``Cancel''	buttons
can	be	changed	with	the	ok	and	cancel	arguments.	All	strings	can	be	at	most
255	bytes	long.	AskString()	returns	the	string	entered	or	None	in	case
the	user	cancelled.

AskPassword(prompt[,	default[,	id[,	ok[,	cancel]]]])
Asks	the	user	to	input	a	string	value	via	a	modal	dialog.	Like
AskString(),	but	with	the	text	shown	as	bullets.	The	arguments	have
the	same	meaning	as	for	AskString().

AskYesNoCancel(question[,	default[,	yes[,	no[,	cancel[,	id]]]]])
Presents	a	dialog	with	prompt	question	and	three	buttons	labelled	``Yes'',

``No'',	and	``Cancel''.	Returns	1	for	``Yes'',	0	for	``No''	and	-1	for
``Cancel''.	The	value	of	default	(or	0	if	default	is	not	supplied)	is	returned
when	the	RETURN	key	is	pressed.	The	text	of	the	buttons	can	be	changed
with	the	yes,	no,	and	cancel	arguments;	to	prevent	a	button	from	appearing,
supply	""	for	the	corresponding	argument.

ProgressBar([title[,	maxval[,	label[,	id]]]])
Displays	a	modeless	progress-bar	dialog.	This	is	the	constructor	for	the
ProgressBar	class	described	below.	title	is	the	text	string	displayed
(default	``Working...''),	maxval	is	the	value	at	which	progress	is	complete
(default	0,	indicating	that	an	indeterminate	amount	of	work	remains	to	be
done),	and	label	is	the	text	that	is	displayed	above	the	progress	bar	itself.

GetArgv([optionlist[commandlist[,	addoldfile[,	addnewfile[,	addfolder[,
id]]]]]])

Displays	a	dialog	which	aids	the	user	in	constructing	a	command-line
argument	list.	Returns	the	list	in	sys.argv	format,	suitable	for	passing	as
an	argument	to	getopt.getopt().	addoldfile,	addnewfile,	and
addfolder	are	boolean	arguments.	When	nonzero,	they	enable	the	user	to
insert	into	the	command	line	paths	to	an	existing	file,	a	(possibly)	not-yet-
existent	file,	and	a	folder,	respectively.	(Note:	Option	arguments	must
appear	in	the	command	line	before	file	and	folder	arguments	in	order	to	be
recognized	by	getopt.getopt().)	Arguments	containing	spaces	can	be
specified	by	enclosing	them	within	single	or	double	quotes.	A
SystemExit	exception	is	raised	if	the	user	presses	the	``Cancel''	button.

optionlist	is	a	list	that	determines	a	popup	menu	from	which	the	allowed
options	are	selected.	Its	items	can	take	one	of	two	forms:	optstr	or	(optstr,
descr).	When	present,	descr	is	a	short	descriptive	string	that	is	displayed	in
the	dialog	while	this	option	is	selected	in	the	popup	menu.	The
correspondence	between	optstrs	and	command-line	arguments	is:

optstr	format Command-line	format
x -x	(short	option)
x:	or	x= -x	(short	option	with	value)
xyz --xyz	(long	option)
xyz:	or	xyz= --xyz	(long	option	with	value)

commandlist	is	a	list	of	items	of	the	form	cmdstr	or	(cmdstr,	descr),
where	descr	is	as	above.	The	cmdstrs	will	appear	in	a	popup	menu.	When
chosen,	the	text	of	cmdstr	will	be	appended	to	the	command	line	as	is,
except	that	a	trailing	":"	or	"="	(if	present)	will	be	trimmed	off.

New	in	version	2.0.

AskFileForOpen(

[message]	[,	typeList]	[,	defaultLocation]	[,
defaultOptionFlags]	[,	location]	[,	clientName]	[,
windowTitle]	[,	actionButtonLabel]	[,
cancelButtonLabel]	[,	preferenceKey]	[,	popupExtension]
[,	eventProc]	[,	previewProc]	[,	filterProc]	[,	wanted])

Post	a	dialog	asking	the	user	for	a	file	to	open,	and	return	the	file	selected
or	None	if	the	user	cancelled.	message	is	a	text	message	to	display,	typeList
is	a	list	of	4-char	filetypes	allowable,	defaultLocation	is	the	pathname,
FSSpec	or	FSRef	of	the	folder	to	show	initially,	location	is	the	(x,	y)
position	on	the	screen	where	the	dialog	is	shown,	actionButtonLabel	is	a
string	to	show	instead	of	``Open''	in	the	OK	button,	cancelButtonLabel	is	a
string	to	show	instead	of	``Cancel''	in	the	cancel	button,	wanted	is	the	type
of	value	wanted	as	a	return:	str,	unicode,	FSSpec,	FSRef	and
subtypes	thereof	are	acceptable.

For	a	description	of	the	other	arguments	please	see	the	Apple	Navigation
Services	documentation	and	the	EasyDialogs	source	code.

AskFileForSave(

[message]	[,	savedFileName]	[,	defaultLocation]	[,
defaultOptionFlags]	[,	location]	[,	clientName]	[,
windowTitle]	[,	actionButtonLabel]	[,
cancelButtonLabel]	[,	preferenceKey]	[,	popupExtension]
[,	fileType]	[,	fileCreator]	[,	eventProc]	[,	wanted])

Post	a	dialog	asking	the	user	for	a	file	to	save	to,	and	return	the	file	selected
or	None	if	the	user	cancelled.	savedFileName	is	the	default	for	the	file
name	to	save	to	(the	return	value).	See	AskFileForOpen()	for	a
description	of	the	other	arguments.

[message]	[,	defaultLocation]	[,	defaultOptionFlags]	[,	location]

AskFolder([,	clientName]	[,	windowTitle]	[,	actionButtonLabel]	[,
cancelButtonLabel]	[,	preferenceKey]	[,	popupExtension]	[,
eventProc]	[,	filterProc]	[,	wanted])

Post	a	dialog	asking	the	user	to	select	a	folder,	and	return	the	folder	selected
or	None	if	the	user	cancelled.	See	AskFileForOpen()	for	a	description
of	the	arguments.

See	Also:

Navigation	Services	Reference
Programmer's	reference	documentation	for	the	Navigation	Services,	a
part	of	the	Carbon	framework.

Subsections

2.8.1	ProgressBar	Objects

Macintosh	Library	Modules
Previous:	2.7	findertools	Up:	2.	MacPython	Modules	Next:	2.8.1	ProgressBar
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://developer.apple.com/documentation/Carbon/Reference/Navigation_Services_Ref/

Previous:	2.8	EasyDialogs	Up:	2.8	EasyDialogs	Next:	2.9	FrameWork

2.8.1	ProgressBar	Objects
ProgressBar	objects	provide	support	for	modeless	progress-bar	dialogs.	Both
determinate	(thermometer	style)	and	indeterminate	(barber-pole	style)	progress
bars	are	supported.	The	bar	will	be	determinate	if	its	maximum	value	is	greater
than	zero;	otherwise	it	will	be	indeterminate.	Changed	in	version	2.2:	Support
for	indeterminate-style	progress	bars	was	added.

The	dialog	is	displayed	immediately	after	creation.	If	the	dialog's	``Cancel''
button	is	pressed,	or	if	Cmd-.	or	ESC	is	typed,	the	dialog	window	is	hidden	and
KeyboardInterrupt	is	raised	(but	note	that	this	response	does	not	occur
until	the	progress	bar	is	next	updated,	typically	via	a	call	to	inc()	or	set()).
Otherwise,	the	bar	remains	visible	until	the	ProgressBar	object	is	discarded.

ProgressBar	objects	possess	the	following	attributes	and	methods:

curval

The	current	value	(of	type	integer	or	long	integer)	of	the	progress	bar.	The
normal	access	methods	coerce	curval	between	0	and	maxval.	This
attribute	should	not	be	altered	directly.

maxval

The	maximum	value	(of	type	integer	or	long	integer)	of	the	progress	bar;
the	progress	bar	(thermometer	style)	is	full	when	curval	equals	maxval.
If	maxval	is	0,	the	bar	will	be	indeterminate	(barber-pole).	This	attribute
should	not	be	altered	directly.

title([newstr])
Sets	the	text	in	the	title	bar	of	the	progress	dialog	to	newstr.

label([newstr])
Sets	the	text	in	the	progress	box	of	the	progress	dialog	to	newstr.

set(value[,	max])
Sets	the	progress	bar's	curval	to	value,	and	also	maxval	to	max	if	the
latter	is	provided.	value	is	first	coerced	between	0	and	maxval.	The

thermometer	bar	is	updated	to	reflect	the	changes,	including	a	change	from
indeterminate	to	determinate	or	vice	versa.

inc([n])
Increments	the	progress	bar's	curval	by	n,	or	by	1	if	n	is	not	provided.
(Note	that	n	may	be	negative,	in	which	case	the	effect	is	a	decrement.)	The
progress	bar	is	updated	to	reflect	the	change.	If	the	bar	is	indeterminate,	this
causes	one	``spin''	of	the	barber	pole.	The	resulting	curval	is	coerced
between	0	and	maxval	if	incrementing	causes	it	to	fall	outside	this	range.

Macintosh	Library	Modules
Previous:	2.8	EasyDialogs	Up:	2.8	EasyDialogs	Next:	2.9	FrameWork

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.8.1	ProgressBar	Objects	Up:	2.	MacPython	Modules	Next:	2.9.1
Application	Objects

2.9	FrameWork	--	Interactive
application	framework
Availability:	Macintosh.

The	FrameWork	module	contains	classes	that	together	provide	a	framework	for
an	interactive	Macintosh	application.	The	programmer	builds	an	application	by
creating	subclasses	that	override	various	methods	of	the	bases	classes,	thereby
implementing	the	functionality	wanted.	Overriding	functionality	can	often	be
done	on	various	different	levels,	i.e.	to	handle	clicks	in	a	single	dialog	window	in
a	non-standard	way	it	is	not	necessary	to	override	the	complete	event	handling.

The	FrameWork	is	still	very	much	work-in-progress,	and	the	documentation
describes	only	the	most	important	functionality,	and	not	in	the	most	logical
manner	at	that.	Examine	the	source	or	the	examples	for	more	details.	The
following	are	some	comments	posted	on	the	MacPython	newsgroup	about	the
strengths	and	limitations	of	FrameWork:

The	strong	point	of	FrameWork	is	that	it	allows	you	to	break	into	the
control-flow	at	many	different	places.	W,	for	instance,	uses	a	different	way
to	enable/disable	menus	and	that	plugs	right	in	leaving	the	rest	intact.	The
weak	points	of	FrameWork	are	that	it	has	no	abstract	command	interface
(but	that	shouldn't	be	difficult),	that	it's	dialog	support	is	minimal	and	that
it's	control/toolbar	support	is	non-existent.

The	FrameWork	module	defines	the	following	functions:

Application()
An	object	representing	the	complete	application.	See	below	for	a
description	of	the	methods.	The	default	__init__()	routine	creates	an
empty	window	dictionary	and	a	menu	bar	with	an	apple	menu.

MenuBar()
An	object	representing	the	menubar.	This	object	is	usually	not	created	by
the	user.

Menu(bar,	title[,	after])
An	object	representing	a	menu.	Upon	creation	you	pass	the	MenuBar	the
menu	appears	in,	the	title	string	and	a	position	(1-based)	after	where	the
menu	should	appear	(default:	at	the	end).

MenuItem(menu,	title[,	shortcut,	callback])
Create	a	menu	item	object.	The	arguments	are	the	menu	to	create,	the	item
title	string	and	optionally	the	keyboard	shortcut	and	a	callback	routine.	The
callback	is	called	with	the	arguments	menu-id,	item	number	within	menu
(1-based),	current	front	window	and	the	event	record.

Instead	of	a	callable	object	the	callback	can	also	be	a	string.	In	this	case
menu	selection	causes	the	lookup	of	a	method	in	the	topmost	window	and
the	application.	The	method	name	is	the	callback	string	with	'domenu_'
prepended.

Calling	the	MenuBar	fixmenudimstate()	method	sets	the	correct
dimming	for	all	menu	items	based	on	the	current	front	window.

Separator(menu)
Add	a	separator	to	the	end	of	a	menu.

SubMenu(menu,	label)
Create	a	submenu	named	label	under	menu	menu.	The	menu	object	is
returned.

Window(parent)
Creates	a	(modeless)	window.	Parent	is	the	application	object	to	which	the
window	belongs.	The	window	is	not	displayed	until	later.

DialogWindow(parent)
Creates	a	modeless	dialog	window.

windowbounds(width,	height)
Return	a	(left,	top,	right,	bottom)	tuple	suitable	for	creation	of	a
window	of	given	width	and	height.	The	window	will	be	staggered	with
respect	to	previous	windows,	and	an	attempt	is	made	to	keep	the	whole

window	on-screen.	However,	the	window	will	however	always	be	the	exact
size	given,	so	parts	may	be	offscreen.

setwatchcursor()
Set	the	mouse	cursor	to	a	watch.

setarrowcursor()
Set	the	mouse	cursor	to	an	arrow.

Subsections

2.9.1	Application	Objects
2.9.2	Window	Objects
2.9.3	ControlsWindow	Object
2.9.4	ScrolledWindow	Object
2.9.5	DialogWindow	Objects

Macintosh	Library	Modules
Previous:	2.8.1	ProgressBar	Objects	Up:	2.	MacPython	Modules	Next:	2.9.1
Application	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.9	FrameWork	Up:	2.9	FrameWork	Next:	2.9.2	Window	Objects

2.9.1	Application	Objects
Application	objects	have	the	following	methods,	among	others:

makeusermenus()
Override	this	method	if	you	need	menus	in	your	application.	Append	the
menus	to	the	attribute	menubar.

getabouttext()
Override	this	method	to	return	a	text	string	describing	your	application.
Alternatively,	override	the	do_about()	method	for	more	elaborate
``about''	messages.

mainloop([mask[,	wait]])
This	routine	is	the	main	event	loop,	call	it	to	set	your	application	rolling.
Mask	is	the	mask	of	events	you	want	to	handle,	wait	is	the	number	of	ticks
you	want	to	leave	to	other	concurrent	application	(default	0,	which	is
probably	not	a	good	idea).	While	raising	self	to	exit	the	mainloop	is	still
supported	it	is	not	recommended:	call	self._quit()	instead.

The	event	loop	is	split	into	many	small	parts,	each	of	which	can	be
overridden.	The	default	methods	take	care	of	dispatching	events	to
windows	and	dialogs,	handling	drags	and	resizes,	Apple	Events,	events	for
non-FrameWork	windows,	etc.

In	general,	all	event	handlers	should	return	1	if	the	event	is	fully	handled
and	0	otherwise	(because	the	front	window	was	not	a	FrameWork	window,
for	instance).	This	is	needed	so	that	update	events	and	such	can	be	passed
on	to	other	windows	like	the	Sioux	console	window.	Calling
MacOS.HandleEvent()	is	not	allowed	within	our_dispatch	or	its
callees,	since	this	may	result	in	an	infinite	loop	if	the	code	is	called	through
the	Python	inner-loop	event	handler.

asyncevents(onoff)
Call	this	method	with	a	nonzero	parameter	to	enable	asynchronous	event
handling.	This	will	tell	the	inner	interpreter	loop	to	call	the	application

event	handler	async_dispatch	whenever	events	are	available.	This	will
cause	FrameWork	window	updates	and	the	user	interface	to	remain	working
during	long	computations,	but	will	slow	the	interpreter	down	and	may	cause
surprising	results	in	non-reentrant	code	(such	as	FrameWork	itself).	By
default	async_dispatch	will	immedeately	call	our_dispatch	but	you	may
override	this	to	handle	only	certain	events	asynchronously.	Events	you	do
not	handle	will	be	passed	to	Sioux	and	such.

The	old	on/off	value	is	returned.

_quit()
Terminate	the	running	mainloop()	call	at	the	next	convenient	moment.

do_char(c,	event)
The	user	typed	character	c.	The	complete	details	of	the	event	can	be	found
in	the	event	structure.	This	method	can	also	be	provided	in	a	Window
object,	which	overrides	the	application-wide	handler	if	the	window	is
frontmost.

do_dialogevent(event)
Called	early	in	the	event	loop	to	handle	modeless	dialog	events.	The	default
method	simply	dispatches	the	event	to	the	relevant	dialog	(not	through	the
DialogWindow	object	involved).	Override	if	you	need	special	handling
of	dialog	events	(keyboard	shortcuts,	etc).

idle(event)
Called	by	the	main	event	loop	when	no	events	are	available.	The	null-event
is	passed	(so	you	can	look	at	mouse	position,	etc).

Macintosh	Library	Modules
Previous:	2.9	FrameWork	Up:	2.9	FrameWork	Next:	2.9.2	Window	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.9.1	Application	Objects	Up:	2.9	FrameWork	Next:	2.9.3
ControlsWindow	Object

2.9.2	Window	Objects
Window	objects	have	the	following	methods,	among	others:

open()
Override	this	method	to	open	a	window.	Store	the	MacOS	window-id	in
self.wid	and	call	the	do_postopen()	method	to	register	the	window
with	the	parent	application.

close()
Override	this	method	to	do	any	special	processing	on	window	close.	Call
the	do_postclose()	method	to	cleanup	the	parent	state.

do_postresize(width,	height,	macoswindowid)
Called	after	the	window	is	resized.	Override	if	more	needs	to	be	done	than
calling	InvalRect.

do_contentclick(local,	modifiers,	event)
The	user	clicked	in	the	content	part	of	a	window.	The	arguments	are	the
coordinates	(window-relative),	the	key	modifiers	and	the	raw	event.

do_update(macoswindowid,	event)
An	update	event	for	the	window	was	received.	Redraw	the	window.

do_activate(activate,	event)
The	window	was	activated	(activate	==	1)	or	deactivated	(activate	==
0).	Handle	things	like	focus	highlighting,	etc.

Macintosh	Library	Modules
Previous:	2.9.1	Application	Objects	Up:	2.9	FrameWork	Next:	2.9.3
ControlsWindow	Object

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.9.2	Window	Objects	Up:	2.9	FrameWork	Next:	2.9.4
ScrolledWindow	Object

2.9.3	ControlsWindow	Object
ControlsWindow	objects	have	the	following	methods	besides	those	of	Window
objects:

do_controlhit(window,	control,	pcode,	event)
Part	pcode	of	control	control	was	hit	by	the	user.	Tracking	and	such	has
already	been	taken	care	of.

Macintosh	Library	Modules
Previous:	2.9.2	Window	Objects	Up:	2.9	FrameWork	Next:	2.9.4
ScrolledWindow	Object

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.9.3	ControlsWindow	Object	Up:	2.9	FrameWork	Next:	2.9.5
DialogWindow	Objects

2.9.4	ScrolledWindow	Object
ScrolledWindow	objects	are	ControlsWindow	objects	with	the	following	extra
methods:

scrollbars([wantx[,	wanty]])
Create	(or	destroy)	horizontal	and	vertical	scrollbars.	The	arguments
specify	which	you	want	(default:	both).	The	scrollbars	always	have
minimum	0	and	maximum	32767.

getscrollbarvalues()
You	must	supply	this	method.	It	should	return	a	tuple	(x,	y)	giving	the
current	position	of	the	scrollbars	(between	0	and	32767).	You	can	return
None	for	either	to	indicate	the	whole	document	is	visible	in	that	direction.

updatescrollbars()
Call	this	method	when	the	document	has	changed.	It	will	call
getscrollbarvalues()	and	update	the	scrollbars.

scrollbar_callback(which,	what,	value)
Supplied	by	you	and	called	after	user	interaction.	which	will	be	'x'	or
'y',	what	will	be	'-',	'--',	'set',	'++'	or	'+'.	For	'set',	value
will	contain	the	new	scrollbar	position.

scalebarvalues(absmin,	absmax,	curmin,	curmax)
Auxiliary	method	to	help	you	calculate	values	to	return	from
getscrollbarvalues().	You	pass	document	minimum	and	maximum
value	and	topmost	(leftmost)	and	bottommost	(rightmost)	visible	values	and
it	returns	the	correct	number	or	None.

do_activate(onoff,	event)
Takes	care	of	dimming/highlighting	scrollbars	when	a	window	becomes
frontmost.	If	you	override	this	method,	call	this	one	at	the	end	of	your
method.

do_postresize(width,	height,	window)

Moves	scrollbars	to	the	correct	position.	Call	this	method	initially	if	you
override	it.

do_controlhit(window,	control,	pcode,	event)
Handles	scrollbar	interaction.	If	you	override	it	call	this	method	first,	a
nonzero	return	value	indicates	the	hit	was	in	the	scrollbars	and	has	been
handled.

Macintosh	Library	Modules
Previous:	2.9.3	ControlsWindow	Object	Up:	2.9	FrameWork	Next:	2.9.5
DialogWindow	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.9.4	ScrolledWindow	Object	Up:	2.9	FrameWork	Next:	2.10
autoGIL

2.9.5	DialogWindow	Objects
DialogWindow	objects	have	the	following	methods	besides	those	of	Window
objects:

open(resid)
Create	the	dialog	window,	from	the	DLOG	resource	with	id	resid.	The
dialog	object	is	stored	in	self.wid.

do_itemhit(item,	event)
Item	number	item	was	hit.	You	are	responsible	for	redrawing	toggle
buttons,	etc.

Macintosh	Library	Modules
Previous:	2.9.4	ScrolledWindow	Object	Up:	2.9	FrameWork	Next:	2.10
autoGIL

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.9.5	DialogWindow	Objects	Up:	2.	MacPython	Modules	Next:	3.
MacPython	OSA	Modules

2.10	autoGIL	--	Global	Interpreter
Lock	handling	in	event	loops
Availability:	Macintosh.

The	autoGIL	module	provides	a	function	installAutoGIL	that
automatically	locks	and	unlocks	Python's	Global	Interpreter	Lock	when	running
an	event	loop.

exception	AutoGILError
Raised	if	the	observer	callback	cannot	be	installed,	for	example	because	the
current	thread	does	not	have	a	run	loop.

installAutoGIL()
Install	an	observer	callback	in	the	event	loop	(CFRunLoop)	for	the	current
thread,	that	will	lock	and	unlock	the	Global	Interpreter	Lock	(GIL)	at
appropriate	times,	allowing	other	Python	threads	to	run	while	the	event	loop
is	idle.

Availability:	OSX	10.1	or	later.

Macintosh	Library	Modules
Previous:	2.9.5	DialogWindow	Objects	Up:	2.	MacPython	Modules	Next:	3.
MacPython	OSA	Modules

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.10	autoGIL	Up:	Macintosh	Library	Modules	Next:	3.1
gensuitemodule

3.	MacPython	OSA	Modules
Python	has	a	fairly	complete	implementation	of	the	Open	Scripting	Architecure
(OSA,	also	commonly	referred	to	as	AppleScript),	allowing	you	to	control
scriptable	applications	from	your	Python	program,	and	with	a	fairly	pythonic
interface.

For	a	description	of	the	various	components	of	AppleScript	and	OSA,	and	to	get
an	understanding	of	the	architecture	and	terminology,	you	should	read	Apple's
documentation.	The	"Applescript	Language	Guide"	explains	the	conceptual
model	and	the	terminology,	and	documents	the	standard	suite.	The	"Open
Scripting	Architecture"	document	explains	how	to	use	OSA	from	an	application
programmers	point	of	view.	In	the	Apple	Help	Viewer	these	book	sare	located	in
the	Developer	Documentation,	Core	Technologies	section.

As	an	example	of	scripting	an	application,	the	following	piece	of	AppleScript
will	get	the	name	of	the	frontmost	Finder	window	and	print	it:

tell	application	"Finder"

				get	name	of	window	1

end	tell

In	Python,	the	following	code	fragment	will	do	the	same:

import	Finder

f	=	Finder.Finder()

print	f.get(f.window(1).name)

As	distributed	the	Python	library	includes	packages	that	implement	the	standard
suites,	plus	packages	that	interface	to	a	small	number	of	common	applications.

To	send	AppleEvents	to	an	application	you	must	first	create	the	Python	package
interfacing	to	the	terminology	of	the	application	(what	Script	Editor	calls	the
"Dictionary").	This	can	be	done	from	within	the	PythonIDE	or	by	running	the
gensuitemodule.py	module	as	a	standalone	program	from	the	command	line.

The	generated	output	is	a	package	with	a	number	of	modules,	one	for	every	suite
used	in	the	program	plus	an	__init__	module	to	glue	it	all	together.	The

Python	inheritance	graph	follows	the	AppleScript	inheritance	graph,	so	if	a
programs	dictionary	specifies	that	it	includes	support	for	the	Standard	Suite,	but
extends	one	or	two	verbs	with	extra	arguments	then	the	output	suite	will	contain
a	module	Standard_Suite	that	imports	and	re-exports	everything	from
StdSuites.Standard_Suite	but	overrides	the	methods	that	have	extra
functionality.	The	output	of	gensuitemodule	is	pretty	readable,	and	contains
the	documentation	that	was	in	the	original	AppleScript	dictionary	in	Python
docstrings,	so	reading	it	is	a	good	source	of	documentation.

The	output	package	implements	a	main	class	with	the	same	name	as	the	package
which	contains	all	the	AppleScript	verbs	as	methods,	with	the	direct	object	as	the
first	argument	and	all	optional	parameters	as	keyword	arguments.	AppleScript
classes	are	also	implemented	as	Python	classes,	as	are	comparisons	and	all	the
other	thingies.

The	main	Python	class	implementing	the	verbs	also	allows	access	to	the
properties	and	elements	declared	in	the	AppleScript	class	"application".	In	the
current	release	that	is	as	far	as	the	object	orientation	goes,	so	in	the	example
above	we	need	to	use	f.get(f.window(1).name)	instead	of	the	more
Pythonic	f.window(1).name.get().

If	an	AppleScript	identifier	is	not	a	Python	identifier	the	name	is	mangled
according	to	a	small	number	of	rules:

spaces	are	replaced	with	underscores
other	non-alphanumeric	characters	are	replaced	with	_xx_	where	xx	is	the
hexadecimal	character	value
any	Python	reserved	word	gets	an	underscore	appended

Python	also	has	support	for	creating	scriptable	applications	in	Python,	but	The
following	modules	are	relevant	to	MacPython	AppleScript	support:

gensuitemodule 	 Create	a	stub	package	from	an	OSA	dictionary
aetools 	 Basic	support	for	sending	Apple	Events

aepack 	 Conversion	between	Python	variables	and	AppleEventdata	containers.
aetypes 	 Python	representation	of	the	Apple	Event	Object	Model.

MiniAEFrame 	
Support	to	act	as	an	Open	Scripting	Architecture	(OSA)

server	(``Apple	Events'').

In	addition,	support	modules	have	been	pre-generated	for	Finder,	Terminal,
Explorer,	Netscape,	CodeWarrior,	SystemEvents	and	StdSuites.

Macintosh	Library	Modules
Previous:	2.10	autoGIL	Up:	Macintosh	Library	Modules	Next:	3.1
gensuitemodule

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.	MacPython	OSA	Modules	Up:	3.	MacPython	OSA	Modules	Next:
3.2	aetools

3.1	gensuitemodule	--	Generate
OSA	stub	packages
Availability:	Macintosh.

The	gensuitemodule	module	creates	a	Python	package	implementing	stub
code	for	the	AppleScript	suites	that	are	implemented	by	a	specific	application,
according	to	its	AppleScript	dictionary.

It	is	usually	invoked	by	the	user	through	the	PythonIDE,	but	it	can	also	be	run
as	a	script	from	the	command	line	(pass	--help	for	help	on	the	options)	or
imported	from	Python	code.	For	an	example	of	its	use	see
Mac/scripts/genallsuites.py	in	a	source	distribution,	which	generates	the	stub
packages	that	are	included	in	the	standard	library.

It	defines	the	following	public	functions:

is_scriptable(application)
Returns	true	if	application,	which	should	be	passed	as	a	pathname,
appears	to	be	scriptable.	Take	the	return	value	with	a	grain	of	salt:	Internet
Explorer	appears	not	to	be	scriptable	but	definitely	is.

processfile(application[,	output,	basepkgname,	edit_modnames,
creatorsignature,	dump,	verbose])

Create	a	stub	package	for	application,	which	should	be	passed	as	a	full
pathname.	For	a	.app	bundle	this	is	the	pathname	to	the	bundle,	not	to	the
executable	inside	the	bundle;	for	an	unbundled	CFM	application	you	pass
the	filename	of	the	application	binary.

This	function	asks	the	application	for	its	OSA	terminology	resources,
decodes	these	resources	and	uses	the	resultant	data	to	create	the	Python
code	for	the	package	implementing	the	client	stubs.

output	is	the	pathname	where	the	resulting	package	is	stored,	if	not
specified	a	standard	"save	file	as"	dialog	is	presented	to	the	user.

basepkgname	is	the	base	package	on	which	this	package	will	build,	and
defaults	to	StdSuites.	Only	when	generating	StdSuites	itself	do	you
need	to	specify	this.	edit_modnames	is	a	dictionary	that	can	be	used	to
change	modulenames	that	are	too	ugly	after	name	mangling.
creator_signature	can	be	used	to	override	the	4-char	creator	code,
which	is	normally	obtained	from	the	PkgInfo	file	in	the	package	or	from
the	CFM	file	creator	signature.	When	dump	is	given	it	should	refer	to	a	file
object,	and	processfile	will	stop	after	decoding	the	resources	and
dump	the	Python	representation	of	the	terminology	resources	to	this	file.
verbose	should	also	be	a	file	object,	and	specifying	it	will	cause
processfile	to	tell	you	what	it	is	doing.

processfile_fromresource(
application[,	output,	basepkgname,
edit_modnames,	creatorsignature,	dump,
verbose])

This	function	does	the	same	as	processfile,	except	that	it	uses	a
different	method	to	get	the	terminology	resources.	It	opens	application
as	a	resource	file	and	reads	all	"aete"	and	"aeut"	resources	from	this
file.

Macintosh	Library	Modules
Previous:	3.	MacPython	OSA	Modules	Up:	3.	MacPython	OSA	Modules	Next:
3.2	aetools

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.1	gensuitemodule	Up:	3.	MacPython	OSA	Modules	Next:	3.3
aepack

3.2	aetools	--	OSA	client	support
Availability:	Macintosh.

The	aetools	module	contains	the	basic	functionality	on	which	Python
AppleScript	client	support	is	built.	It	also	imports	and	re-exports	the	core
functionality	of	the	aetypes	and	aepack	modules.	The	stub	packages
generated	by	gensuitemodule	import	the	relevant	portions	of	aetools,	so
usually	you	do	not	need	to	import	it	yourself.	The	exception	to	this	is	when	you
cannot	use	a	generated	suite	package	and	need	lower-level	access	to	scripting.

The	aetools	module	itself	uses	the	AppleEvent	support	provided	by	the
Carbon.AE	module.	This	has	one	drawback:	you	need	access	to	the	window
manager,	see	section	1.1.2	for	details.	This	restriction	may	be	lifted	in	future
releases.

The	aetools	module	defines	the	following	functions:

packevent(ae,	parameters,	attributes)
Stores	parameters	and	attributes	in	a	pre-created	Carbon.AE.AEDesc
object.	parameters	and	attributes	are	dictionaries	mapping	4-
character	OSA	parameter	keys	to	Python	objects.	The	objects	are	packed
using	aepack.pack().

unpackevent(ae[,	formodulename])
Recursively	unpacks	a	Carbon.AE.AEDesc	event	to	Python	objects.
The	function	returns	the	parameter	dictionary	and	the	attribute	dictionary.
The	formodulename	argument	is	used	by	generated	stub	packages	to
control	where	AppleScript	classes	are	looked	up.

keysubst(arguments,	keydict)
Converts	a	Python	keyword	argument	dictionary	arguments	to	the
format	required	by	packevent	by	replacing	the	keys,	which	are	Python
identifiers,	by	the	four-character	OSA	keys	according	to	the	mapping
specified	in	keydict.	Used	by	the	generated	suite	packages.

enumsubst(arguments,	key,	edict)
If	the	arguments	dictionary	contains	an	entry	for	key	convert	the	value
for	that	entry	according	to	dictionary	edict.	This	converts	human-
readable	Python	enumeration	names	to	the	OSA	4-character	codes.	Used	by
the	generated	suite	packages.

The	aetools	module	defines	the	following	class:

class	TalkTo([signature=None,	start=0,	timeout=0])

Base	class	for	the	proxy	used	to	talk	to	an	application.	signature
overrides	the	class	attribute	_signature	(which	is	usually	set	by
subclasses)	and	is	the	4-char	creator	code	defining	the	application	to	talk	to.
start	can	be	set	to	true	to	enable	running	the	application	on	class
instantiation.	timeout	can	be	specified	to	change	the	default	timeout	used
while	waiting	for	an	AppleEvent	reply.

_start()
Test	whether	the	application	is	running,	and	attempt	to	start	it	if	not.

send(code,	subcode[,	parameters,	attributes])
Create	the	AppleEvent	Carbon.AE.AEDesc	for	the	verb	with	the	OSA
designation	code,	subcode	(which	are	the	usual	4-character	strings),
pack	the	parameters	and	attributes	into	it,	send	it	to	the	target
application,	wait	for	the	reply,	unpack	the	reply	with	unpackevent	and
return	the	reply	appleevent,	the	unpacked	return	values	as	a	dictionary	and
the	return	attributes.

Macintosh	Library	Modules
Previous:	3.1	gensuitemodule	Up:	3.	MacPython	OSA	Modules	Next:	3.3
aepack

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.2	aetools	Up:	3.	MacPython	OSA	Modules	Next:	3.4	aetypes

3.3	aepack	--	Conversion	between
Python	variables	and	AppleEvent
data	containers
Availability:	Macintosh.

The	aepack	module	defines	functions	for	converting	(packing)	Python
variables	to	AppleEvent	descriptors	and	back	(unpacking).	Within	Python	the
AppleEvent	descriptor	is	handled	by	Python	objects	of	built-in	type	AEDesc,
defined	in	module	Carbon.AE.

The	aepack	module	defines	the	following	functions:

pack(x[,	forcetype])
Returns	an	AEDesc	object	containing	a	conversion	of	Python	value	x.	If
forcetype	is	provided	it	specifies	the	descriptor	type	of	the	result.
Otherwise,	a	default	mapping	of	Python	types	to	Apple	Event	descriptor
types	is	used,	as	follows:

Python	type descriptor	type
FSSpec typeFSS
FSRef typeFSRef
Alias typeAlias
integer typeLong	(32	bit	integer)
float typeFloat	(64	bit	floating	point)
string typeText
unicode typeUnicodeText
list typeAEList
dictionary typeAERecord
instance see	below

If	x	is	a	Python	instance	then	this	function	attempts	to	call	an
__aepack__()	method.	This	method	should	return	an	AEDesc	object.

If	the	conversion	x	is	not	defined	above,	this	function	returns	the	Python
string	representation	of	a	value	(the	repr()	function)	encoded	as	a	text
descriptor.

unpack(x[,	formodulename])
x	must	be	an	object	of	type	AEDesc.	This	function	returns	a	Python	object
representation	of	the	data	in	the	Apple	Event	descriptor	x.	Simple
AppleEvent	data	types	(integer,	text,	float)	are	returned	as	their	obvious
Python	counterparts.	Apple	Event	lists	are	returned	as	Python	lists,	and	the
list	elements	are	recursively	unpacked.	Object	references	(ex.	line	3	of
document	1)	are	returned	as	instances	of
aetypes.ObjectSpecifier,	unless	formodulename	is	specified.
AppleEvent	descriptors	with	descriptor	type	typeFSS	are	returned	as
FSSpec	objects.	AppleEvent	record	descriptors	are	returned	as	Python
dictionaries,	with	4-character	string	keys	and	elements	recursively
unpacked.

The	optional	formodulename	argument	is	used	by	the	stub	packages
generated	by	gensuitemodule,	and	ensures	that	the	OSA	classes	for
object	specifiers	are	looked	up	in	the	correct	module.	This	ensures	that	if,
say,	the	Finder	returns	an	object	specifier	for	a	window	you	get	an	instance
of	Finder.Window	and	not	a	generic	aetypes.Window.	The	former
knows	about	all	the	properties	and	elements	a	window	has	in	the	Finder,
while	the	latter	knows	no	such	things.

See	Also:

Module	Carbon.AE:
Built-in	access	to	Apple	Event	Manager	routines.

Module	aetypes:
Python	definitions	of	codes	for	Apple	Event	descriptor	types.

Inside	Macintosh:	Interapplication	Communication
Information	about	inter-process	communications	on	the	Macintosh.

http://developer.apple.com/techpubs/mac/IAC/IAC-2.html

Macintosh	Library	Modules
Previous:	3.2	aetools	Up:	3.	MacPython	OSA	Modules	Next:	3.4	aetypes

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3	aepack	Up:	3.	MacPython	OSA	Modules	Next:	3.5	MiniAEFrame

3.4	aetypes	--	AppleEvent	objects
Availability:	Macintosh.

The	aetypes	defines	classes	used	to	represent	Apple	Event	data	descriptors
and	Apple	Event	object	specifiers.

Apple	Event	data	is	contained	in	descriptors,	and	these	descriptors	are	typed.	For
many	descriptors	the	Python	representation	is	simply	the	corresponding	Python
type:	typeText	in	OSA	is	a	Python	string,	typeFloat	is	a	float,	etc.	For
OSA	types	that	have	no	direct	Python	counterpart	this	module	declares	classes.
Packing	and	unpacking	instances	of	these	classes	is	handled	automatically	by
aepack.

An	object	specifier	is	essentially	an	address	of	an	object	implemented	in	a	Apple
Event	server.	An	Apple	Event	specifier	is	used	as	the	direct	object	for	an	Apple
Event	or	as	the	argument	of	an	optional	parameter.	The	aetypes	module
contains	the	base	classes	for	OSA	classes	and	properties,	which	are	used	by	the
packages	generated	by	gensuitemodule	to	populate	the	classes	and
properties	in	a	given	suite.

For	reasons	of	backward	compatibility,	and	for	cases	where	you	need	to	script	an
application	for	which	you	have	not	generated	the	stub	package	this	module	also
contains	object	specifiers	for	a	number	of	common	OSA	classes	such	as
Document,	Window,	Character,	etc.

The	AEObjects	module	defines	the	following	classes	to	represent	Apple	Event
descriptor	data:

class	Unknown(type,	data)
The	representation	of	OSA	descriptor	data	for	which	the	aepack	and
aetypes	modules	have	no	support,	i.e.	anything	that	is	not	represented	by
the	other	classes	here	and	that	is	not	equivalent	to	a	simple	Python	value.

class	Enum(enum)
An	enumeration	value	with	the	given	4-character	string	value.

class	InsertionLoc(of,	pos)
Position	pos	in	object	of.

class	Boolean(bool)
A	boolean.

class	StyledText(style,	text)
Text	with	style	information	(font,	face,	etc)	included.

class	AEText(script,	style,	text)
Text	with	script	system	and	style	information	included.

class	IntlText(script,	language,	text)
Text	with	script	system	and	language	information	included.

class	IntlWritingCode(script,	language)
Script	system	and	language	information.

class	QDPoint(v,	h)
A	quickdraw	point.

class	QDRectangle(v0,	h0,	v1,	h1)
A	quickdraw	rectangle.

class	RGBColor(r,	g,	b)
A	color.

class	Type(type)
An	OSA	type	value	with	the	given	4-character	name.

class	Keyword(name)
An	OSA	keyword	with	the	given	4-character	name.

class	Range(start,	stop)
A	range.

class	Ordinal(abso)
Non-numeric	absolute	positions,	such	as	"firs",	first,	or	"midd",
middle.

class	Logical(logc,	term)
The	logical	expression	of	applying	operator	logc	to	term.

class	Comparison(obj1,	relo,	obj2)
The	comparison	relo	of	obj1	to	obj2.

The	following	classes	are	used	as	base	classes	by	the	generated	stub	packages	to
represent	AppleScript	classes	and	properties	in	Python:

class	ComponentItem(which[,	fr])
Abstract	baseclass	for	an	OSA	class.	The	subclass	should	set	the	class
attribute	want	to	the	4-character	OSA	class	code.	Instances	of	subclasses
of	this	class	are	equivalent	to	AppleScript	Object	Specifiers.	Upon
instantiation	you	should	pass	a	selector	in	which,	and	optionally	a	parent
object	in	fr.

class	NProperty(fr)
Abstract	baseclass	for	an	OSA	property.	The	subclass	should	set	the	class
attributes	want	and	which	to	designate	which	property	we	are	talking
about.	Instances	of	subclasses	of	this	class	are	Object	Specifiers.

class	ObjectSpecifier(want,	form,	seld[,	fr])
Base	class	of	ComponentItem	and	NProperty,	a	general	OSA	Object
Specifier.	See	the	Apple	Open	Scripting	Architecture	documentation	for	the
parameters.	Note	that	this	class	is	not	abstract.

Macintosh	Library	Modules
Previous:	3.3	aepack	Up:	3.	MacPython	OSA	Modules	Next:	3.5	MiniAEFrame

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.4	aetypes	Up:	3.	MacPython	OSA	Modules	Next:	3.5.1	AEServer
Objects

3.5	MiniAEFrame	--	Open	Scripting
Architecture	server	support
Availability:	Macintosh.

The	module	MiniAEFrame	provides	a	framework	for	an	application	that	can
function	as	an	Open	Scripting	Architecture	(OSA)	server,	i.e.	receive	and
process	AppleEvents.	It	can	be	used	in	conjunction	with	FrameWork	or
standalone.	As	an	example,	it	is	used	in	PythonCGISlave.

The	MiniAEFrame	module	defines	the	following	classes:

class	AEServer()
A	class	that	handles	AppleEvent	dispatch.	Your	application	should	subclass
this	class	together	with	either	MiniApplication	or
FrameWork.Application.	Your	__init__()	method	should	call
the	__init__()	method	for	both	classes.

class	MiniApplication()
A	class	that	is	more	or	less	compatible	with	FrameWork.Application
but	with	less	functionality.	Its	event	loop	supports	the	apple	menu,
command-dot	and	AppleEvents;	other	events	are	passed	on	to	the	Python
interpreter	and/or	Sioux.	Useful	if	your	application	wants	to	use
AEServer	but	does	not	provide	its	own	windows,	etc.

Subsections

3.5.1	AEServer	Objects

Macintosh	Library	Modules
Previous:	3.4	aetypes	Up:	3.	MacPython	OSA	Modules	Next:	3.5.1	AEServer
Objects

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.5	MiniAEFrame	Up:	3.5	MiniAEFrame	Next:	4.	MacOS	Toolbox
Modules

3.5.1	AEServer	Objects

installaehandler(classe,	type,	callback)
Installs	an	AppleEvent	handler.	classe	and	type	are	the	four-character	OSA
Class	and	Type	designators,	'****'	wildcards	are	allowed.	When	a
matching	AppleEvent	is	received	the	parameters	are	decoded	and	your
callback	is	invoked.

callback(_object,	**kwargs)
Your	callback	is	called	with	the	OSA	Direct	Object	as	first	positional
parameter.	The	other	parameters	are	passed	as	keyword	arguments,	with	the
4-character	designator	as	name.	Three	extra	keyword	parameters	are
passed:	_class	and	_type	are	the	Class	and	Type	designators	and
_attributes	is	a	dictionary	with	the	AppleEvent	attributes.

The	return	value	of	your	method	is	packed	with
aetools.packevent()	and	sent	as	reply.

Note	that	there	are	some	serious	problems	with	the	current	design.	AppleEvents
which	have	non-identifier	4-character	designators	for	arguments	are	not
implementable,	and	it	is	not	possible	to	return	an	error	to	the	originator.	This	will
be	addressed	in	a	future	release.

Macintosh	Library	Modules
Previous:	3.5	MiniAEFrame	Up:	3.5	MiniAEFrame	Next:	4.	MacOS	Toolbox
Modules

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.5.1	AEServer	Objects	Up:	Macintosh	Library	Modules	Next:	4.1
Carbon.AE

4.	MacOS	Toolbox	Modules
There	are	a	set	of	modules	that	provide	interfaces	to	various	MacOS	toolboxes.
If	applicable	the	module	will	define	a	number	of	Python	objects	for	the	various
structures	declared	by	the	toolbox,	and	operations	will	be	implemented	as
methods	of	the	object.	Other	operations	will	be	implemented	as	functions	in	the
module.	Not	all	operations	possible	in	C	will	also	be	possible	in	Python
(callbacks	are	often	a	problem),	and	parameters	will	occasionally	be	different	in
Python	(input	and	output	buffers,	especially).	All	methods	and	functions	have	a
__doc__	string	describing	their	arguments	and	return	values,	and	for	additional
description	you	are	referred	to	Inside	Macintosh	or	similar	works.

These	modules	all	live	in	a	package	called	Carbon.	Despite	that	name	they	are
not	all	part	of	the	Carbon	framework:	CF	is	really	in	the	CoreFoundation
framework	and	Qt	is	in	the	QuickTime	framework.	The	normal	use	pattern	is

from	Carbon	import	AE

Warning!	These	modules	are	not	yet	documented.	If	you	wish	to	contribute
documentation	of	any	of	these	modules,	please	get	in	touch	with
docs@python.org.

Carbon.AE 	 Interface	to	the	Apple	Events	toolbox.
Carbon.AH 	 Interface	to	the	Apple	Help	manager.
Carbon.App 	 Interface	to	the	Appearance	Manager.
Carbon.CF 	 Interface	to	the	Core	Foundation.
Carbon.CG 	 Interface	to	the	Component	Manager.
Carbon.CaronEvt 	 Interface	to	the	Carbon	Event	Manager.
Carbon.Cm 	 Interface	to	the	Component	Manager.
Carbon.Ctl 	 Interface	to	the	Control	Manager.
Carbon.Dlg 	 Interface	to	the	Dialog	Manager.
Carbon.Evt 	 Interface	to	the	classic	Event	Manager.
Carbon.Fm 	 Interface	to	the	Font	Manager.
Carbon.Folder 	 Interface	to	the	Folder	Manager.
Carbon.Help 	 Interface	to	the	Carbon	Help	Manager.

http://developer.apple.com/documentation/macos8/mac8.html

Carbon.List 	 Interface	to	the	List	Manager.
Carbon.Menu 	 Interface	to	the	Menu	Manager.
Carbon.Mlte 	 Interface	to	the	MultiLingual	Text	Editor.
Carbon.Qd 	 Interface	to	the	QuickDraw	toolbox.
Carbon.Qdoffs 	 Interface	to	the	QuickDraw	Offscreen	APIs.
Carbon.Qt 	 Interface	to	the	QuickTime	toolbox.
Carbon.Res 	 Interface	to	the	Resource	Manager	and	Handles.
Carbon.Scrap 	 Interface	to	the	Carbon	Scrap	Manager.
Carbon.Snd 	 Interface	to	the	Sound	Manager.
Carbon.TE 	 Interface	to	TextEdit.
Carbon.Win 	 Interface	to	the	Window	Manager.
ColorPicker 	 Interface	to	the	standard	color	selection	dialog.

Macintosh	Library	Modules
Previous:	3.5.1	AEServer	Objects	Up:	Macintosh	Library	Modules	Next:	4.1
Carbon.AE

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.	MacOS	Toolbox	Modules	Up:	4.	MacOS	Toolbox	Modules	Next:
4.2	Carbon.AH

4.1	Carbon.AE	--	Apple	Events
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.	MacOS	Toolbox	Modules	Up:	4.	MacOS	Toolbox	Modules	Next:
4.2	Carbon.AH

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.1	Carbon.AE	Up:	4.	MacOS	Toolbox	Modules	Next:	4.3
Carbon.App

4.2	Carbon.AH	--	Apple	Help
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.1	Carbon.AE	Up:	4.	MacOS	Toolbox	Modules	Next:	4.3
Carbon.App

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.2	Carbon.AH	Up:	4.	MacOS	Toolbox	Modules	Next:	4.4
Carbon.CF

4.3	Carbon.App	--	Appearance
Manager
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.2	Carbon.AH	Up:	4.	MacOS	Toolbox	Modules	Next:	4.4
Carbon.CF

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.3	Carbon.App	Up:	4.	MacOS	Toolbox	Modules	Next:	4.5
Carbon.CG

4.4	Carbon.CF	--	Core	Foundation
Availability:	Macintosh.

The	CFBase,	CFArray,	CFData,	CFDictionary,	CFString	and	CFURL
objects	are	supported,	some	only	partially.

Macintosh	Library	Modules
Previous:	4.3	Carbon.App	Up:	4.	MacOS	Toolbox	Modules	Next:	4.5
Carbon.CG

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.4	Carbon.CF	Up:	4.	MacOS	Toolbox	Modules	Next:	4.6
Carbon.CarbonEvt

4.5	Carbon.CG	--	Core	Graphics
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.4	Carbon.CF	Up:	4.	MacOS	Toolbox	Modules	Next:	4.6
Carbon.CarbonEvt

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.5	Carbon.CG	Up:	4.	MacOS	Toolbox	Modules	Next:	4.7
Carbon.Cm

4.6	Carbon.CarbonEvt	--	Carbon
Event	Manager
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.5	Carbon.CG	Up:	4.	MacOS	Toolbox	Modules	Next:	4.7
Carbon.Cm

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.6	Carbon.CarbonEvt	Up:	4.	MacOS	Toolbox	Modules	Next:	4.8
Carbon.Ctl

4.7	Carbon.Cm	--	Component
Manager
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.6	Carbon.CarbonEvt	Up:	4.	MacOS	Toolbox	Modules	Next:	4.8
Carbon.Ctl

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.7	Carbon.Cm	Up:	4.	MacOS	Toolbox	Modules	Next:	4.9
Carbon.Dlg

4.8	Carbon.Ctl	--	Control	Manager
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.7	Carbon.Cm	Up:	4.	MacOS	Toolbox	Modules	Next:	4.9
Carbon.Dlg

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.8	Carbon.Ctl	Up:	4.	MacOS	Toolbox	Modules	Next:	4.10
Carbon.Evt

4.9	Carbon.Dlg	--	Dialog	Manager
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.8	Carbon.Ctl	Up:	4.	MacOS	Toolbox	Modules	Next:	4.10
Carbon.Evt

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.9	Carbon.Dlg	Up:	4.	MacOS	Toolbox	Modules	Next:	4.11
Carbon.Fm

4.10	Carbon.Evt	--	Event	Manager
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.9	Carbon.Dlg	Up:	4.	MacOS	Toolbox	Modules	Next:	4.11
Carbon.Fm

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.10	Carbon.Evt	Up:	4.	MacOS	Toolbox	Modules	Next:	4.12
Carbon.Folder

4.11	Carbon.Fm	--	Font	Manager
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.10	Carbon.Evt	Up:	4.	MacOS	Toolbox	Modules	Next:	4.12
Carbon.Folder

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.11	Carbon.Fm	Up:	4.	MacOS	Toolbox	Modules	Next:	4.13
Carbon.Help

4.12	Carbon.Folder	--	Folder
Manager
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.11	Carbon.Fm	Up:	4.	MacOS	Toolbox	Modules	Next:	4.13
Carbon.Help

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.12	Carbon.Folder	Up:	4.	MacOS	Toolbox	Modules	Next:	4.14
Carbon.List

4.13	Carbon.Help	--	Help	Manager
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.12	Carbon.Folder	Up:	4.	MacOS	Toolbox	Modules	Next:	4.14
Carbon.List

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.13	Carbon.Help	Up:	4.	MacOS	Toolbox	Modules	Next:	4.15
Carbon.Menu

4.14	Carbon.List	--	List	Manager
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.13	Carbon.Help	Up:	4.	MacOS	Toolbox	Modules	Next:	4.15
Carbon.Menu

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.14	Carbon.List	Up:	4.	MacOS	Toolbox	Modules	Next:	4.16
Carbon.Mlte

4.15	Carbon.Menu	--	Menu	Manager
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.14	Carbon.List	Up:	4.	MacOS	Toolbox	Modules	Next:	4.16
Carbon.Mlte

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.15	Carbon.Menu	Up:	4.	MacOS	Toolbox	Modules	Next:	4.17
Carbon.Qd

4.16	Carbon.Mlte	--	MultiLingual
Text	Editor
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.15	Carbon.Menu	Up:	4.	MacOS	Toolbox	Modules	Next:	4.17
Carbon.Qd

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.16	Carbon.Mlte	Up:	4.	MacOS	Toolbox	Modules	Next:	4.18
Carbon.Qdoffs

4.17	Carbon.Qd	--	QuickDraw
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.16	Carbon.Mlte	Up:	4.	MacOS	Toolbox	Modules	Next:	4.18
Carbon.Qdoffs

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.17	Carbon.Qd	Up:	4.	MacOS	Toolbox	Modules	Next:	4.19
Carbon.Qt

4.18	Carbon.Qdoffs	--	QuickDraw
Offscreen
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.17	Carbon.Qd	Up:	4.	MacOS	Toolbox	Modules	Next:	4.19
Carbon.Qt

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.18	Carbon.Qdoffs	Up:	4.	MacOS	Toolbox	Modules	Next:	4.20
Carbon.Res

4.19	Carbon.Qt	--	QuickTime
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.18	Carbon.Qdoffs	Up:	4.	MacOS	Toolbox	Modules	Next:	4.20
Carbon.Res

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.19	Carbon.Qt	Up:	4.	MacOS	Toolbox	Modules	Next:	4.21
Carbon.Scrap

4.20	Carbon.Res	--	Resource
Manager	and	Handles
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.19	Carbon.Qt	Up:	4.	MacOS	Toolbox	Modules	Next:	4.21
Carbon.Scrap

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.20	Carbon.Res	Up:	4.	MacOS	Toolbox	Modules	Next:	4.22
Carbon.Snd

4.21	Carbon.Scrap	--	Scrap
Manager
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.20	Carbon.Res	Up:	4.	MacOS	Toolbox	Modules	Next:	4.22
Carbon.Snd

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.21	Carbon.Scrap	Up:	4.	MacOS	Toolbox	Modules	Next:	4.23
Carbon.TE

4.22	Carbon.Snd	--	Sound	Manager
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.21	Carbon.Scrap	Up:	4.	MacOS	Toolbox	Modules	Next:	4.23
Carbon.TE

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.22	Carbon.Snd	Up:	4.	MacOS	Toolbox	Modules	Next:	4.24
Carbon.Win

4.23	Carbon.TE	--	TextEdit
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.22	Carbon.Snd	Up:	4.	MacOS	Toolbox	Modules	Next:	4.24
Carbon.Win

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.23	Carbon.TE	Up:	4.	MacOS	Toolbox	Modules	Next:	4.25
ColorPicker

4.24	Carbon.Win	--	Window
Manager
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	4.23	Carbon.TE	Up:	4.	MacOS	Toolbox	Modules	Next:	4.25
ColorPicker

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.24	Carbon.Win	Up:	4.	MacOS	Toolbox	Modules	Next:	5.
Undocumented	Modules

4.25	ColorPicker	--	Color	selection
dialog
Availability:	Macintosh.

The	ColorPicker	module	provides	access	to	the	standard	color	picker	dialog.

GetColor(prompt,	rgb)
Show	a	standard	color	selection	dialog	and	allow	the	user	to	select	a	color.
The	user	is	given	instruction	by	the	prompt	string,	and	the	default	color	is
set	to	rgb.	rgb	must	be	a	tuple	giving	the	red,	green,	and	blue	components
of	the	color.	GetColor()	returns	a	tuple	giving	the	user's	selected	color
and	a	flag	indicating	whether	they	accepted	the	selection	of	cancelled.

Macintosh	Library	Modules
Previous:	4.24	Carbon.Win	Up:	4.	MacOS	Toolbox	Modules	Next:	5.
Undocumented	Modules

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.25	ColorPicker	Up:	Macintosh	Library	Modules	Next:	5.1
applesingle

5.	Undocumented	Modules
The	modules	in	this	chapter	are	poorly	documented	(if	at	all).	If	you	wish	to
contribute	documentation	of	any	of	these	modules,	please	get	in	touch	with
docs@python.org.

applesingle 	 Rudimentary	decoder	for	AppleSingle	format	files.

buildtools 	 Helper	module	for	BuildApplet,	BuildApplication	andmacfreeze.

py_resource 	 Helper	to	create	'PYC~'	resources	for	compiledapplications.
cfmfile 	 Code	Fragment	Resource	module.
icopen 	 Internet	Config	replacement	for	open().
macerrors 	 Constant	definitions	for	many	Mac	OS	error	codes.
macresource 	 Locate	script	resources.
Nav 	 Interface	to	Navigation	Services.
mkcwproject 	 Create	CodeWarrior	projects.
nsremote 	 Wrapper	around	Netscape	OSA	modules.
PixMapWrapper 	 Wrapper	for	PixMap	objects.

preferences 	 Nice	application	preferences	manager	with	support	fordefaults.
pythonprefs 	 Specialized	preferences	manager	for	the	Python	interpreter.
quietconsole 	 Buffered,	non-visible	standard	output.

videoreader 	 Read	QuickTime	movies	frame	by	frame	for	furtherprocessing.
W 	 Widgets	for	the	Mac,	built	on	top	of	FrameWork.
waste 	 Interface	to	the	``WorldScript-Aware	Styled	Text	Engine.''

Macintosh	Library	Modules
Previous:	4.25	ColorPicker	Up:	Macintosh	Library	Modules	Next:	5.1
applesingle

mailto:docs@python.org

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.	Undocumented	Modules	Up:	5.	Undocumented	Modules	Next:	5.2
buildtools

5.1	applesingle	--	AppleSingle
decoder
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	5.	Undocumented	Modules	Up:	5.	Undocumented	Modules	Next:	5.2
buildtools

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.1	applesingle	Up:	5.	Undocumented	Modules	Next:	5.3
py_resource

5.2	buildtools	--	Helper	module	for
BuildApplet	and	Friends
Availability:	Macintosh.

Macintosh	Library	Modules
Previous:	5.1	applesingle	Up:	5.	Undocumented	Modules	Next:	5.3
py_resource

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2	buildtools	Up:	5.	Undocumented	Modules	Next:	5.4	cfmfile

5.3	py_resource	--	Resources	from
Python	code
Availability:	Macintosh.

This	module	is	primarily	used	as	a	help	module	for	BuildApplet	and
BuildApplication.	It	is	able	to	store	compiled	Python	code	as	'PYC	'
resources	in	a	file.

Macintosh	Library	Modules
Previous:	5.2	buildtools	Up:	5.	Undocumented	Modules	Next:	5.4	cfmfile

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3	py_resource	Up:	5.	Undocumented	Modules	Next:	5.5	icopen

5.4	cfmfile	--	Code	Fragment
Resource	module
Availability:	Macintosh.

cfmfile	is	a	module	that	understands	Code	Fragments	and	the	accompanying
``cfrg''	resources.	It	can	parse	them	and	merge	them,	and	is	used	by
BuildApplication	to	combine	all	plugin	modules	to	a	single	executable.

Macintosh	Library	Modules
Previous:	5.3	py_resource	Up:	5.	Undocumented	Modules	Next:	5.5	icopen

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.4	cfmfile	Up:	5.	Undocumented	Modules	Next:	5.6	macerrors

5.5	icopen	--	Internet	Config
replacement	for	open()
Availability:	Macintosh.

Importing	icopen	will	replace	the	builtin	open()	with	a	version	that	uses
Internet	Config	to	set	file	type	and	creator	for	new	files.

Macintosh	Library	Modules
Previous:	5.4	cfmfile	Up:	5.	Undocumented	Modules	Next:	5.6	macerrors

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.5	icopen	Up:	5.	Undocumented	Modules	Next:	5.7	macresource

5.6	macerrors	--	Mac	OS	Errors
Availability:	Macintosh.

macerrors	cotains	constant	definitions	for	many	Mac	OS	error	codes.

Macintosh	Library	Modules
Previous:	5.5	icopen	Up:	5.	Undocumented	Modules	Next:	5.7	macresource

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.6	macerrors	Up:	5.	Undocumented	Modules	Next:	5.8	Nav

5.7	macresource	--	Locate	script
resources
Availability:	Macintosh.

macresource	helps	scripts	finding	their	resources,	such	as	dialogs	and	menus,
without	requiring	special	case	code	for	when	the	script	is	run	under	MacPython,
as	a	MacPython	applet	or	under	OSX	Python.

Macintosh	Library	Modules
Previous:	5.6	macerrors	Up:	5.	Undocumented	Modules	Next:	5.8	Nav

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.7	macresource	Up:	5.	Undocumented	Modules	Next:	5.9
mkcwproject

5.8	Nav	--	NavServices	calls
Availability:	Macintosh.

A	low-level	interface	to	Navigation	Services.

Macintosh	Library	Modules
Previous:	5.7	macresource	Up:	5.	Undocumented	Modules	Next:	5.9
mkcwproject

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.8	Nav	Up:	5.	Undocumented	Modules	Next:	5.10	nsremote

5.9	mkcwproject	--	Create
CodeWarrior	projects
Availability:	Macintosh.

mkcwproject	creates	project	files	for	the	Metrowerks	CodeWarrior
development	environment.	It	is	a	helper	module	for	distutils	but	can	be
used	separately	for	more	control.

Macintosh	Library	Modules
Previous:	5.8	Nav	Up:	5.	Undocumented	Modules	Next:	5.10	nsremote

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.9	mkcwproject	Up:	5.	Undocumented	Modules	Next:	5.11
PixMapWrapper

5.10	nsremote	--	Wrapper	around
Netscape	OSA	modules
Availability:	Macintosh.

nsremote	is	a	wrapper	around	the	Netscape	OSA	modules	that	allows	you	to
easily	send	your	browser	to	a	given	URL.	A	related	module	that	may	be	of
interest	is	the	webbrowser	module,	documented	in	the	Python	Library
Reference.

Macintosh	Library	Modules
Previous:	5.9	mkcwproject	Up:	5.	Undocumented	Modules	Next:	5.11
PixMapWrapper

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.10	nsremote	Up:	5.	Undocumented	Modules	Next:	5.12
preferences

5.11	PixMapWrapper	--	Wrapper	for
PixMap	objects
Availability:	Macintosh.

PixMapWrapper	wraps	a	PixMap	object	with	a	Python	object	that	allows
access	to	the	fields	by	name.	It	also	has	methods	to	convert	to	and	from	PIL
images.

Macintosh	Library	Modules
Previous:	5.10	nsremote	Up:	5.	Undocumented	Modules	Next:	5.12
preferences

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.11	PixMapWrapper	Up:	5.	Undocumented	Modules	Next:	5.13
pythonprefs

5.12	preferences	--	Application
preferences	manager
Availability:	Macintosh.

The	preferences	module	allows	storage	of	user	preferences	in	the	system-
wide	preferences	folder,	with	defaults	coming	from	the	application	itself	and	the
possibility	to	override	preferences	for	specific	situations.

Macintosh	Library	Modules
Previous:	5.11	PixMapWrapper	Up:	5.	Undocumented	Modules	Next:	5.13
pythonprefs

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.12	preferences	Up:	5.	Undocumented	Modules	Next:	5.14
quietconsole

5.13	pythonprefs	--	Preferences
manager	for	Python
Availability:	Macintosh.

This	module	is	a	specialization	of	the	preferences	module	that	allows
reading	and	writing	of	the	preferences	for	the	Python	interpreter.

Macintosh	Library	Modules
Previous:	5.12	preferences	Up:	5.	Undocumented	Modules	Next:	5.14
quietconsole

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.13	pythonprefs	Up:	5.	Undocumented	Modules	Next:	5.15
videoreader

5.14	quietconsole	--	Non-visible
standard	output
Availability:	Macintosh.

quietconsole	allows	you	to	keep	stdio	output	in	a	buffer	without	displaying
it	(or	without	displaying	the	stdout	window	altogether,	if	set	with
EditPythonPrefs)	until	you	try	to	read	from	stdin	or	disable	the	buffering,	at
which	point	all	the	saved	output	is	sent	to	the	window.	Good	for	programs	with
graphical	user	interfaces	that	do	want	to	display	their	output	at	a	crash.

Macintosh	Library	Modules
Previous:	5.13	pythonprefs	Up:	5.	Undocumented	Modules	Next:	5.15
videoreader

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.14	quietconsole	Up:	5.	Undocumented	Modules	Next:	5.16	W

5.15	videoreader	--	Read
QuickTime	movies
Availability:	Macintosh.

videoreader	reads	and	decodes	QuickTime	movies	and	passes	a	stream	of
images	to	your	program.	It	also	provides	some	support	for	audio	tracks.

Macintosh	Library	Modules
Previous:	5.14	quietconsole	Up:	5.	Undocumented	Modules	Next:	5.16	W

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.15	videoreader	Up:	5.	Undocumented	Modules	Next:	5.17	waste

5.16	W	--	Widgets	built	on	FrameWork
Availability:	Macintosh.

The	W	widgets	are	used	extensively	in	the	IDE.

Macintosh	Library	Modules
Previous:	5.15	videoreader	Up:	5.	Undocumented	Modules	Next:	5.17	waste

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.16	W	Up:	5.	Undocumented	Modules	Next:	A.	History	and	License

5.17	waste	--	non-Apple	TextEdit
replacement
Availability:	Macintosh.

See	Also:

About	WASTE
Information	about	the	WASTE	widget	and	library,	including
documentation	and	downloads.

Macintosh	Library	Modules
Previous:	5.16	W	Up:	5.	Undocumented	Modules	Next:	A.	History	and	License

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.merzwaren.com/waste/

Previous:	5.17	waste	Up:	Macintosh	Library	Modules	Next:	A.1	History	of	the

A.	History	and	License

Subsections

A.1	History	of	the	software
A.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
A.3	Licenses	and	Acknowledgements	for	Incorporated	Software

A.3.1	Mersenne	Twister
A.3.2	Sockets
A.3.3	Floating	point	exception	control
A.3.4	MD5	message	digest	algorithm
A.3.5	Asynchronous	socket	services
A.3.6	Cookie	management
A.3.7	Profiling
A.3.8	Execution	tracing
A.3.9	UUencode	and	UUdecode	functions
A.3.10	XML	Remote	Procedure	Calls

Macintosh	Library	Modules
Previous:	5.17	waste	Up:	Macintosh	Library	Modules	Next:	A.1	History	of	the

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.	History	and	License	Up:	A.	History	and	License	Next:	A.2	Terms
and	conditions

A.1	History	of	the	software
Python	was	created	in	the	early	1990s	by	Guido	van	Rossum	at	Stichting
Mathematisch	Centrum	(CWI,	see	http://www.cwi.nl/)	in	the	Netherlands	as	a
successor	of	a	language	called	ABC.	Guido	remains	Python's	principal	author,
although	it	includes	many	contributions	from	others.

In	1995,	Guido	continued	his	work	on	Python	at	the	Corporation	for	National
Research	Initiatives	(CNRI,	see	http://www.cnri.reston.va.us/)	in	Reston,
Virginia	where	he	released	several	versions	of	the	software.

In	May	2000,	Guido	and	the	Python	core	development	team	moved	to
BeOpen.com	to	form	the	BeOpen	PythonLabs	team.	In	October	of	the	same
year,	the	PythonLabs	team	moved	to	Digital	Creations	(now	Zope	Corporation;
see	http://www.zope.com/).	In	2001,	the	Python	Software	Foundation	(PSF,	see
http://www.python.org/psf/)	was	formed,	a	non-profit	organization	created
specifically	to	own	Python-related	Intellectual	Property.	Zope	Corporation	is	a
sponsoring	member	of	the	PSF.

All	Python	releases	are	Open	Source	(see	http://www.opensource.org/	for	the
Open	Source	Definition).	Historically,	most,	but	not	all,	Python	releases	have
also	been	GPL-compatible;	the	table	below	summarizes	the	various	releases.

Release Derived
from

Year Owner GPL
compatible?

0.9.0	thru
1.2

n/a 1991-
1995

CWI yes

1.3	thru
1.5.2

1.2 1995-
1999

CNRI yes

1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-

2003
PSF yes

2.3 2.2.2 2002-
2003

PSF yes

2.3.1 2.3 2002-
2003

PSF yes

2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes

Note:	GPL-compatible	doesn't	mean	that	we're	distributing	Python	under	the
GPL.	All	Python	licenses,	unlike	the	GPL,	let	you	distribute	a	modified	version
without	making	your	changes	open	source.	The	GPL-compatible	licenses	make
it	possible	to	combine	Python	with	other	software	that	is	released	under	the
GPL;	the	others	don't.

Thanks	to	the	many	outside	volunteers	who	have	worked	under	Guido's	direction
to	make	these	releases	possible.

Macintosh	Library	Modules
Previous:	A.	History	and	License	Up:	A.	History	and	License	Next:	A.2	Terms
and	conditions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.1	History	of	the	Up:	A.	History	and	License	Next:	A.3	Licenses
and	Acknowledgements

A.2	Terms	and	conditions	for
accessing	or	otherwise	using
Python

PSF	LICENSE	AGREEMENT	FOR	PYTHON	2.4

1.	 This	LICENSE	AGREEMENT	is	between	the	Python	Software	Foundation
(``PSF''),	and	the	Individual	or	Organization	(``Licensee'')	accessing	and
otherwise	using	Python	2.4	software	in	source	or	binary	form	and	its
associated	documentation.

2.	 Subject	to	the	terms	and	conditions	of	this	License	Agreement,	PSF	hereby
grants	Licensee	a	nonexclusive,	royalty-free,	world-wide	license	to
reproduce,	analyze,	test,	perform	and/or	display	publicly,	prepare	derivative
works,	distribute,	and	otherwise	use	Python	2.4	alone	or	in	any	derivative
version,	provided,	however,	that	PSF's	License	Agreement	and	PSF's	notice
of	copyright,	i.e.,	``Copyright	©	2001-2004	Python	Software	Foundation;
All	Rights	Reserved''	are	retained	in	Python	2.4	alone	or	in	any	derivative
version	prepared	by	Licensee.

3.	 In	the	event	Licensee	prepares	a	derivative	work	that	is	based	on	or
incorporates	Python	2.4	or	any	part	thereof,	and	wants	to	make	the
derivative	work	available	to	others	as	provided	herein,	then	Licensee
hereby	agrees	to	include	in	any	such	work	a	brief	summary	of	the	changes
made	to	Python	2.4.

4.	 PSF	is	making	Python	2.4	available	to	Licensee	on	an	``AS	IS''	basis.	PSF
MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,	EXPRESS	OR
IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT	LIMITATION,	PSF
MAKES	NO	AND	DISCLAIMS	ANY	REPRESENTATION	OR
WARRANTY	OF	MERCHANTABILITY	OR	FITNESS	FOR	ANY
PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF	PYTHON	2.4	WILL
NOT	INFRINGE	ANY	THIRD	PARTY	RIGHTS.

5.	 PSF	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER	USERS

OF	PYTHON	2.4	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF
MODIFYING,	DISTRIBUTING,	OR	OTHERWISE	USING	PYTHON	2.4,
OR	ANY	DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE
POSSIBILITY	THEREOF.

6.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

7.	 Nothing	in	this	License	Agreement	shall	be	deemed	to	create	any
relationship	of	agency,	partnership,	or	joint	venture	between	PSF	and
Licensee.	This	License	Agreement	does	not	grant	permission	to	use	PSF
trademarks	or	trade	name	in	a	trademark	sense	to	endorse	or	promote
products	or	services	of	Licensee,	or	any	third	party.

8.	 By	copying,	installing	or	otherwise	using	Python	2.4,	Licensee	agrees	to	be
bound	by	the	terms	and	conditions	of	this	License	Agreement.

BEOPEN.COM	LICENSE	AGREEMENT	FOR	PYTHON	2.0

BEOPEN	PYTHON	OPEN	SOURCE	LICENSE	AGREEMENT	VERSION
1

1.	 This	LICENSE	AGREEMENT	is	between	BeOpen.com	(``BeOpen''),
having	an	office	at	160	Saratoga	Avenue,	Santa	Clara,	CA	95051,	and	the
Individual	or	Organization	(``Licensee'')	accessing	and	otherwise	using	this
software	in	source	or	binary	form	and	its	associated	documentation	(``the
Software'').

2.	 Subject	to	the	terms	and	conditions	of	this	BeOpen	Python	License
Agreement,	BeOpen	hereby	grants	Licensee	a	non-exclusive,	royalty-free,
world-wide	license	to	reproduce,	analyze,	test,	perform	and/or	display
publicly,	prepare	derivative	works,	distribute,	and	otherwise	use	the
Software	alone	or	in	any	derivative	version,	provided,	however,	that	the
BeOpen	Python	License	is	retained	in	the	Software,	alone	or	in	any
derivative	version	prepared	by	Licensee.

3.	 BeOpen	is	making	the	Software	available	to	Licensee	on	an	``AS	IS''	basis.
BEOPEN	MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,
EXPRESS	OR	IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT

LIMITATION,	BEOPEN	MAKES	NO	AND	DISCLAIMS	ANY
REPRESENTATION	OR	WARRANTY	OF	MERCHANTABILITY	OR
FITNESS	FOR	ANY	PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF
THE	SOFTWARE	WILL	NOT	INFRINGE	ANY	THIRD	PARTY
RIGHTS.

4.	 BEOPEN	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER
USERS	OF	THE	SOFTWARE	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF	USING,
MODIFYING	OR	DISTRIBUTING	THE	SOFTWARE,	OR	ANY
DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY
THEREOF.

5.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

6.	 This	License	Agreement	shall	be	governed	by	and	interpreted	in	all	respects
by	the	law	of	the	State	of	California,	excluding	conflict	of	law	provisions.
Nothing	in	this	License	Agreement	shall	be	deemed	to	create	any
relationship	of	agency,	partnership,	or	joint	venture	between	BeOpen	and
Licensee.	This	License	Agreement	does	not	grant	permission	to	use
BeOpen	trademarks	or	trade	names	in	a	trademark	sense	to	endorse	or
promote	products	or	services	of	Licensee,	or	any	third	party.	As	an
exception,	the	``BeOpen	Python''	logos	available	at
http://www.pythonlabs.com/logos.html	may	be	used	according	to	the
permissions	granted	on	that	web	page.

7.	 By	copying,	installing	or	otherwise	using	the	software,	Licensee	agrees	to
be	bound	by	the	terms	and	conditions	of	this	License	Agreement.

CNRI	LICENSE	AGREEMENT	FOR	PYTHON	1.6.1

1.	 This	LICENSE	AGREEMENT	is	between	the	Corporation	for	National
Research	Initiatives,	having	an	office	at	1895	Preston	White	Drive,	Reston,
VA	20191	(``CNRI''),	and	the	Individual	or	Organization	(``Licensee'')
accessing	and	otherwise	using	Python	1.6.1	software	in	source	or	binary
form	and	its	associated	documentation.

2.	 Subject	to	the	terms	and	conditions	of	this	License	Agreement,	CNRI
hereby	grants	Licensee	a	nonexclusive,	royalty-free,	world-wide	license	to

reproduce,	analyze,	test,	perform	and/or	display	publicly,	prepare	derivative
works,	distribute,	and	otherwise	use	Python	1.6.1	alone	or	in	any	derivative
version,	provided,	however,	that	CNRI's	License	Agreement	and	CNRI's
notice	of	copyright,	i.e.,	``Copyright	©	1995-2001	Corporation	for	National
Research	Initiatives;	All	Rights	Reserved''	are	retained	in	Python	1.6.1
alone	or	in	any	derivative	version	prepared	by	Licensee.	Alternately,	in	lieu
of	CNRI's	License	Agreement,	Licensee	may	substitute	the	following	text
(omitting	the	quotes):	``Python	1.6.1	is	made	available	subject	to	the	terms
and	conditions	in	CNRI's	License	Agreement.	This	Agreement	together
with	Python	1.6.1	may	be	located	on	the	Internet	using	the	following
unique,	persistent	identifier	(known	as	a	handle):	1895.22/1013.	This
Agreement	may	also	be	obtained	from	a	proxy	server	on	the	Internet	using
the	following	URL:	http://hdl.handle.net/1895.22/1013.''

3.	 In	the	event	Licensee	prepares	a	derivative	work	that	is	based	on	or
incorporates	Python	1.6.1	or	any	part	thereof,	and	wants	to	make	the
derivative	work	available	to	others	as	provided	herein,	then	Licensee
hereby	agrees	to	include	in	any	such	work	a	brief	summary	of	the	changes
made	to	Python	1.6.1.

4.	 CNRI	is	making	Python	1.6.1	available	to	Licensee	on	an	``AS	IS''	basis.
CNRI	MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,	EXPRESS
OR	IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT	LIMITATION,	CNRI
MAKES	NO	AND	DISCLAIMS	ANY	REPRESENTATION	OR
WARRANTY	OF	MERCHANTABILITY	OR	FITNESS	FOR	ANY
PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF	PYTHON	1.6.1	WILL
NOT	INFRINGE	ANY	THIRD	PARTY	RIGHTS.

5.	 CNRI	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER
USERS	OF	PYTHON	1.6.1	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF
MODIFYING,	DISTRIBUTING,	OR	OTHERWISE	USING	PYTHON
1.6.1,	OR	ANY	DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE
POSSIBILITY	THEREOF.

6.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

7.	 This	License	Agreement	shall	be	governed	by	the	federal	intellectual

http://hdl.handle.net/1895.22/1013

property	law	of	the	United	States,	including	without	limitation	the	federal
copyright	law,	and,	to	the	extent	such	U.S.	federal	law	does	not	apply,	by
the	law	of	the	Commonwealth	of	Virginia,	excluding	Virginia's	conflict	of
law	provisions.	Notwithstanding	the	foregoing,	with	regard	to	derivative
works	based	on	Python	1.6.1	that	incorporate	non-separable	material	that
was	previously	distributed	under	the	GNU	General	Public	License	(GPL),
the	law	of	the	Commonwealth	of	Virginia	shall	govern	this	License
Agreement	only	as	to	issues	arising	under	or	with	respect	to	Paragraphs	4,
5,	and	7	of	this	License	Agreement.	Nothing	in	this	License	Agreement
shall	be	deemed	to	create	any	relationship	of	agency,	partnership,	or	joint
venture	between	CNRI	and	Licensee.	This	License	Agreement	does	not
grant	permission	to	use	CNRI	trademarks	or	trade	name	in	a	trademark
sense	to	endorse	or	promote	products	or	services	of	Licensee,	or	any	third
party.

8.	 By	clicking	on	the	``ACCEPT''	button	where	indicated,	or	by	copying,
installing	or	otherwise	using	Python	1.6.1,	Licensee	agrees	to	be	bound	by
the	terms	and	conditions	of	this	License	Agreement.

ACCEPT

CWI	LICENSE	AGREEMENT	FOR	PYTHON	0.9.0	THROUGH	1.2

Copyright	©	1991	-	1995,	Stichting	Mathematisch	Centrum	Amsterdam,	The
Netherlands.	All	rights	reserved.

Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its
documentation	for	any	purpose	and	without	fee	is	hereby	granted,	provided	that
the	above	copyright	notice	appear	in	all	copies	and	that	both	that	copyright
notice	and	this	permission	notice	appear	in	supporting	documentation,	and	that
the	name	of	Stichting	Mathematisch	Centrum	or	CWI	not	be	used	in	advertising
or	publicity	pertaining	to	distribution	of	the	software	without	specific,	written
prior	permission.

STICHTING	MATHEMATISCH	CENTRUM	DISCLAIMS	ALL
WARRANTIES	WITH	REGARD	TO	THIS	SOFTWARE,	INCLUDING	ALL
IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS,	IN	NO
EVENT	SHALL	STICHTING	MATHEMATISCH	CENTRUM	BE	LIABLE
FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR

ANY	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,
DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF	CONTRACT,
NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN
CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS
SOFTWARE.

Macintosh	Library	Modules
Previous:	A.1	History	of	the	Up:	A.	History	and	License	Next:	A.3	Licenses
and	Acknowledgements

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.2	Terms	and	conditions	Up:	A.	History	and	License	Next:	A.3.1
Mersenne	Twister

A.3	Licenses	and
Acknowledgements	for	Incorporated
Software
This	section	is	an	incomplete,	but	growing	list	of	licenses	and
acknowledgements	for	third-party	software	incorporated	in	the	Python
distribution.

Subsections

A.3.1	Mersenne	Twister
A.3.2	Sockets
A.3.3	Floating	point	exception	control
A.3.4	MD5	message	digest	algorithm
A.3.5	Asynchronous	socket	services
A.3.6	Cookie	management
A.3.7	Profiling
A.3.8	Execution	tracing
A.3.9	UUencode	and	UUdecode	functions
A.3.10	XML	Remote	Procedure	Calls

Macintosh	Library	Modules
Previous:	A.2	Terms	and	conditions	Up:	A.	History	and	License	Next:	A.3.1
Mersenne	Twister

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3	Licenses	and	Acknowledgements	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.2	Sockets

A.3.1	Mersenne	Twister
The	_random	module	includes	code	based	on	a	download	from
http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html.	The
following	are	the	verbatim	comments	from	the	original	code:

A	C-program	for	MT19937,	with	initialization	improved	2002/1/26.

Coded	by	Takuji	Nishimura	and	Makoto	Matsumoto.

Before	using,	initialize	the	state	by	using	init_genrand(seed)

or	init_by_array(init_key,	key_length).

Copyright	(C)	1997	-	2002,	Makoto	Matsumoto	and	Takuji	Nishimura,

All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

	1.	Redistributions	of	source	code	must	retain	the	above	copyright

				notice,	this	list	of	conditions	and	the	following	disclaimer.

	2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

				notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

				documentation	and/or	other	materials	provided	with	the	distribution.

	3.	The	names	of	its	contributors	may	not	be	used	to	endorse	or	promote

				products	derived	from	this	software	without	specific	prior	written

				permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND	CONTRIBUTORS

"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT

LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR

A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	COPYRIGHT	OWNER	OR

CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,

EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,

PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR

PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF

LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING

NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS

SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Any	feedback	is	very	welcome.

http://www.math.keio.ac.jp/matumoto/emt.html

email:	matumoto@math.keio.ac.jp

http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html

Macintosh	Library	Modules
Previous:	A.3	Licenses	and	Acknowledgements	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.2	Sockets

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.1	Mersenne	Twister	Up:	A.3	Licenses	and	Acknowledgements
Next:	A.3.3	Floating	point	exception

A.3.2	Sockets
The	socket	module	uses	the	functions,	getaddrinfo,	and	getnameinfo,
which	are	coded	in	separate	source	files	from	the	WIDE	Project,
http://www.wide.ad.jp/about/index.html.

						

Copyright	(C)	1995,	1996,	1997,	and	1998	WIDE	Project.

All	rights	reserved.

	

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

1.	Redistributions	of	source	code	must	retain	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer.

2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

			documentation	and/or	other	materials	provided	with	the	distribution.

3.	Neither	the	name	of	the	project	nor	the	names	of	its	contributors

			may	be	used	to	endorse	or	promote	products	derived	from	this	software

			without	specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	PROJECT	AND	CONTRIBUTORS	``AS	IS''	AND

GAI_ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	PROJECT	OR	CONTRIBUTORS	BE	LIABLE

FOR	GAI_ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL

DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS

OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

HOWEVER	CAUSED	AND	ON	GAI_ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT

LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	GAI_ANY	WAY

OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF

SUCH	DAMAGE.

Macintosh	Library	Modules
Previous:	A.3.1	Mersenne	Twister	Up:	A.3	Licenses	and	Acknowledgements
Next:	A.3.3	Floating	point	exception

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.wide.ad.jp/about/index.html

Previous:	A.3.2	Sockets	Up:	A.3	Licenses	and	Acknowledgements	Next:	A.3.4
MD5	message	digest

A.3.3	Floating	point	exception	control
The	source	for	the	fpectl	module	includes	the	following	notice:

				/																							Copyright	(c)	1996.																											\	

			|										The	Regents	of	the	University	of	California.																	|

			|																								All	rights	reserved.																											|

			|																																																																							|

			|			Permission	to	use,	copy,	modify,	and	distribute	this	software	for			|

			|			any	purpose	without	fee	is	hereby	granted,	provided	that	this	en-			|

			|			tire	notice	is	included	in	all	copies	of	any	software	which	is	or			|

			|			includes		a		copy		or		modification		of		this	software	and	in	all			|

			|			copies	of	the	supporting	documentation	for	such	software.											|

			|																																																																							|

			|			This		work	was	produced	at	the	University	of	California,	Lawrence			|

			|			Livermore	National	Laboratory	under		contract		no.		W-7405-ENG-48			|

			|			between		the		U.S.		Department		of		Energy	and	The	Regents	of	the			|

			|			University	of	California	for	the	operation	of	UC	LLNL.														|

			|																																																																							|

			|																														DISCLAIMER																															|

			|																																																																							|

			|			This		software	was	prepared	as	an	account	of	work	sponsored	by	an			|

			|			agency	of	the	United	States	Government.	Neither	the	United	States			|

			|			Government		nor	the	University	of	California	nor	any	of	their	em-			|

			|			ployees,	makes	any	warranty,	express	or	implied,	or		assumes		any			|

			|			liability		or		responsibility		for	the	accuracy,	completeness,	or			|

			|			usefulness	of	any	information,		apparatus,		product,		or		process			|

			|			disclosed,			or		represents		that		its		use		would		not		infringe			|

			|			privately-owned	rights.	Reference	herein	to	any	specific		commer-			|

			|			cial		products,		process,		or		service		by	trade	name,	trademark,			|

			|			manufacturer,	or	otherwise,	does	not		necessarily		constitute		or			|

			|			imply		its	endorsement,	recommendation,	or	favoring	by	the	United			|

			|			States	Government	or	the	University	of	California.	The	views		and			|

			|			opinions		of	authors	expressed	herein	do	not	necessarily	state	or			|

			|			reflect	those	of	the	United	States	Government	or		the		University			|

			|			of		California,		and	shall	not	be	used	for	advertising	or	product			|

				\		endorsement	purposes.																																														/	

Macintosh	Library	Modules
Previous:	A.3.2	Sockets	Up:	A.3	Licenses	and	Acknowledgements	Next:	A.3.4
MD5	message	digest

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.3	Floating	point	exception	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.5	Asynchronous	socket	services

A.3.4	MD5	message	digest	algorithm
The	source	code	for	the	md5	module	contains	the	following	notice:

Copyright	(C)	1991-2,	RSA	Data	Security,	Inc.	Created	1991.	All

rights	reserved.

License	to	copy	and	use	this	software	is	granted	provided	that	it

is	identified	as	the	"RSA	Data	Security,	Inc.	MD5	Message-Digest

Algorithm"	in	all	material	mentioning	or	referencing	this	software

or	this	function.

License	is	also	granted	to	make	and	use	derivative	works	provided

that	such	works	are	identified	as	"derived	from	the	RSA	Data

Security,	Inc.	MD5	Message-Digest	Algorithm"	in	all	material

mentioning	or	referencing	the	derived	work.

RSA	Data	Security,	Inc.	makes	no	representations	concerning	either

the	merchantability	of	this	software	or	the	suitability	of	this

software	for	any	particular	purpose.	It	is	provided	"as	is"

without	express	or	implied	warranty	of	any	kind.

These	notices	must	be	retained	in	any	copies	of	any	part	of	this

documentation	and/or	software.

Macintosh	Library	Modules
Previous:	A.3.3	Floating	point	exception	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.5	Asynchronous	socket	services

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.4	MD5	message	digest	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.6	Cookie	management

A.3.5	Asynchronous	socket	services
The	asynchat	and	asyncore	modules	contain	the	following	notice:

						

	Copyright	1996	by	Sam	Rushing

																									All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and

	its	documentation	for	any	purpose	and	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appear	in	all

	copies	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of	Sam

	Rushing	not	be	used	in	advertising	or	publicity	pertaining	to

	distribution	of	the	software	without	specific,	written	prior

	permission.

	SAM	RUSHING	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS	SOFTWARE,

	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS,	IN

	NO	EVENT	SHALL	SAM	RUSHING	BE	LIABLE	FOR	ANY	SPECIAL,	INDIRECT	OR

	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS

	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF	CONTRACT,

	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN

	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

Macintosh	Library	Modules
Previous:	A.3.4	MD5	message	digest	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.6	Cookie	management

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.5	Asynchronous	socket	services	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.7	Profiling

A.3.6	Cookie	management
The	Cookie	module	contains	the	following	notice:

	Copyright	2000	by	Timothy	O'Malley	<timo@alum.mit.edu>

																All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software

	and	its	documentation	for	any	purpose	and	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appear	in	all

	copies	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of

	Timothy	O'Malley		not	be	used	in	advertising	or	publicity

	pertaining	to	distribution	of	the	software	without	specific,	written

	prior	permission.

	Timothy	O'Malley	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS

	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY

	AND	FITNESS,	IN	NO	EVENT	SHALL	Timothy	O'Malley	BE	LIABLE	FOR

	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES

	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,

	WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS

	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR

	PERFORMANCE	OF	THIS	SOFTWARE.

Macintosh	Library	Modules
Previous:	A.3.5	Asynchronous	socket	services	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.7	Profiling

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.6	Cookie	management	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.8	Execution	tracing

A.3.7	Profiling
The	profile	and	pstats	modules	contain	the	following	notice:

	Copyright	1994,	by	InfoSeek	Corporation,	all	rights	reserved.

	Written	by	James	Roskind

	Permission	to	use,	copy,	modify,	and	distribute	this	Python	software

	and	its	associated	documentation	for	any	purpose	(subject	to	the

	restriction	in	the	following	sentence)	without	fee	is	hereby	granted,

	provided	that	the	above	copyright	notice	appears	in	all	copies,	and

	that	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	InfoSeek	not	be	used	in

	advertising	or	publicity	pertaining	to	distribution	of	the	software

	without	specific,	written	prior	permission.		This	permission	is

	explicitly	restricted	to	the	copying	and	modification	of	the	software

	to	remain	in	Python,	compiled	Python,	or	other	languages	(such	as	C)

	wherein	the	modified	or	derived	code	is	exclusively	imported	into	a

	Python	module.

	INFOSEEK	CORPORATION	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS

	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND

	FITNESS.	IN	NO	EVENT	SHALL	INFOSEEK	CORPORATION	BE	LIABLE	FOR	ANY

	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES	WHATSOEVER

	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF

	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN

	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

Macintosh	Library	Modules
Previous:	A.3.6	Cookie	management	Up:	A.3	Licenses	and
Acknowledgements	Next:	A.3.8	Execution	tracing

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.7	Profiling	Up:	A.3	Licenses	and	Acknowledgements	Next:	A.3.9
UUencode	and	UUdecode

A.3.8	Execution	tracing
The	trace	module	contains	the	following	notice:

	portions	copyright	2001,	Autonomous	Zones	Industries,	Inc.,	all	rights...

	err...		reserved	and	offered	to	the	public	under	the	terms	of	the

	Python	2.2	license.

	Author:	Zooko	O'Whielacronx

	http://zooko.com/

	mailto:zooko@zooko.com

	Copyright	2000,	Mojam	Media,	Inc.,	all	rights	reserved.

	Author:	Skip	Montanaro

	Copyright	1999,	Bioreason,	Inc.,	all	rights	reserved.

	Author:	Andrew	Dalke

	Copyright	1995-1997,	Automatrix,	Inc.,	all	rights	reserved.

	Author:	Skip	Montanaro

	Copyright	1991-1995,	Stichting	Mathematisch	Centrum,	all	rights	reserved.

	Permission	to	use,	copy,	modify,	and	distribute	this	Python	software	and

	its	associated	documentation	for	any	purpose	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appears	in	all	copies,

	and	that	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	neither	Automatrix,

	Bioreason	or	Mojam	Media	be	used	in	advertising	or	publicity	pertaining	to

	distribution	of	the	software	without	specific,	written	prior	permission.

Macintosh	Library	Modules
Previous:	A.3.7	Profiling	Up:	A.3	Licenses	and	Acknowledgements	Next:	A.3.9
UUencode	and	UUdecode

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.8	Execution	tracing	Up:	A.3	Licenses	and	Acknowledgements
Next:	A.3.10	XML	Remote	Procedure

A.3.9	UUencode	and	UUdecode	functions
The	uu	module	contains	the	following	notice:

	Copyright	1994	by	Lance	Ellinghouse

	Cathedral	City,	California	Republic,	United	States	of	America.

																								All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its

	documentation	for	any	purpose	and	without	fee	is	hereby	granted,

	provided	that	the	above	copyright	notice	appear	in	all	copies	and	that

	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	Lance	Ellinghouse

	not	be	used	in	advertising	or	publicity	pertaining	to	distribution

	of	the	software	without	specific,	written	prior	permission.

	LANCE	ELLINGHOUSE	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO

	THIS	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND

	FITNESS,	IN	NO	EVENT	SHALL	LANCE	ELLINGHOUSE	CENTRUM	BE	LIABLE

	FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES

	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN

	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT

	OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

	Modified	by	Jack	Jansen,	CWI,	July	1995:

	-	Use	binascii	module	to	do	the	actual	line-by-line	conversion

			between	ascii	and	binary.	This	results	in	a	1000-fold	speedup.	The	C

			version	is	still	5	times	faster,	though.

	-	Arguments	more	compliant	with	python	standard

Macintosh	Library	Modules
Previous:	A.3.8	Execution	tracing	Up:	A.3	Licenses	and	Acknowledgements
Next:	A.3.10	XML	Remote	Procedure

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.9	UUencode	and	UUdecode	Up:	A.3	Licenses	and
Acknowledgements	Next:	Module	Index

A.3.10	XML	Remote	Procedure	Calls
The	xmlrpclib	module	contains	the	following	notice:

					The	XML-RPC	client	interface	is

	Copyright	(c)	1999-2002	by	Secret	Labs	AB

	Copyright	(c)	1999-2002	by	Fredrik	Lundh

	By	obtaining,	using,	and/or	copying	this	software	and/or	its

	associated	documentation,	you	agree	that	you	have	read,	understood,

	and	will	comply	with	the	following	terms	and	conditions:

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and

	its	associated	documentation	for	any	purpose	and	without	fee	is

	hereby	granted,	provided	that	the	above	copyright	notice	appears	in

	all	copies,	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of

	Secret	Labs	AB	or	the	author	not	be	used	in	advertising	or	publicity

	pertaining	to	distribution	of	the	software	without	specific,	written

	prior	permission.

	SECRET	LABS	AB	AND	THE	AUTHOR	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD

	TO	THIS	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANT-

	ABILITY	AND	FITNESS.		IN	NO	EVENT	SHALL	SECRET	LABS	AB	OR	THE	AUTHOR

	BE	LIABLE	FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY

	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,

	WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS

	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE

	OF	THIS	SOFTWARE.

Macintosh	Library	Modules
Previous:	A.3.9	UUencode	and	UUdecode	Up:	A.3	Licenses	and
Acknowledgements	Next:	Module	Index

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Module	Index	Up:	Macintosh	Library	Modules	Next:	About	this
document	...

Index

_	|	a	|	b	|	c	|	d	|	e	|	f	|	g	|	h	|	i	|	k	|	l	|	m	|	n	|	o	|	p	|	q	|	r	|	s	|	t	|	u	|	v	|	w

_	(underscore)

_quit()	(Application	method) _start()	(TalkTo	method)

A

aepack	(standard	module)
AEServer	(class	in	MiniAEFrame)
AEText	(class	in	aetypes)
aetools	(standard	module)
aetypes	(standard	module)
Alias	Manager,	Macintosh
AppleEvents,	[Link]
applesingle	(standard	module)
Application()	(in	module	FrameWork)
as_pathname()	(FSSpec	method)

as_tuple()	(FSSpec	method)
AskFileForOpen()	(in	module
EasyDialogs)
AskFileForSave()	(in	module
EasyDialogs)
AskFolder()	(in	module	EasyDialogs)
AskPassword()	(in	module
EasyDialogs)
AskString()	(in	module	EasyDialogs)
AskYesNoCancel()	(in	module
EasyDialogs)
asyncevents()	(Application	method)
autoGIL	(extension	module)
AutoGILError

B

Boolean	(class	in	aetypes)
BUFSIZ	(in	module	macostools) buildtools	(standard	module)

C

callback()	(AEServer	method)
Carbon.AE	(standard	module)
Carbon.AH	(standard	module)
Carbon.App	(standard	module)
Carbon.CaronEvt	(standard	module)
Carbon.CF	(standard	module)
Carbon.CG	(standard	module)
Carbon.Cm	(standard	module)
Carbon.Ctl	(standard	module)
Carbon.Dlg	(standard	module)
Carbon.Evt	(standard	module)
Carbon.Fm	(standard	module)
Carbon.Folder	(standard	module)
Carbon.Help	(standard	module)
Carbon.List	(standard	module)
Carbon.Menu	(standard	module)
Carbon.Mlte	(standard	module)
Carbon.Qd	(built-in	module)

Carbon.Qdoffs	(built-in	module)
Carbon.Qt	(standard	module)
Carbon.Res	(standard	module)
Carbon.Scrap	(standard	module)
Carbon.Snd	(standard	module)
Carbon.TE	(standard	module)
Carbon.Win	(standard	module)
cfmfile	(standard	module)
close()	(Window	method)
ColorPicker	(extension	module)
Comparison	(class	in	aetypes)
ComponentItem	(class	in	aetypes)
copy()	(in	module	findertools)
copy()	(in	module	macostools)
copytree()	(in	module	macostools)
Creator	(FInfo	attribute)
curval	(ProgressBar	attribute)

D

data	(Alias	attribute)
data	(FSSpec	attribute)
DebugStr()	(in	module	MacOS)
DialogWindow()	(in	module
FrameWork)
distutils	(module)
do_activate()	(IC	method)
do_activate()	(ScrolledWindow
method)
do_char()	(Application	method)

do_contentclick()	(Window	method)
do_controlhit()	(ControlsWindow
method)
do_controlhit()	(ScrolledWindow
method)
do_dialogevent()	(Application	method)
do_itemhit()	(DialogWindow	method)
do_postresize()	(ScrolledWindow
method)
do_postresize()	(Window	method)
do_update()	(Window	method)

E

EasyDialogs	(standard	module)
Enum	(class	in	aetypes)
enumsubst()	(in	module	aetools)

environment	variables
PYTHONPATH

Error
error

F

FindApplication()	(in	module	macfs)
findertools	(standard	module)
FindFolder()	(in	module	macfs)
FInfo()	(in	module	macfs)

Flags	(FInfo	attribute)
Fldr	(FInfo	attribute)
FrameWork	(standard	module),	[Link]
FSSpec()	(in	module	macfs)

G

gensuitemodule	(standard	module)
getabouttext()	(Application	method)
GetArgv()	(in	module	EasyDialogs)
GetColor()	(in	module	ColorPicker)
GetCreatorAndType()	(in	module
MacOS)
GetCreatorType()	(FSSpec	method)
GetDates()	(FSSpec	method)

GetDirectory()	(in	module	macfs)
GetErrorString()	(in	module	MacOS)
GetFInfo()	(FSSpec	method)
GetInfo()	(Alias	method)
getscrollbarvalues()	(ScrolledWindow
method)
GetTicks()	(in	module	MacOS)

H

HandleEvent()	(in	module	MacOS)

I

ic	(built-in	module)
IC	(class	in	ic)
icglue	(built-in	module)
icopen	(standard	module)
idle()	(Application	method)
inc()	(ProgressBar	method)
InsertionLoc	(class	in	aetypes)

installaehandler()	(AEServer	method)
installAutoGIL()	(in	module	autoGIL)
Internet	Config
IntlText	(class	in	aetypes)
IntlWritingCode	(class	in	aetypes)
is_scriptable()	(in	module
gensuitemodule)

K

keysubst()	(in	module	aetools) Keyword	(class	in	aetypes)

L

label()	(ProgressBar	method)
launch()	(in	module	findertools)
launchurl()	(IC	method)
launchurl()	(in	module	ic)

linkmodel	(in	module	MacOS)
Location	(FInfo	attribute)
Logical	(class	in	aetypes)

M

mac	(built-in	module)
macerrors	(standard	module),	[Link]
macfs	(standard	module)
Macintosh	Alias	Manager
MacOS	(built-in	module)
macostools	(standard	module)
macpath	(standard	module)
macresource	(standard	module)
mainloop()	(Application	method)
makeusermenus()	(Application	method)
mapfile()	(IC	method)
mapfile()	(in	module	ic)

maptypecreator()	(IC	method)
maptypecreator()	(in	module	ic)
maxval	(ProgressBar	attribute)
Menu()	(in	module	FrameWork)
MenuBar()	(in	module	FrameWork)
MenuItem()	(in	module	FrameWork)
Message()	(in	module	EasyDialogs)
MiniAEFrame	(standard	module)
MiniApplication	(class	in
MiniAEFrame)
mkalias()	(in	module	macostools)
mkcwproject	(standard	module)
move()	(in	module	findertools)

N

Nav	(standard	module)
Navigation	Services
NewAlias()	(FSSpec	method)
NewAliasMinimal()	(FSSpec	method)

NewAliasMinimalFromFullPath()	(in
module	macfs)
NProperty	(class	in	aetypes)
nsremote	(standard	module)

O

ObjectSpecifier	(class	in	aetypes)
open()	(DialogWindow	method)
open()	(Window	method)
Open	Scripting	Architecture

openrf()	(in	module	MacOS)
Ordinal	(class	in	aetypes)
os	(standard	module)
os.path	(standard	module)

P

pack()	(in	module	aepack)
packevent()	(in	module	aetools)
parseurl()	(IC	method)
parseurl()	(in	module	ic)
PixMapWrapper	(standard	module)
preferences	(standard	module)
Print()	(in	module	findertools)

processfile()	(in	module
gensuitemodule)
processfile_fromresource()	(in	module
gensuitemodule)
ProgressBar()	(in	module	EasyDialogs)
PromptGetFile()	(in	module	macfs)
py_resource	(standard	module)
PYTHONPATH	(environment	variable)
pythonprefs	(standard	module)

Q

QDPoint	(class	in	aetypes)
QDRectangle	(class	in	aetypes) quietconsole	(standard	module)

R

Range	(class	in	aetypes)
RawAlias()	(in	module	macfs)
RawFSSpec()	(in	module	macfs)
Resolve()	(Alias	method)

ResolveAliasFile()	(in	module	macfs)
restart()	(in	module	findertools)
RGBColor	(class	in	aetypes)
runtimemodel	(in	module	MacOS)

S

scalebarvalues()	(ScrolledWindow
method)
SchedParams()	(in	module	MacOS)
scrollbar_callback()	(ScrolledWindow
method)
scrollbars()	(ScrolledWindow	method)
send()	(TalkTo	method)
Separator()	(in	module	FrameWork)
set()	(ProgressBar	method)
setarrowcursor()	(in	module
FrameWork)
SetCreatorAndType()	(in	module
MacOS)
SetCreatorType()	(FSSpec	method)
SetDates()	(FSSpec	method)
SetEventHandler()	(in	module	MacOS)
SetFInfo()	(FSSpec	method)

SetFolder()	(in	module	macfs)
settypecreator()	(IC	method)
settypecreator()	(in	module	ic)
setwatchcursor()	(in	module
FrameWork)
shutdown()	(in	module	findertools)
sleep()	(in	module	findertools)
splash()	(in	module	MacOS)
Standard	File
StandardGetFile()	(in	module	macfs)
StandardPutFile()	(in	module	macfs)
StyledText	(class	in	aetypes)
SubMenu()	(in	module	FrameWork)
SysBeep()	(in	module	MacOS)

T

TalkTo	(class	in	aetools)
title()	(ProgressBar	method)
touched()	(in	module	macostools)

Type	(class	in	aetypes)
Type	(FInfo	attribute)

U

Unknown	(class	in	aetypes)
unpack()	(in	module	aepack)
unpackevent()	(in	module	aetools)

Update()	(Alias	method)
updatescrollbars()	(ScrolledWindow
method)

V

videoreader	(standard	module)

W

W	(standard	module)
waste	(standard	module)
Window()	(in	module	FrameWork)

windowbounds()	(in	module
FrameWork)
WMAvailable()	(in	module	MacOS)

Macintosh	Library	Modules
Previous:	Module	Index	Up:	Macintosh	Library	Modules	Next:	About	this
document	...

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Up:	Python	Documentation	Index	Next:	Front	Matter

Extending	and	Embedding	the
Python	Interpreter

Guido	van	Rossum	
Fred	L.	Drake,	Jr.,	editor

Python	Software	Foundation	
Email:	docs@python.org

Release	2.4
29	November	2004

Front	Matter
Contents
1.	Extending	Python	with	C	or	C++

1.1	A	Simple	Example
1.2	Intermezzo:	Errors	and	Exceptions
1.3	Back	to	the	Example
1.4	The	Module's	Method	Table	and	Initialization	Function
1.5	Compilation	and	Linkage
1.6	Calling	Python	Functions	from	C
1.7	Extracting	Parameters	in	Extension	Functions
1.8	Keyword	Parameters	for	Extension	Functions
1.9	Building	Arbitrary	Values
1.10	Reference	Counts

1.10.1	Reference	Counting	in	Python
1.10.2	Ownership	Rules
1.10.3	Thin	Ice
1.10.4	NULL	Pointers

1.11	Writing	Extensions	in	C++
1.12	Providing	a	C	API	for	an	Extension	Module

2.	Defining	New	Types

2.1	The	Basics
2.1.1	Adding	data	and	methods	to	the	Basic	example
2.1.2	Providing	finer	control	over	data	attributes
2.1.3	Supporting	cyclic	garbage	collection

2.2	Type	Methods
2.2.1	Finalization	and	De-allocation
2.2.2	Object	Presentation
2.2.3	Attribute	Management
2.2.4	Object	Comparison
2.2.5	Abstract	Protocol	Support
2.2.6	More	Suggestions

3.	Building	C	and	C++	Extensions	with	distutils
3.1	Distributing	your	extension	modules

4.	Building	C	and	C++	Extensions	on	Windows
4.1	A	Cookbook	Approach
4.2	Differences	Between	UNIX	and	Windows
4.3	Using	DLLs	in	Practice

5.	Embedding	Python	in	Another	Application
5.1	Very	High	Level	Embedding
5.2	Beyond	Very	High	Level	Embedding:	An	overview
5.3	Pure	Embedding
5.4	Extending	Embedded	Python
5.5	Embedding	Python	in	C++
5.6	Linking	Requirements

A.	Reporting	Bugs
B.	History	and	License

B.1	History	of	the	software
B.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
B.3	Licenses	and	Acknowledgements	for	Incorporated	Software

B.3.1	Mersenne	Twister
B.3.2	Sockets
B.3.3	Floating	point	exception	control
B.3.4	MD5	message	digest	algorithm
B.3.5	Asynchronous	socket	services
B.3.6	Cookie	management
B.3.7	Profiling
B.3.8	Execution	tracing
B.3.9	UUencode	and	UUdecode	functions
B.3.10	XML	Remote	Procedure	Calls

About	this	document	...

Extending	and	Embedding	the	Python
Interpreter

Up:	Python	Documentation	Index	Next:	Front	Matter

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Extending	and	Embedding	the	Up:	Extending	and	Embedding	the
Next:	Contents

Front	Matter
Copyright	©	2001-2004	Python	Software	Foundation.	All	rights	reserved.

Copyright	©	2000	BeOpen.com.	All	rights	reserved.

Copyright	©	1995-2000	Corporation	for	National	Research	Initiatives.	All	rights
reserved.

Copyright	©	1991-1995	Stichting	Mathematisch	Centrum.	All	rights	reserved.

See	the	end	of	this	document	for	complete	license	and	permissions	information.

Abstract:

Python	is	an	interpreted,	object-oriented	programming	language.	This	document
describes	how	to	write	modules	in	C	or	C++	to	extend	the	Python	interpreter
with	new	modules.	Those	modules	can	define	new	functions	but	also	new	object
types	and	their	methods.	The	document	also	describes	how	to	embed	the	Python
interpreter	in	another	application,	for	use	as	an	extension	language.	Finally,	it
shows	how	to	compile	and	link	extension	modules	so	that	they	can	be	loaded
dynamically	(at	run	time)	into	the	interpreter,	if	the	underlying	operating	system
supports	this	feature.

This	document	assumes	basic	knowledge	about	Python.	For	an	informal
introduction	to	the	language,	see	the	Python	Tutorial.	The	Python	Reference
Manual	gives	a	more	formal	definition	of	the	language.	The	Python	Library
Reference	documents	the	existing	object	types,	functions	and	modules	(both
built-in	and	written	in	Python)	that	give	the	language	its	wide	application	range.

For	a	detailed	description	of	the	whole	Python/C	API,	see	the	separate	Python/C
API	Reference	Manual.

Extending	and	Embedding	the	Python
Interpreter

Previous:	Extending	and	Embedding	the	Up:	Extending	and	Embedding	the

Next:	Contents

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Contents	Up:	Extending	and	Embedding	the	Next:	1.1	A	Simple
Example

1.	Extending	Python	with	C	or	C++
It	is	quite	easy	to	add	new	built-in	modules	to	Python,	if	you	know	how	to
program	in	C.	Such	extension	modules	can	do	two	things	that	can't	be	done
directly	in	Python:	they	can	implement	new	built-in	object	types,	and	they	can
call	C	library	functions	and	system	calls.

To	support	extensions,	the	Python	API	(Application	Programmers	Interface)
defines	a	set	of	functions,	macros	and	variables	that	provide	access	to	most
aspects	of	the	Python	run-time	system.	The	Python	API	is	incorporated	in	a	C
source	file	by	including	the	header	"Python.h".

The	compilation	of	an	extension	module	depends	on	its	intended	use	as	well	as
on	your	system	setup;	details	are	given	in	later	chapters.

Subsections

1.1	A	Simple	Example
1.2	Intermezzo:	Errors	and	Exceptions
1.3	Back	to	the	Example
1.4	The	Module's	Method	Table	and	Initialization	Function
1.5	Compilation	and	Linkage
1.6	Calling	Python	Functions	from	C
1.7	Extracting	Parameters	in	Extension	Functions
1.8	Keyword	Parameters	for	Extension	Functions
1.9	Building	Arbitrary	Values
1.10	Reference	Counts

1.10.1	Reference	Counting	in	Python
1.10.2	Ownership	Rules
1.10.3	Thin	Ice
1.10.4	NULL	Pointers

1.11	Writing	Extensions	in	C++
1.12	Providing	a	C	API	for	an	Extension	Module

Extending	and	Embedding	the	Python
Interpreter

Previous:	Contents	Up:	Extending	and	Embedding	the	Next:	1.1	A	Simple
Example

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.	Extending	Python	with	Up:	1.	Extending	Python	with	Next:	1.2
Intermezzo:	Errors	and

1.1	A	Simple	Example
Let's	create	an	extension	module	called	"spam"	(the	favorite	food	of	Monty
Python	fans...)	and	let's	say	we	want	to	create	a	Python	interface	to	the	C	library
function	system().1.1This	function	takes	a	null-terminated	character	string	as
argument	and	returns	an	integer.	We	want	this	function	to	be	callable	from
Python	as	follows:

>>>	import	spam

>>>	status	=	spam.system("ls	-l")

Begin	by	creating	a	file	spammodule.c.	(Historically,	if	a	module	is	called
"spam",	the	C	file	containing	its	implementation	is	called	spammodule.c;	if
the	module	name	is	very	long,	like	"spammify",	the	module	name	can	be	just
spammify.c.)

The	first	line	of	our	file	can	be:

#include	<Python.h>

which	pulls	in	the	Python	API	(you	can	add	a	comment	describing	the	purpose
of	the	module	and	a	copyright	notice	if	you	like).

Warning: 	Since	Python	may	define	some	pre-processor
definitions	which	affect	the	standard	headers	on	some	systems,
you	must	include	Python.h	before	any	standard	headers	are
included.

All	user-visible	symbols	defined	by	Python.h	have	a	prefix	of	"Py"	or	"PY",
except	those	defined	in	standard	header	files.	For	convenience,	and	since	they
are	used	extensively	by	the	Python	interpreter,	"Python.h"	includes	a	few
standard	header	files:	<stdio.h>,	<string.h>,	<errno.h>,	and
<stdlib.h>.	If	the	latter	header	file	does	not	exist	on	your	system,	it	declares
the	functions	malloc(),	free()	and	realloc()	directly.

The	next	thing	we	add	to	our	module	file	is	the	C	function	that	will	be	called

when	the	Python	expression	"spam.system(string)"is	evaluated	(we'll	see
shortly	how	it	ends	up	being	called):

static	PyObject	*

spam_system(PyObject	*self,	PyObject	*args)

{

				const	char	*command;

				int	sts;

				if	(!PyArg_ParseTuple(args,	"s",	&command))

								return	NULL;

				sts	=	system(command);

				return	Py_BuildValue("i",	sts);

}

There	is	a	straightforward	translation	from	the	argument	list	in	Python	(for
example,	the	single	expression	"ls	-l")	to	the	arguments	passed	to	the	C
function.	The	C	function	always	has	two	arguments,	conventionally	named	self
and	args.

The	self	argument	is	only	used	when	the	C	function	implements	a	built-in
method,	not	a	function.	In	the	example,	self	will	always	be	a	NULL	pointer,	since
we	are	defining	a	function,	not	a	method.	(This	is	done	so	that	the	interpreter
doesn't	have	to	understand	two	different	types	of	C	functions.)

The	args	argument	will	be	a	pointer	to	a	Python	tuple	object	containing	the
arguments.	Each	item	of	the	tuple	corresponds	to	an	argument	in	the	call's
argument	list.	The	arguments	are	Python	objects	--	in	order	to	do	anything	with
them	in	our	C	function	we	have	to	convert	them	to	C	values.	The	function
PyArg_ParseTuple()	in	the	Python	API	checks	the	argument	types	and
converts	them	to	C	values.	It	uses	a	template	string	to	determine	the	required
types	of	the	arguments	as	well	as	the	types	of	the	C	variables	into	which	to	store
the	converted	values.	More	about	this	later.

PyArg_ParseTuple()	returns	true	(nonzero)	if	all	arguments	have	the	right
type	and	its	components	have	been	stored	in	the	variables	whose	addresses	are
passed.	It	returns	false	(zero)	if	an	invalid	argument	list	was	passed.	In	the	latter
case	it	also	raises	an	appropriate	exception	so	the	calling	function	can	return
NULL	immediately	(as	we	saw	in	the	example).

Footnotes

...system().1.1
An	interface	for	this	function	already	exists	in	the	standard	module	os	--	it
was	chosen	as	a	simple	and	straightfoward	example.

Extending	and	Embedding	the	Python
Interpreter

Previous:	1.	Extending	Python	with	Up:	1.	Extending	Python	with	Next:	1.2
Intermezzo:	Errors	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.1	A	Simple	Example	Up:	1.	Extending	Python	with	Next:	1.3	Back
to	the

1.2	Intermezzo:	Errors	and
Exceptions
An	important	convention	throughout	the	Python	interpreter	is	the	following:
when	a	function	fails,	it	should	set	an	exception	condition	and	return	an	error
value	(usually	a	NULL	pointer).	Exceptions	are	stored	in	a	static	global	variable
inside	the	interpreter;	if	this	variable	is	NULL	no	exception	has	occurred.	A
second	global	variable	stores	the	``associated	value''	of	the	exception	(the	second
argument	to	raise).	A	third	variable	contains	the	stack	traceback	in	case	the
error	originated	in	Python	code.	These	three	variables	are	the	C	equivalents	of
the	Python	variables	sys.exc_type,	sys.exc_value	and
sys.exc_traceback	(see	the	section	on	module	sys	in	the	Python	Library
Reference).	It	is	important	to	know	about	them	to	understand	how	errors	are
passed	around.

The	Python	API	defines	a	number	of	functions	to	set	various	types	of	exceptions.

The	most	common	one	is	PyErr_SetString().	Its	arguments	are	an
exception	object	and	a	C	string.	The	exception	object	is	usually	a	predefined
object	like	PyExc_ZeroDivisionError.	The	C	string	indicates	the	cause
of	the	error	and	is	converted	to	a	Python	string	object	and	stored	as	the
``associated	value''	of	the	exception.

Another	useful	function	is	PyErr_SetFromErrno(),	which	only	takes	an
exception	argument	and	constructs	the	associated	value	by	inspection	of	the
global	variable	errno.	The	most	general	function	is	PyErr_SetObject(),
which	takes	two	object	arguments,	the	exception	and	its	associated	value.	You
don't	need	to	Py_INCREF()	the	objects	passed	to	any	of	these	functions.

You	can	test	non-destructively	whether	an	exception	has	been	set	with
PyErr_Occurred().	This	returns	the	current	exception	object,	or	NULL	if	no
exception	has	occurred.	You	normally	don't	need	to	call	PyErr_Occurred()
to	see	whether	an	error	occurred	in	a	function	call,	since	you	should	be	able	to
tell	from	the	return	value.

When	a	function	f	that	calls	another	function	g	detects	that	the	latter	fails,	f

should	itself	return	an	error	value	(usually	NULL	or	-1).	It	should	not	call	one	of
the	PyErr_*()	functions	--	one	has	already	been	called	by	g.	f's	caller	is	then
supposed	to	also	return	an	error	indication	to	its	caller,	again	without	calling
PyErr_*(),	and	so	on	--	the	most	detailed	cause	of	the	error	was	already
reported	by	the	function	that	first	detected	it.	Once	the	error	reaches	the	Python
interpreter's	main	loop,	this	aborts	the	currently	executing	Python	code	and	tries
to	find	an	exception	handler	specified	by	the	Python	programmer.

(There	are	situations	where	a	module	can	actually	give	a	more	detailed	error
message	by	calling	another	PyErr_*()	function,	and	in	such	cases	it	is	fine	to
do	so.	As	a	general	rule,	however,	this	is	not	necessary,	and	can	cause
information	about	the	cause	of	the	error	to	be	lost:	most	operations	can	fail	for	a
variety	of	reasons.)

To	ignore	an	exception	set	by	a	function	call	that	failed,	the	exception	condition
must	be	cleared	explicitly	by	calling	PyErr_Clear().	The	only	time	C	code
should	call	PyErr_Clear()	is	if	it	doesn't	want	to	pass	the	error	on	to	the
interpreter	but	wants	to	handle	it	completely	by	itself	(possibly	by	trying
something	else,	or	pretending	nothing	went	wrong).

Every	failing	malloc()	call	must	be	turned	into	an	exception	--	the	direct
caller	of	malloc()	(or	realloc())	must	call	PyErr_NoMemory()	and
return	a	failure	indicator	itself.	All	the	object-creating	functions	(for	example,
PyInt_FromLong())	already	do	this,	so	this	note	is	only	relevant	to	those
who	call	malloc()	directly.

Also	note	that,	with	the	important	exception	of	PyArg_ParseTuple()	and
friends,	functions	that	return	an	integer	status	usually	return	a	positive	value	or
zero	for	success	and	-1	for	failure,	like	UNIX	system	calls.

Finally,	be	careful	to	clean	up	garbage	(by	making	Py_XDECREF()	or
Py_DECREF()	calls	for	objects	you	have	already	created)	when	you	return	an
error	indicator!

The	choice	of	which	exception	to	raise	is	entirely	yours.	There	are	predeclared	C
objects	corresponding	to	all	built-in	Python	exceptions,	such	as
PyExc_ZeroDivisionError,	which	you	can	use	directly.	Of	course,	you
should	choose	exceptions	wisely	--	don't	use	PyExc_TypeError	to	mean	that
a	file	couldn't	be	opened	(that	should	probably	be	PyExc_IOError).	If

something's	wrong	with	the	argument	list,	the	PyArg_ParseTuple()
function	usually	raises	PyExc_TypeError.	If	you	have	an	argument	whose
value	must	be	in	a	particular	range	or	must	satisfy	other	conditions,
PyExc_ValueError	is	appropriate.

You	can	also	define	a	new	exception	that	is	unique	to	your	module.	For	this,	you
usually	declare	a	static	object	variable	at	the	beginning	of	your	file:

static	PyObject	*SpamError;

and	initialize	it	in	your	module's	initialization	function	(initspam())	with	an
exception	object	(leaving	out	the	error	checking	for	now):

PyMODINIT_FUNC

initspam(void)

{

				PyObject	*m;

				m	=	Py_InitModule("spam",	SpamMethods);

				SpamError	=	PyErr_NewException("spam.error",	NULL,	NULL);

				Py_INCREF(SpamError);

				PyModule_AddObject(m,	"error",	SpamError);

}

Note	that	the	Python	name	for	the	exception	object	is	spam.error.	The
PyErr_NewException()	function	may	create	a	class	with	the	base	class
being	Exception	(unless	another	class	is	passed	in	instead	of	NULL),
described	in	the	Python	Library	Reference	under	``Built-in	Exceptions.''

Note	also	that	the	SpamError	variable	retains	a	reference	to	the	newly	created
exception	class;	this	is	intentional!	Since	the	exception	could	be	removed	from
the	module	by	external	code,	an	owned	reference	to	the	class	is	needed	to	ensure
that	it	will	not	be	discarded,	causing	SpamError	to	become	a	dangling	pointer.
Should	it	become	a	dangling	pointer,	C	code	which	raises	the	exception	could
cause	a	core	dump	or	other	unintended	side	effects.

We	discuss	the	use	of	PyMODINIT_FUNC	as	a	function	return	type	later	in	this
sample.

Extending	and	Embedding	the	Python

Interpreter

Previous:	1.1	A	Simple	Example	Up:	1.	Extending	Python	with	Next:	1.3	Back
to	the

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2	Intermezzo:	Errors	and	Up:	1.	Extending	Python	with	Next:	1.4
The	Module's	Method

1.3	Back	to	the	Example
Going	back	to	our	example	function,	you	should	now	be	able	to	understand	this
statement:

				if	(!PyArg_ParseTuple(args,	"s",	&command))

								return	NULL;

It	returns	NULL	(the	error	indicator	for	functions	returning	object	pointers)	if	an
error	is	detected	in	the	argument	list,	relying	on	the	exception	set	by
PyArg_ParseTuple().	Otherwise	the	string	value	of	the	argument	has	been
copied	to	the	local	variable	command.	This	is	a	pointer	assignment	and	you	are
not	supposed	to	modify	the	string	to	which	it	points	(so	in	Standard	C,	the
variable	command	should	properly	be	declared	as	"const	char
*command").

The	next	statement	is	a	call	to	the	UNIX	function	system(),	passing	it	the
string	we	just	got	from	PyArg_ParseTuple():

				sts	=	system(command);

Our	spam.system()	function	must	return	the	value	of	sts	as	a	Python
object.	This	is	done	using	the	function	Py_BuildValue(),	which	is
something	like	the	inverse	of	PyArg_ParseTuple():	it	takes	a	format	string
and	an	arbitrary	number	of	C	values,	and	returns	a	new	Python	object.	More	info
on	Py_BuildValue()	is	given	later.

				return	Py_BuildValue("i",	sts);

In	this	case,	it	will	return	an	integer	object.	(Yes,	even	integers	are	objects	on	the
heap	in	Python!)

If	you	have	a	C	function	that	returns	no	useful	argument	(a	function	returning
void),	the	corresponding	Python	function	must	return	None.	You	need	this
idiom	to	do	so	(which	is	implemented	by	the	Py_RETURN_NONE	macro):

				Py_INCREF(Py_None);

				return	Py_None;

Py_None	is	the	C	name	for	the	special	Python	object	None.	It	is	a	genuine
Python	object	rather	than	a	NULL	pointer,	which	means	``error''	in	most	contexts,
as	we	have	seen.

Extending	and	Embedding	the	Python
Interpreter

Previous:	1.2	Intermezzo:	Errors	and	Up:	1.	Extending	Python	with	Next:	1.4
The	Module's	Method

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.3	Back	to	the	Up:	1.	Extending	Python	with	Next:	1.5	Compilation
and	Linkage

1.4	The	Module's	Method	Table	and
Initialization	Function
I	promised	to	show	how	spam_system()	is	called	from	Python	programs.
First,	we	need	to	list	its	name	and	address	in	a	``method	table'':

static	PyMethodDef	SpamMethods[]	=	{

				...

				{"system",		spam_system,	METH_VARARGS,

					"Execute	a	shell	command."},

				...

				{NULL,	NULL,	0,	NULL}								/*	Sentinel	*/

};

Note	the	third	entry	("METH_VARARGS").	This	is	a	flag	telling	the	interpreter
the	calling	convention	to	be	used	for	the	C	function.	It	should	normally	always
be	"METH_VARARGS"	or	"METH_VARARGS	|	METH_KEYWORDS";	a	value
of	0	means	that	an	obsolete	variant	of	PyArg_ParseTuple()	is	used.

When	using	only	"METH_VARARGS",	the	function	should	expect	the	Python-
level	parameters	to	be	passed	in	as	a	tuple	acceptable	for	parsing	via
PyArg_ParseTuple();	more	information	on	this	function	is	provided	below.

The	METH_KEYWORDS	bit	may	be	set	in	the	third	field	if	keyword	arguments
should	be	passed	to	the	function.	In	this	case,	the	C	function	should	accept	a
third	"PyObject	*"	parameter	which	will	be	a	dictionary	of	keywords.	Use
PyArg_ParseTupleAndKeywords()	to	parse	the	arguments	to	such	a
function.

The	method	table	must	be	passed	to	the	interpreter	in	the	module's	initialization
function.	The	initialization	function	must	be	named	initname(),	where	name
is	the	name	of	the	module,	and	should	be	the	only	non-static	item	defined	in
the	module	file:

PyMODINIT_FUNC

initspam(void)

{

				(void)	Py_InitModule("spam",	SpamMethods);

}

Note	that	PyMODINIT_FUNC	declares	the	function	as	void	return	type,
declares	any	special	linkage	declarations	required	by	the	platform,	and	for	C++
declares	the	function	as	extern	"C".

When	the	Python	program	imports	module	spam	for	the	first	time,
initspam()	is	called.	(See	below	for	comments	about	embedding	Python.)	It
calls	Py_InitModule(),	which	creates	a	``module	object''	(which	is	inserted
in	the	dictionary	sys.modules	under	the	key	"spam"),	and	inserts	built-in
function	objects	into	the	newly	created	module	based	upon	the	table	(an	array	of
PyMethodDef	structures)	that	was	passed	as	its	second	argument.
Py_InitModule()	returns	a	pointer	to	the	module	object	that	it	creates
(which	is	unused	here).	It	aborts	with	a	fatal	error	if	the	module	could	not	be
initialized	satisfactorily,	so	the	caller	doesn't	need	to	check	for	errors.

When	embedding	Python,	the	initspam()	function	is	not	called	automatically
unless	there's	an	entry	in	the	_PyImport_Inittab	table.	The	easiest	way	to
handle	this	is	to	statically	initialize	your	statically-linked	modules	by	directly
calling	initspam()	after	the	call	to	Py_Initialize()	or
PyMac_Initialize():

int

main(int	argc,	char	*argv[])

{

				/*	Pass	argv[0]	to	the	Python	interpreter	*/

				Py_SetProgramName(argv[0]);

				/*	Initialize	the	Python	interpreter.		Required.	*/

				Py_Initialize();

				/*	Add	a	static	module	*/

				initspam();

An	example	may	be	found	in	the	file	Demo/embed/demo.c	in	the	Python
source	distribution.

Note:	Removing	entries	from	sys.modules	or	importing	compiled	modules
into	multiple	interpreters	within	a	process	(or	following	a	fork()	without	an
intervening	exec())	can	create	problems	for	some	extension	modules.
Extension	module	authors	should	exercise	caution	when	initializing	internal	data
structures.	Note	also	that	the	reload()	function	can	be	used	with	extension
modules,	and	will	call	the	module	initialization	function	(initspam()	in	the

example),	but	will	not	load	the	module	again	if	it	was	loaded	from	a	dynamically
loadable	object	file	(.so	on	UNIX,	.dll	on	Windows).

A	more	substantial	example	module	is	included	in	the	Python	source	distribution
as	Modules/xxmodule.c.	This	file	may	be	used	as	a	template	or	simply	read	as
an	example.	The	modulator.py	script	included	in	the	source	distribution	or
Windows	install	provides	a	simple	graphical	user	interface	for	declaring	the
functions	and	objects	which	a	module	should	implement,	and	can	generate	a
template	which	can	be	filled	in.	The	script	lives	in	the	Tools/modulator/
directory;	see	the	README	file	there	for	more	information.

Extending	and	Embedding	the	Python
Interpreter

Previous:	1.3	Back	to	the	Up:	1.	Extending	Python	with	Next:	1.5	Compilation
and	Linkage

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.4	The	Module's	Method	Up:	1.	Extending	Python	with	Next:	1.6
Calling	Python	Functions

1.5	Compilation	and	Linkage
There	are	two	more	things	to	do	before	you	can	use	your	new	extension:
compiling	and	linking	it	with	the	Python	system.	If	you	use	dynamic	loading,	the
details	may	depend	on	the	style	of	dynamic	loading	your	system	uses;	see	the
chapters	about	building	extension	modules	(chapter	3)	and	additional
information	that	pertains	only	to	building	on	Windows	(chapter	4)	for	more
information	about	this.

If	you	can't	use	dynamic	loading,	or	if	you	want	to	make	your	module	a
permanent	part	of	the	Python	interpreter,	you	will	have	to	change	the
configuration	setup	and	rebuild	the	interpreter.	Luckily,	this	is	very	simple	on
UNIX:	just	place	your	file	(spammodule.c	for	example)	in	the	Modules/
directory	of	an	unpacked	source	distribution,	add	a	line	to	the	file
Modules/Setup.local	describing	your	file:

spam	spammodule.o

and	rebuild	the	interpreter	by	running	make	in	the	toplevel	directory.	You	can
also	run	make	in	the	Modules/	subdirectory,	but	then	you	must	first	rebuild
Makefile	there	by	running	`make	Makefile'.	(This	is	necessary	each	time	you
change	the	Setup	file.)

If	your	module	requires	additional	libraries	to	link	with,	these	can	be	listed	on
the	line	in	the	configuration	file	as	well,	for	instance:

spam	spammodule.o	-lX11

Extending	and	Embedding	the	Python
Interpreter

Previous:	1.4	The	Module's	Method	Up:	1.	Extending	Python	with	Next:	1.6
Calling	Python	Functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.5	Compilation	and	Linkage	Up:	1.	Extending	Python	with	Next:	1.7
Extracting	Parameters	in

1.6	Calling	Python	Functions	from	C
So	far	we	have	concentrated	on	making	C	functions	callable	from	Python.	The
reverse	is	also	useful:	calling	Python	functions	from	C.	This	is	especially	the
case	for	libraries	that	support	so-called	``callback''	functions.	If	a	C	interface
makes	use	of	callbacks,	the	equivalent	Python	often	needs	to	provide	a	callback
mechanism	to	the	Python	programmer;	the	implementation	will	require	calling
the	Python	callback	functions	from	a	C	callback.	Other	uses	are	also	imaginable.

Fortunately,	the	Python	interpreter	is	easily	called	recursively,	and	there	is	a
standard	interface	to	call	a	Python	function.	(I	won't	dwell	on	how	to	call	the
Python	parser	with	a	particular	string	as	input	--	if	you're	interested,	have	a	look
at	the	implementation	of	the	-c	command	line	option	in	Python/pythonmain.c
from	the	Python	source	code.)

Calling	a	Python	function	is	easy.	First,	the	Python	program	must	somehow	pass
you	the	Python	function	object.	You	should	provide	a	function	(or	some	other
interface)	to	do	this.	When	this	function	is	called,	save	a	pointer	to	the	Python
function	object	(be	careful	to	Py_INCREF()	it!)	in	a	global	variable	--	or
wherever	you	see	fit.	For	example,	the	following	function	might	be	part	of	a
module	definition:

static	PyObject	*my_callback	=	NULL;

static	PyObject	*

my_set_callback(PyObject	*dummy,	PyObject	*args)

{

				PyObject	*result	=	NULL;

				PyObject	*temp;

				if	(PyArg_ParseTuple(args,	"O:set_callback",	&temp))	{

								if	(!PyCallable_Check(temp))	{

												PyErr_SetString(PyExc_TypeError,	"parameter	must	be	callable");

												return	NULL;

								}

								Py_XINCREF(temp);									/*	Add	a	reference	to	new	callback	*/

								Py_XDECREF(my_callback);		/*	Dispose	of	previous	callback	*/

								my_callback	=	temp;							/*	Remember	new	callback	*/

								/*	Boilerplate	to	return	"None"	*/

								Py_INCREF(Py_None);

								result	=	Py_None;

				}

				return	result;

}

This	function	must	be	registered	with	the	interpreter	using	the	METH_VARARGS
flag;	this	is	described	in	section	1.4,	``The	Module's	Method	Table	and
Initialization	Function.''	The	PyArg_ParseTuple()	function	and	its
arguments	are	documented	in	section	1.7,	``Extracting	Parameters	in	Extension
Functions.''

The	macros	Py_XINCREF()	and	Py_XDECREF()	increment/decrement	the
reference	count	of	an	object	and	are	safe	in	the	presence	of	NULL	pointers	(but
note	that	temp	will	not	be	NULL	in	this	context).	More	info	on	them	in
section	1.10,	``Reference	Counts.''

Later,	when	it	is	time	to	call	the	function,	you	call	the	C	function
PyEval_CallObject().	This	function	has	two	arguments,	both	pointers	to
arbitrary	Python	objects:	the	Python	function,	and	the	argument	list.	The
argument	list	must	always	be	a	tuple	object,	whose	length	is	the	number	of
arguments.	To	call	the	Python	function	with	no	arguments,	pass	an	empty	tuple;
to	call	it	with	one	argument,	pass	a	singleton	tuple.	Py_BuildValue()
returns	a	tuple	when	its	format	string	consists	of	zero	or	more	format	codes
between	parentheses.	For	example:

				int	arg;

				PyObject	*arglist;

				PyObject	*result;

				...

				arg	=	123;

				...

				/*	Time	to	call	the	callback	*/

				arglist	=	Py_BuildValue("(i)",	arg);

				result	=	PyEval_CallObject(my_callback,	arglist);

				Py_DECREF(arglist);

PyEval_CallObject()	returns	a	Python	object	pointer:	this	is	the	return
value	of	the	Python	function.	PyEval_CallObject()	is	``reference-count-
neutral''	with	respect	to	its	arguments.	In	the	example	a	new	tuple	was	created	to
serve	as	the	argument	list,	which	is	Py_DECREF()-ed	immediately	after	the
call.

The	return	value	of	PyEval_CallObject()	is	``new'':	either	it	is	a	brand
new	object,	or	it	is	an	existing	object	whose	reference	count	has	been

incremented.	So,	unless	you	want	to	save	it	in	a	global	variable,	you	should
somehow	Py_DECREF()	the	result,	even	(especially!)	if	you	are	not	interested
in	its	value.

Before	you	do	this,	however,	it	is	important	to	check	that	the	return	value	isn't
NULL.	If	it	is,	the	Python	function	terminated	by	raising	an	exception.	If	the	C
code	that	called	PyEval_CallObject()	is	called	from	Python,	it	should
now	return	an	error	indication	to	its	Python	caller,	so	the	interpreter	can	print	a
stack	trace,	or	the	calling	Python	code	can	handle	the	exception.	If	this	is	not
possible	or	desirable,	the	exception	should	be	cleared	by	calling
PyErr_Clear().	For	example:

				if	(result	==	NULL)

								return	NULL;	/*	Pass	error	back	*/

				...use	result...

				Py_DECREF(result);

Depending	on	the	desired	interface	to	the	Python	callback	function,	you	may
also	have	to	provide	an	argument	list	to	PyEval_CallObject().	In	some
cases	the	argument	list	is	also	provided	by	the	Python	program,	through	the	same
interface	that	specified	the	callback	function.	It	can	then	be	saved	and	used	in	the
same	manner	as	the	function	object.	In	other	cases,	you	may	have	to	construct	a
new	tuple	to	pass	as	the	argument	list.	The	simplest	way	to	do	this	is	to	call
Py_BuildValue().	For	example,	if	you	want	to	pass	an	integral	event	code,
you	might	use	the	following	code:

				PyObject	*arglist;

				...

				arglist	=	Py_BuildValue("(l)",	eventcode);

				result	=	PyEval_CallObject(my_callback,	arglist);

				Py_DECREF(arglist);

				if	(result	==	NULL)

								return	NULL;	/*	Pass	error	back	*/

				/*	Here	maybe	use	the	result	*/

				Py_DECREF(result);

Note	the	placement	of	"Py_DECREF(arglist)"	immediately	after	the	call,
before	the	error	check!	Also	note	that	strictly	spoken	this	code	is	not	complete:
Py_BuildValue()	may	run	out	of	memory,	and	this	should	be	checked.

Extending	and	Embedding	the	Python

Interpreter

Previous:	1.5	Compilation	and	Linkage	Up:	1.	Extending	Python	with	Next:	1.7
Extracting	Parameters	in

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.6	Calling	Python	Functions	Up:	1.	Extending	Python	with	Next:	1.8
Keyword	Parameters	for

1.7	Extracting	Parameters	in
Extension	Functions
The	PyArg_ParseTuple()	function	is	declared	as	follows:

int	PyArg_ParseTuple(PyObject	*arg,	char	*format,	...);

The	arg	argument	must	be	a	tuple	object	containing	an	argument	list	passed	from
Python	to	a	C	function.	The	format	argument	must	be	a	format	string,	whose
syntax	is	explained	in	``Parsing	arguments	and	building	values''	in	the	Python/C
API	Reference	Manual.	The	remaining	arguments	must	be	addresses	of	variables
whose	type	is	determined	by	the	format	string.

Note	that	while	PyArg_ParseTuple()	checks	that	the	Python	arguments
have	the	required	types,	it	cannot	check	the	validity	of	the	addresses	of	C
variables	passed	to	the	call:	if	you	make	mistakes	there,	your	code	will	probably
crash	or	at	least	overwrite	random	bits	in	memory.	So	be	careful!

Note	that	any	Python	object	references	which	are	provided	to	the	caller	are
borrowed	references;	do	not	decrement	their	reference	count!

Some	example	calls:

				int	ok;

				int	i,	j;

				long	k,	l;

				const	char	*s;

				int	size;

				ok	=	PyArg_ParseTuple(args,	"");	/*	No	arguments	*/

								/*	Python	call:	f()	*/

				ok	=	PyArg_ParseTuple(args,	"s",	&s);	/*	A	string	*/

								/*	Possible	Python	call:	f('whoops!')	*/

				ok	=	PyArg_ParseTuple(args,	"lls",	&k,	&l,	&s);	/*	Two	longs	and	a	string	*/

								/*	Possible	Python	call:	f(1,	2,	'three')	*/

				ok	=	PyArg_ParseTuple(args,	"(ii)s#",	&i,	&j,	&s,	&size);

								/*	A	pair	of	ints	and	a	string,	whose	size	is	also	returned	*/

								/*	Possible	Python	call:	f((1,	2),	'three')	*/

				{

								const	char	*file;

								const	char	*mode	=	"r";

								int	bufsize	=	0;

								ok	=	PyArg_ParseTuple(args,	"s|si",	&file,	&mode,	&bufsize);

								/*	A	string,	and	optionally	another	string	and	an	integer	*/

								/*	Possible	Python	calls:

											f('spam')

											f('spam',	'w')

											f('spam',	'wb',	100000)	*/

				}

				{

								int	left,	top,	right,	bottom,	h,	v;

								ok	=	PyArg_ParseTuple(args,	"((ii)(ii))(ii)",

																	&left,	&top,	&right,	&bottom,	&h,	&v);

								/*	A	rectangle	and	a	point	*/

								/*	Possible	Python	call:

											f(((0,	0),	(400,	300)),	(10,	10))	*/

				}

				{

								Py_complex	c;

								ok	=	PyArg_ParseTuple(args,	"D:myfunction",	&c);

								/*	a	complex,	also	providing	a	function	name	for	errors	*/

								/*	Possible	Python	call:	myfunction(1+2j)	*/

				}

Extending	and	Embedding	the	Python
Interpreter

Previous:	1.6	Calling	Python	Functions	Up:	1.	Extending	Python	with	Next:	1.8
Keyword	Parameters	for

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.7	Extracting	Parameters	in	Up:	1.	Extending	Python	with	Next:	1.9
Building	Arbitrary	Values

1.8	Keyword	Parameters	for
Extension	Functions
The	PyArg_ParseTupleAndKeywords()	function	is	declared	as	follows:

int	PyArg_ParseTupleAndKeywords(PyObject	*arg,	PyObject	*kwdict,

																																char	*format,	char	*kwlist[],	...);

The	arg	and	format	parameters	are	identical	to	those	of	the
PyArg_ParseTuple()	function.	The	kwdict	parameter	is	the	dictionary	of
keywords	received	as	the	third	parameter	from	the	Python	runtime.	The	kwlist
parameter	is	a	NULL-terminated	list	of	strings	which	identify	the	parameters;	the
names	are	matched	with	the	type	information	from	format	from	left	to	right.	On
success,	PyArg_ParseTupleAndKeywords()	returns	true,	otherwise	it
returns	false	and	raises	an	appropriate	exception.

Note:	Nested	tuples	cannot	be	parsed	when	using	keyword	arguments!	Keyword
parameters	passed	in	which	are	not	present	in	the	kwlist	will	cause	TypeError
to	be	raised.

Here	is	an	example	module	which	uses	keywords,	based	on	an	example	by	Geoff
Philbrick	(philbrick@hks.com):

#include	"Python.h"

static	PyObject	*

keywdarg_parrot(PyObject	*self,	PyObject	*args,	PyObject	*keywds)

{		

				int	voltage;

				char	*state	=	"a	stiff";

				char	*action	=	"voom";

				char	*type	=	"Norwegian	Blue";

				static	char	*kwlist[]	=	{"voltage",	"state",	"action",	"type",	NULL};

				if	(!PyArg_ParseTupleAndKeywords(args,	keywds,	"i|sss",	kwlist,	

																																					&voltage,	&state,	&action,	&type))

								return	NULL;	

		

				printf("--	This	parrot	wouldn't	%s	if	you	put	%i	Volts	through	it.\n",	

											action,	voltage);

				printf("--	Lovely	plumage,	the	%s	--	It's	%s!\n",	type,	state);

				Py_INCREF(Py_None);

				return	Py_None;

}

static	PyMethodDef	keywdarg_methods[]	=	{

				/*	The	cast	of	the	function	is	necessary	since	PyCFunction	values

					*	only	take	two	PyObject*	parameters,	and	keywdarg_parrot()	takes

					*	three.

					*/

				{"parrot",	(PyCFunction)keywdarg_parrot,	METH_VARARGS	|	METH_KEYWORDS,

					"Print	a	lovely	skit	to	standard	output."},

				{NULL,	NULL,	0,	NULL}			/*	sentinel	*/

};

void

initkeywdarg(void)

{

		/*	Create	the	module	and	add	the	functions	*/

		Py_InitModule("keywdarg",	keywdarg_methods);

}

Extending	and	Embedding	the	Python
Interpreter

Previous:	1.7	Extracting	Parameters	in	Up:	1.	Extending	Python	with	Next:	1.9
Building	Arbitrary	Values

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.8	Keyword	Parameters	for	Up:	1.	Extending	Python	with	Next:
1.10	Reference	Counts

1.9	Building	Arbitrary	Values
This	function	is	the	counterpart	to	PyArg_ParseTuple().	It	is	declared	as
follows:

PyObject	*Py_BuildValue(char	*format,	...);

It	recognizes	a	set	of	format	units	similar	to	the	ones	recognized	by
PyArg_ParseTuple(),	but	the	arguments	(which	are	input	to	the	function,
not	output)	must	not	be	pointers,	just	values.	It	returns	a	new	Python	object,
suitable	for	returning	from	a	C	function	called	from	Python.

One	difference	with	PyArg_ParseTuple():	while	the	latter	requires	its	first
argument	to	be	a	tuple	(since	Python	argument	lists	are	always	represented	as
tuples	internally),	Py_BuildValue()	does	not	always	build	a	tuple.	It	builds
a	tuple	only	if	its	format	string	contains	two	or	more	format	units.	If	the	format
string	is	empty,	it	returns	None;	if	it	contains	exactly	one	format	unit,	it	returns
whatever	object	is	described	by	that	format	unit.	To	force	it	to	return	a	tuple	of
size	0	or	one,	parenthesize	the	format	string.

Examples	(to	the	left	the	call,	to	the	right	the	resulting	Python	value):

				Py_BuildValue("")																								None

				Py_BuildValue("i",	123)																		123

				Py_BuildValue("iii",	123,	456,	789)						(123,	456,	789)

				Py_BuildValue("s",	"hello")														'hello'

				Py_BuildValue("ss",	"hello",	"world")				('hello',	'world')

				Py_BuildValue("s#",	"hello",	4)										'hell'

				Py_BuildValue("()")																						()

				Py_BuildValue("(i)",	123)																(123,)

				Py_BuildValue("(ii)",	123,	456)										(123,	456)

				Py_BuildValue("(i,i)",	123,	456)									(123,	456)

				Py_BuildValue("[i,i]",	123,	456)									[123,	456]

				Py_BuildValue("{s:i,s:i}",

																		"abc",	123,	"def",	456)				{'abc':	123,	'def':	456}

				Py_BuildValue("((ii)(ii))	(ii)",

																		1,	2,	3,	4,	5,	6)										(((1,	2),	(3,	4)),	(5,	6))

Extending	and	Embedding	the	Python
Interpreter

Previous:	1.8	Keyword	Parameters	for	Up:	1.	Extending	Python	with	Next:
1.10	Reference	Counts

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.9	Building	Arbitrary	Values	Up:	1.	Extending	Python	with	Next:
1.10.1	Reference	Counting	in

1.10	Reference	Counts
In	languages	like	C	or	C++,	the	programmer	is	responsible	for	dynamic
allocation	and	deallocation	of	memory	on	the	heap.	In	C,	this	is	done	using	the
functions	malloc()	and	free().	In	C++,	the	operators	new	and	delete	are
used	with	essentially	the	same	meaning	and	we'll	restrict	the	following
discussion	to	the	C	case.

Every	block	of	memory	allocated	with	malloc()	should	eventually	be
returned	to	the	pool	of	available	memory	by	exactly	one	call	to	free().	It	is
important	to	call	free()	at	the	right	time.	If	a	block's	address	is	forgotten	but
free()	is	not	called	for	it,	the	memory	it	occupies	cannot	be	reused	until	the
program	terminates.	This	is	called	a	memory	leak.	On	the	other	hand,	if	a
program	calls	free()	for	a	block	and	then	continues	to	use	the	block,	it	creates
a	conflict	with	re-use	of	the	block	through	another	malloc()	call.	This	is
called	using	freed	memory.	It	has	the	same	bad	consequences	as	referencing
uninitialized	data	--	core	dumps,	wrong	results,	mysterious	crashes.

Common	causes	of	memory	leaks	are	unusual	paths	through	the	code.	For
instance,	a	function	may	allocate	a	block	of	memory,	do	some	calculation,	and
then	free	the	block	again.	Now	a	change	in	the	requirements	for	the	function
may	add	a	test	to	the	calculation	that	detects	an	error	condition	and	can	return
prematurely	from	the	function.	It's	easy	to	forget	to	free	the	allocated	memory
block	when	taking	this	premature	exit,	especially	when	it	is	added	later	to	the
code.	Such	leaks,	once	introduced,	often	go	undetected	for	a	long	time:	the	error
exit	is	taken	only	in	a	small	fraction	of	all	calls,	and	most	modern	machines	have
plenty	of	virtual	memory,	so	the	leak	only	becomes	apparent	in	a	long-running
process	that	uses	the	leaking	function	frequently.	Therefore,	it's	important	to
prevent	leaks	from	happening	by	having	a	coding	convention	or	strategy	that
minimizes	this	kind	of	errors.

Since	Python	makes	heavy	use	of	malloc()	and	free(),	it	needs	a	strategy
to	avoid	memory	leaks	as	well	as	the	use	of	freed	memory.	The	chosen	method	is
called	reference	counting.	The	principle	is	simple:	every	object	contains	a
counter,	which	is	incremented	when	a	reference	to	the	object	is	stored
somewhere,	and	which	is	decremented	when	a	reference	to	it	is	deleted.	When
the	counter	reaches	zero,	the	last	reference	to	the	object	has	been	deleted	and	the

object	is	freed.

An	alternative	strategy	is	called	automatic	garbage	collection.	(Sometimes,
reference	counting	is	also	referred	to	as	a	garbage	collection	strategy,	hence	my
use	of	``automatic''	to	distinguish	the	two.)	The	big	advantage	of	automatic
garbage	collection	is	that	the	user	doesn't	need	to	call	free()	explicitly.
(Another	claimed	advantage	is	an	improvement	in	speed	or	memory	usage	--	this
is	no	hard	fact	however.)	The	disadvantage	is	that	for	C,	there	is	no	truly
portable	automatic	garbage	collector,	while	reference	counting	can	be
implemented	portably	(as	long	as	the	functions	malloc()	and	free()	are
available	--	which	the	C	Standard	guarantees).	Maybe	some	day	a	sufficiently
portable	automatic	garbage	collector	will	be	available	for	C.	Until	then,	we'll
have	to	live	with	reference	counts.

While	Python	uses	the	traditional	reference	counting	implementation,	it	also
offers	a	cycle	detector	that	works	to	detect	reference	cycles.	This	allows
applications	to	not	worry	about	creating	direct	or	indirect	circular	references;
these	are	the	weakness	of	garbage	collection	implemented	using	only	reference
counting.	Reference	cycles	consist	of	objects	which	contain	(possibly	indirect)
references	to	themselves,	so	that	each	object	in	the	cycle	has	a	reference	count
which	is	non-zero.	Typical	reference	counting	implementations	are	not	able	to
reclaim	the	memory	belonging	to	any	objects	in	a	reference	cycle,	or	referenced
from	the	objects	in	the	cycle,	even	though	there	are	no	further	references	to	the
cycle	itself.

The	cycle	detector	is	able	to	detect	garbage	cycles	and	can	reclaim	them	so	long
as	there	are	no	finalizers	implemented	in	Python	(__del__()	methods).	When
there	are	such	finalizers,	the	detector	exposes	the	cycles	through	the	gc	module
(specifically,	the	garbage	variable	in	that	module).	The	gc	module	also
exposes	a	way	to	run	the	detector	(the	collect()	function),	as	well	as
configuration	interfaces	and	the	ability	to	disable	the	detector	at	runtime.	The
cycle	detector	is	considered	an	optional	component;	though	it	is	included	by
default,	it	can	be	disabled	at	build	time	using	the	--without-cycle-gc	option	to
the	configure	script	on	UNIX	platforms	(including	Mac	OS	X)	or	by	removing
the	definition	of	WITH_CYCLE_GC	in	the	pyconfig.h	header	on	other
platforms.	If	the	cycle	detector	is	disabled	in	this	way,	the	gc	module	will	not	be
available.

Subsections

1.10.1	Reference	Counting	in	Python
1.10.2	Ownership	Rules
1.10.3	Thin	Ice
1.10.4	NULL	Pointers

Extending	and	Embedding	the	Python
Interpreter

Previous:	1.9	Building	Arbitrary	Values	Up:	1.	Extending	Python	with	Next:
1.10.1	Reference	Counting	in

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.10	Reference	Counts	Up:	1.10	Reference	Counts	Next:	1.10.2
Ownership	Rules

1.10.1	Reference	Counting	in	Python
There	are	two	macros,	Py_INCREF(x)	and	Py_DECREF(x),	which	handle
the	incrementing	and	decrementing	of	the	reference	count.	Py_DECREF()	also
frees	the	object	when	the	count	reaches	zero.	For	flexibility,	it	doesn't	call
free()	directly	--	rather,	it	makes	a	call	through	a	function	pointer	in	the
object's	type	object.	For	this	purpose	(and	others),	every	object	also	contains	a
pointer	to	its	type	object.

The	big	question	now	remains:	when	to	use	Py_INCREF(x)	and
Py_DECREF(x)?	Let's	first	introduce	some	terms.	Nobody	``owns''	an	object;
however,	you	can	own	a	reference	to	an	object.	An	object's	reference	count	is
now	defined	as	the	number	of	owned	references	to	it.	The	owner	of	a	reference	is
responsible	for	calling	Py_DECREF()	when	the	reference	is	no	longer	needed.
Ownership	of	a	reference	can	be	transferred.	There	are	three	ways	to	dispose	of
an	owned	reference:	pass	it	on,	store	it,	or	call	Py_DECREF().	Forgetting	to
dispose	of	an	owned	reference	creates	a	memory	leak.

It	is	also	possible	to	borrow1.2	a	reference	to	an	object.	The	borrower	of	a
reference	should	not	call	Py_DECREF().	The	borrower	must	not	hold	on	to	the
object	longer	than	the	owner	from	which	it	was	borrowed.	Using	a	borrowed
reference	after	the	owner	has	disposed	of	it	risks	using	freed	memory	and	should
be	avoided	completely.1.3

The	advantage	of	borrowing	over	owning	a	reference	is	that	you	don't	need	to
take	care	of	disposing	of	the	reference	on	all	possible	paths	through	the	code	--
in	other	words,	with	a	borrowed	reference	you	don't	run	the	risk	of	leaking	when
a	premature	exit	is	taken.	The	disadvantage	of	borrowing	over	leaking	is	that
there	are	some	subtle	situations	where	in	seemingly	correct	code	a	borrowed
reference	can	be	used	after	the	owner	from	which	it	was	borrowed	has	in	fact
disposed	of	it.

A	borrowed	reference	can	be	changed	into	an	owned	reference	by	calling
Py_INCREF().	This	does	not	affect	the	status	of	the	owner	from	which	the
reference	was	borrowed	--	it	creates	a	new	owned	reference,	and	gives	full
owner	responsibilities	(the	new	owner	must	dispose	of	the	reference	properly,	as
well	as	the	previous	owner).

Footnotes

...borrow1.2

The	metaphor	of	``borrowing''	a	reference	is	not	completely	correct:	the
owner	still	has	a	copy	of	the	reference.

...	completely.1.3
Checking	that	the	reference	count	is	at	least	1	does	not	work	--	the
reference	count	itself	could	be	in	freed	memory	and	may	thus	be	reused	for
another	object!

Extending	and	Embedding	the	Python
Interpreter

Previous:	1.10	Reference	Counts	Up:	1.10	Reference	Counts	Next:	1.10.2
Ownership	Rules

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.10.1	Reference	Counting	in	Up:	1.10	Reference	Counts	Next:
1.10.3	Thin	Ice

1.10.2	Ownership	Rules
Whenever	an	object	reference	is	passed	into	or	out	of	a	function,	it	is	part	of	the
function's	interface	specification	whether	ownership	is	transferred	with	the
reference	or	not.

Most	functions	that	return	a	reference	to	an	object	pass	on	ownership	with	the
reference.	In	particular,	all	functions	whose	function	it	is	to	create	a	new	object,
such	as	PyInt_FromLong()	and	Py_BuildValue(),	pass	ownership	to
the	receiver.	Even	if	the	object	is	not	actually	new,	you	still	receive	ownership	of
a	new	reference	to	that	object.	For	instance,	PyInt_FromLong()	maintains	a
cache	of	popular	values	and	can	return	a	reference	to	a	cached	item.

Many	functions	that	extract	objects	from	other	objects	also	transfer	ownership
with	the	reference,	for	instance	PyObject_GetAttrString().	The	picture
is	less	clear,	here,	however,	since	a	few	common	routines	are	exceptions:
PyTuple_GetItem(),	PyList_GetItem(),	PyDict_GetItem(),	and
PyDict_GetItemString()	all	return	references	that	you	borrow	from	the
tuple,	list	or	dictionary.

The	function	PyImport_AddModule()	also	returns	a	borrowed	reference,
even	though	it	may	actually	create	the	object	it	returns:	this	is	possible	because
an	owned	reference	to	the	object	is	stored	in	sys.modules.

When	you	pass	an	object	reference	into	another	function,	in	general,	the	function
borrows	the	reference	from	you	--	if	it	needs	to	store	it,	it	will	use
Py_INCREF()	to	become	an	independent	owner.	There	are	exactly	two
important	exceptions	to	this	rule:	PyTuple_SetItem()	and
PyList_SetItem().	These	functions	take	over	ownership	of	the	item	passed
to	them	--	even	if	they	fail!	(Note	that	PyDict_SetItem()	and	friends	don't
take	over	ownership	--	they	are	``normal.'')

When	a	C	function	is	called	from	Python,	it	borrows	references	to	its	arguments
from	the	caller.	The	caller	owns	a	reference	to	the	object,	so	the	borrowed
reference's	lifetime	is	guaranteed	until	the	function	returns.	Only	when	such	a
borrowed	reference	must	be	stored	or	passed	on,	it	must	be	turned	into	an	owned
reference	by	calling	Py_INCREF().

The	object	reference	returned	from	a	C	function	that	is	called	from	Python	must
be	an	owned	reference	--	ownership	is	tranferred	from	the	function	to	its	caller.

Extending	and	Embedding	the	Python
Interpreter

Previous:	1.10.1	Reference	Counting	in	Up:	1.10	Reference	Counts	Next:
1.10.3	Thin	Ice

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.10.2	Ownership	Rules	Up:	1.10	Reference	Counts	Next:	1.10.4
NULL	Pointers

1.10.3	Thin	Ice
There	are	a	few	situations	where	seemingly	harmless	use	of	a	borrowed
reference	can	lead	to	problems.	These	all	have	to	do	with	implicit	invocations	of
the	interpreter,	which	can	cause	the	owner	of	a	reference	to	dispose	of	it.

The	first	and	most	important	case	to	know	about	is	using	Py_DECREF()	on	an
unrelated	object	while	borrowing	a	reference	to	a	list	item.	For	instance:

void

bug(PyObject	*list)

{

				PyObject	*item	=	PyList_GetItem(list,	0);

				PyList_SetItem(list,	1,	PyInt_FromLong(0L));

				PyObject_Print(item,	stdout,	0);	/*	BUG!	*/

}

This	function	first	borrows	a	reference	to	list[0],	then	replaces	list[1]
with	the	value	0,	and	finally	prints	the	borrowed	reference.	Looks	harmless,
right?	But	it's	not!

Let's	follow	the	control	flow	into	PyList_SetItem().	The	list	owns
references	to	all	its	items,	so	when	item	1	is	replaced,	it	has	to	dispose	of	the
original	item	1.	Now	let's	suppose	the	original	item	1	was	an	instance	of	a	user-
defined	class,	and	let's	further	suppose	that	the	class	defined	a	__del__()
method.	If	this	class	instance	has	a	reference	count	of	1,	disposing	of	it	will	call
its	__del__()	method.

Since	it	is	written	in	Python,	the	__del__()	method	can	execute	arbitrary
Python	code.	Could	it	perhaps	do	something	to	invalidate	the	reference	to	item
in	bug()?	You	bet!	Assuming	that	the	list	passed	into	bug()	is	accessible	to
the	__del__()	method,	it	could	execute	a	statement	to	the	effect	of	"del
list[0]",	and	assuming	this	was	the	last	reference	to	that	object,	it	would	free
the	memory	associated	with	it,	thereby	invalidating	item.

The	solution,	once	you	know	the	source	of	the	problem,	is	easy:	temporarily
increment	the	reference	count.	The	correct	version	of	the	function	reads:

void

no_bug(PyObject	*list)

{

				PyObject	*item	=	PyList_GetItem(list,	0);

				Py_INCREF(item);

				PyList_SetItem(list,	1,	PyInt_FromLong(0L));

				PyObject_Print(item,	stdout,	0);

				Py_DECREF(item);

}

This	is	a	true	story.	An	older	version	of	Python	contained	variants	of	this	bug
and	someone	spent	a	considerable	amount	of	time	in	a	C	debugger	to	figure	out
why	his	__del__()	methods	would	fail...

The	second	case	of	problems	with	a	borrowed	reference	is	a	variant	involving
threads.	Normally,	multiple	threads	in	the	Python	interpreter	can't	get	in	each
other's	way,	because	there	is	a	global	lock	protecting	Python's	entire	object
space.	However,	it	is	possible	to	temporarily	release	this	lock	using	the	macro
Py_BEGIN_ALLOW_THREADS,	and	to	re-acquire	it	using
Py_END_ALLOW_THREADS.	This	is	common	around	blocking	I/O	calls,	to
let	other	threads	use	the	processor	while	waiting	for	the	I/O	to	complete.
Obviously,	the	following	function	has	the	same	problem	as	the	previous	one:

void

bug(PyObject	*list)

{

				PyObject	*item	=	PyList_GetItem(list,	0);

				Py_BEGIN_ALLOW_THREADS

				...some	blocking	I/O	call...

				Py_END_ALLOW_THREADS

				PyObject_Print(item,	stdout,	0);	/*	BUG!	*/

}

Extending	and	Embedding	the	Python
Interpreter

Previous:	1.10.2	Ownership	Rules	Up:	1.10	Reference	Counts	Next:	1.10.4
NULL	Pointers

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.10.3	Thin	Ice	Up:	1.10	Reference	Counts	Next:	1.11	Writing
Extensions	in

1.10.4	NULL	Pointers
In	general,	functions	that	take	object	references	as	arguments	do	not	expect	you
to	pass	them	NULL	pointers,	and	will	dump	core	(or	cause	later	core	dumps)	if
you	do	so.	Functions	that	return	object	references	generally	return	NULL	only	to
indicate	that	an	exception	occurred.	The	reason	for	not	testing	for	NULL
arguments	is	that	functions	often	pass	the	objects	they	receive	on	to	other
function	--	if	each	function	were	to	test	for	NULL,	there	would	be	a	lot	of
redundant	tests	and	the	code	would	run	more	slowly.

It	is	better	to	test	for	NULL	only	at	the	``source:''	when	a	pointer	that	may	be
NULL	is	received,	for	example,	from	malloc()	or	from	a	function	that	may
raise	an	exception.

The	macros	Py_INCREF()	and	Py_DECREF()	do	not	check	for	NULL
pointers	--	however,	their	variants	Py_XINCREF()	and	Py_XDECREF()	do.

The	macros	for	checking	for	a	particular	object	type	(Pytype_Check())	don't
check	for	NULL	pointers	--	again,	there	is	much	code	that	calls	several	of	these
in	a	row	to	test	an	object	against	various	different	expected	types,	and	this	would
generate	redundant	tests.	There	are	no	variants	with	NULL	checking.

The	C	function	calling	mechanism	guarantees	that	the	argument	list	passed	to	C
functions	(args	in	the	examples)	is	never	NULL	--	in	fact	it	guarantees	that	it	is
always	a	tuple.1.4

It	is	a	severe	error	to	ever	let	a	NULL	pointer	``escape''	to	the	Python	user.

Footnotes

...	tuple.1.4
These	guarantees	don't	hold	when	you	use	the	``old''	style	calling
convention	--	this	is	still	found	in	much	existing	code.

Extending	and	Embedding	the	Python
Interpreter

Previous:	1.10.3	Thin	Ice	Up:	1.10	Reference	Counts	Next:	1.11	Writing
Extensions	in

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.10.4	NULL	Pointers	Up:	1.	Extending	Python	with	Next:	1.12
Providing	a	C

1.11	Writing	Extensions	in	C++
It	is	possible	to	write	extension	modules	in	C++.	Some	restrictions	apply.	If	the
main	program	(the	Python	interpreter)	is	compiled	and	linked	by	the	C	compiler,
global	or	static	objects	with	constructors	cannot	be	used.	This	is	not	a	problem	if
the	main	program	is	linked	by	the	C++	compiler.	Functions	that	will	be	called	by
the	Python	interpreter	(in	particular,	module	initalization	functions)	have	to	be
declared	using	extern	"C".	It	is	unnecessary	to	enclose	the	Python	header
files	in	extern	"C"	{...}	--	they	use	this	form	already	if	the	symbol
"__cplusplus"	is	defined	(all	recent	C++	compilers	define	this	symbol).

Extending	and	Embedding	the	Python
Interpreter

Previous:	1.10.4	NULL	Pointers	Up:	1.	Extending	Python	with	Next:	1.12
Providing	a	C

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.11	Writing	Extensions	in	Up:	1.	Extending	Python	with	Next:	2.
Defining	New	Types

1.12	Providing	a	C	API	for	an
Extension	Module
Many	extension	modules	just	provide	new	functions	and	types	to	be	used	from
Python,	but	sometimes	the	code	in	an	extension	module	can	be	useful	for	other
extension	modules.	For	example,	an	extension	module	could	implement	a	type
``collection''	which	works	like	lists	without	order.	Just	like	the	standard	Python
list	type	has	a	C	API	which	permits	extension	modules	to	create	and	manipulate
lists,	this	new	collection	type	should	have	a	set	of	C	functions	for	direct
manipulation	from	other	extension	modules.

At	first	sight	this	seems	easy:	just	write	the	functions	(without	declaring	them
static,	of	course),	provide	an	appropriate	header	file,	and	document	the	C
API.	And	in	fact	this	would	work	if	all	extension	modules	were	always	linked
statically	with	the	Python	interpreter.	When	modules	are	used	as	shared	libraries,
however,	the	symbols	defined	in	one	module	may	not	be	visible	to	another
module.	The	details	of	visibility	depend	on	the	operating	system;	some	systems
use	one	global	namespace	for	the	Python	interpreter	and	all	extension	modules
(Windows,	for	example),	whereas	others	require	an	explicit	list	of	imported
symbols	at	module	link	time	(AIX	is	one	example),	or	offer	a	choice	of	different
strategies	(most	Unices).	And	even	if	symbols	are	globally	visible,	the	module
whose	functions	one	wishes	to	call	might	not	have	been	loaded	yet!

Portability	therefore	requires	not	to	make	any	assumptions	about	symbol
visibility.	This	means	that	all	symbols	in	extension	modules	should	be	declared
static,	except	for	the	module's	initialization	function,	in	order	to	avoid	name
clashes	with	other	extension	modules	(as	discussed	in	section	1.4).	And	it	means
that	symbols	that	should	be	accessible	from	other	extension	modules	must	be
exported	in	a	different	way.

Python	provides	a	special	mechanism	to	pass	C-level	information	(pointers)
from	one	extension	module	to	another	one:	CObjects.	A	CObject	is	a	Python
data	type	which	stores	a	pointer	(void	*).	CObjects	can	only	be	created	and
accessed	via	their	C	API,	but	they	can	be	passed	around	like	any	other	Python
object.	In	particular,	they	can	be	assigned	to	a	name	in	an	extension	module's
namespace.	Other	extension	modules	can	then	import	this	module,	retrieve	the

value	of	this	name,	and	then	retrieve	the	pointer	from	the	CObject.

There	are	many	ways	in	which	CObjects	can	be	used	to	export	the	C	API	of	an
extension	module.	Each	name	could	get	its	own	CObject,	or	all	C	API	pointers
could	be	stored	in	an	array	whose	address	is	published	in	a	CObject.	And	the
various	tasks	of	storing	and	retrieving	the	pointers	can	be	distributed	in	different
ways	between	the	module	providing	the	code	and	the	client	modules.

The	following	example	demonstrates	an	approach	that	puts	most	of	the	burden
on	the	writer	of	the	exporting	module,	which	is	appropriate	for	commonly	used
library	modules.	It	stores	all	C	API	pointers	(just	one	in	the	example!)	in	an
array	of	void	pointers	which	becomes	the	value	of	a	CObject.	The	header	file
corresponding	to	the	module	provides	a	macro	that	takes	care	of	importing	the
module	and	retrieving	its	C	API	pointers;	client	modules	only	have	to	call	this
macro	before	accessing	the	C	API.

The	exporting	module	is	a	modification	of	the	spam	module	from	section	1.1.
The	function	spam.system()	does	not	call	the	C	library	function	system()
directly,	but	a	function	PySpam_System(),	which	would	of	course	do
something	more	complicated	in	reality	(such	as	adding	``spam''	to	every
command).	This	function	PySpam_System()	is	also	exported	to	other
extension	modules.

The	function	PySpam_System()	is	a	plain	C	function,	declared	static	like
everything	else:

static	int

PySpam_System(const	char	*command)

{

				return	system(command);

}

The	function	spam_system()	is	modified	in	a	trivial	way:

static	PyObject	*

spam_system(PyObject	*self,	PyObject	*args)

{

				const	char	*command;

				int	sts;

				if	(!PyArg_ParseTuple(args,	"s",	&command))

								return	NULL;

				sts	=	PySpam_System(command);

				return	Py_BuildValue("i",	sts);

}

In	the	beginning	of	the	module,	right	after	the	line

#include	"Python.h"

two	more	lines	must	be	added:

#define	SPAM_MODULE

#include	"spammodule.h"

The	#define	is	used	to	tell	the	header	file	that	it	is	being	included	in	the
exporting	module,	not	a	client	module.	Finally,	the	module's	initialization
function	must	take	care	of	initializing	the	C	API	pointer	array:

PyMODINIT_FUNC

initspam(void)

{

				PyObject	*m;

				static	void	*PySpam_API[PySpam_API_pointers];

				PyObject	*c_api_object;

				m	=	Py_InitModule("spam",	SpamMethods);

				/*	Initialize	the	C	API	pointer	array	*/

				PySpam_API[PySpam_System_NUM]	=	(void	*)PySpam_System;

				/*	Create	a	CObject	containing	the	API	pointer	array's	address	*/

				c_api_object	=	PyCObject_FromVoidPtr((void	*)PySpam_API,	NULL);

				if	(c_api_object	!=	NULL)

								PyModule_AddObject(m,	"_C_API",	c_api_object);

}

Note	that	PySpam_API	is	declared	static;	otherwise	the	pointer	array	would
disappear	when	initspam()	terminates!

The	bulk	of	the	work	is	in	the	header	file	spammodule.h,	which	looks	like	this:

#ifndef	Py_SPAMMODULE_H

#define	Py_SPAMMODULE_H

#ifdef	__cplusplus

extern	"C"	{

#endif

/*	Header	file	for	spammodule	*/

/*	C	API	functions	*/

#define	PySpam_System_NUM	0

#define	PySpam_System_RETURN	int

#define	PySpam_System_PROTO	(char	*command)

/*	Total	number	of	C	API	pointers	*/

#define	PySpam_API_pointers	1

#ifdef	SPAM_MODULE

/*	This	section	is	used	when	compiling	spammodule.c	*/

static	PySpam_System_RETURN	PySpam_System	PySpam_System_PROTO;

#else

/*	This	section	is	used	in	modules	that	use	spammodule's	API	*/

static	void	**PySpam_API;

#define	PySpam_System	\

	(*(PySpam_System_RETURN	(*)PySpam_System_PROTO)	PySpam_API[PySpam_System_NUM])

/*	Return	-1	and	set	exception	on	error,	0	on	success.	*/

static	int

import_spam(void)

{

				PyObject	*module	=	PyImport_ImportModule("spam");

				if	(module	!=	NULL)	{

								PyObject	*c_api_object	=	PyObject_GetAttrString(module,	"_C_API");

								if	(c_api_object	==	NULL)

												return	-1;

								if	(PyCObject_Check(c_api_object))

												PySpam_API	=	(void	**)PyCObject_AsVoidPtr(c_api_object);

								Py_DECREF(c_api_object);

				}

				return	0;

}

#endif

#ifdef	__cplusplus

}

#endif

#endif	/*	!defined(Py_SPAMMODULE_H)	*/

All	that	a	client	module	must	do	in	order	to	have	access	to	the	function
PySpam_System()	is	to	call	the	function	(or	rather	macro)
import_spam()	in	its	initialization	function:

PyMODINIT_FUNC

initclient(void)

{

				PyObject	*m;

				Py_InitModule("client",	ClientMethods);

				if	(import_spam()	<	0)

								return;

				/*	additional	initialization	can	happen	here	*/

}

The	main	disadvantage	of	this	approach	is	that	the	file	spammodule.h	is	rather
complicated.	However,	the	basic	structure	is	the	same	for	each	function	that	is
exported,	so	it	has	to	be	learned	only	once.

Finally	it	should	be	mentioned	that	CObjects	offer	additional	functionality,
which	is	especially	useful	for	memory	allocation	and	deallocation	of	the	pointer
stored	in	a	CObject.	The	details	are	described	in	the	Python/C	API	Reference
Manual	in	the	section	``CObjects''	and	in	the	implementation	of	CObjects	(files
Include/cobject.h	and	Objects/cobject.c	in	the	Python	source	code
distribution).

Extending	and	Embedding	the	Python
Interpreter

Previous:	1.11	Writing	Extensions	in	Up:	1.	Extending	Python	with	Next:	2.
Defining	New	Types

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.12	Providing	a	C	Up:	Extending	and	Embedding	the	Next:	2.1	The
Basics

2.	Defining	New	Types
As	mentioned	in	the	last	chapter,	Python	allows	the	writer	of	an	extension
module	to	define	new	types	that	can	be	manipulated	from	Python	code,	much
like	strings	and	lists	in	core	Python.

This	is	not	hard;	the	code	for	all	extension	types	follows	a	pattern,	but	there	are
some	details	that	you	need	to	understand	before	you	can	get	started.

Note: 	The	way	new	types	are	defined	changed	dramatically
(and	for	the	better)	in	Python	2.2.	This	document	documents	how
to	define	new	types	for	Python	2.2	and	later.	If	you	need	to
support	older	versions	of	Python,	you	will	need	to	refer	to	older
versions	of	this	documentation.

Subsections

2.1	The	Basics
2.1.1	Adding	data	and	methods	to	the	Basic	example
2.1.2	Providing	finer	control	over	data	attributes
2.1.3	Supporting	cyclic	garbage	collection

2.2	Type	Methods
2.2.1	Finalization	and	De-allocation
2.2.2	Object	Presentation
2.2.3	Attribute	Management

2.2.3.1	Generic	Attribute	Management
2.2.3.2	Type-specific	Attribute	Management

2.2.4	Object	Comparison
2.2.5	Abstract	Protocol	Support
2.2.6	More	Suggestions

Extending	and	Embedding	the	Python

Interpreter

Previous:	1.12	Providing	a	C	Up:	Extending	and	Embedding	the	Next:	2.1	The
Basics

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.	Defining	New	Types	Up:	2.	Defining	New	Types	Next:	2.1.1
Adding	data	and

2.1	The	Basics
The	Python	runtime	sees	all	Python	objects	as	variables	of	type	PyObject*.	A
PyObject	is	not	a	very	magnificent	object	-	it	just	contains	the	refcount	and	a
pointer	to	the	object's	``type	object''.	This	is	where	the	action	is;	the	type	object
determines	which	(C)	functions	get	called	when,	for	instance,	an	attribute	gets
looked	up	on	an	object	or	it	is	multiplied	by	another	object.	These	C	functions
are	called	``type	methods''	to	distinguish	them	from	things	like	[].append
(which	we	call	``object	methods'').

So,	if	you	want	to	define	a	new	object	type,	you	need	to	create	a	new	type	object.

This	sort	of	thing	can	only	be	explained	by	example,	so	here's	a	minimal,	but
complete,	module	that	defines	a	new	type:

#include	<Python.h>

typedef	struct	{

				PyObject_HEAD

				/*	Type-specific	fields	go	here.	*/

}	noddy_NoddyObject;

static	PyTypeObject	noddy_NoddyType	=	{

				PyObject_HEAD_INIT(NULL)

				0,																									/*ob_size*/

				"noddy.Noddy",													/*tp_name*/

				sizeof(noddy_NoddyObject),	/*tp_basicsize*/

				0,																									/*tp_itemsize*/

				0,																									/*tp_dealloc*/

				0,																									/*tp_print*/

				0,																									/*tp_getattr*/

				0,																									/*tp_setattr*/

				0,																									/*tp_compare*/

				0,																									/*tp_repr*/

				0,																									/*tp_as_number*/

				0,																									/*tp_as_sequence*/

				0,																									/*tp_as_mapping*/

				0,																									/*tp_hash	*/

				0,																									/*tp_call*/

				0,																									/*tp_str*/

				0,																									/*tp_getattro*/

				0,																									/*tp_setattro*/

				0,																									/*tp_as_buffer*/

				Py_TPFLAGS_DEFAULT,								/*tp_flags*/

				"Noddy	objects",											/*	tp_doc	*/

};

static	PyMethodDef	noddy_methods[]	=	{

				{NULL}		/*	Sentinel	*/

};

#ifndef	PyMODINIT_FUNC	 /*	declarations	for	DLL	import/export	*/

#define	PyMODINIT_FUNC	void

#endif

PyMODINIT_FUNC

initnoddy(void)	

{

				PyObject*	m;

				noddy_NoddyType.tp_new	=	PyType_GenericNew;

				if	(PyType_Ready(&noddy_NoddyType)	<	0)

								return;

				m	=	Py_InitModule3("noddy",	noddy_methods,

																							"Example	module	that	creates	an	extension	type.");

				Py_INCREF(&noddy_NoddyType);

				PyModule_AddObject(m,	"Noddy",	(PyObject	*)&noddy_NoddyType);

}

Download	as	text	(original	file	name:	noddy.c).

Now	that's	quite	a	bit	to	take	in	at	once,	but	hopefully	bits	will	seem	familiar
from	the	last	chapter.

The	first	bit	that	will	be	new	is:

typedef	struct	{

				PyObject_HEAD

}	noddy_NoddyObject;

This	is	what	a	Noddy	object	will	contain--in	this	case,	nothing	more	than	every
Python	object	contains,	namely	a	refcount	and	a	pointer	to	a	type	object.	These
are	the	fields	the	PyObject_HEAD	macro	brings	in.	The	reason	for	the	macro
is	to	standardize	the	layout	and	to	enable	special	debugging	fields	in	debug
builds.	Note	that	there	is	no	semicolon	after	the	PyObject_HEAD	macro;	one
is	included	in	the	macro	definition.	Be	wary	of	adding	one	by	accident;	it's	easy
to	do	from	habit,	and	your	compiler	might	not	complain,	but	someone	else's
probably	will!	(On	Windows,	MSVC	is	known	to	call	this	an	error	and	refuse	to
compile	the	code.)

For	contrast,	let's	take	a	look	at	the	corresponding	definition	for	standard	Python
integers:

typedef	struct	{

				PyObject_HEAD

				long	ob_ival;

}	PyIntObject;

Moving	on,	we	come	to	the	crunch	--	the	type	object.

static	PyTypeObject	noddy_NoddyType	=	{

				PyObject_HEAD_INIT(NULL)

				0,																									/*ob_size*/

				"noddy.Noddy",													/*tp_name*/

				sizeof(noddy_NoddyObject),	/*tp_basicsize*/

				0,																									/*tp_itemsize*/

				0,																									/*tp_dealloc*/

				0,																									/*tp_print*/

				0,																									/*tp_getattr*/

				0,																									/*tp_setattr*/

				0,																									/*tp_compare*/

				0,																									/*tp_repr*/

				0,																									/*tp_as_number*/

				0,																									/*tp_as_sequence*/

				0,																									/*tp_as_mapping*/

				0,																									/*tp_hash	*/

				0,																									/*tp_call*/

				0,																									/*tp_str*/

				0,																									/*tp_getattro*/

				0,																									/*tp_setattro*/

				0,																									/*tp_as_buffer*/

				Py_TPFLAGS_DEFAULT,								/*tp_flags*/

				"Noddy	objects",											/*	tp_doc	*/

};

Now	if	you	go	and	look	up	the	definition	of	PyTypeObject	in	object.h	you'll
see	that	it	has	many	more	fields	that	the	definition	above.	The	remaining	fields
will	be	filled	with	zeros	by	the	C	compiler,	and	it's	common	practice	to	not
specify	them	explicitly	unless	you	need	them.

This	is	so	important	that	we're	going	to	pick	the	top	of	it	apart	still	further:

				PyObject_HEAD_INIT(NULL)

This	line	is	a	bit	of	a	wart;	what	we'd	like	to	write	is:

				PyObject_HEAD_INIT(&PyType_Type)

as	the	type	of	a	type	object	is	``type'',	but	this	isn't	strictly	conforming	C	and
some	compilers	complain.	Fortunately,	this	member	will	be	filled	in	for	us	by
PyType_Ready().

				0,																										/*	ob_size	*/

The	ob_size	field	of	the	header	is	not	used;	its	presence	in	the	type	structure	is
a	historical	artifact	that	is	maintained	for	binary	compatibility	with	extension
modules	compiled	for	older	versions	of	Python.	Always	set	this	field	to	zero.

				"noddy.Noddy",														/*	tp_name	*/

The	name	of	our	type.	This	will	appear	in	the	default	textual	representation	of
our	objects	and	in	some	error	messages,	for	example:

>>>	""	+	noddy.new_noddy()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

TypeError:	cannot	add	type	"noddy.Noddy"	to	string

Note	that	the	name	is	a	dotted	name	that	includes	both	the	module	name	and	the
name	of	the	type	within	the	module.	The	module	in	this	case	is	noddy	and	the
type	is	Noddy,	so	we	set	the	type	name	to	noddy.Noddy.

				sizeof(noddy_NoddyObject),		/*	tp_basicsize	*/

This	is	so	that	Python	knows	how	much	memory	to	allocate	when	you	call
PyObject_New().

Note:	If	you	want	your	type	to	be	subclassable	from	Python,	and	your	type	has
the	same	tp_basicsize	as	its	base	type,	you	may	have	problems	with
multiple	inheritance.	A	Python	subclass	of	your	type	will	have	to	list	your	type
first	in	its	__bases__,	or	else	it	will	not	be	able	to	call	your	type's	__new__
method	without	getting	an	error.	You	can	avoid	this	problem	by	ensuring	that
your	type	has	a	larger	value	for	tp_basicsize	than	its	base	type	does.	Most
of	the	time,	this	will	be	true	anyway,	because	either	your	base	type	will	be
object,	or	else	you	will	be	adding	data	members	to	your	base	type,	and
therefore	increasing	its	size.

				0,																										/*	tp_itemsize	*/

This	has	to	do	with	variable	length	objects	like	lists	and	strings.	Ignore	this	for

now.

Skipping	a	number	of	type	methods	that	we	don't	provide,	we	set	the	class	flags
to	Py_TPFLAGS_DEFAULT.

				Py_TPFLAGS_DEFAULT,								/*tp_flags*/

All	types	should	include	this	constant	in	their	flags.	It	enables	all	of	the	members
defined	by	the	current	version	of	Python.

We	provide	a	doc	string	for	the	type	in	tp_doc.

				"Noddy	objects",											/*	tp_doc	*/

Now	we	get	into	the	type	methods,	the	things	that	make	your	objects	different
from	the	others.	We	aren't	going	to	implement	any	of	these	in	this	version	of	the
module.	We'll	expand	this	example	later	to	have	more	interesting	behavior.

For	now,	all	we	want	to	be	able	to	do	is	to	create	new	Noddy	objects.	To	enable
object	creation,	we	have	to	provide	a	tp_new	implementation.	In	this	case,	we
can	just	use	the	default	implementation	provided	by	the	API	function
PyType_GenericNew().	We'd	like	to	just	assign	this	to	the	tp_new	slot,
but	we	can't,	for	portability	sake,	On	some	platforms	or	compilers,	we	can't
statically	initialize	a	structure	member	with	a	function	defined	in	another	C
module,	so,	instead,	we'll	assign	the	tp_new	slot	in	the	module	initialization
function	just	before	calling	PyType_Ready():

				noddy_NoddyType.tp_new	=	PyType_GenericNew;

				if	(PyType_Ready(&noddy_NoddyType)	<	0)

								return;

All	the	other	type	methods	are	NULL,	so	we'll	go	over	them	later	--	that's	for	a
later	section!

Everything	else	in	the	file	should	be	familiar,	except	for	some	code	in
initnoddy():

				if	(PyType_Ready(&noddy_NoddyType)	<	0)

								return;

This	initializes	the	Noddy	type,	filing	in	a	number	of	members,	including
ob_type	that	we	initially	set	to	NULL.

				PyModule_AddObject(m,	"Noddy",	(PyObject	*)&noddy_NoddyType);

This	adds	the	type	to	the	module	dictionary.	This	allows	us	to	create	Noddy
instances	by	calling	the	Noddy	class:

>>>	import	noddy

>>>	mynoddy	=	noddy.Noddy()

That's	it!	All	that	remains	is	to	build	it;	put	the	above	code	in	a	file	called
noddy.c	and

from	distutils.core	import	setup,	Extension

setup(name="noddy",	version="1.0",

						ext_modules=[Extension("noddy",	["noddy.c"])])

in	a	file	called	setup.py;	then	typing

$	python	setup.py	build

at	a	shell	should	produce	a	file	noddy.so	in	a	subdirectory;	move	to	that
directory	and	fire	up	Python	--	you	should	be	able	to	import	noddy	and	play
around	with	Noddy	objects.

That	wasn't	so	hard,	was	it?

Of	course,	the	current	Noddy	type	is	pretty	uninteresting.	It	has	no	data	and
doesn't	do	anything.	It	can't	even	be	subclassed.

Subsections

2.1.1	Adding	data	and	methods	to	the	Basic	example
2.1.2	Providing	finer	control	over	data	attributes
2.1.3	Supporting	cyclic	garbage	collection

Extending	and	Embedding	the	Python
Interpreter

Previous:	2.	Defining	New	Types	Up:	2.	Defining	New	Types	Next:	2.1.1
Adding	data	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1	The	Basics	Up:	2.1	The	Basics	Next:	2.1.2	Providing	finer
control

2.1.1	Adding	data	and	methods	to	the	Basic
example
Let's	expend	the	basic	example	to	add	some	data	and	methods.	Let's	also	make
the	type	usable	as	a	base	class.	We'll	create	a	new	module,	noddy2	that	adds
these	capabilities:

#include	<Python.h>

#include	"structmember.h"

typedef	struct	{

				PyObject_HEAD

				PyObject	*first;

				PyObject	*last;

				int	number;

}	Noddy;

static	void

Noddy_dealloc(Noddy*	self)

{

				Py_XDECREF(self->first);

				Py_XDECREF(self->last);

				self->ob_type->tp_free((PyObject*)self);

}

static	PyObject	*

Noddy_new(PyTypeObject	*type,	PyObject	*args,	PyObject	*kwds)

{

				Noddy	*self;

				self	=	(Noddy	*)type->tp_alloc(type,	0);

				if	(self	!=	NULL)	{

								self->first	=	PyString_FromString("");

								if	(self->first	==	NULL)

										{

												Py_DECREF(self);

												return	NULL;

										}

								

								self->last	=	PyString_FromString("");

								if	(self->last	==	NULL)

										{

												Py_DECREF(self);

												return	NULL;

										}

								self->number	=	0;

				}

				return	(PyObject	*)self;

}

static	int

Noddy_init(Noddy	*self,	PyObject	*args,	PyObject	*kwds)

{

				PyObject	*first=NULL,	*last=NULL,	*tmp;

				static	char	*kwlist[]	=	{"first",	"last",	"number",	NULL};

				if	(!	PyArg_ParseTupleAndKeywords(args,	kwds,	"|OOi",	kwlist,	

																																						&first,	&last,	

																																						&self->number))

								return	-1;	

				if	(first)	{

								tmp	=	self->first;

								Py_INCREF(first);

								self->first	=	first;

								Py_XDECREF(tmp);

				}

				if	(last)	{

								tmp	=	self->last;

								Py_INCREF(last);

								self->last	=	last;

								Py_XDECREF(tmp);

				}

				return	0;

}

static	PyMemberDef	Noddy_members[]	=	{

				{"first",	T_OBJECT_EX,	offsetof(Noddy,	first),	0,

					"first	name"},

				{"last",	T_OBJECT_EX,	offsetof(Noddy,	last),	0,

					"last	name"},

				{"number",	T_INT,	offsetof(Noddy,	number),	0,

					"noddy	number"},

				{NULL}		/*	Sentinel	*/

};

static	PyObject	*

Noddy_name(Noddy*	self)

{

				static	PyObject	*format	=	NULL;

				PyObject	*args,	*result;

				if	(format	==	NULL)	{

								format	=	PyString_FromString("%s	%s");

								if	(format	==	NULL)

												return	NULL;

				}

				if	(self->first	==	NULL)	{

								PyErr_SetString(PyExc_AttributeError,	"first");

								return	NULL;

				}

				if	(self->last	==	NULL)	{

								PyErr_SetString(PyExc_AttributeError,	"last");

								return	NULL;

				}

				args	=	Py_BuildValue("OO",	self->first,	self->last);

				if	(args	==	NULL)

								return	NULL;

				result	=	PyString_Format(format,	args);

				Py_DECREF(args);

				

				return	result;

}

static	PyMethodDef	Noddy_methods[]	=	{

				{"name",	(PyCFunction)Noddy_name,	METH_NOARGS,

					"Return	the	name,	combining	the	first	and	last	name"

				},

				{NULL}		/*	Sentinel	*/

};

static	PyTypeObject	NoddyType	=	{

				PyObject_HEAD_INIT(NULL)

				0,																									/*ob_size*/

				"noddy.Noddy",													/*tp_name*/

				sizeof(Noddy),													/*tp_basicsize*/

				0,																									/*tp_itemsize*/

				(destructor)Noddy_dealloc,	/*tp_dealloc*/

				0,																									/*tp_print*/

				0,																									/*tp_getattr*/

				0,																									/*tp_setattr*/

				0,																									/*tp_compare*/

				0,																									/*tp_repr*/

				0,																									/*tp_as_number*/

				0,																									/*tp_as_sequence*/

				0,																									/*tp_as_mapping*/

				0,																									/*tp_hash	*/

				0,																									/*tp_call*/

				0,																									/*tp_str*/

				0,																									/*tp_getattro*/

				0,																									/*tp_setattro*/

				0,																									/*tp_as_buffer*/

				Py_TPFLAGS_DEFAULT	|	Py_TPFLAGS_BASETYPE,	/*tp_flags*/

				"Noddy	objects",											/*	tp_doc	*/

				0,	 	 															/*	tp_traverse	*/

				0,	 	 															/*	tp_clear	*/

				0,	 	 															/*	tp_richcompare	*/

				0,	 	 															/*	tp_weaklistoffset	*/

				0,	 	 															/*	tp_iter	*/

				0,	 	 															/*	tp_iternext	*/

				Noddy_methods,													/*	tp_methods	*/

				Noddy_members,													/*	tp_members	*/

				0,																									/*	tp_getset	*/

				0,																									/*	tp_base	*/

				0,																									/*	tp_dict	*/

				0,																									/*	tp_descr_get	*/

				0,																									/*	tp_descr_set	*/

				0,																									/*	tp_dictoffset	*/

				(initproc)Noddy_init,						/*	tp_init	*/

				0,																									/*	tp_alloc	*/

				Noddy_new,																	/*	tp_new	*/

};

static	PyMethodDef	module_methods[]	=	{

				{NULL}		/*	Sentinel	*/

};

#ifndef	PyMODINIT_FUNC	 /*	declarations	for	DLL	import/export	*/

#define	PyMODINIT_FUNC	void

#endif

PyMODINIT_FUNC

initnoddy2(void)	

{

				PyObject*	m;

				if	(PyType_Ready(&NoddyType)	<	0)

								return;

				m	=	Py_InitModule3("noddy2",	module_methods,

																							"Example	module	that	creates	an	extension	type.");

				if	(m	==	NULL)

						return;

				Py_INCREF(&NoddyType);

				PyModule_AddObject(m,	"Noddy",	(PyObject	*)&NoddyType);

}

Download	as	text	(original	file	name:	noddy2.c).

This	version	of	the	module	has	a	number	of	changes.

We've	added	an	extra	include:

#include	"structmember.h"

This	include	provides	declarations	that	we	use	to	handle	attributes,	as	described
a	bit	later.

The	name	of	the	Noddy	object	structure	has	been	shortened	to	Noddy.	The	type
object	name	has	been	shortened	to	NoddyType.

The	Noddy	type	now	has	three	data	attributes,	first,	last,	and	number.	The	first
and	last	variables	are	Python	strings	containing	first	and	last	names.	The	number
attribute	is	an	integer.

The	object	structure	is	updated	accordingly:

typedef	struct	{

				PyObject_HEAD

				PyObject	*first;

				PyObject	*last;

				int	number;

}	Noddy;

Because	we	now	have	data	to	manage,	we	have	to	be	more	careful	about	object
allocation	and	deallocation.	At	a	minimum,	we	need	a	deallocation	method:

static	void

Noddy_dealloc(Noddy*	self)

{

				Py_XDECREF(self->first);

				Py_XDECREF(self->last);

				self->ob_type->tp_free((PyObject*)self);

}

which	is	assigned	to	the	tp_dealloc	member:

				(destructor)Noddy_dealloc,	/*tp_dealloc*/

This	method	decrements	the	reference	counts	of	the	two	Python	attributes.	We
use	Py_XDECREF()	here	because	the	first	and	last	members	could	be
NULL.	It	then	calls	the	tp_free	member	of	the	object's	type	to	free	the	object's
memory.	Note	that	the	object's	type	might	not	be	NoddyType,	because	the
object	may	be	an	instance	of	a	subclass.

We	want	to	make	sure	that	the	first	and	last	names	are	initialized	to	empty
strings,	so	we	provide	a	new	method:

static	PyObject	*

Noddy_new(PyTypeObject	*type,	PyObject	*args,	PyObject	*kwds)

{

				Noddy	*self;

				self	=	(Noddy	*)type->tp_alloc(type,	0);

				if	(self	!=	NULL)	{

								self->first	=	PyString_FromString("");

								if	(self->first	==	NULL)

										{

												Py_DECREF(self);

												return	NULL;

										}

								self->last	=	PyString_FromString("");

								if	(self->last	==	NULL)

										{

												Py_DECREF(self);

												return	NULL;

										}

								self->number	=	0;

				}

				return	(PyObject	*)self;

}

and	install	it	in	the	tp_new	member:

				Noddy_new,																	/*	tp_new	*/

The	new	member	is	responsible	for	creating	(as	opposed	to	initializing)	objects
of	the	type.	It	is	exposed	in	Python	as	the	__new__()	method.	See	the	paper
titled	``Unifying	types	and	classes	in	Python''	for	a	detailed	discussion	of	the
__new__()	method.	One	reason	to	implement	a	new	method	is	to	assure	the
initial	values	of	instance	variables.	In	this	case,	we	use	the	new	method	to	make
sure	that	the	initial	values	of	the	members	first	and	last	are	not	NULL.	If
we	didn't	care	whether	the	initial	values	were	NULL,	we	could	have	used
PyType_GenericNew()	as	our	new	method,	as	we	did	before.
PyType_GenericNew()	initializes	all	of	the	instance	variable	members	to
NULL.

The	new	method	is	a	static	method	that	is	passed	the	type	being	instantiated	and
any	arguments	passed	when	the	type	was	called,	and	that	returns	the	new	object
created.	New	methods	always	accept	positional	and	keyword	arguments,	but
they	often	ignore	the	arguments,	leaving	the	argument	handling	to	initializer

methods.	Note	that	if	the	type	supports	subclassing,	the	type	passed	may	not	be
the	type	being	defined.	The	new	method	calls	the	tp_alloc	slot	to	allocate
memory.	We	don't	fill	the	tp_alloc	slot	ourselves.	Rather
PyType_Ready()	fills	it	for	us	by	inheriting	it	from	our	base	class,	which	is
object	by	default.	Most	types	use	the	default	allocation.

Note:	If	you	are	creating	a	co-operative	tp_new	(one	that	calls	a	base	type's
tp_new	or	__new__),	you	must	not	try	to	determine	what	method	to	call	using
method	resolution	order	at	runtime.	Always	statically	determine	what	type	you
are	going	to	call,	and	call	its	tp_new	directly,	or	via	type->tp_base-
>tp_new.	If	you	do	not	do	this,	Python	subclasses	of	your	type	that	also	inherit
from	other	Python-defined	classes	may	not	work	correctly.	(Specifically,	you
may	not	be	able	to	create	instances	of	such	subclasses	without	getting	a
TypeError.)

We	provide	an	initialization	function:

static	int

Noddy_init(Noddy	*self,	PyObject	*args,	PyObject	*kwds)

{

				PyObject	*first=NULL,	*last=NULL,	*tmp;

				static	char	*kwlist[]	=	{"first",	"last",	"number",	NULL};

				if	(!	PyArg_ParseTupleAndKeywords(args,	kwds,	"|OOi",	kwlist,

																																						&first,	&last,

																																						&self->number))

								return	-1;

				if	(first)	{

								tmp	=	self->first;

								Py_INCREF(first);

								self->first	=	first;

								Py_XDECREF(tmp);

				}

				if	(last)	{

								tmp	=	self->last;

								Py_INCREF(last);

								self->last	=	last;

								Py_XDECREF(tmp);

				}

				return	0;

}

by	filling	the	tp_init	slot.

				(initproc)Noddy_init,									/*	tp_init	*/

The	tp_init	slot	is	exposed	in	Python	as	the	__init__()	method.	It	is	used
to	initialize	an	object	after	it's	created.	Unlike	the	new	method,	we	can't
guarantee	that	the	initializer	is	called.	The	initializer	isn't	called	when	unpickling
objects	and	it	can	be	overridden.	Our	initializer	accepts	arguments	to	provide
initial	values	for	our	instance.	Initializers	always	accept	positional	and	keyword
arguments.

Initializers	can	be	called	multiple	times.	Anyone	can	call	the	__init__()
method	on	our	objects.	For	this	reason,	we	have	to	be	extra	careful	when
assigning	the	new	values.	We	might	be	tempted,	for	example	to	assign	the
first	member	like	this:

				if	(first)	{

								Py_XDECREF(self->first);

								Py_INCREF(first);

								self->first	=	first;

				}

But	this	would	be	risky.	Our	type	doesn't	restrict	the	type	of	the	first	member,
so	it	could	be	any	kind	of	object.	It	could	have	a	destructor	that	causes	code	to	be
executed	that	tries	to	access	the	first	member.	To	be	paranoid	and	protect
ourselves	against	this	possibility,	we	almost	always	reassign	members	before
decrementing	their	reference	counts.	When	don't	we	have	to	do	this?

when	we	absolutely	know	that	the	reference	count	is	greater	than	1
when	we	know	that	deallocation	of	the	object2.1	will	not	cause	any	calls
back	into	our	type's	code
when	decrementing	a	reference	count	in	a	tp_dealloc	handler	when
garbage-collections	is	not	supported2.2

We	want	to	want	to	expose	our	instance	variables	as	attributes.	There	are	a
number	of	ways	to	do	that.	The	simplest	way	is	to	define	member	definitions:

static	PyMemberDef	Noddy_members[]	=	{

				{"first",	T_OBJECT_EX,	offsetof(Noddy,	first),	0,

					"first	name"},

				{"last",	T_OBJECT_EX,	offsetof(Noddy,	last),	0,

					"last	name"},

				{"number",	T_INT,	offsetof(Noddy,	number),	0,

					"noddy	number"},

				{NULL}		/*	Sentinel	*/

};

and	put	the	definitions	in	the	tp_members	slot:

				Noddy_members,													/*	tp_members	*/

Each	member	definition	has	a	member	name,	type,	offset,	access	flags	and
documentation	string.	See	the	``Generic	Attribute	Management''	section	below
for	details.

A	disadvantage	of	this	approach	is	that	it	doesn't	provide	a	way	to	restrict	the
types	of	objects	that	can	be	assigned	to	the	Python	attributes.	We	expect	the	first
and	last	names	to	be	strings,	but	any	Python	objects	can	be	assigned.	Further,	the
attributes	can	be	deleted,	setting	the	C	pointers	to	NULL.	Even	though	we	can
make	sure	the	members	are	initialized	to	non-NULL	values,	the	members	can	be
set	to	NULL	if	the	attributes	are	deleted.

We	define	a	single	method,	name,	that	outputs	the	objects	name	as	the
concatenation	of	the	first	and	last	names.

static	PyObject	*

Noddy_name(Noddy*	self)

{

				static	PyObject	*format	=	NULL;

				PyObject	*args,	*result;

				if	(format	==	NULL)	{

								format	=	PyString_FromString("%s	%s");

								if	(format	==	NULL)

												return	NULL;

				}

				if	(self->first	==	NULL)	{

								PyErr_SetString(PyExc_AttributeError,	"first");

								return	NULL;

				}

				if	(self->last	==	NULL)	{

								PyErr_SetString(PyExc_AttributeError,	"last");

								return	NULL;

				}

				args	=	Py_BuildValue("OO",	self->first,	self->last);

				if	(args	==	NULL)

								return	NULL;

				result	=	PyString_Format(format,	args);

				Py_DECREF(args);

				return	result;

}

The	method	is	implemented	as	a	C	function	that	takes	a	Noddy	(or	Noddy
subclass)	instance	as	the	first	argument.	Methods	always	take	an	instance	as	the
first	argument.	Methods	often	take	positional	and	keyword	arguments	as	well,
but	in	this	cased	we	don't	take	any	and	don't	need	to	accept	a	positional	argument
tuple	or	keyword	argument	dictionary.	This	method	is	equivalent	to	the	Python
method:

				def	name(self):

							return	"%s	%s"	%	(self.first,	self.last)

Note	that	we	have	to	check	for	the	possibility	that	our	first	and	last
members	are	NULL.	This	is	because	they	can	be	deleted,	in	which	case	they	are
set	to	NULL.	It	would	be	better	to	prevent	deletion	of	these	attributes	and	to
restrict	the	attribute	values	to	be	strings.	We'll	see	how	to	do	that	in	the	next
section.

Now	that	we've	defined	the	method,	we	need	to	create	an	array	of	method
definitions:

static	PyMethodDef	Noddy_methods[]	=	{

				{"name",	(PyCFunction)Noddy_name,	METH_NOARGS,

					"Return	the	name,	combining	the	first	and	last	name"

				},

				{NULL}		/*	Sentinel	*/

};

and	assign	them	to	the	tp_methods	slot:

				Noddy_methods,													/*	tp_methods	*/

Note	that	we	used	the	METH_NOARGS	flag	to	indicate	that	the	method	is	passed
no	arguments.

Finally,	we'll	make	our	type	usable	as	a	base	class.	We've	written	our	methods
carefully	so	far	so	that	they	don't	make	any	assumptions	about	the	type	of	the

object	being	created	or	used,	so	all	we	need	to	do	is	to	add	the
Py_TPFLAGS_BASETYPE	to	our	class	flag	definition:

				Py_TPFLAGS_DEFAULT	|	Py_TPFLAGS_BASETYPE,	/*tp_flags*/

We	rename	initnoddy()	to	initnoddy2()	and	update	the	module	name
passed	to	Py_InitModule3().

Finally,	we	update	our	setup.py	file	to	build	the	new	module:

from	distutils.core	import	setup,	Extension

setup(name="noddy",	version="1.0",

						ext_modules=[

									Extension("noddy",	["noddy.c"]),

									Extension("noddy2",	["noddy2.c"]),

])

Footnotes

...	object2.1
This	is	true	when	we	know	that	the	object	is	a	basic	type,	like	a	string	or	a
float

...	supported2.2
We	relied	on	this	in	the	tp_dealloc	handler	in	this	example,	because	our
type	doesn't	support	garbage	collection.	Even	if	a	type	supports	garbage
collection,	there	are	calls	that	can	be	made	to	``untrack''	the	object	from
garbage	collection,	however,	these	calls	are	advanced	and	not	covered	here.

Extending	and	Embedding	the	Python
Interpreter

Previous:	2.1	The	Basics	Up:	2.1	The	Basics	Next:	2.1.2	Providing	finer
control

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1.1	Adding	data	and	Up:	2.1	The	Basics	Next:	2.1.3	Supporting
cyclic	garbage

2.1.2	Providing	finer	control	over	data	attributes
In	this	section,	we'll	provide	finer	control	over	how	the	first	and	last
attributes	are	set	in	the	Noddy	example.	In	the	previous	version	of	our	module,
the	instance	variables	first	and	last	could	be	set	to	non-string	values	or
even	deleted.	We	want	to	make	sure	that	these	attributes	always	contain	strings.

#include	<Python.h>

#include	"structmember.h"

typedef	struct	{

				PyObject_HEAD

				PyObject	*first;

				PyObject	*last;

				int	number;

}	Noddy;

static	void

Noddy_dealloc(Noddy*	self)

{

				Py_XDECREF(self->first);

				Py_XDECREF(self->last);

				self->ob_type->tp_free((PyObject*)self);

}

static	PyObject	*

Noddy_new(PyTypeObject	*type,	PyObject	*args,	PyObject	*kwds)

{

				Noddy	*self;

				self	=	(Noddy	*)type->tp_alloc(type,	0);

				if	(self	!=	NULL)	{

								self->first	=	PyString_FromString("");

								if	(self->first	==	NULL)

										{

												Py_DECREF(self);

												return	NULL;

										}

								

								self->last	=	PyString_FromString("");

								if	(self->last	==	NULL)

										{

												Py_DECREF(self);

												return	NULL;

										}

								self->number	=	0;

				}

				return	(PyObject	*)self;

}

static	int

Noddy_init(Noddy	*self,	PyObject	*args,	PyObject	*kwds)

{

				PyObject	*first=NULL,	*last=NULL,	*tmp;

				static	char	*kwlist[]	=	{"first",	"last",	"number",	NULL};

				if	(!	PyArg_ParseTupleAndKeywords(args,	kwds,	"|SSi",	kwlist,	

																																						&first,	&last,	

																																						&self->number))

								return	-1;	

				if	(first)	{

								tmp	=	self->first;

								Py_INCREF(first);

								self->first	=	first;

								Py_DECREF(tmp);

				}

				if	(last)	{

								tmp	=	self->last;

								Py_INCREF(last);

								self->last	=	last;

								Py_DECREF(tmp);

				}

				return	0;

}

static	PyMemberDef	Noddy_members[]	=	{

				{"number",	T_INT,	offsetof(Noddy,	number),	0,

					"noddy	number"},

				{NULL}		/*	Sentinel	*/

};

static	PyObject	*

Noddy_getfirst(Noddy	*self,	void	*closure)

{

				Py_INCREF(self->first);

				return	self->first;

}

static	int

Noddy_setfirst(Noddy	*self,	PyObject	*value,	void	*closure)

{

		if	(value	==	NULL)	{

				PyErr_SetString(PyExc_TypeError,	"Cannot	delete	the	first	attribute");

				return	-1;

		}

		

		if	(!	PyString_Check(value))	{

				PyErr_SetString(PyExc_TypeError,	

																				"The	first	attribute	value	must	be	a	string");

				return	-1;

		}

						

		Py_DECREF(self->first);

		Py_INCREF(value);

		self->first	=	value;				

		return	0;

}

static	PyObject	*

Noddy_getlast(Noddy	*self,	void	*closure)

{

				Py_INCREF(self->last);

				return	self->last;

}

static	int

Noddy_setlast(Noddy	*self,	PyObject	*value,	void	*closure)

{

		if	(value	==	NULL)	{

				PyErr_SetString(PyExc_TypeError,	"Cannot	delete	the	last	attribute");

				return	-1;

		}

		

		if	(!	PyString_Check(value))	{

				PyErr_SetString(PyExc_TypeError,	

																				"The	last	attribute	value	must	be	a	string");

				return	-1;

		}

						

		Py_DECREF(self->last);

		Py_INCREF(value);

		self->last	=	value;				

		return	0;

}

static	PyGetSetDef	Noddy_getseters[]	=	{

				{"first",	

					(getter)Noddy_getfirst,	(setter)Noddy_setfirst,

					"first	name",

					NULL},

				{"last",	

					(getter)Noddy_getlast,	(setter)Noddy_setlast,

					"last	name",

					NULL},

				{NULL}		/*	Sentinel	*/

};

static	PyObject	*

Noddy_name(Noddy*	self)

{

				static	PyObject	*format	=	NULL;

				PyObject	*args,	*result;

				if	(format	==	NULL)	{

								format	=	PyString_FromString("%s	%s");

								if	(format	==	NULL)

												return	NULL;

				}

				args	=	Py_BuildValue("OO",	self->first,	self->last);

				if	(args	==	NULL)

								return	NULL;

				result	=	PyString_Format(format,	args);

				Py_DECREF(args);

				

				return	result;

}

static	PyMethodDef	Noddy_methods[]	=	{

				{"name",	(PyCFunction)Noddy_name,	METH_NOARGS,

					"Return	the	name,	combining	the	first	and	last	name"

				},

				{NULL}		/*	Sentinel	*/

};

static	PyTypeObject	NoddyType	=	{

				PyObject_HEAD_INIT(NULL)

				0,																									/*ob_size*/

				"noddy.Noddy",													/*tp_name*/

				sizeof(Noddy),													/*tp_basicsize*/

				0,																									/*tp_itemsize*/

				(destructor)Noddy_dealloc,	/*tp_dealloc*/

				0,																									/*tp_print*/

				0,																									/*tp_getattr*/

				0,																									/*tp_setattr*/

				0,																									/*tp_compare*/

				0,																									/*tp_repr*/

				0,																									/*tp_as_number*/

				0,																									/*tp_as_sequence*/

				0,																									/*tp_as_mapping*/

				0,																									/*tp_hash	*/

				0,																									/*tp_call*/

				0,																									/*tp_str*/

				0,																									/*tp_getattro*/

				0,																									/*tp_setattro*/

				0,																									/*tp_as_buffer*/

				Py_TPFLAGS_DEFAULT	|	Py_TPFLAGS_BASETYPE,	/*tp_flags*/

				"Noddy	objects",											/*	tp_doc	*/

				0,	 	 															/*	tp_traverse	*/

				0,	 	 															/*	tp_clear	*/

				0,	 	 															/*	tp_richcompare	*/

				0,	 	 															/*	tp_weaklistoffset	*/

				0,	 	 															/*	tp_iter	*/

				0,	 	 															/*	tp_iternext	*/

				Noddy_methods,													/*	tp_methods	*/

				Noddy_members,													/*	tp_members	*/

				Noddy_getseters,											/*	tp_getset	*/

				0,																									/*	tp_base	*/

				0,																									/*	tp_dict	*/

				0,																									/*	tp_descr_get	*/

				0,																									/*	tp_descr_set	*/

				0,																									/*	tp_dictoffset	*/

				(initproc)Noddy_init,						/*	tp_init	*/

				0,																									/*	tp_alloc	*/

				Noddy_new,																	/*	tp_new	*/

};

static	PyMethodDef	module_methods[]	=	{

				{NULL}		/*	Sentinel	*/

};

#ifndef	PyMODINIT_FUNC	 /*	declarations	for	DLL	import/export	*/

#define	PyMODINIT_FUNC	void

#endif

PyMODINIT_FUNC

initnoddy3(void)	

{

				PyObject*	m;

				if	(PyType_Ready(&NoddyType)	<	0)

								return;

				m	=	Py_InitModule3("noddy3",	module_methods,

																							"Example	module	that	creates	an	extension	type.");

				if	(m	==	NULL)

						return;

				Py_INCREF(&NoddyType);

				PyModule_AddObject(m,	"Noddy",	(PyObject	*)&NoddyType);

}

Download	as	text	(original	file	name:	noddy3.c).

To	provide	greater	control,	over	the	first	and	last	attributes,	we'll	use
custom	getter	and	setter	functions.	Here	are	the	functions	for	getting	and	setting

the	first	attribute:

Noddy_getfirst(Noddy	*self,	void	*closure)

{

				Py_INCREF(self->first);

				return	self->first;

}

static	int

Noddy_setfirst(Noddy	*self,	PyObject	*value,	void	*closure)

{

		if	(value	==	NULL)	{

				PyErr_SetString(PyExc_TypeError,	"Cannot	delete	the	first	attribute");

				return	-1;

		}

		if	(!	PyString_Check(value))	{

				PyErr_SetString(PyExc_TypeError,

																				"The	first	attribute	value	must	be	a	string");

				return	-1;

		}

		Py_DECREF(self->first);

		Py_INCREF(value);

		self->first	=	value;

		return	0;

}

The	getter	function	is	passed	a	Noddy	object	and	a	``closure'',	which	is	void
pointer.	In	this	case,	the	closure	is	ignored.	(The	closure	supports	an	advanced
usage	in	which	definition	data	is	passed	to	the	getter	and	setter.	This	could,	for
example,	be	used	to	allow	a	single	set	of	getter	and	setter	functions	that	decide
the	attribute	to	get	or	set	based	on	data	in	the	closure.)

The	setter	function	is	passed	the	Noddy	object,	the	new	value,	and	the	closure.
The	new	value	may	be	NULL,	in	which	case	the	attribute	is	being	deleted.	In	our
setter,	we	raise	an	error	if	the	attribute	is	deleted	or	if	the	attribute	value	is	not	a
string.

We	create	an	array	of	PyGetSetDef	structures:

static	PyGetSetDef	Noddy_getseters[]	=	{

				{"first",

					(getter)Noddy_getfirst,	(setter)Noddy_setfirst,

					"first	name",

					NULL},

				{"last",

					(getter)Noddy_getlast,	(setter)Noddy_setlast,

					"last	name",

					NULL},

				{NULL}		/*	Sentinel	*/

};

and	register	it	in	the	tp_getset	slot:

				Noddy_getseters,											/*	tp_getset	*/

to	register	out	attribute	getters	and	setters.

The	last	item	in	a	PyGetSetDef	structure	is	the	closure	mentioned	above.	In
this	case,	we	aren't	using	the	closure,	so	we	just	pass	NULL.

We	also	remove	the	member	definitions	for	these	attributes:

static	PyMemberDef	Noddy_members[]	=	{

				{"number",	T_INT,	offsetof(Noddy,	number),	0,

					"noddy	number"},

				{NULL}		/*	Sentinel	*/

};

We	also	need	to	update	the	tp_init	handler	to	only	allow	strings2.3	to	be
passed:

static	int

Noddy_init(Noddy	*self,	PyObject	*args,	PyObject	*kwds)

{

				PyObject	*first=NULL,	*last=NULL,	*tmp;

				static	char	*kwlist[]	=	{"first",	"last",	"number",	NULL};

				if	(!	PyArg_ParseTupleAndKeywords(args,	kwds,	"|SSi",	kwlist,

																																						&first,	&last,

																																						&self->number))

								return	-1;

				if	(first)	{

								tmp	=	self->first;

								Py_INCREF(first);

								self->first	=	first;

								Py_DECREF(tmp);

				}

				if	(last)	{

								tmp	=	self->last;

								Py_INCREF(last);

								self->last	=	last;

								Py_DECREF(tmp);

				}

				return	0;

}

With	these	changes,	we	can	assure	that	the	first	and	last	members	are	never
NULL	so	we	can	remove	checks	for	NULL	values	in	almost	all	cases.	This	means
that	most	of	the	Py_XDECREF()	calls	can	be	converted	to	Py_DECREF()
calls.	The	only	place	we	can't	change	these	calls	is	in	the	deallocator,	where
there	is	the	possibility	that	the	initialization	of	these	members	failed	in	the
constructor.

We	also	rename	the	module	initialization	function	and	module	name	in	the
initialization	function,	as	we	did	before,	and	we	add	an	extra	definition	to	the
setup.py	file.

Footnotes

...	strings2.3
We	now	know	that	the	first	and	last	members	are	strings,	so	perhaps	we
could	be	less	careful	about	decrementing	their	reference	counts,	however,
we	accept	instances	of	string	subclasses.	Even	though	deallocating	normal
strings	won't	call	back	into	our	objects,	we	can't	guarantee	that	deallocating
an	instance	of	a	string	subclass	won't.	call	back	into	out	objects.

Extending	and	Embedding	the	Python
Interpreter

Previous:	2.1.1	Adding	data	and	Up:	2.1	The	Basics	Next:	2.1.3	Supporting
cyclic	garbage

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1.2	Providing	finer	control	Up:	2.1	The	Basics	Next:	2.2	Type
Methods

2.1.3	Supporting	cyclic	garbage	collection
Python	has	a	cyclic-garbage	collector	that	can	identify	unneeded	objects	even
when	their	reference	counts	are	not	zero.	This	can	happen	when	objects	are
involved	in	cycles.	For	example,	consider:

>>>	l	=	[]

>>>	l.append(l)

>>>	del	l

In	this	example,	we	create	a	list	that	contains	itself.	When	we	delete	it,	it	still	has
a	reference	from	itself.	Its	reference	count	doesn't	drop	to	zero.	Fortunately,
Python's	cyclic-garbage	collector	will	eventually	figure	out	that	the	list	is
garbage	and	free	it.

In	the	second	version	of	the	Noddy	example,	we	allowed	any	kind	of	object	to
be	stored	in	the	first	or	last	attributes2.4.	This	means	that	Noddy	objects
can	participate	in	cycles:

>>>	import	noddy2

>>>	n	=	noddy2.Noddy()

>>>	l	=	[n]

>>>	n.first	=	l

This	is	pretty	silly,	but	it	gives	us	an	excuse	to	add	support	for	the	cyclic-garbage
collector	to	the	Noddy	example.	To	support	cyclic	garbage	collection,	types
need	to	fill	two	slots	and	set	a	class	flag	that	enables	these	slots:

#include	<Python.h>

#include	"structmember.h"

typedef	struct	{

				PyObject_HEAD

				PyObject	*first;

				PyObject	*last;

				int	number;

}	Noddy;

static	int

Noddy_traverse(Noddy	*self,	visitproc	visit,	void	*arg)

{

				int	vret;

				if	(self->first)	{

								vret	=	visit(self->first,	arg);

								if	(vret	!=	0)

												return	vret;

				}

				if	(self->last)	{

								vret	=	visit(self->last,	arg);

								if	(vret	!=	0)

												return	vret;

				}

				return	0;

}

static	int	

Noddy_clear(Noddy	*self)

{

				PyObject	*tmp;

				tmp	=	self->first;

				self->first	=	NULL;

				Py_XDECREF(tmp);

				tmp	=	self->last;

				self->last	=	NULL;

				Py_XDECREF(tmp);

				return	0;

}

static	void

Noddy_dealloc(Noddy*	self)

{

				Noddy_clear(self);

				self->ob_type->tp_free((PyObject*)self);

}

static	PyObject	*

Noddy_new(PyTypeObject	*type,	PyObject	*args,	PyObject	*kwds)

{

				Noddy	*self;

				self	=	(Noddy	*)type->tp_alloc(type,	0);

				if	(self	!=	NULL)	{

								self->first	=	PyString_FromString("");

								if	(self->first	==	NULL)

										{

												Py_DECREF(self);

												return	NULL;

										}

								

								self->last	=	PyString_FromString("");

								if	(self->last	==	NULL)

										{

												Py_DECREF(self);

												return	NULL;

										}

								self->number	=	0;

				}

				return	(PyObject	*)self;

}

static	int

Noddy_init(Noddy	*self,	PyObject	*args,	PyObject	*kwds)

{

				PyObject	*first=NULL,	*last=NULL,	*tmp;

				static	char	*kwlist[]	=	{"first",	"last",	"number",	NULL};

				if	(!	PyArg_ParseTupleAndKeywords(args,	kwds,	"|OOi",	kwlist,	

																																						&first,	&last,	

																																						&self->number))

								return	-1;	

				if	(first)	{

								tmp	=	self->first;

								Py_INCREF(first);

								self->first	=	first;

								Py_XDECREF(tmp);

				}

				if	(last)	{

								tmp	=	self->last;

								Py_INCREF(last);

								self->last	=	last;

								Py_XDECREF(tmp);

				}

				return	0;

}

static	PyMemberDef	Noddy_members[]	=	{

				{"first",	T_OBJECT_EX,	offsetof(Noddy,	first),	0,

					"first	name"},

				{"last",	T_OBJECT_EX,	offsetof(Noddy,	last),	0,

					"last	name"},

				{"number",	T_INT,	offsetof(Noddy,	number),	0,

					"noddy	number"},

				{NULL}		/*	Sentinel	*/

};

static	PyObject	*

Noddy_name(Noddy*	self)

{

				static	PyObject	*format	=	NULL;

				PyObject	*args,	*result;

				if	(format	==	NULL)	{

								format	=	PyString_FromString("%s	%s");

								if	(format	==	NULL)

												return	NULL;

				}

				if	(self->first	==	NULL)	{

								PyErr_SetString(PyExc_AttributeError,	"first");

								return	NULL;

				}

				if	(self->last	==	NULL)	{

								PyErr_SetString(PyExc_AttributeError,	"last");

								return	NULL;

				}

				args	=	Py_BuildValue("OO",	self->first,	self->last);

				if	(args	==	NULL)

								return	NULL;

				result	=	PyString_Format(format,	args);

				Py_DECREF(args);

				

				return	result;

}

static	PyMethodDef	Noddy_methods[]	=	{

				{"name",	(PyCFunction)Noddy_name,	METH_NOARGS,

					"Return	the	name,	combining	the	first	and	last	name"

				},

				{NULL}		/*	Sentinel	*/

};

static	PyTypeObject	NoddyType	=	{

				PyObject_HEAD_INIT(NULL)

				0,																									/*ob_size*/

				"noddy.Noddy",													/*tp_name*/

				sizeof(Noddy),													/*tp_basicsize*/

				0,																									/*tp_itemsize*/

				(destructor)Noddy_dealloc,	/*tp_dealloc*/

				0,																									/*tp_print*/

				0,																									/*tp_getattr*/

				0,																									/*tp_setattr*/

				0,																									/*tp_compare*/

				0,																									/*tp_repr*/

				0,																									/*tp_as_number*/

				0,																									/*tp_as_sequence*/

				0,																									/*tp_as_mapping*/

				0,																									/*tp_hash	*/

				0,																									/*tp_call*/

				0,																									/*tp_str*/

				0,																									/*tp_getattro*/

				0,																									/*tp_setattro*/

				0,																									/*tp_as_buffer*/

				Py_TPFLAGS_DEFAULT	|	Py_TPFLAGS_BASETYPE	|	Py_TPFLAGS_HAVE_GC,	/*tp_flags*/

				"Noddy	objects",											/*	tp_doc	*/

				(traverseproc)Noddy_traverse,			/*	tp_traverse	*/

				(inquiry)Noddy_clear,											/*	tp_clear	*/

				0,	 	 															/*	tp_richcompare	*/

				0,	 	 															/*	tp_weaklistoffset	*/

				0,	 	 															/*	tp_iter	*/

				0,	 	 															/*	tp_iternext	*/

				Noddy_methods,													/*	tp_methods	*/

				Noddy_members,													/*	tp_members	*/

				0,																									/*	tp_getset	*/

				0,																									/*	tp_base	*/

				0,																									/*	tp_dict	*/

				0,																									/*	tp_descr_get	*/

				0,																									/*	tp_descr_set	*/

				0,																									/*	tp_dictoffset	*/

				(initproc)Noddy_init,						/*	tp_init	*/

				0,																									/*	tp_alloc	*/

				Noddy_new,																	/*	tp_new	*/

};

static	PyMethodDef	module_methods[]	=	{

				{NULL}		/*	Sentinel	*/

};

#ifndef	PyMODINIT_FUNC	 /*	declarations	for	DLL	import/export	*/

#define	PyMODINIT_FUNC	void

#endif

PyMODINIT_FUNC

initnoddy4(void)	

{

				PyObject*	m;

				if	(PyType_Ready(&NoddyType)	<	0)

								return;

				m	=	Py_InitModule3("noddy4",	module_methods,

																							"Example	module	that	creates	an	extension	type.");

				if	(m	==	NULL)

						return;

				Py_INCREF(&NoddyType);

				PyModule_AddObject(m,	"Noddy",	(PyObject	*)&NoddyType);

}

Download	as	text	(original	file	name:	noddy4.c).

The	traversal	method	provides	access	to	subobjects	that	could	participate	in
cycles:

static	int

Noddy_traverse(Noddy	*self,	visitproc	visit,	void	*arg)

{

				int	vret;

				if	(self->first)	{

								vret	=	visit(self->first,	arg);

								if	(vret	!=	0)

												return	vret;

				}

				if	(self->last)	{

								vret	=	visit(self->last,	arg);

								if	(vret	!=	0)

												return	vret;

				}

				return	0;

}

For	each	subobject	that	can	participate	in	cycles,	we	need	to	call	the	visit()
function,	which	is	passed	to	the	traversal	method.	The	visit()	function	takes
as	arguments	the	subobject	and	the	extra	argument	arg	passed	to	the	traversal
method.	It	returns	an	integer	value	that	must	be	returned	if	it	is	non-zero.

Python	2.4	and	higher	provide	a	Py_VISIT()	macro	that	automates	calling
visit	functions.	With	Py_VISIT(),	Noddy_traverse()	can	be	simplified:

static	int

Noddy_traverse(Noddy	*self,	visitproc	visit,	void	*arg)

{

				Py_VISIT(self->first);

				Py_VISIT(self->last);

				return	0;

}

Note:	Note	that	the	tp_traverse	implementation	must	name	its	arguments
exactly	visit	and	arg	in	order	to	use	Py_VISIT().	This	is	to	encourage
uniformity	across	these	boring	implementations.

We	also	need	to	provide	a	method	for	clearing	any	subobjects	that	can	participate
in	cycles.	We	implement	the	method	and	reimplement	the	deallocator	to	use	it:

static	int

Noddy_clear(Noddy	*self)

{

				PyObject	*tmp;

				tmp	=	self->first;

				self->first	=	NULL;

				Py_XDECREF(tmp);

				tmp	=	self->last;

				self->last	=	NULL;

				Py_XDECREF(tmp);

				return	0;

}

static	void

Noddy_dealloc(Noddy*	self)

{

				Noddy_clear(self);

				self->ob_type->tp_free((PyObject*)self);

}

Notice	the	use	of	a	temporary	variable	in	Noddy_clear().	We	use	the
temporary	variable	so	that	we	can	set	each	member	to	NULL	before
decrementing	its	reference	count.	We	do	this	because,	as	was	discussed	earlier,	if
the	reference	count	drops	to	zero,	we	might	cause	code	to	run	that	calls	back	into
the	object.	In	addition,	because	we	now	support	garbage	collection,	we	also	have
to	worry	about	code	being	run	that	triggers	garbage	collection.	If	garbage
collection	is	run,	our	tp_traverse	handler	could	get	called.	We	can't	take	a
chance	of	having	Noddy_traverse()	called	when	a	member's	reference
count	has	dropped	to	zero	and	its	value	hasn't	been	set	to	NULL.

Python	2.4	and	higher	provide	a	Py_CLEAR()	that	automates	the	careful
decrementing	of	reference	counts.	With	Py_CLEAR(),	the	Noddy_clear()
function	can	be	simplified:

static	int

Noddy_clear(Noddy	*self)

{

				Py_CLEAR(self->first);

				Py_CLEAR(self->last);

				return	0;

}

Finally,	we	add	the	Py_TPFLAGS_HAVE_GC	flag	to	the	class	flags:

				Py_TPFLAGS_DEFAULT	|	Py_TPFLAGS_BASETYPE	|	Py_TPFLAGS_HAVE_GC,	/*tp_flags*/

That's	pretty	much	it.	If	we	had	written	custom	tp_alloc	or	tp_free	slots,
we'd	need	to	modify	them	for	cyclic-garbage	collection.	Most	extensions	will
use	the	versions	automatically	provided.

Footnotes

...	attributes2.4
Even	in	the	third	version,	we	aren't	guaranteed	to	avoid	cycles.	Instances	of
string	subclasses	are	allowed	and	string	subclasses	could	allow	cycles	even
if	normal	strings	don't.

Extending	and	Embedding	the	Python
Interpreter

Previous:	2.1.2	Providing	finer	control	Up:	2.1	The	Basics	Next:	2.2	Type
Methods

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1.3	Supporting	cyclic	garbage	Up:	2.	Defining	New	Types	Next:
2.2.1	Finalization	and	De-allocation

2.2	Type	Methods
This	section	aims	to	give	a	quick	fly-by	on	the	various	type	methods	you	can
implement	and	what	they	do.

Here	is	the	definition	of	PyTypeObject,	with	some	fields	only	used	in	debug
builds	omitted:

typedef	struct	_typeobject	{

				PyObject_VAR_HEAD

				char	*tp_name;	/*	For	printing,	in	format	"<module>.<name>"	*/

				int	tp_basicsize,	tp_itemsize;	/*	For	allocation	*/

				/*	Methods	to	implement	standard	operations	*/

				destructor	tp_dealloc;

				printfunc	tp_print;

				getattrfunc	tp_getattr;

				setattrfunc	tp_setattr;

				cmpfunc	tp_compare;

				reprfunc	tp_repr;

				/*	Method	suites	for	standard	classes	*/

				PyNumberMethods	*tp_as_number;

				PySequenceMethods	*tp_as_sequence;

				PyMappingMethods	*tp_as_mapping;

				/*	More	standard	operations	(here	for	binary	compatibility)	*/

				hashfunc	tp_hash;

				ternaryfunc	tp_call;

				reprfunc	tp_str;

				getattrofunc	tp_getattro;

				setattrofunc	tp_setattro;

				/*	Functions	to	access	object	as	input/output	buffer	*/

				PyBufferProcs	*tp_as_buffer;

				/*	Flags	to	define	presence	of	optional/expanded	features	*/

				long	tp_flags;

				char	*tp_doc;	/*	Documentation	string	*/

				/*	Assigned	meaning	in	release	2.0	*/

				/*	call	function	for	all	accessible	objects	*/

				traverseproc	tp_traverse;

				/*	delete	references	to	contained	objects	*/

				inquiry	tp_clear;

				/*	Assigned	meaning	in	release	2.1	*/

				/*	rich	comparisons	*/

				richcmpfunc	tp_richcompare;

				/*	weak	reference	enabler	*/

				long	tp_weaklistoffset;

				/*	Added	in	release	2.2	*/

				/*	Iterators	*/

				getiterfunc	tp_iter;

				iternextfunc	tp_iternext;

				/*	Attribute	descriptor	and	subclassing	stuff	*/

				struct	PyMethodDef	*tp_methods;

				struct	PyMemberDef	*tp_members;

				struct	PyGetSetDef	*tp_getset;

				struct	_typeobject	*tp_base;

				PyObject	*tp_dict;

				descrgetfunc	tp_descr_get;

				descrsetfunc	tp_descr_set;

				long	tp_dictoffset;

				initproc	tp_init;

				allocfunc	tp_alloc;

				newfunc	tp_new;

				freefunc	tp_free;	/*	Low-level	free-memory	routine	*/

				inquiry	tp_is_gc;	/*	For	PyObject_IS_GC	*/

				PyObject	*tp_bases;

				PyObject	*tp_mro;	/*	method	resolution	order	*/

				PyObject	*tp_cache;

				PyObject	*tp_subclasses;

				PyObject	*tp_weaklist;

}	PyTypeObject;

Download	as	text	(original	file	name:	typestruct.h).

Now	that's	a	lot	of	methods.	Don't	worry	too	much	though	-	if	you	have	a	type
you	want	to	define,	the	chances	are	very	good	that	you	will	only	implement	a
handful	of	these.

As	you	probably	expect	by	now,	we're	going	to	go	over	this	and	give	more
information	about	the	various	handlers.	We	won't	go	in	the	order	they	are
defined	in	the	structure,	because	there	is	a	lot	of	historical	baggage	that	impacts
the	ordering	of	the	fields;	be	sure	your	type	initialization	keeps	the	fields	in	the
right	order!	It's	often	easiest	to	find	an	example	that	includes	all	the	fields	you

need	(even	if	they're	initialized	to	0)	and	then	change	the	values	to	suit	your	new
type.

				char	*tp_name;	/*	For	printing	*/

The	name	of	the	type	-	as	mentioned	in	the	last	section,	this	will	appear	in
various	places,	almost	entirely	for	diagnostic	purposes.	Try	to	choose	something
that	will	be	helpful	in	such	a	situation!

				int	tp_basicsize,	tp_itemsize;	/*	For	allocation	*/

These	fields	tell	the	runtime	how	much	memory	to	allocate	when	new	objects	of
this	type	are	created.	Python	has	some	built-in	support	for	variable	length
structures	(think:	strings,	lists)	which	is	where	the	tp_itemsize	field	comes
in.	This	will	be	dealt	with	later.

				char	*tp_doc;

Here	you	can	put	a	string	(or	its	address)	that	you	want	returned	when	the
Python	script	references	obj.__doc__	to	retrieve	the	doc	string.

Now	we	come	to	the	basic	type	methods--the	ones	most	extension	types	will
implement.

Subsections

2.2.1	Finalization	and	De-allocation
2.2.2	Object	Presentation
2.2.3	Attribute	Management

2.2.3.1	Generic	Attribute	Management
2.2.3.2	Type-specific	Attribute	Management

2.2.4	Object	Comparison
2.2.5	Abstract	Protocol	Support
2.2.6	More	Suggestions

Extending	and	Embedding	the	Python
Interpreter

Previous:	2.1.3	Supporting	cyclic	garbage	Up:	2.	Defining	New	Types	Next:
2.2.1	Finalization	and	De-allocation

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.2	Type	Methods	Up:	2.2	Type	Methods	Next:	2.2.2	Object
Presentation

2.2.1	Finalization	and	De-allocation
				destructor	tp_dealloc;

This	function	is	called	when	the	reference	count	of	the	instance	of	your	type	is
reduced	to	zero	and	the	Python	interpreter	wants	to	reclaim	it.	If	your	type	has
memory	to	free	or	other	clean-up	to	perform,	put	it	here.	The	object	itself	needs
to	be	freed	here	as	well.	Here	is	an	example	of	this	function:

static	void

newdatatype_dealloc(newdatatypeobject	*	obj)

{

				free(obj->obj_UnderlyingDatatypePtr);

				obj->ob_type->tp_free(obj);

}

One	important	requirement	of	the	deallocator	function	is	that	it	leaves	any
pending	exceptions	alone.	This	is	important	since	deallocators	are	frequently
called	as	the	interpreter	unwinds	the	Python	stack;	when	the	stack	is	unwound
due	to	an	exception	(rather	than	normal	returns),	nothing	is	done	to	protect	the
deallocators	from	seeing	that	an	exception	has	already	been	set.	Any	actions
which	a	deallocator	performs	which	may	cause	additional	Python	code	to	be
executed	may	detect	that	an	exception	has	been	set.	This	can	lead	to	misleading
errors	from	the	interpreter.	The	proper	way	to	protect	against	this	is	to	save	a
pending	exception	before	performing	the	unsafe	action,	and	restoring	it	when
done.	This	can	be	done	using	the	PyErr_Fetch()	and	PyErr_Restore()
functions:

static	void

my_dealloc(PyObject	*obj)

{

				MyObject	*self	=	(MyObject	*)	obj;

				PyObject	*cbresult;

				if	(self->my_callback	!=	NULL)	{

								PyObject	*err_type,	*err_value,	*err_traceback;

								int	have_error	=	PyErr_Occurred()	?	1	:	0;

								if	(have_error)

												PyErr_Fetch(&err_type,	&err_value,	&err_traceback);

								cbresult	=	PyObject_CallObject(self->my_callback,	NULL);

								if	(cbresult	==	NULL)

												PyErr_WriteUnraisable(self->my_callback);

								else

												Py_DECREF(cbresult);

								if	(have_error)

												PyErr_Restore(err_type,	err_value,	err_traceback);

								Py_DECREF(self->my_callback);

				}

				obj->ob_type->tp_free((PyObject*)self);

}

Extending	and	Embedding	the	Python
Interpreter

Previous:	2.2	Type	Methods	Up:	2.2	Type	Methods	Next:	2.2.2	Object
Presentation

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.2.1	Finalization	and	De-allocation	Up:	2.2	Type	Methods	Next:
2.2.3	Attribute	Management

2.2.2	Object	Presentation
In	Python,	there	are	three	ways	to	generate	a	textual	representation	of	an	object:
the	repr()	function	(or	equivalent	back-tick	syntax),	the	str()function,	and
the	print	statement.	For	most	objects,	the	print	statement	is	equivalent	to
the	str()	function,	but	it	is	possible	to	special-case	printing	to	a	FILE*	if
necessary;	this	should	only	be	done	if	efficiency	is	identified	as	a	problem	and
profiling	suggests	that	creating	a	temporary	string	object	to	be	written	to	a	file	is
too	expensive.

These	handlers	are	all	optional,	and	most	types	at	most	need	to	implement	the
tp_str	and	tp_repr	handlers.

				reprfunc	tp_repr;

				reprfunc	tp_str;

				printfunc	tp_print;

The	tp_repr	handler	should	return	a	string	object	containing	a	representation
of	the	instance	for	which	it	is	called.	Here	is	a	simple	example:

static	PyObject	*

newdatatype_repr(newdatatypeobject	*	obj)

{

				return	PyString_FromFormat("Repr-ified_newdatatype{{size:\%d}}",

																															obj->obj_UnderlyingDatatypePtr->size);

}

If	no	tp_repr	handler	is	specified,	the	interpreter	will	supply	a	representation
that	uses	the	type's	tp_name	and	a	uniquely-identifying	value	for	the	object.

The	tp_str	handler	is	to	str()	what	the	tp_repr	handler	described	above
is	to	repr();	that	is,	it	is	called	when	Python	code	calls	str()	on	an	instance
of	your	object.	Its	implementation	is	very	similar	to	the	tp_repr	function,	but
the	resulting	string	is	intended	for	human	consumption.	If	tp_str	is	not
specified,	the	tp_repr	handler	is	used	instead.

Here	is	a	simple	example:

static	PyObject	*

newdatatype_str(newdatatypeobject	*	obj)

{

				return	PyString_FromFormat("Stringified_newdatatype{{size:\%d}}",

																															obj->obj_UnderlyingDatatypePtr->size);

}

The	print	function	will	be	called	whenever	Python	needs	to	"print"	an	instance	of
the	type.	For	example,	if	'node'	is	an	instance	of	type	TreeNode,	then	the	print
function	is	called	when	Python	code	calls:

print	node

There	is	a	flags	argument	and	one	flag,	Py_PRINT_RAW,	and	it	suggests	that
you	print	without	string	quotes	and	possibly	without	interpreting	escape
sequences.

The	print	function	receives	a	file	object	as	an	argument.	You	will	likely	want	to
write	to	that	file	object.

Here	is	a	sample	print	function:

static	int

newdatatype_print(newdatatypeobject	*obj,	FILE	*fp,	int	flags)

{

				if	(flags	&	Py_PRINT_RAW)	{

								fprintf(fp,	"<{newdatatype	object--size:	%d}>",

																obj->obj_UnderlyingDatatypePtr->size);

				}

				else	{

								fprintf(fp,	"\"<{newdatatype	object--size:	%d}>\"",

																obj->obj_UnderlyingDatatypePtr->size);

				}

				return	0;

}

Extending	and	Embedding	the	Python
Interpreter

Previous:	2.2.1	Finalization	and	De-allocation	Up:	2.2	Type	Methods	Next:
2.2.3	Attribute	Management

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.2.2	Object	Presentation	Up:	2.2	Type	Methods	Next:	2.2.3.1
Generic	Attribute	Management

2.2.3	Attribute	Management
For	every	object	which	can	support	attributes,	the	corresponding	type	must
provide	the	functions	that	control	how	the	attributes	are	resolved.	There	needs	to
be	a	function	which	can	retrieve	attributes	(if	any	are	defined),	and	another	to	set
attributes	(if	setting	attributes	is	allowed).	Removing	an	attribute	is	a	special
case,	for	which	the	new	value	passed	to	the	handler	is	NULL.

Python	supports	two	pairs	of	attribute	handlers;	a	type	that	supports	attributes
only	needs	to	implement	the	functions	for	one	pair.	The	difference	is	that	one
pair	takes	the	name	of	the	attribute	as	a	char*,	while	the	other	accepts	a
PyObject*.	Each	type	can	use	whichever	pair	makes	more	sense	for	the
implementation's	convenience.

				getattrfunc		tp_getattr;								/*	char	*	version	*/

				setattrfunc		tp_setattr;

				/*	...	*/

				getattrofunc	tp_getattrofunc;			/*	PyObject	*	version	*/

				setattrofunc	tp_setattrofunc;

If	accessing	attributes	of	an	object	is	always	a	simple	operation	(this	will	be
explained	shortly),	there	are	generic	implementations	which	can	be	used	to
provide	the	PyObject*	version	of	the	attribute	management	functions.	The
actual	need	for	type-specific	attribute	handlers	almost	completely	disappeared
starting	with	Python	2.2,	though	there	are	many	examples	which	have	not	been
updated	to	use	some	of	the	new	generic	mechanism	that	is	available.

Subsections

2.2.3.1	Generic	Attribute	Management
2.2.3.2	Type-specific	Attribute	Management

Extending	and	Embedding	the	Python
Interpreter

Previous:	2.2.2	Object	Presentation	Up:	2.2	Type	Methods	Next:	2.2.3.1
Generic	Attribute	Management

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.2.3.2	Type-specific	Attribute	Management	Up:	2.2	Type	Methods
Next:	2.2.5	Abstract	Protocol	Support

2.2.4	Object	Comparison
				cmpfunc	tp_compare;

The	tp_compare	handler	is	called	when	comparisons	are	needed	and	the
object	does	not	implement	the	specific	rich	comparison	method	which	matches
the	requested	comparison.	(It	is	always	used	if	defined	and	the
PyObject_Compare()	or	PyObject_Cmp()	functions	are	used,	or	if
cmp()	is	used	from	Python.)	It	is	analogous	to	the	__cmp__()	method.	This
function	should	return	-1	if	obj1	is	less	than	obj2,	0	if	they	are	equal,	and	1	if
obj1	is	greater	than	obj2.	(It	was	previously	allowed	to	return	arbitrary	negative
or	positive	integers	for	less	than	and	greater	than,	respectively;	as	of	Python	2.2,
this	is	no	longer	allowed.	In	the	future,	other	return	values	may	be	assigned	a
different	meaning.)

A	tp_compare	handler	may	raise	an	exception.	In	this	case	it	should	return	a
negative	value.	The	caller	has	to	test	for	the	exception	using
PyErr_Occurred().

Here	is	a	sample	implementation:

static	int

newdatatype_compare(newdatatypeobject	*	obj1,	newdatatypeobject	*	obj2)

{

				long	result;

				if	(obj1->obj_UnderlyingDatatypePtr->size	<

								obj2->obj_UnderlyingDatatypePtr->size)	{

								result	=	-1;

				}

				else	if	(obj1->obj_UnderlyingDatatypePtr->size	>

													obj2->obj_UnderlyingDatatypePtr->size)	{

								result	=	1;

				}

				else	{

								result	=	0;

				}

				return	result;

}

Extending	and	Embedding	the	Python

Interpreter

Previous:	2.2.3.2	Type-specific	Attribute	Management	Up:	2.2	Type	Methods
Next:	2.2.5	Abstract	Protocol	Support

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.2.4	Object	Comparison	Up:	2.2	Type	Methods	Next:	2.2.6	More
Suggestions

2.2.5	Abstract	Protocol	Support
Python	supports	a	variety	of	abstract	`protocols;'	the	specific	interfaces	provided
to	use	these	interfaces	are	documented	in	the	Python/C	API	Reference	Manual	in
the	chapter	``Abstract	Objects	Layer.''

A	number	of	these	abstract	interfaces	were	defined	early	in	the	development	of
the	Python	implementation.	In	particular,	the	number,	mapping,	and	sequence
protocols	have	been	part	of	Python	since	the	beginning.	Other	protocols	have
been	added	over	time.	For	protocols	which	depend	on	several	handler	routines
from	the	type	implementation,	the	older	protocols	have	been	defined	as	optional
blocks	of	handlers	referenced	by	the	type	object.	For	newer	protocols	there	are
additional	slots	in	the	main	type	object,	with	a	flag	bit	being	set	to	indicate	that
the	slots	are	present	and	should	be	checked	by	the	interpreter.	(The	flag	bit	does
not	indicate	that	the	slot	values	are	non-NULL.	The	flag	may	be	set	to	indicate
the	presence	of	a	slot,	but	a	slot	may	still	be	unfilled.)

				PyNumberMethods			tp_as_number;

				PySequenceMethods	tp_as_sequence;

				PyMappingMethods		tp_as_mapping;

If	you	wish	your	object	to	be	able	to	act	like	a	number,	a	sequence,	or	a	mapping
object,	then	you	place	the	address	of	a	structure	that	implements	the	C	type
PyNumberMethods,	PySequenceMethods,	or	PyMappingMethods,
respectively.	It	is	up	to	you	to	fill	in	this	structure	with	appropriate	values.	You
can	find	examples	of	the	use	of	each	of	these	in	the	Objects	directory	of	the
Python	source	distribution.

				hashfunc	tp_hash;

This	function,	if	you	choose	to	provide	it,	should	return	a	hash	number	for	an
instance	of	your	data	type.	Here	is	a	moderately	pointless	example:

static	long

newdatatype_hash(newdatatypeobject	*obj)

{

				long	result;

				result	=	obj->obj_UnderlyingDatatypePtr->size;

				result	=	result	*	3;

				return	result;

}

				ternaryfunc	tp_call;

This	function	is	called	when	an	instance	of	your	data	type	is	"called",	for
example,	if	obj1	is	an	instance	of	your	data	type	and	the	Python	script	contains
obj1('hello'),	the	tp_call	handler	is	invoked.

This	function	takes	three	arguments:

1.	 arg1	is	the	instance	of	the	data	type	which	is	the	subject	of	the	call.	If	the
call	is	obj1('hello'),	then	arg1	is	obj1.

2.	 arg2	is	a	tuple	containing	the	arguments	to	the	call.	You	can	use
PyArg_ParseTuple()	to	extract	the	arguments.

3.	 arg3	is	a	dictionary	of	keyword	arguments	that	were	passed.	If	this	is	non-
NULL	and	you	support	keyword	arguments,	use
PyArg_ParseTupleAndKeywords()	to	extract	the	arguments.	If	you
do	not	want	to	support	keyword	arguments	and	this	is	non-NULL,	raise	a
TypeError	with	a	message	saying	that	keyword	arguments	are	not
supported.

Here	is	a	desultory	example	of	the	implementation	of	the	call	function.

/*	Implement	the	call	function.

	*				obj1	is	the	instance	receiving	the	call.

	*				obj2	is	a	tuple	containing	the	arguments	to	the	call,	in	this

	*									case	3	strings.

	*/

static	PyObject	*

newdatatype_call(newdatatypeobject	*obj,	PyObject	*args,	PyObject	*other)

{

				PyObject	*result;

				char	*arg1;

				char	*arg2;

				char	*arg3;

				if	(!PyArg_ParseTuple(args,	"sss:call",	&arg1,	&arg2,	&arg3))	{

								return	NULL;

				}

				result	=	PyString_FromFormat(

								"Returning	--	value:	[\%d]	arg1:	[\%s]	arg2:	[\%s]	arg3:	[\%s]\n",

								obj->obj_UnderlyingDatatypePtr->size,

								arg1,	arg2,	arg3);

				printf("\%s",	PyString_AS_STRING(result));

				return	result;

}

XXX	some	fields	need	to	be	added	here...

				/*	Added	in	release	2.2	*/

				/*	Iterators	*/

				getiterfunc	tp_iter;

				iternextfunc	tp_iternext;

These	functions	provide	support	for	the	iterator	protocol.	Any	object	which
wishes	to	support	iteration	over	its	contents	(which	may	be	generated	during
iteration)	must	implement	the	tp_iter	handler.	Objects	which	are	returned	by
a	tp_iter	handler	must	implement	both	the	tp_iter	and	tp_iternext
handlers.	Both	handlers	take	exactly	one	parameter,	the	instance	for	which	they
are	being	called,	and	return	a	new	reference.	In	the	case	of	an	error,	they	should
set	an	exception	and	return	NULL.

For	an	object	which	represents	an	iterable	collection,	the	tp_iter	handler
must	return	an	iterator	object.	The	iterator	object	is	responsible	for	maintaining
the	state	of	the	iteration.	For	collections	which	can	support	multiple	iterators
which	do	not	interfere	with	each	other	(as	lists	and	tuples	do),	a	new	iterator
should	be	created	and	returned.	Objects	which	can	only	be	iterated	over	once
(usually	due	to	side	effects	of	iteration)	should	implement	this	handler	by
returning	a	new	reference	to	themselves,	and	should	also	implement	the
tp_iternext	handler.	File	objects	are	an	example	of	such	an	iterator.

Iterator	objects	should	implement	both	handlers.	The	tp_iter	handler	should
return	a	new	reference	to	the	iterator	(this	is	the	same	as	the	tp_iter	handler
for	objects	which	can	only	be	iterated	over	destructively).	The	tp_iternext
handler	should	return	a	new	reference	to	the	next	object	in	the	iteration	if	there	is
one.	If	the	iteration	has	reached	the	end,	it	may	return	NULL	without	setting	an
exception	or	it	may	set	StopIteration;	avoiding	the	exception	can	yield
slightly	better	performance.	If	an	actual	error	occurs,	it	should	set	an	exception
and	return	NULL.

Extending	and	Embedding	the	Python
Interpreter

Previous:	2.2.4	Object	Comparison	Up:	2.2	Type	Methods	Next:	2.2.6	More
Suggestions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.2.5	Abstract	Protocol	Support	Up:	2.2	Type	Methods	Next:	3.
Building	C	and

2.2.6	More	Suggestions
Remember	that	you	can	omit	most	of	these	functions,	in	which	case	you	provide
0	as	a	value.	There	are	type	definitions	for	each	of	the	functions	you	must
provide.	They	are	in	object.h	in	the	Python	include	directory	that	comes	with
the	source	distribution	of	Python.

In	order	to	learn	how	to	implement	any	specific	method	for	your	new	data	type,
do	the	following:	Download	and	unpack	the	Python	source	distribution.	Go	the
Objects	directory,	then	search	the	C	source	files	for	tp_	plus	the	function	you
want	(for	example,	tp_print	or	tp_compare).	You	will	find	examples	of
the	function	you	want	to	implement.

When	you	need	to	verify	that	an	object	is	an	instance	of	the	type	you	are
implementing,	use	the	PyObject_TypeCheck	function.	A	sample	of	its	use
might	be	something	like	the	following:

				if	(!	PyObject_TypeCheck(some_object,	&MyType))	{

								PyErr_SetString(PyExc_TypeError,	"arg	#1	not	a	mything");

								return	NULL;

				}

Extending	and	Embedding	the	Python
Interpreter

Previous:	2.2.5	Abstract	Protocol	Support	Up:	2.2	Type	Methods	Next:	3.
Building	C	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.2.6	More	Suggestions	Up:	Extending	and	Embedding	the	Next:
3.1	Distributing	your	extension

3.	Building	C	and	C++	Extensions
with	distutils
Starting	in	Python	1.4,	Python	provides,	on	UNIX,	a	special	make	file	for	building
make	files	for	building	dynamically-linked	extensions	and	custom	interpreters.
Starting	with	Python	2.0,	this	mechanism	(known	as	related	to	Makefile.pre.in,
and	Setup	files)	is	no	longer	supported.	Building	custom	interpreters	was	rarely
used,	and	extension	modules	can	be	built	using	distutils.

Building	an	extension	module	using	distutils	requires	that	distutils	is	installed	on
the	build	machine,	which	is	included	in	Python	2.x	and	available	separately	for
Python	1.5.	Since	distutils	also	supports	creation	of	binary	packages,	users	don't
necessarily	need	a	compiler	and	distutils	to	install	the	extension.

A	distutils	package	contains	a	driver	script,	setup.py.	This	is	a	plain	Python	file,
which,	in	the	most	simple	case,	could	look	like	this:

from	distutils.core	import	setup,	Extension

module1	=	Extension('demo',

																				sources	=	['demo.c'])

setup	(name	=	'PackageName',

							version	=	'1.0',

							description	=	'This	is	a	demo	package',

							ext_modules	=	[module1])

With	this	setup.py,	and	a	file	demo.c,	running

python	setup.py	build

will	compile	demo.c,	and	produce	an	extension	module	named	"demo"	in	the
build	directory.	Depending	on	the	system,	the	module	file	will	end	up	in	a
subdirectory	build/lib.system,	and	may	have	a	name	like	demo.so	or
demo.pyd.

In	the	setup.py,	all	execution	is	performed	by	calling	the	"setup"	function.
This	takes	a	variable	number	of	keyword	arguments,	of	which	the	example
above	uses	only	a	subset.	Specifically,	the	example	specifies	meta-information	to

build	packages,	and	it	specifies	the	contents	of	the	package.	Normally,	a	package
will	contain	of	addition	modules,	like	Python	source	modules,	documentation,
subpackages,	etc.	Please	refer	to	the	distutils	documentation	in	Distributing
Python	Modules	to	learn	more	about	the	features	of	distutils;	this	section
explains	building	extension	modules	only.

It	is	common	to	pre-compute	arguments	to	setup,	to	better	structure	the	driver
script.	In	the	example	above,	the"ext_modules"	argument	to	setup	is	a	list
of	extension	modules,	each	of	which	is	an	instance	of	the	Extension.	In	the
example,	the	instance	defines	an	extension	named	"demo"	which	is	build	by
compiling	a	single	source	file,	demo.c.

In	many	cases,	building	an	extension	is	more	complex,	since	additional
preprocessor	defines	and	libraries	may	be	needed.	This	is	demonstrated	in	the
example	below.

from	distutils.core	import	setup,	Extension

module1	=	Extension('demo',

																				define_macros	=	[('MAJOR_VERSION',	'1'),

																																					('MINOR_VERSION',	'0')],

																				include_dirs	=	['/usr/local/include'],

																				libraries	=	['tcl83'],

																				library_dirs	=	['/usr/local/lib'],

																				sources	=	['demo.c'])

setup	(name	=	'PackageName',

							version	=	'1.0',

							description	=	'This	is	a	demo	package',

							author	=	'Martin	v.	Loewis',

							author_email	=	'martin@v.loewis.de',

							url	=	'http://www.python.org/doc/current/ext/building.html',

							long_description	=	'''

This	is	really	just	a	demo	package.

''',

							ext_modules	=	[module1])

In	this	example,	setup	is	called	with	additional	meta-information,	which	is
recommended	when	distribution	packages	have	to	be	built.	For	the	extension
itself,	it	specifies	preprocessor	defines,	include	directories,	library	directories,
and	libraries.	Depending	on	the	compiler,	distutils	passes	this	information	in
different	ways	to	the	compiler.	For	example,	on	UNIX,	this	may	result	in	the
compilation	commands

gcc	-DNDEBUG	-g	-O3	-Wall	-Wstrict-prototypes	-fPIC	-DMAJOR_VERSION=1	-DMINOR_VERSION=0	-I/usr/local/include	-I/usr/local/include/python2.2	-c	demo.c	-o	build/temp.linux-i686-2.2/demo.o

gcc	-shared	build/temp.linux-i686-2.2/demo.o	-L/usr/local/lib	-ltcl83	-o	build/lib.linux-i686-2.2/demo.so

These	lines	are	for	demonstration	purposes	only;	distutils	users	should	trust	that
distutils	gets	the	invocations	right.

Subsections

3.1	Distributing	your	extension	modules

Extending	and	Embedding	the	Python
Interpreter

Previous:	2.2.6	More	Suggestions	Up:	Extending	and	Embedding	the	Next:
3.1	Distributing	your	extension

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.	Building	C	and	Up:	3.	Building	C	and	Next:	4.	Building	C	and

3.1	Distributing	your	extension
modules
When	an	extension	has	been	successfully	build,	there	are	three	ways	to	use	it.

End-users	will	typically	want	to	install	the	module,	they	do	so	by	running

python	setup.py	install

Module	maintainers	should	produce	source	packages;	to	do	so,	they	run

python	setup.py	sdist

In	some	cases,	additional	files	need	to	be	included	in	a	source	distribution;	this	is
done	through	a	MANIFEST.in	file;	see	the	distutils	documentation	for	details.

If	the	source	distribution	has	been	build	successfully,	maintainers	can	also	create
binary	distributions.	Depending	on	the	platform,	one	of	the	following	commands
can	be	used	to	do	so.

python	setup.py	bdist_wininst

python	setup.py	bdist_rpm

python	setup.py	bdist_dumb

Extending	and	Embedding	the	Python
Interpreter

Previous:	3.	Building	C	and	Up:	3.	Building	C	and	Next:	4.	Building	C	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.1	Distributing	your	extension	Up:	Extending	and	Embedding	the
Next:	4.1	A	Cookbook	Approach

4.	Building	C	and	C++	Extensions	on
Windows
This	chapter	briefly	explains	how	to	create	a	Windows	extension	module	for
Python	using	Microsoft	Visual	C++,	and	follows	with	more	detailed	background
information	on	how	it	works.	The	explanatory	material	is	useful	for	both	the
Windows	programmer	learning	to	build	Python	extensions	and	the	UNIX

programmer	interested	in	producing	software	which	can	be	successfully	built	on
both	UNIX	and	Windows.

Module	authors	are	encouraged	to	use	the	distutils	approach	for	building
extension	modules,	instead	of	the	one	described	in	this	section.	You	will	still
need	the	C	compiler	that	was	used	to	build	Python;	typically	Microsoft	Visual
C++.

Note: 	This	chapter	mentions	a	number	of	filenames	that	include
an	encoded	Python	version	number.	These	filenames	are
represented	with	the	version	number	shown	as	"XY";	in	practive,
"X"	will	be	the	major	version	number	and	"Y"	will	be	the	minor
version	number	of	the	Python	release	you're	working	with.	For
example,	if	you	are	using	Python	2.2.1,	"XY"	will	actually	be
"22".

Subsections

4.1	A	Cookbook	Approach
4.2	Differences	Between	UNIX	and	Windows
4.3	Using	DLLs	in	Practice

Extending	and	Embedding	the	Python
Interpreter

Previous:	3.1	Distributing	your	extension	Up:	Extending	and	Embedding	the
Next:	4.1	A	Cookbook	Approach

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.	Building	C	and	Up:	4.	Building	C	and	Next:	4.2	Differences
Between	Unix

4.1	A	Cookbook	Approach
There	are	two	approaches	to	building	extension	modules	on	Windows,	just	as
there	are	on	UNIX:	use	the	distutils	package	to	control	the	build	process,	or
do	things	manually.	The	distutils	approach	works	well	for	most	extensions;
documentation	on	using	distutils	to	build	and	package	extension	modules	is
available	in	Distributing	Python	Modules.	This	section	describes	the	manual
approach	to	building	Python	extensions	written	in	C	or	C++.

To	build	extensions	using	these	instructions,	you	need	to	have	a	copy	of	the
Python	sources	of	the	same	version	as	your	installed	Python.	You	will	need
Microsoft	Visual	C++	``Developer	Studio'';	project	files	are	supplied	for	VC++
version	6,	but	you	can	use	older	versions	of	VC++.	The	example	files	described
here	are	distributed	with	the	Python	sources	in	the	PC\	example_nt\	directory.

1.	 Copy	the	example	files	
The	example_nt	directory	is	a	subdirectory	of	the	PC	directory,	in	order	to
keep	all	the	PC-specific	files	under	the	same	directory	in	the	source
distribution.	However,	the	example_nt	directory	can't	actually	be	used
from	this	location.	You	first	need	to	copy	or	move	it	up	one	level,	so	that
example_nt	is	a	sibling	of	the	PC	and	Include	directories.	Do	all	your
work	from	within	this	new	location.

2.	 Open	the	project	
From	VC++,	use	the	File	>	Open	Workspace	dialog	(not	File	>	Open!).
Navigate	to	and	select	the	file	example.dsw,	in	the	copy	of	the
example_nt	directory	you	made	above.	Click	Open.

3.	 Build	the	example	DLL	
In	order	to	check	that	everything	is	set	up	right,	try	building:

1.	 Select	a	configuration.	This	step	is	optional.	Choose	Build	>	Select
Active	Configuration	and	select	either	example	-	Win32	Release	or
example	-	Win32	Debug.	If	you	skip	this	step,	VC++	will	use	the
Debug	configuration	by	default.

2.	 Build	the	DLL.	Choose	Build	>	Build	example_d.dll	in	Debug	mode,

or	Build	>	Build	example.dll	in	Release	mode.	This	creates	all
intermediate	and	result	files	in	a	subdirectory	called	either	Debug	or
Release,	depending	on	which	configuration	you	selected	in	the
preceding	step.

4.	 Testing	the	debug-mode	DLL	
Once	the	Debug	build	has	succeeded,	bring	up	a	DOS	box,	and	change	to
the	example_nt\Debug	directory.	You	should	now	be	able	to	repeat	the
following	session	(C>	is	the	DOS	prompt,	>>>	is	the	Python	prompt;	note
that	build	information	and	various	debug	output	from	Python	may	not
match	this	screen	dump	exactly):

C>..\..\PCbuild\python_d

Adding	parser	accelerators	...

Done.

Python	2.2	(#28,	Dec	19	2001,	23:26:37)	[MSC	32	bit	(Intel)]	on	win32

Type	"copyright",	"credits"	or	"license"	for	more	information.

>>>	import	example

[4897	refs]

>>>	example.foo()

Hello,	world

[4903	refs]

>>>

Congratulations!	You've	successfully	built	your	first	Python	extension
module.

5.	 Creating	your	own	project	
Choose	a	name	and	create	a	directory	for	it.	Copy	your	C	sources	into	it.
Note	that	the	module	source	file	name	does	not	necessarily	have	to	match
the	module	name,	but	the	name	of	the	initialization	function	should	match
the	module	name	--	you	can	only	import	a	module	spam	if	its	initialization
function	is	called	initspam(),	and	it	should	call	Py_InitModule()
with	the	string	"spam"	as	its	first	argument	(use	the	minimal	example.c
in	this	directory	as	a	guide).	By	convention,	it	lives	in	a	file	called	spam.c
or	spammodule.c.	The	output	file	should	be	called	spam.dll	or	spam.pyd
(the	latter	is	supported	to	avoid	confusion	with	a	system	library	spam.dll	to
which	your	module	could	be	a	Python	interface)	in	Release	mode,	or
spam_d.dll	or	spam_d.pyd	in	Debug	mode.

Now	your	options	are:

1.	 Copy	example.dsw	and	example.dsp,	rename	them	to	spam.*,	and
edit	them	by	hand,	or

2.	 Create	a	brand	new	project;	instructions	are	below.

In	either	case,	copy	example_nt\example.def	to	spam\spam.def,	and
edit	the	new	spam.def	so	its	second	line	contains	the	string	`initspam'.
If	you	created	a	new	project	yourself,	add	the	file	spam.def	to	the	project
now.	(This	is	an	annoying	little	file	with	only	two	lines.	An	alternative
approach	is	to	forget	about	the	.def	file,	and	add	the	option
/export:initspam	somewhere	to	the	Link	settings,	by	manually	editing	the
setting	in	Project	Options	dialog).

6.	 Creating	a	brand	new	project	
Use	the	File	>	New	>	Projects	dialog	to	create	a	new	Project	Workspace.
Select	Win32	Dynamic-Link	Library,	enter	the	name	("spam"),	and	make
sure	the	Location	is	set	to	the	spam	directory	you	have	created	(which
should	be	a	direct	subdirectory	of	the	Python	build	tree,	a	sibling	of	Include
and	PC).	Select	Win32	as	the	platform	(in	my	version,	this	is	the	only
choice).	Make	sure	the	Create	new	workspace	radio	button	is	selected.
Click	OK.

Now	open	the	Project	>	Settings	dialog.	You	only	need	to	change	a	few
settings.	Make	sure	All	Configurations	is	selected	from	the	Settings	for:
dropdown	list.	Select	the	C/C++	tab.	Choose	the	Preprocessor	category	in
the	popup	menu	at	the	top.	Type	the	following	text	in	the	entry	box	labeled
Additional	include	directories:

..\Include,..\PC

Then,	choose	the	Input	category	in	the	Link	tab,	and	enter

..\PCbuild

in	the	text	box	labelled	Additional	library	path.

Now	you	need	to	add	some	mode-specific	settings:

Select	Win32	Release	in	the	Settings	for	dropdown	list.	Choose	the	Link
tab,	choose	the	Input	Category,	and	append	pythonXY.lib	to	the	list	in
the	Object/library	modules	box.

Select	Win32	Debug	in	the	Settings	for	dropdown	list,	and	append
pythonXY_d.lib	to	the	list	in	the	Object/library	modules	box.	Then
click	the	C/C++	tab,	select	Code	Generation	from	the	Category	dropdown
list,	and	select	Debug	Multithreaded	DLL	from	the	Use	run-time	library
dropdown	list.

Select	Win32	Release	again	from	the	Settings	for	dropdown	list.	Select
Multithreaded	DLL	from	the	Use	run-time	library:	dropdown	list.

You	should	now	create	the	file	spam.def	as	instructed	in	the	previous
section.	Then	chose	the	Insert	>	Files	into	Project	dialog.	Set	the	pattern
to	*.*	and	select	both	spam.c	and	spam.def	and	click	OK.	(Inserting
them	one	by	one	is	fine	too.)

If	your	module	creates	a	new	type,	you	may	have	trouble	with	this	line:

				PyObject_HEAD_INIT(&PyType_Type)

Change	it	to:

				PyObject_HEAD_INIT(NULL)

and	add	the	following	to	the	module	initialization	function:

				MyObject_Type.ob_type	=	&PyType_Type;

Refer	to	section	3	of	the	Python	FAQ	for	details	on	why	you	must	do	this.

Extending	and	Embedding	the	Python
Interpreter

Previous:	4.	Building	C	and	Up:	4.	Building	C	and	Next:	4.2	Differences
Between	Unix

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/doc/FAQ.html

Previous:	4.1	A	Cookbook	Approach	Up:	4.	Building	C	and	Next:	4.3	Using
DLLs	in

4.2	Differences	Between	UNIX	and
Windows
UNIX	and	Windows	use	completely	different	paradigms	for	run-time	loading	of
code.	Before	you	try	to	build	a	module	that	can	be	dynamically	loaded,	be	aware
of	how	your	system	works.

In	UNIX,	a	shared	object	(.so)	file	contains	code	to	be	used	by	the	program,	and
also	the	names	of	functions	and	data	that	it	expects	to	find	in	the	program.	When
the	file	is	joined	to	the	program,	all	references	to	those	functions	and	data	in	the
file's	code	are	changed	to	point	to	the	actual	locations	in	the	program	where	the
functions	and	data	are	placed	in	memory.	This	is	basically	a	link	operation.

In	Windows,	a	dynamic-link	library	(.dll)	file	has	no	dangling	references.
Instead,	an	access	to	functions	or	data	goes	through	a	lookup	table.	So	the	DLL
code	does	not	have	to	be	fixed	up	at	runtime	to	refer	to	the	program's	memory;
instead,	the	code	already	uses	the	DLL's	lookup	table,	and	the	lookup	table	is
modified	at	runtime	to	point	to	the	functions	and	data.

In	UNIX,	there	is	only	one	type	of	library	file	(.a)	which	contains	code	from
several	object	files	(.o).	During	the	link	step	to	create	a	shared	object	file	(.so),
the	linker	may	find	that	it	doesn't	know	where	an	identifier	is	defined.	The	linker
will	look	for	it	in	the	object	files	in	the	libraries;	if	it	finds	it,	it	will	include	all
the	code	from	that	object	file.

In	Windows,	there	are	two	types	of	library,	a	static	library	and	an	import	library
(both	called	.lib).	A	static	library	is	like	a	UNIX	.a	file;	it	contains	code	to	be
included	as	necessary.	An	import	library	is	basically	used	only	to	reassure	the
linker	that	a	certain	identifier	is	legal,	and	will	be	present	in	the	program	when
the	DLL	is	loaded.	So	the	linker	uses	the	information	from	the	import	library	to
build	the	lookup	table	for	using	identifiers	that	are	not	included	in	the	DLL.
When	an	application	or	a	DLL	is	linked,	an	import	library	may	be	generated,
which	will	need	to	be	used	for	all	future	DLLs	that	depend	on	the	symbols	in	the
application	or	DLL.

Suppose	you	are	building	two	dynamic-load	modules,	B	and	C,	which	should

share	another	block	of	code	A.	On	UNIX,	you	would	not	pass	A.a	to	the	linker	for
B.so	and	C.so;	that	would	cause	it	to	be	included	twice,	so	that	B	and	C	would
each	have	their	own	copy.	In	Windows,	building	A.dll	will	also	build	A.lib.	You
do	pass	A.lib	to	the	linker	for	B	and	C.	A.lib	does	not	contain	code;	it	just
contains	information	which	will	be	used	at	runtime	to	access	A's	code.

In	Windows,	using	an	import	library	is	sort	of	like	using	"import	spam";	it
gives	you	access	to	spam's	names,	but	does	not	create	a	separate	copy.	On	UNIX,
linking	with	a	library	is	more	like	"from	spam	import	*";	it	does	create	a
separate	copy.

Extending	and	Embedding	the	Python
Interpreter

Previous:	4.1	A	Cookbook	Approach	Up:	4.	Building	C	and	Next:	4.3	Using
DLLs	in

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.2	Differences	Between	Unix	Up:	4.	Building	C	and	Next:	5.
Embedding	Python	in

4.3	Using	DLLs	in	Practice
Windows	Python	is	built	in	Microsoft	Visual	C++;	using	other	compilers	may	or
may	not	work	(though	Borland	seems	to).	The	rest	of	this	section	is	MSVC++
specific.

When	creating	DLLs	in	Windows,	you	must	pass	pythonXY.lib	to	the	linker.	To
build	two	DLLs,	spam	and	ni	(which	uses	C	functions	found	in	spam),	you	could
use	these	commands:

cl	/LD	/I/python/include	spam.c	../libs/pythonXY.lib

cl	/LD	/I/python/include	ni.c	spam.lib	../libs/pythonXY.lib

The	first	command	created	three	files:	spam.obj,	spam.dll	and	spam.lib.
Spam.dll	does	not	contain	any	Python	functions	(such	as
PyArg_ParseTuple()),	but	it	does	know	how	to	find	the	Python	code
thanks	to	pythonXY.lib.

The	second	command	created	ni.dll	(and	.obj	and	.lib),	which	knows	how	to	find
the	necessary	functions	from	spam,	and	also	from	the	Python	executable.

Not	every	identifier	is	exported	to	the	lookup	table.	If	you	want	any	other
modules	(including	Python)	to	be	able	to	see	your	identifiers,	you	have	to	say
"_declspec(dllexport)",	as	in	"void	_declspec(dllexport)
initspam(void)"	or	"PyObject	_declspec(dllexport)
*NiGetSpamData(void)".

Developer	Studio	will	throw	in	a	lot	of	import	libraries	that	you	do	not	really
need,	adding	about	100K	to	your	executable.	To	get	rid	of	them,	use	the	Project
Settings	dialog,	Link	tab,	to	specify	ignore	default	libraries.	Add	the	correct
msvcrtxx.lib	to	the	list	of	libraries.

Extending	and	Embedding	the	Python
Interpreter

Previous:	4.2	Differences	Between	Unix	Up:	4.	Building	C	and	Next:	5.
Embedding	Python	in

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.3	Using	DLLs	in	Up:	Extending	and	Embedding	the	Next:	5.1	Very
High	Level

5.	Embedding	Python	in	Another
Application
The	previous	chapters	discussed	how	to	extend	Python,	that	is,	how	to	extend	the
functionality	of	Python	by	attaching	a	library	of	C	functions	to	it.	It	is	also
possible	to	do	it	the	other	way	around:	enrich	your	C/C++	application	by
embedding	Python	in	it.	Embedding	provides	your	application	with	the	ability	to
implement	some	of	the	functionality	of	your	application	in	Python	rather	than	C
or	C++.	This	can	be	used	for	many	purposes;	one	example	would	be	to	allow
users	to	tailor	the	application	to	their	needs	by	writing	some	scripts	in	Python.
You	can	also	use	it	yourself	if	some	of	the	functionality	can	be	written	in	Python
more	easily.

Embedding	Python	is	similar	to	extending	it,	but	not	quite.	The	difference	is	that
when	you	extend	Python,	the	main	program	of	the	application	is	still	the	Python
interpreter,	while	if	you	embed	Python,	the	main	program	may	have	nothing	to
do	with	Python	--	instead,	some	parts	of	the	application	occasionally	call	the
Python	interpreter	to	run	some	Python	code.

So	if	you	are	embedding	Python,	you	are	providing	your	own	main	program.
One	of	the	things	this	main	program	has	to	do	is	initialize	the	Python	interpreter.
At	the	very	least,	you	have	to	call	the	function	Py_Initialize()	(on	Mac
OS,	call	PyMac_Initialize()	instead).	There	are	optional	calls	to	pass
command	line	arguments	to	Python.	Then	later	you	can	call	the	interpreter	from
any	part	of	the	application.

There	are	several	different	ways	to	call	the	interpreter:	you	can	pass	a	string
containing	Python	statements	to	PyRun_SimpleString(),	or	you	can	pass	a
stdio	file	pointer	and	a	file	name	(for	identification	in	error	messages	only)	to
PyRun_SimpleFile().	You	can	also	call	the	lower-level	operations
described	in	the	previous	chapters	to	construct	and	use	Python	objects.

A	simple	demo	of	embedding	Python	can	be	found	in	the	directory
Demo/embed/	of	the	source	distribution.

See	Also:

Python/C	API	Reference	Manual
The	details	of	Python's	C	interface	are	given	in	this	manual.	A	great
deal	of	necessary	information	can	be	found	here.

Subsections

5.1	Very	High	Level	Embedding
5.2	Beyond	Very	High	Level	Embedding:	An	overview
5.3	Pure	Embedding
5.4	Extending	Embedded	Python
5.5	Embedding	Python	in	C++
5.6	Linking	Requirements

Extending	and	Embedding	the	Python
Interpreter

Previous:	4.3	Using	DLLs	in	Up:	Extending	and	Embedding	the	Next:	5.1	Very
High	Level

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.	Embedding	Python	in	Up:	5.	Embedding	Python	in	Next:	5.2
Beyond	Very	High

5.1	Very	High	Level	Embedding
The	simplest	form	of	embedding	Python	is	the	use	of	the	very	high	level
interface.	This	interface	is	intended	to	execute	a	Python	script	without	needing	to
interact	with	the	application	directly.	This	can	for	example	be	used	to	perform
some	operation	on	a	file.

#include	<Python.h>

int

main(int	argc,	char	*argv[])

{

		Py_Initialize();

		PyRun_SimpleString("from	time	import	time,ctime\n"

																					"print	'Today	is',ctime(time())\n");

		Py_Finalize();

		return	0;

}

The	above	code	first	initializes	the	Python	interpreter	with
Py_Initialize(),	followed	by	the	execution	of	a	hard-coded	Python	script
that	print	the	date	and	time.	Afterwards,	the	Py_Finalize()	call	shuts	the
interpreter	down,	followed	by	the	end	of	the	program.	In	a	real	program,	you
may	want	to	get	the	Python	script	from	another	source,	perhaps	a	text-editor
routine,	a	file,	or	a	database.	Getting	the	Python	code	from	a	file	can	better	be
done	by	using	the	PyRun_SimpleFile()	function,	which	saves	you	the
trouble	of	allocating	memory	space	and	loading	the	file	contents.

Extending	and	Embedding	the	Python
Interpreter

Previous:	5.	Embedding	Python	in	Up:	5.	Embedding	Python	in	Next:	5.2
Beyond	Very	High

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.1	Very	High	Level	Up:	5.	Embedding	Python	in	Next:	5.3	Pure
Embedding

5.2	Beyond	Very	High	Level
Embedding:	An	overview
The	high	level	interface	gives	you	the	ability	to	execute	arbitrary	pieces	of
Python	code	from	your	application,	but	exchanging	data	values	is	quite
cumbersome	to	say	the	least.	If	you	want	that,	you	should	use	lower	level	calls.
At	the	cost	of	having	to	write	more	C	code,	you	can	achieve	almost	anything.

It	should	be	noted	that	extending	Python	and	embedding	Python	is	quite	the
same	activity,	despite	the	different	intent.	Most	topics	discussed	in	the	previous
chapters	are	still	valid.	To	show	this,	consider	what	the	extension	code	from
Python	to	C	really	does:

1.	 Convert	data	values	from	Python	to	C,
2.	 Perform	a	function	call	to	a	C	routine	using	the	converted	values,	and
3.	 Convert	the	data	values	from	the	call	from	C	to	Python.

When	embedding	Python,	the	interface	code	does:

1.	 Convert	data	values	from	C	to	Python,
2.	 Perform	a	function	call	to	a	Python	interface	routine	using	the	converted

values,	and
3.	 Convert	the	data	values	from	the	call	from	Python	to	C.

As	you	can	see,	the	data	conversion	steps	are	simply	swapped	to	accommodate
the	different	direction	of	the	cross-language	transfer.	The	only	difference	is	the
routine	that	you	call	between	both	data	conversions.	When	extending,	you	call	a
C	routine,	when	embedding,	you	call	a	Python	routine.

This	chapter	will	not	discuss	how	to	convert	data	from	Python	to	C	and	vice
versa.	Also,	proper	use	of	references	and	dealing	with	errors	is	assumed	to	be
understood.	Since	these	aspects	do	not	differ	from	extending	the	interpreter,	you
can	refer	to	earlier	chapters	for	the	required	information.

Extending	and	Embedding	the	Python

Interpreter

Previous:	5.1	Very	High	Level	Up:	5.	Embedding	Python	in	Next:	5.3	Pure
Embedding

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2	Beyond	Very	High	Up:	5.	Embedding	Python	in	Next:	5.4
Extending	Embedded	Python

5.3	Pure	Embedding
The	first	program	aims	to	execute	a	function	in	a	Python	script.	Like	in	the
section	about	the	very	high	level	interface,	the	Python	interpreter	does	not
directly	interact	with	the	application	(but	that	will	change	in	the	next	section).

The	code	to	run	a	function	defined	in	a	Python	script	is:

#include	<Python.h>

int

main(int	argc,	char	*argv[])

{

				PyObject	*pName,	*pModule,	*pDict,	*pFunc;

				PyObject	*pArgs,	*pValue;

				int	i;

				if	(argc	<	3)	{

								fprintf(stderr,"Usage:	call	pythonfile	funcname	[args]\n");

								return	1;

				}

				Py_Initialize();

				pName	=	PyString_FromString(argv[1]);

				/*	Error	checking	of	pName	left	out	*/

				pModule	=	PyImport_Import(pName);

				Py_DECREF(pName);

				if	(pModule	!=	NULL)	{

								pDict	=	PyModule_GetDict(pModule);

								/*	pDict	is	a	borrowed	reference	*/

								pFunc	=	PyDict_GetItemString(pDict,	argv[2]);

								/*	pFun:	Borrowed	reference	*/

								if	(pFunc	&&	PyCallable_Check(pFunc))	{

												pArgs	=	PyTuple_New(argc	-	3);

												for	(i	=	0;	i	<	argc	-	3;	++i)	{

																pValue	=	PyInt_FromLong(atoi(argv[i	+	3]));

																if	(!pValue)	{

																				Py_DECREF(pArgs);

																				Py_DECREF(pModule);

																				fprintf(stderr,	"Cannot	convert	argument\n");

																				return	1;

																}

																/*	pValue	reference	stolen	here:	*/

																PyTuple_SetItem(pArgs,	i,	pValue);

												}

												pValue	=	PyObject_CallObject(pFunc,	pArgs);

												Py_DECREF(pArgs);

												if	(pValue	!=	NULL)	{

																printf("Result	of	call:	%ld\n",	PyInt_AsLong(pValue));

																Py_DECREF(pValue);

												}

												else	{

																Py_DECREF(pModule);

																PyErr_Print();

																fprintf(stderr,"Call	failed\n");

																return	1;

												}

												/*	pDict	and	pFunc	are	borrowed	and	must	not	be	Py_DECREF-ed	*/

								}

								else	{

												if	(PyErr_Occurred())

																PyErr_Print();

												fprintf(stderr,	"Cannot	find	function	\"%s\"\n",	argv[2]);

								}

								Py_DECREF(pModule);

				}

				else	{

								PyErr_Print();

								fprintf(stderr,	"Failed	to	load	\"%s\"\n",	argv[1]);

								return	1;

				}

				Py_Finalize();

				return	0;

}

Download	as	text	(original	file	name:	run-func.c).

This	code	loads	a	Python	script	using	argv[1],	and	calls	the	function	named	in
argv[2].	Its	integer	arguments	are	the	other	values	of	the	argv	array.	If	you
compile	and	link	this	program	(let's	call	the	finished	executable	call),	and	use	it
to	execute	a	Python	script,	such	as:

def	multiply(a,b):

				print	"Will	compute",	a,	"times",	b

				c	=	0

				for	i	in	range(0,	a):

								c	=	c	+	b

				return	c

then	the	result	should	be:

$	call	multiply	multiply	3	2

Will	compute	3	times	2

Result	of	call:	6

Although	the	program	is	quite	large	for	its	functionality,	most	of	the	code	is	for
data	conversion	between	Python	and	C,	and	for	error	reporting.	The	interesting
part	with	respect	to	embedding	Python	starts	with

				Py_Initialize();

				pName	=	PyString_FromString(argv[1]);

				/*	Error	checking	of	pName	left	out	*/

				pModule	=	PyImport_Import(pName);

After	initializing	the	interpreter,	the	script	is	loaded	using
PyImport_Import().	This	routine	needs	a	Python	string	as	its	argument,
which	is	constructed	using	the	PyString_FromString()	data	conversion
routine.

				pFunc	=	PyObject_GetAttrString(pModule,	argv[2]);

				/*	pFunc	is	a	new	reference	*/

				if	(pFunc	&&	PyCallable_Check(pFunc))	{

								...

				}

				Py_XDECREF(pFunc);

Once	the	script	is	loaded,	the	name	we're	looking	for	is	retrieved	using
PyObject_GetAttrString().	If	the	name	exists,	and	the	object	returned
is	callable,	you	can	safely	assume	that	it	is	a	function.	The	program	then
proceeds	by	constructing	a	tuple	of	arguments	as	normal.	The	call	to	the	Python
function	is	then	made	with:

				pValue	=	PyObject_CallObject(pFunc,	pArgs);

Upon	return	of	the	function,	pValue	is	either	NULL	or	it	contains	a	reference	to
the	return	value	of	the	function.	Be	sure	to	release	the	reference	after	examining
the	value.

Extending	and	Embedding	the	Python
Interpreter

Previous:	5.2	Beyond	Very	High	Up:	5.	Embedding	Python	in	Next:	5.4
Extending	Embedded	Python

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3	Pure	Embedding	Up:	5.	Embedding	Python	in	Next:	5.5
Embedding	Python	in

5.4	Extending	Embedded	Python
Until	now,	the	embedded	Python	interpreter	had	no	access	to	functionality	from
the	application	itself.	The	Python	API	allows	this	by	extending	the	embedded
interpreter.	That	is,	the	embedded	interpreter	gets	extended	with	routines
provided	by	the	application.	While	it	sounds	complex,	it	is	not	so	bad.	Simply
forget	for	a	while	that	the	application	starts	the	Python	interpreter.	Instead,
consider	the	application	to	be	a	set	of	subroutines,	and	write	some	glue	code	that
gives	Python	access	to	those	routines,	just	like	you	would	write	a	normal	Python
extension.	For	example:

static	int	numargs=0;

/*	Return	the	number	of	arguments	of	the	application	command	line	*/

static	PyObject*

emb_numargs(PyObject	*self,	PyObject	*args)

{

				if(!PyArg_ParseTuple(args,	":numargs"))

								return	NULL;

				return	Py_BuildValue("i",	numargs);

}

static	PyMethodDef	EmbMethods[]	=	{

				{"numargs",	emb_numargs,	METH_VARARGS,

					"Return	the	number	of	arguments	received	by	the	process."},

				{NULL,	NULL,	0,	NULL}

};

Insert	the	above	code	just	above	the	main()	function.	Also,	insert	the	following
two	statements	directly	after	Py_Initialize():

				numargs	=	argc;

				Py_InitModule("emb",	EmbMethods);

These	two	lines	initialize	the	numargs	variable,	and	make	the
emb.numargs()	function	accessible	to	the	embedded	Python	interpreter.	With
these	extensions,	the	Python	script	can	do	things	like

import	emb

print	"Number	of	arguments",	emb.numargs()

In	a	real	application,	the	methods	will	expose	an	API	of	the	application	to

Python.

Extending	and	Embedding	the	Python
Interpreter

Previous:	5.3	Pure	Embedding	Up:	5.	Embedding	Python	in	Next:	5.5
Embedding	Python	in

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.4	Extending	Embedded	Python	Up:	5.	Embedding	Python	in	Next:
5.6	Linking	Requirements

5.5	Embedding	Python	in	C++
It	is	also	possible	to	embed	Python	in	a	C++	program;	precisely	how	this	is	done
will	depend	on	the	details	of	the	C++	system	used;	in	general	you	will	need	to
write	the	main	program	in	C++,	and	use	the	C++	compiler	to	compile	and	link
your	program.	There	is	no	need	to	recompile	Python	itself	using	C++.

Extending	and	Embedding	the	Python
Interpreter

Previous:	5.4	Extending	Embedded	Python	Up:	5.	Embedding	Python	in	Next:
5.6	Linking	Requirements

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.5	Embedding	Python	in	Up:	5.	Embedding	Python	in	Next:	A.
Reporting	Bugs

5.6	Linking	Requirements
While	the	configure	script	shipped	with	the	Python	sources	will	correctly	build
Python	to	export	the	symbols	needed	by	dynamically	linked	extensions,	this	is
not	automatically	inherited	by	applications	which	embed	the	Python	library
statically,	at	least	on	UNIX.	This	is	an	issue	when	the	application	is	linked	to	the
static	runtime	library	(libpython.a)	and	needs	to	load	dynamic	extensions
(implemented	as	.so	files).

The	problem	is	that	some	entry	points	are	defined	by	the	Python	runtime	solely
for	extension	modules	to	use.	If	the	embedding	application	does	not	use	any	of
these	entry	points,	some	linkers	will	not	include	those	entries	in	the	symbol	table
of	the	finished	executable.	Some	additional	options	are	needed	to	inform	the
linker	not	to	remove	these	symbols.

Determining	the	right	options	to	use	for	any	given	platform	can	be	quite
difficult,	but	fortunately	the	Python	configuration	already	has	those	values.	To
retrieve	them	from	an	installed	Python	interpreter,	start	an	interactive	interpreter
and	have	a	short	session	like	this:

>>>	import	distutils.sysconfig

>>>	distutils.sysconfig.get_config_var('LINKFORSHARED')

'-Xlinker	-export-dynamic'

The	contents	of	the	string	presented	will	be	the	options	that	should	be	used.	If
the	string	is	empty,	there's	no	need	to	add	any	additional	options.	The
LINKFORSHARED	definition	corresponds	to	the	variable	of	the	same	name	in
Python's	top-level	Makefile.

Extending	and	Embedding	the	Python
Interpreter

Previous:	5.5	Embedding	Python	in	Up:	5.	Embedding	Python	in	Next:	A.
Reporting	Bugs

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.6	Linking	Requirements	Up:	Extending	and	Embedding	the	Next:
B.	History	and	License

A.	Reporting	Bugs
Python	is	a	mature	programming	language	which	has	established	a	reputation	for
stability.	In	order	to	maintain	this	reputation,	the	developers	would	like	to	know
of	any	deficiencies	you	find	in	Python	or	its	documentation.

Before	submitting	a	report,	you	will	be	required	to	log	into	SourceForge;	this
will	make	it	possible	for	the	developers	to	contact	you	for	additional	information
if	needed.	It	is	not	possible	to	submit	a	bug	report	anonymously.

All	bug	reports	should	be	submitted	via	the	Python	Bug	Tracker	on	SourceForge
(http://sourceforge.net/bugs/?group_id=5470).	The	bug	tracker	offers	a	Web
form	which	allows	pertinent	information	to	be	entered	and	submitted	to	the
developers.

The	first	step	in	filing	a	report	is	to	determine	whether	the	problem	has	already
been	reported.	The	advantage	in	doing	so,	aside	from	saving	the	developers	time,
is	that	you	learn	what	has	been	done	to	fix	it;	it	may	be	that	the	problem	has
already	been	fixed	for	the	next	release,	or	additional	information	is	needed	(in
which	case	you	are	welcome	to	provide	it	if	you	can!).	To	do	this,	search	the	bug
database	using	the	search	box	on	the	left	side	of	the	page.

If	the	problem	you're	reporting	is	not	already	in	the	bug	tracker,	go	back	to	the
Python	Bug	Tracker	(http://sourceforge.net/bugs/?group_id=5470).	Select
the	``Submit	a	Bug''	link	at	the	top	of	the	page	to	open	the	bug	reporting	form.

The	submission	form	has	a	number	of	fields.	The	only	fields	that	are	required	are
the	``Summary''	and	``Details''	fields.	For	the	summary,	enter	a	very	short
description	of	the	problem;	less	than	ten	words	is	good.	In	the	Details	field,
describe	the	problem	in	detail,	including	what	you	expected	to	happen	and	what
did	happen.	Be	sure	to	include	the	version	of	Python	you	used,	whether	any
extension	modules	were	involved,	and	what	hardware	and	software	platform	you
were	using	(including	version	information	as	appropriate).

The	only	other	field	that	you	may	want	to	set	is	the	``Category''	field,	which
allows	you	to	place	the	bug	report	into	a	broad	category	(such	as
``Documentation''	or	``Library'').

http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/bugs/?group_id=5470

Each	bug	report	will	be	assigned	to	a	developer	who	will	determine	what	needs
to	be	done	to	correct	the	problem.	You	will	receive	an	update	each	time	action	is
taken	on	the	bug.

See	Also:

How	to	Report	Bugs	Effectively
Article	which	goes	into	some	detail	about	how	to	create	a	useful	bug
report.	This	describes	what	kind	of	information	is	useful	and	why	it	is
useful.

Bug	Writing	Guidelines
Information	about	writing	a	good	bug	report.	Some	of	this	is	specific
to	the	Mozilla	project,	but	describes	general	good	practices.

Extending	and	Embedding	the	Python
Interpreter

Previous:	5.6	Linking	Requirements	Up:	Extending	and	Embedding	the	Next:
B.	History	and	License

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www-mice.cs.ucl.ac.uk/multimedia/software/documentation/ReportingBugs.html
http://www.mozilla.org/quality/bug-writing-guidelines.html

Previous:	A.	Reporting	Bugs	Up:	Extending	and	Embedding	the	Next:	B.1
History	of	the

B.	History	and	License

Subsections

B.1	History	of	the	software
B.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
B.3	Licenses	and	Acknowledgements	for	Incorporated	Software

B.3.1	Mersenne	Twister
B.3.2	Sockets
B.3.3	Floating	point	exception	control
B.3.4	MD5	message	digest	algorithm
B.3.5	Asynchronous	socket	services
B.3.6	Cookie	management
B.3.7	Profiling
B.3.8	Execution	tracing
B.3.9	UUencode	and	UUdecode	functions
B.3.10	XML	Remote	Procedure	Calls

Extending	and	Embedding	the	Python
Interpreter

Previous:	A.	Reporting	Bugs	Up:	Extending	and	Embedding	the	Next:	B.1
History	of	the

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.	History	and	License	Up:	B.	History	and	License	Next:	B.2	Terms
and	conditions

B.1	History	of	the	software
Python	was	created	in	the	early	1990s	by	Guido	van	Rossum	at	Stichting
Mathematisch	Centrum	(CWI,	see	http://www.cwi.nl/)	in	the	Netherlands	as	a
successor	of	a	language	called	ABC.	Guido	remains	Python's	principal	author,
although	it	includes	many	contributions	from	others.

In	1995,	Guido	continued	his	work	on	Python	at	the	Corporation	for	National
Research	Initiatives	(CNRI,	see	http://www.cnri.reston.va.us/)	in	Reston,
Virginia	where	he	released	several	versions	of	the	software.

In	May	2000,	Guido	and	the	Python	core	development	team	moved	to
BeOpen.com	to	form	the	BeOpen	PythonLabs	team.	In	October	of	the	same
year,	the	PythonLabs	team	moved	to	Digital	Creations	(now	Zope	Corporation;
see	http://www.zope.com/).	In	2001,	the	Python	Software	Foundation	(PSF,	see
http://www.python.org/psf/)	was	formed,	a	non-profit	organization	created
specifically	to	own	Python-related	Intellectual	Property.	Zope	Corporation	is	a
sponsoring	member	of	the	PSF.

All	Python	releases	are	Open	Source	(see	http://www.opensource.org/	for	the
Open	Source	Definition).	Historically,	most,	but	not	all,	Python	releases	have
also	been	GPL-compatible;	the	table	below	summarizes	the	various	releases.

Release Derived
from

Year Owner GPL
compatible?

0.9.0	thru
1.2

n/a 1991-
1995

CWI yes

1.3	thru
1.5.2

1.2 1995-
1999

CNRI yes

1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-

2003
PSF yes

2.3 2.2.2 2002-
2003

PSF yes

2.3.1 2.3 2002-
2003

PSF yes

2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes

Note:	GPL-compatible	doesn't	mean	that	we're	distributing	Python	under	the
GPL.	All	Python	licenses,	unlike	the	GPL,	let	you	distribute	a	modified	version
without	making	your	changes	open	source.	The	GPL-compatible	licenses	make
it	possible	to	combine	Python	with	other	software	that	is	released	under	the
GPL;	the	others	don't.

Thanks	to	the	many	outside	volunteers	who	have	worked	under	Guido's	direction
to	make	these	releases	possible.

Extending	and	Embedding	the	Python
Interpreter

Previous:	B.	History	and	License	Up:	B.	History	and	License	Next:	B.2	Terms
and	conditions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.1	History	of	the	Up:	B.	History	and	License	Next:	B.3	Licenses
and	Acknowledgements

B.2	Terms	and	conditions	for
accessing	or	otherwise	using
Python

PSF	LICENSE	AGREEMENT	FOR	PYTHON	2.4

1.	 This	LICENSE	AGREEMENT	is	between	the	Python	Software	Foundation
(``PSF''),	and	the	Individual	or	Organization	(``Licensee'')	accessing	and
otherwise	using	Python	2.4	software	in	source	or	binary	form	and	its
associated	documentation.

2.	 Subject	to	the	terms	and	conditions	of	this	License	Agreement,	PSF	hereby
grants	Licensee	a	nonexclusive,	royalty-free,	world-wide	license	to
reproduce,	analyze,	test,	perform	and/or	display	publicly,	prepare	derivative
works,	distribute,	and	otherwise	use	Python	2.4	alone	or	in	any	derivative
version,	provided,	however,	that	PSF's	License	Agreement	and	PSF's	notice
of	copyright,	i.e.,	``Copyright	©	2001-2004	Python	Software	Foundation;
All	Rights	Reserved''	are	retained	in	Python	2.4	alone	or	in	any	derivative
version	prepared	by	Licensee.

3.	 In	the	event	Licensee	prepares	a	derivative	work	that	is	based	on	or
incorporates	Python	2.4	or	any	part	thereof,	and	wants	to	make	the
derivative	work	available	to	others	as	provided	herein,	then	Licensee
hereby	agrees	to	include	in	any	such	work	a	brief	summary	of	the	changes
made	to	Python	2.4.

4.	 PSF	is	making	Python	2.4	available	to	Licensee	on	an	``AS	IS''	basis.	PSF
MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,	EXPRESS	OR
IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT	LIMITATION,	PSF
MAKES	NO	AND	DISCLAIMS	ANY	REPRESENTATION	OR
WARRANTY	OF	MERCHANTABILITY	OR	FITNESS	FOR	ANY
PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF	PYTHON	2.4	WILL
NOT	INFRINGE	ANY	THIRD	PARTY	RIGHTS.

5.	 PSF	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER	USERS

OF	PYTHON	2.4	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF
MODIFYING,	DISTRIBUTING,	OR	OTHERWISE	USING	PYTHON	2.4,
OR	ANY	DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE
POSSIBILITY	THEREOF.

6.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

7.	 Nothing	in	this	License	Agreement	shall	be	deemed	to	create	any
relationship	of	agency,	partnership,	or	joint	venture	between	PSF	and
Licensee.	This	License	Agreement	does	not	grant	permission	to	use	PSF
trademarks	or	trade	name	in	a	trademark	sense	to	endorse	or	promote
products	or	services	of	Licensee,	or	any	third	party.

8.	 By	copying,	installing	or	otherwise	using	Python	2.4,	Licensee	agrees	to	be
bound	by	the	terms	and	conditions	of	this	License	Agreement.

BEOPEN.COM	LICENSE	AGREEMENT	FOR	PYTHON	2.0

BEOPEN	PYTHON	OPEN	SOURCE	LICENSE	AGREEMENT	VERSION
1

1.	 This	LICENSE	AGREEMENT	is	between	BeOpen.com	(``BeOpen''),
having	an	office	at	160	Saratoga	Avenue,	Santa	Clara,	CA	95051,	and	the
Individual	or	Organization	(``Licensee'')	accessing	and	otherwise	using	this
software	in	source	or	binary	form	and	its	associated	documentation	(``the
Software'').

2.	 Subject	to	the	terms	and	conditions	of	this	BeOpen	Python	License
Agreement,	BeOpen	hereby	grants	Licensee	a	non-exclusive,	royalty-free,
world-wide	license	to	reproduce,	analyze,	test,	perform	and/or	display
publicly,	prepare	derivative	works,	distribute,	and	otherwise	use	the
Software	alone	or	in	any	derivative	version,	provided,	however,	that	the
BeOpen	Python	License	is	retained	in	the	Software,	alone	or	in	any
derivative	version	prepared	by	Licensee.

3.	 BeOpen	is	making	the	Software	available	to	Licensee	on	an	``AS	IS''	basis.
BEOPEN	MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,
EXPRESS	OR	IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT

LIMITATION,	BEOPEN	MAKES	NO	AND	DISCLAIMS	ANY
REPRESENTATION	OR	WARRANTY	OF	MERCHANTABILITY	OR
FITNESS	FOR	ANY	PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF
THE	SOFTWARE	WILL	NOT	INFRINGE	ANY	THIRD	PARTY
RIGHTS.

4.	 BEOPEN	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER
USERS	OF	THE	SOFTWARE	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF	USING,
MODIFYING	OR	DISTRIBUTING	THE	SOFTWARE,	OR	ANY
DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY
THEREOF.

5.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

6.	 This	License	Agreement	shall	be	governed	by	and	interpreted	in	all	respects
by	the	law	of	the	State	of	California,	excluding	conflict	of	law	provisions.
Nothing	in	this	License	Agreement	shall	be	deemed	to	create	any
relationship	of	agency,	partnership,	or	joint	venture	between	BeOpen	and
Licensee.	This	License	Agreement	does	not	grant	permission	to	use
BeOpen	trademarks	or	trade	names	in	a	trademark	sense	to	endorse	or
promote	products	or	services	of	Licensee,	or	any	third	party.	As	an
exception,	the	``BeOpen	Python''	logos	available	at
http://www.pythonlabs.com/logos.html	may	be	used	according	to	the
permissions	granted	on	that	web	page.

7.	 By	copying,	installing	or	otherwise	using	the	software,	Licensee	agrees	to
be	bound	by	the	terms	and	conditions	of	this	License	Agreement.

CNRI	LICENSE	AGREEMENT	FOR	PYTHON	1.6.1

1.	 This	LICENSE	AGREEMENT	is	between	the	Corporation	for	National
Research	Initiatives,	having	an	office	at	1895	Preston	White	Drive,	Reston,
VA	20191	(``CNRI''),	and	the	Individual	or	Organization	(``Licensee'')
accessing	and	otherwise	using	Python	1.6.1	software	in	source	or	binary
form	and	its	associated	documentation.

2.	 Subject	to	the	terms	and	conditions	of	this	License	Agreement,	CNRI
hereby	grants	Licensee	a	nonexclusive,	royalty-free,	world-wide	license	to

reproduce,	analyze,	test,	perform	and/or	display	publicly,	prepare	derivative
works,	distribute,	and	otherwise	use	Python	1.6.1	alone	or	in	any	derivative
version,	provided,	however,	that	CNRI's	License	Agreement	and	CNRI's
notice	of	copyright,	i.e.,	``Copyright	©	1995-2001	Corporation	for	National
Research	Initiatives;	All	Rights	Reserved''	are	retained	in	Python	1.6.1
alone	or	in	any	derivative	version	prepared	by	Licensee.	Alternately,	in	lieu
of	CNRI's	License	Agreement,	Licensee	may	substitute	the	following	text
(omitting	the	quotes):	``Python	1.6.1	is	made	available	subject	to	the	terms
and	conditions	in	CNRI's	License	Agreement.	This	Agreement	together
with	Python	1.6.1	may	be	located	on	the	Internet	using	the	following
unique,	persistent	identifier	(known	as	a	handle):	1895.22/1013.	This
Agreement	may	also	be	obtained	from	a	proxy	server	on	the	Internet	using
the	following	URL:	http://hdl.handle.net/1895.22/1013.''

3.	 In	the	event	Licensee	prepares	a	derivative	work	that	is	based	on	or
incorporates	Python	1.6.1	or	any	part	thereof,	and	wants	to	make	the
derivative	work	available	to	others	as	provided	herein,	then	Licensee
hereby	agrees	to	include	in	any	such	work	a	brief	summary	of	the	changes
made	to	Python	1.6.1.

4.	 CNRI	is	making	Python	1.6.1	available	to	Licensee	on	an	``AS	IS''	basis.
CNRI	MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,	EXPRESS
OR	IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT	LIMITATION,	CNRI
MAKES	NO	AND	DISCLAIMS	ANY	REPRESENTATION	OR
WARRANTY	OF	MERCHANTABILITY	OR	FITNESS	FOR	ANY
PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF	PYTHON	1.6.1	WILL
NOT	INFRINGE	ANY	THIRD	PARTY	RIGHTS.

5.	 CNRI	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER
USERS	OF	PYTHON	1.6.1	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF
MODIFYING,	DISTRIBUTING,	OR	OTHERWISE	USING	PYTHON
1.6.1,	OR	ANY	DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE
POSSIBILITY	THEREOF.

6.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

7.	 This	License	Agreement	shall	be	governed	by	the	federal	intellectual

http://hdl.handle.net/1895.22/1013

property	law	of	the	United	States,	including	without	limitation	the	federal
copyright	law,	and,	to	the	extent	such	U.S.	federal	law	does	not	apply,	by
the	law	of	the	Commonwealth	of	Virginia,	excluding	Virginia's	conflict	of
law	provisions.	Notwithstanding	the	foregoing,	with	regard	to	derivative
works	based	on	Python	1.6.1	that	incorporate	non-separable	material	that
was	previously	distributed	under	the	GNU	General	Public	License	(GPL),
the	law	of	the	Commonwealth	of	Virginia	shall	govern	this	License
Agreement	only	as	to	issues	arising	under	or	with	respect	to	Paragraphs	4,
5,	and	7	of	this	License	Agreement.	Nothing	in	this	License	Agreement
shall	be	deemed	to	create	any	relationship	of	agency,	partnership,	or	joint
venture	between	CNRI	and	Licensee.	This	License	Agreement	does	not
grant	permission	to	use	CNRI	trademarks	or	trade	name	in	a	trademark
sense	to	endorse	or	promote	products	or	services	of	Licensee,	or	any	third
party.

8.	 By	clicking	on	the	``ACCEPT''	button	where	indicated,	or	by	copying,
installing	or	otherwise	using	Python	1.6.1,	Licensee	agrees	to	be	bound	by
the	terms	and	conditions	of	this	License	Agreement.

ACCEPT

CWI	LICENSE	AGREEMENT	FOR	PYTHON	0.9.0	THROUGH	1.2

Copyright	©	1991	-	1995,	Stichting	Mathematisch	Centrum	Amsterdam,	The
Netherlands.	All	rights	reserved.

Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its
documentation	for	any	purpose	and	without	fee	is	hereby	granted,	provided	that
the	above	copyright	notice	appear	in	all	copies	and	that	both	that	copyright
notice	and	this	permission	notice	appear	in	supporting	documentation,	and	that
the	name	of	Stichting	Mathematisch	Centrum	or	CWI	not	be	used	in	advertising
or	publicity	pertaining	to	distribution	of	the	software	without	specific,	written
prior	permission.

STICHTING	MATHEMATISCH	CENTRUM	DISCLAIMS	ALL
WARRANTIES	WITH	REGARD	TO	THIS	SOFTWARE,	INCLUDING	ALL
IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS,	IN	NO
EVENT	SHALL	STICHTING	MATHEMATISCH	CENTRUM	BE	LIABLE
FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR

ANY	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,
DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF	CONTRACT,
NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN
CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS
SOFTWARE.

Extending	and	Embedding	the	Python
Interpreter

Previous:	B.1	History	of	the	Up:	B.	History	and	License	Next:	B.3	Licenses
and	Acknowledgements

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.2	Terms	and	conditions	Up:	B.	History	and	License	Next:	B.3.1
Mersenne	Twister

B.3	Licenses	and
Acknowledgements	for	Incorporated
Software
This	section	is	an	incomplete,	but	growing	list	of	licenses	and
acknowledgements	for	third-party	software	incorporated	in	the	Python
distribution.

Subsections

B.3.1	Mersenne	Twister
B.3.2	Sockets
B.3.3	Floating	point	exception	control
B.3.4	MD5	message	digest	algorithm
B.3.5	Asynchronous	socket	services
B.3.6	Cookie	management
B.3.7	Profiling
B.3.8	Execution	tracing
B.3.9	UUencode	and	UUdecode	functions
B.3.10	XML	Remote	Procedure	Calls

Extending	and	Embedding	the	Python
Interpreter

Previous:	B.2	Terms	and	conditions	Up:	B.	History	and	License	Next:	B.3.1
Mersenne	Twister

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3	Licenses	and	Acknowledgements	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.2	Sockets

B.3.1	Mersenne	Twister
The	_random	module	includes	code	based	on	a	download	from
http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html.	The
following	are	the	verbatim	comments	from	the	original	code:

A	C-program	for	MT19937,	with	initialization	improved	2002/1/26.

Coded	by	Takuji	Nishimura	and	Makoto	Matsumoto.

Before	using,	initialize	the	state	by	using	init_genrand(seed)

or	init_by_array(init_key,	key_length).

Copyright	(C)	1997	-	2002,	Makoto	Matsumoto	and	Takuji	Nishimura,

All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

	1.	Redistributions	of	source	code	must	retain	the	above	copyright

				notice,	this	list	of	conditions	and	the	following	disclaimer.

	2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

				notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

				documentation	and/or	other	materials	provided	with	the	distribution.

	3.	The	names	of	its	contributors	may	not	be	used	to	endorse	or	promote

				products	derived	from	this	software	without	specific	prior	written

				permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND	CONTRIBUTORS

"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT

LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR

A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	COPYRIGHT	OWNER	OR

CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,

EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,

PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR

PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF

LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING

NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS

SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Any	feedback	is	very	welcome.

http://www.math.keio.ac.jp/matumoto/emt.html

email:	matumoto@math.keio.ac.jp

http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html

Extending	and	Embedding	the	Python
Interpreter

Previous:	B.3	Licenses	and	Acknowledgements	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.2	Sockets

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.1	Mersenne	Twister	Up:	B.3	Licenses	and	Acknowledgements
Next:	B.3.3	Floating	point	exception

B.3.2	Sockets
The	socket	module	uses	the	functions,	getaddrinfo,	and	getnameinfo,
which	are	coded	in	separate	source	files	from	the	WIDE	Project,
http://www.wide.ad.jp/about/index.html.

						

Copyright	(C)	1995,	1996,	1997,	and	1998	WIDE	Project.

All	rights	reserved.

	

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

1.	Redistributions	of	source	code	must	retain	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer.

2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

			documentation	and/or	other	materials	provided	with	the	distribution.

3.	Neither	the	name	of	the	project	nor	the	names	of	its	contributors

			may	be	used	to	endorse	or	promote	products	derived	from	this	software

			without	specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	PROJECT	AND	CONTRIBUTORS	``AS	IS''	AND

GAI_ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	PROJECT	OR	CONTRIBUTORS	BE	LIABLE

FOR	GAI_ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL

DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS

OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

HOWEVER	CAUSED	AND	ON	GAI_ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT

LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	GAI_ANY	WAY

OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF

SUCH	DAMAGE.

Extending	and	Embedding	the	Python
Interpreter

Previous:	B.3.1	Mersenne	Twister	Up:	B.3	Licenses	and	Acknowledgements
Next:	B.3.3	Floating	point	exception

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.wide.ad.jp/about/index.html

Previous:	B.3.2	Sockets	Up:	B.3	Licenses	and	Acknowledgements	Next:	B.3.4
MD5	message	digest

B.3.3	Floating	point	exception	control
The	source	for	the	fpectl	module	includes	the	following	notice:

				/																							Copyright	(c)	1996.																											\	

			|										The	Regents	of	the	University	of	California.																	|

			|																								All	rights	reserved.																											|

			|																																																																							|

			|			Permission	to	use,	copy,	modify,	and	distribute	this	software	for			|

			|			any	purpose	without	fee	is	hereby	granted,	provided	that	this	en-			|

			|			tire	notice	is	included	in	all	copies	of	any	software	which	is	or			|

			|			includes		a		copy		or		modification		of		this	software	and	in	all			|

			|			copies	of	the	supporting	documentation	for	such	software.											|

			|																																																																							|

			|			This		work	was	produced	at	the	University	of	California,	Lawrence			|

			|			Livermore	National	Laboratory	under		contract		no.		W-7405-ENG-48			|

			|			between		the		U.S.		Department		of		Energy	and	The	Regents	of	the			|

			|			University	of	California	for	the	operation	of	UC	LLNL.														|

			|																																																																							|

			|																														DISCLAIMER																															|

			|																																																																							|

			|			This		software	was	prepared	as	an	account	of	work	sponsored	by	an			|

			|			agency	of	the	United	States	Government.	Neither	the	United	States			|

			|			Government		nor	the	University	of	California	nor	any	of	their	em-			|

			|			ployees,	makes	any	warranty,	express	or	implied,	or		assumes		any			|

			|			liability		or		responsibility		for	the	accuracy,	completeness,	or			|

			|			usefulness	of	any	information,		apparatus,		product,		or		process			|

			|			disclosed,			or		represents		that		its		use		would		not		infringe			|

			|			privately-owned	rights.	Reference	herein	to	any	specific		commer-			|

			|			cial		products,		process,		or		service		by	trade	name,	trademark,			|

			|			manufacturer,	or	otherwise,	does	not		necessarily		constitute		or			|

			|			imply		its	endorsement,	recommendation,	or	favoring	by	the	United			|

			|			States	Government	or	the	University	of	California.	The	views		and			|

			|			opinions		of	authors	expressed	herein	do	not	necessarily	state	or			|

			|			reflect	those	of	the	United	States	Government	or		the		University			|

			|			of		California,		and	shall	not	be	used	for	advertising	or	product			|

				\		endorsement	purposes.																																														/	

Extending	and	Embedding	the	Python
Interpreter

Previous:	B.3.2	Sockets	Up:	B.3	Licenses	and	Acknowledgements	Next:	B.3.4
MD5	message	digest

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.3	Floating	point	exception	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.5	Asynchronous	socket	services

B.3.4	MD5	message	digest	algorithm
The	source	code	for	the	md5	module	contains	the	following	notice:

Copyright	(C)	1991-2,	RSA	Data	Security,	Inc.	Created	1991.	All

rights	reserved.

License	to	copy	and	use	this	software	is	granted	provided	that	it

is	identified	as	the	"RSA	Data	Security,	Inc.	MD5	Message-Digest

Algorithm"	in	all	material	mentioning	or	referencing	this	software

or	this	function.

License	is	also	granted	to	make	and	use	derivative	works	provided

that	such	works	are	identified	as	"derived	from	the	RSA	Data

Security,	Inc.	MD5	Message-Digest	Algorithm"	in	all	material

mentioning	or	referencing	the	derived	work.

RSA	Data	Security,	Inc.	makes	no	representations	concerning	either

the	merchantability	of	this	software	or	the	suitability	of	this

software	for	any	particular	purpose.	It	is	provided	"as	is"

without	express	or	implied	warranty	of	any	kind.

These	notices	must	be	retained	in	any	copies	of	any	part	of	this

documentation	and/or	software.

Extending	and	Embedding	the	Python
Interpreter

Previous:	B.3.3	Floating	point	exception	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.5	Asynchronous	socket	services

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.4	MD5	message	digest	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.6	Cookie	management

B.3.5	Asynchronous	socket	services
The	asynchat	and	asyncore	modules	contain	the	following	notice:

						

	Copyright	1996	by	Sam	Rushing

																									All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and

	its	documentation	for	any	purpose	and	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appear	in	all

	copies	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of	Sam

	Rushing	not	be	used	in	advertising	or	publicity	pertaining	to

	distribution	of	the	software	without	specific,	written	prior

	permission.

	SAM	RUSHING	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS	SOFTWARE,

	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS,	IN

	NO	EVENT	SHALL	SAM	RUSHING	BE	LIABLE	FOR	ANY	SPECIAL,	INDIRECT	OR

	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS

	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF	CONTRACT,

	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN

	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

Extending	and	Embedding	the	Python
Interpreter

Previous:	B.3.4	MD5	message	digest	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.6	Cookie	management

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.5	Asynchronous	socket	services	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.7	Profiling

B.3.6	Cookie	management
The	Cookie	module	contains	the	following	notice:

	Copyright	2000	by	Timothy	O'Malley	<timo@alum.mit.edu>

																All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software

	and	its	documentation	for	any	purpose	and	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appear	in	all

	copies	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of

	Timothy	O'Malley		not	be	used	in	advertising	or	publicity

	pertaining	to	distribution	of	the	software	without	specific,	written

	prior	permission.

	Timothy	O'Malley	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS

	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY

	AND	FITNESS,	IN	NO	EVENT	SHALL	Timothy	O'Malley	BE	LIABLE	FOR

	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES

	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,

	WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS

	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR

	PERFORMANCE	OF	THIS	SOFTWARE.

Extending	and	Embedding	the	Python
Interpreter

Previous:	B.3.5	Asynchronous	socket	services	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.7	Profiling

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.6	Cookie	management	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.8	Execution	tracing

B.3.7	Profiling
The	profile	and	pstats	modules	contain	the	following	notice:

	Copyright	1994,	by	InfoSeek	Corporation,	all	rights	reserved.

	Written	by	James	Roskind

	Permission	to	use,	copy,	modify,	and	distribute	this	Python	software

	and	its	associated	documentation	for	any	purpose	(subject	to	the

	restriction	in	the	following	sentence)	without	fee	is	hereby	granted,

	provided	that	the	above	copyright	notice	appears	in	all	copies,	and

	that	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	InfoSeek	not	be	used	in

	advertising	or	publicity	pertaining	to	distribution	of	the	software

	without	specific,	written	prior	permission.		This	permission	is

	explicitly	restricted	to	the	copying	and	modification	of	the	software

	to	remain	in	Python,	compiled	Python,	or	other	languages	(such	as	C)

	wherein	the	modified	or	derived	code	is	exclusively	imported	into	a

	Python	module.

	INFOSEEK	CORPORATION	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS

	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND

	FITNESS.	IN	NO	EVENT	SHALL	INFOSEEK	CORPORATION	BE	LIABLE	FOR	ANY

	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES	WHATSOEVER

	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF

	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN

	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

Extending	and	Embedding	the	Python
Interpreter

Previous:	B.3.6	Cookie	management	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.8	Execution	tracing

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.7	Profiling	Up:	B.3	Licenses	and	Acknowledgements	Next:	B.3.9
UUencode	and	UUdecode

B.3.8	Execution	tracing
The	trace	module	contains	the	following	notice:

	portions	copyright	2001,	Autonomous	Zones	Industries,	Inc.,	all	rights...

	err...		reserved	and	offered	to	the	public	under	the	terms	of	the

	Python	2.2	license.

	Author:	Zooko	O'Whielacronx

	http://zooko.com/

	mailto:zooko@zooko.com

	Copyright	2000,	Mojam	Media,	Inc.,	all	rights	reserved.

	Author:	Skip	Montanaro

	Copyright	1999,	Bioreason,	Inc.,	all	rights	reserved.

	Author:	Andrew	Dalke

	Copyright	1995-1997,	Automatrix,	Inc.,	all	rights	reserved.

	Author:	Skip	Montanaro

	Copyright	1991-1995,	Stichting	Mathematisch	Centrum,	all	rights	reserved.

	Permission	to	use,	copy,	modify,	and	distribute	this	Python	software	and

	its	associated	documentation	for	any	purpose	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appears	in	all	copies,

	and	that	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	neither	Automatrix,

	Bioreason	or	Mojam	Media	be	used	in	advertising	or	publicity	pertaining	to

	distribution	of	the	software	without	specific,	written	prior	permission.

Extending	and	Embedding	the	Python
Interpreter

Previous:	B.3.7	Profiling	Up:	B.3	Licenses	and	Acknowledgements	Next:	B.3.9
UUencode	and	UUdecode

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.8	Execution	tracing	Up:	B.3	Licenses	and	Acknowledgements
Next:	B.3.10	XML	Remote	Procedure

B.3.9	UUencode	and	UUdecode	functions
The	uu	module	contains	the	following	notice:

	Copyright	1994	by	Lance	Ellinghouse

	Cathedral	City,	California	Republic,	United	States	of	America.

																								All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its

	documentation	for	any	purpose	and	without	fee	is	hereby	granted,

	provided	that	the	above	copyright	notice	appear	in	all	copies	and	that

	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	Lance	Ellinghouse

	not	be	used	in	advertising	or	publicity	pertaining	to	distribution

	of	the	software	without	specific,	written	prior	permission.

	LANCE	ELLINGHOUSE	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO

	THIS	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND

	FITNESS,	IN	NO	EVENT	SHALL	LANCE	ELLINGHOUSE	CENTRUM	BE	LIABLE

	FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES

	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN

	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT

	OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

	Modified	by	Jack	Jansen,	CWI,	July	1995:

	-	Use	binascii	module	to	do	the	actual	line-by-line	conversion

			between	ascii	and	binary.	This	results	in	a	1000-fold	speedup.	The	C

			version	is	still	5	times	faster,	though.

	-	Arguments	more	compliant	with	python	standard

Extending	and	Embedding	the	Python
Interpreter

Previous:	B.3.8	Execution	tracing	Up:	B.3	Licenses	and	Acknowledgements
Next:	B.3.10	XML	Remote	Procedure

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.9	UUencode	and	UUdecode	Up:	B.3	Licenses	and
Acknowledgements	Next:	About	this	document	...

B.3.10	XML	Remote	Procedure	Calls
The	xmlrpclib	module	contains	the	following	notice:

					The	XML-RPC	client	interface	is

	Copyright	(c)	1999-2002	by	Secret	Labs	AB

	Copyright	(c)	1999-2002	by	Fredrik	Lundh

	By	obtaining,	using,	and/or	copying	this	software	and/or	its

	associated	documentation,	you	agree	that	you	have	read,	understood,

	and	will	comply	with	the	following	terms	and	conditions:

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and

	its	associated	documentation	for	any	purpose	and	without	fee	is

	hereby	granted,	provided	that	the	above	copyright	notice	appears	in

	all	copies,	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of

	Secret	Labs	AB	or	the	author	not	be	used	in	advertising	or	publicity

	pertaining	to	distribution	of	the	software	without	specific,	written

	prior	permission.

	SECRET	LABS	AB	AND	THE	AUTHOR	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD

	TO	THIS	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANT-

	ABILITY	AND	FITNESS.		IN	NO	EVENT	SHALL	SECRET	LABS	AB	OR	THE	AUTHOR

	BE	LIABLE	FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY

	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,

	WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS

	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE

	OF	THIS	SOFTWARE.

Extending	and	Embedding	the	Python
Interpreter

Previous:	B.3.9	UUencode	and	UUdecode	Up:	B.3	Licenses	and
Acknowledgements	Next:	About	this	document	...

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Up:	Python	Documentation	Index	Next:	Front	Matter

Python/C	API	Reference	Manual
Guido	van	Rossum	

Fred	L.	Drake,	Jr.,	editor
Python	Software	Foundation	
Email:	docs@python.org

Release	2.4
29	November	2004

Front	Matter
Contents
1.	Introduction

1.1	Include	Files
1.2	Objects,	Types	and	Reference	Counts

1.2.1	Reference	Counts
1.2.2	Types

1.3	Exceptions
1.4	Embedding	Python

2.	The	Very	High	Level	Layer
3.	Reference	Counting
4.	Exception	Handling

4.1	Standard	Exceptions
4.2	Deprecation	of	String	Exceptions

5.	Utilities
5.1	Operating	System	Utilities
5.2	Process	Control
5.3	Importing	Modules
5.4	Data	marshalling	support
5.5	Parsing	arguments	and	building	values

6.	Abstract	Objects	Layer
6.1	Object	Protocol

6.2	Number	Protocol
6.3	Sequence	Protocol
6.4	Mapping	Protocol
6.5	Iterator	Protocol
6.6	Buffer	Protocol

7.	Concrete	Objects	Layer
7.1	Fundamental	Objects

7.1.1	Type	Objects
7.1.2	The	None	Object

7.2	Numeric	Objects
7.2.1	Plain	Integer	Objects
7.2.2	Boolean	Objects
7.2.3	Long	Integer	Objects
7.2.4	Floating	Point	Objects
7.2.5	Complex	Number	Objects

7.3	Sequence	Objects
7.3.1	String	Objects
7.3.2	Unicode	Objects
7.3.3	Buffer	Objects
7.3.4	Tuple	Objects
7.3.5	List	Objects

7.4	Mapping	Objects
7.4.1	Dictionary	Objects

7.5	Other	Objects
7.5.1	File	Objects
7.5.2	Instance	Objects
7.5.3	Method	Objects
7.5.4	Module	Objects
7.5.5	Iterator	Objects
7.5.6	Descriptor	Objects
7.5.7	Slice	Objects
7.5.8	Weak	Reference	Objects
7.5.9	CObjects
7.5.10	Cell	Objects
7.5.11	Generator	Objects
7.5.12	DateTime	Objects

8.	Initialization,	Finalization,	and	Threads
8.1	Thread	State	and	the	Global	Interpreter	Lock
8.2	Profiling	and	Tracing

8.3	Advanced	Debugger	Support
9.	Memory	Management

9.1	Overview
9.2	Memory	Interface
9.3	Examples

10.	Object	Implementation	Support
10.1	Allocating	Objects	on	the	Heap
10.2	Common	Object	Structures
10.3	Type	Objects
10.4	Mapping	Object	Structures
10.5	Number	Object	Structures
10.6	Sequence	Object	Structures
10.7	Buffer	Object	Structures
10.8	Supporting	the	Iterator	Protocol
10.9	Supporting	Cyclic	Garbage	Collection

A.	Reporting	Bugs
B.	History	and	License

B.1	History	of	the	software
B.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
B.3	Licenses	and	Acknowledgements	for	Incorporated	Software

B.3.1	Mersenne	Twister
B.3.2	Sockets
B.3.3	Floating	point	exception	control
B.3.4	MD5	message	digest	algorithm
B.3.5	Asynchronous	socket	services
B.3.6	Cookie	management
B.3.7	Profiling
B.3.8	Execution	tracing
B.3.9	UUencode	and	UUdecode	functions
B.3.10	XML	Remote	Procedure	Calls

Index
About	this	document	...

Python/C	API	Reference	Manual
Up:	Python	Documentation	Index	Next:	Front	Matter

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Python/C	API	Reference	Manual	Up:	Python/C	API	Reference
Manual	Next:	Contents

Front	Matter
Copyright	©	2001-2004	Python	Software	Foundation.	All	rights	reserved.

Copyright	©	2000	BeOpen.com.	All	rights	reserved.

Copyright	©	1995-2000	Corporation	for	National	Research	Initiatives.	All	rights
reserved.

Copyright	©	1991-1995	Stichting	Mathematisch	Centrum.	All	rights	reserved.

See	the	end	of	this	document	for	complete	license	and	permissions	information.

Abstract:

This	manual	documents	the	API	used	by	C	and	C++	programmers	who	want	to
write	extension	modules	or	embed	Python.	It	is	a	companion	to	Extending	and
Embedding	the	Python	Interpreter,	which	describes	the	general	principles	of
extension	writing	but	does	not	document	the	API	functions	in	detail.

Warning:	The	current	version	of	this	document	is	incomplete.	I	hope	that	it	is
nevertheless	useful.	I	will	continue	to	work	on	it,	and	release	new	versions	from
time	to	time,	independent	from	Python	source	code	releases.

Python/C	API	Reference	Manual
Previous:	Python/C	API	Reference	Manual	Up:	Python/C	API	Reference
Manual	Next:	Contents

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Contents	Up:	Python/C	API	Reference	Manual	Next:	1.1	Include
Files

1.	Introduction
The	Application	Programmer's	Interface	to	Python	gives	C	and	C++
programmers	access	to	the	Python	interpreter	at	a	variety	of	levels.	The	API	is
equally	usable	from	C++,	but	for	brevity	it	is	generally	referred	to	as	the
Python/C	API.	There	are	two	fundamentally	different	reasons	for	using	the
Python/C	API.	The	first	reason	is	to	write	extension	modules	for	specific
purposes;	these	are	C	modules	that	extend	the	Python	interpreter.	This	is
probably	the	most	common	use.	The	second	reason	is	to	use	Python	as	a
component	in	a	larger	application;	this	technique	is	generally	referred	to	as
embedding	Python	in	an	application.

Writing	an	extension	module	is	a	relatively	well-understood	process,	where	a
``cookbook''	approach	works	well.	There	are	several	tools	that	automate	the
process	to	some	extent.	While	people	have	embedded	Python	in	other
applications	since	its	early	existence,	the	process	of	embedding	Python	is	less
straightforward	than	writing	an	extension.

Many	API	functions	are	useful	independent	of	whether	you're	embedding	or
extending	Python;	moreover,	most	applications	that	embed	Python	will	need	to
provide	a	custom	extension	as	well,	so	it's	probably	a	good	idea	to	become
familiar	with	writing	an	extension	before	attempting	to	embed	Python	in	a	real
application.

Subsections

1.1	Include	Files
1.2	Objects,	Types	and	Reference	Counts

1.2.1	Reference	Counts
1.2.1.1	Reference	Count	Details

1.2.2	Types
1.3	Exceptions
1.4	Embedding	Python

Python/C	API	Reference	Manual
Previous:	Contents	Up:	Python/C	API	Reference	Manual	Next:	1.1	Include
Files

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.	Introduction	Up:	1.	Introduction	Next:	1.2	Objects,	Types	and

1.1	Include	Files
All	function,	type	and	macro	definitions	needed	to	use	the	Python/C	API	are
included	in	your	code	by	the	following	line:

#include	"Python.h"

This	implies	inclusion	of	the	following	standard	headers:	<stdio.h>,
<string.h>,	<errno.h>,	<limits.h>,	and	<stdlib.h>	(if	available).

Warning: 	Since	Python	may	define	some	pre-processor
definitions	which	affect	the	standard	headers	on	some	systems,
you	must	include	Python.h	before	any	standard	headers	are
included.

All	user	visible	names	defined	by	Python.h	(except	those	defined	by	the	included
standard	headers)	have	one	of	the	prefixes	"Py"	or	"_Py".	Names	beginning
with	"_Py"	are	for	internal	use	by	the	Python	implementation	and	should	not	be
used	by	extension	writers.	Structure	member	names	do	not	have	a	reserved
prefix.

Important:	user	code	should	never	define	names	that	begin	with	"Py"	or	"_Py".
This	confuses	the	reader,	and	jeopardizes	the	portability	of	the	user	code	to
future	Python	versions,	which	may	define	additional	names	beginning	with	one
of	these	prefixes.

The	header	files	are	typically	installed	with	Python.	On	UNIX,	these	are	located
in	the	directories	prefix/include/pythonversion/	and
exec_prefix/include/pythonversion/,	where	prefix	and	exec_prefix	are	defined
by	the	corresponding	parameters	to	Python's	configure	script	and	version	is
sys.version[:3].	On	Windows,	the	headers	are	installed	in	prefix/include,
where	prefix	is	the	installation	directory	specified	to	the	installer.

To	include	the	headers,	place	both	directories	(if	different)	on	your	compiler's
search	path	for	includes.	Do	not	place	the	parent	directories	on	the	search	path

and	then	use	"#include	<python2.4/Python.h>";	this	will	break	on
multi-platform	builds	since	the	platform	independent	headers	under	prefix
include	the	platform	specific	headers	from	exec_prefix.

C++	users	should	note	that	though	the	API	is	defined	entirely	using	C,	the
header	files	do	properly	declare	the	entry	points	to	be	extern	"C",	so	there	is
no	need	to	do	anything	special	to	use	the	API	from	C++.

Python/C	API	Reference	Manual
Previous:	1.	Introduction	Up:	1.	Introduction	Next:	1.2	Objects,	Types	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.1	Include	Files	Up:	1.	Introduction	Next:	1.2.1	Reference	Counts

1.2	Objects,	Types	and	Reference
Counts
Most	Python/C	API	functions	have	one	or	more	arguments	as	well	as	a	return
value	of	type	PyObject*.	This	type	is	a	pointer	to	an	opaque	data	type
representing	an	arbitrary	Python	object.	Since	all	Python	object	types	are	treated
the	same	way	by	the	Python	language	in	most	situations	(e.g.,	assignments,
scope	rules,	and	argument	passing),	it	is	only	fitting	that	they	should	be
represented	by	a	single	C	type.	Almost	all	Python	objects	live	on	the	heap:	you
never	declare	an	automatic	or	static	variable	of	type	PyObject,	only	pointer
variables	of	type	PyObject*	can	be	declared.	The	sole	exception	are	the	type
objects;	since	these	must	never	be	deallocated,	they	are	typically	static
PyTypeObject	objects.

All	Python	objects	(even	Python	integers)	have	a	type	and	a	reference	count.	An
object's	type	determines	what	kind	of	object	it	is	(e.g.,	an	integer,	a	list,	or	a	user-
defined	function;	there	are	many	more	as	explained	in	the	Python	Reference
Manual).	For	each	of	the	well-known	types	there	is	a	macro	to	check	whether	an
object	is	of	that	type;	for	instance,	"PyList_Check(a)"	is	true	if	(and	only	if)
the	object	pointed	to	by	a	is	a	Python	list.

Subsections

1.2.1	Reference	Counts
1.2.1.1	Reference	Count	Details

1.2.2	Types

Python/C	API	Reference	Manual
Previous:	1.1	Include	Files	Up:	1.	Introduction	Next:	1.2.1	Reference	Counts

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2	Objects,	Types	and	Up:	1.2	Objects,	Types	and	Next:	1.2.1.1
Reference	Count	Details

1.2.1	Reference	Counts
The	reference	count	is	important	because	today's	computers	have	a	finite	(and
often	severely	limited)	memory	size;	it	counts	how	many	different	places	there
are	that	have	a	reference	to	an	object.	Such	a	place	could	be	another	object,	or	a
global	(or	static)	C	variable,	or	a	local	variable	in	some	C	function.	When	an
object's	reference	count	becomes	zero,	the	object	is	deallocated.	If	it	contains
references	to	other	objects,	their	reference	count	is	decremented.	Those	other
objects	may	be	deallocated	in	turn,	if	this	decrement	makes	their	reference	count
become	zero,	and	so	on.	(There's	an	obvious	problem	with	objects	that	reference
each	other	here;	for	now,	the	solution	is	``don't	do	that.'')

Reference	counts	are	always	manipulated	explicitly.	The	normal	way	is	to	use
the	macro	Py_INCREF()	to	increment	an	object's	reference	count	by	one,	and
Py_DECREF()	to	decrement	it	by	one.	The	Py_DECREF()	macro	is
considerably	more	complex	than	the	incref	one,	since	it	must	check	whether	the
reference	count	becomes	zero	and	then	cause	the	object's	deallocator	to	be
called.	The	deallocator	is	a	function	pointer	contained	in	the	object's	type
structure.	The	type-specific	deallocator	takes	care	of	decrementing	the	reference
counts	for	other	objects	contained	in	the	object	if	this	is	a	compound	object	type,
such	as	a	list,	as	well	as	performing	any	additional	finalization	that's	needed.
There's	no	chance	that	the	reference	count	can	overflow;	at	least	as	many	bits	are
used	to	hold	the	reference	count	as	there	are	distinct	memory	locations	in	virtual
memory	(assuming	sizeof(long)	>=	sizeof(char*)).	Thus,	the
reference	count	increment	is	a	simple	operation.

It	is	not	necessary	to	increment	an	object's	reference	count	for	every	local
variable	that	contains	a	pointer	to	an	object.	In	theory,	the	object's	reference
count	goes	up	by	one	when	the	variable	is	made	to	point	to	it	and	it	goes	down
by	one	when	the	variable	goes	out	of	scope.	However,	these	two	cancel	each
other	out,	so	at	the	end	the	reference	count	hasn't	changed.	The	only	real	reason
to	use	the	reference	count	is	to	prevent	the	object	from	being	deallocated	as	long
as	our	variable	is	pointing	to	it.	If	we	know	that	there	is	at	least	one	other
reference	to	the	object	that	lives	at	least	as	long	as	our	variable,	there	is	no	need
to	increment	the	reference	count	temporarily.	An	important	situation	where	this
arises	is	in	objects	that	are	passed	as	arguments	to	C	functions	in	an	extension
module	that	are	called	from	Python;	the	call	mechanism	guarantees	to	hold	a

reference	to	every	argument	for	the	duration	of	the	call.

However,	a	common	pitfall	is	to	extract	an	object	from	a	list	and	hold	on	to	it	for
a	while	without	incrementing	its	reference	count.	Some	other	operation	might
conceivably	remove	the	object	from	the	list,	decrementing	its	reference	count
and	possible	deallocating	it.	The	real	danger	is	that	innocent-looking	operations
may	invoke	arbitrary	Python	code	which	could	do	this;	there	is	a	code	path
which	allows	control	to	flow	back	to	the	user	from	a	Py_DECREF(),	so	almost
any	operation	is	potentially	dangerous.

A	safe	approach	is	to	always	use	the	generic	operations	(functions	whose	name
begins	with	"PyObject_",	"PyNumber_",	"PySequence_"	or
"PyMapping_").	These	operations	always	increment	the	reference	count	of	the
object	they	return.	This	leaves	the	caller	with	the	responsibility	to	call
Py_DECREF()	when	they	are	done	with	the	result;	this	soon	becomes	second
nature.

Subsections

1.2.1.1	Reference	Count	Details

Python/C	API	Reference	Manual
Previous:	1.2	Objects,	Types	and	Up:	1.2	Objects,	Types	and	Next:	1.2.1.1
Reference	Count	Details

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2.1.1	Reference	Count	Details	Up:	1.2	Objects,	Types	and	Next:
1.3	Exceptions

1.2.2	Types
There	are	few	other	data	types	that	play	a	significant	role	in	the	Python/C	API;
most	are	simple	C	types	such	as	int,	long,	double	and	char*.	A	few
structure	types	are	used	to	describe	static	tables	used	to	list	the	functions
exported	by	a	module	or	the	data	attributes	of	a	new	object	type,	and	another	is
used	to	describe	the	value	of	a	complex	number.	These	will	be	discussed
together	with	the	functions	that	use	them.

Python/C	API	Reference	Manual
Previous:	1.2.1.1	Reference	Count	Details	Up:	1.2	Objects,	Types	and	Next:
1.3	Exceptions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2.2	Types	Up:	1.	Introduction	Next:	1.4	Embedding	Python

1.3	Exceptions
The	Python	programmer	only	needs	to	deal	with	exceptions	if	specific	error
handling	is	required;	unhandled	exceptions	are	automatically	propagated	to	the
caller,	then	to	the	caller's	caller,	and	so	on,	until	they	reach	the	top-level
interpreter,	where	they	are	reported	to	the	user	accompanied	by	a	stack
traceback.

For	C	programmers,	however,	error	checking	always	has	to	be	explicit.	All
functions	in	the	Python/C	API	can	raise	exceptions,	unless	an	explicit	claim	is
made	otherwise	in	a	function's	documentation.	In	general,	when	a	function
encounters	an	error,	it	sets	an	exception,	discards	any	object	references	that	it
owns,	and	returns	an	error	indicator	--	usually	NULL	or	-1.	A	few	functions
return	a	Boolean	true/false	result,	with	false	indicating	an	error.	Very	few
functions	return	no	explicit	error	indicator	or	have	an	ambiguous	return	value,
and	require	explicit	testing	for	errors	with	PyErr_Occurred().

Exception	state	is	maintained	in	per-thread	storage	(this	is	equivalent	to	using
global	storage	in	an	unthreaded	application).	A	thread	can	be	in	one	of	two
states:	an	exception	has	occurred,	or	not.	The	function	PyErr_Occurred()
can	be	used	to	check	for	this:	it	returns	a	borrowed	reference	to	the	exception
type	object	when	an	exception	has	occurred,	and	NULL	otherwise.	There	are	a
number	of	functions	to	set	the	exception	state:	PyErr_SetString()	is	the
most	common	(though	not	the	most	general)	function	to	set	the	exception	state,
and	PyErr_Clear()	clears	the	exception	state.

The	full	exception	state	consists	of	three	objects	(all	of	which	can	be	NULL):	the
exception	type,	the	corresponding	exception	value,	and	the	traceback.	These
have	the	same	meanings	as	the	Python	objects	sys.exc_type,
sys.exc_value,	and	sys.exc_traceback;	however,	they	are	not	the
same:	the	Python	objects	represent	the	last	exception	being	handled	by	a	Python
try	...	except	statement,	while	the	C	level	exception	state	only	exists	while	an
exception	is	being	passed	on	between	C	functions	until	it	reaches	the	Python
bytecode	interpreter's	main	loop,	which	takes	care	of	transferring	it	to
sys.exc_type	and	friends.

Note	that	starting	with	Python	1.5,	the	preferred,	thread-safe	way	to	access	the

exception	state	from	Python	code	is	to	call	the	function	sys.exc_info(),
which	returns	the	per-thread	exception	state	for	Python	code.	Also,	the	semantics
of	both	ways	to	access	the	exception	state	have	changed	so	that	a	function	which
catches	an	exception	will	save	and	restore	its	thread's	exception	state	so	as	to
preserve	the	exception	state	of	its	caller.	This	prevents	common	bugs	in
exception	handling	code	caused	by	an	innocent-looking	function	overwriting	the
exception	being	handled;	it	also	reduces	the	often	unwanted	lifetime	extension
for	objects	that	are	referenced	by	the	stack	frames	in	the	traceback.

As	a	general	principle,	a	function	that	calls	another	function	to	perform	some
task	should	check	whether	the	called	function	raised	an	exception,	and	if	so,	pass
the	exception	state	on	to	its	caller.	It	should	discard	any	object	references	that	it
owns,	and	return	an	error	indicator,	but	it	should	not	set	another	exception	--	that
would	overwrite	the	exception	that	was	just	raised,	and	lose	important
information	about	the	exact	cause	of	the	error.

A	simple	example	of	detecting	exceptions	and	passing	them	on	is	shown	in	the
sum_sequence()	example	above.	It	so	happens	that	that	example	doesn't
need	to	clean	up	any	owned	references	when	it	detects	an	error.	The	following
example	function	shows	some	error	cleanup.	First,	to	remind	you	why	you	like
Python,	we	show	the	equivalent	Python	code:

def	incr_item(dict,	key):

				try:

								item	=	dict[key]

				except	KeyError:

								item	=	0

				dict[key]	=	item	+	1

Here	is	the	corresponding	C	code,	in	all	its	glory:

int

incr_item(PyObject	*dict,	PyObject	*key)

{

				/*	Objects	all	initialized	to	NULL	for	Py_XDECREF	*/

				PyObject	*item	=	NULL,	*const_one	=	NULL,	*incremented_item	=	NULL;

				int	rv	=	-1;	/*	Return	value	initialized	to	-1	(failure)	*/

				item	=	PyObject_GetItem(dict,	key);

				if	(item	==	NULL)	{

								/*	Handle	KeyError	only:	*/

								if	(!PyErr_ExceptionMatches(PyExc_KeyError))

												goto	error;

								/*	Clear	the	error	and	use	zero:	*/

								PyErr_Clear();

								item	=	PyInt_FromLong(0L);

								if	(item	==	NULL)

												goto	error;

				}

				const_one	=	PyInt_FromLong(1L);

				if	(const_one	==	NULL)

								goto	error;

				incremented_item	=	PyNumber_Add(item,	const_one);

				if	(incremented_item	==	NULL)

								goto	error;

				if	(PyObject_SetItem(dict,	key,	incremented_item)	<	0)

								goto	error;

				rv	=	0;	/*	Success	*/

				/*	Continue	with	cleanup	code	*/

	error:

				/*	Cleanup	code,	shared	by	success	and	failure	path	*/

				/*	Use	Py_XDECREF()	to	ignore	NULL	references	*/

				Py_XDECREF(item);

				Py_XDECREF(const_one);

				Py_XDECREF(incremented_item);

				return	rv;	/*	-1	for	error,	0	for	success	*/

}

This	example	represents	an	endorsed	use	of	the	goto	statement	in	C!	It
illustrates	the	use	of	PyErr_ExceptionMatches()	and	PyErr_Clear()
to	handle	specific	exceptions,	and	the	use	of	Py_XDECREF()	to	dispose	of
owned	references	that	may	be	NULL	(note	the	"X"	in	the	name;	Py_DECREF()
would	crash	when	confronted	with	a	NULL	reference).	It	is	important	that	the
variables	used	to	hold	owned	references	are	initialized	to	NULL	for	this	to	work;
likewise,	the	proposed	return	value	is	initialized	to	-1	(failure)	and	only	set	to
success	after	the	final	call	made	is	successful.

Python/C	API	Reference	Manual
Previous:	1.2.2	Types	Up:	1.	Introduction	Next:	1.4	Embedding	Python

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.3	Exceptions	Up:	1.	Introduction	Next:	2.	The	Very	High

1.4	Embedding	Python
The	one	important	task	that	only	embedders	(as	opposed	to	extension	writers)	of
the	Python	interpreter	have	to	worry	about	is	the	initialization,	and	possibly	the
finalization,	of	the	Python	interpreter.	Most	functionality	of	the	interpreter	can
only	be	used	after	the	interpreter	has	been	initialized.

The	basic	initialization	function	is	Py_Initialize().	This	initializes	the
table	of	loaded	modules,	and	creates	the	fundamental	modules	__builtin__,
__main__,	sys,	and	exceptions.	It	also	initializes	the	module	search	path
(sys.path).

Py_Initialize()	does	not	set	the	``script	argument	list''	(sys.argv).	If
this	variable	is	needed	by	Python	code	that	will	be	executed	later,	it	must	be	set
explicitly	with	a	call	to	PySys_SetArgv(argc,	argv)	subsequent	to	the	call
to	Py_Initialize().

On	most	systems	(in	particular,	on	UNIX	and	Windows,	although	the	details	are
slightly	different),	Py_Initialize()	calculates	the	module	search	path
based	upon	its	best	guess	for	the	location	of	the	standard	Python	interpreter
executable,	assuming	that	the	Python	library	is	found	in	a	fixed	location	relative
to	the	Python	interpreter	executable.	In	particular,	it	looks	for	a	directory	named
lib/python2.4	relative	to	the	parent	directory	where	the	executable	named
python	is	found	on	the	shell	command	search	path	(the	environment	variable
PATH).

For	instance,	if	the	Python	executable	is	found	in	/usr/local/bin/python,	it	will
assume	that	the	libraries	are	in	/usr/local/lib/python2.4.	(In	fact,	this	particular
path	is	also	the	``fallback''	location,	used	when	no	executable	file	named	python
is	found	along	PATH.)	The	user	can	override	this	behavior	by	setting	the
environment	variable	PYTHONHOME,	or	insert	additional	directories	in	front
of	the	standard	path	by	setting	PYTHONPATH.

The	embedding	application	can	steer	the	search	by	calling
Py_SetProgramName(file)	before	calling	Py_Initialize().	Note	that
PYTHONHOME	still	overrides	this	and	PYTHONPATH	is	still	inserted	in	front
of	the	standard	path.	An	application	that	requires	total	control	has	to	provide	its

own	implementation	of	Py_GetPath(),	Py_GetPrefix(),
Py_GetExecPrefix(),	and	Py_GetProgramFullPath()	(all	defined
in	Modules/getpath.c).

Sometimes,	it	is	desirable	to	``uninitialize''	Python.	For	instance,	the	application
may	want	to	start	over	(make	another	call	to	Py_Initialize())	or	the
application	is	simply	done	with	its	use	of	Python	and	wants	to	free	all	memory
allocated	by	Python.	This	can	be	accomplished	by	calling	Py_Finalize().
The	function	Py_IsInitialized()	returns	true	if	Python	is	currently	in	the
initialized	state.	More	information	about	these	functions	is	given	in	a	later
chapter.

Python/C	API	Reference	Manual
Previous:	1.3	Exceptions	Up:	1.	Introduction	Next:	2.	The	Very	High

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.4	Embedding	Python	Up:	Python/C	API	Reference	Manual	Next:
3.	Reference	Counting

2.	The	Very	High	Level	Layer
The	functions	in	this	chapter	will	let	you	execute	Python	source	code	given	in	a
file	or	a	buffer,	but	they	will	not	let	you	interact	in	a	more	detailed	way	with	the
interpreter.

Several	of	these	functions	accept	a	start	symbol	from	the	grammar	as	a
parameter.	The	available	start	symbols	are	Py_eval_input,
Py_file_input,	and	Py_single_input.	These	are	described	following
the	functions	which	accept	them	as	parameters.

Note	also	that	several	of	these	functions	take	FILE*	parameters.	On	particular
issue	which	needs	to	be	handled	carefully	is	that	the	FILE	structure	for	different
C	libraries	can	be	different	and	incompatible.	Under	Windows	(at	least),	it	is
possible	for	dynamically	linked	extensions	to	actually	use	different	libraries,	so
care	should	be	taken	that	FILE*	parameters	are	only	passed	to	these	functions	if
it	is	certain	that	they	were	created	by	the	same	library	that	the	Python	runtime	is
using.

int	Py_Main(int	argc,	char	**argv)
The	main	program	for	the	standard	interpreter.	This	is	made	available	for
programs	which	embed	Python.	The	argc	and	argv	parameters	should	be
prepared	exactly	as	those	which	are	passed	to	a	C	program's	main()
function.	It	is	important	to	note	that	the	argument	list	may	be	modified	(but
the	contents	of	the	strings	pointed	to	by	the	argument	list	are	not).	The
return	value	will	be	the	integer	passed	to	the	sys.exit()	function,	1	if
the	interpreter	exits	due	to	an	exception,	or	2	if	the	parameter	list	does	not
represent	a	valid	Python	command	line.

int	PyRun_AnyFile(FILE	*fp,	const	char	*filename)
This	is	a	simplified	interface	to	PyRun_AnyFileExFlags()	below,
leaving	closeit	set	to	0	and	flags	set	to	NULL.

int	PyRun_AnyFileFlags(FILE	*fp,	const	char	*filename,PyCompilerFlags	*flags)
This	is	a	simplified	interface	to	PyRun_AnyFileExFlags()	below,

leaving	the	closeit	argument	set	to	0.

int	PyRun_AnyFileEx(FILE	*fp,	const	char	*filename,	int	closeit)
This	is	a	simplified	interface	to	PyRun_AnyFileExFlags()	below,
leaving	the	flags	argument	set	to	NULL.

int	PyRun_AnyFileExFlags(FILE	*fp,	const	char	*filename,	int	closeit,PyCompilerFlags	*flags)
If	fp	refers	to	a	file	associated	with	an	interactive	device	(console	or
terminal	input	or	UNIX	pseudo-terminal),	return	the	value	of
PyRun_InteractiveLoop(),	otherwise	return	the	result	of
PyRun_SimpleFile().	If	filename	is	NULL,	this	function	uses	"???"
as	the	filename.

int	PyRun_SimpleString(const	char	*command)
This	is	a	simplified	interface	to	PyRun_SimpleStringFlags()
below,	leaving	the	PyCompilerFlags*	argument	set	to	NULL.

int	PyRun_SimpleStringFlags(const	char	*command,	PyCompilerFlags*flags)
Executes	the	Python	source	code	from	command	in	the	__main__	module
according	to	the	flags	argument.	If	__main__	does	not	already	exist,	it	is
created.	Returns	0	on	success	or	-1	if	an	exception	was	raised.	If	there	was
an	error,	there	is	no	way	to	get	the	exception	information.	For	the	meaning
of	flags,	see	below.

int	PyRun_SimpleFile(FILE	*fp,	const	char	*filename)
This	is	a	simplified	interface	to	PyRun_SimpleFileExFlags()
below,	leaving	closeit	set	to	0	and	flags	set	to	NULL.

int	PyRun_SimpleFileFlags(FILE	*fp,	const	char	*filename,PyCompilerFlags	*flags)
This	is	a	simplified	interface	to	PyRun_SimpleFileExFlags()
below,	leaving	closeit	set	to	0.

int	PyRun_SimpleFileEx(FILE	*fp,	const	char	*filename,	int	closeit)
This	is	a	simplified	interface	to	PyRun_SimpleFileExFlags()

below,	leaving	flags	set	to	NULL.

int	PyRun_SimpleFileExFlags(FILE	*fp,	const	char	*filename,	intcloseit,	PyCompilerFlags	*flags)
Similar	to	PyRun_SimpleStringFlags(),	but	the	Python	source
code	is	read	from	fp	instead	of	an	in-memory	string.	filename	should	be	the
name	of	the	file.	If	closeit	is	true,	the	file	is	closed	before
PyRun_SimpleFileExFlags	returns.

int	PyRun_InteractiveOne(FILE	*fp,	const	char	*filename)
This	is	a	simplified	interface	to	PyRun_InteractiveOneFlags()
below,	leaving	flags	set	to	NULL.

int	PyRun_InteractiveOneFlags(FILE	*fp,	const	char	*filename,PyCompilerFlags	*flags)
Read	and	execute	a	single	statement	from	a	file	associated	with	an
interactive	device	according	to	the	flags	argument.	If	filename	is	NULL,
"???"	is	used	instead.	The	user	will	be	prompted	using	sys.ps1	and
sys.ps2.	Returns	0	when	the	input	was	executed	successfully,	-1	if	there
was	an	exception,	or	an	error	code	from	the	errcode.h	include	file
distributed	as	part	of	Python	if	there	was	a	parse	error.	(Note	that	errcode.h
is	not	included	by	Python.h,	so	must	be	included	specifically	if	needed.)

int	PyRun_InteractiveLoop(FILE	*fp,	const	char	*filename)
This	is	a	simplified	interface	to	PyRun_InteractiveLoopFlags()
below,	leaving	flags	set	to	NULL.

int	PyRun_InteractiveLoopFlags(FILE	*fp,	const	char	*filename,PyCompilerFlags	*flags)
Read	and	execute	statements	from	a	file	associated	with	an	interactive
device	until	EOF	is	reached.	If	filename	is	NULL,	"???"	is	used	instead.
The	user	will	be	prompted	using	sys.ps1	and	sys.ps2.	Returns	0	at
EOF.

struct	_node*	PyParser_SimpleParseString(const	char	*str,	int	start)
This	is	a	simplified	interface	to
PyParser_SimpleParseStringFlagsFilename()	below,

leaving	filename	set	to	NULL	and	flags	set	to	0.

struct	_node*	PyParser_SimpleParseStringFlags(const	char	*str,int	start,	int	flags)
This	is	a	simplified	interface	to
PyParser_SimpleParseStringFlagsFilename()	below,
leaving	filename	set	to	NULL.

struct	_node*	PyParser_SimpleParseStringFlagsFilename(

const	char
*str,	const
char
*filename
int	start
int	flags

Parse	Python	source	code	from	str	using	the	start	token	start	according	to
the	flags	argument.	The	result	can	be	used	to	create	a	code	object	which	can
be	evaluated	efficiently.	This	is	useful	if	a	code	fragment	must	be	evaluated
many	times.

struct	_node*	PyParser_SimpleParseFile(FILE	*fp,	const	char*filename,	int	start)
This	is	a	simplified	interface	to
PyParser_SimpleParseFileFlags()	below,	leaving	flags	set	to	0

struct	_node*	PyParser_SimpleParseFileFlags(
FILE	*fp,	const	char
*filename,	int	start,
int	flags)

Similar	to	PyParser_SimpleParseStringFlagsFilename(),
but	the	Python	source	code	is	read	from	fp	instead	of	an	in-memory	string.

PyObject*	PyRun_String(const	char	*str,	int	start,	PyObject	*globals,PyObject	*locals)
Return	value:	New	reference.
This	is	a	simplified	interface	to	PyRun_StringFlags()	below,	leaving
flags	set	to	NULL.

PyObject*	PyRun_StringFlags(
const	char	*str,	int	start,	PyObject
*globals,	PyObject	*locals,

PyCompilerFlags	*flags)
Execute	Python	source	code	from	str	in	the	context	specified	by	the
dictionaries	globals	and	locals	with	the	compiler	flags	specified	by	flags.
The	parameter	start	specifies	the	start	token	that	should	be	used	to	parse	the
source	code.

Returns	the	result	of	executing	the	code	as	a	Python	object,	or	NULL	if	an
exception	was	raised.

PyObject*	PyRun_File(FILE	*fp,	const	char	*filename,	int	start,	PyObject*globals,	PyObject	*locals)
Return	value:	New	reference.
This	is	a	simplified	interface	to	PyRun_FileExFlags()	below,	leaving
closeit	set	to	0	and	flags	set	to	NULL.

PyObject*	PyRun_FileEx(FILE	*fp,	const	char	*filename,	int	start,PyObject	*globals,	PyObject	*locals,	int	closeit)
This	is	a	simplified	interface	to	PyRun_FileExFlags()	below,	leaving
flags	set	to	NULL.

PyObject*	PyRun_FileFlags(
FILE	*fp,	const	char	*filename,	int	start,
PyObject	*globals,	PyObject	*locals,
PyCompilerFlags	*flags)

This	is	a	simplified	interface	to	PyRun_FileExFlags()	below,	leaving
closeit	set	to	0.

PyObject*	PyRun_FileExFlags(
FILE	*fp,	const	char	*filename,	int	start,
PyObject	*globals,	PyObject	*locals,	int
closeit,	PyCompilerFlags	*flags)

Similar	to	PyRun_StringFlags(),	but	the	Python	source	code	is	read
from	fp	instead	of	an	in-memory	string.	filename	should	be	the	name	of	the
file.	If	closeit	is	true,	the	file	is	closed	before	PyRun_FileExFlags()
returns.

PyObject*	Py_CompileString(const	char	*str,	const	char	*filename,	intstart)
Return	value:	New	reference.
This	is	a	simplified	interface	to	Py_CompileStringFlags()	below,

leaving	flags	set	to	NULL.

PyObject*	Py_CompileStringFlags(
const	char	*str,	const	char
*filename,	int	start,
PyCompilerFlags	*flags)

Parse	and	compile	the	Python	source	code	in	str,	returning	the	resulting
code	object.	The	start	token	is	given	by	start;	this	can	be	used	to	constrain
the	code	which	can	be	compiled	and	should	be	Py_eval_input,
Py_file_input,	or	Py_single_input.	The	filename	specified	by
filename	is	used	to	construct	the	code	object	and	may	appear	in	tracebacks
or	SyntaxError	exception	messages.	This	returns	NULL	if	the	code
cannot	be	parsed	or	compiled.

int	Py_eval_input
The	start	symbol	from	the	Python	grammar	for	isolated	expressions;	for	use
with	Py_CompileString().

int	Py_file_input
The	start	symbol	from	the	Python	grammar	for	sequences	of	statements	as
read	from	a	file	or	other	source;	for	use	with	Py_CompileString().
This	is	the	symbol	to	use	when	compiling	arbitrarily	long	Python	source
code.

int	Py_single_input
The	start	symbol	from	the	Python	grammar	for	a	single	statement;	for	use
with	Py_CompileString().	This	is	the	symbol	used	for	the	interactive
interpreter	loop.

struct	PyCompilerFlags

This	is	the	structure	used	to	hold	compiler	flags.	In	cases	where	code	is
only	being	compiled,	it	is	passed	as	int	flags,	and	in	cases	where	code
is	being	executed,	it	is	passed	as	PyCompilerFlags	*flags.	In	this
case,	from	__future__	import	can	modify	flags.

Whenever	PyCompilerFlags	*flags	is	NULL,	cf_flags	is	treated
as	equal	to	0,	and	any	modification	due	to	from	__future__	import
is	discarded.

struct	PyCompilerFlags	{

				int	cf_flags;

}

int	CO_FUTURE_DIVISION
This	bit	can	be	set	in	flags	to	cause	division	operator	/	to	be	interpreted	as
``true	division''	according	to	PEP	238.

Python/C	API	Reference	Manual
Previous:	1.4	Embedding	Python	Up:	Python/C	API	Reference	Manual	Next:
3.	Reference	Counting

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/peps/pep-0238.html

Previous:	2.	The	Very	High	Up:	Python/C	API	Reference	Manual	Next:	4.
Exception	Handling

3.	Reference	Counting
The	macros	in	this	section	are	used	for	managing	reference	counts	of	Python
objects.

void	Py_INCREF(PyObject	*o)
Increment	the	reference	count	for	object	o.	The	object	must	not	be	NULL;	if
you	aren't	sure	that	it	isn't	NULL,	use	Py_XINCREF().

void	Py_XINCREF(PyObject	*o)
Increment	the	reference	count	for	object	o.	The	object	may	be	NULL,	in
which	case	the	macro	has	no	effect.

void	Py_DECREF(PyObject	*o)
Decrement	the	reference	count	for	object	o.	The	object	must	not	be	NULL;
if	you	aren't	sure	that	it	isn't	NULL,	use	Py_XDECREF().	If	the	reference
count	reaches	zero,	the	object's	type's	deallocation	function	(which	must	not
be	NULL)	is	invoked.

Warning:	The	deallocation	function	can	cause	arbitrary	Python	code	to	be
invoked	(e.g.	when	a	class	instance	with	a	__del__()	method	is
deallocated).	While	exceptions	in	such	code	are	not	propagated,	the
executed	code	has	free	access	to	all	Python	global	variables.	This	means
that	any	object	that	is	reachable	from	a	global	variable	should	be	in	a
consistent	state	before	Py_DECREF()	is	invoked.	For	example,	code	to
delete	an	object	from	a	list	should	copy	a	reference	to	the	deleted	object	in	a
temporary	variable,	update	the	list	data	structure,	and	then	call
Py_DECREF()	for	the	temporary	variable.

void	Py_XDECREF(PyObject	*o)
Decrement	the	reference	count	for	object	o.	The	object	may	be	NULL,	in
which	case	the	macro	has	no	effect;	otherwise	the	effect	is	the	same	as	for
Py_DECREF(),	and	the	same	warning	applies.

void	Py_CLEAR(PyObject	*o)

Decrement	the	reference	count	for	object	o.	The	object	may	be	NULL,	in
which	case	the	macro	has	no	effect;	otherwise	the	effect	is	the	same	as	for
Py_DECREF(),	except	that	the	argument	is	also	set	to	NULL.	The	warning
for	Py_DECREF()	does	not	apply	with	respect	to	the	object	passed
because	the	macro	carefully	uses	a	temporary	variable	and	sets	the
argument	to	NULL	before	decrementing	its	reference	count.

It	is	a	good	idea	to	use	this	macro	whenever	decrementing	the	value	of	a
variable	that	might	be	traversed	during	garbage	collection.

New	in	version	2.4.

The	following	functions	are	for	runtime	dynamic	embedding	of	Python:
Py_IncRef(PyObject	*o),	Py_DecRef(PyObject	*o).	They	are
simply	exported	function	versions	of	Py_XINCREF()	and	Py_XDECREF(),
respectively.

The	following	functions	or	macros	are	only	for	use	within	the	interpreter	core:
_Py_Dealloc(),	_Py_ForgetReference(),	_Py_NewReference(),
as	well	as	the	global	variable	_Py_RefTotal.

Python/C	API	Reference	Manual
Previous:	2.	The	Very	High	Up:	Python/C	API	Reference	Manual	Next:	4.
Exception	Handling

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.	Reference	Counting	Up:	Python/C	API	Reference	Manual	Next:
4.1	Standard	Exceptions

4.	Exception	Handling
The	functions	described	in	this	chapter	will	let	you	handle	and	raise	Python
exceptions.	It	is	important	to	understand	some	of	the	basics	of	Python	exception
handling.	It	works	somewhat	like	the	UNIX	errno	variable:	there	is	a	global
indicator	(per	thread)	of	the	last	error	that	occurred.	Most	functions	don't	clear
this	on	success,	but	will	set	it	to	indicate	the	cause	of	the	error	on	failure.	Most
functions	also	return	an	error	indicator,	usually	NULL	if	they	are	supposed	to
return	a	pointer,	or	-1	if	they	return	an	integer	(exception:	the	PyArg_*()
functions	return	1	for	success	and	0	for	failure).

When	a	function	must	fail	because	some	function	it	called	failed,	it	generally
doesn't	set	the	error	indicator;	the	function	it	called	already	set	it.	It	is
responsible	for	either	handling	the	error	and	clearing	the	exception	or	returning
after	cleaning	up	any	resources	it	holds	(such	as	object	references	or	memory
allocations);	it	should	not	continue	normally	if	it	is	not	prepared	to	handle	the
error.	If	returning	due	to	an	error,	it	is	important	to	indicate	to	the	caller	that	an
error	has	been	set.	If	the	error	is	not	handled	or	carefully	propagated,	additional
calls	into	the	Python/C	API	may	not	behave	as	intended	and	may	fail	in
mysterious	ways.

The	error	indicator	consists	of	three	Python	objects	corresponding	to	the	Python
variables	sys.exc_type,	sys.exc_value	and	sys.exc_traceback.
API	functions	exist	to	interact	with	the	error	indicator	in	various	ways.	There	is	a
separate	error	indicator	for	each	thread.

void	PyErr_Print()
Print	a	standard	traceback	to	sys.stderr	and	clear	the	error	indicator.
Call	this	function	only	when	the	error	indicator	is	set.	(Otherwise	it	will
cause	a	fatal	error!)

PyObject*	PyErr_Occurred()
Return	value:	Borrowed	reference.
Test	whether	the	error	indicator	is	set.	If	set,	return	the	exception	type	(the
first	argument	to	the	last	call	to	one	of	the	PyErr_Set*()	functions	or	to
PyErr_Restore()).	If	not	set,	return	NULL.	You	do	not	own	a	reference

to	the	return	value,	so	you	do	not	need	to	Py_DECREF()	it.	Note:	Do	not
compare	the	return	value	to	a	specific	exception;	use
PyErr_ExceptionMatches()	instead,	shown	below.	(The
comparison	could	easily	fail	since	the	exception	may	be	an	instance	instead
of	a	class,	in	the	case	of	a	class	exception,	or	it	may	the	a	subclass	of	the
expected	exception.)

int	PyErr_ExceptionMatches(PyObject	*exc)
Equivalent	to
"PyErr_GivenExceptionMatches(PyErr_Occurred(),
exc)".	This	should	only	be	called	when	an	exception	is	actually	set;	a
memory	access	violation	will	occur	if	no	exception	has	been	raised.

int	PyErr_GivenExceptionMatches(PyObject	*given,	PyObject	*exc)
Return	true	if	the	given	exception	matches	the	exception	in	exc.	If	exc	is	a
class	object,	this	also	returns	true	when	given	is	an	instance	of	a	subclass.	If
exc	is	a	tuple,	all	exceptions	in	the	tuple	(and	recursively	in	subtuples)	are
searched	for	a	match.	If	given	is	NULL,	a	memory	access	violation	will
occur.

void	PyErr_NormalizeException(PyObject**exc,	PyObject**val,PyObject**tb)
Under	certain	circumstances,	the	values	returned	by	PyErr_Fetch()
below	can	be	``unnormalized'',	meaning	that	*exc	is	a	class	object	but	*val
is	not	an	instance	of	the	same	class.	This	function	can	be	used	to	instantiate
the	class	in	that	case.	If	the	values	are	already	normalized,	nothing	happens.
The	delayed	normalization	is	implemented	to	improve	performance.

void	PyErr_Clear()
Clear	the	error	indicator.	If	the	error	indicator	is	not	set,	there	is	no	effect.

void	PyErr_Fetch(PyObject	**ptype,	PyObject	**pvalue,	PyObject**ptraceback)
Retrieve	the	error	indicator	into	three	variables	whose	addresses	are	passed.
If	the	error	indicator	is	not	set,	set	all	three	variables	to	NULL.	If	it	is	set,	it
will	be	cleared	and	you	own	a	reference	to	each	object	retrieved.	The	value
and	traceback	object	may	be	NULL	even	when	the	type	object	is	not.	Note:

This	function	is	normally	only	used	by	code	that	needs	to	handle	exceptions
or	by	code	that	needs	to	save	and	restore	the	error	indicator	temporarily.

void	PyErr_Restore(PyObject	*type,	PyObject	*value,	PyObject*traceback)
Set	the	error	indicator	from	the	three	objects.	If	the	error	indicator	is	already
set,	it	is	cleared	first.	If	the	objects	are	NULL,	the	error	indicator	is	cleared.
Do	not	pass	a	NULL	type	and	non-NULL	value	or	traceback.	The	exception
type	should	be	a	class.	Do	not	pass	an	invalid	exception	type	or	value.
(Violating	these	rules	will	cause	subtle	problems	later.)	This	call	takes	away
a	reference	to	each	object:	you	must	own	a	reference	to	each	object	before
the	call	and	after	the	call	you	no	longer	own	these	references.	(If	you	don't
understand	this,	don't	use	this	function.	I	warned	you.)	Note:	This	function
is	normally	only	used	by	code	that	needs	to	save	and	restore	the	error
indicator	temporarily;	use	PyErr_Fetch()	to	save	the	current	exception
state.

void	PyErr_SetString(PyObject	*type,	char	*message)
This	is	the	most	common	way	to	set	the	error	indicator.	The	first	argument
specifies	the	exception	type;	it	is	normally	one	of	the	standard	exceptions,
e.g.	PyExc_RuntimeError.	You	need	not	increment	its	reference	count.
The	second	argument	is	an	error	message;	it	is	converted	to	a	string	object.

void	PyErr_SetObject(PyObject	*type,	PyObject	*value)
This	function	is	similar	to	PyErr_SetString()	but	lets	you	specify	an
arbitrary	Python	object	for	the	``value''	of	the	exception.

PyObject*	PyErr_Format(PyObject	*exception,	const	char	*format,	...)
Return	value:	Always	NULL.
This	function	sets	the	error	indicator	and	returns	NULL.	exception	should	be
a	Python	exception	(class,	not	an	instance).	format	should	be	a	string,
containing	format	codes,	similar	to	printf().	The	width.precision
before	a	format	code	is	parsed,	but	the	width	part	is	ignored.

Character Meaning
c Character,	as	an	int	parameter
d Number	in	decimal,	as	an	int	parameter

x Number	in	hexadecimal,	as	an	int	parameter
s A	string,	as	a	char	*	parameter
p A	hex	pointer,	as	a	void	*	parameter

An	unrecognized	format	character	causes	all	the	rest	of	the	format	string	to
be	copied	as-is	to	the	result	string,	and	any	extra	arguments	discarded.

void	PyErr_SetNone(PyObject	*type)
This	is	a	shorthand	for	"PyErr_SetObject(type,	Py_None)".

int	PyErr_BadArgument()
This	is	a	shorthand	for	"PyErr_SetString(PyExc_TypeError,
message)",	where	message	indicates	that	a	built-in	operation	was	invoked
with	an	illegal	argument.	It	is	mostly	for	internal	use.

PyObject*	PyErr_NoMemory()
Return	value:	Always	NULL.
This	is	a	shorthand	for	"PyErr_SetNone(PyExc_MemoryError)";	it
returns	NULL	so	an	object	allocation	function	can	write	"return
PyErr_NoMemory();"	when	it	runs	out	of	memory.

PyObject*	PyErr_SetFromErrno(PyObject	*type)
Return	value:	Always	NULL.
This	is	a	convenience	function	to	raise	an	exception	when	a	C	library
function	has	returned	an	error	and	set	the	C	variable	errno.	It	constructs	a
tuple	object	whose	first	item	is	the	integer	errno	value	and	whose	second
item	is	the	corresponding	error	message	(gotten	from	strerror()),	and
then	calls	"PyErr_SetObject(type,	object)".	On	UNIX,	when	the
errno	value	is	EINTR,	indicating	an	interrupted	system	call,	this	calls
PyErr_CheckSignals(),	and	if	that	set	the	error	indicator,	leaves	it
set	to	that.	The	function	always	returns	NULL,	so	a	wrapper	function	around
a	system	call	can	write	"return	PyErr_SetFromErrno(type);"
when	the	system	call	returns	an	error.

PyObject*	PyErr_SetFromErrnoWithFilename(PyObject	*type,	char*filename)
Return	value:	Always	NULL.

Similar	to	PyErr_SetFromErrno(),	with	the	additional	behavior	that
if	filename	is	not	NULL,	it	is	passed	to	the	constructor	of	type	as	a	third
parameter.	In	the	case	of	exceptions	such	as	IOError	and	OSError,	this
is	used	to	define	the	filename	attribute	of	the	exception	instance.

PyObject*	PyErr_SetFromWindowsErr(int	ierr)
Return	value:	Always	NULL.
This	is	a	convenience	function	to	raise	WindowsError.	If	called	with	ierr
of	0,	the	error	code	returned	by	a	call	to	GetLastError()	is	used
instead.	It	calls	the	Win32	function	FormatMessage()	to	retrieve	the
Windows	description	of	error	code	given	by	ierr	or	GetLastError(),
then	it	constructs	a	tuple	object	whose	first	item	is	the	ierr	value	and	whose
second	item	is	the	corresponding	error	message	(gotten	from
FormatMessage()),	and	then	calls
"PyErr_SetObject(PyExc_WindowsError,	object)".	This	function
always	returns	NULL.	Availability:	Windows.

PyObject*	PyErr_SetExcFromWindowsErr(PyObject	*type,	int	ierr)
Similar	to	PyErr_SetFromWindowsErr(),	with	an	additional
parameter	specifying	the	exception	type	to	be	raised.	Availability:
Windows.	New	in	version	2.3.

PyObject*	PyErr_SetFromWindowsErrWithFilename(int	ierr,	char*filename)
Return	value:	Always	NULL.
Similar	to	PyErr_SetFromWindowsErr(),	with	the	additional
behavior	that	if	filename	is	not	NULL,	it	is	passed	to	the	constructor	of
WindowsError	as	a	third	parameter.	Availability:	Windows.

PyObject*	PyErr_SetExcFromWindowsErrWithFilename(

PyObject
*type,	int
ierr,	char
*filename)

Similar	to	PyErr_SetFromWindowsErrWithFilename(),	with	an
additional	parameter	specifying	the	exception	type	to	be	raised.
Availability:	Windows.	New	in	version	2.3.

void	PyErr_BadInternalCall()
This	is	a	shorthand	for	"PyErr_SetString(PyExc_TypeError,
message)",	where	message	indicates	that	an	internal	operation	(e.g.	a
Python/C	API	function)	was	invoked	with	an	illegal	argument.	It	is	mostly
for	internal	use.

int	PyErr_Warn(PyObject	*category,	char	*message)
Issue	a	warning	message.	The	category	argument	is	a	warning	category	(see
below)	or	NULL;	the	message	argument	is	a	message	string.

This	function	normally	prints	a	warning	message	to	sys.stderr;	however,	it
is	also	possible	that	the	user	has	specified	that	warnings	are	to	be	turned
into	errors,	and	in	that	case	this	will	raise	an	exception.	It	is	also	possible
that	the	function	raises	an	exception	because	of	a	problem	with	the	warning
machinery	(the	implementation	imports	the	warnings	module	to	do	the
heavy	lifting).	The	return	value	is	0	if	no	exception	is	raised,	or	-1	if	an
exception	is	raised.	(It	is	not	possible	to	determine	whether	a	warning
message	is	actually	printed,	nor	what	the	reason	is	for	the	exception;	this	is
intentional.)	If	an	exception	is	raised,	the	caller	should	do	its	normal
exception	handling	(for	example,	Py_DECREF()	owned	references	and
return	an	error	value).

Warning	categories	must	be	subclasses	of	Warning;	the	default	warning
category	is	RuntimeWarning.	The	standard	Python	warning	categories
are	available	as	global	variables	whose	names	are	"PyExc_"	followed	by
the	Python	exception	name.	These	have	the	type	PyObject*;	they	are	all
class	objects.	Their	names	are	PyExc_Warning,
PyExc_UserWarning,	PyExc_DeprecationWarning,
PyExc_SyntaxWarning,	PyExc_RuntimeWarning,	and
PyExc_FutureWarning.	PyExc_Warning	is	a	subclass	of
PyExc_Exception;	the	other	warning	categories	are	subclasses	of
PyExc_Warning.

For	information	about	warning	control,	see	the	documentation	for	the
warnings	module	and	the	-W	option	in	the	command	line	documentation.
There	is	no	C	API	for	warning	control.

PyObject	*category,	char	*message,	char

int	PyErr_WarnExplicit(*filename,	int	lineno,	char	*module,	PyObject
*registry)

Issue	a	warning	message	with	explicit	control	over	all	warning	attributes.
This	is	a	straightforward	wrapper	around	the	Python	function
warnings.warn_explicit(),	see	there	for	more	information.	The
module	and	registry	arguments	may	be	set	to	NULL	to	get	the	default	effect
described	there.

int	PyErr_CheckSignals()
This	function	interacts	with	Python's	signal	handling.	It	checks	whether	a
signal	has	been	sent	to	the	processes	and	if	so,	invokes	the	corresponding
signal	handler.	If	the	signal	module	is	supported,	this	can	invoke	a	signal
handler	written	in	Python.	In	all	cases,	the	default	effect	for	SIGINT	is	to
raise	the	KeyboardInterrupt	exception.	If	an	exception	is	raised	the
error	indicator	is	set	and	the	function	returns	1;	otherwise	the	function
returns	0.	The	error	indicator	may	or	may	not	be	cleared	if	it	was	previously
set.

void	PyErr_SetInterrupt()
This	function	simulates	the	effect	of	a	SIGINT	signal	arriving	--	the	next
time	PyErr_CheckSignals()	is	called,	KeyboardInterrupt	will
be	raised.	It	may	be	called	without	holding	the	interpreter	lock.

PyObject*	PyErr_NewException(char	*name,	PyObject	*base,	PyObject*dict)
Return	value:	New	reference.
This	utility	function	creates	and	returns	a	new	exception	object.	The	name
argument	must	be	the	name	of	the	new	exception,	a	C	string	of	the	form
module.class.	The	base	and	dict	arguments	are	normally	NULL.	This
creates	a	class	object	derived	from	the	root	for	all	exceptions,	the	built-in
name	Exception	(accessible	in	C	as	PyExc_Exception).	The
__module__	attribute	of	the	new	class	is	set	to	the	first	part	(up	to	the	last
dot)	of	the	name	argument,	and	the	class	name	is	set	to	the	last	part	(after
the	last	dot).	The	base	argument	can	be	used	to	specify	an	alternate	base
class.	The	dict	argument	can	be	used	to	specify	a	dictionary	of	class
variables	and	methods.

PyObject	*obj)

void	PyErr_WriteUnraisable(
This	utility	function	prints	a	warning	message	to	sys.stderr	when	an
exception	has	been	set	but	it	is	impossible	for	the	interpreter	to	actually
raise	the	exception.	It	is	used,	for	example,	when	an	exception	occurs	in	an
__del__()	method.

The	function	is	called	with	a	single	argument	obj	that	identifies	the	context
in	which	the	unraisable	exception	occurred.	The	repr	of	obj	will	be	printed
in	the	warning	message.

Subsections

4.1	Standard	Exceptions
4.2	Deprecation	of	String	Exceptions

Python/C	API	Reference	Manual
Previous:	3.	Reference	Counting	Up:	Python/C	API	Reference	Manual	Next:
4.1	Standard	Exceptions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.	Exception	Handling	Up:	4.	Exception	Handling	Next:	4.2
Deprecation	of	String

4.1	Standard	Exceptions
All	standard	Python	exceptions	are	available	as	global	variables	whose	names
are	"PyExc_"	followed	by	the	Python	exception	name.	These	have	the	type
PyObject*;	they	are	all	class	objects.	For	completeness,	here	are	all	the
variables:

C	Name Python	Name Notes
PyExc_Exception Exception (1)
PyExc_StandardError StandardError (1)
PyExc_ArithmeticError ArithmeticError (1)
PyExc_LookupError LookupError (1)
PyExc_AssertionError AssertionError

PyExc_AttributeError AttributeError

PyExc_EOFError EOFError

PyExc_EnvironmentError EnvironmentError (1)
PyExc_FloatingPointError FloatingPointError

PyExc_IOError IOError

PyExc_ImportError ImportError

PyExc_IndexError IndexError

PyExc_KeyError KeyError

PyExc_KeyboardInterrupt KeyboardInterrupt

PyExc_MemoryError MemoryError

PyExc_NameError NameError

PyExc_NotImplementedError NotImplementedError

PyExc_OSError OSError

PyExc_OverflowError OverflowError

PyExc_ReferenceError ReferenceError (2)
PyExc_RuntimeError RuntimeError

PyExc_SyntaxError SyntaxError

PyExc_SystemError SystemError

PyExc_SystemExit SystemExit

PyExc_TypeError TypeError

PyExc_ValueError ValueError

PyExc_WindowsError WindowsError (3)
PyExc_ZeroDivisionError ZeroDivisionError

Notes:

(1)
This	is	a	base	class	for	other	standard	exceptions.

(2)
This	is	the	same	as	weakref.ReferenceError.

(3)
Only	defined	on	Windows;	protect	code	that	uses	this	by	testing	that	the
preprocessor	macro	MS_WINDOWS	is	defined.

Python/C	API	Reference	Manual
Previous:	4.	Exception	Handling	Up:	4.	Exception	Handling	Next:	4.2
Deprecation	of	String

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.1	Standard	Exceptions	Up:	4.	Exception	Handling	Next:	5.	Utilities

4.2	Deprecation	of	String	Exceptions
All	exceptions	built	into	Python	or	provided	in	the	standard	library	are	derived
from	Exception.

String	exceptions	are	still	supported	in	the	interpreter	to	allow	existing	code	to
run	unmodified,	but	this	will	also	change	in	a	future	release.

Python/C	API	Reference	Manual
Previous:	4.1	Standard	Exceptions	Up:	4.	Exception	Handling	Next:	5.	Utilities

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.2	Deprecation	of	String	Up:	Python/C	API	Reference	Manual	Next:
5.1	Operating	System	Utilities

5.	Utilities
The	functions	in	this	chapter	perform	various	utility	tasks,	ranging	from	helping
C	code	be	more	portable	across	platforms,	using	Python	modules	from	C,	and
parsing	function	arguments	and	constructing	Python	values	from	C	values.

Subsections

5.1	Operating	System	Utilities
5.2	Process	Control
5.3	Importing	Modules
5.4	Data	marshalling	support
5.5	Parsing	arguments	and	building	values

Python/C	API	Reference	Manual
Previous:	4.2	Deprecation	of	String	Up:	Python/C	API	Reference	Manual	Next:
5.1	Operating	System	Utilities

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.	Utilities	Up:	5.	Utilities	Next:	5.2	Process	Control

5.1	Operating	System	Utilities
int	Py_FdIsInteractive(FILE	*fp,	char	*filename)

Return	true	(nonzero)	if	the	standard	I/O	file	fp	with	name	filename	is
deemed	interactive.	This	is	the	case	for	files	for	which
"isatty(fileno(fp))"	is	true.	If	the	global	flag
Py_InteractiveFlag	is	true,	this	function	also	returns	true	if	the
filename	pointer	is	NULL	or	if	the	name	is	equal	to	one	of	the	strings
'<stdin>'	or	'???'.

long	PyOS_GetLastModificationTime(char	*filename)
Return	the	time	of	last	modification	of	the	file	filename.	The	result	is
encoded	in	the	same	way	as	the	timestamp	returned	by	the	standard	C
library	function	time().

void	PyOS_AfterFork()
Function	to	update	some	internal	state	after	a	process	fork;	this	should	be
called	in	the	new	process	if	the	Python	interpreter	will	continue	to	be	used.
If	a	new	executable	is	loaded	into	the	new	process,	this	function	does	not
need	to	be	called.

int	PyOS_CheckStack()
Return	true	when	the	interpreter	runs	out	of	stack	space.	This	is	a	reliable
check,	but	is	only	available	when	USE_STACKCHECK	is	defined	(currently
on	Windows	using	the	Microsoft	Visual	C++	compiler	and	on	the
Macintosh).	USE_CHECKSTACK	will	be	defined	automatically;	you	should
never	change	the	definition	in	your	own	code.

PyOS_sighandler_t	PyOS_getsig(int	i)
Return	the	current	signal	handler	for	signal	i.	This	is	a	thin	wrapper	around
either	sigaction()	or	signal().	Do	not	call	those	functions	directly!
PyOS_sighandler_t	is	a	typedef	alias	for	void	(*)(int).

PyOS_sighandler_t	PyOS_setsig(int	i,	PyOS_sighandler_t	h)
Set	the	signal	handler	for	signal	i	to	be	h;	return	the	old	signal	handler.	This

is	a	thin	wrapper	around	either	sigaction()	or	signal().	Do	not	call
those	functions	directly!	PyOS_sighandler_t	is	a	typedef	alias	for
void	(*)(int).

Python/C	API	Reference	Manual
Previous:	5.	Utilities	Up:	5.	Utilities	Next:	5.2	Process	Control

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.1	Operating	System	Utilities	Up:	5.	Utilities	Next:	5.3	Importing
Modules

5.2	Process	Control
void	Py_FatalError(const	char	*message)

Print	a	fatal	error	message	and	kill	the	process.	No	cleanup	is	performed.
This	function	should	only	be	invoked	when	a	condition	is	detected	that
would	make	it	dangerous	to	continue	using	the	Python	interpreter;	e.g.,
when	the	object	administration	appears	to	be	corrupted.	On	UNIX,	the
standard	C	library	function	abort()	is	called	which	will	attempt	to
produce	a	core	file.

void	Py_Exit(int	status)
Exit	the	current	process.	This	calls	Py_Finalize()	and	then	calls	the
standard	C	library	function	exit(status).

int	Py_AtExit(void	(*func)	())
Register	a	cleanup	function	to	be	called	by	Py_Finalize().	The
cleanup	function	will	be	called	with	no	arguments	and	should	return	no
value.	At	most	32	cleanup	functions	can	be	registered.	When	the
registration	is	successful,	Py_AtExit()	returns	0;	on	failure,	it	returns
-1.	The	cleanup	function	registered	last	is	called	first.	Each	cleanup
function	will	be	called	at	most	once.	Since	Python's	internal	finalization
will	have	completed	before	the	cleanup	function,	no	Python	APIs	should	be
called	by	func.

Python/C	API	Reference	Manual
Previous:	5.1	Operating	System	Utilities	Up:	5.	Utilities	Next:	5.3	Importing
Modules

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2	Process	Control	Up:	5.	Utilities	Next:	5.4	Data	marshalling
support

5.3	Importing	Modules
PyObject*	PyImport_ImportModule(char	*name)

Return	value:	New	reference.
This	is	a	simplified	interface	to	PyImport_ImportModuleEx()
below,	leaving	the	globals	and	locals	arguments	set	to	NULL.	When	the
name	argument	contains	a	dot	(when	it	specifies	a	submodule	of	a	package),
the	fromlist	argument	is	set	to	the	list	['*']	so	that	the	return	value	is	the
named	module	rather	than	the	top-level	package	containing	it	as	would
otherwise	be	the	case.	(Unfortunately,	this	has	an	additional	side	effect
when	name	in	fact	specifies	a	subpackage	instead	of	a	submodule:	the
submodules	specified	in	the	package's	__all__	variable	are	loaded.)
Return	a	new	reference	to	the	imported	module,	or	NULL	with	an	exception
set	on	failure.	Before	Python	2.4,	the	module	may	still	be	created	in	the
failure	case	--	examine	sys.modules	to	find	out.	Starting	with	Python
2.4,	a	failing	import	of	a	module	no	longer	leaves	the	module	in
sys.modules.	Changed	in	version	2.4:	failing	imports	remove
incomplete	module	objects.

PyObject*	PyImport_ImportModuleEx(
char	*name,	PyObject	*globals,
PyObject	*locals,	PyObject
*fromlist)

Return	value:	New	reference.
Import	a	module.	This	is	best	described	by	referring	to	the	built-in	Python
function	__import__(),	as	the	standard	__import__()	function	calls
this	function	directly.

The	return	value	is	a	new	reference	to	the	imported	module	or	top-level
package,	or	NULL	with	an	exception	set	on	failure	(before	Python	2.4,	the
module	may	still	be	created	in	this	case).	Like	for	__import__(),	the
return	value	when	a	submodule	of	a	package	was	requested	is	normally	the
top-level	package,	unless	a	non-empty	fromlist	was	given.	Changed	in
version	2.4:	failing	imports	remove	incomplete	module	objects.

PyObject*	PyImport_Import(PyObject	*name)
Return	value:	New	reference.

This	is	a	higher-level	interface	that	calls	the	current	``import	hook
function''.	It	invokes	the	__import__()	function	from	the
__builtins__	of	the	current	globals.	This	means	that	the	import	is	done
using	whatever	import	hooks	are	installed	in	the	current	environment,	e.g.
by	rexec	or	ihooks.

PyObject*	PyImport_ReloadModule(PyObject	*m)
Return	value:	New	reference.
Reload	a	module.	This	is	best	described	by	referring	to	the	built-in	Python
function	reload(),	as	the	standard	reload()	function	calls	this
function	directly.	Return	a	new	reference	to	the	reloaded	module,	or	NULL
with	an	exception	set	on	failure	(the	module	still	exists	in	this	case).

PyObject*	PyImport_AddModule(char	*name)
Return	value:	Borrowed	reference.
Return	the	module	object	corresponding	to	a	module	name.	The	name
argument	may	be	of	the	form	package.module.	First	check	the	modules
dictionary	if	there's	one	there,	and	if	not,	create	a	new	one	and	insert	it	in
the	modules	dictionary.	Return	NULL	with	an	exception	set	on	failure.
Note:	This	function	does	not	load	or	import	the	module;	if	the	module
wasn't	already	loaded,	you	will	get	an	empty	module	object.	Use
PyImport_ImportModule()	or	one	of	its	variants	to	import	a	module.
Package	structures	implied	by	a	dotted	name	for	name	are	not	created	if	not
already	present.

PyObject*	PyImport_ExecCodeModule(char	*name,	PyObject	*co)
Return	value:	New	reference.
Given	a	module	name	(possibly	of	the	form	package.module)	and	a
code	object	read	from	a	Python	bytecode	file	or	obtained	from	the	built-in
function	compile(),	load	the	module.	Return	a	new	reference	to	the
module	object,	or	NULL	with	an	exception	set	if	an	error	occurred.	Before
Python	2.4,	the	module	could	still	be	created	in	error	cases.	Starting	with
Python	2.4,	name	is	removed	from	sys.modules	in	error	cases,	and	even
if	name	was	already	in	sys.modules	on	entry	to
PyImport_ExecCodeModule().	Leaving	incompletely	initialized
modules	in	sys.modules	is	dangerous,	as	imports	of	such	modules	have
no	way	to	know	that	the	module	object	is	an	unknown	(and	probably

damaged	with	respect	to	the	module	author's	intents)	state.

This	function	will	reload	the	module	if	it	was	already	imported.	See
PyImport_ReloadModule()	for	the	intended	way	to	reload	a	module.

If	name	points	to	a	dotted	name	of	the	form	package.module,	any
package	structures	not	already	created	will	still	not	be	created.

Changed	in	version	2.4:	name	is	removed	from	sys.modules	in	error
cases.

long	PyImport_GetMagicNumber()
Return	the	magic	number	for	Python	bytecode	files	(a.k.a.	.pyc	and	.pyo
files).	The	magic	number	should	be	present	in	the	first	four	bytes	of	the
bytecode	file,	in	little-endian	byte	order.

PyObject*	PyImport_GetModuleDict()
Return	value:	Borrowed	reference.
Return	the	dictionary	used	for	the	module	administration	(a.k.a.
sys.modules).	Note	that	this	is	a	per-interpreter	variable.

void	_PyImport_Init()
Initialize	the	import	mechanism.	For	internal	use	only.

void	PyImport_Cleanup()
Empty	the	module	table.	For	internal	use	only.

void	_PyImport_Fini()
Finalize	the	import	mechanism.	For	internal	use	only.

PyObject*	_PyImport_FindExtension(char	*,	char	*)
Return	value:	Borrowed	reference.
For	internal	use	only.

PyObject*	_PyImport_FixupExtension(char	*,	char	*)
For	internal	use	only.

int	PyImport_ImportFrozenModule(char	*name)

Load	a	frozen	module	named	name.	Return	1	for	success,	0	if	the	module	is
not	found,	and	-1	with	an	exception	set	if	the	initialization	failed.	To	access
the	imported	module	on	a	successful	load,	use
PyImport_ImportModule().	(Note	the	misnomer	--	this	function
would	reload	the	module	if	it	was	already	imported.)

struct	_frozen

This	is	the	structure	type	definition	for	frozen	module	descriptors,	as
generated	by	the	freeze	utility	(see	Tools/freeze/	in	the	Python	source
distribution).	Its	definition,	found	in	Include/import.h,	is:

struct	_frozen	{

				char	*name;

				unsigned	char	*code;

				int	size;

};

struct	_frozen*	PyImport_FrozenModules
This	pointer	is	initialized	to	point	to	an	array	of	struct	_frozen
records,	terminated	by	one	whose	members	are	all	NULL	or	zero.	When	a
frozen	module	is	imported,	it	is	searched	in	this	table.	Third-party	code
could	play	tricks	with	this	to	provide	a	dynamically	created	collection	of
frozen	modules.

int	PyImport_AppendInittab(char	*name,	void	(*initfunc)(void))
Add	a	single	module	to	the	existing	table	of	built-in	modules.	This	is	a
convenience	wrapper	around	PyImport_ExtendInittab(),	returning
-1	if	the	table	could	not	be	extended.	The	new	module	can	be	imported	by
the	name	name,	and	uses	the	function	initfunc	as	the	initialization	function
called	on	the	first	attempted	import.	This	should	be	called	before
Py_Initialize().

struct	_inittab

Structure	describing	a	single	entry	in	the	list	of	built-in	modules.	Each	of
these	structures	gives	the	name	and	initialization	function	for	a	module	built
into	the	interpreter.	Programs	which	embed	Python	may	use	an	array	of
these	structures	in	conjunction	with	PyImport_ExtendInittab()	to
provide	additional	built-in	modules.	The	structure	is	defined	in
Include/import.h	as:

struct	_inittab	{

				char	*name;

				void	(*initfunc)(void);

};

int	PyImport_ExtendInittab(struct	_inittab	*newtab)
Add	a	collection	of	modules	to	the	table	of	built-in	modules.	The	newtab
array	must	end	with	a	sentinel	entry	which	contains	NULL	for	the	name
field;	failure	to	provide	the	sentinel	value	can	result	in	a	memory	fault.
Returns	0	on	success	or	-1	if	insufficient	memory	could	be	allocated	to
extend	the	internal	table.	In	the	event	of	failure,	no	modules	are	added	to
the	internal	table.	This	should	be	called	before	Py_Initialize().

Python/C	API	Reference	Manual
Previous:	5.2	Process	Control	Up:	5.	Utilities	Next:	5.4	Data	marshalling
support

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3	Importing	Modules	Up:	5.	Utilities	Next:	5.5	Parsing	arguments
and

5.4	Data	marshalling	support
These	routines	allow	C	code	to	work	with	serialized	objects	using	the	same	data
format	as	the	marshal	module.	There	are	functions	to	write	data	into	the
serialization	format,	and	additional	functions	that	can	be	used	to	read	the	data
back.	Files	used	to	store	marshalled	data	must	be	opened	in	binary	mode.

Numeric	values	are	stored	with	the	least	significant	byte	first.

The	module	supports	two	versions	of	the	data	format:	version	0	is	the	historical
version,	version	1	(new	in	Python	2.4)	shares	interned	strings	in	the	file,	and
upon	unmarshalling.	Py_MARSHAL_VERSION	indicates	the	current	file	format
(currently	1).

void	PyMarshal_WriteLongToFile(long	value,	FILE	*file,	int	version)
Marshal	a	long	integer,	value,	to	file.	This	will	only	write	the	least-
significant	32	bits	of	value;	regardless	of	the	size	of	the	native	long	type.

Changed	in	version	2.4:	version	indicates	the	file	format.

void	PyMarshal_WriteObjectToFile(PyObject	*value,	FILE	*file,	intversion)
Marshal	a	Python	object,	value,	to	file.

Changed	in	version	2.4:	version	indicates	the	file	format.

PyObject*	PyMarshal_WriteObjectToString(PyObject	*value,	intversion)
Return	value:	New	reference.
Return	a	string	object	containing	the	marshalled	representation	of	value.

Changed	in	version	2.4:	version	indicates	the	file	format.

The	following	functions	allow	marshalled	values	to	be	read	back	in.

XXX	What	about	error	detection?	It	appears	that	reading	past	the	end	of	the	file
will	always	result	in	a	negative	numeric	value	(where	that's	relevant),	but	it's	not

clear	that	negative	values	won't	be	handled	properly	when	there's	no	error.
What's	the	right	way	to	tell?	Should	only	non-negative	values	be	written	using
these	routines?

long	PyMarshal_ReadLongFromFile(FILE	*file)
Return	a	C	long	from	the	data	stream	in	a	FILE*	opened	for	reading.
Only	a	32-bit	value	can	be	read	in	using	this	function,	regardless	of	the
native	size	of	long.

int	PyMarshal_ReadShortFromFile(FILE	*file)
Return	a	C	short	from	the	data	stream	in	a	FILE*	opened	for	reading.
Only	a	16-bit	value	can	be	read	in	using	this	function,	regardless	of	the
native	size	of	short.

PyObject*	PyMarshal_ReadObjectFromFile(FILE	*file)
Return	value:	New	reference.
Return	a	Python	object	from	the	data	stream	in	a	FILE*	opened	for
reading.	On	error,	sets	the	appropriate	exception	(EOFError	or
TypeError)	and	returns	NULL.

PyObject*	PyMarshal_ReadLastObjectFromFile(FILE	*file)
Return	value:	New	reference.
Return	a	Python	object	from	the	data	stream	in	a	FILE*	opened	for
reading.	Unlike	PyMarshal_ReadObjectFromFile(),	this	function
assumes	that	no	further	objects	will	be	read	from	the	file,	allowing	it	to
aggressively	load	file	data	into	memory	so	that	the	de-serialization	can
operate	from	data	in	memory	rather	than	reading	a	byte	at	a	time	from	the
file.	Only	use	these	variant	if	you	are	certain	that	you	won't	be	reading
anything	else	from	the	file.	On	error,	sets	the	appropriate	exception
(EOFError	or	TypeError)	and	returns	NULL.

PyObject*	PyMarshal_ReadObjectFromString(char	*string,	int	len)
Return	value:	New	reference.
Return	a	Python	object	from	the	data	stream	in	a	character	buffer	containing
len	bytes	pointed	to	by	string.	On	error,	sets	the	appropriate	exception
(EOFError	or	TypeError)	and	returns	NULL.

Python/C	API	Reference	Manual
Previous:	5.3	Importing	Modules	Up:	5.	Utilities	Next:	5.5	Parsing	arguments
and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.4	Data	marshalling	support	Up:	5.	Utilities	Next:	6.	Abstract
Objects	Layer

5.5	Parsing	arguments	and	building
values
These	functions	are	useful	when	creating	your	own	extensions	functions	and
methods.	Additional	information	and	examples	are	available	in	Extending	and
Embedding	the	Python	Interpreter.

The	first	three	of	these	functions	described,	PyArg_ParseTuple(),
PyArg_ParseTupleAndKeywords(),	and	PyArg_Parse(),	all	use
format	strings	which	are	used	to	tell	the	function	about	the	expected	arguments.
The	format	strings	use	the	same	syntax	for	each	of	these	functions.

A	format	string	consists	of	zero	or	more	``format	units.''	A	format	unit	describes
one	Python	object;	it	is	usually	a	single	character	or	a	parenthesized	sequence	of
format	units.	With	a	few	exceptions,	a	format	unit	that	is	not	a	parenthesized
sequence	normally	corresponds	to	a	single	address	argument	to	these	functions.
In	the	following	description,	the	quoted	form	is	the	format	unit;	the	entry	in
(round)	parentheses	is	the	Python	object	type	that	matches	the	format	unit;	and
the	entry	in	[square]	brackets	is	the	type	of	the	C	variable(s)	whose	address
should	be	passed.

"s"	(string	or	Unicode	object)	[const	char	*]
Convert	a	Python	string	or	Unicode	object	to	a	C	pointer	to	a	character
string.	You	must	not	provide	storage	for	the	string	itself;	a	pointer	to	an
existing	string	is	stored	into	the	character	pointer	variable	whose	address
you	pass.	The	C	string	is	NUL-terminated.	The	Python	string	must	not
contain	embedded	NUL	bytes;	if	it	does,	a	TypeError	exception	is
raised.	Unicode	objects	are	converted	to	C	strings	using	the	default
encoding.	If	this	conversion	fails,	a	UnicodeError	is	raised.

"s#"	(string,	Unicode	or	any	read	buffer	compatible	object)	[const	char	*,
int]

This	variant	on	"s"	stores	into	two	C	variables,	the	first	one	a	pointer	to	a
character	string,	the	second	one	its	length.	In	this	case	the	Python	string
may	contain	embedded	null	bytes.	Unicode	objects	pass	back	a	pointer	to
the	default	encoded	string	version	of	the	object	if	such	a	conversion	is

possible.	All	other	read-buffer	compatible	objects	pass	back	a	reference	to
the	raw	internal	data	representation.

"z"	(string	or	None)	[const	char	*]
Like	"s",	but	the	Python	object	may	also	be	None,	in	which	case	the	C
pointer	is	set	to	NULL.

"z#"	(string	or	None	or	any	read	buffer	compatible	object)	[const	char	*,
int]

This	is	to	"s#"	as	"z"	is	to	"s".

"u"	(Unicode	object)	[Py_UNICODE	*]
Convert	a	Python	Unicode	object	to	a	C	pointer	to	a	NUL-terminated	buffer
of	16-bit	Unicode	(UTF-16)	data.	As	with	"s",	there	is	no	need	to	provide
storage	for	the	Unicode	data	buffer;	a	pointer	to	the	existing	Unicode	data	is
stored	into	the	Py_UNICODE	pointer	variable	whose	address	you	pass.

"u#"	(Unicode	object)	[Py_UNICODE	*,	int]
This	variant	on	"u"	stores	into	two	C	variables,	the	first	one	a	pointer	to	a
Unicode	data	buffer,	the	second	one	its	length.	Non-Unicode	objects	are
handled	by	interpreting	their	read-buffer	pointer	as	pointer	to	a
Py_UNICODE	array.

"es"	(string,	Unicode	object	or	character	buffer	compatible	object)	[const
char	*encoding,	char	**buffer]

This	variant	on	"s"	is	used	for	encoding	Unicode	and	objects	convertible	to
Unicode	into	a	character	buffer.	It	only	works	for	encoded	data	without
embedded	NUL	bytes.

This	format	requires	two	arguments.	The	first	is	only	used	as	input,	and
must	be	a	const	char*	which	points	to	the	name	of	an	encoding	as	a
NUL-terminated	string,	or	NULL,	in	which	case	the	default	encoding	is
used.	An	exception	is	raised	if	the	named	encoding	is	not	known	to	Python.
The	second	argument	must	be	a	char**;	the	value	of	the	pointer	it
references	will	be	set	to	a	buffer	with	the	contents	of	the	argument	text.	The
text	will	be	encoded	in	the	encoding	specified	by	the	first	argument.

PyArg_ParseTuple()	will	allocate	a	buffer	of	the	needed	size,	copy
the	encoded	data	into	this	buffer	and	adjust	*buffer	to	reference	the	newly

allocated	storage.	The	caller	is	responsible	for	calling	PyMem_Free()	to
free	the	allocated	buffer	after	use.

"et"	(string,	Unicode	object	or	character	buffer	compatible	object)	[const
char	*encoding,	char	**buffer]

Same	as	"es"	except	that	8-bit	string	objects	are	passed	through	without
recoding	them.	Instead,	the	implementation	assumes	that	the	string	object
uses	the	encoding	passed	in	as	parameter.

"es#"	(string,	Unicode	object	or	character	buffer	compatible	object)	[const
char	*encoding,	char	**buffer,	int	*buffer_length]

This	variant	on	"s#"	is	used	for	encoding	Unicode	and	objects	convertible
to	Unicode	into	a	character	buffer.	Unlike	the	"es"	format,	this	variant
allows	input	data	which	contains	NUL	characters.

It	requires	three	arguments.	The	first	is	only	used	as	input,	and	must	be	a
const	char*	which	points	to	the	name	of	an	encoding	as	a	NUL-
terminated	string,	or	NULL,	in	which	case	the	default	encoding	is	used.	An
exception	is	raised	if	the	named	encoding	is	not	known	to	Python.	The
second	argument	must	be	a	char**;	the	value	of	the	pointer	it	references
will	be	set	to	a	buffer	with	the	contents	of	the	argument	text.	The	text	will
be	encoded	in	the	encoding	specified	by	the	first	argument.	The	third
argument	must	be	a	pointer	to	an	integer;	the	referenced	integer	will	be	set
to	the	number	of	bytes	in	the	output	buffer.

There	are	two	modes	of	operation:

If	*buffer	points	a	NULL	pointer,	the	function	will	allocate	a	buffer	of	the
needed	size,	copy	the	encoded	data	into	this	buffer	and	set	*buffer	to
reference	the	newly	allocated	storage.	The	caller	is	responsible	for	calling
PyMem_Free()	to	free	the	allocated	buffer	after	usage.

If	*buffer	points	to	a	non-NULL	pointer	(an	already	allocated	buffer),
PyArg_ParseTuple()	will	use	this	location	as	the	buffer	and	interpret
the	initial	value	of	*buffer_length	as	the	buffer	size.	It	will	then	copy	the
encoded	data	into	the	buffer	and	NUL-terminate	it.	If	the	buffer	is	not	large
enough,	a	ValueError	will	be	set.

In	both	cases,	*buffer_length	is	set	to	the	length	of	the	encoded	data	without

the	trailing	NUL	byte.

"et#"	(string,	Unicode	object	or	character	buffer	compatible	object)	[const
char	*encoding,	char	**buffer]

Same	as	"es#"	except	that	string	objects	are	passed	through	without
recoding	them.	Instead,	the	implementation	assumes	that	the	string	object
uses	the	encoding	passed	in	as	parameter.

"b"	(integer)	[char]
Convert	a	Python	integer	to	a	tiny	int,	stored	in	a	C	char.

"B"	(integer)	[unsigned	char]
Convert	a	Python	integer	to	a	tiny	int	without	overflow	checking,	stored	in
a	C	unsigned	char.	New	in	version	2.3.

"h"	(integer)	[short	int]
Convert	a	Python	integer	to	a	C	short	int.

"H"	(integer)	[unsigned	short	int]
Convert	a	Python	integer	to	a	C	unsigned	short	int,	without
overflow	checking.	New	in	version	2.3.

"i"	(integer)	[int]
Convert	a	Python	integer	to	a	plain	C	int.

"I"	(integer)	[unsigned	int]
Convert	a	Python	integer	to	a	C	unsigned	int,	without	overflow
checking.	New	in	version	2.3.

"l"	(integer)	[long	int]
Convert	a	Python	integer	to	a	C	long	int.

"k"	(integer)	[unsigned	long]
Convert	a	Python	integer	to	a	C	unsigned	long	without	overflow
checking.	New	in	version	2.3.

"L"	(integer)	[PY_LONG_LONG]
Convert	a	Python	integer	to	a	C	long	long.	This	format	is	only	available
on	platforms	that	support	long	long	(or	_int64	on	Windows).

"K"	(integer)	[unsigned	PY_LONG_LONG]
Convert	a	Python	integer	to	a	C	unsigned	long	long	without
overflow	checking.	This	format	is	only	available	on	platforms	that	support
unsigned	long	long	(or	unsigned	_int64	on	Windows).	New
in	version	2.3.

"c"	(string	of	length	1)	[char]
Convert	a	Python	character,	represented	as	a	string	of	length	1,	to	a	C
char.

"f"	(float)	[float]
Convert	a	Python	floating	point	number	to	a	C	float.

"d"	(float)	[double]
Convert	a	Python	floating	point	number	to	a	C	double.

"D"	(complex)	[Py_complex]
Convert	a	Python	complex	number	to	a	C	Py_complex	structure.

"O"	(object)	[PyObject	*]
Store	a	Python	object	(without	any	conversion)	in	a	C	object	pointer.	The	C
program	thus	receives	the	actual	object	that	was	passed.	The	object's
reference	count	is	not	increased.	The	pointer	stored	is	not	NULL.

"O!"	(object)	[typeobject,	PyObject	*]
Store	a	Python	object	in	a	C	object	pointer.	This	is	similar	to	"O",	but	takes
two	C	arguments:	the	first	is	the	address	of	a	Python	type	object,	the	second
is	the	address	of	the	C	variable	(of	type	PyObject*)	into	which	the	object
pointer	is	stored.	If	the	Python	object	does	not	have	the	required	type,
TypeError	is	raised.

"O&"	(object)	[converter,	anything]
Convert	a	Python	object	to	a	C	variable	through	a	converter	function.	This
takes	two	arguments:	the	first	is	a	function,	the	second	is	the	address	of	a	C
variable	(of	arbitrary	type),	converted	to	void	*.	The	converter	function
in	turn	is	called	as	follows:

status	=	converter(object,	address);

where	object	is	the	Python	object	to	be	converted	and	address	is	the	void*
argument	that	was	passed	to	the	PyArg_Parse*()	function.	The
returned	status	should	be	1	for	a	successful	conversion	and	0	if	the
conversion	has	failed.	When	the	conversion	fails,	the	converter	function
should	raise	an	exception.

"S"	(string)	[PyStringObject	*]
Like	"O"	but	requires	that	the	Python	object	is	a	string	object.	Raises
TypeError	if	the	object	is	not	a	string	object.	The	C	variable	may	also	be
declared	as	PyObject*.

"U"	(Unicode	string)	[PyUnicodeObject	*]
Like	"O"	but	requires	that	the	Python	object	is	a	Unicode	object.	Raises
TypeError	if	the	object	is	not	a	Unicode	object.	The	C	variable	may	also
be	declared	as	PyObject*.

"t#"	(read-only	character	buffer)	[char	*,	int]
Like	"s#",	but	accepts	any	object	which	implements	the	read-only	buffer
interface.	The	char*	variable	is	set	to	point	to	the	first	byte	of	the	buffer,
and	the	int	is	set	to	the	length	of	the	buffer.	Only	single-segment	buffer
objects	are	accepted;	TypeError	is	raised	for	all	others.

"w"	(read-write	character	buffer)	[char	*]
Similar	to	"s",	but	accepts	any	object	which	implements	the	read-write
buffer	interface.	The	caller	must	determine	the	length	of	the	buffer	by	other
means,	or	use	"w#"	instead.	Only	single-segment	buffer	objects	are
accepted;	TypeError	is	raised	for	all	others.

"w#"	(read-write	character	buffer)	[char	*,	int]
Like	"s#",	but	accepts	any	object	which	implements	the	read-write	buffer
interface.	The	char	*	variable	is	set	to	point	to	the	first	byte	of	the	buffer,
and	the	int	is	set	to	the	length	of	the	buffer.	Only	single-segment	buffer
objects	are	accepted;	TypeError	is	raised	for	all	others.

"(items)"	(tuple)	[matching-items]
The	object	must	be	a	Python	sequence	whose	length	is	the	number	of
format	units	in	items.	The	C	arguments	must	correspond	to	the	individual
format	units	in	items.	Format	units	for	sequences	may	be	nested.

Note:	Prior	to	Python	version	1.5.2,	this	format	specifier	only	accepted	a
tuple	containing	the	individual	parameters,	not	an	arbitrary	sequence.	Code
which	previously	caused	TypeError	to	be	raised	here	may	now	proceed
without	an	exception.	This	is	not	expected	to	be	a	problem	for	existing
code.

It	is	possible	to	pass	Python	long	integers	where	integers	are	requested;	however
no	proper	range	checking	is	done	--	the	most	significant	bits	are	silently
truncated	when	the	receiving	field	is	too	small	to	receive	the	value	(actually,	the
semantics	are	inherited	from	downcasts	in	C	--	your	mileage	may	vary).

A	few	other	characters	have	a	meaning	in	a	format	string.	These	may	not	occur
inside	nested	parentheses.	They	are:

"|"
Indicates	that	the	remaining	arguments	in	the	Python	argument	list	are
optional.	The	C	variables	corresponding	to	optional	arguments	should	be
initialized	to	their	default	value	--	when	an	optional	argument	is	not
specified,	PyArg_ParseTuple()	does	not	touch	the	contents	of	the
corresponding	C	variable(s).

":"
The	list	of	format	units	ends	here;	the	string	after	the	colon	is	used	as	the
function	name	in	error	messages	(the	``associated	value''	of	the	exception
that	PyArg_ParseTuple()	raises).

";"
The	list	of	format	units	ends	here;	the	string	after	the	semicolon	is	used	as
the	error	message	instead	of	the	default	error	message.	Clearly,	":"	and	";"
mutually	exclude	each	other.

Note	that	any	Python	object	references	which	are	provided	to	the	caller	are
borrowed	references;	do	not	decrement	their	reference	count!

Additional	arguments	passed	to	these	functions	must	be	addresses	of	variables
whose	type	is	determined	by	the	format	string;	these	are	used	to	store	values
from	the	input	tuple.	There	are	a	few	cases,	as	described	in	the	list	of	format
units	above,	where	these	parameters	are	used	as	input	values;	they	should	match
what	is	specified	for	the	corresponding	format	unit	in	that	case.

For	the	conversion	to	succeed,	the	arg	object	must	match	the	format	and	the
format	must	be	exhausted.	On	success,	the	PyArg_Parse*()	functions	return
true,	otherwise	they	return	false	and	raise	an	appropriate	exception.

int	PyArg_ParseTuple(PyObject	*args,	char	*format,	...)
Parse	the	parameters	of	a	function	that	takes	only	positional	parameters	into
local	variables.	Returns	true	on	success;	on	failure,	it	returns	false	and
raises	the	appropriate	exception.

int	PyArg_VaParse(PyObject	*args,	char	*format,	va_list	vargs)
Identical	to	PyArg_ParseTuple(),	except	that	it	accepts	a	va_list
rather	than	a	variable	number	of	arguments.

int	PyArg_ParseTupleAndKeywords(
PyObject	*args,	PyObject	*kw,
char	*format,	char	*keywords[],
...)

Parse	the	parameters	of	a	function	that	takes	both	positional	and	keyword
parameters	into	local	variables.	Returns	true	on	success;	on	failure,	it
returns	false	and	raises	the	appropriate	exception.

int	PyArg_VaParseTupleAndKeywords(
PyObject	*args,	PyObject	*kw,
char	*format,	char	*keywords[],
va_list	vargs)

Identical	to	PyArg_ParseTupleAndKeywords(),	except	that	it
accepts	a	va_list	rather	than	a	variable	number	of	arguments.

int	PyArg_Parse(PyObject	*args,	char	*format,	...)
Function	used	to	deconstruct	the	argument	lists	of	``old-style''	functions	--
these	are	functions	which	use	the	METH_OLDARGS	parameter	parsing
method.	This	is	not	recommended	for	use	in	parameter	parsing	in	new	code,
and	most	code	in	the	standard	interpreter	has	been	modified	to	no	longer
use	this	for	that	purpose.	It	does	remain	a	convenient	way	to	decompose
other	tuples,	however,	and	may	continue	to	be	used	for	that	purpose.

int	PyArg_UnpackTuple(PyObject	*args,	char	*name,	int	min,	int	max,	...)
A	simpler	form	of	parameter	retrieval	which	does	not	use	a	format	string	to
specify	the	types	of	the	arguments.	Functions	which	use	this	method	to

retrieve	their	parameters	should	be	declared	as	METH_VARARGS	in
function	or	method	tables.	The	tuple	containing	the	actual	parameters
should	be	passed	as	args;	it	must	actually	be	a	tuple.	The	length	of	the	tuple
must	be	at	least	min	and	no	more	than	max;	min	and	max	may	be	equal.
Additional	arguments	must	be	passed	to	the	function,	each	of	which	should
be	a	pointer	to	a	PyObject*	variable;	these	will	be	filled	in	with	the
values	from	args;	they	will	contain	borrowed	references.	The	variables
which	correspond	to	optional	parameters	not	given	by	args	will	not	be	filled
in;	these	should	be	initialized	by	the	caller.	This	function	returns	true	on
success	and	false	if	args	is	not	a	tuple	or	contains	the	wrong	number	of
elements;	an	exception	will	be	set	if	there	was	a	failure.

This	is	an	example	of	the	use	of	this	function,	taken	from	the	sources	for	the
_weakref	helper	module	for	weak	references:

static	PyObject	*

weakref_ref(PyObject	*self,	PyObject	*args)

{

				PyObject	*object;

				PyObject	*callback	=	NULL;

				PyObject	*result	=	NULL;

				if	(PyArg_UnpackTuple(args,	"ref",	1,	2,	&object,	&callback))	{

								result	=	PyWeakref_NewRef(object,	callback);

				}

				return	result;

}

The	call	to	PyArg_UnpackTuple()	in	this	example	is	entirely
equivalent	to	this	call	to	PyArg_ParseTuple():

PyArg_ParseTuple(args,	"O|O:ref",	&object,	&callback)

New	in	version	2.2.

PyObject*	Py_BuildValue(char	*format,	...)
Return	value:	New	reference.
Create	a	new	value	based	on	a	format	string	similar	to	those	accepted	by	the
PyArg_Parse*()	family	of	functions	and	a	sequence	of	values.	Returns
the	value	or	NULL	in	the	case	of	an	error;	an	exception	will	be	raised	if
NULL	is	returned.

Py_BuildValue()	does	not	always	build	a	tuple.	It	builds	a	tuple	only
if	its	format	string	contains	two	or	more	format	units.	If	the	format	string	is
empty,	it	returns	None;	if	it	contains	exactly	one	format	unit,	it	returns
whatever	object	is	described	by	that	format	unit.	To	force	it	to	return	a	tuple
of	size	0	or	one,	parenthesize	the	format	string.

When	memory	buffers	are	passed	as	parameters	to	supply	data	to	build
objects,	as	for	the	"s"	and	"s#"	formats,	the	required	data	is	copied.
Buffers	provided	by	the	caller	are	never	referenced	by	the	objects	created
by	Py_BuildValue().	In	other	words,	if	your	code	invokes	malloc()
and	passes	the	allocated	memory	to	Py_BuildValue(),	your	code	is
responsible	for	calling	free()	for	that	memory	once
Py_BuildValue()	returns.

In	the	following	description,	the	quoted	form	is	the	format	unit;	the	entry	in
(round)	parentheses	is	the	Python	object	type	that	the	format	unit	will
return;	and	the	entry	in	[square]	brackets	is	the	type	of	the	C	value(s)	to	be
passed.

The	characters	space,	tab,	colon	and	comma	are	ignored	in	format	strings
(but	not	within	format	units	such	as	"s#").	This	can	be	used	to	make	long
format	strings	a	tad	more	readable.

"s"	(string)	[char	*]
Convert	a	null-terminated	C	string	to	a	Python	object.	If	the	C	string
pointer	is	NULL,	None	is	used.

"s#"	(string)	[char	*,	int]
Convert	a	C	string	and	its	length	to	a	Python	object.	If	the	C	string
pointer	is	NULL,	the	length	is	ignored	and	None	is	returned.

"z"	(string	or	None)	[char	*]
Same	as	"s".

"z#"	(string	or	None)	[char	*,	int]
Same	as	"s#".

"u"	(Unicode	string)	[Py_UNICODE	*]
Convert	a	null-terminated	buffer	of	Unicode	(UCS-2	or	UCS-4)	data	to

a	Python	Unicode	object.	If	the	Unicode	buffer	pointer	is	NULL,	None
is	returned.

"u#"	(Unicode	string)	[Py_UNICODE	*,	int]
Convert	a	Unicode	(UCS-2	or	UCS-4)	data	buffer	and	its	length	to	a
Python	Unicode	object.	If	the	Unicode	buffer	pointer	is	NULL,	the
length	is	ignored	and	None	is	returned.

"i"	(integer)	[int]
Convert	a	plain	C	int	to	a	Python	integer	object.

"b"	(integer)	[char]
Same	as	"i".

"h"	(integer)	[short	int]
Same	as	"i".

"l"	(integer)	[long	int]
Convert	a	C	long	int	to	a	Python	integer	object.

"c"	(string	of	length	1)	[char]
Convert	a	C	int	representing	a	character	to	a	Python	string	of	length
1.

"d"	(float)	[double]
Convert	a	C	double	to	a	Python	floating	point	number.

"f"	(float)	[float]
Same	as	"d".

"D"	(complex)	[Py_complex	*]
Convert	a	C	Py_complex	structure	to	a	Python	complex	number.

"O"	(object)	[PyObject	*]
Pass	a	Python	object	untouched	(except	for	its	reference	count,	which
is	incremented	by	one).	If	the	object	passed	in	is	a	NULL	pointer,	it	is
assumed	that	this	was	caused	because	the	call	producing	the	argument
found	an	error	and	set	an	exception.	Therefore,	Py_BuildValue()
will	return	NULL	but	won't	raise	an	exception.	If	no	exception	has

been	raised	yet,	SystemError	is	set.

"S"	(object)	[PyObject	*]
Same	as	"O".

"N"	(object)	[PyObject	*]
Same	as	"O",	except	it	doesn't	increment	the	reference	count	on	the
object.	Useful	when	the	object	is	created	by	a	call	to	an	object
constructor	in	the	argument	list.

"O&"	(object)	[converter,	anything]
Convert	anything	to	a	Python	object	through	a	converter	function.	The
function	is	called	with	anything	(which	should	be	compatible	with
void	*)	as	its	argument	and	should	return	a	``new''	Python	object,	or
NULL	if	an	error	occurred.

"(items)"	(tuple)	[matching-items]
Convert	a	sequence	of	C	values	to	a	Python	tuple	with	the	same
number	of	items.

"[items]"	(list)	[matching-items]
Convert	a	sequence	of	C	values	to	a	Python	list	with	the	same	number
of	items.

"{items}"	(dictionary)	[matching-items]
Convert	a	sequence	of	C	values	to	a	Python	dictionary.	Each	pair	of
consecutive	C	values	adds	one	item	to	the	dictionary,	serving	as	key
and	value,	respectively.

If	there	is	an	error	in	the	format	string,	the	SystemError	exception	is	set
and	NULL	returned.

Python/C	API	Reference	Manual
Previous:	5.4	Data	marshalling	support	Up:	5.	Utilities	Next:	6.	Abstract
Objects	Layer

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.5	Parsing	arguments	and	Up:	Python/C	API	Reference	Manual
Next:	6.1	Object	Protocol

6.	Abstract	Objects	Layer
The	functions	in	this	chapter	interact	with	Python	objects	regardless	of	their
type,	or	with	wide	classes	of	object	types	(e.g.	all	numerical	types,	or	all
sequence	types).	When	used	on	object	types	for	which	they	do	not	apply,	they
will	raise	a	Python	exception.

Subsections

6.1	Object	Protocol
6.2	Number	Protocol
6.3	Sequence	Protocol
6.4	Mapping	Protocol
6.5	Iterator	Protocol
6.6	Buffer	Protocol

Python/C	API	Reference	Manual
Previous:	5.5	Parsing	arguments	and	Up:	Python/C	API	Reference	Manual
Next:	6.1	Object	Protocol

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.	Abstract	Objects	Layer	Up:	6.	Abstract	Objects	Layer	Next:	6.2
Number	Protocol

6.1	Object	Protocol
int	PyObject_Print(PyObject	*o,	FILE	*fp,	int	flags)

Print	an	object	o,	on	file	fp.	Returns	-1	on	error.	The	flags	argument	is	used
to	enable	certain	printing	options.	The	only	option	currently	supported	is
Py_PRINT_RAW;	if	given,	the	str()	of	the	object	is	written	instead	of
the	repr().

int	PyObject_HasAttrString(PyObject	*o,	char	*attr_name)
Returns	1	if	o	has	the	attribute	attr_name,	and	0	otherwise.	This	is
equivalent	to	the	Python	expression	"hasattr(o,	attr_name)".	This
function	always	succeeds.

PyObject*	PyObject_GetAttrString(PyObject	*o,	char	*attr_name)
Return	value:	New	reference.
Retrieve	an	attribute	named	attr_name	from	object	o.	Returns	the	attribute
value	on	success,	or	NULL	on	failure.	This	is	the	equivalent	of	the	Python
expression	"o.attr_name".

int	PyObject_HasAttr(PyObject	*o,	PyObject	*attr_name)
Returns	1	if	o	has	the	attribute	attr_name,	and	0	otherwise.	This	is
equivalent	to	the	Python	expression	"hasattr(o,	attr_name)".	This
function	always	succeeds.

PyObject*	PyObject_GetAttr(PyObject	*o,	PyObject	*attr_name)
Return	value:	New	reference.
Retrieve	an	attribute	named	attr_name	from	object	o.	Returns	the	attribute
value	on	success,	or	NULL	on	failure.	This	is	the	equivalent	of	the	Python
expression	"o.attr_name".

int	PyObject_SetAttrString(PyObject	*o,	char	*attr_name,	PyObject*v)
Set	the	value	of	the	attribute	named	attr_name,	for	object	o,	to	the	value	v.
Returns	-1	on	failure.	This	is	the	equivalent	of	the	Python	statement
"o.attr_name	=	v".

int	PyObject_SetAttr(PyObject	*o,	PyObject	*attr_name,	PyObject	*v)
Set	the	value	of	the	attribute	named	attr_name,	for	object	o,	to	the	value	v.
Returns	-1	on	failure.	This	is	the	equivalent	of	the	Python	statement
"o.attr_name	=	v".

int	PyObject_DelAttrString(PyObject	*o,	char	*attr_name)
Delete	attribute	named	attr_name,	for	object	o.	Returns	-1	on	failure.	This
is	the	equivalent	of	the	Python	statement:	"del	o.attr_name".

int	PyObject_DelAttr(PyObject	*o,	PyObject	*attr_name)
Delete	attribute	named	attr_name,	for	object	o.	Returns	-1	on	failure.	This
is	the	equivalent	of	the	Python	statement	"del	o.attr_name".

PyObject*	PyObject_RichCompare(PyObject	*o1,	PyObject	*o2,	intopid)
Return	value:	New	reference.
Compare	the	values	of	o1	and	o2	using	the	operation	specified	by	opid,
which	must	be	one	of	Py_LT,	Py_LE,	Py_EQ,	Py_NE,	Py_GT,	or
Py_GE,	corresponding	to	<,	<=,	==,	!=,	>,	or	>=	respectively.	This	is	the
equivalent	of	the	Python	expression	"o1	op	o2",	where	op	is	the	operator
corresponding	to	opid.	Returns	the	value	of	the	comparison	on	success,	or
NULL	on	failure.

int	PyObject_RichCompareBool(PyObject	*o1,	PyObject	*o2,	int	opid)
Compare	the	values	of	o1	and	o2	using	the	operation	specified	by	opid,
which	must	be	one	of	Py_LT,	Py_LE,	Py_EQ,	Py_NE,	Py_GT,	or
Py_GE,	corresponding	to	<,	<=,	==,	!=,	>,	or	>=	respectively.	Returns	-1
on	error,	0	if	the	result	is	false,	1	otherwise.	This	is	the	equivalent	of	the
Python	expression	"o1	op	o2",	where	op	is	the	operator	corresponding	to
opid.

int	PyObject_Cmp(PyObject	*o1,	PyObject	*o2,	int	*result)
Compare	the	values	of	o1	and	o2	using	a	routine	provided	by	o1,	if	one
exists,	otherwise	with	a	routine	provided	by	o2.	The	result	of	the
comparison	is	returned	in	result.	Returns	-1	on	failure.	This	is	the
equivalent	of	the	Python	statement	"result	=	cmp(o1,	o2)".

int	PyObject_Compare(PyObject	*o1,	PyObject	*o2)
Compare	the	values	of	o1	and	o2	using	a	routine	provided	by	o1,	if	one
exists,	otherwise	with	a	routine	provided	by	o2.	Returns	the	result	of	the
comparison	on	success.	On	error,	the	value	returned	is	undefined;	use
PyErr_Occurred()	to	detect	an	error.	This	is	equivalent	to	the	Python
expression	"cmp(o1,	o2)".

PyObject*	PyObject_Repr(PyObject	*o)
Return	value:	New	reference.
Compute	a	string	representation	of	object	o.	Returns	the	string
representation	on	success,	NULL	on	failure.	This	is	the	equivalent	of	the
Python	expression	"repr(o)".	Called	by	the	repr()	built-in	function
and	by	reverse	quotes.

PyObject*	PyObject_Str(PyObject	*o)
Return	value:	New	reference.
Compute	a	string	representation	of	object	o.	Returns	the	string
representation	on	success,	NULL	on	failure.	This	is	the	equivalent	of	the
Python	expression	"str(o)".	Called	by	the	str()	built-in	function	and
by	the	print	statement.

PyObject*	PyObject_Unicode(PyObject	*o)
Return	value:	New	reference.
Compute	a	Unicode	string	representation	of	object	o.	Returns	the	Unicode
string	representation	on	success,	NULL	on	failure.	This	is	the	equivalent	of
the	Python	expression	"unicode(o)".	Called	by	the	unicode()	built-in
function.

int	PyObject_IsInstance(PyObject	*inst,	PyObject	*cls)
Returns	1	if	inst	is	an	instance	of	the	class	cls	or	a	subclass	of	cls,	or	0	if
not.	On	error,	returns	-1	and	sets	an	exception.	If	cls	is	a	type	object	rather
than	a	class	object,	PyObject_IsInstance()	returns	1	if	inst	is	of
type	cls.	If	cls	is	a	tuple,	the	check	will	be	done	against	every	entry	in	cls.
The	result	will	be	1	when	at	least	one	of	the	checks	returns	1,	otherwise	it
will	be	0.	If	inst	is	not	a	class	instance	and	cls	is	neither	a	type	object,	nor	a
class	object,	nor	a	tuple,	inst	must	have	a	__class__	attribute	--	the	class
relationship	of	the	value	of	that	attribute	with	cls	will	be	used	to	determine

the	result	of	this	function.	New	in	version	2.1.	Changed	in	version	2.2:
Support	for	a	tuple	as	the	second	argument	added.

Subclass	determination	is	done	in	a	fairly	straightforward	way,	but	includes	a
wrinkle	that	implementors	of	extensions	to	the	class	system	may	want	to	be
aware	of.	If	A	and	B	are	class	objects,	B	is	a	subclass	of	A	if	it	inherits	from	A
either	directly	or	indirectly.	If	either	is	not	a	class	object,	a	more	general
mechanism	is	used	to	determine	the	class	relationship	of	the	two	objects.	When
testing	if	B	is	a	subclass	of	A,	if	A	is	B,	PyObject_IsSubclass()	returns
true.	If	A	and	B	are	different	objects,	B's	__bases__	attribute	is	searched	in	a
depth-first	fashion	for	A	--	the	presence	of	the	__bases__	attribute	is
considered	sufficient	for	this	determination.

int	PyObject_IsSubclass(PyObject	*derived,	PyObject	*cls)
Returns	1	if	the	class	derived	is	identical	to	or	derived	from	the	class	cls,
otherwise	returns	0.	In	case	of	an	error,	returns	-1.	If	cls	is	a	tuple,	the
check	will	be	done	against	every	entry	in	cls.	The	result	will	be	1	when	at
least	one	of	the	checks	returns	1,	otherwise	it	will	be	0.	If	either	derived	or
cls	is	not	an	actual	class	object	(or	tuple),	this	function	uses	the	generic
algorithm	described	above.	New	in	version	2.1.	Changed	in	version	2.3:
Older	versions	of	Python	did	not	support	a	tuple	as	the	second	argument.

int	PyCallable_Check(PyObject	*o)
Determine	if	the	object	o	is	callable.	Return	1	if	the	object	is	callable	and	0
otherwise.	This	function	always	succeeds.

PyObject*	PyObject_Call(PyObject	*callable_object,	PyObject	*args,PyObject	*kw)
Call	a	callable	Python	object	callable_object,	with	arguments	given	by	the
tuple	args,	and	named	arguments	given	by	the	dictionary	kw.	If	no	named
arguments	are	needed,	kw	may	be	NULL.	args	must	not	be	NULL,	use	an
empty	tuple	if	no	arguments	are	needed.	Returns	the	result	of	the	call	on
success,	or	NULL	on	failure.	This	is	the	equivalent	of	the	Python	expression
"apply(callable_object,	args,	kw)"	or	"callable_object(*args,
**kw)".	New	in	version	2.2.

PyObject*	PyObject_CallObject(PyObject	*callable_object,	PyObject*args)

Return	value:	New	reference.
Call	a	callable	Python	object	callable_object,	with	arguments	given	by	the
tuple	args.	If	no	arguments	are	needed,	then	args	may	be	NULL.	Returns	the
result	of	the	call	on	success,	or	NULL	on	failure.	This	is	the	equivalent	of
the	Python	expression	"apply(callable_object,	args)"	or
"callable_object(*args)".

PyObject*	PyObject_CallFunction(PyObject	*callable,	char	*format,...)
Return	value:	New	reference.
Call	a	callable	Python	object	callable,	with	a	variable	number	of	C
arguments.	The	C	arguments	are	described	using	a	Py_BuildValue()
style	format	string.	The	format	may	be	NULL,	indicating	that	no	arguments
are	provided.	Returns	the	result	of	the	call	on	success,	or	NULL	on	failure.
This	is	the	equivalent	of	the	Python	expression	"apply(callable,	args)"
or	"callable(*args)".

PyObject*	PyObject_CallMethod(PyObject	*o,	char	*method,	char*format,	...)
Return	value:	New	reference.
Call	the	method	named	method	of	object	o	with	a	variable	number	of	C
arguments.	The	C	arguments	are	described	by	a	Py_BuildValue()
format	string	that	should	produce	a	tuple.	The	format	may	be	NULL,
indicating	that	no	arguments	are	provided.	Returns	the	result	of	the	call	on
success,	or	NULL	on	failure.	This	is	the	equivalent	of	the	Python	expression
"o.method(args)".

PyObject*	PyObject_CallFunctionObjArgs(PyObject	*callable,	...,
NULL)

Return	value:	New	reference.
Call	a	callable	Python	object	callable,	with	a	variable	number	of
PyObject*	arguments.	The	arguments	are	provided	as	a	variable	number
of	parameters	followed	by	NULL.	Returns	the	result	of	the	call	on	success,
or	NULL	on	failure.	New	in	version	2.2.

PyObject*	PyObject_CallMethodObjArgs(PyObject	*o,	PyObject*name,	...,	NULL)

Return	value:	New	reference.
Calls	a	method	of	the	object	o,	where	the	name	of	the	method	is	given	as	a
Python	string	object	in	name.	It	is	called	with	a	variable	number	of
PyObject*	arguments.	The	arguments	are	provided	as	a	variable	number
of	parameters	followed	by	NULL.	Returns	the	result	of	the	call	on	success,
or	NULL	on	failure.	New	in	version	2.2.

int	PyObject_Hash(PyObject	*o)
Compute	and	return	the	hash	value	of	an	object	o.	On	failure,	return	-1.
This	is	the	equivalent	of	the	Python	expression	"hash(o)".

int	PyObject_IsTrue(PyObject	*o)
Returns	1	if	the	object	o	is	considered	to	be	true,	and	0	otherwise.	This	is
equivalent	to	the	Python	expression	"not	not	o".	On	failure,	return	-1.

int	PyObject_Not(PyObject	*o)
Returns	0	if	the	object	o	is	considered	to	be	true,	and	1	otherwise.	This	is
equivalent	to	the	Python	expression	"not	o".	On	failure,	return	-1.

PyObject*	PyObject_Type(PyObject	*o)
Return	value:	New	reference.
When	o	is	non-NULL,	returns	a	type	object	corresponding	to	the	object	type
of	object	o.	On	failure,	raises	SystemError	and	returns	NULL.	This	is
equivalent	to	the	Python	expression	type(o).	This	function	increments
the	reference	count	of	the	return	value.	There's	really	no	reason	to	use	this
function	instead	of	the	common	expression	o->ob_type,	which	returns	a
pointer	of	type	PyTypeObject*,	except	when	the	incremented	reference
count	is	needed.

int	PyObject_TypeCheck(PyObject	*o,	PyTypeObject	*type)
Return	true	if	the	object	o	is	of	type	type	or	a	subtype	of	type.	Both
parameters	must	be	non-NULL.	New	in	version	2.2.

int	PyObject_Length(PyObject	*o)
int	PyObject_Size(PyObject	*o)

Return	the	length	of	object	o.	If	the	object	o	provides	either	the	sequence
and	mapping	protocols,	the	sequence	length	is	returned.	On	error,	-1	is

returned.	This	is	the	equivalent	to	the	Python	expression	"len(o)".

PyObject*	PyObject_GetItem(PyObject	*o,	PyObject	*key)
Return	value:	New	reference.
Return	element	of	o	corresponding	to	the	object	key	or	NULL	on	failure.
This	is	the	equivalent	of	the	Python	expression	"o[key]".

int	PyObject_SetItem(PyObject	*o,	PyObject	*key,	PyObject	*v)
Map	the	object	key	to	the	value	v.	Returns	-1	on	failure.	This	is	the
equivalent	of	the	Python	statement	"o[key]	=	v".

int	PyObject_DelItem(PyObject	*o,	PyObject	*key)
Delete	the	mapping	for	key	from	o.	Returns	-1	on	failure.	This	is	the
equivalent	of	the	Python	statement	"del	o[key]".

int	PyObject_AsFileDescriptor(PyObject	*o)
Derives	a	file-descriptor	from	a	Python	object.	If	the	object	is	an	integer	or
long	integer,	its	value	is	returned.	If	not,	the	object's	fileno()	method	is
called	if	it	exists;	the	method	must	return	an	integer	or	long	integer,	which
is	returned	as	the	file	descriptor	value.	Returns	-1	on	failure.

PyObject*	PyObject_Dir(PyObject	*o)
Return	value:	New	reference.
This	is	equivalent	to	the	Python	expression	"dir(o)",	returning	a
(possibly	empty)	list	of	strings	appropriate	for	the	object	argument,	or
NULL	if	there	was	an	error.	If	the	argument	is	NULL,	this	is	like	the	Python
"dir()",	returning	the	names	of	the	current	locals;	in	this	case,	if	no
execution	frame	is	active	then	NULL	is	returned	but
PyErr_Occurred()	will	return	false.

PyObject*	PyObject_GetIter(PyObject	*o)
Return	value:	New	reference.
This	is	equivalent	to	the	Python	expression	"iter(o)".	It	returns	a	new
iterator	for	the	object	argument,	or	the	object	itself	if	the	object	is	already
an	iterator.	Raises	TypeError	and	returns	NULL	if	the	object	cannot	be
iterated.

Python/C	API	Reference	Manual
Previous:	6.	Abstract	Objects	Layer	Up:	6.	Abstract	Objects	Layer	Next:	6.2
Number	Protocol

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.1	Object	Protocol	Up:	6.	Abstract	Objects	Layer	Next:	6.3
Sequence	Protocol

6.2	Number	Protocol
int	PyNumber_Check(PyObject	*o)

Returns	1	if	the	object	o	provides	numeric	protocols,	and	false	otherwise.
This	function	always	succeeds.

PyObject*	PyNumber_Add(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	result	of	adding	o1	and	o2,	or	NULL	on	failure.	This	is	the
equivalent	of	the	Python	expression	"o1	+	o2".

PyObject*	PyNumber_Subtract(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	result	of	subtracting	o2	from	o1,	or	NULL	on	failure.	This	is	the
equivalent	of	the	Python	expression	"o1	-	o2".

PyObject*	PyNumber_Multiply(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	result	of	multiplying	o1	and	o2,	or	NULL	on	failure.	This	is	the
equivalent	of	the	Python	expression	"o1	*	o2".

PyObject*	PyNumber_Divide(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	result	of	dividing	o1	by	o2,	or	NULL	on	failure.	This	is	the
equivalent	of	the	Python	expression	"o1	/	o2".

PyObject*	PyNumber_FloorDivide(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Return	the	floor	of	o1	divided	by	o2,	or	NULL	on	failure.	This	is	equivalent
to	the	``classic''	division	of	integers.	New	in	version	2.2.

PyObject*	PyNumber_TrueDivide(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Return	a	reasonable	approximation	for	the	mathematical	value	of	o1
divided	by	o2,	or	NULL	on	failure.	The	return	value	is	``approximate''

because	binary	floating	point	numbers	are	approximate;	it	is	not	possible	to
represent	all	real	numbers	in	base	two.	This	function	can	return	a	floating
point	value	when	passed	two	integers.	New	in	version	2.2.

PyObject*	PyNumber_Remainder(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	remainder	of	dividing	o1	by	o2,	or	NULL	on	failure.	This	is	the
equivalent	of	the	Python	expression	"o1	%	o2".

PyObject*	PyNumber_Divmod(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
See	the	built-in	function	divmod().	Returns	NULL	on	failure.	This	is	the
equivalent	of	the	Python	expression	"divmod(o1,	o2)".

PyObject*	PyNumber_Power(PyObject	*o1,	PyObject	*o2,	PyObject	*o3)
Return	value:	New	reference.
See	the	built-in	function	pow().	Returns	NULL	on	failure.	This	is	the
equivalent	of	the	Python	expression	"pow(o1,	o2,	o3)",	where	o3	is
optional.	If	o3	is	to	be	ignored,	pass	Py_None	in	its	place	(passing	NULL
for	o3	would	cause	an	illegal	memory	access).

PyObject*	PyNumber_Negative(PyObject	*o)
Return	value:	New	reference.
Returns	the	negation	of	o	on	success,	or	NULL	on	failure.	This	is	the
equivalent	of	the	Python	expression	"-o".

PyObject*	PyNumber_Positive(PyObject	*o)
Return	value:	New	reference.
Returns	o	on	success,	or	NULL	on	failure.	This	is	the	equivalent	of	the
Python	expression	"+o".

PyObject*	PyNumber_Absolute(PyObject	*o)
Return	value:	New	reference.
Returns	the	absolute	value	of	o,	or	NULL	on	failure.	This	is	the	equivalent
of	the	Python	expression	"abs(o)".

PyObject*	PyNumber_Invert(PyObject	*o)

Return	value:	New	reference.
Returns	the	bitwise	negation	of	o	on	success,	or	NULL	on	failure.	This	is	the
equivalent	of	the	Python	expression	"~o".

PyObject*	PyNumber_Lshift(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	result	of	left	shifting	o1	by	o2	on	success,	or	NULL	on	failure.
This	is	the	equivalent	of	the	Python	expression	"o1	<<	o2".

PyObject*	PyNumber_Rshift(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	result	of	right	shifting	o1	by	o2	on	success,	or	NULL	on	failure.
This	is	the	equivalent	of	the	Python	expression	"o1	>>	o2".

PyObject*	PyNumber_And(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	``bitwise	and''	of	o1	and	o2	on	success	and	NULL	on	failure.
This	is	the	equivalent	of	the	Python	expression	"o1	&	o2".

PyObject*	PyNumber_Xor(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	``bitwise	exclusive	or''	of	o1	by	o2	on	success,	or	NULL	on
failure.	This	is	the	equivalent	of	the	Python	expression	"o1	^	o2".

PyObject*	PyNumber_Or(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	``bitwise	or''	of	o1	and	o2	on	success,	or	NULL	on	failure.	This
is	the	equivalent	of	the	Python	expression	"o1	|	o2".

PyObject*	PyNumber_InPlaceAdd(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	result	of	adding	o1	and	o2,	or	NULL	on	failure.	The	operation	is
done	in-place	when	o1	supports	it.	This	is	the	equivalent	of	the	Python
statement	"o1	+=	o2".

PyObject*	PyNumber_InPlaceSubtract(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.

Returns	the	result	of	subtracting	o2	from	o1,	or	NULL	on	failure.	The
operation	is	done	in-place	when	o1	supports	it.	This	is	the	equivalent	of	the
Python	statement	"o1	-=	o2".

PyObject*	PyNumber_InPlaceMultiply(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	result	of	multiplying	o1	and	o2,	or	NULL	on	failure.	The
operation	is	done	in-place	when	o1	supports	it.	This	is	the	equivalent	of	the
Python	statement	"o1	*=	o2".

PyObject*	PyNumber_InPlaceDivide(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	result	of	dividing	o1	by	o2,	or	NULL	on	failure.	The	operation
is	done	in-place	when	o1	supports	it.	This	is	the	equivalent	of	the	Python
statement	"o1	/=	o2".

PyObject*	PyNumber_InPlaceFloorDivide(PyObject	*o1,	PyObject*o2)
Return	value:	New	reference.
Returns	the	mathematical	floor	of	dividing	o1	by	o2,	or	NULL	on	failure.
The	operation	is	done	in-place	when	o1	supports	it.	This	is	the	equivalent	of
the	Python	statement	"o1	//=	o2".	New	in	version	2.2.

PyObject*	PyNumber_InPlaceTrueDivide(PyObject	*o1,	PyObject*o2)
Return	value:	New	reference.
Return	a	reasonable	approximation	for	the	mathematical	value	of	o1
divided	by	o2,	or	NULL	on	failure.	The	return	value	is	``approximate''
because	binary	floating	point	numbers	are	approximate;	it	is	not	possible	to
represent	all	real	numbers	in	base	two.	This	function	can	return	a	floating
point	value	when	passed	two	integers.	The	operation	is	done	in-place	when
o1	supports	it.	New	in	version	2.2.

PyObject*	PyNumber_InPlaceRemainder(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	remainder	of	dividing	o1	by	o2,	or	NULL	on	failure.	The
operation	is	done	in-place	when	o1	supports	it.	This	is	the	equivalent	of	the

Python	statement	"o1	%=	o2".

PyObject*	PyNumber_InPlacePower(PyObject	*o1,	PyObject	*o2,PyObject	*o3)
Return	value:	New	reference.
See	the	built-in	function	pow().	Returns	NULL	on	failure.	The	operation	is
done	in-place	when	o1	supports	it.	This	is	the	equivalent	of	the	Python
statement	"o1	**=	o2"	when	o3	is	Py_None,	or	an	in-place	variant	of
"pow(o1,	o2,	o3)"	otherwise.	If	o3	is	to	be	ignored,	pass	Py_None	in
its	place	(passing	NULL	for	o3	would	cause	an	illegal	memory	access).

PyObject*	PyNumber_InPlaceLshift(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	result	of	left	shifting	o1	by	o2	on	success,	or	NULL	on	failure.
The	operation	is	done	in-place	when	o1	supports	it.	This	is	the	equivalent	of
the	Python	statement	"o1	<<=	o2".

PyObject*	PyNumber_InPlaceRshift(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	result	of	right	shifting	o1	by	o2	on	success,	or	NULL	on	failure.
The	operation	is	done	in-place	when	o1	supports	it.	This	is	the	equivalent	of
the	Python	statement	"o1	>>=	o2".

PyObject*	PyNumber_InPlaceAnd(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	``bitwise	and''	of	o1	and	o2	on	success	and	NULL	on	failure.
The	operation	is	done	in-place	when	o1	supports	it.	This	is	the	equivalent	of
the	Python	statement	"o1	&=	o2".

PyObject*	PyNumber_InPlaceXor(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	``bitwise	exclusive	or''	of	o1	by	o2	on	success,	or	NULL	on
failure.	The	operation	is	done	in-place	when	o1	supports	it.	This	is	the
equivalent	of	the	Python	statement	"o1	^=	o2".

PyObject*	PyNumber_InPlaceOr(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.

Returns	the	``bitwise	or''	of	o1	and	o2	on	success,	or	NULL	on	failure.	The
operation	is	done	in-place	when	o1	supports	it.	This	is	the	equivalent	of	the
Python	statement	"o1	|=	o2".

int	PyNumber_Coerce(PyObject	**p1,	PyObject	**p2)
This	function	takes	the	addresses	of	two	variables	of	type	PyObject*.	If
the	objects	pointed	to	by	*p1	and	*p2	have	the	same	type,	increment	their
reference	count	and	return	0	(success).	If	the	objects	can	be	converted	to	a
common	numeric	type,	replace	*p1	and	*p2	by	their	converted	value	(with
'new'	reference	counts),	and	return	0.	If	no	conversion	is	possible,	or	if
some	other	error	occurs,	return	-1	(failure)	and	don't	increment	the
reference	counts.	The	call	PyNumber_Coerce(&o1,	&o2)	is
equivalent	to	the	Python	statement	"o1,	o2	=	coerce(o1,	o2)".

PyObject*	PyNumber_Int(PyObject	*o)
Return	value:	New	reference.
Returns	the	o	converted	to	an	integer	object	on	success,	or	NULL	on	failure.
If	the	argument	is	outside	the	integer	range	a	long	object	will	be	returned
instead.	This	is	the	equivalent	of	the	Python	expression	"int(o)".

PyObject*	PyNumber_Long(PyObject	*o)
Return	value:	New	reference.
Returns	the	o	converted	to	a	long	integer	object	on	success,	or	NULL	on
failure.	This	is	the	equivalent	of	the	Python	expression	"long(o)".

PyObject*	PyNumber_Float(PyObject	*o)
Return	value:	New	reference.
Returns	the	o	converted	to	a	float	object	on	success,	or	NULL	on	failure.
This	is	the	equivalent	of	the	Python	expression	"float(o)".

Python/C	API	Reference	Manual
Previous:	6.1	Object	Protocol	Up:	6.	Abstract	Objects	Layer	Next:	6.3
Sequence	Protocol

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.2	Number	Protocol	Up:	6.	Abstract	Objects	Layer	Next:	6.4
Mapping	Protocol

6.3	Sequence	Protocol
int	PySequence_Check(PyObject	*o)

Return	1	if	the	object	provides	sequence	protocol,	and	0	otherwise.	This
function	always	succeeds.

int	PySequence_Size(PyObject	*o)
Returns	the	number	of	objects	in	sequence	o	on	success,	and	-1	on	failure.
For	objects	that	do	not	provide	sequence	protocol,	this	is	equivalent	to	the
Python	expression	"len(o)".

int	PySequence_Length(PyObject	*o)
Alternate	name	for	PySequence_Size().

PyObject*	PySequence_Concat(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Return	the	concatenation	of	o1	and	o2	on	success,	and	NULL	on	failure.
This	is	the	equivalent	of	the	Python	expression	"o1	+	o2".

PyObject*	PySequence_Repeat(PyObject	*o,	int	count)
Return	value:	New	reference.
Return	the	result	of	repeating	sequence	object	o	count	times,	or	NULL	on
failure.	This	is	the	equivalent	of	the	Python	expression	"o	*	count".

PyObject*	PySequence_InPlaceConcat(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Return	the	concatenation	of	o1	and	o2	on	success,	and	NULL	on	failure.
The	operation	is	done	in-place	when	o1	supports	it.	This	is	the	equivalent	of
the	Python	expression	"o1	+=	o2".

PyObject*	PySequence_InPlaceRepeat(PyObject	*o,	int	count)
Return	value:	New	reference.
Return	the	result	of	repeating	sequence	object	o	count	times,	or	NULL	on
failure.	The	operation	is	done	in-place	when	o	supports	it.	This	is	the
equivalent	of	the	Python	expression	"o	*=	count".

PyObject*	PySequence_GetItem(PyObject	*o,	int	i)
Return	value:	New	reference.
Return	the	ith	element	of	o,	or	NULL	on	failure.	This	is	the	equivalent	of	the
Python	expression	"o[i]".

PyObject*	PySequence_GetSlice(PyObject	*o,	int	i1,	int	i2)
Return	value:	New	reference.
Return	the	slice	of	sequence	object	o	between	i1	and	i2,	or	NULL	on	failure.
This	is	the	equivalent	of	the	Python	expression	"o[i1:i2]".

int	PySequence_SetItem(PyObject	*o,	int	i,	PyObject	*v)
Assign	object	v	to	the	ith	element	of	o.	Returns	-1	on	failure.	This	is	the
equivalent	of	the	Python	statement	"o[i]	=	v".	This	function	does	not
steal	a	reference	to	v.

int	PySequence_DelItem(PyObject	*o,	int	i)
Delete	the	ith	element	of	object	o.	Returns	-1	on	failure.	This	is	the
equivalent	of	the	Python	statement	"del	o[i]".

int	PySequence_SetSlice(PyObject	*o,	int	i1,	int	i2,	PyObject	*v)
Assign	the	sequence	object	v	to	the	slice	in	sequence	object	o	from	i1	to	i2.
This	is	the	equivalent	of	the	Python	statement	"o[i1:i2]	=	v".

int	PySequence_DelSlice(PyObject	*o,	int	i1,	int	i2)
Delete	the	slice	in	sequence	object	o	from	i1	to	i2.	Returns	-1	on	failure.
This	is	the	equivalent	of	the	Python	statement	"del	o[i1:i2]".

PyObject*	PySequence_Tuple(PyObject	*o)
Return	value:	New	reference.
Returns	the	o	as	a	tuple	on	success,	and	NULL	on	failure.	This	is	equivalent
to	the	Python	expression	"tuple(o)".

int	PySequence_Count(PyObject	*o,	PyObject	*value)
Return	the	number	of	occurrences	of	value	in	o,	that	is,	return	the	number
of	keys	for	which	o[key]	==	value.	On	failure,	return	-1.	This	is
equivalent	to	the	Python	expression	"o.count(value)".

int	PySequence_Contains(PyObject	*o,	PyObject	*value)
Determine	if	o	contains	value.	If	an	item	in	o	is	equal	to	value,	return	1,
otherwise	return	0.	On	error,	return	-1.	This	is	equivalent	to	the	Python
expression	"value	in	o".

int	PySequence_Index(PyObject	*o,	PyObject	*value)
Return	the	first	index	i	for	which	o[i]	==	value.	On	error,	return	-1.	This
is	equivalent	to	the	Python	expression	"o.index(value)".

PyObject*	PySequence_List(PyObject	*o)
Return	value:	New	reference.
Return	a	list	object	with	the	same	contents	as	the	arbitrary	sequence	o.	The
returned	list	is	guaranteed	to	be	new.

PyObject*	PySequence_Tuple(PyObject	*o)
Return	value:	New	reference.
Return	a	tuple	object	with	the	same	contents	as	the	arbitrary	sequence	o.	If
o	is	a	tuple,	a	new	reference	will	be	returned,	otherwise	a	tuple	will	be
constructed	with	the	appropriate	contents.

PyObject*	PySequence_Fast(PyObject	*o,	const	char	*m)
Return	value:	New	reference.
Returns	the	sequence	o	as	a	tuple,	unless	it	is	already	a	tuple	or	list,	in
which	case	o	is	returned.	Use	PySequence_Fast_GET_ITEM()	to
access	the	members	of	the	result.	Returns	NULL	on	failure.	If	the	object	is
not	a	sequence,	raises	TypeError	with	m	as	the	message	text.

PyObject*	PySequence_Fast_GET_ITEM(PyObject	*o,	int	i)
Return	value:	Borrowed	reference.
Return	the	ith	element	of	o,	assuming	that	o	was	returned	by
PySequence_Fast(),	o	is	not	NULL,	and	that	i	is	within	bounds.

PyObject**	PySequence_Fast_ITEMS(PyObject	*o)
Return	the	underlying	array	of	PyObject	pointers.	Assumes	that	o	was
returned	by	PySequence_Fast()	and	o	is	not	NULL.	New	in	version
2.4.

PyObject*	PySequence_ITEM(PyObject	*o,	int	i)
Return	value:	New	reference.
Return	the	ith	element	of	o	or	NULL	on	failure.	Macro	form	of
PySequence_GetItem()	but	without	checking	that
PySequence_Check(o)	is	true	and	without	adjustment	for	negative
indices.	New	in	version	2.3.

int	PySequence_Fast_GET_SIZE(PyObject	*o)
Returns	the	length	of	o,	assuming	that	o	was	returned	by
PySequence_Fast()	and	that	o	is	not	NULL.	The	size	can	also	be
gotten	by	calling	PySequence_Size()	on	o,	but
PySequence_Fast_GET_SIZE()	is	faster	because	it	can	assume	o	is	a
list	or	tuple.

Python/C	API	Reference	Manual
Previous:	6.2	Number	Protocol	Up:	6.	Abstract	Objects	Layer	Next:	6.4
Mapping	Protocol

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.3	Sequence	Protocol	Up:	6.	Abstract	Objects	Layer	Next:	6.5
Iterator	Protocol

6.4	Mapping	Protocol
int	PyMapping_Check(PyObject	*o)

Return	1	if	the	object	provides	mapping	protocol,	and	0	otherwise.	This
function	always	succeeds.

int	PyMapping_Length(PyObject	*o)
Returns	the	number	of	keys	in	object	o	on	success,	and	-1	on	failure.	For
objects	that	do	not	provide	mapping	protocol,	this	is	equivalent	to	the
Python	expression	"len(o)".

int	PyMapping_DelItemString(PyObject	*o,	char	*key)
Remove	the	mapping	for	object	key	from	the	object	o.	Return	-1	on	failure.
This	is	equivalent	to	the	Python	statement	"del	o[key]".

int	PyMapping_DelItem(PyObject	*o,	PyObject	*key)
Remove	the	mapping	for	object	key	from	the	object	o.	Return	-1	on	failure.
This	is	equivalent	to	the	Python	statement	"del	o[key]".

int	PyMapping_HasKeyString(PyObject	*o,	char	*key)
On	success,	return	1	if	the	mapping	object	has	the	key	key	and	0	otherwise.
This	is	equivalent	to	the	Python	expression	"o.has_key(key)".	This
function	always	succeeds.

int	PyMapping_HasKey(PyObject	*o,	PyObject	*key)
Return	1	if	the	mapping	object	has	the	key	key	and	0	otherwise.	This	is
equivalent	to	the	Python	expression	"o.has_key(key)".	This	function
always	succeeds.

PyObject*	PyMapping_Keys(PyObject	*o)
Return	value:	New	reference.
On	success,	return	a	list	of	the	keys	in	object	o.	On	failure,	return	NULL.
This	is	equivalent	to	the	Python	expression	"o.keys()".

PyObject*	PyMapping_Values(PyObject	*o)

Return	value:	New	reference.
On	success,	return	a	list	of	the	values	in	object	o.	On	failure,	return	NULL.
This	is	equivalent	to	the	Python	expression	"o.values()".

PyObject*	PyMapping_Items(PyObject	*o)
Return	value:	New	reference.
On	success,	return	a	list	of	the	items	in	object	o,	where	each	item	is	a	tuple
containing	a	key-value	pair.	On	failure,	return	NULL.	This	is	equivalent	to
the	Python	expression	"o.items()".

PyObject*	PyMapping_GetItemString(PyObject	*o,	char	*key)
Return	value:	New	reference.
Return	element	of	o	corresponding	to	the	object	key	or	NULL	on	failure.
This	is	the	equivalent	of	the	Python	expression	"o[key]".

int	PyMapping_SetItemString(PyObject	*o,	char	*key,	PyObject	*v)
Map	the	object	key	to	the	value	v	in	object	o.	Returns	-1	on	failure.	This	is
the	equivalent	of	the	Python	statement	"o[key]	=	v".

Python/C	API	Reference	Manual
Previous:	6.3	Sequence	Protocol	Up:	6.	Abstract	Objects	Layer	Next:	6.5
Iterator	Protocol

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.4	Mapping	Protocol	Up:	6.	Abstract	Objects	Layer	Next:	6.6	Buffer
Protocol

6.5	Iterator	Protocol
New	in	version	2.2.

There	are	only	a	couple	of	functions	specifically	for	working	with	iterators.

int	PyIter_Check(PyObject	*o)
Return	true	if	the	object	o	supports	the	iterator	protocol.

PyObject*	PyIter_Next(PyObject	*o)
Return	value:	New	reference.
Return	the	next	value	from	the	iteration	o.	If	the	object	is	an	iterator,	this
retrieves	the	next	value	from	the	iteration,	and	returns	NULL	with	no
exception	set	if	there	are	no	remaining	items.	If	the	object	is	not	an	iterator,
TypeError	is	raised,	or	if	there	is	an	error	in	retrieving	the	item,	returns
NULL	and	passes	along	the	exception.

To	write	a	loop	which	iterates	over	an	iterator,	the	C	code	should	look	something
like	this:

PyObject	*iterator	=	PyObject_GetIter(obj);

PyObject	*item;

if	(iterator	==	NULL)	{

				/*	propagate	error	*/

}

while	(item	=	PyIter_Next(iterator))	{

				/*	do	something	with	item	*/

				...

				/*	release	reference	when	done	*/

				Py_DECREF(item);

}

Py_DECREF(iterator);

if	(PyErr_Occurred())	{

				/*	propagate	error	*/

}

else	{

				/*	continue	doing	useful	work	*/

}

Python/C	API	Reference	Manual
Previous:	6.4	Mapping	Protocol	Up:	6.	Abstract	Objects	Layer	Next:	6.6	Buffer
Protocol

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.5	Iterator	Protocol	Up:	6.	Abstract	Objects	Layer	Next:	7.	Concrete
Objects	Layer

6.6	Buffer	Protocol

int	PyObject_AsCharBuffer(PyObject	*obj,	const	char	**buffer,	int*buffer_len)
Returns	a	pointer	to	a	read-only	memory	location	useable	as	character-
based	input.	The	obj	argument	must	support	the	single-segment	character
buffer	interface.	On	success,	returns	0,	sets	buffer	to	the	memory	location
and	buffer_len	to	the	buffer	length.	Returns	-1	and	sets	a	TypeError	on
error.	New	in	version	1.6.

int	PyObject_AsReadBuffer(PyObject	*obj,	const	void	**buffer,	int*buffer_len)
Returns	a	pointer	to	a	read-only	memory	location	containing	arbitrary	data.
The	obj	argument	must	support	the	single-segment	readable	buffer
interface.	On	success,	returns	0,	sets	buffer	to	the	memory	location	and
buffer_len	to	the	buffer	length.	Returns	-1	and	sets	a	TypeError	on
error.	New	in	version	1.6.

int	PyObject_CheckReadBuffer(PyObject	*o)
Returns	1	if	o	supports	the	single-segment	readable	buffer	interface.
Otherwise	returns	0.	New	in	version	2.2.

int	PyObject_AsWriteBuffer(PyObject	*obj,	void	**buffer,	int*buffer_len)
Returns	a	pointer	to	a	writeable	memory	location.	The	obj	argument	must
support	the	single-segment,	character	buffer	interface.	On	success,	returns
0,	sets	buffer	to	the	memory	location	and	buffer_len	to	the	buffer	length.
Returns	-1	and	sets	a	TypeError	on	error.	New	in	version	1.6.

Python/C	API	Reference	Manual
Previous:	6.5	Iterator	Protocol	Up:	6.	Abstract	Objects	Layer	Next:	7.	Concrete
Objects	Layer

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.6	Buffer	Protocol	Up:	Python/C	API	Reference	Manual	Next:	7.1
Fundamental	Objects

7.	Concrete	Objects	Layer
The	functions	in	this	chapter	are	specific	to	certain	Python	object	types.	Passing
them	an	object	of	the	wrong	type	is	not	a	good	idea;	if	you	receive	an	object
from	a	Python	program	and	you	are	not	sure	that	it	has	the	right	type,	you	must
perform	a	type	check	first;	for	example,	to	check	that	an	object	is	a	dictionary,
use	PyDict_Check().	The	chapter	is	structured	like	the	``family	tree''	of
Python	object	types.

Warning:	While	the	functions	described	in	this	chapter	carefully	check	the	type
of	the	objects	which	are	passed	in,	many	of	them	do	not	check	for	NULL	being
passed	instead	of	a	valid	object.	Allowing	NULL	to	be	passed	in	can	cause
memory	access	violations	and	immediate	termination	of	the	interpreter.

Subsections

7.1	Fundamental	Objects
7.1.1	Type	Objects
7.1.2	The	None	Object

7.2	Numeric	Objects
7.2.1	Plain	Integer	Objects
7.2.2	Boolean	Objects
7.2.3	Long	Integer	Objects
7.2.4	Floating	Point	Objects
7.2.5	Complex	Number	Objects

7.2.5.1	Complex	Numbers	as	C	Structures
7.2.5.2	Complex	Numbers	as	Python	Objects

7.3	Sequence	Objects
7.3.1	String	Objects
7.3.2	Unicode	Objects

7.3.2.1	Built-in	Codecs
7.3.2.2	Methods	and	Slot	Functions

7.3.3	Buffer	Objects
7.3.4	Tuple	Objects

7.3.5	List	Objects
7.4	Mapping	Objects

7.4.1	Dictionary	Objects
7.5	Other	Objects

7.5.1	File	Objects
7.5.2	Instance	Objects
7.5.3	Method	Objects
7.5.4	Module	Objects
7.5.5	Iterator	Objects
7.5.6	Descriptor	Objects
7.5.7	Slice	Objects
7.5.8	Weak	Reference	Objects
7.5.9	CObjects
7.5.10	Cell	Objects
7.5.11	Generator	Objects
7.5.12	DateTime	Objects

Python/C	API	Reference	Manual
Previous:	6.6	Buffer	Protocol	Up:	Python/C	API	Reference	Manual	Next:	7.1
Fundamental	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.	Concrete	Objects	Layer	Up:	7.	Concrete	Objects	Layer	Next:
7.1.1	Type	Objects

7.1	Fundamental	Objects
This	section	describes	Python	type	objects	and	the	singleton	object	None.

Subsections

7.1.1	Type	Objects
7.1.2	The	None	Object

Python/C	API	Reference	Manual
Previous:	7.	Concrete	Objects	Layer	Up:	7.	Concrete	Objects	Layer	Next:
7.1.1	Type	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.1	Fundamental	Objects	Up:	7.1	Fundamental	Objects	Next:	7.1.2
The	None	Object

7.1.1	Type	Objects
PyTypeObject

The	C	structure	of	the	objects	used	to	describe	built-in	types.

PyObject*	PyType_Type
This	is	the	type	object	for	type	objects;	it	is	the	same	object	as
types.TypeType	in	the	Python	layer.

int	PyType_Check(PyObject	*o)
Returns	true	if	the	object	o	is	a	type	object,	including	instances	of	types
derived	from	the	standard	type	object.	Returns	false	in	all	other	cases.

int	PyType_CheckExact(PyObject	*o)
Returns	true	if	the	object	o	is	a	type	object,	but	not	a	subtype	of	the
standard	type	object.	Returns	false	in	all	other	cases.	New	in	version	2.2.

int	PyType_HasFeature(PyObject	*o,	int	feature)
Returns	true	if	the	type	object	o	sets	the	feature	feature.	Type	features	are
denoted	by	single	bit	flags.

int	PyType_IS_GC(PyObject	*o)
Return	true	if	the	type	object	includes	support	for	the	cycle	detector;	this
tests	the	type	flag	Py_TPFLAGS_HAVE_GC.	New	in	version	2.0.

int	PyType_IsSubtype(PyTypeObject	*a,	PyTypeObject	*b)
Returns	true	if	a	is	a	subtype	of	b.	New	in	version	2.2.

PyObject*	PyType_GenericAlloc(PyTypeObject	*type,	int	nitems)
Return	value:	New	reference.
New	in	version	2.2.

PyObject*	PyType_GenericNew(PyTypeObject	*type,	PyObject	*args,PyObject	*kwds)
Return	value:	New	reference.
New	in	version	2.2.

int	PyType_Ready(PyTypeObject	*type)
Finalize	a	type	object.	This	should	be	called	on	all	type	objects	to	finish
their	initialization.	This	function	is	responsible	for	adding	inherited	slots
from	a	type's	base	class.	Returns	0	on	success,	or	returns	-1	and	sets	an
exception	on	error.	New	in	version	2.2.

Python/C	API	Reference	Manual
Previous:	7.1	Fundamental	Objects	Up:	7.1	Fundamental	Objects	Next:	7.1.2
The	None	Object

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.1.1	Type	Objects	Up:	7.1	Fundamental	Objects	Next:	7.2	Numeric
Objects

7.1.2	The	None	Object
Note	that	the	PyTypeObject	for	None	is	not	directly	exposed	in	the	Python/C
API.	Since	None	is	a	singleton,	testing	for	object	identity	(using	"=="	in	C)	is
sufficient.	There	is	no	PyNone_Check()	function	for	the	same	reason.

PyObject*	Py_None
The	Python	None	object,	denoting	lack	of	value.	This	object	has	no
methods.	It	needs	to	be	treated	just	like	any	other	object	with	respect	to
reference	counts.

Py_RETURN_NONE

Properly	handles	returning	Py_None	from	within	a	C	function.

Python/C	API	Reference	Manual
Previous:	7.1.1	Type	Objects	Up:	7.1	Fundamental	Objects	Next:	7.2	Numeric
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.1.2	The	None	Object	Up:	7.	Concrete	Objects	Layer	Next:	7.2.1
Plain	Integer	Objects

7.2	Numeric	Objects

Subsections

7.2.1	Plain	Integer	Objects
7.2.2	Boolean	Objects
7.2.3	Long	Integer	Objects
7.2.4	Floating	Point	Objects
7.2.5	Complex	Number	Objects

7.2.5.1	Complex	Numbers	as	C	Structures
7.2.5.2	Complex	Numbers	as	Python	Objects

Python/C	API	Reference	Manual
Previous:	7.1.2	The	None	Object	Up:	7.	Concrete	Objects	Layer	Next:	7.2.1
Plain	Integer	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.2	Numeric	Objects	Up:	7.2	Numeric	Objects	Next:	7.2.2	Boolean
Objects

7.2.1	Plain	Integer	Objects
PyIntObject

This	subtype	of	PyObject	represents	a	Python	integer	object.

PyTypeObject	PyInt_Type
This	instance	of	PyTypeObject	represents	the	Python	plain	integer	type.
This	is	the	same	object	as	types.IntType.

int	PyInt_Check(PyObject	*o)
Returns	true	if	o	is	of	type	PyInt_Type	or	a	subtype	of	PyInt_Type.
Changed	in	version	2.2:	Allowed	subtypes	to	be	accepted.

int	PyInt_CheckExact(PyObject	*o)
Returns	true	if	o	is	of	type	PyInt_Type,	but	not	a	subtype	of
PyInt_Type.	New	in	version	2.2.

PyObject*	PyInt_FromString(char	*str,	char	**pend,	int	base)
Return	a	new	PyIntObject	or	PyLongObject	based	on	the	string
value	in	str,	which	is	interpreted	according	to	the	radix	in	base.	If	pend	is
non-NULL,	*pend	will	point	to	the	first	character	in	str	which	follows	the
representation	of	the	number.	If	base	is	0,	the	radix	will	be	determined
based	on	the	leading	characters	of	str:	if	str	starts	with	'0x'	or	'0X',
radix	16	will	be	used;	if	str	starts	with	'0',	radix	8	will	be	used;	otherwise
radix	10	will	be	used.	If	base	is	not	0,	it	must	be	between	2	and	36,
inclusive.	Leading	spaces	are	ignored.	If	there	are	no	digits,	ValueError
will	be	raised.	If	the	string	represents	a	number	too	large	to	be	contained
within	the	machine's	long	int	type	and	overflow	warnings	are	being
suppressed,	a	PyLongObject	will	be	returned.	If	overflow	warnings	are
not	being	suppressed,	NULL	will	be	returned	in	this	case.

PyObject*	PyInt_FromLong(long	ival)
Return	value:	New	reference.
Creates	a	new	integer	object	with	a	value	of	ival.

The	current	implementation	keeps	an	array	of	integer	objects	for	all	integers

between	-1	and	100,	when	you	create	an	int	in	that	range	you	actually	just
get	back	a	reference	to	the	existing	object.	So	it	should	be	possible	to
change	the	value	of	1.	I	suspect	the	behaviour	of	Python	in	this	case	is
undefined.	:-)

long	PyInt_AsLong(PyObject	*io)
Will	first	attempt	to	cast	the	object	to	a	PyIntObject,	if	it	is	not	already
one,	and	then	return	its	value.

long	PyInt_AS_LONG(PyObject	*io)
Returns	the	value	of	the	object	io.	No	error	checking	is	performed.

unsigned	long	PyInt_AsUnsignedLongMask(PyObject	*io)
Will	first	attempt	to	cast	the	object	to	a	PyIntObject	or
PyLongObject,	if	it	is	not	already	one,	and	then	return	its	value	as
unsigned	long.	This	function	does	not	check	for	overflow.	New	in	version
2.3.

unsigned	long	long	PyInt_AsUnsignedLongLongMask(PyObject	*io)
Will	first	attempt	to	cast	the	object	to	a	PyIntObject	or
PyLongObject,	if	it	is	not	already	one,	and	then	return	its	value	as
unsigned	long	long,	without	checking	for	overflow.	New	in	version	2.3.

long	PyInt_GetMax()
Returns	the	system's	idea	of	the	largest	integer	it	can	handle	(LONG_MAX,
as	defined	in	the	system	header	files).

Python/C	API	Reference	Manual
Previous:	7.2	Numeric	Objects	Up:	7.2	Numeric	Objects	Next:	7.2.2	Boolean
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.2.1	Plain	Integer	Objects	Up:	7.2	Numeric	Objects	Next:	7.2.3
Long	Integer	Objects

7.2.2	Boolean	Objects
Booleans	in	Python	are	implemented	as	a	subclass	of	integers.	There	are	only
two	booleans,	Py_False	and	Py_True.	As	such,	the	normal	creation	and
deletion	functions	don't	apply	to	booleans.	The	following	macros	are	available,
however.

int	PyBool_Check(PyObject	*o)
Returns	true	if	o	is	of	type	PyBool_Type.	New	in	version	2.3.

PyObject*	Py_False
The	Python	False	object.	This	object	has	no	methods.	It	needs	to	be
treated	just	like	any	other	object	with	respect	to	reference	counts.

PyObject*	Py_True
The	Python	True	object.	This	object	has	no	methods.	It	needs	to	be	treated
just	like	any	other	object	with	respect	to	reference	counts.

Py_RETURN_FALSE

Return	Py_False	from	a	function,	properly	incrementing	its	reference
count.	New	in	version	2.4.

Py_RETURN_TRUE

Return	Py_True	from	a	function,	properly	incrementing	its	reference
count.	New	in	version	2.4.

int	PyBool_FromLong(long	v)
Returns	Py_True	or	Py_False	depending	on	the	truth	value	of	v.	New
in	version	2.3.

Python/C	API	Reference	Manual
Previous:	7.2.1	Plain	Integer	Objects	Up:	7.2	Numeric	Objects	Next:	7.2.3
Long	Integer	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.2.2	Boolean	Objects	Up:	7.2	Numeric	Objects	Next:	7.2.4	Floating
Point	Objects

7.2.3	Long	Integer	Objects
PyLongObject

This	subtype	of	PyObject	represents	a	Python	long	integer	object.

PyTypeObject	PyLong_Type
This	instance	of	PyTypeObject	represents	the	Python	long	integer	type.
This	is	the	same	object	as	types.LongType.

int	PyLong_Check(PyObject	*p)
Returns	true	if	its	argument	is	a	PyLongObject	or	a	subtype	of
PyLongObject.	Changed	in	version	2.2:	Allowed	subtypes	to	be
accepted.

int	PyLong_CheckExact(PyObject	*p)
Returns	true	if	its	argument	is	a	PyLongObject,	but	not	a	subtype	of
PyLongObject.	New	in	version	2.2.

PyObject*	PyLong_FromLong(long	v)
Return	value:	New	reference.
Returns	a	new	PyLongObject	object	from	v,	or	NULL	on	failure.

PyObject*	PyLong_FromUnsignedLong(unsigned	long	v)
Return	value:	New	reference.
Returns	a	new	PyLongObject	object	from	a	C	unsigned	long,	or
NULL	on	failure.

PyObject*	PyLong_FromLongLong(long	long	v)
Return	value:	New	reference.
Returns	a	new	PyLongObject	object	from	a	C	long	long,	or	NULL
on	failure.

PyObject*	PyLong_FromUnsignedLongLong(unsigned	long	long	v)
Return	value:	New	reference.
Returns	a	new	PyLongObject	object	from	a	C	unsigned	long
long,	or	NULL	on	failure.

PyObject*	PyLong_FromDouble(double	v)
Return	value:	New	reference.
Returns	a	new	PyLongObject	object	from	the	integer	part	of	v,	or	NULL
on	failure.

PyObject*	PyLong_FromString(char	*str,	char	**pend,	int	base)
Return	value:	New	reference.
Return	a	new	PyLongObject	based	on	the	string	value	in	str,	which	is
interpreted	according	to	the	radix	in	base.	If	pend	is	non-NULL,	*pend	will
point	to	the	first	character	in	str	which	follows	the	representation	of	the
number.	If	base	is	0,	the	radix	will	be	determined	based	on	the	leading
characters	of	str:	if	str	starts	with	'0x'	or	'0X',	radix	16	will	be	used;	if
str	starts	with	'0',	radix	8	will	be	used;	otherwise	radix	10	will	be	used.	If
base	is	not	0,	it	must	be	between	2	and	36,	inclusive.	Leading	spaces	are
ignored.	If	there	are	no	digits,	ValueError	will	be	raised.

PyObject*	PyLong_FromUnicode(Py_UNICODE	*u,	int	length,	int	base)
Return	value:	New	reference.
Convert	a	sequence	of	Unicode	digits	to	a	Python	long	integer	value.	The
first	parameter,	u,	points	to	the	first	character	of	the	Unicode	string,	length
gives	the	number	of	characters,	and	base	is	the	radix	for	the	conversion.
The	radix	must	be	in	the	range	[2,	36];	if	it	is	out	of	range,	ValueError
will	be	raised.	New	in	version	1.6.

PyObject*	PyLong_FromVoidPtr(void	*p)
Return	value:	New	reference.
Create	a	Python	integer	or	long	integer	from	the	pointer	p.	The	pointer
value	can	be	retrieved	from	the	resulting	value	using
PyLong_AsVoidPtr().	New	in	version	1.5.2.

long	PyLong_AsLong(PyObject	*pylong)
Returns	a	C	long	representation	of	the	contents	of	pylong.	If	pylong	is
greater	than	LONG_MAX,	an	OverflowError	is	raised.

unsigned	long	PyLong_AsUnsignedLong(PyObject	*pylong)
Returns	a	C	unsigned	long	representation	of	the	contents	of	pylong.	If
pylong	is	greater	than	ULONG_MAX,	an	OverflowError	is	raised.

long	long	PyLong_AsLongLong(PyObject	*pylong)
Return	a	C	long	long	from	a	Python	long	integer.	If	pylong	cannot	be
represented	as	a	long	long,	an	OverflowError	will	be	raised.	New
in	version	2.2.

unsigned	long	long	PyLong_AsUnsignedLongLong(PyObject	*pylong)
Return	a	C	unsigned	long	long	from	a	Python	long	integer.	If	pylong
cannot	be	represented	as	an	unsigned	long	long,	an
OverflowError	will	be	raised	if	the	value	is	positive,	or	a	TypeError
will	be	raised	if	the	value	is	negative.	New	in	version	2.2.

unsigned	long	PyLong_AsUnsignedLongMask(PyObject	*io)
Return	a	C	unsigned	long	from	a	Python	long	integer,	without
checking	for	overflow.	New	in	version	2.3.

unsigned	long	PyLong_AsUnsignedLongLongMask(PyObject	*io)
Return	a	C	unsigned	long	long	from	a	Python	long	integer,	without
checking	for	overflow.	New	in	version	2.3.

double	PyLong_AsDouble(PyObject	*pylong)
Returns	a	C	double	representation	of	the	contents	of	pylong.	If	pylong
cannot	be	approximately	represented	as	a	double,	an	OverflowError
exception	is	raised	and	-1.0	will	be	returned.

void*	PyLong_AsVoidPtr(PyObject	*pylong)
Convert	a	Python	integer	or	long	integer	pylong	to	a	C	void	pointer.	If
pylong	cannot	be	converted,	an	OverflowError	will	be	raised.	This	is
only	assured	to	produce	a	usable	void	pointer	for	values	created	with
PyLong_FromVoidPtr().	New	in	version	1.5.2.

Python/C	API	Reference	Manual
Previous:	7.2.2	Boolean	Objects	Up:	7.2	Numeric	Objects	Next:	7.2.4	Floating
Point	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.2.3	Long	Integer	Objects	Up:	7.2	Numeric	Objects	Next:	7.2.5
Complex	Number	Objects

7.2.4	Floating	Point	Objects
PyFloatObject

This	subtype	of	PyObject	represents	a	Python	floating	point	object.

PyTypeObject	PyFloat_Type
This	instance	of	PyTypeObject	represents	the	Python	floating	point
type.	This	is	the	same	object	as	types.FloatType.

int	PyFloat_Check(PyObject	*p)
Returns	true	if	its	argument	is	a	PyFloatObject	or	a	subtype	of
PyFloatObject.	Changed	in	version	2.2:	Allowed	subtypes	to	be
accepted.

int	PyFloat_CheckExact(PyObject	*p)
Returns	true	if	its	argument	is	a	PyFloatObject,	but	not	a	subtype	of
PyFloatObject.	New	in	version	2.2.

PyObject*	PyFloat_FromString(PyObject	*str,	char	**pend)
Creates	a	PyFloatObject	object	based	on	the	string	value	in	str,	or
NULL	on	failure.	The	pend	argument	is	ignored.	It	remains	only	for
backward	compatibility.

PyObject*	PyFloat_FromDouble(double	v)
Return	value:	New	reference.
Creates	a	PyFloatObject	object	from	v,	or	NULL	on	failure.

double	PyFloat_AsDouble(PyObject	*pyfloat)
Returns	a	C	double	representation	of	the	contents	of	pyfloat.

double	PyFloat_AS_DOUBLE(PyObject	*pyfloat)
Returns	a	C	double	representation	of	the	contents	of	pyfloat,	but	without
error	checking.

Python/C	API	Reference	Manual

Previous:	7.2.3	Long	Integer	Objects	Up:	7.2	Numeric	Objects	Next:	7.2.5
Complex	Number	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.2.4	Floating	Point	Objects	Up:	7.2	Numeric	Objects	Next:	7.2.5.1
Complex	Numbers	as

7.2.5	Complex	Number	Objects
Python's	complex	number	objects	are	implemented	as	two	distinct	types	when
viewed	from	the	C	API:	one	is	the	Python	object	exposed	to	Python	programs,
and	the	other	is	a	C	structure	which	represents	the	actual	complex	number	value.
The	API	provides	functions	for	working	with	both.

Subsections

7.2.5.1	Complex	Numbers	as	C	Structures
7.2.5.2	Complex	Numbers	as	Python	Objects

Python/C	API	Reference	Manual
Previous:	7.2.4	Floating	Point	Objects	Up:	7.2	Numeric	Objects	Next:	7.2.5.1
Complex	Numbers	as

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.2.5.2	Complex	Numbers	as	Up:	7.	Concrete	Objects	Layer	Next:
7.3.1	String	Objects

7.3	Sequence	Objects
Generic	operations	on	sequence	objects	were	discussed	in	the	previous	chapter;
this	section	deals	with	the	specific	kinds	of	sequence	objects	that	are	intrinsic	to
the	Python	language.

Subsections

7.3.1	String	Objects
7.3.2	Unicode	Objects

7.3.2.1	Built-in	Codecs
7.3.2.2	Methods	and	Slot	Functions

7.3.3	Buffer	Objects
7.3.4	Tuple	Objects
7.3.5	List	Objects

Python/C	API	Reference	Manual
Previous:	7.2.5.2	Complex	Numbers	as	Up:	7.	Concrete	Objects	Layer	Next:
7.3.1	String	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.3	Sequence	Objects	Up:	7.3	Sequence	Objects	Next:	7.3.2
Unicode	Objects

7.3.1	String	Objects
These	functions	raise	TypeError	when	expecting	a	string	parameter	and	are
called	with	a	non-string	parameter.

PyStringObject

This	subtype	of	PyObject	represents	a	Python	string	object.

PyTypeObject	PyString_Type
This	instance	of	PyTypeObject	represents	the	Python	string	type;	it	is
the	same	object	as	types.TypeType	in	the	Python	layer.	.

int	PyString_Check(PyObject	*o)
Returns	true	if	the	object	o	is	a	string	object	or	an	instance	of	a	subtype	of
the	string	type.	Changed	in	version	2.2:	Allowed	subtypes	to	be	accepted.

int	PyString_CheckExact(PyObject	*o)
Returns	true	if	the	object	o	is	a	string	object,	but	not	an	instance	of	a
subtype	of	the	string	type.	New	in	version	2.2.

PyObject*	PyString_FromString(const	char	*v)
Return	value:	New	reference.
Returns	a	new	string	object	with	the	value	v	on	success,	and	NULL	on
failure.	The	parameter	v	must	not	be	NULL;	it	will	not	be	checked.

PyObject*	PyString_FromStringAndSize(const	char	*v,	int	len)
Return	value:	New	reference.
Returns	a	new	string	object	with	the	value	v	and	length	len	on	success,	and
NULL	on	failure.	If	v	is	NULL,	the	contents	of	the	string	are	uninitialized.

PyObject*	PyString_FromFormat(const	char	*format,	...)
Return	value:	New	reference.
Takes	a	C	printf()-style	format	string	and	a	variable	number	of
arguments,	calculates	the	size	of	the	resulting	Python	string	and	returns	a
string	with	the	values	formatted	into	it.	The	variable	arguments	must	be	C
types	and	must	correspond	exactly	to	the	format	characters	in	the	format

string.	The	following	format	characters	are	allowed:

Format
Characters

Type Comment

%% n/a The	literal	%	character.
%c int A	single	character,	represented	as	an	C	int.
%d int Exactly	equivalent	to	printf("%d").
%ld long Exactly	equivalent	to	printf("%ld").
%i int Exactly	equivalent	to	printf("%i").
%x int Exactly	equivalent	to	printf("%x").
%s char* A	null-terminated	C	character	array.
%p void* The	hex	representation	of	a	C	pointer.	Mostly

equivalent	to	printf("%p")	except	that	it	is
guaranteed	to	start	with	the	literal	0x	regardless	of
what	the	platform's	printf	yields.

PyObject*	PyString_FromFormatV(const	char	*format,	va_list	vargs)
Return	value:	New	reference.
Identical	to	PyString_FromFormat()	except	that	it	takes	exactly	two
arguments.

int	PyString_Size(PyObject	*string)
Returns	the	length	of	the	string	in	string	object	string.

int	PyString_GET_SIZE(PyObject	*string)
Macro	form	of	PyString_Size()	but	without	error	checking.

char*	PyString_AsString(PyObject	*string)
Returns	a	NUL-terminated	representation	of	the	contents	of	string.	The
pointer	refers	to	the	internal	buffer	of	string,	not	a	copy.	The	data	must	not
be	modified	in	any	way,	unless	the	string	was	just	created	using
PyString_FromStringAndSize(NULL,	size).	It	must	not	be
deallocated.	If	string	is	a	Unicode	object,	this	function	computes	the	default
encoding	of	string	and	operates	on	that.	If	string	is	not	a	string	object	at	all,
PyString_AsString()	returns	NULL	and	raises	TypeError.

char*	PyString_AS_STRING(PyObject	*string)
Macro	form	of	PyString_AsString()	but	without	error	checking.
Only	string	objects	are	supported;	no	Unicode	objects	should	be	passed.

int	PyString_AsStringAndSize(PyObject	*obj,	char	**buffer,	int*length)
Returns	a	NUL-terminated	representation	of	the	contents	of	the	object	obj
through	the	output	variables	buffer	and	length.

The	function	accepts	both	string	and	Unicode	objects	as	input.	For	Unicode
objects	it	returns	the	default	encoded	version	of	the	object.	If	length	is
NULL,	the	resulting	buffer	may	not	contain	NUL	characters;	if	it	does,	the
function	returns	-1	and	a	TypeError	is	raised.

The	buffer	refers	to	an	internal	string	buffer	of	obj,	not	a	copy.	The	data
must	not	be	modified	in	any	way,	unless	the	string	was	just	created	using
PyString_FromStringAndSize(NULL,	size).	It	must	not	be
deallocated.	If	string	is	a	Unicode	object,	this	function	computes	the	default
encoding	of	string	and	operates	on	that.	If	string	is	not	a	string	object	at	all,
PyString_AsString()	returns	NULL	and	raises	TypeError.

void	PyString_Concat(PyObject	**string,	PyObject	*newpart)
Creates	a	new	string	object	in	*string	containing	the	contents	of	newpart
appended	to	string;	the	caller	will	own	the	new	reference.	The	reference	to
the	old	value	of	string	will	be	stolen.	If	the	new	string	cannot	be	created,
the	old	reference	to	string	will	still	be	discarded	and	the	value	of	*string
will	be	set	to	NULL;	the	appropriate	exception	will	be	set.

void	PyString_ConcatAndDel(PyObject	**string,	PyObject	*newpart)
Creates	a	new	string	object	in	*string	containing	the	contents	of	newpart
appended	to	string.	This	version	decrements	the	reference	count	of	newpart.

int	_PyString_Resize(PyObject	**string,	int	newsize)
A	way	to	resize	a	string	object	even	though	it	is	``immutable''.	Only	use	this
to	build	up	a	brand	new	string	object;	don't	use	this	if	the	string	may	already
be	known	in	other	parts	of	the	code.	It	is	an	error	to	call	this	function	if	the
refcount	on	the	input	string	object	is	not	one.	Pass	the	address	of	an	existing
string	object	as	an	lvalue	(it	may	be	written	into),	and	the	new	size	desired.

On	success,	*string	holds	the	resized	string	object	and	0	is	returned;	the
address	in	*string	may	differ	from	its	input	value.	If	the	reallocation	fails,
the	original	string	object	at	*string	is	deallocated,	*string	is	set	to	NULL,	a
memory	exception	is	set,	and	-1	is	returned.

PyObject*	PyString_Format(PyObject	*format,	PyObject	*args)
Return	value:	New	reference.
Returns	a	new	string	object	from	format	and	args.	Analogous	to	format	%
args.	The	args	argument	must	be	a	tuple.

void	PyString_InternInPlace(PyObject	**string)
Intern	the	argument	*string	in	place.	The	argument	must	be	the	address	of	a
pointer	variable	pointing	to	a	Python	string	object.	If	there	is	an	existing
interned	string	that	is	the	same	as	*string,	it	sets	*string	to	it	(decrementing
the	reference	count	of	the	old	string	object	and	incrementing	the	reference
count	of	the	interned	string	object),	otherwise	it	leaves	*string	alone	and
interns	it	(incrementing	its	reference	count).	(Clarification:	even	though
there	is	a	lot	of	talk	about	reference	counts,	think	of	this	function	as
reference-count-neutral;	you	own	the	object	after	the	call	if	and	only	if	you
owned	it	before	the	call.)

PyObject*	PyString_InternFromString(const	char	*v)
Return	value:	New	reference.
A	combination	of	PyString_FromString()	and
PyString_InternInPlace(),	returning	either	a	new	string	object
that	has	been	interned,	or	a	new	(``owned'')	reference	to	an	earlier	interned
string	object	with	the	same	value.

PyObject*	PyString_Decode(const	char	*s,	int	size,	const	char	*encoding,const	char	*errors)
Return	value:	New	reference.
Creates	an	object	by	decoding	size	bytes	of	the	encoded	buffer	s	using	the
codec	registered	for	encoding.	encoding	and	errors	have	the	same	meaning
as	the	parameters	of	the	same	name	in	the	unicode()	built-in	function.
The	codec	to	be	used	is	looked	up	using	the	Python	codec	registry.	Returns
NULL	if	an	exception	was	raised	by	the	codec.

PyObject	*str,	const	char

PyObject*	PyString_AsDecodedObject(*encoding,	const	char	*errors)

Return	value:	New	reference.
Decodes	a	string	object	by	passing	it	to	the	codec	registered	for	encoding
and	returns	the	result	as	Python	object.	encoding	and	errors	have	the	same
meaning	as	the	parameters	of	the	same	name	in	the	string	encode()
method.	The	codec	to	be	used	is	looked	up	using	the	Python	codec	registry.
Returns	NULL	if	an	exception	was	raised	by	the	codec.

PyObject*	PyString_Encode(const	char	*s,	int	size,	const	char	*encoding,const	char	*errors)
Return	value:	New	reference.
Encodes	the	char	buffer	of	the	given	size	by	passing	it	to	the	codec
registered	for	encoding	and	returns	a	Python	object.	encoding	and	errors
have	the	same	meaning	as	the	parameters	of	the	same	name	in	the	string
encode()	method.	The	codec	to	be	used	is	looked	up	using	the	Python
codec	registry.	Returns	NULL	if	an	exception	was	raised	by	the	codec.

PyObject*	PyString_AsEncodedObject(PyObject	*str,	const	char*encoding,	const	char	*errors)
Return	value:	New	reference.
Encodes	a	string	object	using	the	codec	registered	for	encoding	and	returns
the	result	as	Python	object.	encoding	and	errors	have	the	same	meaning	as
the	parameters	of	the	same	name	in	the	string	encode()	method.	The
codec	to	be	used	is	looked	up	using	the	Python	codec	registry.	Returns
NULL	if	an	exception	was	raised	by	the	codec.

Python/C	API	Reference	Manual
Previous:	7.3	Sequence	Objects	Up:	7.3	Sequence	Objects	Next:	7.3.2
Unicode	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.3.1	String	Objects	Up:	7.3	Sequence	Objects	Next:	7.3.2.1	Built-in
Codecs

7.3.2	Unicode	Objects
These	are	the	basic	Unicode	object	types	used	for	the	Unicode	implementation	in
Python:

Py_UNICODE

This	type	represents	a	16-bit	unsigned	storage	type	which	is	used	by	Python
internally	as	basis	for	holding	Unicode	ordinals.	On	platforms	where
wchar_t	is	available	and	also	has	16-bits,	Py_UNICODE	is	a	typedef
alias	for	wchar_t	to	enhance	native	platform	compatibility.	On	all	other
platforms,	Py_UNICODE	is	a	typedef	alias	for	unsigned	short.

PyUnicodeObject

This	subtype	of	PyObject	represents	a	Python	Unicode	object.

PyTypeObject	PyUnicode_Type
This	instance	of	PyTypeObject	represents	the	Python	Unicode	type.

The	following	APIs	are	really	C	macros	and	can	be	used	to	do	fast	checks	and	to
access	internal	read-only	data	of	Unicode	objects:

int	PyUnicode_Check(PyObject	*o)
Returns	true	if	the	object	o	is	a	Unicode	object	or	an	instance	of	a	Unicode
subtype.	Changed	in	version	2.2:	Allowed	subtypes	to	be	accepted.

int	PyUnicode_CheckExact(PyObject	*o)
Returns	true	if	the	object	o	is	a	Unicode	object,	but	not	an	instance	of	a
subtype.	New	in	version	2.2.

int	PyUnicode_GET_SIZE(PyObject	*o)
Returns	the	size	of	the	object.	o	has	to	be	a	PyUnicodeObject	(not
checked).

int	PyUnicode_GET_DATA_SIZE(PyObject	*o)
Returns	the	size	of	the	object's	internal	buffer	in	bytes.	o	has	to	be	a
PyUnicodeObject	(not	checked).

Py_UNICODE*	PyUnicode_AS_UNICODE(PyObject	*o)
Returns	a	pointer	to	the	internal	Py_UNICODE	buffer	of	the	object.	o	has	to
be	a	PyUnicodeObject	(not	checked).

const	char*	PyUnicode_AS_DATA(PyObject	*o)
Returns	a	pointer	to	the	internal	buffer	of	the	object.	o	has	to	be	a
PyUnicodeObject	(not	checked).

Unicode	provides	many	different	character	properties.	The	most	often	needed
ones	are	available	through	these	macros	which	are	mapped	to	C	functions
depending	on	the	Python	configuration.

int	Py_UNICODE_ISSPACE(Py_UNICODE	ch)
Returns	1/0	depending	on	whether	ch	is	a	whitespace	character.

int	Py_UNICODE_ISLOWER(Py_UNICODE	ch)
Returns	1/0	depending	on	whether	ch	is	a	lowercase	character.

int	Py_UNICODE_ISUPPER(Py_UNICODE	ch)
Returns	1/0	depending	on	whether	ch	is	an	uppercase	character.

int	Py_UNICODE_ISTITLE(Py_UNICODE	ch)
Returns	1/0	depending	on	whether	ch	is	a	titlecase	character.

int	Py_UNICODE_ISLINEBREAK(Py_UNICODE	ch)
Returns	1/0	depending	on	whether	ch	is	a	linebreak	character.

int	Py_UNICODE_ISDECIMAL(Py_UNICODE	ch)
Returns	1/0	depending	on	whether	ch	is	a	decimal	character.

int	Py_UNICODE_ISDIGIT(Py_UNICODE	ch)
Returns	1/0	depending	on	whether	ch	is	a	digit	character.

int	Py_UNICODE_ISNUMERIC(Py_UNICODE	ch)
Returns	1/0	depending	on	whether	ch	is	a	numeric	character.

int	Py_UNICODE_ISALPHA(Py_UNICODE	ch)

Returns	1/0	depending	on	whether	ch	is	an	alphabetic	character.

int	Py_UNICODE_ISALNUM(Py_UNICODE	ch)
Returns	1/0	depending	on	whether	ch	is	an	alphanumeric	character.

These	APIs	can	be	used	for	fast	direct	character	conversions:

Py_UNICODE	Py_UNICODE_TOLOWER(Py_UNICODE	ch)
Returns	the	character	ch	converted	to	lower	case.

Py_UNICODE	Py_UNICODE_TOUPPER(Py_UNICODE	ch)
Returns	the	character	ch	converted	to	upper	case.

Py_UNICODE	Py_UNICODE_TOTITLE(Py_UNICODE	ch)
Returns	the	character	ch	converted	to	title	case.

int	Py_UNICODE_TODECIMAL(Py_UNICODE	ch)
Returns	the	character	ch	converted	to	a	decimal	positive	integer.	Returns	-1
if	this	is	not	possible.	Does	not	raise	exceptions.

int	Py_UNICODE_TODIGIT(Py_UNICODE	ch)
Returns	the	character	ch	converted	to	a	single	digit	integer.	Returns	-1	if
this	is	not	possible.	Does	not	raise	exceptions.

double	Py_UNICODE_TONUMERIC(Py_UNICODE	ch)
Returns	the	character	ch	converted	to	a	(positive)	double.	Returns	-1.0	if
this	is	not	possible.	Does	not	raise	exceptions.

To	create	Unicode	objects	and	access	their	basic	sequence	properties,	use	these
APIs:

PyObject*	PyUnicode_FromUnicode(const	Py_UNICODE	*u,	int	size)
Return	value:	New	reference.
Create	a	Unicode	Object	from	the	Py_UNICODE	buffer	u	of	the	given	size.
u	may	be	NULL	which	causes	the	contents	to	be	undefined.	It	is	the	user's
responsibility	to	fill	in	the	needed	data.	The	buffer	is	copied	into	the	new
object.	If	the	buffer	is	not	NULL,	the	return	value	might	be	a	shared	object.

Therefore,	modification	of	the	resulting	Unicode	object	is	only	allowed
when	u	is	NULL.

Py_UNICODE*	PyUnicode_AsUnicode(PyObject	*unicode)
Return	a	read-only	pointer	to	the	Unicode	object's	internal	Py_UNICODE
buffer,	NULL	if	unicode	is	not	a	Unicode	object.

int	PyUnicode_GetSize(PyObject	*unicode)
Return	the	length	of	the	Unicode	object.

PyObject*	PyUnicode_FromEncodedObject(
PyObject	*obj,	const	char
*encoding,	const	char
*errors)

Return	value:	New	reference.
Coerce	an	encoded	object	obj	to	an	Unicode	object	and	return	a	reference
with	incremented	refcount.

Coercion	is	done	in	the	following	way:

1.	 Unicode	objects	are	passed	back	as-is	with	incremented	refcount.
Note:	These	cannot	be	decoded;	passing	a	non-NULL	value	for
encoding	will	result	in	a	TypeError.

2.	 String	and	other	char	buffer	compatible	objects	are	decoded	according
to	the	given	encoding	and	using	the	error	handling	defined	by	errors.
Both	can	be	NULL	to	have	the	interface	use	the	default	values	(see	the
next	section	for	details).

3.	 All	other	objects	cause	an	exception.

The	API	returns	NULL	if	there	was	an	error.	The	caller	is	responsible	for
decref'ing	the	returned	objects.

PyObject*	PyUnicode_FromObject(PyObject	*obj)
Return	value:	New	reference.
Shortcut	for	PyUnicode_FromEncodedObject(obj,	NULL,
"strict")	which	is	used	throughout	the	interpreter	whenever	coercion	to
Unicode	is	needed.

If	the	platform	supports	wchar_t	and	provides	a	header	file	wchar.h,	Python
can	interface	directly	to	this	type	using	the	following	functions.	Support	is
optimized	if	Python's	own	Py_UNICODE	type	is	identical	to	the	system's
wchar_t.

PyObject*	PyUnicode_FromWideChar(const	wchar_t	*w,	int	size)
Return	value:	New	reference.
Create	a	Unicode	object	from	the	wchar_t	buffer	w	of	the	given	size.
Returns	NULL	on	failure.

int	PyUnicode_AsWideChar(PyUnicodeObject	*unicode,	wchar_t	*w,	intsize)
Copies	the	Unicode	object	contents	into	the	wchar_t	buffer	w.	At	most
size	wchar_t	characters	are	copied	(excluding	a	possibly	trailing	0-
termination	character).	Returns	the	number	of	wchar_t	characters	copied
or	-1	in	case	of	an	error.	Note	that	the	resulting	wchar_t	string	may	or
may	not	be	0-terminated.	It	is	the	responsibility	of	the	caller	to	make	sure
that	the	wchar_t	string	is	0-terminated	in	case	this	is	required	by	the
application.

Subsections

7.3.2.1	Built-in	Codecs
7.3.2.2	Methods	and	Slot	Functions

Python/C	API	Reference	Manual
Previous:	7.3.1	String	Objects	Up:	7.3	Sequence	Objects	Next:	7.3.2.1	Built-in
Codecs

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.3.2.2	Methods	and	Slot	Up:	7.3	Sequence	Objects	Next:	7.3.4
Tuple	Objects

7.3.3	Buffer	Objects
Python	objects	implemented	in	C	can	export	a	group	of	functions	called	the
``buffer	interface.''	These	functions	can	be	used	by	an	object	to	expose	its	data	in
a	raw,	byte-oriented	format.	Clients	of	the	object	can	use	the	buffer	interface	to
access	the	object	data	directly,	without	needing	to	copy	it	first.

Two	examples	of	objects	that	support	the	buffer	interface	are	strings	and	arrays.
The	string	object	exposes	the	character	contents	in	the	buffer	interface's	byte-
oriented	form.	An	array	can	also	expose	its	contents,	but	it	should	be	noted	that
array	elements	may	be	multi-byte	values.

An	example	user	of	the	buffer	interface	is	the	file	object's	write()	method.
Any	object	that	can	export	a	series	of	bytes	through	the	buffer	interface	can	be
written	to	a	file.	There	are	a	number	of	format	codes	to
PyArg_ParseTuple()	that	operate	against	an	object's	buffer	interface,
returning	data	from	the	target	object.

More	information	on	the	buffer	interface	is	provided	in	the	section	``Buffer
Object	Structures''	(section	10.7),	under	the	description	for	PyBufferProcs.

A	``buffer	object''	is	defined	in	the	bufferobject.h	header	(included	by
Python.h).	These	objects	look	very	similar	to	string	objects	at	the	Python
programming	level:	they	support	slicing,	indexing,	concatenation,	and	some
other	standard	string	operations.	However,	their	data	can	come	from	one	of	two
sources:	from	a	block	of	memory,	or	from	another	object	which	exports	the
buffer	interface.

Buffer	objects	are	useful	as	a	way	to	expose	the	data	from	another	object's	buffer
interface	to	the	Python	programmer.	They	can	also	be	used	as	a	zero-copy	slicing
mechanism.	Using	their	ability	to	reference	a	block	of	memory,	it	is	possible	to
expose	any	data	to	the	Python	programmer	quite	easily.	The	memory	could	be	a
large,	constant	array	in	a	C	extension,	it	could	be	a	raw	block	of	memory	for
manipulation	before	passing	to	an	operating	system	library,	or	it	could	be	used	to
pass	around	structured	data	in	its	native,	in-memory	format.

PyBufferObject

This	subtype	of	PyObject	represents	a	buffer	object.

PyTypeObject	PyBuffer_Type
The	instance	of	PyTypeObject	which	represents	the	Python	buffer	type;
it	is	the	same	object	as	types.BufferType	in	the	Python	layer..

int	Py_END_OF_BUFFER
This	constant	may	be	passed	as	the	size	parameter	to
PyBuffer_FromObject()	or
PyBuffer_FromReadWriteObject().	It	indicates	that	the	new
PyBufferObject	should	refer	to	base	object	from	the	specified	offset	to
the	end	of	its	exported	buffer.	Using	this	enables	the	caller	to	avoid
querying	the	base	object	for	its	length.

int	PyBuffer_Check(PyObject	*p)
Return	true	if	the	argument	has	type	PyBuffer_Type.

PyObject*	PyBuffer_FromObject(PyObject	*base,	int	offset,	int	size)
Return	value:	New	reference.
Return	a	new	read-only	buffer	object.	This	raises	TypeError	if	base
doesn't	support	the	read-only	buffer	protocol	or	doesn't	provide	exactly	one
buffer	segment,	or	it	raises	ValueError	if	offset	is	less	than	zero.	The
buffer	will	hold	a	reference	to	the	base	object,	and	the	buffer's	contents	will
refer	to	the	base	object's	buffer	interface,	starting	as	position	offset	and
extending	for	size	bytes.	If	size	is	Py_END_OF_BUFFER,	then	the	new
buffer's	contents	extend	to	the	length	of	the	base	object's	exported	buffer
data.

PyObject*	PyBuffer_FromReadWriteObject(PyObject	*base,	intoffset,	int	size)
Return	value:	New	reference.
Return	a	new	writable	buffer	object.	Parameters	and	exceptions	are	similar
to	those	for	PyBuffer_FromObject().	If	the	base	object	does	not
export	the	writeable	buffer	protocol,	then	TypeError	is	raised.

PyObject*	PyBuffer_FromMemory(void	*ptr,	int	size)
Return	value:	New	reference.
Return	a	new	read-only	buffer	object	that	reads	from	a	specified	location	in
memory,	with	a	specified	size.	The	caller	is	responsible	for	ensuring	that	the
memory	buffer,	passed	in	as	ptr,	is	not	deallocated	while	the	returned	buffer

object	exists.	Raises	ValueError	if	size	is	less	than	zero.	Note	that
Py_END_OF_BUFFER	may	not	be	passed	for	the	size	parameter;
ValueError	will	be	raised	in	that	case.

PyObject*	PyBuffer_FromReadWriteMemory(void	*ptr,	int	size)
Return	value:	New	reference.
Similar	to	PyBuffer_FromMemory(),	but	the	returned	buffer	is
writable.

PyObject*	PyBuffer_New(int	size)
Return	value:	New	reference.
Returns	a	new	writable	buffer	object	that	maintains	its	own	memory	buffer
of	size	bytes.	ValueError	is	returned	if	size	is	not	zero	or	positive.	Note
that	the	memory	buffer	(as	returned	by	PyObject_AsWriteBuffer())
is	not	specifically	aligned.

Python/C	API	Reference	Manual
Previous:	7.3.2.2	Methods	and	Slot	Up:	7.3	Sequence	Objects	Next:	7.3.4
Tuple	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.3.3	Buffer	Objects	Up:	7.3	Sequence	Objects	Next:	7.3.5	List
Objects

7.3.4	Tuple	Objects
PyTupleObject

This	subtype	of	PyObject	represents	a	Python	tuple	object.

PyTypeObject	PyTuple_Type
This	instance	of	PyTypeObject	represents	the	Python	tuple	type;	it	is	the
same	object	as	types.TupleType	in	the	Python	layer..

int	PyTuple_Check(PyObject	*p)
Return	true	if	p	is	a	tuple	object	or	an	instance	of	a	subtype	of	the	tuple
type.	Changed	in	version	2.2:	Allowed	subtypes	to	be	accepted.

int	PyTuple_CheckExact(PyObject	*p)
Return	true	if	p	is	a	tuple	object,	but	not	an	instance	of	a	subtype	of	the
tuple	type.	New	in	version	2.2.

PyObject*	PyTuple_New(int	len)
Return	value:	New	reference.
Return	a	new	tuple	object	of	size	len,	or	NULL	on	failure.

PyObject*	PyTuple_Pack(int	n,	...)
Return	a	new	tuple	object	of	size	n,	or	NULL	on	failure.	The	tuple	values
are	initialized	to	the	subsequent	n	C	arguments	pointing	to	Python	objects.
"PyTuple_Pack(2,	a,	b)"	is	equivalent	to	"Py_BuildValue("
(OO)",	a,	b)".	New	in	version	2.4.

int	PyTuple_Size(PyObject	*p)
Takes	a	pointer	to	a	tuple	object,	and	returns	the	size	of	that	tuple.

int	PyTuple_GET_SIZE(PyObject	*p)
Return	the	size	of	the	tuple	p,	which	must	be	non-NULL	and	point	to	a
tuple;	no	error	checking	is	performed.

PyObject*	PyTuple_GetItem(PyObject	*p,	int	pos)
Return	value:	Borrowed	reference.

Returns	the	object	at	position	pos	in	the	tuple	pointed	to	by	p.	If	pos	is	out
of	bounds,	returns	NULL	and	sets	an	IndexError	exception.

PyObject*	PyTuple_GET_ITEM(PyObject	*p,	int	pos)
Return	value:	Borrowed	reference.
Like	PyTuple_GetItem(),	but	does	no	checking	of	its	arguments.

PyObject*	PyTuple_GetSlice(PyObject	*p,	int	low,	int	high)
Return	value:	New	reference.
Takes	a	slice	of	the	tuple	pointed	to	by	p	from	low	to	high	and	returns	it	as	a
new	tuple.

int	PyTuple_SetItem(PyObject	*p,	int	pos,	PyObject	*o)
Inserts	a	reference	to	object	o	at	position	pos	of	the	tuple	pointed	to	by	p.	It
returns	0	on	success.	Note:	This	function	``steals''	a	reference	to	o.

void	PyTuple_SET_ITEM(PyObject	*p,	int	pos,	PyObject	*o)
Like	PyTuple_SetItem(),	but	does	no	error	checking,	and	should	only
be	used	to	fill	in	brand	new	tuples.	Note:	This	function	``steals''	a	reference
to	o.

int	_PyTuple_Resize(PyObject	**p,	int	newsize)
Can	be	used	to	resize	a	tuple.	newsize	will	be	the	new	length	of	the	tuple.
Because	tuples	are	supposed	to	be	immutable,	this	should	only	be	used	if
there	is	only	one	reference	to	the	object.	Do	not	use	this	if	the	tuple	may
already	be	known	to	some	other	part	of	the	code.	The	tuple	will	always
grow	or	shrink	at	the	end.	Think	of	this	as	destroying	the	old	tuple	and
creating	a	new	one,	only	more	efficiently.	Returns	0	on	success.	Client	code
should	never	assume	that	the	resulting	value	of	*p	will	be	the	same	as
before	calling	this	function.	If	the	object	referenced	by	*p	is	replaced,	the
original	*p	is	destroyed.	On	failure,	returns	-1	and	sets	*p	to	NULL,	and
raises	MemoryError	or	SystemError.	Changed	in	version	2.2:
Removed	unused	third	parameter,	last_is_sticky.

Python/C	API	Reference	Manual
Previous:	7.3.3	Buffer	Objects	Up:	7.3	Sequence	Objects	Next:	7.3.5	List

Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.3.4	Tuple	Objects	Up:	7.3	Sequence	Objects	Next:	7.4	Mapping
Objects

7.3.5	List	Objects
PyListObject

This	subtype	of	PyObject	represents	a	Python	list	object.

PyTypeObject	PyList_Type
This	instance	of	PyTypeObject	represents	the	Python	list	type.	This	is
the	same	object	as	types.ListType.

int	PyList_Check(PyObject	*p)
Returns	true	if	p	is	a	list	object	or	an	instance	of	a	subtype	of	the	list	type.
Changed	in	version	2.2:	Allowed	subtypes	to	be	accepted.

int	PyList_CheckExact(PyObject	*p)
Return	true	if	p	is	a	list	object,	but	not	an	instance	of	a	subtype	of	the	list
type.	New	in	version	2.2.

PyObject*	PyList_New(int	len)
Return	value:	New	reference.
Returns	a	new	list	of	length	len	on	success,	or	NULL	on	failure.

int	PyList_Size(PyObject	*list)
Returns	the	length	of	the	list	object	in	list;	this	is	equivalent	to	"len(list)"
on	a	list	object.

int	PyList_GET_SIZE(PyObject	*list)
Macro	form	of	PyList_Size()	without	error	checking.

PyObject*	PyList_GetItem(PyObject	*list,	int	index)
Return	value:	Borrowed	reference.
Returns	the	object	at	position	pos	in	the	list	pointed	to	by	p.	If	pos	is	out	of
bounds,	returns	NULL	and	sets	an	IndexError	exception.

PyObject*	PyList_GET_ITEM(PyObject	*list,	int	i)
Return	value:	Borrowed	reference.
Macro	form	of	PyList_GetItem()	without	error	checking.

int	PyList_SetItem(PyObject	*list,	int	index,	PyObject	*item)
Sets	the	item	at	index	index	in	list	to	item.	Returns	0	on	success	or	-1	on
failure.	Note:	This	function	``steals''	a	reference	to	item	and	discards	a
reference	to	an	item	already	in	the	list	at	the	affected	position.

void	PyList_SET_ITEM(PyObject	*list,	int	i,	PyObject	*o)
Macro	form	of	PyList_SetItem()	without	error	checking.	This	is
normally	only	used	to	fill	in	new	lists	where	there	is	no	previous	content.
Note:	This	function	``steals''	a	reference	to	item,	and,	unlike
PyList_SetItem(),	does	not	discard	a	reference	to	any	item	that	it
being	replaced;	any	reference	in	list	at	position	i	will	be	leaked.

int	PyList_Insert(PyObject	*list,	int	index,	PyObject	*item)
Inserts	the	item	item	into	list	list	in	front	of	index	index.	Returns	0	if
successful;	returns	-1	and	raises	an	exception	if	unsuccessful.	Analogous	to
list.insert(index,	item).

int	PyList_Append(PyObject	*list,	PyObject	*item)
Appends	the	object	item	at	the	end	of	list	list.	Returns	0	if	successful;
returns	-1	and	sets	an	exception	if	unsuccessful.	Analogous	to
list.append(item).

PyObject*	PyList_GetSlice(PyObject	*list,	int	low,	int	high)
Return	value:	New	reference.
Returns	a	list	of	the	objects	in	list	containing	the	objects	between	low	and
high.	Returns	NULL	and	sets	an	exception	if	unsuccessful.	Analogous	to
list[low:high].

int	PyList_SetSlice(PyObject	*list,	int	low,	int	high,	PyObject	*itemlist)
Sets	the	slice	of	list	between	low	and	high	to	the	contents	of	itemlist.
Analogous	to	list[low:high]	=	itemlist.	The	itemlist	may	be	NULL,
indicating	the	assignment	of	an	empty	list	(slice	deletion).	Returns	0	on
success,	-1	on	failure.

int	PyList_Sort(PyObject	*list)
Sorts	the	items	of	list	in	place.	Returns	0	on	success,	-1	on	failure.	This	is
equivalent	to	"list.sort()".

int	PyList_Reverse(PyObject	*list)
Reverses	the	items	of	list	in	place.	Returns	0	on	success,	-1	on	failure.	This
is	the	equivalent	of	"list.reverse()".

PyObject*	PyList_AsTuple(PyObject	*list)
Return	value:	New	reference.
Returns	a	new	tuple	object	containing	the	contents	of	list;	equivalent	to
"tuple(list)".

Python/C	API	Reference	Manual
Previous:	7.3.4	Tuple	Objects	Up:	7.3	Sequence	Objects	Next:	7.4	Mapping
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.3.5	List	Objects	Up:	7.	Concrete	Objects	Layer	Next:	7.4.1
Dictionary	Objects

7.4	Mapping	Objects

Subsections

7.4.1	Dictionary	Objects

Python/C	API	Reference	Manual
Previous:	7.3.5	List	Objects	Up:	7.	Concrete	Objects	Layer	Next:	7.4.1
Dictionary	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.4	Mapping	Objects	Up:	7.4	Mapping	Objects	Next:	7.5	Other
Objects

7.4.1	Dictionary	Objects
PyDictObject

This	subtype	of	PyObject	represents	a	Python	dictionary	object.

PyTypeObject	PyDict_Type
This	instance	of	PyTypeObject	represents	the	Python	dictionary	type.
This	is	exposed	to	Python	programs	as	types.DictType	and
types.DictionaryType.

int	PyDict_Check(PyObject	*p)
Returns	true	if	p	is	a	dict	object	or	an	instance	of	a	subtype	of	the	dict	type.
Changed	in	version	2.2:	Allowed	subtypes	to	be	accepted.

int	PyDict_CheckExact(PyObject	*p)
Return	true	if	p	is	a	dict	object,	but	not	an	instance	of	a	subtype	of	the	dict
type.	New	in	version	2.4.

PyObject*	PyDict_New()
Return	value:	New	reference.
Returns	a	new	empty	dictionary,	or	NULL	on	failure.

PyObject*	PyDictProxy_New(PyObject	*dict)
Return	value:	New	reference.
Return	a	proxy	object	for	a	mapping	which	enforces	read-only	behavior.
This	is	normally	used	to	create	a	proxy	to	prevent	modification	of	the
dictionary	for	non-dynamic	class	types.	New	in	version	2.2.

void	PyDict_Clear(PyObject	*p)
Empties	an	existing	dictionary	of	all	key-value	pairs.

int	PyDict_Contains(PyObject	*p,	PyObject	*key)
Determine	if	dictionary	p	contains	key.	If	an	item	in	p	is	matches	key,	return
1,	otherwise	return	0.	On	error,	return	-1.	This	is	equivalent	to	the	Python
expression	"key	in	p".	New	in	version	2.4.

PyObject*	PyDict_Copy(PyObject	*p)
Return	value:	New	reference.
Returns	a	new	dictionary	that	contains	the	same	key-value	pairs	as	p.	New
in	version	1.6.

int	PyDict_SetItem(PyObject	*p,	PyObject	*key,	PyObject	*val)
Inserts	value	into	the	dictionary	p	with	a	key	of	key.	key	must	be	hashable;
if	it	isn't,	TypeError	will	be	raised.	Returns	0	on	success	or	-1	on
failure.

int	PyDict_SetItemString(PyObject	*p,	char	*key,	PyObject	*val)
Inserts	value	into	the	dictionary	p	using	key	as	a	key.	key	should	be	a
char*.	The	key	object	is	created	using	PyString_FromString(key).
Returns	0	on	success	or	-1	on	failure.

int	PyDict_DelItem(PyObject	*p,	PyObject	*key)
Removes	the	entry	in	dictionary	p	with	key	key.	key	must	be	hashable;	if	it
isn't,	TypeError	is	raised.	Returns	0	on	success	or	-1	on	failure.

int	PyDict_DelItemString(PyObject	*p,	char	*key)
Removes	the	entry	in	dictionary	p	which	has	a	key	specified	by	the	string
key.	Returns	0	on	success	or	-1	on	failure.

PyObject*	PyDict_GetItem(PyObject	*p,	PyObject	*key)
Return	value:	Borrowed	reference.
Returns	the	object	from	dictionary	p	which	has	a	key	key.	Returns	NULL	if
the	key	key	is	not	present,	but	without	setting	an	exception.

PyObject*	PyDict_GetItemString(PyObject	*p,	char	*key)
Return	value:	Borrowed	reference.
This	is	the	same	as	PyDict_GetItem(),	but	key	is	specified	as	a
char*,	rather	than	a	PyObject*.

PyObject*	PyDict_Items(PyObject	*p)
Return	value:	New	reference.
Returns	a	PyListObject	containing	all	the	items	from	the	dictionary,	as
in	the	dictionary	method	items()	(see	the	Python	Library	Reference).

PyObject*	PyDict_Keys(PyObject	*p)
Return	value:	New	reference.
Returns	a	PyListObject	containing	all	the	keys	from	the	dictionary,	as
in	the	dictionary	method	keys()	(see	the	Python	Library	Reference).

PyObject*	PyDict_Values(PyObject	*p)
Return	value:	New	reference.
Returns	a	PyListObject	containing	all	the	values	from	the	dictionary	p,
as	in	the	dictionary	method	values()	(see	the	Python	Library	Reference).

int	PyDict_Size(PyObject	*p)
Returns	the	number	of	items	in	the	dictionary.	This	is	equivalent	to
"len(p)"	on	a	dictionary.

int	PyDict_Next(PyObject	*p,	int	*ppos,	PyObject	**pkey,	PyObject**pvalue)
Iterate	over	all	key-value	pairs	in	the	dictionary	p.	The	int	referred	to	by
ppos	must	be	initialized	to	0	prior	to	the	first	call	to	this	function	to	start	the
iteration;	the	function	returns	true	for	each	pair	in	the	dictionary,	and	false
once	all	pairs	have	been	reported.	The	parameters	pkey	and	pvalue	should
either	point	to	PyObject*	variables	that	will	be	filled	in	with	each	key
and	value,	respectively,	or	may	be	NULL.	Any	references	returned	through
them	are	borrowed.	ppos	should	not	be	altered	during	iteration.	Its	value
represents	offsets	within	the	internal	dictionary	structure,	and	since	the
structure	is	sparse,	the	offsets	are	not	consecutive.

For	example:

PyObject	*key,	*value;

int	pos	=	0;

while	(PyDict_Next(self->dict,	&pos,	&key,	&value))	{

				/*	do	something	interesting	with	the	values...	*/

				...

}

The	dictionary	p	should	not	be	mutated	during	iteration.	It	is	safe	(since
Python	2.1)	to	modify	the	values	of	the	keys	as	you	iterate	over	the
dictionary,	but	only	so	long	as	the	set	of	keys	does	not	change.	For
example:

PyObject	*key,	*value;

int	pos	=	0;

while	(PyDict_Next(self->dict,	&pos,	&key,	&value))	{

				int	i	=	PyInt_AS_LONG(value)	+	1;

				PyObject	*o	=	PyInt_FromLong(i);

				if	(o	==	NULL)

								return	-1;

				if	(PyDict_SetItem(self->dict,	key,	o)	<	0)	{

								Py_DECREF(o);

								return	-1;

				}

				Py_DECREF(o);

}

int	PyDict_Merge(PyObject	*a,	PyObject	*b,	int	override)
Iterate	over	mapping	object	b	adding	key-value	pairs	to	dictionary	a.	b	may
be	a	dictionary,	or	any	object	supporting	PyMapping_Keys()	and
PyObject_GetItem().	If	override	is	true,	existing	pairs	in	a	will	be
replaced	if	a	matching	key	is	found	in	b,	otherwise	pairs	will	only	be	added
if	there	is	not	a	matching	key	in	a.	Return	0	on	success	or	-1	if	an
exception	was	raised.	New	in	version	2.2.

int	PyDict_Update(PyObject	*a,	PyObject	*b)
This	is	the	same	as	PyDict_Merge(a,	b,	1)	in	C,	or	a.update(b)
in	Python.	Return	0	on	success	or	-1	if	an	exception	was	raised.	New	in
version	2.2.

int	PyDict_MergeFromSeq2(PyObject	*a,	PyObject	*seq2,	int	override)
Update	or	merge	into	dictionary	a,	from	the	key-value	pairs	in	seq2.	seq2
must	be	an	iterable	object	producing	iterable	objects	of	length	2,	viewed	as
key-value	pairs.	In	case	of	duplicate	keys,	the	last	wins	if	override	is	true,
else	the	first	wins.	Return	0	on	success	or	-1	if	an	exception	was	raised.
Equivalent	Python	(except	for	the	return	value):

def	PyDict_MergeFromSeq2(a,	seq2,	override):

				for	key,	value	in	seq2:

								if	override	or	key	not	in	a:

												a[key]	=	value

New	in	version	2.2.

Python/C	API	Reference	Manual
Previous:	7.4	Mapping	Objects	Up:	7.4	Mapping	Objects	Next:	7.5	Other
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.4.1	Dictionary	Objects	Up:	7.	Concrete	Objects	Layer	Next:	7.5.1
File	Objects

7.5	Other	Objects

Subsections

7.5.1	File	Objects
7.5.2	Instance	Objects
7.5.3	Method	Objects
7.5.4	Module	Objects
7.5.5	Iterator	Objects
7.5.6	Descriptor	Objects
7.5.7	Slice	Objects
7.5.8	Weak	Reference	Objects
7.5.9	CObjects
7.5.10	Cell	Objects
7.5.11	Generator	Objects
7.5.12	DateTime	Objects

Python/C	API	Reference	Manual
Previous:	7.4.1	Dictionary	Objects	Up:	7.	Concrete	Objects	Layer	Next:	7.5.1
File	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5	Other	Objects	Up:	7.5	Other	Objects	Next:	7.5.2	Instance
Objects

7.5.1	File	Objects
Python's	built-in	file	objects	are	implemented	entirely	on	the	FILE*	support
from	the	C	standard	library.	This	is	an	implementation	detail	and	may	change	in
future	releases	of	Python.

PyFileObject

This	subtype	of	PyObject	represents	a	Python	file	object.

PyTypeObject	PyFile_Type
This	instance	of	PyTypeObject	represents	the	Python	file	type.	This	is
exposed	to	Python	programs	as	types.FileType.

int	PyFile_Check(PyObject	*p)
Returns	true	if	its	argument	is	a	PyFileObject	or	a	subtype	of
PyFileObject.	Changed	in	version	2.2:	Allowed	subtypes	to	be
accepted.

int	PyFile_CheckExact(PyObject	*p)
Returns	true	if	its	argument	is	a	PyFileObject,	but	not	a	subtype	of
PyFileObject.	New	in	version	2.2.

PyObject*	PyFile_FromString(char	*filename,	char	*mode)
Return	value:	New	reference.
On	success,	returns	a	new	file	object	that	is	opened	on	the	file	given	by
filename,	with	a	file	mode	given	by	mode,	where	mode	has	the	same
semantics	as	the	standard	C	routine	fopen().	On	failure,	returns	NULL.

PyObject*	PyFile_FromFile(FILE	*fp,	char	*name,	char	*mode,	int(*close)(FILE*))
Return	value:	New	reference.
Creates	a	new	PyFileObject	from	the	already-open	standard	C	file
pointer,	fp.	The	function	close	will	be	called	when	the	file	should	be	closed.
Returns	NULL	on	failure.

FILE*	PyFile_AsFile(PyFileObject	*p)

Returns	the	file	object	associated	with	p	as	a	FILE*.

PyObject*	PyFile_GetLine(PyObject	*p,	int	n)
Return	value:	New	reference.
Equivalent	to	p.readline([n]),	this	function	reads	one	line	from	the
object	p.	p	may	be	a	file	object	or	any	object	with	a	readline()	method.
If	n	is	0,	exactly	one	line	is	read,	regardless	of	the	length	of	the	line.	If	n	is
greater	than	0,	no	more	than	n	bytes	will	be	read	from	the	file;	a	partial	line
can	be	returned.	In	both	cases,	an	empty	string	is	returned	if	the	end	of	the
file	is	reached	immediately.	If	n	is	less	than	0,	however,	one	line	is	read
regardless	of	length,	but	EOFError	is	raised	if	the	end	of	the	file	is
reached	immediately.

PyObject*	PyFile_Name(PyObject	*p)
Return	value:	Borrowed	reference.
Returns	the	name	of	the	file	specified	by	p	as	a	string	object.

void	PyFile_SetBufSize(PyFileObject	*p,	int	n)
Available	on	systems	with	setvbuf()	only.	This	should	only	be	called
immediately	after	file	object	creation.

int	PyFile_Encoding(PyFileObject	*p,	char	*enc)
Set	the	file's	encoding	for	Unicode	output	to	enc.	Return	1	on	success	and	0
on	failure.	New	in	version	2.3.

int	PyFile_SoftSpace(PyObject	*p,	int	newflag)
This	function	exists	for	internal	use	by	the	interpreter.	Sets	the
softspace	attribute	of	p	to	newflag	and	returns	the	previous	value.	p
does	not	have	to	be	a	file	object	for	this	function	to	work	properly;	any
object	is	supported	(thought	its	only	interesting	if	the	softspace	attribute
can	be	set).	This	function	clears	any	errors,	and	will	return	0	as	the	previous
value	if	the	attribute	either	does	not	exist	or	if	there	were	errors	in	retrieving
it.	There	is	no	way	to	detect	errors	from	this	function,	but	doing	so	should
not	be	needed.

int	PyFile_WriteObject(PyObject	*obj,	PyFileObject	*p,	int	flags)
Writes	object	obj	to	file	object	p.	The	only	supported	flag	for	flags	is

Py_PRINT_RAW;	if	given,	the	str()	of	the	object	is	written	instead	of
the	repr().	Returns	0	on	success	or	-1	on	failure;	the	appropriate
exception	will	be	set.

int	PyFile_WriteString(const	char	*s,	PyFileObject	*p)
Writes	string	s	to	file	object	p.	Returns	0	on	success	or	-1	on	failure;	the
appropriate	exception	will	be	set.

Python/C	API	Reference	Manual
Previous:	7.5	Other	Objects	Up:	7.5	Other	Objects	Next:	7.5.2	Instance
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.1	File	Objects	Up:	7.5	Other	Objects	Next:	7.5.3	Method	Objects

7.5.2	Instance	Objects
There	are	very	few	functions	specific	to	instance	objects.

PyTypeObject	PyInstance_Type
Type	object	for	class	instances.

int	PyInstance_Check(PyObject	*obj)
Returns	true	if	obj	is	an	instance.

PyObject*	PyInstance_New(PyObject	*class,	PyObject	*arg,	PyObject*kw)
Return	value:	New	reference.
Create	a	new	instance	of	a	specific	class.	The	parameters	arg	and	kw	are
used	as	the	positional	and	keyword	parameters	to	the	object's	constructor.

PyObject*	PyInstance_NewRaw(PyObject	*class,	PyObject	*dict)
Return	value:	New	reference.
Create	a	new	instance	of	a	specific	class	without	calling	it's	constructor.
class	is	the	class	of	new	object.	The	dict	parameter	will	be	used	as	the
object's	__dict__;	if	NULL,	a	new	dictionary	will	be	created	for	the
instance.

Python/C	API	Reference	Manual
Previous:	7.5.1	File	Objects	Up:	7.5	Other	Objects	Next:	7.5.3	Method	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.2	Instance	Objects	Up:	7.5	Other	Objects	Next:	7.5.4	Module
Objects

7.5.3	Method	Objects
There	are	some	useful	functions	that	are	useful	for	working	with	method	objects.

PyTypeObject	PyMethod_Type
This	instance	of	PyTypeObject	represents	the	Python	method	type.	This
is	exposed	to	Python	programs	as	types.MethodType.

int	PyMethod_Check(PyObject	*o)
Return	true	if	o	is	a	method	object	(has	type	PyMethod_Type).	The
parameter	must	not	be	NULL.

PyObject*	PyMethod_New(PyObject	*func.	PyObject	*self,	PyObject	*class)
Return	value:	New	reference.
Return	a	new	method	object,	with	func	being	any	callable	object;	this	is	the
function	that	will	be	called	when	the	method	is	called.	If	this	method	should
be	bound	to	an	instance,	self	should	be	the	instance	and	class	should	be	the
class	of	self,	otherwise	self	should	be	NULL	and	class	should	be	the	class
which	provides	the	unbound	method..

PyObject*	PyMethod_Class(PyObject	*meth)
Return	value:	Borrowed	reference.
Return	the	class	object	from	which	the	method	meth	was	created;	if	this	was
created	from	an	instance,	it	will	be	the	class	of	the	instance.

PyObject*	PyMethod_GET_CLASS(PyObject	*meth)
Return	value:	Borrowed	reference.
Macro	version	of	PyMethod_Class()	which	avoids	error	checking.

PyObject*	PyMethod_Function(PyObject	*meth)
Return	value:	Borrowed	reference.
Return	the	function	object	associated	with	the	method	meth.

PyObject*	PyMethod_GET_FUNCTION(PyObject	*meth)
Return	value:	Borrowed	reference.
Macro	version	of	PyMethod_Function()	which	avoids	error	checking.

PyObject*	PyMethod_Self(PyObject	*meth)
Return	value:	Borrowed	reference.
Return	the	instance	associated	with	the	method	meth	if	it	is	bound,
otherwise	return	NULL.

PyObject*	PyMethod_GET_SELF(PyObject	*meth)
Return	value:	Borrowed	reference.
Macro	version	of	PyMethod_Self()	which	avoids	error	checking.

Python/C	API	Reference	Manual
Previous:	7.5.2	Instance	Objects	Up:	7.5	Other	Objects	Next:	7.5.4	Module
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.3	Method	Objects	Up:	7.5	Other	Objects	Next:	7.5.5	Iterator
Objects

7.5.4	Module	Objects
There	are	only	a	few	functions	special	to	module	objects.

PyTypeObject	PyModule_Type
This	instance	of	PyTypeObject	represents	the	Python	module	type.	This
is	exposed	to	Python	programs	as	types.ModuleType.

int	PyModule_Check(PyObject	*p)
Returns	true	if	p	is	a	module	object,	or	a	subtype	of	a	module	object.
Changed	in	version	2.2:	Allowed	subtypes	to	be	accepted.

int	PyModule_CheckExact(PyObject	*p)
Returns	true	if	p	is	a	module	object,	but	not	a	subtype	of
PyModule_Type.	New	in	version	2.2.

PyObject*	PyModule_New(char	*name)
Return	value:	New	reference.
Return	a	new	module	object	with	the	__name__	attribute	set	to	name.
Only	the	module's	__doc__	and	__name__	attributes	are	filled	in;	the
caller	is	responsible	for	providing	a	__file__	attribute.

PyObject*	PyModule_GetDict(PyObject	*module)
Return	value:	Borrowed	reference.
Return	the	dictionary	object	that	implements	module's	namespace;	this
object	is	the	same	as	the	__dict__	attribute	of	the	module	object.	This
function	never	fails.	It	is	recommended	extensions	use	other	PyModule_*
()	and	PyObject_*()	functions	rather	than	directly	manipulate	a
module's	__dict__.

char*	PyModule_GetName(PyObject	*module)
Return	module's	__name__	value.	If	the	module	does	not	provide	one,	or
if	it	is	not	a	string,	SystemError	is	raised	and	NULL	is	returned.

char*	PyModule_GetFilename(PyObject	*module)
Return	the	name	of	the	file	from	which	module	was	loaded	using	module's

__file__	attribute.	If	this	is	not	defined,	or	if	it	is	not	a	string,	raise
SystemError	and	return	NULL.

int	PyModule_AddObject(PyObject	*module,	char	*name,	PyObject*value)
Add	an	object	to	module	as	name.	This	is	a	convenience	function	which	can
be	used	from	the	module's	initialization	function.	This	steals	a	reference	to
value.	Returns	-1	on	error,	0	on	success.	New	in	version	2.0.

int	PyModule_AddIntConstant(PyObject	*module,	char	*name,	longvalue)
Add	an	integer	constant	to	module	as	name.	This	convenience	function	can
be	used	from	the	module's	initialization	function.	Returns	-1	on	error,	0	on
success.	New	in	version	2.0.

int	PyModule_AddStringConstant(PyObject	*module,	char	*name,char	*value)
Add	a	string	constant	to	module	as	name.	This	convenience	function	can	be
used	from	the	module's	initialization	function.	The	string	value	must	be
null-terminated.	Returns	-1	on	error,	0	on	success.	New	in	version	2.0.

Python/C	API	Reference	Manual
Previous:	7.5.3	Method	Objects	Up:	7.5	Other	Objects	Next:	7.5.5	Iterator
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.4	Module	Objects	Up:	7.5	Other	Objects	Next:	7.5.6	Descriptor
Objects

7.5.5	Iterator	Objects
Python	provides	two	general-purpose	iterator	objects.	The	first,	a	sequence
iterator,	works	with	an	arbitrary	sequence	supporting	the	__getitem__()
method.	The	second	works	with	a	callable	object	and	a	sentinel	value,	calling	the
callable	for	each	item	in	the	sequence,	and	ending	the	iteration	when	the	sentinel
value	is	returned.

PyTypeObject	PySeqIter_Type
Type	object	for	iterator	objects	returned	by	PySeqIter_New()	and	the
one-argument	form	of	the	iter()	built-in	function	for	built-in	sequence
types.	New	in	version	2.2.

int	PySeqIter_Check(op)
Return	true	if	the	type	of	op	is	PySeqIter_Type.	New	in	version	2.2.

PyObject*	PySeqIter_New(PyObject	*seq)
Return	value:	New	reference.
Return	an	iterator	that	works	with	a	general	sequence	object,	seq.	The
iteration	ends	when	the	sequence	raises	IndexError	for	the	subscripting
operation.	New	in	version	2.2.

PyTypeObject	PyCallIter_Type
Type	object	for	iterator	objects	returned	by	PyCallIter_New()	and	the
two-argument	form	of	the	iter()	built-in	function.	New	in	version	2.2.

int	PyCallIter_Check(op)
Return	true	if	the	type	of	op	is	PyCallIter_Type.	New	in	version	2.2.

PyObject*	PyCallIter_New(PyObject	*callable,	PyObject	*sentinel)
Return	value:	New	reference.
Return	a	new	iterator.	The	first	parameter,	callable,	can	be	any	Python
callable	object	that	can	be	called	with	no	parameters;	each	call	to	it	should
return	the	next	item	in	the	iteration.	When	callable	returns	a	value	equal	to
sentinel,	the	iteration	will	be	terminated.	New	in	version	2.2.

Python/C	API	Reference	Manual
Previous:	7.5.4	Module	Objects	Up:	7.5	Other	Objects	Next:	7.5.6	Descriptor
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.5	Iterator	Objects	Up:	7.5	Other	Objects	Next:	7.5.7	Slice
Objects

7.5.6	Descriptor	Objects
``Descriptors''	are	objects	that	describe	some	attribute	of	an	object.	They	are
found	in	the	dictionary	of	type	objects.

PyTypeObject	PyProperty_Type
The	type	object	for	the	built-in	descriptor	types.	New	in	version	2.2.

PyObject*	PyDescr_NewGetSet(PyTypeObject	*type,	PyGetSetDef*getset)
Return	value:	New	reference.
New	in	version	2.2.

PyObject*	PyDescr_NewMember(PyTypeObject	*type,	PyMemberDef
*meth)

Return	value:	New	reference.
New	in	version	2.2.

PyObject*	PyDescr_NewMethod(PyTypeObject	*type,	PyMethodDef
*meth)

Return	value:	New	reference.
New	in	version	2.2.

PyObject*	PyDescr_NewWrapper(PyTypeObject	*type,	struct	wrapperbase*wrapper,	void	*wrapped)
Return	value:	New	reference.
New	in	version	2.2.

PyObject*	PyDescr_NewClassMethod(PyTypeObject	*type,PyMethodDef	*method)
New	in	version	2.3.

int	PyDescr_IsData(PyObject	*descr)
Returns	true	if	the	descriptor	objects	descr	describes	a	data	attribute,	or
false	if	it	describes	a	method.	descr	must	be	a	descriptor	object;	there	is	no
error	checking.	New	in	version	2.2.

PyObject*	PyWrapper_New(PyObject	*,	PyObject	*)
Return	value:	New	reference.
New	in	version	2.2.

Python/C	API	Reference	Manual
Previous:	7.5.5	Iterator	Objects	Up:	7.5	Other	Objects	Next:	7.5.7	Slice
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.6	Descriptor	Objects	Up:	7.5	Other	Objects	Next:	7.5.8	Weak
Reference	Objects

7.5.7	Slice	Objects
PyTypeObject	PySlice_Type

The	type	object	for	slice	objects.	This	is	the	same	as	types.SliceType.

int	PySlice_Check(PyObject	*ob)
Returns	true	if	ob	is	a	slice	object;	ob	must	not	be	NULL.

PyObject*	PySlice_New(PyObject	*start,	PyObject	*stop,	PyObject	*step)
Return	value:	New	reference.
Return	a	new	slice	object	with	the	given	values.	The	start,	stop,	and	step
parameters	are	used	as	the	values	of	the	slice	object	attributes	of	the	same
names.	Any	of	the	values	may	be	NULL,	in	which	case	the	None	will	be
used	for	the	corresponding	attribute.	Returns	NULL	if	the	new	object	could
not	be	allocated.

int	PySlice_GetIndices(PySliceObject	*slice,	int	length,	int	*start,	int*stop,	int	*step)
Retrieve	the	start,	stop	and	step	indices	from	the	slice	object	slice,	assuming
a	sequence	of	length	length.	Treats	indices	greater	than	length	as	errors.

Returns	0	on	success	and	-1	on	error	with	no	exception	set	(unless	one	of
the	indices	was	not	None	and	failed	to	be	converted	to	an	integer,	in	which
case	-1	is	returned	with	an	exception	set).

You	probably	do	not	want	to	use	this	function.	If	you	want	to	use	slice
objects	in	versions	of	Python	prior	to	2.3,	you	would	probably	do	well	to
incorporate	the	source	of	PySlice_GetIndicesEx,	suitably	renamed,
in	the	source	of	your	extension.

int	PySlice_GetIndicesEx(PySliceObject	*slice,	int	length,	int	*start,	int*stop,	int	*step,	int	*slicelength)
Usable	replacement	for	PySlice_GetIndices.	Retrieve	the	start,	stop,
and	step	indices	from	the	slice	object	slice	assuming	a	sequence	of	length
length,	and	store	the	length	of	the	slice	in	slicelength.	Out	of	bounds	indices
are	clipped	in	a	manner	consistent	with	the	handling	of	normal	slices.

Returns	0	on	success	and	-1	on	error	with	exception	set.

New	in	version	2.3.

Python/C	API	Reference	Manual
Previous:	7.5.6	Descriptor	Objects	Up:	7.5	Other	Objects	Next:	7.5.8	Weak
Reference	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.7	Slice	Objects	Up:	7.5	Other	Objects	Next:	7.5.9	CObjects

7.5.8	Weak	Reference	Objects
Python	supports	weak	references	as	first-class	objects.	There	are	two	specific
object	types	which	directly	implement	weak	references.	The	first	is	a	simple
reference	object,	and	the	second	acts	as	a	proxy	for	the	original	object	as	much
as	it	can.

int	PyWeakref_Check(ob)
Return	true	if	ob	is	either	a	reference	or	proxy	object.	New	in	version	2.2.

int	PyWeakref_CheckRef(ob)
Return	true	if	ob	is	a	reference	object.	New	in	version	2.2.

int	PyWeakref_CheckProxy(ob)
Return	true	if	ob	is	a	proxy	object.	New	in	version	2.2.

PyObject*	PyWeakref_NewRef(PyObject	*ob,	PyObject	*callback)
Return	value:	New	reference.
Return	a	weak	reference	object	for	the	object	ob.	This	will	always	return	a
new	reference,	but	is	not	guaranteed	to	create	a	new	object;	an	existing
reference	object	may	be	returned.	The	second	parameter,	callback,	can	be	a
callable	object	that	receives	notification	when	ob	is	garbage	collected;	it
should	accept	a	single	parameter,	which	will	be	the	weak	reference	object
itself.	callback	may	also	be	None	or	NULL.	If	ob	is	not	a	weakly-
referencable	object,	or	if	callback	is	not	callable,	None,	or	NULL,	this	will
return	NULL	and	raise	TypeError.	New	in	version	2.2.

PyObject*	PyWeakref_NewProxy(PyObject	*ob,	PyObject	*callback)
Return	value:	New	reference.
Return	a	weak	reference	proxy	object	for	the	object	ob.	This	will	always
return	a	new	reference,	but	is	not	guaranteed	to	create	a	new	object;	an
existing	proxy	object	may	be	returned.	The	second	parameter,	callback,	can
be	a	callable	object	that	receives	notification	when	ob	is	garbage	collected;
it	should	accept	a	single	parameter,	which	will	be	the	weak	reference	object
itself.	callback	may	also	be	None	or	NULL.	If	ob	is	not	a	weakly-
referencable	object,	or	if	callback	is	not	callable,	None,	or	NULL,	this	will

return	NULL	and	raise	TypeError.	New	in	version	2.2.

PyObject*	PyWeakref_GetObject(PyObject	*ref)
Return	value:	Borrowed	reference.
Returns	the	referenced	object	from	a	weak	reference,	ref.	If	the	referent	is
no	longer	live,	returns	None.	New	in	version	2.2.

PyObject*	PyWeakref_GET_OBJECT(PyObject	*ref)
Return	value:	Borrowed	reference.
Similar	to	PyWeakref_GetObject(),	but	implemented	as	a	macro	that
does	no	error	checking.	New	in	version	2.2.

Python/C	API	Reference	Manual
Previous:	7.5.7	Slice	Objects	Up:	7.5	Other	Objects	Next:	7.5.9	CObjects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.8	Weak	Reference	Objects	Up:	7.5	Other	Objects	Next:	7.5.10
Cell	Objects

7.5.9	CObjects
Refer	to	Extending	and	Embedding	the	Python	Interpreter,	section	1.12,
``Providing	a	C	API	for	an	Extension	Module,''	for	more	information	on	using
these	objects.

PyCObject

This	subtype	of	PyObject	represents	an	opaque	value,	useful	for	C
extension	modules	who	need	to	pass	an	opaque	value	(as	a	void*	pointer)
through	Python	code	to	other	C	code.	It	is	often	used	to	make	a	C	function
pointer	defined	in	one	module	available	to	other	modules,	so	the	regular
import	mechanism	can	be	used	to	access	C	APIs	defined	in	dynamically
loaded	modules.

int	PyCObject_Check(PyObject	*p)
Return	true	if	its	argument	is	a	PyCObject.

PyObject*	PyCObject_FromVoidPtr(void*	cobj,	void	(*destr)(void	*))
Return	value:	New	reference.
Create	a	PyCObject	from	the	void	*cobj.	The	destr	function	will	be
called	when	the	object	is	reclaimed,	unless	it	is	NULL.

PyObject*	PyCObject_FromVoidPtrAndDesc(
void*	cobj,	void*	desc,
void	(*destr)(void	*,	void
*))

Return	value:	New	reference.
Create	a	PyCObject	from	the	void	*cobj.	The	destr	function	will	be
called	when	the	object	is	reclaimed.	The	desc	argument	can	be	used	to	pass
extra	callback	data	for	the	destructor	function.

void*	PyCObject_AsVoidPtr(PyObject*	self)
Return	the	object	void	*	that	the	PyCObject	self	was	created	with.

void*	PyCObject_GetDesc(PyObject*	self)
Return	the	description	void	*	that	the	PyCObject	self	was	created	with.

int	PyCObject_SetVoidPtr(PyObject*	self,	void*	cobj)
Set	the	void	pointer	inside	self	to	cobj.	The	PyCObject	must	not	have	an
associated	destructor.	Return	true	on	success,	false	on	failure.

Python/C	API	Reference	Manual
Previous:	7.5.8	Weak	Reference	Objects	Up:	7.5	Other	Objects	Next:	7.5.10
Cell	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.9	CObjects	Up:	7.5	Other	Objects	Next:	7.5.11	Generator
Objects

7.5.10	Cell	Objects
``Cell''	objects	are	used	to	implement	variables	referenced	by	multiple	scopes.
For	each	such	variable,	a	cell	object	is	created	to	store	the	value;	the	local
variables	of	each	stack	frame	that	references	the	value	contains	a	reference	to	the
cells	from	outer	scopes	which	also	use	that	variable.	When	the	value	is	accessed,
the	value	contained	in	the	cell	is	used	instead	of	the	cell	object	itself.	This	de-
referencing	of	the	cell	object	requires	support	from	the	generated	byte-code;
these	are	not	automatically	de-referenced	when	accessed.	Cell	objects	are	not
likely	to	be	useful	elsewhere.

PyCellObject

The	C	structure	used	for	cell	objects.

PyTypeObject	PyCell_Type
The	type	object	corresponding	to	cell	objects

int	PyCell_Check(ob)
Return	true	if	ob	is	a	cell	object;	ob	must	not	be	NULL.

PyObject*	PyCell_New(PyObject	*ob)
Return	value:	New	reference.
Create	and	return	a	new	cell	object	containing	the	value	ob.	The	parameter
may	be	NULL.

PyObject*	PyCell_Get(PyObject	*cell)
Return	value:	New	reference.
Return	the	contents	of	the	cell	cell.

PyObject*	PyCell_GET(PyObject	*cell)
Return	value:	Borrowed	reference.
Return	the	contents	of	the	cell	cell,	but	without	checking	that	cell	is	non-
NULL	and	a	cell	object.

int	PyCell_Set(PyObject	*cell,	PyObject	*value)
Set	the	contents	of	the	cell	object	cell	to	value.	This	releases	the	reference

to	any	current	content	of	the	cell.	value	may	be	NULL.	cell	must	be	non-
NULL;	if	it	is	not	a	cell	object,	-1	will	be	returned.	On	success,	0	will	be
returned.

void	PyCell_SET(PyObject	*cell,	PyObject	*value)
Sets	the	value	of	the	cell	object	cell	to	value.	No	reference	counts	are
adjusted,	and	no	checks	are	made	for	safety;	cell	must	be	non-NULL	and
must	be	a	cell	object.

Python/C	API	Reference	Manual
Previous:	7.5.9	CObjects	Up:	7.5	Other	Objects	Next:	7.5.11	Generator
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.10	Cell	Objects	Up:	7.5	Other	Objects	Next:	7.5.12	DateTime
Objects

7.5.11	Generator	Objects
Generator	objects	are	what	Python	uses	to	implement	generator	iterators.	They
are	normally	created	by	iterating	over	a	function	that	yields	values,	rather	than
explicitly	calling	PyGen_New.

PyGenObject

The	C	structure	used	for	generator	objects.

PyTypeObject	PyGen_Type
The	type	object	corresponding	to	generator	objects

int	PyGen_Check(ob)
Return	true	if	ob	is	a	generator	object;	ob	must	not	be	NULL.

int	PyGen_CheckExact(ob)
Return	true	if	ob's	type	is	PyGen_Type	is	a	generator	object;	ob	must	not	be
NULL.

PyObject*	PyGen_New(PyFrameObject	*frame)
Create	and	return	a	new	generator	object	based	on	the	frame	object.	The
parameter	must	not	be	NULL.

Python/C	API	Reference	Manual
Previous:	7.5.10	Cell	Objects	Up:	7.5	Other	Objects	Next:	7.5.12	DateTime
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.11	Generator	Objects	Up:	7.5	Other	Objects	Next:	8.
Initialization,	Finalization,	and

7.5.12	DateTime	Objects
Various	date	and	time	objects	are	supplied	by	the	datetime	module.	Before
using	any	of	these	functions,	the	header	file	datetime.h	must	be	included	in
your	source	(note	that	this	is	not	include	by	Python.h),	and	macro
PyDateTime_IMPORT()	must	be	invoked.	The	macro	arranges	to	put	a
pointer	to	a	C	structure	in	a	static	variable	PyDateTimeAPI,	which	is	used	by
the	following	macros.

Type-check	macros:

int	PyDate_Check(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_DateType	or	a	subtype	of
PyDateTime_DateType.	ob	must	not	be	NULL.	New	in	version	2.4.

int	PyDate_CheckExact(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_DateType.	ob	must	not	be
NULL.	New	in	version	2.4.

int	PyDateTime_Check(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_DateTimeType	or	a	subtype
of	PyDateTime_DateTimeType.	ob	must	not	be	NULL.	New	in
version	2.4.

int	PyDateTime_CheckExact(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_DateTimeType.	ob	must	not
be	NULL.	New	in	version	2.4.

int	PyTime_Check(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_TimeType	or	a	subtype	of
PyDateTime_TimeType.	ob	must	not	be	NULL.	New	in	version	2.4.

int	PyTime_CheckExact(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_TimeType.	ob	must	not	be
NULL.	New	in	version	2.4.

int	PyDelta_Check(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_DeltaType	or	a	subtype	of
PyDateTime_DeltaType.	ob	must	not	be	NULL.	New	in	version	2.4.

int	PyDelta_CheckExact(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_DeltaType.	ob	must	not	be
NULL.	New	in	version	2.4.

int	PyTZInfo_Check(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_TZInfoType	or	a	subtype	of
PyDateTime_TZInfoType.	ob	must	not	be	NULL.	New	in	version	2.4.

int	PyTZInfo_CheckExact(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_TZInfoType.	ob	must	not	be
NULL.	New	in	version	2.4.

Macros	to	create	objects:

PyObject*	PyDate_FromDate(int	year,	int	month,	int	day)
Return	a	datetime.date	object	with	the	specified	year,	month	and	day.
New	in	version	2.4.

PyObject*	PyDate_FromDateAndTime(
int	year,	int	month,	int	day,	int
hour,	int	minute,	int	second,	int
usecond)

Return	a	datetime.datetime	object	with	the	specified	year,	month,
day,	hour,	minute,	second	and	microsecond.	New	in	version	2.4.

PyObject*	PyTime_FromTime(int	hour,	int	minute,	int	second,	int	usecond)
Return	a	datetime.time	object	with	the	specified	hour,	minute,	second
and	microsecond.	New	in	version	2.4.

PyObject*	PyDelta_FromDSU(int	days,	int	seconds,	int	useconds)
Return	a	datetime.timedelta	object	representing	the	given	number
of	days,	seconds	and	microseconds.	Normalization	is	performed	so	that	the
resulting	number	of	microseconds	and	seconds	lie	in	the	ranges	documented
for	datetime.timedelta	objects.	New	in	version	2.4.

Macros	to	extract	fields	from	date	objects.	The	argument	must	be	an	instance	of
PyDateTime_Date,	including	subclasses	(such	as
PyDateTime_DateTime).	The	argument	must	not	be	NULL,	and	the	type	is
not	checked:

int	PyDateTime_GET_YEAR(PyDateTime_Date	*o)
Return	the	year,	as	a	positive	int.	New	in	version	2.4.

int	PyDateTime_GET_MONTH(PyDateTime_Date	*o)
Return	the	month,	as	an	int	from	1	through	12.	New	in	version	2.4.

int	PyDateTime_GET_DAY(PyDateTime_Date	*o)
Return	the	day,	as	an	int	from	1	through	31.	New	in	version	2.4.

Macros	to	extract	fields	from	datetime	objects.	The	argument	must	be	an
instance	of	PyDateTime_DateTime,	including	subclasses.	The	argument
must	not	be	NULL,	and	the	type	is	not	checked:

int	PyDateTime_DATE_GET_HOUR(PyDateTime_DateTime	*o)
Return	the	hour,	as	an	int	from	0	through	23.	New	in	version	2.4.

int	PyDateTime_DATE_GET_MINUTE(PyDateTime_DateTime	*o)
Return	the	minute,	as	an	int	from	0	through	59.	New	in	version	2.4.

int	PyDateTime_DATE_GET_SECOND(PyDateTime_DateTime	*o)
Return	the	second,	as	an	int	from	0	through	59.	New	in	version	2.4.

int	PyDateTime_DATE_GET_MICROSECOND(PyDateTime_DateTime	*o)
Return	the	microsecond,	as	an	int	from	0	through	999999.	New	in	version
2.4.

Macros	to	extract	fields	from	time	objects.	The	argument	must	be	an	instance	of
PyDateTime_Time,	including	subclasses.	The	argument	must	not	be	NULL,
and	the	type	is	not	checked:

int	PyDateTime_TIME_GET_HOUR(PyDateTime_Time	*o)
Return	the	hour,	as	an	int	from	0	through	23.	New	in	version	2.4.

int	PyDateTime_TIME_GET_MINUTE(PyDateTime_Time	*o)
Return	the	minute,	as	an	int	from	0	through	59.	New	in	version	2.4.

int	PyDateTime_TIME_GET_SECOND(PyDateTime_Time	*o)
Return	the	second,	as	an	int	from	0	through	59.	New	in	version	2.4.

int	PyDateTime_TIME_GET_MICROSECOND(PyDateTime_Time	*o)
Return	the	microsecond,	as	an	int	from	0	through	999999.	New	in	version
2.4.

Macros	for	the	convenience	of	modules	implementing	the	DB	API:

PyObject*	PyDateTime_FromTimestamp(PyObject	*args)
Create	and	return	a	new	datetime.datetime	object	given	an	argument
tuple	suitable	for	passing	to
datetime.datetime.fromtimestamp().	New	in	version	2.4.

PyObject*	PyDate_FromTimestamp(PyObject	*args)
Create	and	return	a	new	datetime.date	object	given	an	argument	tuple
suitable	for	passing	to	datetime.date.fromtimestamp().	New	in
version	2.4.

Python/C	API	Reference	Manual
Previous:	7.5.11	Generator	Objects	Up:	7.5	Other	Objects	Next:	8.
Initialization,	Finalization,	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.12	DateTime	Objects	Up:	Python/C	API	Reference	Manual	Next:
8.1	Thread	State	and

8.	Initialization,	Finalization,	and
Threads
void	Py_Initialize()

Initialize	the	Python	interpreter.	In	an	application	embedding	Python,	this
should	be	called	before	using	any	other	Python/C	API	functions;	with	the
exception	of	Py_SetProgramName(),	PyEval_InitThreads(),
PyEval_ReleaseLock(),	and	PyEval_AcquireLock().	This
initializes	the	table	of	loaded	modules	(sys.modules),	and	creates	the
fundamental	modules	__builtin__,	__main__	and	sys.	It	also
initializes	the	module	search	path	(sys.path).	It	does	not	set
sys.argv;	use	PySys_SetArgv()	for	that.	This	is	a	no-op	when
called	for	a	second	time	(without	calling	Py_Finalize()	first).	There	is
no	return	value;	it	is	a	fatal	error	if	the	initialization	fails.

void	Py_InitializeEx(int	initsigs)
This	function	works	like	Py_Initialize()	if	initsigs	is	1.	If	initsigs	is
0,	it	skips	initialization	registration	of	signal	handlers,	which	might	be
useful	when	Python	is	embedded.	New	in	version	2.4.

int	Py_IsInitialized()
Return	true	(nonzero)	when	the	Python	interpreter	has	been	initialized,	false
(zero)	if	not.	After	Py_Finalize()	is	called,	this	returns	false	until
Py_Initialize()	is	called	again.

void	Py_Finalize()
Undo	all	initializations	made	by	Py_Initialize()	and	subsequent	use
of	Python/C	API	functions,	and	destroy	all	sub-interpreters	(see
Py_NewInterpreter()	below)	that	were	created	and	not	yet	destroyed
since	the	last	call	to	Py_Initialize().	Ideally,	this	frees	all	memory
allocated	by	the	Python	interpreter.	This	is	a	no-op	when	called	for	a	second
time	(without	calling	Py_Initialize()	again	first).	There	is	no	return
value;	errors	during	finalization	are	ignored.

This	function	is	provided	for	a	number	of	reasons.	An	embedding
application	might	want	to	restart	Python	without	having	to	restart	the
application	itself.	An	application	that	has	loaded	the	Python	interpreter
from	a	dynamically	loadable	library	(or	DLL)	might	want	to	free	all
memory	allocated	by	Python	before	unloading	the	DLL.	During	a	hunt	for
memory	leaks	in	an	application	a	developer	might	want	to	free	all	memory
allocated	by	Python	before	exiting	from	the	application.

Bugs	and	caveats:	The	destruction	of	modules	and	objects	in	modules	is
done	in	random	order;	this	may	cause	destructors	(__del__()	methods)
to	fail	when	they	depend	on	other	objects	(even	functions)	or	modules.
Dynamically	loaded	extension	modules	loaded	by	Python	are	not	unloaded.
Small	amounts	of	memory	allocated	by	the	Python	interpreter	may	not	be
freed	(if	you	find	a	leak,	please	report	it).	Memory	tied	up	in	circular
references	between	objects	is	not	freed.	Some	memory	allocated	by
extension	modules	may	not	be	freed.	Some	extensions	may	not	work
properly	if	their	initialization	routine	is	called	more	than	once;	this	can
happen	if	an	application	calls	Py_Initialize()	and
Py_Finalize()	more	than	once.

PyThreadState*	Py_NewInterpreter()
Create	a	new	sub-interpreter.	This	is	an	(almost)	totally	separate
environment	for	the	execution	of	Python	code.	In	particular,	the	new
interpreter	has	separate,	independent	versions	of	all	imported	modules,
including	the	fundamental	modules	__builtin__,	__main__	and	sys.
The	table	of	loaded	modules	(sys.modules)	and	the	module	search	path
(sys.path)	are	also	separate.	The	new	environment	has	no	sys.argv
variable.	It	has	new	standard	I/O	stream	file	objects	sys.stdin,
sys.stdout	and	sys.stderr	(however	these	refer	to	the	same
underlying	FILE	structures	in	the	C	library).

The	return	value	points	to	the	first	thread	state	created	in	the	new	sub-
interpreter.	This	thread	state	is	made	in	the	current	thread	state.	Note	that	no
actual	thread	is	created;	see	the	discussion	of	thread	states	below.	If	creation
of	the	new	interpreter	is	unsuccessful,	NULL	is	returned;	no	exception	is	set
since	the	exception	state	is	stored	in	the	current	thread	state	and	there	may
not	be	a	current	thread	state.	(Like	all	other	Python/C	API	functions,	the
global	interpreter	lock	must	be	held	before	calling	this	function	and	is	still

held	when	it	returns;	however,	unlike	most	other	Python/C	API	functions,
there	needn't	be	a	current	thread	state	on	entry.)

Extension	modules	are	shared	between	(sub-)interpreters	as	follows:	the
first	time	a	particular	extension	is	imported,	it	is	initialized	normally,	and	a
(shallow)	copy	of	its	module's	dictionary	is	squirreled	away.	When	the	same
extension	is	imported	by	another	(sub-)interpreter,	a	new	module	is
initialized	and	filled	with	the	contents	of	this	copy;	the	extension's	init
function	is	not	called.	Note	that	this	is	different	from	what	happens	when	an
extension	is	imported	after	the	interpreter	has	been	completely	re-initialized
by	calling	Py_Finalize()	and	Py_Initialize();	in	that	case,	the
extension's	initmodule	function	is	called	again.

Bugs	and	caveats:	Because	sub-interpreters	(and	the	main	interpreter)	are
part	of	the	same	process,	the	insulation	between	them	isn't	perfect	--	for
example,	using	low-level	file	operations	like	os.close()	they	can
(accidentally	or	maliciously)	affect	each	other's	open	files.	Because	of	the
way	extensions	are	shared	between	(sub-)interpreters,	some	extensions	may
not	work	properly;	this	is	especially	likely	when	the	extension	makes	use	of
(static)	global	variables,	or	when	the	extension	manipulates	its	module's
dictionary	after	its	initialization.	It	is	possible	to	insert	objects	created	in
one	sub-interpreter	into	a	namespace	of	another	sub-interpreter;	this	should
be	done	with	great	care	to	avoid	sharing	user-defined	functions,	methods,
instances	or	classes	between	sub-interpreters,	since	import	operations
executed	by	such	objects	may	affect	the	wrong	(sub-)interpreter's	dictionary
of	loaded	modules.	(XXX	This	is	a	hard-to-fix	bug	that	will	be	addressed	in
a	future	release.)

void	Py_EndInterpreter(PyThreadState	*tstate)
Destroy	the	(sub-)interpreter	represented	by	the	given	thread	state.	The
given	thread	state	must	be	the	current	thread	state.	See	the	discussion	of
thread	states	below.	When	the	call	returns,	the	current	thread	state	is	NULL.
All	thread	states	associated	with	this	interpreter	are	destroyed.	(The	global
interpreter	lock	must	be	held	before	calling	this	function	and	is	still	held
when	it	returns.)	Py_Finalize()	will	destroy	all	sub-interpreters	that
haven't	been	explicitly	destroyed	at	that	point.

void	Py_SetProgramName(char	*name)

This	function	should	be	called	before	Py_Initialize()	is	called	for
the	first	time,	if	it	is	called	at	all.	It	tells	the	interpreter	the	value	of	the
argv[0]	argument	to	the	main()	function	of	the	program.	This	is	used
by	Py_GetPath()	and	some	other	functions	below	to	find	the	Python
run-time	libraries	relative	to	the	interpreter	executable.	The	default	value	is
'python'.	The	argument	should	point	to	a	zero-terminated	character
string	in	static	storage	whose	contents	will	not	change	for	the	duration	of
the	program's	execution.	No	code	in	the	Python	interpreter	will	change	the
contents	of	this	storage.

char*	Py_GetProgramName()
Return	the	program	name	set	with	Py_SetProgramName(),	or	the
default.	The	returned	string	points	into	static	storage;	the	caller	should	not
modify	its	value.

char*	Py_GetPrefix()
Return	the	prefix	for	installed	platform-independent	files.	This	is	derived
through	a	number	of	complicated	rules	from	the	program	name	set	with
Py_SetProgramName()	and	some	environment	variables;	for	example,
if	the	program	name	is	'/usr/local/bin/python',	the	prefix	is
'/usr/local'.	The	returned	string	points	into	static	storage;	the	caller
should	not	modify	its	value.	This	corresponds	to	the	prefix	variable	in	the
top-level	Makefile	and	the	--prefix	argument	to	the	configure	script	at
build	time.	The	value	is	available	to	Python	code	as	sys.prefix.	It	is
only	useful	on	UNIX.	See	also	the	next	function.

char*	Py_GetExecPrefix()
Return	the	exec-prefix	for	installed	platform-dependent	files.	This	is	derived
through	a	number	of	complicated	rules	from	the	program	name	set	with
Py_SetProgramName()	and	some	environment	variables;	for	example,
if	the	program	name	is	'/usr/local/bin/python',	the	exec-prefix
is	'/usr/local'.	The	returned	string	points	into	static	storage;	the	caller
should	not	modify	its	value.	This	corresponds	to	the	exec_prefix	variable	in
the	top-level	Makefile	and	the	--exec-prefix	argument	to	the	configure
script	at	build	time.	The	value	is	available	to	Python	code	as
sys.exec_prefix.	It	is	only	useful	on	UNIX.

Background:	The	exec-prefix	differs	from	the	prefix	when	platform

dependent	files	(such	as	executables	and	shared	libraries)	are	installed	in	a
different	directory	tree.	In	a	typical	installation,	platform	dependent	files
may	be	installed	in	the	/usr/local/plat	subtree	while	platform	independent
may	be	installed	in	/usr/local.

Generally	speaking,	a	platform	is	a	combination	of	hardware	and	software
families,	e.g.	Sparc	machines	running	the	Solaris	2.x	operating	system	are
considered	the	same	platform,	but	Intel	machines	running	Solaris	2.x	are
another	platform,	and	Intel	machines	running	Linux	are	yet	another
platform.	Different	major	revisions	of	the	same	operating	system	generally
also	form	different	platforms.	Non-UNIX	operating	systems	are	a	different
story;	the	installation	strategies	on	those	systems	are	so	different	that	the
prefix	and	exec-prefix	are	meaningless,	and	set	to	the	empty	string.	Note
that	compiled	Python	bytecode	files	are	platform	independent	(but	not
independent	from	the	Python	version	by	which	they	were	compiled!).

System	administrators	will	know	how	to	configure	the	mount	or
automount	programs	to	share	/usr/local	between	platforms	while	having
/usr/local/plat	be	a	different	filesystem	for	each	platform.

char*	Py_GetProgramFullPath()
Return	the	full	program	name	of	the	Python	executable;	this	is	computed	as
a	side-effect	of	deriving	the	default	module	search	path	from	the	program
name	(set	by	Py_SetProgramName()	above).	The	returned	string
points	into	static	storage;	the	caller	should	not	modify	its	value.	The	value
is	available	to	Python	code	as	sys.executable.

char*	Py_GetPath()
Return	the	default	module	search	path;	this	is	computed	from	the	program
name	(set	by	Py_SetProgramName()	above)	and	some	environment
variables.	The	returned	string	consists	of	a	series	of	directory	names
separated	by	a	platform	dependent	delimiter	character.	The	delimiter
character	is	":"	on	UNIX,	";"	on	Windows,	and	"\n"	(the	ASCII	newline
character)	on	Macintosh.	The	returned	string	points	into	static	storage;	the
caller	should	not	modify	its	value.	The	value	is	available	to	Python	code	as
the	list	sys.path,	which	may	be	modified	to	change	the	future	search
path	for	loaded	modules.

const	char*	Py_GetVersion()
Return	the	version	of	this	Python	interpreter.	This	is	a	string	that	looks
something	like

"1.5	(#67,	Dec	31	1997,	22:34:28)	[GCC	2.7.2.2]"

The	first	word	(up	to	the	first	space	character)	is	the	current	Python	version;
the	first	three	characters	are	the	major	and	minor	version	separated	by	a
period.	The	returned	string	points	into	static	storage;	the	caller	should	not
modify	its	value.	The	value	is	available	to	Python	code	as	sys.version.

const	char*	Py_GetPlatform()
Return	the	platform	identifier	for	the	current	platform.	On	UNIX,	this	is
formed	from	the	``official''	name	of	the	operating	system,	converted	to
lower	case,	followed	by	the	major	revision	number;	e.g.,	for	Solaris	2.x,
which	is	also	known	as	SunOS	5.x,	the	value	is	'sunos5'.	On	Macintosh,
it	is	'mac'.	On	Windows,	it	is	'win'.	The	returned	string	points	into
static	storage;	the	caller	should	not	modify	its	value.	The	value	is	available
to	Python	code	as	sys.platform.

const	char*	Py_GetCopyright()
Return	the	official	copyright	string	for	the	current	Python	version,	for
example

'Copyright	1991-1995	Stichting	Mathematisch

Centrum,	Amsterdam'

The	returned	string	points	into	static	storage;	the	caller	should	not	modify
its	value.	The	value	is	available	to	Python	code	as	sys.copyright.

const	char*	Py_GetCompiler()
Return	an	indication	of	the	compiler	used	to	build	the	current	Python
version,	in	square	brackets,	for	example:

"[GCC	2.7.2.2]"

The	returned	string	points	into	static	storage;	the	caller	should	not	modify
its	value.	The	value	is	available	to	Python	code	as	part	of	the	variable
sys.version.

const	char*	Py_GetBuildInfo()
Return	information	about	the	sequence	number	and	build	date	and	time	of
the	current	Python	interpreter	instance,	for	example

"#67,	Aug		1	1997,	22:34:28"

The	returned	string	points	into	static	storage;	the	caller	should	not	modify
its	value.	The	value	is	available	to	Python	code	as	part	of	the	variable
sys.version.

int	PySys_SetArgv(int	argc,	char	**argv)
Set	sys.argv	based	on	argc	and	argv.	These	parameters	are	similar	to
those	passed	to	the	program's	main()	function	with	the	difference	that	the
first	entry	should	refer	to	the	script	file	to	be	executed	rather	than	the
executable	hosting	the	Python	interpreter.	If	there	isn't	a	script	that	will	be
run,	the	first	entry	in	argv	can	be	an	empty	string.	If	this	function	fails	to
initialize	sys.argv,	a	fatal	condition	is	signalled	using
Py_FatalError().

Subsections

8.1	Thread	State	and	the	Global	Interpreter	Lock
8.2	Profiling	and	Tracing
8.3	Advanced	Debugger	Support

Python/C	API	Reference	Manual
Previous:	7.5.12	DateTime	Objects	Up:	Python/C	API	Reference	Manual	Next:
8.1	Thread	State	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.	Initialization,	Finalization,	and	Up:	8.	Initialization,	Finalization,
and	Next:	8.2	Profiling	and	Tracing

8.1	Thread	State	and	the	Global
Interpreter	Lock
The	Python	interpreter	is	not	fully	thread	safe.	In	order	to	support	multi-threaded
Python	programs,	there's	a	global	lock	that	must	be	held	by	the	current	thread
before	it	can	safely	access	Python	objects.	Without	the	lock,	even	the	simplest
operations	could	cause	problems	in	a	multi-threaded	program:	for	example,
when	two	threads	simultaneously	increment	the	reference	count	of	the	same
object,	the	reference	count	could	end	up	being	incremented	only	once	instead	of
twice.

Therefore,	the	rule	exists	that	only	the	thread	that	has	acquired	the	global
interpreter	lock	may	operate	on	Python	objects	or	call	Python/C	API	functions.
In	order	to	support	multi-threaded	Python	programs,	the	interpreter	regularly
releases	and	reacquires	the	lock	--	by	default,	every	100	bytecode	instructions
(this	can	be	changed	with	sys.setcheckinterval()).	The	lock	is	also
released	and	reacquired	around	potentially	blocking	I/O	operations	like	reading
or	writing	a	file,	so	that	other	threads	can	run	while	the	thread	that	requests	the
I/O	is	waiting	for	the	I/O	operation	to	complete.

The	Python	interpreter	needs	to	keep	some	bookkeeping	information	separate
per	thread	--	for	this	it	uses	a	data	structure	called	PyThreadState.	There's
one	global	variable,	however:	the	pointer	to	the	current	PyThreadState
structure.	While	most	thread	packages	have	a	way	to	store	``per-thread	global
data,''	Python's	internal	platform	independent	thread	abstraction	doesn't	support
this	yet.	Therefore,	the	current	thread	state	must	be	manipulated	explicitly.

This	is	easy	enough	in	most	cases.	Most	code	manipulating	the	global	interpreter
lock	has	the	following	simple	structure:

Save	the	thread	state	in	a	local	variable.

Release	the	interpreter	lock.

...Do	some	blocking	I/O	operation...

Reacquire	the	interpreter	lock.

Restore	the	thread	state	from	the	local	variable.

This	is	so	common	that	a	pair	of	macros	exists	to	simplify	it:

Py_BEGIN_ALLOW_THREADS

...Do	some	blocking	I/O	operation...

Py_END_ALLOW_THREADS

The	Py_BEGIN_ALLOW_THREADS	macro	opens	a	new	block	and	declares	a
hidden	local	variable;	the	Py_END_ALLOW_THREADS	macro	closes	the
block.	Another	advantage	of	using	these	two	macros	is	that	when	Python	is
compiled	without	thread	support,	they	are	defined	empty,	thus	saving	the	thread
state	and	lock	manipulations.

When	thread	support	is	enabled,	the	block	above	expands	to	the	following	code:

				PyThreadState	*_save;

				_save	=	PyEval_SaveThread();

				...Do	some	blocking	I/O	operation...

				PyEval_RestoreThread(_save);

Using	even	lower	level	primitives,	we	can	get	roughly	the	same	effect	as
follows:

				PyThreadState	*_save;

				_save	=	PyThreadState_Swap(NULL);

				PyEval_ReleaseLock();

				...Do	some	blocking	I/O	operation...

				PyEval_AcquireLock();

				PyThreadState_Swap(_save);

There	are	some	subtle	differences;	in	particular,
PyEval_RestoreThread()	saves	and	restores	the	value	of	the	global
variable	errno,	since	the	lock	manipulation	does	not	guarantee	that	errno	is
left	alone.	Also,	when	thread	support	is	disabled,	PyEval_SaveThread()
and	PyEval_RestoreThread()	don't	manipulate	the	lock;	in	this	case,
PyEval_ReleaseLock()	and	PyEval_AcquireLock()	are	not
available.	This	is	done	so	that	dynamically	loaded	extensions	compiled	with
thread	support	enabled	can	be	loaded	by	an	interpreter	that	was	compiled	with
disabled	thread	support.

The	global	interpreter	lock	is	used	to	protect	the	pointer	to	the	current	thread
state.	When	releasing	the	lock	and	saving	the	thread	state,	the	current	thread
state	pointer	must	be	retrieved	before	the	lock	is	released	(since	another	thread
could	immediately	acquire	the	lock	and	store	its	own	thread	state	in	the	global

variable).	Conversely,	when	acquiring	the	lock	and	restoring	the	thread	state,	the
lock	must	be	acquired	before	storing	the	thread	state	pointer.

Why	am	I	going	on	with	so	much	detail	about	this?	Because	when	threads	are
created	from	C,	they	don't	have	the	global	interpreter	lock,	nor	is	there	a	thread
state	data	structure	for	them.	Such	threads	must	bootstrap	themselves	into
existence,	by	first	creating	a	thread	state	data	structure,	then	acquiring	the	lock,
and	finally	storing	their	thread	state	pointer,	before	they	can	start	using	the
Python/C	API.	When	they	are	done,	they	should	reset	the	thread	state	pointer,
release	the	lock,	and	finally	free	their	thread	state	data	structure.

When	creating	a	thread	data	structure,	you	need	to	provide	an	interpreter	state
data	structure.	The	interpreter	state	data	structure	holds	global	data	that	is	shared
by	all	threads	in	an	interpreter,	for	example	the	module	administration
(sys.modules).	Depending	on	your	needs,	you	can	either	create	a	new
interpreter	state	data	structure,	or	share	the	interpreter	state	data	structure	used
by	the	Python	main	thread	(to	access	the	latter,	you	must	obtain	the	thread	state
and	access	its	interp	member;	this	must	be	done	by	a	thread	that	is	created	by
Python	or	by	the	main	thread	after	Python	is	initialized).

Assuming	you	have	access	to	an	interpreter	object,	the	typical	idiom	for	calling
into	Python	from	a	C	thread	is

				PyGILState_STATE	gstate;

				gstate	=	PyGILState_Ensure();

				/*	Perform	Python	actions	here.		*/

				result	=	CallSomeFunction();

				/*	evaluate	result	*/

				/*	Release	the	thread.	No	Python	API	allowed	beyond	this	point.	*/

				PyGILState_Release(gstate);

PyInterpreterState

This	data	structure	represents	the	state	shared	by	a	number	of	cooperating
threads.	Threads	belonging	to	the	same	interpreter	share	their	module
administration	and	a	few	other	internal	items.	There	are	no	public	members
in	this	structure.

Threads	belonging	to	different	interpreters	initially	share	nothing,	except
process	state	like	available	memory,	open	file	descriptors	and	such.	The
global	interpreter	lock	is	also	shared	by	all	threads,	regardless	of	to	which

interpreter	they	belong.

PyThreadState

This	data	structure	represents	the	state	of	a	single	thread.	The	only	public
data	member	is	PyInterpreterState	*interp,	which	points	to	this
thread's	interpreter	state.

void	PyEval_InitThreads()
Initialize	and	acquire	the	global	interpreter	lock.	It	should	be	called	in	the
main	thread	before	creating	a	second	thread	or	engaging	in	any	other	thread
operations	such	as	PyEval_ReleaseLock()	or
PyEval_ReleaseThread(tstate).	It	is	not	needed	before	calling
PyEval_SaveThread()	or	PyEval_RestoreThread().

This	is	a	no-op	when	called	for	a	second	time.	It	is	safe	to	call	this	function
before	calling	Py_Initialize().

When	only	the	main	thread	exists,	no	lock	operations	are	needed.	This	is	a
common	situation	(most	Python	programs	do	not	use	threads),	and	the	lock
operations	slow	the	interpreter	down	a	bit.	Therefore,	the	lock	is	not	created
initially.	This	situation	is	equivalent	to	having	acquired	the	lock:	when	there
is	only	a	single	thread,	all	object	accesses	are	safe.	Therefore,	when	this
function	initializes	the	lock,	it	also	acquires	it.	Before	the	Python	thread
module	creates	a	new	thread,	knowing	that	either	it	has	the	lock	or	the	lock
hasn't	been	created	yet,	it	calls	PyEval_InitThreads().	When	this
call	returns,	it	is	guaranteed	that	the	lock	has	been	created	and	that	the
calling	thread	has	acquired	it.

It	is	not	safe	to	call	this	function	when	it	is	unknown	which	thread	(if	any)
currently	has	the	global	interpreter	lock.

This	function	is	not	available	when	thread	support	is	disabled	at	compile
time.

int	PyEval_ThreadsInitialized()
Returns	a	non-zero	value	if	PyEval_InitThreads()	has	been	called.
This	function	can	be	called	without	holding	the	lock,	and	therefore	can	be
used	to	avoid	calls	to	the	locking	API	when	running	single-threaded.	This
function	is	not	available	when	thread	support	is	disabled	at	compile	time.

New	in	version	2.4.

void	PyEval_AcquireLock()
Acquire	the	global	interpreter	lock.	The	lock	must	have	been	created	earlier.
If	this	thread	already	has	the	lock,	a	deadlock	ensues.	This	function	is	not
available	when	thread	support	is	disabled	at	compile	time.

void	PyEval_ReleaseLock()
Release	the	global	interpreter	lock.	The	lock	must	have	been	created	earlier.
This	function	is	not	available	when	thread	support	is	disabled	at	compile
time.

void	PyEval_AcquireThread(PyThreadState	*tstate)
Acquire	the	global	interpreter	lock	and	set	the	current	thread	state	to	tstate,
which	should	not	be	NULL.	The	lock	must	have	been	created	earlier.	If	this
thread	already	has	the	lock,	deadlock	ensues.	This	function	is	not	available
when	thread	support	is	disabled	at	compile	time.

void	PyEval_ReleaseThread(PyThreadState	*tstate)
Reset	the	current	thread	state	to	NULL	and	release	the	global	interpreter
lock.	The	lock	must	have	been	created	earlier	and	must	be	held	by	the
current	thread.	The	tstate	argument,	which	must	not	be	NULL,	is	only	used
to	check	that	it	represents	the	current	thread	state	--	if	it	isn't,	a	fatal	error	is
reported.	This	function	is	not	available	when	thread	support	is	disabled	at
compile	time.

PyThreadState*	PyEval_SaveThread()
Release	the	interpreter	lock	(if	it	has	been	created	and	thread	support	is
enabled)	and	reset	the	thread	state	to	NULL,	returning	the	previous	thread
state	(which	is	not	NULL).	If	the	lock	has	been	created,	the	current	thread
must	have	acquired	it.	(This	function	is	available	even	when	thread	support
is	disabled	at	compile	time.)

void	PyEval_RestoreThread(PyThreadState	*tstate)
Acquire	the	interpreter	lock	(if	it	has	been	created	and	thread	support	is
enabled)	and	set	the	thread	state	to	tstate,	which	must	not	be	NULL.	If	the
lock	has	been	created,	the	current	thread	must	not	have	acquired	it,

otherwise	deadlock	ensues.	(This	function	is	available	even	when	thread
support	is	disabled	at	compile	time.)

The	following	macros	are	normally	used	without	a	trailing	semicolon;	look	for
example	usage	in	the	Python	source	distribution.

Py_BEGIN_ALLOW_THREADS

This	macro	expands	to	"{	PyThreadState	*_save;	_save	=
PyEval_SaveThread();".	Note	that	it	contains	an	opening	brace;	it
must	be	matched	with	a	following	Py_END_ALLOW_THREADS	macro.
See	above	for	further	discussion	of	this	macro.	It	is	a	no-op	when	thread
support	is	disabled	at	compile	time.

Py_END_ALLOW_THREADS

This	macro	expands	to	"PyEval_RestoreThread(_save);	}".
Note	that	it	contains	a	closing	brace;	it	must	be	matched	with	an	earlier
Py_BEGIN_ALLOW_THREADS	macro.	See	above	for	further	discussion
of	this	macro.	It	is	a	no-op	when	thread	support	is	disabled	at	compile	time.

Py_BLOCK_THREADS

This	macro	expands	to	"PyEval_RestoreThread(_save);":	it	is
equivalent	to	Py_END_ALLOW_THREADS	without	the	closing	brace.	It
is	a	no-op	when	thread	support	is	disabled	at	compile	time.

Py_UNBLOCK_THREADS

This	macro	expands	to	"_save	=	PyEval_SaveThread();":	it	is
equivalent	to	Py_BEGIN_ALLOW_THREADS	without	the	opening	brace
and	variable	declaration.	It	is	a	no-op	when	thread	support	is	disabled	at
compile	time.

All	of	the	following	functions	are	only	available	when	thread	support	is	enabled
at	compile	time,	and	must	be	called	only	when	the	interpreter	lock	has	been
created.

PyInterpreterState*	PyInterpreterState_New()
Create	a	new	interpreter	state	object.	The	interpreter	lock	need	not	be	held,
but	may	be	held	if	it	is	necessary	to	serialize	calls	to	this	function.

void	PyInterpreterState_Clear(PyInterpreterState	*interp)

Reset	all	information	in	an	interpreter	state	object.	The	interpreter	lock	must
be	held.

void	PyInterpreterState_Delete(PyInterpreterState	*interp)
Destroy	an	interpreter	state	object.	The	interpreter	lock	need	not	be	held.
The	interpreter	state	must	have	been	reset	with	a	previous	call	to
PyInterpreterState_Clear().

PyThreadState*	PyThreadState_New(PyInterpreterState	*interp)
Create	a	new	thread	state	object	belonging	to	the	given	interpreter	object.
The	interpreter	lock	need	not	be	held,	but	may	be	held	if	it	is	necessary	to
serialize	calls	to	this	function.

void	PyThreadState_Clear(PyThreadState	*tstate)
Reset	all	information	in	a	thread	state	object.	The	interpreter	lock	must	be
held.

void	PyThreadState_Delete(PyThreadState	*tstate)
Destroy	a	thread	state	object.	The	interpreter	lock	need	not	be	held.	The
thread	state	must	have	been	reset	with	a	previous	call	to
PyThreadState_Clear().

PyThreadState*	PyThreadState_Get()
Return	the	current	thread	state.	The	interpreter	lock	must	be	held.	When	the
current	thread	state	is	NULL,	this	issues	a	fatal	error	(so	that	the	caller
needn't	check	for	NULL).

PyThreadState*	PyThreadState_Swap(PyThreadState	*tstate)
Swap	the	current	thread	state	with	the	thread	state	given	by	the	argument
tstate,	which	may	be	NULL.	The	interpreter	lock	must	be	held.

PyObject*	PyThreadState_GetDict()
Return	value:	Borrowed	reference.
Return	a	dictionary	in	which	extensions	can	store	thread-specific	state
information.	Each	extension	should	use	a	unique	key	to	use	to	store	state	in
the	dictionary.	It	is	okay	to	call	this	function	when	no	current	thread	state	is
available.	If	this	function	returns	NULL,	no	exception	has	been	raised	and

the	caller	should	assume	no	current	thread	state	is	available.	Changed	in
version	2.3:	Previously	this	could	only	be	called	when	a	current	thread	is
active,	and	NULL	meant	that	an	exception	was	raised.

int	PyThreadState_SetAsyncExc(long	id,	PyObject	*exc)
Asynchronously	raise	an	exception	in	a	thread.	The	id	argument	is	the
thread	id	of	the	target	thread;	exc	is	the	exception	object	to	be	raised.	This
function	does	not	steal	any	references	to	exc.	To	prevent	naive	misuse,	you
must	write	your	own	C	extension	to	call	this.	Must	be	called	with	the	GIL
held.	Returns	the	number	of	thread	states	modified;	if	it	returns	a	number
greater	than	one,	you're	in	trouble,	and	you	should	call	it	again	with	exc	set
to	NULL	to	revert	the	effect.	This	raises	no	exceptions.	New	in	version	2.3.

PyGILState_STATE	PyGILState_Ensure()
Ensure	that	the	current	thread	is	ready	to	call	the	Python	C	API	regardless
of	the	current	state	of	Python,	or	of	its	thread	lock.	This	may	be	called	as
many	times	as	desired	by	a	thread	as	long	as	each	call	is	matched	with	a	call
to	PyGILState_Release().	In	general,	other	thread-related	APIs	may
be	used	between	PyGILState_Ensure()	and
PyGILState_Release()	calls	as	long	as	the	thread	state	is	restored	to
its	previous	state	before	the	Release().	For	example,	normal	usage	of	the
Py_BEGIN_ALLOW_THREADS	and	Py_END_ALLOW_THREADS
macros	is	acceptable.

The	return	value	is	an	opaque	"handle"	to	the	thread	state	when
PyGILState_Acquire()	was	called,	and	must	be	passed	to
PyGILState_Release()	to	ensure	Python	is	left	in	the	same	state.
Even	though	recursive	calls	are	allowed,	these	handles	cannot	be	shared	-
each	unique	call	to	PyGILState_Ensure	must	save	the	handle	for	its
call	to	PyGILState_Release.

When	the	function	returns,	the	current	thread	will	hold	the	GIL.	Failure	is	a
fatal	error.	New	in	version	2.3.

void	PyGILState_Release(PyGILState_STATE)
Release	any	resources	previously	acquired.	After	this	call,	Python's	state
will	be	the	same	as	it	was	prior	to	the	corresponding
PyGILState_Ensure	call	(but	generally	this	state	will	be	unknown	to

the	caller,	hence	the	use	of	the	GILState	API.)

Every	call	to	PyGILState_Ensure()	must	be	matched	by	a	call	to
PyGILState_Release()	on	the	same	thread.	New	in	version	2.3.

Python/C	API	Reference	Manual
Previous:	8.	Initialization,	Finalization,	and	Up:	8.	Initialization,	Finalization,
and	Next:	8.2	Profiling	and	Tracing

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.1	Thread	State	and	Up:	8.	Initialization,	Finalization,	and	Next:	8.3
Advanced	Debugger	Support

8.2	Profiling	and	Tracing
The	Python	interpreter	provides	some	low-level	support	for	attaching	profiling
and	execution	tracing	facilities.	These	are	used	for	profiling,	debugging,	and
coverage	analysis	tools.

Starting	with	Python	2.2,	the	implementation	of	this	facility	was	substantially
revised,	and	an	interface	from	C	was	added.	This	C	interface	allows	the	profiling
or	tracing	code	to	avoid	the	overhead	of	calling	through	Python-level	callable
objects,	making	a	direct	C	function	call	instead.	The	essential	attributes	of	the
facility	have	not	changed;	the	interface	allows	trace	functions	to	be	installed	per-
thread,	and	the	basic	events	reported	to	the	trace	function	are	the	same	as	had
been	reported	to	the	Python-level	trace	functions	in	previous	versions.

int	(*Py_tracefunc)(PyObject	*obj,	PyFrameObject

*frame,	int	what,	PyObject	*arg)

The	type	of	the	trace	function	registered	using	PyEval_SetProfile()
and	PyEval_SetTrace().	The	first	parameter	is	the	object	passed	to
the	registration	function	as	obj,	frame	is	the	frame	object	to	which	the	event
pertains,	what	is	one	of	the	constants	PyTrace_CALL,
PyTrace_EXCEPTION,	PyTrace_LINE,	PyTrace_RETURN,
PyTrace_C_CALL,	PyTrace_C_EXCEPTION,	or
PyTrace_C_RETURN,	and	arg	depends	on	the	value	of	what:

Value	of	what Meaning	of	arg
PyTrace_CALL Always	NULL.
PyTrace_EXCEPTION Exception	information	as	returned	by

sys.exc_info().
PyTrace_LINE Always	NULL.
PyTrace_RETURN Value	being	returned	to	the	caller.
PyTrace_C_CALL Name	of	function	being	called.
PyTrace_C_EXCEPTION Always	NULL.
PyTrace_C_RETURN Always	NULL.

int	PyTrace_CALL

The	value	of	the	what	parameter	to	a	Py_tracefunc	function	when	a
new	call	to	a	function	or	method	is	being	reported,	or	a	new	entry	into	a
generator.	Note	that	the	creation	of	the	iterator	for	a	generator	function	is
not	reported	as	there	is	no	control	transfer	to	the	Python	bytecode	in	the
corresponding	frame.

int	PyTrace_EXCEPTION
The	value	of	the	what	parameter	to	a	Py_tracefunc	function	when	an
exception	has	been	raised.	The	callback	function	is	called	with	this	value
for	what	when	after	any	bytecode	is	processed	after	which	the	exception
becomes	set	within	the	frame	being	executed.	The	effect	of	this	is	that	as
exception	propagation	causes	the	Python	stack	to	unwind,	the	callback	is
called	upon	return	to	each	frame	as	the	exception	propagates.	Only	trace
functions	receives	these	events;	they	are	not	needed	by	the	profiler.

int	PyTrace_LINE
The	value	passed	as	the	what	parameter	to	a	trace	function	(but	not	a
profiling	function)	when	a	line-number	event	is	being	reported.

int	PyTrace_RETURN
The	value	for	the	what	parameter	to	Py_tracefunc	functions	when	a
call	is	returning	without	propagating	an	exception.

int	PyTrace_C_CALL
The	value	for	the	what	parameter	to	Py_tracefunc	functions	when	a	C
function	is	about	to	be	called.

int	PyTrace_C_EXCEPTION
The	value	for	the	what	parameter	to	Py_tracefunc	functions	when	a	C
function	has	thrown	an	exception.

int	PyTrace_C_RETURN
The	value	for	the	what	parameter	to	Py_tracefunc	functions	when	a	C
function	has	returned.

void	PyEval_SetProfile(Py_tracefunc	func,	PyObject	*obj)
Set	the	profiler	function	to	func.	The	obj	parameter	is	passed	to	the	function
as	its	first	parameter,	and	may	be	any	Python	object,	or	NULL.	If	the	profile
function	needs	to	maintain	state,	using	a	different	value	for	obj	for	each

thread	provides	a	convenient	and	thread-safe	place	to	store	it.	The	profile
function	is	called	for	all	monitored	events	except	the	line-number	events.

void	PyEval_SetTrace(Py_tracefunc	func,	PyObject	*obj)
Set	the	tracing	function	to	func.	This	is	similar	to
PyEval_SetProfile(),	except	the	tracing	function	does	receive	line-
number	events.

Python/C	API	Reference	Manual
Previous:	8.1	Thread	State	and	Up:	8.	Initialization,	Finalization,	and	Next:	8.3
Advanced	Debugger	Support

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.2	Profiling	and	Tracing	Up:	8.	Initialization,	Finalization,	and	Next:
9.	Memory	Management

8.3	Advanced	Debugger	Support
These	functions	are	only	intended	to	be	used	by	advanced	debugging	tools.

PyInterpreterState*	PyInterpreterState_Head()
Return	the	interpreter	state	object	at	the	head	of	the	list	of	all	such	objects.
New	in	version	2.2.

PyInterpreterState*	PyInterpreterState_Next(PyInterpreterState*interp)
Return	the	next	interpreter	state	object	after	interp	from	the	list	of	all	such
objects.	New	in	version	2.2.

PyThreadState	*	PyInterpreterState_ThreadHead(PyInterpreterState*interp)
Return	the	a	pointer	to	the	first	PyThreadState	object	in	the	list	of
threads	associated	with	the	interpreter	interp.	New	in	version	2.2.

PyThreadState*	PyThreadState_Next(PyThreadState	*tstate)
Return	the	next	thread	state	object	after	tstate	from	the	list	of	all	such
objects	belonging	to	the	same	PyInterpreterState	object.	New	in
version	2.2.

Python/C	API	Reference	Manual
Previous:	8.2	Profiling	and	Tracing	Up:	8.	Initialization,	Finalization,	and	Next:
9.	Memory	Management

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.3	Advanced	Debugger	Support	Up:	Python/C	API	Reference
Manual	Next:	9.1	Overview

9.	Memory	Management

Subsections

9.1	Overview
9.2	Memory	Interface
9.3	Examples

Python/C	API	Reference	Manual
Previous:	8.3	Advanced	Debugger	Support	Up:	Python/C	API	Reference
Manual	Next:	9.1	Overview

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	9.	Memory	Management	Up:	9.	Memory	Management	Next:	9.2
Memory	Interface

9.1	Overview
Memory	management	in	Python	involves	a	private	heap	containing	all	Python
objects	and	data	structures.	The	management	of	this	private	heap	is	ensured
internally	by	the	Python	memory	manager.	The	Python	memory	manager	has
different	components	which	deal	with	various	dynamic	storage	management
aspects,	like	sharing,	segmentation,	preallocation	or	caching.

At	the	lowest	level,	a	raw	memory	allocator	ensures	that	there	is	enough	room	in
the	private	heap	for	storing	all	Python-related	data	by	interacting	with	the
memory	manager	of	the	operating	system.	On	top	of	the	raw	memory	allocator,
several	object-specific	allocators	operate	on	the	same	heap	and	implement
distinct	memory	management	policies	adapted	to	the	peculiarities	of	every	object
type.	For	example,	integer	objects	are	managed	differently	within	the	heap	than
strings,	tuples	or	dictionaries	because	integers	imply	different	storage
requirements	and	speed/space	tradeoffs.	The	Python	memory	manager	thus
delegates	some	of	the	work	to	the	object-specific	allocators,	but	ensures	that	the
latter	operate	within	the	bounds	of	the	private	heap.

It	is	important	to	understand	that	the	management	of	the	Python	heap	is
performed	by	the	interpreter	itself	and	that	the	user	has	no	control	over	it,	even	if
she	regularly	manipulates	object	pointers	to	memory	blocks	inside	that	heap.	The
allocation	of	heap	space	for	Python	objects	and	other	internal	buffers	is
performed	on	demand	by	the	Python	memory	manager	through	the	Python/C
API	functions	listed	in	this	document.

To	avoid	memory	corruption,	extension	writers	should	never	try	to	operate	on
Python	objects	with	the	functions	exported	by	the	C	library:	malloc(),
calloc(),	realloc()	and	free().	This	will	result	in	mixed	calls	between
the	C	allocator	and	the	Python	memory	manager	with	fatal	consequences,
because	they	implement	different	algorithms	and	operate	on	different	heaps.
However,	one	may	safely	allocate	and	release	memory	blocks	with	the	C	library
allocator	for	individual	purposes,	as	shown	in	the	following	example:

				PyObject	*res;

				char	*buf	=	(char	*)	malloc(BUFSIZ);	/*	for	I/O	*/

				if	(buf	==	NULL)

								return	PyErr_NoMemory();

				...Do	some	I/O	operation	involving	buf...

				res	=	PyString_FromString(buf);

				free(buf);	/*	malloc'ed	*/

				return	res;

In	this	example,	the	memory	request	for	the	I/O	buffer	is	handled	by	the	C
library	allocator.	The	Python	memory	manager	is	involved	only	in	the	allocation
of	the	string	object	returned	as	a	result.

In	most	situations,	however,	it	is	recommended	to	allocate	memory	from	the
Python	heap	specifically	because	the	latter	is	under	control	of	the	Python
memory	manager.	For	example,	this	is	required	when	the	interpreter	is	extended
with	new	object	types	written	in	C.	Another	reason	for	using	the	Python	heap	is
the	desire	to	inform	the	Python	memory	manager	about	the	memory	needs	of	the
extension	module.	Even	when	the	requested	memory	is	used	exclusively	for
internal,	highly-specific	purposes,	delegating	all	memory	requests	to	the	Python
memory	manager	causes	the	interpreter	to	have	a	more	accurate	image	of	its
memory	footprint	as	a	whole.	Consequently,	under	certain	circumstances,	the
Python	memory	manager	may	or	may	not	trigger	appropriate	actions,	like
garbage	collection,	memory	compaction	or	other	preventive	procedures.	Note
that	by	using	the	C	library	allocator	as	shown	in	the	previous	example,	the
allocated	memory	for	the	I/O	buffer	escapes	completely	the	Python	memory
manager.

Python/C	API	Reference	Manual
Previous:	9.	Memory	Management	Up:	9.	Memory	Management	Next:	9.2
Memory	Interface

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	9.1	Overview	Up:	9.	Memory	Management	Next:	9.3	Examples

9.2	Memory	Interface
The	following	function	sets,	modeled	after	the	ANSI	C	standard,	but	specifying
behavior	when	requesting	zero	bytes,	are	available	for	allocating	and	releasing
memory	from	the	Python	heap:

void*	PyMem_Malloc(size_t	n)
Allocates	n	bytes	and	returns	a	pointer	of	type	void*	to	the	allocated
memory,	or	NULL	if	the	request	fails.	Requesting	zero	bytes	returns	a
distinct	non-NULL	pointer	if	possible,	as	if	PyMem_Malloc(1)	had	been
called	instead.	The	memory	will	not	have	been	initialized	in	any	way.

void*	PyMem_Realloc(void	*p,	size_t	n)
Resizes	the	memory	block	pointed	to	by	p	to	n	bytes.	The	contents	will	be
unchanged	to	the	minimum	of	the	old	and	the	new	sizes.	If	p	is	NULL,	the
call	is	equivalent	to	PyMem_Malloc(n);	else	if	n	is	equal	to	zero,	the
memory	block	is	resized	but	is	not	freed,	and	the	returned	pointer	is	non-
NULL.	Unless	p	is	NULL,	it	must	have	been	returned	by	a	previous	call	to
PyMem_Malloc()	or	PyMem_Realloc().

void	PyMem_Free(void	*p)
Frees	the	memory	block	pointed	to	by	p,	which	must	have	been	returned	by
a	previous	call	to	PyMem_Malloc()	or	PyMem_Realloc().
Otherwise,	or	if	PyMem_Free(p)	has	been	called	before,	undefined
behavior	occurs.	If	p	is	NULL,	no	operation	is	performed.

The	following	type-oriented	macros	are	provided	for	convenience.	Note	that
TYPE	refers	to	any	C	type.

TYPE*	PyMem_New(TYPE,	size_t	n)
Same	as	PyMem_Malloc(),	but	allocates	(n	*	sizeof(TYPE))
bytes	of	memory.	Returns	a	pointer	cast	to	TYPE*.	The	memory	will	not
have	been	initialized	in	any	way.

TYPE*	PyMem_Resize(void	*p,	TYPE,	size_t	n)

Same	as	PyMem_Realloc(),	but	the	memory	block	is	resized	to	(n	*
sizeof(TYPE))	bytes.	Returns	a	pointer	cast	to	TYPE*.

void	PyMem_Del(void	*p)
Same	as	PyMem_Free().

In	addition,	the	following	macro	sets	are	provided	for	calling	the	Python
memory	allocator	directly,	without	involving	the	C	API	functions	listed	above.
However,	note	that	their	use	does	not	preserve	binary	compatibility	accross
Python	versions	and	is	therefore	deprecated	in	extension	modules.

PyMem_MALLOC(),	PyMem_REALLOC(),	PyMem_FREE().

PyMem_NEW(),	PyMem_RESIZE(),	PyMem_DEL().

Python/C	API	Reference	Manual
Previous:	9.1	Overview	Up:	9.	Memory	Management	Next:	9.3	Examples

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	9.2	Memory	Interface	Up:	9.	Memory	Management	Next:	10.	Object
Implementation	Support

9.3	Examples
Here	is	the	example	from	section	9.1,	rewritten	so	that	the	I/O	buffer	is	allocated
from	the	Python	heap	by	using	the	first	function	set:

				PyObject	*res;

				char	*buf	=	(char	*)	PyMem_Malloc(BUFSIZ);	/*	for	I/O	*/

				if	(buf	==	NULL)

								return	PyErr_NoMemory();

				/*	...Do	some	I/O	operation	involving	buf...	*/

				res	=	PyString_FromString(buf);

				PyMem_Free(buf);	/*	allocated	with	PyMem_Malloc	*/

				return	res;

The	same	code	using	the	type-oriented	function	set:

				PyObject	*res;

				char	*buf	=	PyMem_New(char,	BUFSIZ);	/*	for	I/O	*/

				if	(buf	==	NULL)

								return	PyErr_NoMemory();

				/*	...Do	some	I/O	operation	involving	buf...	*/

				res	=	PyString_FromString(buf);

				PyMem_Del(buf);	/*	allocated	with	PyMem_New	*/

				return	res;

Note	that	in	the	two	examples	above,	the	buffer	is	always	manipulated	via
functions	belonging	to	the	same	set.	Indeed,	it	is	required	to	use	the	same
memory	API	family	for	a	given	memory	block,	so	that	the	risk	of	mixing
different	allocators	is	reduced	to	a	minimum.	The	following	code	sequence
contains	two	errors,	one	of	which	is	labeled	as	fatal	because	it	mixes	two
different	allocators	operating	on	different	heaps.

char	*buf1	=	PyMem_New(char,	BUFSIZ);

char	*buf2	=	(char	*)	malloc(BUFSIZ);

char	*buf3	=	(char	*)	PyMem_Malloc(BUFSIZ);

...

PyMem_Del(buf3);		/*	Wrong	--	should	be	PyMem_Free()	*/

free(buf2);							/*	Right	--	allocated	via	malloc()	*/

free(buf1);							/*	Fatal	--	should	be	PyMem_Del()		*/

In	addition	to	the	functions	aimed	at	handling	raw	memory	blocks	from	the
Python	heap,	objects	in	Python	are	allocated	and	released	with

PyObject_New(),	PyObject_NewVar()	and	PyObject_Del(),	or
with	their	corresponding	macros	PyObject_NEW(),
PyObject_NEW_VAR()	and	PyObject_DEL().

These	will	be	explained	in	the	next	chapter	on	defining	and	implementing	new
object	types	in	C.

Python/C	API	Reference	Manual
Previous:	9.2	Memory	Interface	Up:	9.	Memory	Management	Next:	10.	Object
Implementation	Support

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	9.3	Examples	Up:	Python/C	API	Reference	Manual	Next:	10.1
Allocating	Objects	on

10.	Object	Implementation	Support
This	chapter	describes	the	functions,	types,	and	macros	used	when	defining	new
object	types.

Subsections

10.1	Allocating	Objects	on	the	Heap
10.2	Common	Object	Structures
10.3	Type	Objects
10.4	Mapping	Object	Structures
10.5	Number	Object	Structures
10.6	Sequence	Object	Structures
10.7	Buffer	Object	Structures
10.8	Supporting	the	Iterator	Protocol
10.9	Supporting	Cyclic	Garbage	Collection

Python/C	API	Reference	Manual
Previous:	9.3	Examples	Up:	Python/C	API	Reference	Manual	Next:	10.1
Allocating	Objects	on

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.	Object	Implementation	Support	Up:	10.	Object	Implementation
Support	Next:	10.2	Common	Object	Structures

10.1	Allocating	Objects	on	the	Heap
PyObject*	_PyObject_New(PyTypeObject	*type)

Return	value:	New	reference.

PyVarObject*	_PyObject_NewVar(PyTypeObject	*type,	int	size)
Return	value:	New	reference.

void	_PyObject_Del(PyObject	*op)

PyObject*	PyObject_Init(PyObject	*op,	PyTypeObject	*type)
Return	value:	Borrowed	reference.
Initialize	a	newly-allocated	object	op	with	its	type	and	initial	reference.
Returns	the	initialized	object.	If	type	indicates	that	the	object	participates	in
the	cyclic	garbage	detector,	it	is	added	to	the	detector's	set	of	observed
objects.	Other	fields	of	the	object	are	not	affected.

PyVarObject*	PyObject_InitVar(PyVarObject	*op,	PyTypeObject	*type,int	size)
This	does	everything	PyObject_Init()	does,	and	also	initializes	the
length	information	for	a	variable-size	object.

TYPE*	PyObject_New(TYPE,	PyTypeObject	*type)
Return	value:	New	reference.
Allocate	a	new	Python	object	using	the	C	structure	type	TYPE	and	the
Python	type	object	type.	Fields	not	defined	by	the	Python	object	header	are
not	initialized;	the	object's	reference	count	will	be	one.	The	size	of	the
memory	allocation	is	determined	from	the	tp_basicsize	field	of	the
type	object.

TYPE*	PyObject_NewVar(TYPE,	PyTypeObject	*type,	int	size)
Return	value:	New	reference.
Allocate	a	new	Python	object	using	the	C	structure	type	TYPE	and	the
Python	type	object	type.	Fields	not	defined	by	the	Python	object	header	are
not	initialized.	The	allocated	memory	allows	for	the	TYPE	structure	plus

size	fields	of	the	size	given	by	the	tp_itemsize	field	of	type.	This	is
useful	for	implementing	objects	like	tuples,	which	are	able	to	determine
their	size	at	construction	time.	Embedding	the	array	of	fields	into	the	same
allocation	decreases	the	number	of	allocations,	improving	the	memory
management	efficiency.

void	PyObject_Del(PyObject	*op)
Releases	memory	allocated	to	an	object	using	PyObject_New()	or
PyObject_NewVar().	This	is	normally	called	from	the	tp_dealloc
handler	specified	in	the	object's	type.	The	fields	of	the	object	should	not	be
accessed	after	this	call	as	the	memory	is	no	longer	a	valid	Python	object.

TYPE*	PyObject_NEW(TYPE,	PyTypeObject	*type)
Return	value:	New	reference.
Macro	version	of	PyObject_New(),	to	gain	performance	at	the	expense
of	safety.	This	does	not	check	type	for	a	NULL	value.

TYPE*	PyObject_NEW_VAR(TYPE,	PyTypeObject	*type,	int	size)
Return	value:	New	reference.
Macro	version	of	PyObject_NewVar(),	to	gain	performance	at	the
expense	of	safety.	This	does	not	check	type	for	a	NULL	value.

void	PyObject_DEL(PyObject	*op)
Macro	version	of	PyObject_Del().

PyObject*	Py_InitModule(char	*name,	PyMethodDef	*methods)
Return	value:	Borrowed	reference.
Create	a	new	module	object	based	on	a	name	and	table	of	functions,
returning	the	new	module	object.

Changed	in	version	2.3:	Older	versions	of	Python	did	not	support	NULL	as
the	value	for	the	methods	argument.

PyObject*	Py_InitModule3(char	*name,	PyMethodDef	*methods,	char
*doc)

Return	value:	Borrowed	reference.
Create	a	new	module	object	based	on	a	name	and	table	of	functions,

returning	the	new	module	object.	If	doc	is	non-NULL,	it	will	be	used	to
define	the	docstring	for	the	module.

Changed	in	version	2.3:	Older	versions	of	Python	did	not	support	NULL	as
the	value	for	the	methods	argument.

PyObject*	Py_InitModule4(char	*name,	PyMethodDef	*methods,	char
*doc,	PyObject	*self,	int	apiver)

Return	value:	Borrowed	reference.
Create	a	new	module	object	based	on	a	name	and	table	of	functions,
returning	the	new	module	object.	If	doc	is	non-NULL,	it	will	be	used	to
define	the	docstring	for	the	module.	If	self	is	non-NULL,	it	will	passed	to
the	functions	of	the	module	as	their	(otherwise	NULL)	first	parameter.	(This
was	added	as	an	experimental	feature,	and	there	are	no	known	uses	in	the
current	version	of	Python.)	For	apiver,	the	only	value	which	should	be
passed	is	defined	by	the	constant	PYTHON_API_VERSION.

Note:	Most	uses	of	this	function	should	probably	be	using	the
Py_InitModule3()	instead;	only	use	this	if	you	are	sure	you	need	it.

Changed	in	version	2.3:	Older	versions	of	Python	did	not	support	NULL	as
the	value	for	the	methods	argument.

DL_IMPORT

PyObject	_Py_NoneStruct
Object	which	is	visible	in	Python	as	None.	This	should	only	be	accessed
using	the	Py_None	macro,	which	evaluates	to	a	pointer	to	this	object.

Python/C	API	Reference	Manual
Previous:	10.	Object	Implementation	Support	Up:	10.	Object	Implementation
Support	Next:	10.2	Common	Object	Structures

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.1	Allocating	Objects	on	Up:	10.	Object	Implementation	Support
Next:	10.3	Type	Objects

10.2	Common	Object	Structures
There	are	a	large	number	of	structures	which	are	used	in	the	definition	of	object
types	for	Python.	This	section	describes	these	structures	and	how	they	are	used.

All	Python	objects	ultimately	share	a	small	number	of	fields	at	the	beginning	of
the	object's	representation	in	memory.	These	are	represented	by	the	PyObject
and	PyVarObject	types,	which	are	defined,	in	turn,	by	the	expansions	of
some	macros	also	used,	whether	directly	or	indirectly,	in	the	definition	of	all
other	Python	objects.

PyObject

All	object	types	are	extensions	of	this	type.	This	is	a	type	which	contains
the	information	Python	needs	to	treat	a	pointer	to	an	object	as	an	object.	In
a	normal	``release''	build,	it	contains	only	the	objects	reference	count	and	a
pointer	to	the	corresponding	type	object.	It	corresponds	to	the	fields	defined
by	the	expansion	of	the	PyObject_HEAD	macro.

PyVarObject

This	is	an	extension	of	PyObject	that	adds	the	ob_size	field.	This	is
only	used	for	objects	that	have	some	notion	of	length.	This	type	does	not
often	appear	in	the	Python/C	API.	It	corresponds	to	the	fields	defined	by	the
expansion	of	the	PyObject_VAR_HEAD	macro.

These	macros	are	used	in	the	definition	of	PyObject	and	PyVarObject:

PyObject_HEAD

This	is	a	macro	which	expands	to	the	declarations	of	the	fields	of	the
PyObject	type;	it	is	used	when	declaring	new	types	which	represent
objects	without	a	varying	length.	The	specific	fields	it	expands	to	depend
on	the	definition	of	Py_TRACE_REFS.	By	default,	that	macro	is	not
defined,	and	PyObject_HEAD	expands	to:

				int	ob_refcnt;

				PyTypeObject	*ob_type;

When	Py_TRACE_REFS	is	defined,	it	expands	to:
				PyObject	*_ob_next,	*_ob_prev;

				int	ob_refcnt;

				PyTypeObject	*ob_type;

PyObject_VAR_HEAD

This	is	a	macro	which	expands	to	the	declarations	of	the	fields	of	the
PyVarObject	type;	it	is	used	when	declaring	new	types	which	represent
objects	with	a	length	that	varies	from	instance	to	instance.	This	macro
always	expands	to:

				PyObject_HEAD

				int	ob_size;

Note	that	PyObject_HEAD	is	part	of	the	expansion,	and	that	it's	own
expansion	varies	depending	on	the	definition	of	Py_TRACE_REFS.

PyObject_HEAD_INIT

PyCFunction

Type	of	the	functions	used	to	implement	most	Python	callables	in	C.
Functions	of	this	type	take	two	PyObject*	parameters	and	return	one
such	value.	If	the	return	value	is	NULL,	an	exception	shall	have	been	set.	If
not	NULL,	the	return	value	is	interpreted	as	the	return	value	of	the	function
as	exposed	in	Python.	The	function	must	return	a	new	reference.

PyMethodDef

Structure	used	to	describe	a	method	of	an	extension	type.	This	structure	has
four	fields:

Field C	Type Meaning
ml_name char	* name	of	the	method
ml_meth PyCFunction pointer	to	the	C	implementation
ml_flags int flag	bits	indicating	how	the	call	should	be

constructed
ml_doc char	* points	to	the	contents	of	the	docstring

The	ml_meth	is	a	C	function	pointer.	The	functions	may	be	of	different	types,
but	they	always	return	PyObject*.	If	the	function	is	not	of	the
PyCFunction,	the	compiler	will	require	a	cast	in	the	method	table.	Even
though	PyCFunction	defines	the	first	parameter	as	PyObject*,	it	is
common	that	the	method	implementation	uses	a	the	specific	C	type	of	the	self

object.

The	ml_flags	field	is	a	bitfield	which	can	include	the	following	flags.	The
individual	flags	indicate	either	a	calling	convention	or	a	binding	convention.	Of
the	calling	convention	flags,	only	METH_VARARGS	and	METH_KEYWORDS	can
be	combined	(but	note	that	METH_KEYWORDS	alone	is	equivalent	to
METH_VARARGS	|	METH_KEYWORDS).	Any	of	the	calling	convention	flags
can	be	combined	with	a	binding	flag.

METH_VARARGS

This	is	the	typical	calling	convention,	where	the	methods	have	the	type
PyCFunction.	The	function	expects	two	PyObject*	values.	The	first
one	is	the	self	object	for	methods;	for	module	functions,	it	has	the	value
given	to	Py_InitModule4()	(or	NULL	if	Py_InitModule()	was
used).	The	second	parameter	(often	called	args)	is	a	tuple	object
representing	all	arguments.	This	parameter	is	typically	processed	using
PyArg_ParseTuple()	or	PyArg_UnpackTuple.

METH_KEYWORDS

Methods	with	these	flags	must	be	of	type
PyCFunctionWithKeywords.	The	function	expects	three	parameters:
self,	args,	and	a	dictionary	of	all	the	keyword	arguments.	The	flag	is
typically	combined	with	METH_VARARGS,	and	the	parameters	are	typically
processed	using	PyArg_ParseTupleAndKeywords().

METH_NOARGS

Methods	without	parameters	don't	need	to	check	whether	arguments	are
given	if	they	are	listed	with	the	METH_NOARGS	flag.	They	need	to	be	of
type	PyCFunction.	When	used	with	object	methods,	the	first	parameter
is	typically	named	self	and	will	hold	a	reference	to	the	object	instance.	In
all	cases	the	second	parameter	will	be	NULL.

METH_O

Methods	with	a	single	object	argument	can	be	listed	with	the	METH_O	flag,
instead	of	invoking	PyArg_ParseTuple()	with	a	"O"	argument.	They
have	the	type	PyCFunction,	with	the	self	parameter,	and	a	PyObject*
parameter	representing	the	single	argument.

METH_OLDARGS

This	calling	convention	is	deprecated.	The	method	must	be	of	type
PyCFunction.	The	second	argument	is	NULL	if	no	arguments	are	given,
a	single	object	if	exactly	one	argument	is	given,	and	a	tuple	of	objects	if
more	than	one	argument	is	given.	There	is	no	way	for	a	function	using	this
convention	to	distinguish	between	a	call	with	multiple	arguments	and	a	call
with	a	tuple	as	the	only	argument.

These	two	constants	are	not	used	to	indicate	the	calling	convention	but	the
binding	when	use	with	methods	of	classes.	These	may	not	be	used	for	functions
defined	for	modules.	At	most	one	of	these	flags	may	be	set	for	any	given
method.

METH_CLASS

The	method	will	be	passed	the	type	object	as	the	first	parameter	rather	than
an	instance	of	the	type.	This	is	used	to	create	class	methods,	similar	to	what
is	created	when	using	the	classmethod()	built-in	function.	New	in
version	2.3.

METH_STATIC

The	method	will	be	passed	NULL	as	the	first	parameter	rather	than	an
instance	of	the	type.	This	is	used	to	create	static	methods,	similar	to	what	is
created	when	using	the	staticmethod()	built-in	function.	New	in
version	2.3.

One	other	constant	controls	whether	a	method	is	loaded	in	place	of	another
definition	with	the	same	method	name.

METH_COEXIST

The	method	will	be	loaded	in	place	of	existing	definitions.	Without
METH_COEXIST,	the	default	is	to	skip	repeated	definitions.	Since	slot
wrappers	are	loaded	before	the	method	table,	the	existence	of	a	sq_contains
slot,	for	example,	would	generate	a	wrapped	method	named
__contains__()	and	preclude	the	loading	of	a	corresponding
PyCFunction	with	the	same	name.	With	the	flag	defined,	the	PyCFunction
will	be	loaded	in	place	of	the	wrapper	object	and	will	co-exist	with	the	slot.
This	is	helpful	because	calls	to	PyCFunctions	are	optimized	more	than
wrapper	object	calls.	New	in	version	2.4.

PyMethodDef	table[],	PyObject	*ob,	char

PyObject*	Py_FindMethod(*name)

Return	value:	New	reference.
Return	a	bound	method	object	for	an	extension	type	implemented	in	C.	This
can	be	useful	in	the	implementation	of	a	tp_getattro	or	tp_getattr
handler	that	does	not	use	the	PyObject_GenericGetAttr()	function.

Python/C	API	Reference	Manual
Previous:	10.1	Allocating	Objects	on	Up:	10.	Object	Implementation	Support
Next:	10.3	Type	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.2	Common	Object	Structures	Up:	10.	Object	Implementation
Support	Next:	10.4	Mapping	Object	Structures

10.3	Type	Objects
Perhaps	one	of	the	most	important	structures	of	the	Python	object	system	is	the
structure	that	defines	a	new	type:	the	PyTypeObject	structure.	Type	objects
can	be	handled	using	any	of	the	PyObject_*()	or	PyType_*()	functions,
but	do	not	offer	much	that's	interesting	to	most	Python	applications.	These
objects	are	fundamental	to	how	objects	behave,	so	they	are	very	important	to	the
interpreter	itself	and	to	any	extension	module	that	implements	new	types.

Type	objects	are	fairly	large	compared	to	most	of	the	standard	types.	The	reason
for	the	size	is	that	each	type	object	stores	a	large	number	of	values,	mostly	C
function	pointers,	each	of	which	implements	a	small	part	of	the	type's
functionality.	The	fields	of	the	type	object	are	examined	in	detail	in	this	section.
The	fields	will	be	described	in	the	order	in	which	they	occur	in	the	structure.

Typedefs:	unaryfunc,	binaryfunc,	ternaryfunc,	inquiry,	coercion,	intargfunc,
intintargfunc,	intobjargproc,	intintobjargproc,	objobjargproc,	destructor,
freefunc,	printfunc,	getattrfunc,	getattrofunc,	setattrfunc,	setattrofunc,	cmpfunc,
reprfunc,	hashfunc

The	structure	definition	for	PyTypeObject	can	be	found	in	Include/object.h.
For	convenience	of	reference,	this	repeats	the	definition	found	there:

typedef	struct	_typeobject	{

				PyObject_VAR_HEAD

				char	*tp_name;	/*	For	printing,	in	format	"<module>.<name>"	*/

				int	tp_basicsize,	tp_itemsize;	/*	For	allocation	*/

				/*	Methods	to	implement	standard	operations	*/

				destructor	tp_dealloc;

				printfunc	tp_print;

				getattrfunc	tp_getattr;

				setattrfunc	tp_setattr;

				cmpfunc	tp_compare;

				reprfunc	tp_repr;

				/*	Method	suites	for	standard	classes	*/

				PyNumberMethods	*tp_as_number;

				PySequenceMethods	*tp_as_sequence;

				PyMappingMethods	*tp_as_mapping;

				/*	More	standard	operations	(here	for	binary	compatibility)	*/

				hashfunc	tp_hash;

				ternaryfunc	tp_call;

				reprfunc	tp_str;

				getattrofunc	tp_getattro;

				setattrofunc	tp_setattro;

				/*	Functions	to	access	object	as	input/output	buffer	*/

				PyBufferProcs	*tp_as_buffer;

				/*	Flags	to	define	presence	of	optional/expanded	features	*/

				long	tp_flags;

				char	*tp_doc;	/*	Documentation	string	*/

				/*	Assigned	meaning	in	release	2.0	*/

				/*	call	function	for	all	accessible	objects	*/

				traverseproc	tp_traverse;

				/*	delete	references	to	contained	objects	*/

				inquiry	tp_clear;

				/*	Assigned	meaning	in	release	2.1	*/

				/*	rich	comparisons	*/

				richcmpfunc	tp_richcompare;

				/*	weak	reference	enabler	*/

				long	tp_weaklistoffset;

				/*	Added	in	release	2.2	*/

				/*	Iterators	*/

				getiterfunc	tp_iter;

				iternextfunc	tp_iternext;

				/*	Attribute	descriptor	and	subclassing	stuff	*/

				struct	PyMethodDef	*tp_methods;

				struct	PyMemberDef	*tp_members;

				struct	PyGetSetDef	*tp_getset;

				struct	_typeobject	*tp_base;

				PyObject	*tp_dict;

				descrgetfunc	tp_descr_get;

				descrsetfunc	tp_descr_set;

				long	tp_dictoffset;

				initproc	tp_init;

				allocfunc	tp_alloc;

				newfunc	tp_new;

				freefunc	tp_free;	/*	Low-level	free-memory	routine	*/

				inquiry	tp_is_gc;	/*	For	PyObject_IS_GC	*/

				PyObject	*tp_bases;

				PyObject	*tp_mro;	/*	method	resolution	order	*/

				PyObject	*tp_cache;

				PyObject	*tp_subclasses;

				PyObject	*tp_weaklist;

}	PyTypeObject;

Download	as	text	(original	file	name:	typestruct.h).

The	type	object	structure	extends	the	PyVarObject	structure.	The	ob_size
field	is	used	for	dynamic	types	(created	by	type_new(),	usually	called	from	a
class	statement).	Note	that	PyType_Type	(the	metatype)	initializes
tp_itemsize,	which	means	that	its	instances	(i.e.	type	objects)	must	have	the
ob_size	field.

PyObject*	_ob_next
PyObject*	_ob_prev

These	fields	are	only	present	when	the	macro	Py_TRACE_REFS	is
defined.	Their	initialization	to	NULL	is	taken	care	of	by	the
PyObject_HEAD_INIT	macro.	For	statically	allocated	objects,	these
fields	always	remain	NULL.	For	dynamically	allocated	objects,	these	two
fields	are	used	to	link	the	object	into	a	doubly-linked	list	of	all	live	objects
on	the	heap.	This	could	be	used	for	various	debugging	purposes;	currently
the	only	use	is	to	print	the	objects	that	are	still	alive	at	the	end	of	a	run
when	the	environment	variable	PYTHONDUMPREFS	is	set.

These	fields	are	not	inherited	by	subtypes.

int	ob_refcnt
This	is	the	type	object's	reference	count,	initialized	to	1	by	the
PyObject_HEAD_INIT	macro.	Note	that	for	statically	allocated	type
objects,	the	type's	instances	(objects	whose	ob_type	points	back	to	the
type)	do	not	count	as	references.	But	for	dynamically	allocated	type	objects,
the	instances	do	count	as	references.

This	field	is	not	inherited	by	subtypes.

PyTypeObject*	ob_type
This	is	the	type's	type,	in	other	words	its	metatype.	It	is	initialized	by	the
argument	to	the	PyObject_HEAD_INIT	macro,	and	its	value	should
normally	be	&PyType_Type.	However,	for	dynamically	loadable

extension	modules	that	must	be	usable	on	Windows	(at	least),	the	compiler
complains	that	this	is	not	a	valid	initializer.	Therefore,	the	convention	is	to
pass	NULL	to	the	PyObject_HEAD_INIT	macro	and	to	initialize	this
field	explicitly	at	the	start	of	the	module's	initialization	function,	before
doing	anything	else.	This	is	typically	done	like	this:

Foo_Type.ob_type	=	&PyType_Type;

This	should	be	done	before	any	instances	of	the	type	are	created.
PyType_Ready()	checks	if	ob_type	is	NULL,	and	if	so,	initializes	it:
in	Python	2.2,	it	is	set	to	&PyType_Type;	in	Python	2.2.1	and	later	it	is
initialized	to	the	ob_type	field	of	the	base	class.	PyType_Ready()
will	not	change	this	field	if	it	is	non-zero.

In	Python	2.2,	this	field	is	not	inherited	by	subtypes.	In	2.2.1,	and	in	2.3	and
beyond,	it	is	inherited	by	subtypes.

int	ob_size
For	statically	allocated	type	objects,	this	should	be	initialized	to	zero.	For
dynamically	allocated	type	objects,	this	field	has	a	special	internal	meaning.

This	field	is	not	inherited	by	subtypes.

char*	tp_name
Pointer	to	a	NUL-terminated	string	containing	the	name	of	the	type.	For
types	that	are	accessible	as	module	globals,	the	string	should	be	the	full
module	name,	followed	by	a	dot,	followed	by	the	type	name;	for	built-in
types,	it	should	be	just	the	type	name.	If	the	module	is	a	submodule	of	a
package,	the	full	package	name	is	part	of	the	full	module	name.	For
example,	a	type	named	T	defined	in	module	M	in	subpackage	Q	in	package
P	should	have	the	tp_name	initializer	"P.Q.M.T".

For	dynamically	allocated	type	objects,	this	should	just	be	the	type	name,
and	the	module	name	explicitly	stored	in	the	type	dict	as	the	value	for	key
'__module__'.

For	statically	allocated	type	objects,	the	tp_name	field	should	contain	a	dot.
Everything	before	the	last	dot	is	made	accessible	as	the	__module__
attribute,	and	everything	after	the	last	dot	is	made	accessible	as	the

__name__	attribute.

If	no	dot	is	present,	the	entire	tp_name	field	is	made	accessible	as	the
__name__	attribute,	and	the	__module__	attribute	is	undefined	(unless
explicitly	set	in	the	dictionary,	as	explained	above).	This	means	your	type
will	be	impossible	to	pickle.

This	field	is	not	inherited	by	subtypes.

int	tp_basicsize
int	tp_itemsize

These	fields	allow	calculating	the	size	in	bytes	of	instances	of	the	type.

There	are	two	kinds	of	types:	types	with	fixed-length	instances	have	a	zero
tp_itemsize	field,	types	with	variable-length	instances	have	a	non-zero
tp_itemsize	field.	For	a	type	with	fixed-length	instances,	all	instances
have	the	same	size,	given	in	tp_basicsize.

For	a	type	with	variable-length	instances,	the	instances	must	have	an
ob_size	field,	and	the	instance	size	is	tp_basicsize	plus	N	times
tp_itemsize,	where	N	is	the	``length''	of	the	object.	The	value	of	N	is
typically	stored	in	the	instance's	ob_size	field.	There	are	exceptions:	for
example,	long	ints	use	a	negative	ob_size	to	indicate	a	negative	number,
and	N	is	abs(ob_size)	there.	Also,	the	presence	of	an	ob_size	field
in	the	instance	layout	doesn't	mean	that	the	instance	structure	is	variable-
length	(for	example,	the	structure	for	the	list	type	has	fixed-length
instances,	yet	those	instances	have	a	meaningful	ob_size	field).

The	basic	size	includes	the	fields	in	the	instance	declared	by	the	macro
PyObject_HEAD	or	PyObject_VAR_HEAD	(whichever	is	used	to	declare
the	instance	struct)	and	this	in	turn	includes	the	_ob_prev	and
_ob_next	fields	if	they	are	present.	This	means	that	the	only	correct	way
to	get	an	initializer	for	the	tp_basicsize	is	to	use	the	sizeof	operator
on	the	struct	used	to	declare	the	instance	layout.	The	basic	size	does	not
include	the	GC	header	size	(this	is	new	in	Python	2.2;	in	2.1	and	2.0,	the
GC	header	size	was	included	in	tp_basicsize).

These	fields	are	inherited	separately	by	subtypes.	If	the	base	type	has	a	non-
zero	tp_itemsize,	it	is	generally	not	safe	to	set	tp_itemsize	to	a

different	non-zero	value	in	a	subtype	(though	this	depends	on	the
implementation	of	the	base	type).

A	note	about	alignment:	if	the	variable	items	require	a	particular	alignment,
this	should	be	taken	care	of	by	the	value	of	tp_basicsize.	Example:
suppose	a	type	implements	an	array	of	double.	tp_itemsize	is
sizeof(double).	It	is	the	programmer's	responsibility	that
tp_basicsize	is	a	multiple	of	sizeof(double)	(assuming	this	is
the	alignment	requirement	for	double).

destructor	tp_dealloc
A	pointer	to	the	instance	destructor	function.	This	function	must	be	defined
unless	the	type	guarantees	that	its	instances	will	never	be	deallocated	(as	is
the	case	for	the	singletons	None	and	Ellipsis).

The	destructor	function	is	called	by	the	Py_DECREF()	and
Py_XDECREF()	macros	when	the	new	reference	count	is	zero.	At	this
point,	the	instance	is	still	in	existence,	but	there	are	no	references	to	it.	The
destructor	function	should	free	all	references	which	the	instance	owns,	free
all	memory	buffers	owned	by	the	instance	(using	the	freeing	function
corresponding	to	the	allocation	function	used	to	allocate	the	buffer),	and
finally	(as	its	last	action)	call	the	type's	tp_free	function.	If	the	type	is
not	subtypable	(doesn't	have	the	Py_TPFLAGS_BASETYPE	flag	bit	set),	it
is	permissible	to	call	the	object	deallocator	directly	instead	of	via
tp_free.	The	object	deallocator	should	be	the	one	used	to	allocate	the
instance;	this	is	normally	PyObject_Del()	if	the	instance	was	allocated
using	PyObject_New()	or	PyOject_VarNew(),	or
PyObject_GC_Del()	if	the	instance	was	allocated	using
PyObject_GC_New()	or	PyObject_GC_VarNew().

This	field	is	inherited	by	subtypes.

printfunc	tp_print
An	optional	pointer	to	the	instance	print	function.

The	print	function	is	only	called	when	the	instance	is	printed	to	a	real	file;
when	it	is	printed	to	a	pseudo-file	(like	a	StringIO	instance),	the
instance's	tp_repr	or	tp_str	function	is	called	to	convert	it	to	a	string.
These	are	also	called	when	the	type's	tp_print	field	is	NULL.	A	type

should	never	implement	tp_print	in	a	way	that	produces	different	output
than	tp_repr	or	tp_str	would.

The	print	function	is	called	with	the	same	signature	as
PyObject_Print():	int	tp_print(PyObject	*self,	FILE
*file,	int	flags).	The	self	argument	is	the	instance	to	be	printed.
The	file	argument	is	the	stdio	file	to	which	it	is	to	be	printed.	The	flags
argument	is	composed	of	flag	bits.	The	only	flag	bit	currently	defined	is
Py_PRINT_RAW.	When	the	Py_PRINT_RAW	flag	bit	is	set,	the	instance
should	be	printed	the	same	way	as	tp_str	would	format	it;	when	the
Py_PRINT_RAW	flag	bit	is	clear,	the	instance	should	be	printed	the	same
was	as	tp_repr	would	format	it.	It	should	return	-1	and	set	an	exception
condition	when	an	error	occurred	during	the	comparison.

It	is	possible	that	the	tp_print	field	will	be	deprecated.	In	any	case,	it	is
recommended	not	to	define	tp_print,	but	instead	to	rely	on	tp_repr
and	tp_str	for	printing.

This	field	is	inherited	by	subtypes.

getattrfunc	tp_getattr
An	optional	pointer	to	the	get-attribute-string	function.

This	field	is	deprecated.	When	it	is	defined,	it	should	point	to	a	function
that	acts	the	same	as	the	tp_getattro	function,	but	taking	a	C	string
instead	of	a	Python	string	object	to	give	the	attribute	name.	The	signature	is
the	same	as	for	PyObject_GetAttrString().

This	field	is	inherited	by	subtypes	together	with	tp_getattro:	a	subtype
inherits	both	tp_getattr	and	tp_getattro	from	its	base	type	when
the	subtype's	tp_getattr	and	tp_getattro	are	both	NULL.

setattrfunc	tp_setattr
An	optional	pointer	to	the	set-attribute-string	function.

This	field	is	deprecated.	When	it	is	defined,	it	should	point	to	a	function
that	acts	the	same	as	the	tp_setattro	function,	but	taking	a	C	string
instead	of	a	Python	string	object	to	give	the	attribute	name.	The	signature	is
the	same	as	for	PyObject_SetAttrString().

This	field	is	inherited	by	subtypes	together	with	tp_setattro:	a	subtype
inherits	both	tp_setattr	and	tp_setattro	from	its	base	type	when
the	subtype's	tp_setattr	and	tp_setattro	are	both	NULL.

cmpfunc	tp_compare
An	optional	pointer	to	the	three-way	comparison	function.

The	signature	is	the	same	as	for	PyObject_Compare().	The	function
should	return	1	if	self	greater	than	other,	0	if	self	is	equal	to	other,	and	-1
if	self	less	than	other.	It	should	return	-1	and	set	an	exception	condition
when	an	error	occurred	during	the	comparison.

This	field	is	inherited	by	subtypes	together	with	tp_richcompare	and
tp_hash:	a	subtypes	inherits	all	three	of	tp_compare,
tp_richcompare,	and	tp_hash	when	the	subtype's	tp_compare,
tp_richcompare,	and	tp_hash	are	all	NULL.

reprfunc	tp_repr
An	optional	pointer	to	a	function	that	implements	the	built-in	function
repr().

The	signature	is	the	same	as	for	PyObject_Repr();	it	must	return	a
string	or	a	Unicode	object.	Ideally,	this	function	should	return	a	string	that,
when	passed	to	eval(),	given	a	suitable	environment,	returns	an	object
with	the	same	value.	If	this	is	not	feasible,	it	should	return	a	string	starting
with	"<"	and	ending	with	">"	from	which	both	the	type	and	the	value	of	the
object	can	be	deduced.

When	this	field	is	not	set,	a	string	of	the	form	"<%s	object	at	%p>"	is
returned,	where	%s	is	replaced	by	the	type	name,	and	%p	by	the	object's
memory	address.

This	field	is	inherited	by	subtypes.

PyNumberMethods	*tp_as_number;

XXX

PySequenceMethods	*tp_as_sequence;

XXX

PyMappingMethods	*tp_as_mapping;

XXX

hashfunc	tp_hash
An	optional	pointer	to	a	function	that	implements	the	built-in	function
hash().

The	signature	is	the	same	as	for	PyObject_Hash();	it	must	return	a	C
long.	The	value	-1	should	not	be	returned	as	a	normal	return	value;	when
an	error	occurs	during	the	computation	of	the	hash	value,	the	function
should	set	an	exception	and	return	-1.

When	this	field	is	not	set,	two	possibilities	exist:	if	the	tp_compare	and
tp_richcompare	fields	are	both	NULL,	a	default	hash	value	based	on
the	object's	address	is	returned;	otherwise,	a	TypeError	is	raised.

This	field	is	inherited	by	subtypes	together	with	tp_richcompare	and
tp_compare:	a	subtypes	inherits	all	three	of	tp_compare,
tp_richcompare,	and	tp_hash,	when	the	subtype's	tp_compare,
tp_richcompare	and	tp_hash	are	all	NULL.

ternaryfunc	tp_call
An	optional	pointer	to	a	function	that	implements	calling	the	object.	This
should	be	NULL	if	the	object	is	not	callable.	The	signature	is	the	same	as	for
PyObject_Call().

This	field	is	inherited	by	subtypes.

reprfunc	tp_str
An	optional	pointer	to	a	function	that	implements	the	built-in	operation
str().	(Note	that	str	is	a	type	now,	and	str()	calls	the	constructor	for
that	type.	This	constructor	calls	PyObject_Str()	to	do	the	actual	work,
and	PyObject_Str()	will	call	this	handler.)

The	signature	is	the	same	as	for	PyObject_Str();	it	must	return	a	string
or	a	Unicode	object.	This	function	should	return	a	``friendly''	string

representation	of	the	object,	as	this	is	the	representation	that	will	be	used	by
the	print	statement.

When	this	field	is	not	set,	PyObject_Repr()	is	called	to	return	a	string
representation.

This	field	is	inherited	by	subtypes.

getattrofunc	tp_getattro
An	optional	pointer	to	the	get-attribute	function.

The	signature	is	the	same	as	for	PyObject_GetAttr().	It	is	usually
convenient	to	set	this	field	to	PyObject_GenericGetAttr(),	which
implements	the	normal	way	of	looking	for	object	attributes.

This	field	is	inherited	by	subtypes	together	with	tp_getattr:	a	subtype
inherits	both	tp_getattr	and	tp_getattro	from	its	base	type	when
the	subtype's	tp_getattr	and	tp_getattro	are	both	NULL.

setattrofunc	tp_setattro
An	optional	pointer	to	the	set-attribute	function.

The	signature	is	the	same	as	for	PyObject_SetAttr().	It	is	usually
convenient	to	set	this	field	to	PyObject_GenericSetAttr(),	which
implements	the	normal	way	of	setting	object	attributes.

This	field	is	inherited	by	subtypes	together	with	tp_setattr:	a	subtype
inherits	both	tp_setattr	and	tp_setattro	from	its	base	type	when
the	subtype's	tp_setattr	and	tp_setattro	are	both	NULL.

PyBufferProcs*	tp_as_buffer
Pointer	to	an	additional	structure	that	contains	fields	relevant	only	to
objects	which	implement	the	buffer	interface.	These	fields	are	documented
in	``Buffer	Object	Structures''	(section	10.7).

The	tp_as_buffer	field	is	not	inherited,	but	the	contained	fields	are
inherited	individually.

long	tp_flags

This	field	is	a	bit	mask	of	various	flags.	Some	flags	indicate	variant
semantics	for	certain	situations;	others	are	used	to	indicate	that	certain
fields	in	the	type	object	(or	in	the	extension	structures	referenced	via
tp_as_number,	tp_as_sequence,	tp_as_mapping,	and
tp_as_buffer)	that	were	historically	not	always	present	are	valid;	if
such	a	flag	bit	is	clear,	the	type	fields	it	guards	must	not	be	accessed	and
must	be	considered	to	have	a	zero	or	NULL	value	instead.

Inheritance	of	this	field	is	complicated.	Most	flag	bits	are	inherited
individually,	i.e.	if	the	base	type	has	a	flag	bit	set,	the	subtype	inherits	this
flag	bit.	The	flag	bits	that	pertain	to	extension	structures	are	strictly
inherited	if	the	extension	structure	is	inherited,	i.e.	the	base	type's	value	of
the	flag	bit	is	copied	into	the	subtype	together	with	a	pointer	to	the
extension	structure.	The	Py_TPFLAGS_HAVE_GC	flag	bit	is	inherited
together	with	the	tp_traverse	and	tp_clear	fields,	i.e.	if	the
Py_TPFLAGS_HAVE_GC	flag	bit	is	clear	in	the	subtype	and	the
tp_traverse	and	tp_clear	fields	in	the	subtype	exist	(as	indicated	by
the	Py_TPFLAGS_HAVE_RICHCOMPARE	flag	bit)	and	have	NULL
values.

The	following	bit	masks	are	currently	defined;	these	can	be	or-ed	together
using	the	|	operator	to	form	the	value	of	the	tp_flags	field.	The	macro
PyType_HasFeature()	takes	a	type	and	a	flags	value,	tp	and	f,	and
checks	whether	tp->tp_flags	&	f	is	non-zero.

Py_TPFLAGS_HAVE_GETCHARBUFFER

If	this	bit	is	set,	the	PyBufferProcs	struct	referenced	by
tp_as_buffer	has	the	bf_getcharbuffer	field.

Py_TPFLAGS_HAVE_SEQUENCE_IN

If	this	bit	is	set,	the	PySequenceMethods	struct	referenced	by
tp_as_sequence	has	the	sq_contains	field.

Py_TPFLAGS_GC

This	bit	is	obsolete.	The	bit	it	used	to	name	is	no	longer	in	use.	The
symbol	is	now	defined	as	zero.

Py_TPFLAGS_HAVE_INPLACEOPS

If	this	bit	is	set,	the	PySequenceMethods	struct	referenced	by

tp_as_sequence	and	the	PyNumberMethods	structure
referenced	by	tp_as_number	contain	the	fields	for	in-place
operators.	In	particular,	this	means	that	the	PyNumberMethods
structure	has	the	fields	nb_inplace_add,
nb_inplace_subtract,	nb_inplace_multiply,
nb_inplace_divide,	nb_inplace_remainder,
nb_inplace_power,	nb_inplace_lshift,
nb_inplace_rshift,	nb_inplace_and,	nb_inplace_xor,
and	nb_inplace_or;	and	the	PySequenceMethods	struct	has
the	fields	sq_inplace_concat	and	sq_inplace_repeat.

Py_TPFLAGS_CHECKTYPES

If	this	bit	is	set,	the	binary	and	ternary	operations	in	the
PyNumberMethods	structure	referenced	by	tp_as_number
accept	arguments	of	arbitrary	object	types,	and	do	their	own	type
conversions	if	needed.	If	this	bit	is	clear,	those	operations	require	that
all	arguments	have	the	current	type	as	their	type,	and	the	caller	is
supposed	to	perform	a	coercion	operation	first.	This	applies	to
nb_add,	nb_subtract,	nb_multiply,	nb_divide,
nb_remainder,	nb_divmod,	nb_power,	nb_lshift,
nb_rshift,	nb_and,	nb_xor,	and	nb_or.

Py_TPFLAGS_HAVE_RICHCOMPARE

If	this	bit	is	set,	the	type	object	has	the	tp_richcompare	field,	as
well	as	the	tp_traverse	and	the	tp_clear	fields.

Py_TPFLAGS_HAVE_WEAKREFS

If	this	bit	is	set,	the	tp_weaklistoffset	field	is	defined.
Instances	of	a	type	are	weakly	referenceable	if	the	type's
tp_weaklistoffset	field	has	a	value	greater	than	zero.

Py_TPFLAGS_HAVE_ITER

If	this	bit	is	set,	the	type	object	has	the	tp_iter	and	tp_iternext
fields.

Py_TPFLAGS_HAVE_CLASS

If	this	bit	is	set,	the	type	object	has	several	new	fields	defined	starting
in	Python	2.2:	tp_methods,	tp_members,	tp_getset,

tp_base,	tp_dict,	tp_descr_get,	tp_descr_set,
tp_dictoffset,	tp_init,	tp_alloc,	tp_new,	tp_free,
tp_is_gc,	tp_bases,	tp_mro,	tp_cache,	tp_subclasses,
and	tp_weaklist.

Py_TPFLAGS_HEAPTYPE

This	bit	is	set	when	the	type	object	itself	is	allocated	on	the	heap.	In
this	case,	the	ob_type	field	of	its	instances	is	considered	a	reference
to	the	type,	and	the	type	object	is	INCREF'ed	when	a	new	instance	is
created,	and	DECREF'ed	when	an	instance	is	destroyed	(this	does	not
apply	to	instances	of	subtypes;	only	the	type	referenced	by	the
instance's	ob_type	gets	INCREF'ed	or	DECREF'ed).

Py_TPFLAGS_BASETYPE

This	bit	is	set	when	the	type	can	be	used	as	the	base	type	of	another
type.	If	this	bit	is	clear,	the	type	cannot	be	subtyped	(similar	to	a
"final"	class	in	Java).

Py_TPFLAGS_READY

This	bit	is	set	when	the	type	object	has	been	fully	initialized	by
PyType_Ready().

Py_TPFLAGS_READYING

This	bit	is	set	while	PyType_Ready()	is	in	the	process	of
initializing	the	type	object.

Py_TPFLAGS_HAVE_GC

This	bit	is	set	when	the	object	supports	garbage	collection.	If	this	bit	is
set,	instances	must	be	created	using	PyObject_GC_New()	and
destroyed	using	PyObject_GC_Del().	More	information	in	section
XXX	about	garbage	collection.	This	bit	also	implies	that	the	GC-
related	fields	tp_traverse	and	tp_clear	are	present	in	the	type
object;	but	those	fields	also	exist	when	Py_TPFLAGS_HAVE_GC	is
clear	but	Py_TPFLAGS_HAVE_RICHCOMPARE	is	set.

Py_TPFLAGS_DEFAULT

This	is	a	bitmask	of	all	the	bits	that	pertain	to	the	existence	of	certain
fields	in	the	type	object	and	its	extension	structures.	Currently,	it
includes	the	following	bits:

Py_TPFLAGS_HAVE_GETCHARBUFFER,
Py_TPFLAGS_HAVE_SEQUENCE_IN,
Py_TPFLAGS_HAVE_INPLACEOPS,
Py_TPFLAGS_HAVE_RICHCOMPARE,
Py_TPFLAGS_HAVE_WEAKREFS,	Py_TPFLAGS_HAVE_ITER,
and	Py_TPFLAGS_HAVE_CLASS.

char*	tp_doc
An	optional	pointer	to	a	NUL-terminated	C	string	giving	the	docstring	for
this	type	object.	This	is	exposed	as	the	__doc__	attribute	on	the	type	and
instances	of	the	type.

This	field	is	not	inherited	by	subtypes.

The	following	three	fields	only	exist	if	the
Py_TPFLAGS_HAVE_RICHCOMPARE	flag	bit	is	set.

traverseproc	tp_traverse
An	optional	pointer	to	a	traversal	function	for	the	garbage	collector.	This	is
only	used	if	the	Py_TPFLAGS_HAVE_GC	flag	bit	is	set.	More	information
in	section	10.9	about	garbage	collection.

This	field	is	inherited	by	subtypes	together	with	tp_clear	and	the
Py_TPFLAGS_HAVE_GC	flag	bit:	the	flag	bit,	tp_traverse,	and
tp_clear	are	all	inherited	from	the	base	type	if	they	are	all	zero	in	the
subtype	and	the	subtype	has	the	Py_TPFLAGS_HAVE_RICHCOMPARE
flag	bit	set.

inquiry	tp_clear
An	optional	pointer	to	a	clear	function	for	the	garbage	collector.	This	is
only	used	if	the	Py_TPFLAGS_HAVE_GC	flag	bit	is	set.	More	information
in	section	10.9	about	garbage	collection.

This	field	is	inherited	by	subtypes	together	with	tp_clear	and	the
Py_TPFLAGS_HAVE_GC	flag	bit:	the	flag	bit,	tp_traverse,	and
tp_clear	are	all	inherited	from	the	base	type	if	they	are	all	zero	in	the
subtype	and	the	subtype	has	the	Py_TPFLAGS_HAVE_RICHCOMPARE
flag	bit	set.

richcmpfunc	tp_richcompare
An	optional	pointer	to	the	rich	comparison	function.

The	signature	is	the	same	as	for	PyObject_RichCompare().	The
function	should	return	1	if	the	requested	comparison	returns	true,	0	if	it
returns	false.	It	should	return	-1	and	set	an	exception	condition	when	an
error	occurred	during	the	comparison.

This	field	is	inherited	by	subtypes	together	with	tp_compare	and
tp_hash:	a	subtype	inherits	all	three	of	tp_compare,
tp_richcompare,	and	tp_hash,	when	the	subtype's	tp_compare,
tp_richcompare,	and	tp_hash	are	all	NULL.

The	following	constants	are	defined	to	be	used	as	the	third	argument	for
tp_richcompare	and	for	PyObject_RichCompare():

Constant Comparison
Py_LT <

Py_LE <=

Py_EQ ==

Py_NE !=

Py_GT >

Py_GE >=

The	next	field	only	exists	if	the	Py_TPFLAGS_HAVE_WEAKREFS	flag	bit	is
set.

long	tp_weaklistoffset
If	the	instances	of	this	type	are	weakly	referenceable,	this	field	is	greater
than	zero	and	contains	the	offset	in	the	instance	structure	of	the	weak
reference	list	head	(ignoring	the	GC	header,	if	present);	this	offset	is	used
by	PyObject_ClearWeakRefs()	and	the	PyWeakref_*()
functions.	The	instance	structure	needs	to	include	a	field	of	type
PyObject*	which	is	initialized	to	NULL.

Do	not	confuse	this	field	with	tp_weaklist;	that	is	the	list	head	for
weak	references	to	the	type	object	itself.

This	field	is	inherited	by	subtypes,	but	see	the	rules	listed	below.	A	subtype
may	override	this	offset;	this	means	that	the	subtype	uses	a	different	weak
reference	list	head	than	the	base	type.	Since	the	list	head	is	always	found
via	tp_weaklistoffset,	this	should	not	be	a	problem.

When	a	type	defined	by	a	class	statement	has	no	__slots__	declaration,
and	none	of	its	base	types	are	weakly	referenceable,	the	type	is	made
weakly	referenceable	by	adding	a	weak	reference	list	head	slot	to	the
instance	layout	and	setting	the	tp_weaklistoffset	of	that	slot's	offset.

When	a	type's	__slots__	declaration	contains	a	slot	named
__weakref__,	that	slot	becomes	the	weak	reference	list	head	for
instances	of	the	type,	and	the	slot's	offset	is	stored	in	the	type's
tp_weaklistoffset.

When	a	type's	__slots__	declaration	does	not	contain	a	slot	named
__weakref__,	the	type	inherits	its	tp_weaklistoffset	from	its
base	type.

The	next	two	fields	only	exist	if	the	Py_TPFLAGS_HAVE_CLASS	flag	bit	is
set.

getiterfunc	tp_iter
An	optional	pointer	to	a	function	that	returns	an	iterator	for	the	object.	Its
presence	normally	signals	that	the	instances	of	this	type	are	iterable
(although	sequences	may	be	iterable	without	this	function,	and	classic
instances	always	have	this	function,	even	if	they	don't	define	an
__iter__()	method).

This	function	has	the	same	signature	as	PyObject_GetIter().

This	field	is	inherited	by	subtypes.

iternextfunc	tp_iternext
An	optional	pointer	to	a	function	that	returns	the	next	item	in	an	iterator,	or
raises	StopIteration	when	the	iterator	is	exhausted.	Its	presence
normally	signals	that	the	instances	of	this	type	are	iterators	(although
classic	instances	always	have	this	function,	even	if	they	don't	define	a
next()	method).

Iterator	types	should	also	define	the	tp_iter	function,	and	that	function
should	return	the	iterator	instance	itself	(not	a	new	iterator	instance).

This	function	has	the	same	signature	as	PyIter_Next().

This	field	is	inherited	by	subtypes.

The	next	fields,	up	to	and	including	tp_weaklist,	only	exist	if	the
Py_TPFLAGS_HAVE_CLASS	flag	bit	is	set.

struct	PyMethodDef*	tp_methods
An	optional	pointer	to	a	static	NULL-terminated	array	of	PyMethodDef
structures,	declaring	regular	methods	of	this	type.

For	each	entry	in	the	array,	an	entry	is	added	to	the	type's	dictionary	(see
tp_dict	below)	containing	a	method	descriptor.

This	field	is	not	inherited	by	subtypes	(methods	are	inherited	through	a
different	mechanism).

struct	PyMemberDef*	tp_members
An	optional	pointer	to	a	static	NULL-terminated	array	of	PyMemberDef
structures,	declaring	regular	data	members	(fields	or	slots)	of	instances	of
this	type.

For	each	entry	in	the	array,	an	entry	is	added	to	the	type's	dictionary	(see
tp_dict	below)	containing	a	member	descriptor.

This	field	is	not	inherited	by	subtypes	(members	are	inherited	through	a
different	mechanism).

struct	PyGetSetDef*	tp_getset
An	optional	pointer	to	a	static	NULL-terminated	array	of	PyGetSetDef
structures,	declaring	computed	attributes	of	instances	of	this	type.

For	each	entry	in	the	array,	an	entry	is	added	to	the	type's	dictionary	(see
tp_dict	below)	containing	a	getset	descriptor.

This	field	is	not	inherited	by	subtypes	(computed	attributes	are	inherited
through	a	different	mechanism).

Docs	for	PyGetSetDef	(XXX	belong	elsewhere):

typedef	PyObject	*(*getter)(PyObject	*,	void	*);

typedef	int	(*setter)(PyObject	*,	PyObject	*,	void	*);

typedef	struct	PyGetSetDef	{

				char	*name;				/*	attribute	name	*/

				getter	get;				/*	C	function	to	get	the	attribute	*/

				setter	set;				/*	C	function	to	set	the	attribute	*/

				char	*doc;					/*	optional	doc	string	*/

				void	*closure;	/*	optional	additional	data	for	getter	and	setter	*/

}	PyGetSetDef;

PyTypeObject*	tp_base
An	optional	pointer	to	a	base	type	from	which	type	properties	are	inherited.
At	this	level,	only	single	inheritance	is	supported;	multiple	inheritance
require	dynamically	creating	a	type	object	by	calling	the	metatype.

This	field	is	not	inherited	by	subtypes	(obviously),	but	it	defaults	to
&PyBaseObject_Type	(which	to	Python	programmers	is	known	as	the
type	object).

PyObject*	tp_dict
The	type's	dictionary	is	stored	here	by	PyType_Ready().

This	field	should	normally	be	initialized	to	NULL	before	PyType_Ready	is
called;	it	may	also	be	initialized	to	a	dictionary	containing	initial	attributes
for	the	type.	Once	PyType_Ready()	has	initialized	the	type,	extra
attributes	for	the	type	may	be	added	to	this	dictionary	only	if	they	don't
correspond	to	overloaded	operations	(like	__add__()).

This	field	is	not	inherited	by	subtypes	(though	the	attributes	defined	in	here
are	inherited	through	a	different	mechanism).

descrgetfunc	tp_descr_get
An	optional	pointer	to	a	"descriptor	get"	function.

XXX	blah,	blah.

This	field	is	inherited	by	subtypes.

descrsetfunc	tp_descr_set

An	optional	pointer	to	a	"descriptor	set"	function.

XXX	blah,	blah.

This	field	is	inherited	by	subtypes.

long	tp_dictoffset
If	the	instances	of	this	type	have	a	dictionary	containing	instance	variables,
this	field	is	non-zero	and	contains	the	offset	in	the	instances	of	the	type	of
the	instance	variable	dictionary;	this	offset	is	used	by
PyObject_GenericGetAttr().

Do	not	confuse	this	field	with	tp_dict;	that	is	the	dictionary	for	attributes
of	the	type	object	itself.

If	the	value	of	this	field	is	greater	than	zero,	it	specifies	the	offset	from	the
start	of	the	instance	structure.	If	the	value	is	less	than	zero,	it	specifies	the
offset	from	the	end	of	the	instance	structure.	A	negative	offset	is	more
expensive	to	use,	and	should	only	be	used	when	the	instance	structure
contains	a	variable-length	part.	This	is	used	for	example	to	add	an	instance
variable	dictionary	to	subtypes	of	str	or	tuple.	Note	that	the
tp_basicsize	field	should	account	for	the	dictionary	added	to	the	end
in	that	case,	even	though	the	dictionary	is	not	included	in	the	basic	object
layout.	On	a	system	with	a	pointer	size	of	4	bytes,	tp_dictoffset
should	be	set	to	-4	to	indicate	that	the	dictionary	is	at	the	very	end	of	the
structure.

The	real	dictionary	offset	in	an	instance	can	be	computed	from	a	negative
tp_dictoffset	as	follows:

dictoffset	=	tp_basicsize	+	abs(ob_size)*tp_itemsize	+	tp_dictoffset

if	dictoffset	is	not	aligned	on	sizeof(void*):

				round	up	to	sizeof(void*)

where	tp_basicsize,	tp_itemsize	and	tp_dictoffset	are
taken	from	the	type	object,	and	ob_size	is	taken	from	the	instance.	The
absolute	value	is	taken	because	long	ints	use	the	sign	of	ob_size	to	store
the	sign	of	the	number.	(There's	never	a	need	to	do	this	calculation	yourself;
it	is	done	for	you	by	_PyObject_GetDictPtr().)

This	field	is	inherited	by	subtypes,	but	see	the	rules	listed	below.	A	subtype
may	override	this	offset;	this	means	that	the	subtype	instances	store	the
dictionary	at	a	difference	offset	than	the	base	type.	Since	the	dictionary	is
always	found	via	tp_dictoffset,	this	should	not	be	a	problem.

When	a	type	defined	by	a	class	statement	has	no	__slots__	declaration,
and	none	of	its	base	types	has	an	instance	variable	dictionary,	a	dictionary
slot	is	added	to	the	instance	layout	and	the	tp_dictoffset	is	set	to	that
slot's	offset.

When	a	type	defined	by	a	class	statement	has	a	__slots__	declaration,
the	type	inherits	its	tp_dictoffset	from	its	base	type.

(Adding	a	slot	named	__dict__	to	the	__slots__	declaration	does	not
have	the	expected	effect,	it	just	causes	confusion.	Maybe	this	should	be
added	as	a	feature	just	like	__weakref__	though.)

initproc	tp_init
An	optional	pointer	to	an	instance	initialization	function.

This	function	corresponds	to	the	__init__()	method	of	classes.	Like
__init__(),	it	is	possible	to	create	an	instance	without	calling
__init__(),	and	it	is	possible	to	reinitialize	an	instance	by	calling	its
__init__()	method	again.

The	function	signature	is

int	tp_init(PyObject	*self,	PyObject	*args,	PyObject	*kwds)

The	self	argument	is	the	instance	to	be	initialized;	the	args	and	kwds
arguments	represent	positional	and	keyword	arguments	of	the	call	to
__init__().

The	tp_init	function,	if	not	NULL,	is	called	when	an	instance	is	created
normally	by	calling	its	type,	after	the	type's	tp_new	function	has	returned
an	instance	of	the	type.	If	the	tp_new	function	returns	an	instance	of	some
other	type	that	is	not	a	subtype	of	the	original	type,	no	tp_init	function
is	called;	if	tp_new	returns	an	instance	of	a	subtype	of	the	original	type,
the	subtype's	tp_init	is	called.	(VERSION	NOTE:	described	here	is

what	is	implemented	in	Python	2.2.1	and	later.	In	Python	2.2,	the	tp_init
of	the	type	of	the	object	returned	by	tp_new	was	always	called,	if	not
NULL.)

This	field	is	inherited	by	subtypes.

allocfunc	tp_alloc
An	optional	pointer	to	an	instance	allocation	function.

The	function	signature	is

PyObject	*tp_alloc(PyTypeObject	*self,	int	nitems)

The	purpose	of	this	function	is	to	separate	memory	allocation	from	memory
initialization.	It	should	return	a	pointer	to	a	block	of	memory	of	adequate
length	for	the	instance,	suitably	aligned,	and	initialized	to	zeros,	but	with
ob_refcnt	set	to	1	and	ob_type	set	to	the	type	argument.	If	the	type's
tp_itemsize	is	non-zero,	the	object's	ob_size	field	should	be
initialized	to	nitems	and	the	length	of	the	allocated	memory	block	should	be
tp_basicsize	+	nitems*tp_itemsize,	rounded	up	to	a	multiple	of
sizeof(void*);	otherwise,	nitems	is	not	used	and	the	length	of	the
block	should	be	tp_basicsize.

Do	not	use	this	function	to	do	any	other	instance	initialization,	not	even	to
allocate	additional	memory;	that	should	be	done	by	tp_new.

This	field	is	inherited	by	static	subtypes,	but	not	by	dynamic	subtypes
(subtypes	created	by	a	class	statement);	in	the	latter,	this	field	is	always	set
to	PyType_GenericAlloc(),	to	force	a	standard	heap	allocation
strategy.	That	is	also	the	recommended	value	for	statically	defined	types.

newfunc	tp_new
An	optional	pointer	to	an	instance	creation	function.

If	this	function	is	NULL	for	a	particular	type,	that	type	cannot	be	called	to
create	new	instances;	presumably	there	is	some	other	way	to	create
instances,	like	a	factory	function.

The	function	signature	is

PyObject	*tp_new(PyTypeObject	*subtype,	PyObject	*args,	PyObject	*kwds)

The	subtype	argument	is	the	type	of	the	object	being	created;	the	args	and
kwds	arguments	represent	positional	and	keyword	arguments	of	the	call	to
the	type.	Note	that	subtype	doesn't	have	to	equal	the	type	whose	tp_new
function	is	called;	it	may	be	a	subtype	of	that	type	(but	not	an	unrelated
type).

The	tp_new	function	should	call	subtype->tp_alloc(subtype,
nitems)	to	allocate	space	for	the	object,	and	then	do	only	as	much	further
initialization	as	is	absolutely	necessary.	Initialization	that	can	safely	be
ignored	or	repeated	should	be	placed	in	the	tp_init	handler.	A	good	rule
of	thumb	is	that	for	immutable	types,	all	initialization	should	take	place	in
tp_new,	while	for	mutable	types,	most	initialization	should	be	deferred	to
tp_init.

This	field	is	inherited	by	subtypes,	except	it	is	not	inherited	by	static	types
whose	tp_base	is	NULL	or	&PyBaseObject_Type.	The	latter
exception	is	a	precaution	so	that	old	extension	types	don't	become	callable
simply	by	being	linked	with	Python	2.2.

destructor	tp_free
An	optional	pointer	to	an	instance	deallocation	function.

The	signature	of	this	function	has	changed	slightly:	in	Python	2.2	and	2.2.1,
its	signature	is	destructor:

void	tp_free(PyObject	*)

In	Python	2.3	and	beyond,	its	signature	is	freefunc:

void	tp_free(void	*)

The	only	initializer	that	is	compatible	with	both	versions	is
_PyObject_Del,	whose	definition	has	suitably	adapted	in	Python	2.3.

This	field	is	inherited	by	static	subtypes,	but	not	by	dynamic	subtypes
(subtypes	created	by	a	class	statement);	in	the	latter,	this	field	is	set	to	a
deallocator	suitable	to	match	PyType_GenericAlloc()	and	the	value
of	the	Py_TPFLAGS_HAVE_GC	flag	bit.

inquiry	tp_is_gc
An	optional	pointer	to	a	function	called	by	the	garbage	collector.

The	garbage	collector	needs	to	know	whether	a	particular	object	is
collectible	or	not.	Normally,	it	is	sufficient	to	look	at	the	object's	type's
tp_flags	field,	and	check	the	Py_TPFLAGS_HAVE_GC	flag	bit.	But
some	types	have	a	mixture	of	statically	and	dynamically	allocated
instances,	and	the	statically	allocated	instances	are	not	collectible.	Such
types	should	define	this	function;	it	should	return	1	for	a	collectible
instance,	and	0	for	a	non-collectible	instance.	The	signature	is

int	tp_is_gc(PyObject	*self)

(The	only	example	of	this	are	types	themselves.	The	metatype,
PyType_Type,	defines	this	function	to	distinguish	between	statically	and
dynamically	allocated	types.)

This	field	is	inherited	by	subtypes.	(VERSION	NOTE:	in	Python	2.2,	it	was
not	inherited.	It	is	inherited	in	2.2.1	and	later	versions.)

PyObject*	tp_bases
Tuple	of	base	types.

This	is	set	for	types	created	by	a	class	statement.	It	should	be	NULL	for
statically	defined	types.

This	field	is	not	inherited.

PyObject*	tp_mro
Tuple	containing	the	expanded	set	of	base	types,	starting	with	the	type	itself
and	ending	with	object,	in	Method	Resolution	Order.

This	field	is	not	inherited;	it	is	calculated	fresh	by	PyType_Ready().

PyObject*	tp_cache
Unused.	Not	inherited.	Internal	use	only.

PyObject*	tp_subclasses
List	of	weak	references	to	subclasses.	Not	inherited.	Internal	use	only.

PyObject*	tp_weaklist
Weak	reference	list	head,	for	weak	references	to	this	type	object.	Not
inherited.	Internal	use	only.

The	remaining	fields	are	only	defined	if	the	feature	test	macro	COUNT_ALLOCS
is	defined,	and	are	for	internal	use	only.	They	are	documented	here	for
completeness.	None	of	these	fields	are	inherited	by	subtypes.

int	tp_allocs
Number	of	allocations.

int	tp_frees
Number	of	frees.

int	tp_maxalloc
Maximum	simultaneously	allocated	objects.

PyTypeObject*	tp_next
Pointer	to	the	next	type	object	with	a	non-zero	tp_allocs	field.

Also,	note	that,	in	a	garbage	collected	Python,	tp_dealloc	may	be	called	from
any	Python	thread,	not	just	the	thread	which	created	the	object	(if	the	object
becomes	part	of	a	refcount	cycle,	that	cycle	might	be	collected	by	a	garbage
collection	on	any	thread).	This	is	not	a	problem	for	Python	API	calls,	since	the
thread	on	which	tp_dealloc	is	called	will	own	the	Global	Interpreter	Lock	(GIL).
However,	if	the	object	being	destroyed	in	turn	destroys	objects	from	some	other
C	or	C++	library,	care	should	be	taken	to	ensure	that	destroying	those	objects	on
the	thread	which	called	tp_dealloc	will	not	violate	any	assumptions	of	the
library.

Python/C	API	Reference	Manual
Previous:	10.2	Common	Object	Structures	Up:	10.	Object	Implementation
Support	Next:	10.4	Mapping	Object	Structures

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.3	Type	Objects	Up:	10.	Object	Implementation	Support	Next:
10.5	Number	Object	Structures

10.4	Mapping	Object	Structures
PyMappingMethods

Structure	used	to	hold	pointers	to	the	functions	used	to	implement	the
mapping	protocol	for	an	extension	type.

Python/C	API	Reference	Manual
Previous:	10.3	Type	Objects	Up:	10.	Object	Implementation	Support	Next:
10.5	Number	Object	Structures

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.4	Mapping	Object	Structures	Up:	10.	Object	Implementation
Support	Next:	10.6	Sequence	Object	Structures

10.5	Number	Object	Structures
PyNumberMethods

Structure	used	to	hold	pointers	to	the	functions	an	extension	type	uses	to
implement	the	number	protocol.

Python/C	API	Reference	Manual
Previous:	10.4	Mapping	Object	Structures	Up:	10.	Object	Implementation
Support	Next:	10.6	Sequence	Object	Structures

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.5	Number	Object	Structures	Up:	10.	Object	Implementation
Support	Next:	10.7	Buffer	Object	Structures

10.6	Sequence	Object	Structures
PySequenceMethods

Structure	used	to	hold	pointers	to	the	functions	which	an	object	uses	to
implement	the	sequence	protocol.

Python/C	API	Reference	Manual
Previous:	10.5	Number	Object	Structures	Up:	10.	Object	Implementation
Support	Next:	10.7	Buffer	Object	Structures

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.6	Sequence	Object	Structures	Up:	10.	Object	Implementation
Support	Next:	10.8	Supporting	the	Iterator

10.7	Buffer	Object	Structures
The	buffer	interface	exports	a	model	where	an	object	can	expose	its	internal	data
as	a	set	of	chunks	of	data,	where	each	chunk	is	specified	as	a	pointer/length	pair.
These	chunks	are	called	segments	and	are	presumed	to	be	non-contiguous	in
memory.

If	an	object	does	not	export	the	buffer	interface,	then	its	tp_as_buffer
member	in	the	PyTypeObject	structure	should	be	NULL.	Otherwise,	the
tp_as_buffer	will	point	to	a	PyBufferProcs	structure.

Note:	It	is	very	important	that	your	PyTypeObject	structure	uses
Py_TPFLAGS_DEFAULT	for	the	value	of	the	tp_flags	member	rather	than
0.	This	tells	the	Python	runtime	that	your	PyBufferProcs	structure	contains
the	bf_getcharbuffer	slot.	Older	versions	of	Python	did	not	have	this
member,	so	a	new	Python	interpreter	using	an	old	extension	needs	to	be	able	to
test	for	its	presence	before	using	it.

PyBufferProcs

Structure	used	to	hold	the	function	pointers	which	define	an	implementation
of	the	buffer	protocol.

The	first	slot	is	bf_getreadbuffer,	of	type	getreadbufferproc.
If	this	slot	is	NULL,	then	the	object	does	not	support	reading	from	the
internal	data.	This	is	non-sensical,	so	implementors	should	fill	this	in,	but
callers	should	test	that	the	slot	contains	a	non-NULL	value.

The	next	slot	is	bf_getwritebuffer	having	type
getwritebufferproc.	This	slot	may	be	NULL	if	the	object	does	not
allow	writing	into	its	returned	buffers.

The	third	slot	is	bf_getsegcount,	with	type	getsegcountproc.
This	slot	must	not	be	NULL	and	is	used	to	inform	the	caller	how	many
segments	the	object	contains.	Simple	objects	such	as	PyString_Type
and	PyBuffer_Type	objects	contain	a	single	segment.

The	last	slot	is	bf_getcharbuffer,	of	type	getcharbufferproc.

This	slot	will	only	be	present	if	the
Py_TPFLAGS_HAVE_GETCHARBUFFER	flag	is	present	in	the
tp_flags	field	of	the	object's	PyTypeObject.	Before	using	this	slot,
the	caller	should	test	whether	it	is	present	by	using	the
PyType_HasFeature()	function.	If	present,	it	may	be	NULL,
indicating	that	the	object's	contents	cannot	be	used	as	8-bit	characters.	The
slot	function	may	also	raise	an	error	if	the	object's	contents	cannot	be
interpreted	as	8-bit	characters.	For	example,	if	the	object	is	an	array	which
is	configured	to	hold	floating	point	values,	an	exception	may	be	raised	if	a
caller	attempts	to	use	bf_getcharbuffer	to	fetch	a	sequence	of	8-bit
characters.	This	notion	of	exporting	the	internal	buffers	as	``text''	is	used	to
distinguish	between	objects	that	are	binary	in	nature,	and	those	which	have
character-based	content.

Note:	The	current	policy	seems	to	state	that	these	characters	may	be	multi-
byte	characters.	This	implies	that	a	buffer	size	of	N	does	not	mean	there	are
N	characters	present.

Py_TPFLAGS_HAVE_GETCHARBUFFER

Flag	bit	set	in	the	type	structure	to	indicate	that	the	bf_getcharbuffer
slot	is	known.	This	being	set	does	not	indicate	that	the	object	supports	the
buffer	interface	or	that	the	bf_getcharbuffer	slot	is	non-NULL.

int	(*getreadbufferproc)	(PyObject	*self,	int	segment,

void	**ptrptr)

Return	a	pointer	to	a	readable	segment	of	the	buffer.	This	function	is
allowed	to	raise	an	exception,	in	which	case	it	must	return	-1.	The	segment
which	is	passed	must	be	zero	or	positive,	and	strictly	less	than	the	number
of	segments	returned	by	the	bf_getsegcount	slot	function.	On	success,
it	returns	the	length	of	the	buffer	memory,	and	sets	*ptrptr	to	a	pointer	to
that	memory.

int	(*getwritebufferproc)	(PyObject	*self,	int

segment,	void	**ptrptr)

Return	a	pointer	to	a	writable	memory	buffer	in	*ptrptr,	and	the	length	of
that	segment	as	the	function	return	value.	The	memory	buffer	must
correspond	to	buffer	segment	segment.	Must	return	-1	and	set	an	exception
on	error.	TypeError	should	be	raised	if	the	object	only	supports	read-
only	buffers,	and	SystemError	should	be	raised	when	segment	specifies

a	segment	that	doesn't	exist.

int	(*getsegcountproc)	(PyObject	*self,	int	*lenp)

Return	the	number	of	memory	segments	which	comprise	the	buffer.	If	lenp
is	not	NULL,	the	implementation	must	report	the	sum	of	the	sizes	(in	bytes)
of	all	segments	in	*lenp.	The	function	cannot	fail.

int	(*getcharbufferproc)	(PyObject	*self,	int	segment,

const	char	**ptrptr)

Return	the	size	of	the	memory	buffer	in	ptrptr	for	segment	segment.	*ptrptr
is	set	to	the	memory	buffer.

Python/C	API	Reference	Manual
Previous:	10.6	Sequence	Object	Structures	Up:	10.	Object	Implementation
Support	Next:	10.8	Supporting	the	Iterator

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.7	Buffer	Object	Structures	Up:	10.	Object	Implementation
Support	Next:	10.9	Supporting	Cyclic	Garbage

10.8	Supporting	the	Iterator	Protocol

Python/C	API	Reference	Manual
Previous:	10.7	Buffer	Object	Structures	Up:	10.	Object	Implementation
Support	Next:	10.9	Supporting	Cyclic	Garbage

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.8	Supporting	the	Iterator	Up:	10.	Object	Implementation
Support	Next:	A.	Reporting	Bugs

10.9	Supporting	Cyclic	Garbage
Collection
Python's	support	for	detecting	and	collecting	garbage	which	involves	circular
references	requires	support	from	object	types	which	are	``containers''	for	other
objects	which	may	also	be	containers.	Types	which	do	not	store	references	to
other	objects,	or	which	only	store	references	to	atomic	types	(such	as	numbers	or
strings),	do	not	need	to	provide	any	explicit	support	for	garbage	collection.

An	example	showing	the	use	of	these	interfaces	can	be	found	in	``Supporting	the
Cycle	Collector''	in	Extending	and	Embedding	the	Python	Interpreter.

To	create	a	container	type,	the	tp_flags	field	of	the	type	object	must	include
the	Py_TPFLAGS_HAVE_GC	and	provide	an	implementation	of	the
tp_traverse	handler.	If	instances	of	the	type	are	mutable,	a	tp_clear
implementation	must	also	be	provided.

Py_TPFLAGS_HAVE_GC

Objects	with	a	type	with	this	flag	set	must	conform	with	the	rules
documented	here.	For	convenience	these	objects	will	be	referred	to	as
container	objects.

Constructors	for	container	types	must	conform	to	two	rules:

1.	 The	memory	for	the	object	must	be	allocated	using
PyObject_GC_New()	or	PyObject_GC_VarNew().

2.	 Once	all	the	fields	which	may	contain	references	to	other	containers	are
initialized,	it	must	call	PyObject_GC_Track().

TYPE*	PyObject_GC_New(TYPE,	PyTypeObject	*type)
Analogous	to	PyObject_New()	but	for	container	objects	with	the
Py_TPFLAGS_HAVE_GC	flag	set.

TYPE*	PyObject_GC_NewVar(TYPE,	PyTypeObject	*type,	int	size)
Analogous	to	PyObject_NewVar()	but	for	container	objects	with	the

Py_TPFLAGS_HAVE_GC	flag	set.

PyVarObject	*	PyObject_GC_Resize(PyVarObject	*op,	int)
Resize	an	object	allocated	by	PyObject_NewVar().	Returns	the	resized
object	or	NULL	on	failure.

void	PyObject_GC_Track(PyObject	*op)
Adds	the	object	op	to	the	set	of	container	objects	tracked	by	the	collector.
The	collector	can	run	at	unexpected	times	so	objects	must	be	valid	while
being	tracked.	This	should	be	called	once	all	the	fields	followed	by	the
tp_traverse	handler	become	valid,	usually	near	the	end	of	the
constructor.

void	_PyObject_GC_TRACK(PyObject	*op)
A	macro	version	of	PyObject_GC_Track().	It	should	not	be	used	for
extension	modules.

Similarly,	the	deallocator	for	the	object	must	conform	to	a	similar	pair	of	rules:

1.	 Before	fields	which	refer	to	other	containers	are	invalidated,
PyObject_GC_UnTrack()	must	be	called.

2.	 The	object's	memory	must	be	deallocated	using	PyObject_GC_Del().

void	PyObject_GC_Del(PyObject	*op)
Releases	memory	allocated	to	an	object	using	PyObject_GC_New()	or
PyObject_GC_NewVar().

void	PyObject_GC_UnTrack(PyObject	*op)
Remove	the	object	op	from	the	set	of	container	objects	tracked	by	the
collector.	Note	that	PyObject_GC_Track()	can	be	called	again	on	this
object	to	add	it	back	to	the	set	of	tracked	objects.	The	deallocator
(tp_dealloc	handler)	should	call	this	for	the	object	before	any	of	the
fields	used	by	the	tp_traverse	handler	become	invalid.

void	_PyObject_GC_UNTRACK(PyObject	*op)
A	macro	version	of	PyObject_GC_UnTrack().	It	should	not	be	used

for	extension	modules.

The	tp_traverse	handler	accepts	a	function	parameter	of	this	type:

int	(*visitproc)(PyObject	*object,	void	*arg)

Type	of	the	visitor	function	passed	to	the	tp_traverse	handler.	The
function	should	be	called	with	an	object	to	traverse	as	object	and	the	third
parameter	to	the	tp_traverse	handler	as	arg.	The	Python	core	uses
several	visitor	functions	to	implement	cyclic	garbage	detection;	it's	not
expected	that	users	will	need	to	write	their	own	visitor	functions.

The	tp_traverse	handler	must	have	the	following	type:

int	(*traverseproc)(PyObject	*self,	visitproc	visit,

void	*arg)

Traversal	function	for	a	container	object.	Implementations	must	call	the
visit	function	for	each	object	directly	contained	by	self,	with	the	parameters
to	visit	being	the	contained	object	and	the	arg	value	passed	to	the	handler.
The	visit	function	must	not	be	called	with	a	NULL	object	argument.	If	visit
returns	a	non-zero	value	that	value	should	be	returned	immediately.

To	simplify	writing	tp_traverse	handlers,	a	Py_VISIT()	macro	is
provided.	In	order	to	use	this	macro,	the	tp_traverse	implementation	must
name	its	arguments	exactly	visit	and	arg:

void	Py_VISIT(PyObject	*o)
Call	the	visit	callback,	with	arguments	o	and	arg.	If	visit	returns	a	non-zero
value,	then	return	it.	Using	this	macro,	tp_traverse	handlers	look	like:

static	int

my_traverse(Noddy	*self,	visitproc	visit,	void	*arg)

{

				Py_VISIT(self->foo);

				Py_VISIT(self->bar);

				return	0;

}

New	in	version	2.4.

The	tp_clear	handler	must	be	of	the	inquiry	type,	or	NULL	if	the	object	is
immutable.

int	(*inquiry)(PyObject	*self)

Drop	references	that	may	have	created	reference	cycles.	Immutable	objects
do	not	have	to	define	this	method	since	they	can	never	directly	create
reference	cycles.	Note	that	the	object	must	still	be	valid	after	calling	this
method	(don't	just	call	Py_DECREF()	on	a	reference).	The	collector	will
call	this	method	if	it	detects	that	this	object	is	involved	in	a	reference	cycle.

Python/C	API	Reference	Manual
Previous:	10.8	Supporting	the	Iterator	Up:	10.	Object	Implementation
Support	Next:	A.	Reporting	Bugs

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.9	Supporting	Cyclic	Garbage	Up:	Python/C	API	Reference
Manual	Next:	B.	History	and	License

A.	Reporting	Bugs
Python	is	a	mature	programming	language	which	has	established	a	reputation	for
stability.	In	order	to	maintain	this	reputation,	the	developers	would	like	to	know
of	any	deficiencies	you	find	in	Python	or	its	documentation.

Before	submitting	a	report,	you	will	be	required	to	log	into	SourceForge;	this
will	make	it	possible	for	the	developers	to	contact	you	for	additional	information
if	needed.	It	is	not	possible	to	submit	a	bug	report	anonymously.

All	bug	reports	should	be	submitted	via	the	Python	Bug	Tracker	on	SourceForge
(http://sourceforge.net/bugs/?group_id=5470).	The	bug	tracker	offers	a	Web
form	which	allows	pertinent	information	to	be	entered	and	submitted	to	the
developers.

The	first	step	in	filing	a	report	is	to	determine	whether	the	problem	has	already
been	reported.	The	advantage	in	doing	so,	aside	from	saving	the	developers	time,
is	that	you	learn	what	has	been	done	to	fix	it;	it	may	be	that	the	problem	has
already	been	fixed	for	the	next	release,	or	additional	information	is	needed	(in
which	case	you	are	welcome	to	provide	it	if	you	can!).	To	do	this,	search	the	bug
database	using	the	search	box	on	the	left	side	of	the	page.

If	the	problem	you're	reporting	is	not	already	in	the	bug	tracker,	go	back	to	the
Python	Bug	Tracker	(http://sourceforge.net/bugs/?group_id=5470).	Select
the	``Submit	a	Bug''	link	at	the	top	of	the	page	to	open	the	bug	reporting	form.

The	submission	form	has	a	number	of	fields.	The	only	fields	that	are	required	are
the	``Summary''	and	``Details''	fields.	For	the	summary,	enter	a	very	short
description	of	the	problem;	less	than	ten	words	is	good.	In	the	Details	field,
describe	the	problem	in	detail,	including	what	you	expected	to	happen	and	what
did	happen.	Be	sure	to	include	the	version	of	Python	you	used,	whether	any
extension	modules	were	involved,	and	what	hardware	and	software	platform	you
were	using	(including	version	information	as	appropriate).

The	only	other	field	that	you	may	want	to	set	is	the	``Category''	field,	which
allows	you	to	place	the	bug	report	into	a	broad	category	(such	as
``Documentation''	or	``Library'').

http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/bugs/?group_id=5470

Each	bug	report	will	be	assigned	to	a	developer	who	will	determine	what	needs
to	be	done	to	correct	the	problem.	You	will	receive	an	update	each	time	action	is
taken	on	the	bug.

See	Also:

How	to	Report	Bugs	Effectively
Article	which	goes	into	some	detail	about	how	to	create	a	useful	bug
report.	This	describes	what	kind	of	information	is	useful	and	why	it	is
useful.

Bug	Writing	Guidelines
Information	about	writing	a	good	bug	report.	Some	of	this	is	specific
to	the	Mozilla	project,	but	describes	general	good	practices.

Python/C	API	Reference	Manual
Previous:	10.9	Supporting	Cyclic	Garbage	Up:	Python/C	API	Reference
Manual	Next:	B.	History	and	License

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www-mice.cs.ucl.ac.uk/multimedia/software/documentation/ReportingBugs.html
http://www.mozilla.org/quality/bug-writing-guidelines.html

Previous:	A.	Reporting	Bugs	Up:	Python/C	API	Reference	Manual	Next:	B.1
History	of	the

B.	History	and	License

Subsections

B.1	History	of	the	software
B.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
B.3	Licenses	and	Acknowledgements	for	Incorporated	Software

B.3.1	Mersenne	Twister
B.3.2	Sockets
B.3.3	Floating	point	exception	control
B.3.4	MD5	message	digest	algorithm
B.3.5	Asynchronous	socket	services
B.3.6	Cookie	management
B.3.7	Profiling
B.3.8	Execution	tracing
B.3.9	UUencode	and	UUdecode	functions
B.3.10	XML	Remote	Procedure	Calls

Python/C	API	Reference	Manual
Previous:	A.	Reporting	Bugs	Up:	Python/C	API	Reference	Manual	Next:	B.1
History	of	the

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.	History	and	License	Up:	B.	History	and	License	Next:	B.2	Terms
and	conditions

B.1	History	of	the	software
Python	was	created	in	the	early	1990s	by	Guido	van	Rossum	at	Stichting
Mathematisch	Centrum	(CWI,	see	http://www.cwi.nl/)	in	the	Netherlands	as	a
successor	of	a	language	called	ABC.	Guido	remains	Python's	principal	author,
although	it	includes	many	contributions	from	others.

In	1995,	Guido	continued	his	work	on	Python	at	the	Corporation	for	National
Research	Initiatives	(CNRI,	see	http://www.cnri.reston.va.us/)	in	Reston,
Virginia	where	he	released	several	versions	of	the	software.

In	May	2000,	Guido	and	the	Python	core	development	team	moved	to
BeOpen.com	to	form	the	BeOpen	PythonLabs	team.	In	October	of	the	same
year,	the	PythonLabs	team	moved	to	Digital	Creations	(now	Zope	Corporation;
see	http://www.zope.com/).	In	2001,	the	Python	Software	Foundation	(PSF,	see
http://www.python.org/psf/)	was	formed,	a	non-profit	organization	created
specifically	to	own	Python-related	Intellectual	Property.	Zope	Corporation	is	a
sponsoring	member	of	the	PSF.

All	Python	releases	are	Open	Source	(see	http://www.opensource.org/	for	the
Open	Source	Definition).	Historically,	most,	but	not	all,	Python	releases	have
also	been	GPL-compatible;	the	table	below	summarizes	the	various	releases.

Release Derived
from

Year Owner GPL
compatible?

0.9.0	thru
1.2

n/a 1991-
1995

CWI yes

1.3	thru
1.5.2

1.2 1995-
1999

CNRI yes

1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-

2003
PSF yes

2.3 2.2.2 2002-
2003

PSF yes

2.3.1 2.3 2002-
2003

PSF yes

2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes

Note:	GPL-compatible	doesn't	mean	that	we're	distributing	Python	under	the
GPL.	All	Python	licenses,	unlike	the	GPL,	let	you	distribute	a	modified	version
without	making	your	changes	open	source.	The	GPL-compatible	licenses	make
it	possible	to	combine	Python	with	other	software	that	is	released	under	the
GPL;	the	others	don't.

Thanks	to	the	many	outside	volunteers	who	have	worked	under	Guido's	direction
to	make	these	releases	possible.

Python/C	API	Reference	Manual
Previous:	B.	History	and	License	Up:	B.	History	and	License	Next:	B.2	Terms
and	conditions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.1	History	of	the	Up:	B.	History	and	License	Next:	B.3	Licenses
and	Acknowledgements

B.2	Terms	and	conditions	for
accessing	or	otherwise	using
Python

PSF	LICENSE	AGREEMENT	FOR	PYTHON	2.4

1.	 This	LICENSE	AGREEMENT	is	between	the	Python	Software	Foundation
(``PSF''),	and	the	Individual	or	Organization	(``Licensee'')	accessing	and
otherwise	using	Python	2.4	software	in	source	or	binary	form	and	its
associated	documentation.

2.	 Subject	to	the	terms	and	conditions	of	this	License	Agreement,	PSF	hereby
grants	Licensee	a	nonexclusive,	royalty-free,	world-wide	license	to
reproduce,	analyze,	test,	perform	and/or	display	publicly,	prepare	derivative
works,	distribute,	and	otherwise	use	Python	2.4	alone	or	in	any	derivative
version,	provided,	however,	that	PSF's	License	Agreement	and	PSF's	notice
of	copyright,	i.e.,	``Copyright	©	2001-2004	Python	Software	Foundation;
All	Rights	Reserved''	are	retained	in	Python	2.4	alone	or	in	any	derivative
version	prepared	by	Licensee.

3.	 In	the	event	Licensee	prepares	a	derivative	work	that	is	based	on	or
incorporates	Python	2.4	or	any	part	thereof,	and	wants	to	make	the
derivative	work	available	to	others	as	provided	herein,	then	Licensee
hereby	agrees	to	include	in	any	such	work	a	brief	summary	of	the	changes
made	to	Python	2.4.

4.	 PSF	is	making	Python	2.4	available	to	Licensee	on	an	``AS	IS''	basis.	PSF
MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,	EXPRESS	OR
IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT	LIMITATION,	PSF
MAKES	NO	AND	DISCLAIMS	ANY	REPRESENTATION	OR
WARRANTY	OF	MERCHANTABILITY	OR	FITNESS	FOR	ANY
PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF	PYTHON	2.4	WILL
NOT	INFRINGE	ANY	THIRD	PARTY	RIGHTS.

5.	 PSF	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER	USERS

OF	PYTHON	2.4	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF
MODIFYING,	DISTRIBUTING,	OR	OTHERWISE	USING	PYTHON	2.4,
OR	ANY	DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE
POSSIBILITY	THEREOF.

6.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

7.	 Nothing	in	this	License	Agreement	shall	be	deemed	to	create	any
relationship	of	agency,	partnership,	or	joint	venture	between	PSF	and
Licensee.	This	License	Agreement	does	not	grant	permission	to	use	PSF
trademarks	or	trade	name	in	a	trademark	sense	to	endorse	or	promote
products	or	services	of	Licensee,	or	any	third	party.

8.	 By	copying,	installing	or	otherwise	using	Python	2.4,	Licensee	agrees	to	be
bound	by	the	terms	and	conditions	of	this	License	Agreement.

BEOPEN.COM	LICENSE	AGREEMENT	FOR	PYTHON	2.0

BEOPEN	PYTHON	OPEN	SOURCE	LICENSE	AGREEMENT	VERSION
1

1.	 This	LICENSE	AGREEMENT	is	between	BeOpen.com	(``BeOpen''),
having	an	office	at	160	Saratoga	Avenue,	Santa	Clara,	CA	95051,	and	the
Individual	or	Organization	(``Licensee'')	accessing	and	otherwise	using	this
software	in	source	or	binary	form	and	its	associated	documentation	(``the
Software'').

2.	 Subject	to	the	terms	and	conditions	of	this	BeOpen	Python	License
Agreement,	BeOpen	hereby	grants	Licensee	a	non-exclusive,	royalty-free,
world-wide	license	to	reproduce,	analyze,	test,	perform	and/or	display
publicly,	prepare	derivative	works,	distribute,	and	otherwise	use	the
Software	alone	or	in	any	derivative	version,	provided,	however,	that	the
BeOpen	Python	License	is	retained	in	the	Software,	alone	or	in	any
derivative	version	prepared	by	Licensee.

3.	 BeOpen	is	making	the	Software	available	to	Licensee	on	an	``AS	IS''	basis.
BEOPEN	MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,
EXPRESS	OR	IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT

LIMITATION,	BEOPEN	MAKES	NO	AND	DISCLAIMS	ANY
REPRESENTATION	OR	WARRANTY	OF	MERCHANTABILITY	OR
FITNESS	FOR	ANY	PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF
THE	SOFTWARE	WILL	NOT	INFRINGE	ANY	THIRD	PARTY
RIGHTS.

4.	 BEOPEN	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER
USERS	OF	THE	SOFTWARE	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF	USING,
MODIFYING	OR	DISTRIBUTING	THE	SOFTWARE,	OR	ANY
DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY
THEREOF.

5.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

6.	 This	License	Agreement	shall	be	governed	by	and	interpreted	in	all	respects
by	the	law	of	the	State	of	California,	excluding	conflict	of	law	provisions.
Nothing	in	this	License	Agreement	shall	be	deemed	to	create	any
relationship	of	agency,	partnership,	or	joint	venture	between	BeOpen	and
Licensee.	This	License	Agreement	does	not	grant	permission	to	use
BeOpen	trademarks	or	trade	names	in	a	trademark	sense	to	endorse	or
promote	products	or	services	of	Licensee,	or	any	third	party.	As	an
exception,	the	``BeOpen	Python''	logos	available	at
http://www.pythonlabs.com/logos.html	may	be	used	according	to	the
permissions	granted	on	that	web	page.

7.	 By	copying,	installing	or	otherwise	using	the	software,	Licensee	agrees	to
be	bound	by	the	terms	and	conditions	of	this	License	Agreement.

CNRI	LICENSE	AGREEMENT	FOR	PYTHON	1.6.1

1.	 This	LICENSE	AGREEMENT	is	between	the	Corporation	for	National
Research	Initiatives,	having	an	office	at	1895	Preston	White	Drive,	Reston,
VA	20191	(``CNRI''),	and	the	Individual	or	Organization	(``Licensee'')
accessing	and	otherwise	using	Python	1.6.1	software	in	source	or	binary
form	and	its	associated	documentation.

2.	 Subject	to	the	terms	and	conditions	of	this	License	Agreement,	CNRI
hereby	grants	Licensee	a	nonexclusive,	royalty-free,	world-wide	license	to

reproduce,	analyze,	test,	perform	and/or	display	publicly,	prepare	derivative
works,	distribute,	and	otherwise	use	Python	1.6.1	alone	or	in	any	derivative
version,	provided,	however,	that	CNRI's	License	Agreement	and	CNRI's
notice	of	copyright,	i.e.,	``Copyright	©	1995-2001	Corporation	for	National
Research	Initiatives;	All	Rights	Reserved''	are	retained	in	Python	1.6.1
alone	or	in	any	derivative	version	prepared	by	Licensee.	Alternately,	in	lieu
of	CNRI's	License	Agreement,	Licensee	may	substitute	the	following	text
(omitting	the	quotes):	``Python	1.6.1	is	made	available	subject	to	the	terms
and	conditions	in	CNRI's	License	Agreement.	This	Agreement	together
with	Python	1.6.1	may	be	located	on	the	Internet	using	the	following
unique,	persistent	identifier	(known	as	a	handle):	1895.22/1013.	This
Agreement	may	also	be	obtained	from	a	proxy	server	on	the	Internet	using
the	following	URL:	http://hdl.handle.net/1895.22/1013.''

3.	 In	the	event	Licensee	prepares	a	derivative	work	that	is	based	on	or
incorporates	Python	1.6.1	or	any	part	thereof,	and	wants	to	make	the
derivative	work	available	to	others	as	provided	herein,	then	Licensee
hereby	agrees	to	include	in	any	such	work	a	brief	summary	of	the	changes
made	to	Python	1.6.1.

4.	 CNRI	is	making	Python	1.6.1	available	to	Licensee	on	an	``AS	IS''	basis.
CNRI	MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,	EXPRESS
OR	IMPLIED.	BY	WAY	OF	EXAMPLE,	BUT	NOT	LIMITATION,	CNRI
MAKES	NO	AND	DISCLAIMS	ANY	REPRESENTATION	OR
WARRANTY	OF	MERCHANTABILITY	OR	FITNESS	FOR	ANY
PARTICULAR	PURPOSE	OR	THAT	THE	USE	OF	PYTHON	1.6.1	WILL
NOT	INFRINGE	ANY	THIRD	PARTY	RIGHTS.

5.	 CNRI	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER
USERS	OF	PYTHON	1.6.1	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF
MODIFYING,	DISTRIBUTING,	OR	OTHERWISE	USING	PYTHON
1.6.1,	OR	ANY	DERIVATIVE	THEREOF,	EVEN	IF	ADVISED	OF	THE
POSSIBILITY	THEREOF.

6.	 This	License	Agreement	will	automatically	terminate	upon	a	material
breach	of	its	terms	and	conditions.

7.	 This	License	Agreement	shall	be	governed	by	the	federal	intellectual

http://hdl.handle.net/1895.22/1013

property	law	of	the	United	States,	including	without	limitation	the	federal
copyright	law,	and,	to	the	extent	such	U.S.	federal	law	does	not	apply,	by
the	law	of	the	Commonwealth	of	Virginia,	excluding	Virginia's	conflict	of
law	provisions.	Notwithstanding	the	foregoing,	with	regard	to	derivative
works	based	on	Python	1.6.1	that	incorporate	non-separable	material	that
was	previously	distributed	under	the	GNU	General	Public	License	(GPL),
the	law	of	the	Commonwealth	of	Virginia	shall	govern	this	License
Agreement	only	as	to	issues	arising	under	or	with	respect	to	Paragraphs	4,
5,	and	7	of	this	License	Agreement.	Nothing	in	this	License	Agreement
shall	be	deemed	to	create	any	relationship	of	agency,	partnership,	or	joint
venture	between	CNRI	and	Licensee.	This	License	Agreement	does	not
grant	permission	to	use	CNRI	trademarks	or	trade	name	in	a	trademark
sense	to	endorse	or	promote	products	or	services	of	Licensee,	or	any	third
party.

8.	 By	clicking	on	the	``ACCEPT''	button	where	indicated,	or	by	copying,
installing	or	otherwise	using	Python	1.6.1,	Licensee	agrees	to	be	bound	by
the	terms	and	conditions	of	this	License	Agreement.

ACCEPT

CWI	LICENSE	AGREEMENT	FOR	PYTHON	0.9.0	THROUGH	1.2

Copyright	©	1991	-	1995,	Stichting	Mathematisch	Centrum	Amsterdam,	The
Netherlands.	All	rights	reserved.

Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its
documentation	for	any	purpose	and	without	fee	is	hereby	granted,	provided	that
the	above	copyright	notice	appear	in	all	copies	and	that	both	that	copyright
notice	and	this	permission	notice	appear	in	supporting	documentation,	and	that
the	name	of	Stichting	Mathematisch	Centrum	or	CWI	not	be	used	in	advertising
or	publicity	pertaining	to	distribution	of	the	software	without	specific,	written
prior	permission.

STICHTING	MATHEMATISCH	CENTRUM	DISCLAIMS	ALL
WARRANTIES	WITH	REGARD	TO	THIS	SOFTWARE,	INCLUDING	ALL
IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS,	IN	NO
EVENT	SHALL	STICHTING	MATHEMATISCH	CENTRUM	BE	LIABLE
FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR

ANY	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,
DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF	CONTRACT,
NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN
CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS
SOFTWARE.

Python/C	API	Reference	Manual
Previous:	B.1	History	of	the	Up:	B.	History	and	License	Next:	B.3	Licenses
and	Acknowledgements

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.2	Terms	and	conditions	Up:	B.	History	and	License	Next:	B.3.1
Mersenne	Twister

B.3	Licenses	and
Acknowledgements	for	Incorporated
Software
This	section	is	an	incomplete,	but	growing	list	of	licenses	and
acknowledgements	for	third-party	software	incorporated	in	the	Python
distribution.

Subsections

B.3.1	Mersenne	Twister
B.3.2	Sockets
B.3.3	Floating	point	exception	control
B.3.4	MD5	message	digest	algorithm
B.3.5	Asynchronous	socket	services
B.3.6	Cookie	management
B.3.7	Profiling
B.3.8	Execution	tracing
B.3.9	UUencode	and	UUdecode	functions
B.3.10	XML	Remote	Procedure	Calls

Python/C	API	Reference	Manual
Previous:	B.2	Terms	and	conditions	Up:	B.	History	and	License	Next:	B.3.1
Mersenne	Twister

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3	Licenses	and	Acknowledgements	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.2	Sockets

B.3.1	Mersenne	Twister
The	_random	module	includes	code	based	on	a	download	from
http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html.	The
following	are	the	verbatim	comments	from	the	original	code:

A	C-program	for	MT19937,	with	initialization	improved	2002/1/26.

Coded	by	Takuji	Nishimura	and	Makoto	Matsumoto.

Before	using,	initialize	the	state	by	using	init_genrand(seed)

or	init_by_array(init_key,	key_length).

Copyright	(C)	1997	-	2002,	Makoto	Matsumoto	and	Takuji	Nishimura,

All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

	1.	Redistributions	of	source	code	must	retain	the	above	copyright

				notice,	this	list	of	conditions	and	the	following	disclaimer.

	2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

				notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

				documentation	and/or	other	materials	provided	with	the	distribution.

	3.	The	names	of	its	contributors	may	not	be	used	to	endorse	or	promote

				products	derived	from	this	software	without	specific	prior	written

				permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND	CONTRIBUTORS

"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT

LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR

A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	COPYRIGHT	OWNER	OR

CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,

EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,

PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR

PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF

LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING

NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS

SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Any	feedback	is	very	welcome.

http://www.math.keio.ac.jp/matumoto/emt.html

email:	matumoto@math.keio.ac.jp

http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html

Python/C	API	Reference	Manual
Previous:	B.3	Licenses	and	Acknowledgements	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.2	Sockets

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.1	Mersenne	Twister	Up:	B.3	Licenses	and	Acknowledgements
Next:	B.3.3	Floating	point	exception

B.3.2	Sockets
The	socket	module	uses	the	functions,	getaddrinfo,	and	getnameinfo,
which	are	coded	in	separate	source	files	from	the	WIDE	Project,
http://www.wide.ad.jp/about/index.html.

						

Copyright	(C)	1995,	1996,	1997,	and	1998	WIDE	Project.

All	rights	reserved.

	

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

1.	Redistributions	of	source	code	must	retain	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer.

2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

			documentation	and/or	other	materials	provided	with	the	distribution.

3.	Neither	the	name	of	the	project	nor	the	names	of	its	contributors

			may	be	used	to	endorse	or	promote	products	derived	from	this	software

			without	specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	PROJECT	AND	CONTRIBUTORS	``AS	IS''	AND

GAI_ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	PROJECT	OR	CONTRIBUTORS	BE	LIABLE

FOR	GAI_ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL

DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS

OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

HOWEVER	CAUSED	AND	ON	GAI_ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT

LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	GAI_ANY	WAY

OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF

SUCH	DAMAGE.

Python/C	API	Reference	Manual
Previous:	B.3.1	Mersenne	Twister	Up:	B.3	Licenses	and	Acknowledgements
Next:	B.3.3	Floating	point	exception

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.wide.ad.jp/about/index.html

Previous:	B.3.2	Sockets	Up:	B.3	Licenses	and	Acknowledgements	Next:	B.3.4
MD5	message	digest

B.3.3	Floating	point	exception	control
The	source	for	the	fpectl	module	includes	the	following	notice:

				/																							Copyright	(c)	1996.																											\	

			|										The	Regents	of	the	University	of	California.																	|

			|																								All	rights	reserved.																											|

			|																																																																							|

			|			Permission	to	use,	copy,	modify,	and	distribute	this	software	for			|

			|			any	purpose	without	fee	is	hereby	granted,	provided	that	this	en-			|

			|			tire	notice	is	included	in	all	copies	of	any	software	which	is	or			|

			|			includes		a		copy		or		modification		of		this	software	and	in	all			|

			|			copies	of	the	supporting	documentation	for	such	software.											|

			|																																																																							|

			|			This		work	was	produced	at	the	University	of	California,	Lawrence			|

			|			Livermore	National	Laboratory	under		contract		no.		W-7405-ENG-48			|

			|			between		the		U.S.		Department		of		Energy	and	The	Regents	of	the			|

			|			University	of	California	for	the	operation	of	UC	LLNL.														|

			|																																																																							|

			|																														DISCLAIMER																															|

			|																																																																							|

			|			This		software	was	prepared	as	an	account	of	work	sponsored	by	an			|

			|			agency	of	the	United	States	Government.	Neither	the	United	States			|

			|			Government		nor	the	University	of	California	nor	any	of	their	em-			|

			|			ployees,	makes	any	warranty,	express	or	implied,	or		assumes		any			|

			|			liability		or		responsibility		for	the	accuracy,	completeness,	or			|

			|			usefulness	of	any	information,		apparatus,		product,		or		process			|

			|			disclosed,			or		represents		that		its		use		would		not		infringe			|

			|			privately-owned	rights.	Reference	herein	to	any	specific		commer-			|

			|			cial		products,		process,		or		service		by	trade	name,	trademark,			|

			|			manufacturer,	or	otherwise,	does	not		necessarily		constitute		or			|

			|			imply		its	endorsement,	recommendation,	or	favoring	by	the	United			|

			|			States	Government	or	the	University	of	California.	The	views		and			|

			|			opinions		of	authors	expressed	herein	do	not	necessarily	state	or			|

			|			reflect	those	of	the	United	States	Government	or		the		University			|

			|			of		California,		and	shall	not	be	used	for	advertising	or	product			|

				\		endorsement	purposes.																																														/	

Python/C	API	Reference	Manual
Previous:	B.3.2	Sockets	Up:	B.3	Licenses	and	Acknowledgements	Next:	B.3.4
MD5	message	digest

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.3	Floating	point	exception	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.5	Asynchronous	socket	services

B.3.4	MD5	message	digest	algorithm
The	source	code	for	the	md5	module	contains	the	following	notice:

Copyright	(C)	1991-2,	RSA	Data	Security,	Inc.	Created	1991.	All

rights	reserved.

License	to	copy	and	use	this	software	is	granted	provided	that	it

is	identified	as	the	"RSA	Data	Security,	Inc.	MD5	Message-Digest

Algorithm"	in	all	material	mentioning	or	referencing	this	software

or	this	function.

License	is	also	granted	to	make	and	use	derivative	works	provided

that	such	works	are	identified	as	"derived	from	the	RSA	Data

Security,	Inc.	MD5	Message-Digest	Algorithm"	in	all	material

mentioning	or	referencing	the	derived	work.

RSA	Data	Security,	Inc.	makes	no	representations	concerning	either

the	merchantability	of	this	software	or	the	suitability	of	this

software	for	any	particular	purpose.	It	is	provided	"as	is"

without	express	or	implied	warranty	of	any	kind.

These	notices	must	be	retained	in	any	copies	of	any	part	of	this

documentation	and/or	software.

Python/C	API	Reference	Manual
Previous:	B.3.3	Floating	point	exception	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.5	Asynchronous	socket	services

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.4	MD5	message	digest	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.6	Cookie	management

B.3.5	Asynchronous	socket	services
The	asynchat	and	asyncore	modules	contain	the	following	notice:

						

	Copyright	1996	by	Sam	Rushing

																									All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and

	its	documentation	for	any	purpose	and	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appear	in	all

	copies	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of	Sam

	Rushing	not	be	used	in	advertising	or	publicity	pertaining	to

	distribution	of	the	software	without	specific,	written	prior

	permission.

	SAM	RUSHING	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS	SOFTWARE,

	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS,	IN

	NO	EVENT	SHALL	SAM	RUSHING	BE	LIABLE	FOR	ANY	SPECIAL,	INDIRECT	OR

	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS

	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF	CONTRACT,

	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN

	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

Python/C	API	Reference	Manual
Previous:	B.3.4	MD5	message	digest	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.6	Cookie	management

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.5	Asynchronous	socket	services	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.7	Profiling

B.3.6	Cookie	management
The	Cookie	module	contains	the	following	notice:

	Copyright	2000	by	Timothy	O'Malley	<timo@alum.mit.edu>

																All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software

	and	its	documentation	for	any	purpose	and	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appear	in	all

	copies	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of

	Timothy	O'Malley		not	be	used	in	advertising	or	publicity

	pertaining	to	distribution	of	the	software	without	specific,	written

	prior	permission.

	Timothy	O'Malley	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS

	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY

	AND	FITNESS,	IN	NO	EVENT	SHALL	Timothy	O'Malley	BE	LIABLE	FOR

	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES

	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,

	WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS

	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR

	PERFORMANCE	OF	THIS	SOFTWARE.

Python/C	API	Reference	Manual
Previous:	B.3.5	Asynchronous	socket	services	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.7	Profiling

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.6	Cookie	management	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.8	Execution	tracing

B.3.7	Profiling
The	profile	and	pstats	modules	contain	the	following	notice:

	Copyright	1994,	by	InfoSeek	Corporation,	all	rights	reserved.

	Written	by	James	Roskind

	Permission	to	use,	copy,	modify,	and	distribute	this	Python	software

	and	its	associated	documentation	for	any	purpose	(subject	to	the

	restriction	in	the	following	sentence)	without	fee	is	hereby	granted,

	provided	that	the	above	copyright	notice	appears	in	all	copies,	and

	that	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	InfoSeek	not	be	used	in

	advertising	or	publicity	pertaining	to	distribution	of	the	software

	without	specific,	written	prior	permission.		This	permission	is

	explicitly	restricted	to	the	copying	and	modification	of	the	software

	to	remain	in	Python,	compiled	Python,	or	other	languages	(such	as	C)

	wherein	the	modified	or	derived	code	is	exclusively	imported	into	a

	Python	module.

	INFOSEEK	CORPORATION	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS

	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND

	FITNESS.	IN	NO	EVENT	SHALL	INFOSEEK	CORPORATION	BE	LIABLE	FOR	ANY

	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES	WHATSOEVER

	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF

	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN

	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

Python/C	API	Reference	Manual
Previous:	B.3.6	Cookie	management	Up:	B.3	Licenses	and
Acknowledgements	Next:	B.3.8	Execution	tracing

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.7	Profiling	Up:	B.3	Licenses	and	Acknowledgements	Next:	B.3.9
UUencode	and	UUdecode

B.3.8	Execution	tracing
The	trace	module	contains	the	following	notice:

	portions	copyright	2001,	Autonomous	Zones	Industries,	Inc.,	all	rights...

	err...		reserved	and	offered	to	the	public	under	the	terms	of	the

	Python	2.2	license.

	Author:	Zooko	O'Whielacronx

	http://zooko.com/

	mailto:zooko@zooko.com

	Copyright	2000,	Mojam	Media,	Inc.,	all	rights	reserved.

	Author:	Skip	Montanaro

	Copyright	1999,	Bioreason,	Inc.,	all	rights	reserved.

	Author:	Andrew	Dalke

	Copyright	1995-1997,	Automatrix,	Inc.,	all	rights	reserved.

	Author:	Skip	Montanaro

	Copyright	1991-1995,	Stichting	Mathematisch	Centrum,	all	rights	reserved.

	Permission	to	use,	copy,	modify,	and	distribute	this	Python	software	and

	its	associated	documentation	for	any	purpose	without	fee	is	hereby

	granted,	provided	that	the	above	copyright	notice	appears	in	all	copies,

	and	that	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	neither	Automatrix,

	Bioreason	or	Mojam	Media	be	used	in	advertising	or	publicity	pertaining	to

	distribution	of	the	software	without	specific,	written	prior	permission.

Python/C	API	Reference	Manual
Previous:	B.3.7	Profiling	Up:	B.3	Licenses	and	Acknowledgements	Next:	B.3.9
UUencode	and	UUdecode

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.8	Execution	tracing	Up:	B.3	Licenses	and	Acknowledgements
Next:	B.3.10	XML	Remote	Procedure

B.3.9	UUencode	and	UUdecode	functions
The	uu	module	contains	the	following	notice:

	Copyright	1994	by	Lance	Ellinghouse

	Cathedral	City,	California	Republic,	United	States	of	America.

																								All	Rights	Reserved

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its

	documentation	for	any	purpose	and	without	fee	is	hereby	granted,

	provided	that	the	above	copyright	notice	appear	in	all	copies	and	that

	both	that	copyright	notice	and	this	permission	notice	appear	in

	supporting	documentation,	and	that	the	name	of	Lance	Ellinghouse

	not	be	used	in	advertising	or	publicity	pertaining	to	distribution

	of	the	software	without	specific,	written	prior	permission.

	LANCE	ELLINGHOUSE	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO

	THIS	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND

	FITNESS,	IN	NO	EVENT	SHALL	LANCE	ELLINGHOUSE	CENTRUM	BE	LIABLE

	FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES

	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN

	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT

	OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

	Modified	by	Jack	Jansen,	CWI,	July	1995:

	-	Use	binascii	module	to	do	the	actual	line-by-line	conversion

			between	ascii	and	binary.	This	results	in	a	1000-fold	speedup.	The	C

			version	is	still	5	times	faster,	though.

	-	Arguments	more	compliant	with	python	standard

Python/C	API	Reference	Manual
Previous:	B.3.8	Execution	tracing	Up:	B.3	Licenses	and	Acknowledgements
Next:	B.3.10	XML	Remote	Procedure

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.9	UUencode	and	UUdecode	Up:	B.3	Licenses	and
Acknowledgements	Next:	Index

B.3.10	XML	Remote	Procedure	Calls
The	xmlrpclib	module	contains	the	following	notice:

					The	XML-RPC	client	interface	is

	Copyright	(c)	1999-2002	by	Secret	Labs	AB

	Copyright	(c)	1999-2002	by	Fredrik	Lundh

	By	obtaining,	using,	and/or	copying	this	software	and/or	its

	associated	documentation,	you	agree	that	you	have	read,	understood,

	and	will	comply	with	the	following	terms	and	conditions:

	Permission	to	use,	copy,	modify,	and	distribute	this	software	and

	its	associated	documentation	for	any	purpose	and	without	fee	is

	hereby	granted,	provided	that	the	above	copyright	notice	appears	in

	all	copies,	and	that	both	that	copyright	notice	and	this	permission

	notice	appear	in	supporting	documentation,	and	that	the	name	of

	Secret	Labs	AB	or	the	author	not	be	used	in	advertising	or	publicity

	pertaining	to	distribution	of	the	software	without	specific,	written

	prior	permission.

	SECRET	LABS	AB	AND	THE	AUTHOR	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD

	TO	THIS	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANT-

	ABILITY	AND	FITNESS.		IN	NO	EVENT	SHALL	SECRET	LABS	AB	OR	THE	AUTHOR

	BE	LIABLE	FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY

	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,

	WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS

	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE

	OF	THIS	SOFTWARE.

Python/C	API	Reference	Manual
Previous:	B.3.9	UUencode	and	UUdecode	Up:	B.3	Licenses	and
Acknowledgements	Next:	Index

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.10	XML	Remote	Procedure	Up:	Python/C	API	Reference
Manual	Next:	About	this	document	...

Index

_	|	a	|	b	|	c	|	d	|	e	|	f	|	g	|	h	|	i	|	k	|	l	|	m	|	n	|	o	|	p	|	r	|	s	|	t	|	u	|	v

_	(underscore)

__all__	(package	variable)
__builtin__	(built-in	module),	[Link],
[Link]
__dict__	(module	attribute)
__doc__	(module	attribute)
__file__	(module	attribute),	[Link]
__import__()	(built-in	function)
__main__	(built-in	module),	[Link],
[Link]
__name__	(module	attribute),	[Link]
_frozen	(C	type)
_inittab	(C	type)
_ob_next	(PyObject	member)
_ob_prev	(PyObject	member)
_Py_c_diff()
_Py_c_neg()
_Py_c_pow()

_Py_c_prod()
_Py_c_quot()
_Py_c_sum()
_Py_NoneStruct
_PyImport_FindExtension()
_PyImport_Fini()
_PyImport_FixupExtension()
_PyImport_Init()
_PyObject_Del()
_PyObject_GC_TRACK()
_PyObject_GC_UNTRACK()
_PyObject_New()
_PyObject_NewVar()
_PyString_Resize()
_PyTuple_Resize()

A

abort()
abs()	(built-in	function)

apply()	(built-in	function),	[Link],
[Link]
argv	(in	module	sys)

B

buffer	interface
buffer	object BufferType	(in	module	types)

C

calloc()
classmethod()	(built-in	function)
cleanup	functions
close()	(in	module	os)
cmp()	(built-in	function),	[Link]
CO_FUTURE_DIVISION

CObject	object
coerce()	(built-in	function)
compile()	(built-in	function)
complex	number	object
copyright	(in	module	sys)

D

dictionary	object
DictionaryType	(in	module	types)

DictType	(in	module	types)
divmod()	(built-in	function)

E

environment	variables
exec_prefix,	[Link],	[Link]
PATH,	[Link]
prefix,	[Link],	[Link],	[Link],
[Link]
PYTHONDUMPREFS
PYTHONHOME,	[Link]
PYTHONPATH,	[Link]

EOFError	(built-in	exception)
errno
exc_info()	(in	module	sys)

exc_traceback	(in	module	sys),	[Link]
exc_type	(in	module	sys),	[Link]
exc_value	(in	module	sys),	[Link]
Exception	(built-in	exception)
exceptions	(built-in	module)
exec_prefix	(environment	variable),
[Link],	[Link]
executable	(in	module	sys)
exit()

F

file	object
FileType	(in	module	types)
float()	(built-in	function)
floating	point	object

FloatType	(in	modules	types)
fopen()
free()
freeze	utility

G

getcharbufferproc	(C	type)
getreadbufferproc	(C	type)
getsegcountproc	(C	type)

getwritebufferproc	(C	type)
global	interpreter	lock

H

hash()	(built-in	function),	[Link]

I

ihooks	(standard	module)
incr_item(),	[Link]
inquiry	(C	type)
instance	object

int()	(built-in	function)
integer	object
interpreter	lock
IntType	(in	modules	types)

K

KeyboardInterrupt	(built-in	exception),
[Link]

L

len()	(built-in	function),	[Link],	[Link],
[Link],	[Link]
list	object
ListType	(in	module	types)
lock,	interpreter

long()	(built-in	function)
long	integer	object
LONG_MAX,	[Link]
LongType	(in	modules	types)

M

main(),	[Link]
malloc()
mapping	object
METH_CLASS
METH_COEXIST
METH_KEYWORDS
METH_NOARGS
METH_O
METH_OLDARGS

METH_STATIC
METH_VARARGS
method	object
MethodType	(in	module	types)
module

search	path,	[Link],	[Link]
module	object
modules	(in	module	sys),	[Link]
ModuleType	(in	module	types)

N

None	object numeric	object

O

ob_refcnt	(PyObject	member)
ob_size	(PyVarObject	member)
ob_type	(PyObject	member)
object

buffer
CObject
complex	number
dictionary
file
floating	point
instance
integer
list

object	(continued)
long	integer
mapping
method
module
None
numeric
sequence
string
tuple
type,	[Link]

OverflowError	(built-in	exception),
[Link]

P

package	variable
__all__

path
module	search,	[Link],	[Link]

PATH	(environment	variable),	[Link]
path	(in	module	sys),	[Link],	[Link]
platform	(in	module	sys)
pow()	(built-in	function),	[Link]
prefix	(environment	variable),	[Link],	[Link],
[Link],	[Link]
Py_AtExit()
Py_BEGIN_ALLOW_THREADS,	[Link]
Py_BLOCK_THREADS
Py_BuildValue()
Py_CLEAR()
Py_CompileString(),	[Link],	[Link],	[Link]
Py_CompileStringFlags()
Py_complex	(C	type)
Py_DECREF(),	[Link]
Py_END_ALLOW_THREADS,	[Link]
Py_END_OF_BUFFER
Py_EndInterpreter()
Py_eval_input
Py_Exit()
Py_False
Py_FatalError(),	[Link]
Py_FdIsInteractive()
Py_file_input
Py_Finalize(),	[Link],	[Link],	[Link],	[Link],
[Link]
Py_FindMethod()
Py_GetBuildInfo()
Py_GetCompiler()
Py_GetCopyright()

PyLong_FromLong()
PyLong_FromLongLong()
PyLong_FromString()
PyLong_FromUnicode()
PyLong_FromUnsignedLong()
PyLong_FromUnsignedLongLong()
PyLong_FromVoidPtr()
PyLong_Type
PyLongObject	(C	type)
PyMapping_Check()
PyMapping_DelItem()
PyMapping_DelItemString()
PyMapping_GetItemString()
PyMapping_HasKey()
PyMapping_HasKeyString()
PyMapping_Items()
PyMapping_Keys()
PyMapping_Length()
PyMapping_SetItemString()
PyMapping_Values()
PyMappingMethods	(C	type)
PyMarshal_ReadLastObjectFromFile()
PyMarshal_ReadLongFromFile()
PyMarshal_ReadObjectFromFile()
PyMarshal_ReadObjectFromString()
PyMarshal_ReadShortFromFile()
PyMarshal_WriteLongToFile()
PyMarshal_WriteObjectToFile()
PyMarshal_WriteObjectToString()
PyMem_Del()
PyMem_Free()
PyMem_Malloc()
PyMem_New()

Py_GetExecPrefix(),	[Link]
Py_GetPath(),	[Link],	[Link]
Py_GetPlatform()
Py_GetPrefix(),	[Link]
Py_GetProgramFullPath(),	[Link]
Py_GetProgramName()
Py_GetVersion()
Py_INCREF(),	[Link]
Py_Initialize(),	[Link],	[Link],	[Link],	[Link]
Py_InitializeEx()
Py_InitModule()
Py_InitModule3()
Py_InitModule4()
Py_IsInitialized(),	[Link]
Py_Main()
Py_NewInterpreter()
Py_None
Py_PRINT_RAW
Py_RETURN_FALSE
Py_RETURN_NONE
Py_RETURN_TRUE
Py_SetProgramName(),	[Link],	[Link],	[Link],
[Link]
Py_single_input
Py_TPFLAGS_BASETYPE
Py_TPFLAGS_CHECKTYPES
Py_TPFLAGS_DEFAULT
Py_TPFLAGS_GC
Py_TPFLAGS_HAVE_CLASS
Py_TPFLAGS_HAVE_GC,	[Link]
Py_TPFLAGS_HAVE_GETCHARBUFFER,
[Link]
Py_TPFLAGS_HAVE_INPLACEOPS
Py_TPFLAGS_HAVE_ITER
Py_TPFLAGS_HAVE_RICHCOMPARE
Py_TPFLAGS_HAVE_SEQUENCE_IN
Py_TPFLAGS_HAVE_WEAKREFS
Py_TPFLAGS_HEAPTYPE
Py_TPFLAGS_READY

PyMem_Realloc()
PyMem_Resize()
PyMethod_Check()
PyMethod_Class()
PyMethod_Function()
PyMethod_GET_CLASS()
PyMethod_GET_FUNCTION()
PyMethod_GET_SELF()
PyMethod_New()
PyMethod_Self()
PyMethod_Type
PyMethodDef	(C	type)
PyModule_AddIntConstant()
PyModule_AddObject()
PyModule_AddStringConstant()
PyModule_Check()
PyModule_CheckExact()
PyModule_GetDict()
PyModule_GetFilename()
PyModule_GetName()
PyModule_New()
PyModule_Type
PyNumber_Absolute()
PyNumber_Add()
PyNumber_And()
PyNumber_Check()
PyNumber_Coerce()
PyNumber_Divide()
PyNumber_Divmod()
PyNumber_Float()
PyNumber_FloorDivide()
PyNumber_InPlaceAdd()
PyNumber_InPlaceAnd()
PyNumber_InPlaceDivide()
PyNumber_InPlaceFloorDivide()
PyNumber_InPlaceLshift()
PyNumber_InPlaceMultiply()
PyNumber_InPlaceOr()
PyNumber_InPlacePower()

Py_TPFLAGS_READYING
Py_tracefunc	(C	type)
Py_True
Py_UNBLOCK_THREADS
Py_UNICODE	(C	type)
Py_UNICODE_ISALNUM()
Py_UNICODE_ISALPHA()
Py_UNICODE_ISDECIMAL()
Py_UNICODE_ISDIGIT()
Py_UNICODE_ISLINEBREAK()
Py_UNICODE_ISLOWER()
Py_UNICODE_ISNUMERIC()
Py_UNICODE_ISSPACE()
Py_UNICODE_ISTITLE()
Py_UNICODE_ISUPPER()
Py_UNICODE_TODECIMAL()
Py_UNICODE_TODIGIT()
Py_UNICODE_TOLOWER()
Py_UNICODE_TONUMERIC()
Py_UNICODE_TOTITLE()
Py_UNICODE_TOUPPER()
Py_VISIT()
Py_XDECREF(),	[Link]
Py_XINCREF()
PyArg_Parse()
PyArg_ParseTuple()
PyArg_ParseTupleAndKeywords()
PyArg_UnpackTuple()
PyArg_VaParse()
PyArg_VaParseTupleAndKeywords()
PyBool_Check()
PyBool_FromLong()
PyBuffer_Check()
PyBuffer_FromMemory()
PyBuffer_FromObject()
PyBuffer_FromReadWriteMemory()
PyBuffer_FromReadWriteObject()
PyBuffer_New()
PyBuffer_Type

PyNumber_InPlaceRemainder()
PyNumber_InPlaceRshift()
PyNumber_InPlaceSubtract()
PyNumber_InPlaceTrueDivide()
PyNumber_InPlaceXor()
PyNumber_Int()
PyNumber_Invert()
PyNumber_Long()
PyNumber_Lshift()
PyNumber_Multiply()
PyNumber_Negative()
PyNumber_Or()
PyNumber_Positive()
PyNumber_Power()
PyNumber_Remainder()
PyNumber_Rshift()
PyNumber_Subtract()
PyNumber_TrueDivide()
PyNumber_Xor()
PyNumberMethods	(C	type)
PyObject	(C	type)
PyObject_AsCharBuffer()
PyObject_AsFileDescriptor()
PyObject_AsReadBuffer()
PyObject_AsWriteBuffer()
PyObject_Call()
PyObject_CallFunction()
PyObject_CallFunctionObjArgs()
PyObject_CallMethod()
PyObject_CallMethodObjArgs()
PyObject_CallObject()
PyObject_CheckReadBuffer()
PyObject_Cmp()
PyObject_Compare()
PyObject_DEL()
PyObject_Del()
PyObject_DelAttr()
PyObject_DelAttrString()
PyObject_DelItem()

PyBufferObject	(C	type)
PyBufferProcs
PyBufferProcs	(C	type)
PyCallable_Check()
PyCallIter_Check()
PyCallIter_New()
PyCallIter_Type
PyCell_Check()
PyCell_GET()
PyCell_Get()
PyCell_New()
PyCell_SET()
PyCell_Set()
PyCell_Type
PyCellObject	(C	type)
PyCFunction	(C	type)
PyCObject	(C	type)
PyCObject_AsVoidPtr()
PyCObject_Check()
PyCObject_FromVoidPtr()
PyCObject_FromVoidPtrAndDesc()
PyCObject_GetDesc()
PyCObject_SetVoidPtr()
PyCompilerFlags	(C	type)
PyComplex_AsCComplex()
PyComplex_Check()
PyComplex_CheckExact()
PyComplex_FromCComplex()
PyComplex_FromDoubles()
PyComplex_ImagAsDouble()
PyComplex_RealAsDouble()
PyComplex_Type
PyComplexObject	(C	type)
PyDate_Check()
PyDate_CheckExact()
PyDate_FromDate()
PyDate_FromDateAndTime()
PyDate_FromTimestamp()
PyDateTime_Check()

PyObject_Dir()
PyObject_GC_Del()
PyObject_GC_New()
PyObject_GC_NewVar()
PyObject_GC_Resize()
PyObject_GC_Track()
PyObject_GC_UnTrack()
PyObject_GetAttr()
PyObject_GetAttrString()
PyObject_GetItem()
PyObject_GetIter()
PyObject_HasAttr()
PyObject_HasAttrString()
PyObject_Hash()
PyObject_HEAD
PyObject_Init()
PyObject_InitVar()
PyObject_IsInstance()
PyObject_IsSubclass()
PyObject_IsTrue()
PyObject_Length()
PyObject_NEW()
PyObject_New()
PyObject_NEW_VAR()
PyObject_NewVar()
PyObject_Not()
PyObject_Print()
PyObject_Repr()
PyObject_RichCompare()
PyObject_RichCompareBool()
PyObject_SetAttr()
PyObject_SetAttrString()
PyObject_SetItem()
PyObject_Size()
PyObject_Str()
PyObject_Type()
PyObject_TypeCheck()
PyObject_Unicode()
PyObject_VAR_HEAD

PyDateTime_CheckExact()
PyDateTime_DATE_GET_HOUR()
PyDateTime_DATE_GET_MICROSECOND()
PyDateTime_DATE_GET_MINUTE()
PyDateTime_DATE_GET_SECOND()
PyDateTime_FromTimestamp()
PyDateTime_GET_DAY()
PyDateTime_GET_MONTH()
PyDateTime_GET_YEAR()
PyDateTime_TIME_GET_HOUR()
PyDateTime_TIME_GET_MICROSECOND()
PyDateTime_TIME_GET_MINUTE()
PyDateTime_TIME_GET_SECOND()
PyDelta_Check()
PyDelta_CheckExact()
PyDelta_FromDSU()
PyDescr_IsData()
PyDescr_NewClassMethod()
PyDescr_NewGetSet()
PyDescr_NewMember()
PyDescr_NewMethod()
PyDescr_NewWrapper()
PyDict_Check()
PyDict_CheckExact()
PyDict_Clear()
PyDict_Contains()
PyDict_Copy()
PyDict_DelItem()
PyDict_DelItemString()
PyDict_GetItem()
PyDict_GetItemString()
PyDict_Items()
PyDict_Keys()
PyDict_Merge()
PyDict_MergeFromSeq2()
PyDict_New()
PyDict_Next()
PyDict_SetItem()
PyDict_SetItemString()

PyOS_AfterFork()
PyOS_CheckStack()
PyOS_GetLastModificationTime()
PyOS_getsig()
PyOS_setsig()
PyParser_SimpleParseFile()
PyParser_SimpleParseFileFlags()
PyParser_SimpleParseString()
PyParser_SimpleParseStringFlags()
PyParser_SimpleParseStringFlagsFilename()
PyProperty_Type
PyRun_AnyFile()
PyRun_AnyFileEx()
PyRun_AnyFileExFlags()
PyRun_AnyFileFlags()
PyRun_File()
PyRun_FileEx()
PyRun_FileExFlags()
PyRun_FileFlags()
PyRun_InteractiveLoop()
PyRun_InteractiveLoopFlags()
PyRun_InteractiveOne()
PyRun_InteractiveOneFlags()
PyRun_SimpleFile()
PyRun_SimpleFileEx()
PyRun_SimpleFileExFlags()
PyRun_SimpleFileFlags()
PyRun_SimpleString()
PyRun_SimpleStringFlags()
PyRun_String()
PyRun_StringFlags()
PySeqIter_Check()
PySeqIter_New()
PySeqIter_Type
PySequence_Check()
PySequence_Concat()
PySequence_Contains()
PySequence_Count()
PySequence_DelItem()

PyDict_Size()
PyDict_Type
PyDict_Update()
PyDict_Values()
PyDictObject	(C	type)
PyDictProxy_New()
PyErr_BadArgument()
PyErr_BadInternalCall()
PyErr_CheckSignals()
PyErr_Clear(),	[Link],	[Link]
PyErr_ExceptionMatches(),	[Link]
PyErr_Fetch()
PyErr_Format()
PyErr_GivenExceptionMatches()
PyErr_NewException()
PyErr_NoMemory()
PyErr_NormalizeException()
PyErr_Occurred(),	[Link]
PyErr_Print()
PyErr_Restore()
PyErr_SetExcFromWindowsErr()
PyErr_SetExcFromWindowsErrWithFilename()
PyErr_SetFromErrno()
PyErr_SetFromErrnoWithFilename()
PyErr_SetFromWindowsErr()
PyErr_SetFromWindowsErrWithFilename()
PyErr_SetInterrupt()
PyErr_SetNone()
PyErr_SetObject()
PyErr_SetString(),	[Link]
PyErr_Warn()
PyErr_WarnExplicit()
PyErr_WriteUnraisable()
PyEval_AcquireLock(),	[Link],	[Link]
PyEval_AcquireThread()
PyEval_InitThreads(),	[Link]
PyEval_ReleaseLock(),	[Link],	[Link],	[Link]
PyEval_ReleaseThread(),	[Link]
PyEval_RestoreThread(),	[Link],	[Link]

PySequence_DelSlice()
PySequence_Fast()
PySequence_Fast_GET_ITEM()
PySequence_Fast_GET_SIZE()
PySequence_Fast_ITEMS()
PySequence_GetItem(),	[Link]
PySequence_GetSlice()
PySequence_Index()
PySequence_InPlaceConcat()
PySequence_InPlaceRepeat()
PySequence_ITEM()
PySequence_Length()
PySequence_List()
PySequence_Repeat()
PySequence_SetItem()
PySequence_SetSlice()
PySequence_Size()
PySequence_Tuple(),	[Link]
PySequenceMethods	(C	type)
PySlice_Check()
PySlice_GetIndices()
PySlice_GetIndicesEx()
PySlice_New()
PySlice_Type
PyString_AS_STRING()
PyString_AsDecodedObject()
PyString_AsEncodedObject()
PyString_AsString()
PyString_AsStringAndSize()
PyString_Check()
PyString_CheckExact()
PyString_Concat()
PyString_ConcatAndDel()
PyString_Decode()
PyString_Encode()
PyString_Format()
PyString_FromFormat()
PyString_FromFormatV()
PyString_FromString(),	[Link]

PyEval_SaveThread(),	[Link],	[Link]
PyEval_SetProfile()
PyEval_SetTrace()
PyEval_ThreadsInitialized()
PyExc_ArithmeticError
PyExc_AssertionError
PyExc_AttributeError
PyExc_EnvironmentError
PyExc_EOFError
PyExc_Exception
PyExc_FloatingPointError
PyExc_ImportError
PyExc_IndexError
PyExc_IOError
PyExc_KeyboardInterrupt
PyExc_KeyError
PyExc_LookupError
PyExc_MemoryError
PyExc_NameError
PyExc_NotImplementedError
PyExc_OSError
PyExc_OverflowError
PyExc_ReferenceError
PyExc_RuntimeError
PyExc_StandardError
PyExc_SyntaxError
PyExc_SystemError
PyExc_SystemExit
PyExc_TypeError
PyExc_ValueError
PyExc_WindowsError
PyExc_ZeroDivisionError
PyFile_AsFile()
PyFile_Check()
PyFile_CheckExact()
PyFile_Encoding()
PyFile_FromFile()
PyFile_FromString()
PyFile_GetLine()

PyString_FromStringAndSize()
PyString_GET_SIZE()
PyString_InternFromString()
PyString_InternInPlace()
PyString_Size()
PyString_Type
PyStringObject	(C	type)
PySys_SetArgv(),	[Link],	[Link]
PYTHONDUMPREFS	(environment
variable)
PYTHONHOME	(environment	variable)
[Link]
PYTHONPATH	(environment	variable)
[Link]
PyThreadState,	[Link]
PyThreadState	(C	type)
PyThreadState_Clear()
PyThreadState_Delete()
PyThreadState_Get()
PyThreadState_GetDict()
PyThreadState_New()
PyThreadState_Next()
PyThreadState_SetAsyncExc()
PyThreadState_Swap()
PyTime_Check()
PyTime_CheckExact()
PyTime_FromTime()
PyTrace_C_CALL
PyTrace_C_EXCEPTION
PyTrace_C_RETURN
PyTrace_CALL
PyTrace_EXCEPTION
PyTrace_LINE
PyTrace_RETURN
PyTuple_Check()
PyTuple_CheckExact()
PyTuple_GET_ITEM()
PyTuple_GET_SIZE()
PyTuple_GetItem()

PyFile_Name()
PyFile_SetBufSize()
PyFile_SoftSpace()
PyFile_Type
PyFile_WriteObject()
PyFile_WriteString()
PyFileObject	(C	type)
PyFloat_AS_DOUBLE()
PyFloat_AsDouble()
PyFloat_Check()
PyFloat_CheckExact()
PyFloat_FromDouble()
PyFloat_FromString()
PyFloat_Type
PyFloatObject	(C	type)
PyGen_Check()
PyGen_CheckExact()
PyGen_New()
PyGen_Type
PyGenObject	(C	type)
PyGILState_Ensure()
PyGILState_Release()
PyImport_AddModule()
PyImport_AppendInittab()
PyImport_Cleanup()
PyImport_ExecCodeModule()
PyImport_ExtendInittab()
PyImport_FrozenModules
PyImport_GetMagicNumber()
PyImport_GetModuleDict()
PyImport_Import()
PyImport_ImportFrozenModule()
PyImport_ImportModule()
PyImport_ImportModuleEx()
PyImport_ReloadModule()
PyInstance_Check()
PyInstance_New()
PyInstance_NewRaw()
PyInstance_Type

PyTuple_GetSlice()
PyTuple_New()
PyTuple_Pack()
PyTuple_SET_ITEM()
PyTuple_SetItem(),	[Link]
PyTuple_Size()
PyTuple_Type
PyTupleObject	(C	type)
PyType_Check()
PyType_CheckExact()
PyType_GenericAlloc()
PyType_GenericNew()
PyType_HasFeature(),	[Link]
PyType_IS_GC()
PyType_IsSubtype()
PyType_Ready()
PyType_Type
PyTypeObject	(C	type)
PyTZInfo_Check()
PyTZInfo_CheckExact()
PyUnicode_AS_DATA()
PyUnicode_AS_UNICODE()
PyUnicode_AsASCIIString()
PyUnicode_AsCharmapString()
PyUnicode_AsEncodedString()
PyUnicode_AsLatin1String()
PyUnicode_AsMBCSString()
PyUnicode_AsRawUnicodeEscapeString()
PyUnicode_AsUnicode()
PyUnicode_AsUnicodeEscapeString()
PyUnicode_AsUTF16String()
PyUnicode_AsUTF8String()
PyUnicode_AsWideChar()
PyUnicode_Check()
PyUnicode_CheckExact()
PyUnicode_Compare()
PyUnicode_Concat()
PyUnicode_Contains()
PyUnicode_Count()

PyInt_AS_LONG()
PyInt_AsLong()
PyInt_AsUnsignedLongLongMask()
PyInt_AsUnsignedLongMask()
PyInt_Check()
PyInt_CheckExact()
PyInt_FromLong()
PyInt_FromString()
PyInt_GetMax()
PyInt_Type
PyInterpreterState	(C	type)
PyInterpreterState_Clear()
PyInterpreterState_Delete()
PyInterpreterState_Head()
PyInterpreterState_New()
PyInterpreterState_Next()
PyInterpreterState_ThreadHead()
PyIntObject	(C	type)
PyIter_Check()
PyIter_Next()
PyList_Append()
PyList_AsTuple()
PyList_Check()
PyList_CheckExact()
PyList_GET_ITEM()
PyList_GET_SIZE()
PyList_GetItem(),	[Link]
PyList_GetSlice()
PyList_Insert()
PyList_New()
PyList_Reverse()
PyList_SET_ITEM()
PyList_SetItem(),	[Link]
PyList_SetSlice()
PyList_Size()
PyList_Sort()
PyList_Type
PyListObject	(C	type)
PyLong_AsDouble()

PyUnicode_Decode()
PyUnicode_DecodeASCII()
PyUnicode_DecodeCharmap()
PyUnicode_DecodeLatin1()
PyUnicode_DecodeMBCS()
PyUnicode_DecodeRawUnicodeEscape()
PyUnicode_DecodeUnicodeEscape()
PyUnicode_DecodeUTF16()
PyUnicode_DecodeUTF16Stateful()
PyUnicode_DecodeUTF8()
PyUnicode_DecodeUTF8Stateful()
PyUnicode_Encode()
PyUnicode_EncodeASCII()
PyUnicode_EncodeCharmap()
PyUnicode_EncodeLatin1()
PyUnicode_EncodeMBCS()
PyUnicode_EncodeRawUnicodeEscape()
PyUnicode_EncodeUnicodeEscape()
PyUnicode_EncodeUTF16()
PyUnicode_EncodeUTF8()
PyUnicode_Find()
PyUnicode_Format()
PyUnicode_FromEncodedObject()
PyUnicode_FromObject()
PyUnicode_FromUnicode()
PyUnicode_FromWideChar()
PyUnicode_GET_DATA_SIZE()
PyUnicode_GET_SIZE()
PyUnicode_GetSize()
PyUnicode_Join()
PyUnicode_Replace()
PyUnicode_Split()
PyUnicode_Splitlines()
PyUnicode_Tailmatch()
PyUnicode_Translate()
PyUnicode_TranslateCharmap()
PyUnicode_Type
PyUnicodeObject	(C	type)
PyVarObject	(C	type)

PyLong_AsLong()
PyLong_AsLongLong()
PyLong_AsUnsignedLong()
PyLong_AsUnsignedLongLong()
PyLong_AsUnsignedLongLongMask()
PyLong_AsUnsignedLongMask()
PyLong_AsVoidPtr()
PyLong_Check()
PyLong_CheckExact()
PyLong_FromDouble()

PyWeakref_Check()
PyWeakref_CheckProxy()
PyWeakref_CheckRef()
PyWeakref_GET_OBJECT()
PyWeakref_GetObject()
PyWeakref_NewProxy()
PyWeakref_NewRef()
PyWrapper_New()

R

realloc()
reload()	(built-in	function)

repr()	(built-in	function),	[Link]
rexec	(standard	module)

S

search
path,	module,	[Link],	[Link]

sequence	object
set_all()
setcheckinterval()	(in	module	sys)
setvbuf()
SIGINT,	[Link]
signal	(built-in	module)
SliceType	(in	module	types)
softspace	(file	attribute)
staticmethod()	(built-in	function)
stderr	(in	module	sys)

stdin	(in	module	sys)
stdout	(in	module	sys)
str()	(built-in	function)
strerror()
string	object
StringType	(in	module	types)
sum_list()
sum_sequence(),	[Link]
sys	(built-in	module),	[Link],	[Link]
SystemError	(built-in	exception),
[Link]

T

thread	(built-in	module)
tp_alloc	(PyTypeObject	member)
tp_allocs	(PyTypeObject	member)
tp_as_buffer	(PyTypeObject	member)
tp_base	(PyTypeObject	member)
tp_bases	(PyTypeObject	member)
tp_basicsize	(PyTypeObject	member)
tp_cache	(PyTypeObject	member)
tp_call	(PyTypeObject	member)
tp_clear	(PyTypeObject	member)
tp_compare	(PyTypeObject	member)
tp_dealloc	(PyTypeObject	member)
tp_descr_get	(PyTypeObject	member)
tp_descr_set	(PyTypeObject	member)
tp_dict	(PyTypeObject	member)
tp_dictoffset	(PyTypeObject	member)
tp_doc	(PyTypeObject	member)
tp_flags	(PyTypeObject	member)
tp_free	(PyTypeObject	member)
tp_frees	(PyTypeObject	member)
tp_getattr	(PyTypeObject	member)
tp_getattro	(PyTypeObject	member)
tp_getset	(PyTypeObject	member)
tp_hash	(PyTypeObject	member)
tp_init	(PyTypeObject	member)
tp_is_gc	(PyTypeObject	member)
tp_itemsize	(PyTypeObject	member)

tp_iter	(PyTypeObject	member)
tp_iternext	(PyTypeObject	member)
tp_maxalloc	(PyTypeObject	member)
tp_members	(PyTypeObject	member)
tp_methods	(PyTypeObject	member)
tp_mro	(PyTypeObject	member)
tp_name	(PyTypeObject	member)
tp_new	(PyTypeObject	member)
tp_next	(PyTypeObject	member)
tp_print	(PyTypeObject	member)
tp_repr	(PyTypeObject	member)
tp_richcompare	(PyTypeObject
member)
tp_setattr	(PyTypeObject	member)
tp_setattro	(PyTypeObject	member)
tp_str	(PyTypeObject	member)
tp_subclasses	(PyTypeObject	member)
tp_traverse	(PyTypeObject	member)
tp_weaklist	(PyTypeObject	member)
tp_weaklistoffset	(PyTypeObject
member)
traverseproc	(C	type)
tuple()	(built-in	function),	[Link]
tuple	object
TupleType	(in	module	types)
type()	(built-in	function)
type	object,	[Link]
TypeType	(in	module	types)

U

ULONG_MAX unicode()	(built-in	function)

V

version	(in	module	sys),	[Link],	[Link] visitproc	(C	type)

Python/C	API	Reference	Manual
Previous:	B.3.10	XML	Remote	Procedure	Up:	Python/C	API	Reference
Manual	Next:	About	this	document	...

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Up:	Python	Documentation	Index	Next:	Contents

Documenting	Python
Fred	L.	Drake,	Jr.

PythonLabs	
Email:	fdrake@acm.org

Release	2.4b2
13	November	2004

Abstract:

The	Python	language	has	a	substantial	body	of	documentation,	much	of	it
contributed	by	various	authors.	The	markup	used	for	the	Python	documentation
is	based	on	LaTeX	and	requires	a	significant	set	of	macros	written	specifically
for	documenting	Python.	This	document	describes	the	macros	introduced	to
support	Python	documentation	and	how	they	should	be	used	to	support	a	wide
range	of	output	formats.

This	document	describes	the	document	classes	and	special	markup	used	in	the
Python	documentation.	Authors	may	use	this	guide,	in	conjunction	with	the
template	files	provided	with	the	distribution,	to	create	or	maintain	whole
documents	or	sections.

If	you're	interested	in	contributing	to	Python's	documentation,	there's	no	need	to
learn	LaTeX	if	you're	not	so	inclined;	plain	text	contributions	are	more	than
welcome	as	well.

Contents
1	Introduction
2	Directory	Structure
3	Style	Guide
4	LaTeX	Primer

4.1	Syntax

4.2	Hierarchical	Structure
4.3	Common	Environments

5	Document	Classes
6	Special	Markup	Constructs

6.1	Markup	for	the	Preamble
6.2	Meta-information	Markup
6.3	Information	Units
6.4	Showing	Code	Examples
6.5	Inline	Markup
6.6	Miscellaneous	Text	Markup
6.7	Module-specific	Markup
6.8	Library-level	Markup
6.9	Table	Markup
6.10	Reference	List	Markup
6.11	Index-generating	Markup
6.12	Grammar	Production	Displays
6.13	Graphical	Interface	Components

7	Processing	Tools
7.1	External	Tools
7.2	Internal	Tools
7.3	Working	on	Cygwin

8	Including	Graphics
9	Future	Directions

9.1	Structured	Documentation
9.2	Discussion	Forums

About	this	document	...

Documenting	Python
Up:	Python	Documentation	Index	Next:	Contents

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Contents	Up:	Documenting	Python	Next:	2	Directory	Structure

1	Introduction
Python's	documentation	has	long	been	considered	to	be	good	for	a	free
programming	language.	There	are	a	number	of	reasons	for	this,	the	most
important	being	the	early	commitment	of	Python's	creator,	Guido	van	Rossum,
to	providing	documentation	on	the	language	and	its	libraries,	and	the	continuing
involvement	of	the	user	community	in	providing	assistance	for	creating	and
maintaining	documentation.

The	involvement	of	the	community	takes	many	forms,	from	authoring	to	bug
reports	to	just	plain	complaining	when	the	documentation	could	be	more
complete	or	easier	to	use.	All	of	these	forms	of	input	from	the	community	have
proved	useful	during	the	time	I've	been	involved	in	maintaining	the
documentation.

This	document	is	aimed	at	authors	and	potential	authors	of	documentation	for
Python.	More	specifically,	it	is	for	people	contributing	to	the	standard
documentation	and	developing	additional	documents	using	the	same	tools	as	the
standard	documents.	This	guide	will	be	less	useful	for	authors	using	the	Python
documentation	tools	for	topics	other	than	Python,	and	less	useful	still	for	authors
not	using	the	tools	at	all.

The	material	in	this	guide	is	intended	to	assist	authors	using	the	Python
documentation	tools.	It	includes	information	on	the	source	distribution	of	the
standard	documentation,	a	discussion	of	the	document	types,	reference	material
on	the	markup	defined	in	the	document	classes,	a	list	of	the	external	tools	needed
for	processing	documents,	and	reference	material	on	the	tools	provided	with	the
documentation	resources.	At	the	end,	there	is	also	a	section	discussing	future
directions	for	the	Python	documentation	and	where	to	turn	for	more	information.

If	your	interest	is	in	contributing	to	the	Python	documentation,	but	you	don't
have	the	time	or	inclination	to	learn	LaTeX	and	the	markup	structures
documented	here,	there's	a	welcoming	place	for	you	among	the	Python
contributors	as	well.	Any	time	you	feel	that	you	can	clarify	existing
documentation	or	provide	documentation	that's	missing,	the	existing
documentation	team	will	gladly	work	with	you	to	integrate	your	text,	dealing
with	the	markup	for	you.	Please	don't	let	the	material	in	this	document	stand

between	the	documentation	and	your	desire	to	help	out!

Documenting	Python
Previous:	Contents	Up:	Documenting	Python	Next:	2	Directory	Structure

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1	Introduction	Up:	Documenting	Python	Next:	3	Style	Guide

2	Directory	Structure
The	source	distribution	for	the	standard	Python	documentation	contains	a	large
number	of	directories.	While	third-party	documents	do	not	need	to	be	placed	into
this	structure	or	need	to	be	placed	within	a	similar	structure,	it	can	be	helpful	to
know	where	to	look	for	examples	and	tools	when	developing	new	documents
using	the	Python	documentation	tools.	This	section	describes	this	directory
structure.

The	documentation	sources	are	usually	placed	within	the	Python	source
distribution	as	the	top-level	directory	Doc/,	but	are	not	dependent	on	the	Python
source	distribution	in	any	way.

The	Doc/	directory	contains	a	few	files	and	several	subdirectories.	The	files	are
mostly	self-explanatory,	including	a	README	and	a	Makefile.	The	directories
fall	into	three	categories:

Document	Sources
The	LaTeX	sources	for	each	document	are	placed	in	a	separate	directory.
These	directories	are	given	short	names	which	vaguely	indicate	the
document	in	each:

Directory Document	Title
api/ The	Python/C	API
dist/ Distributing	Python	Modules
doc/ Documenting	Python
ext/ Extending	and	Embedding	the	Python	Interpreter
inst/ Installing	Python	Modules
lib/ Python	Library	Reference
mac/ Macintosh	Module	Reference
ref/ Python	Reference	Manual
tut/ Python	Tutorial
whatsnew/ What's	New	in	Python	2.4

Format-Specific	Output
Most	output	formats	have	a	directory	which	contains	a	Makefile	which

controls	the	generation	of	that	format	and	provides	storage	for	the	formatted
documents.	The	only	variations	within	this	category	are	the	Portable
Document	Format	(PDF)	and	PostScript	versions	are	placed	in	the
directories	paper-a4/	and	paper-letter/	(this	causes	all	the	temporary	files
created	by	LaTeX	to	be	kept	in	the	same	place	for	each	paper	size,	where
they	can	be	more	easily	ignored).

Directory Output	Formats
html/ HTML	output
info/ GNU	info	output
isilo/ iSilo	documents	(for	Palm	OS	devices)
paper-a4/ PDF	and	PostScript,	A4	paper
paper-letter/ PDF	and	PostScript,	US-Letter	paper

Supplemental	Files
Some	additional	directories	are	used	to	store	supplemental	files	used	for	the
various	processes.	Directories	are	included	for	the	shared	LaTeX	document
classes,	the	LaTeX2HTML	support,	template	files	for	various	document
components,	and	the	scripts	used	to	perform	various	steps	in	the	formatting
processes.

Directory Contents
commontex/ Document	content	shared	among	documents
perl/ Support	for	LaTeX2HTML	processing
templates/ Example	files	for	source	documents
texinputs/ Style	implementation	for	LaTeX
tools/ Custom	processing	scripts

Documenting	Python
Previous:	1	Introduction	Up:	Documenting	Python	Next:	3	Style	Guide

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.isilo.com/

Previous:	2	Directory	Structure	Up:	Documenting	Python	Next:	4	LaTeX
Primer

3	Style	Guide
The	Python	documentation	should	follow	the	Apple	Publications	Style	Guide
wherever	possible.	This	particular	style	guide	was	selected	mostly	because	it
seems	reasonable	and	is	easy	to	get	online.

Topics	which	are	not	covered	in	the	Apple's	style	guide	will	be	discussed	in	this
document	if	necessary.

Many	special	names	are	used	in	the	Python	documentation,	including	the	names
of	operating	systems,	programming	languages,	standards	bodies,	and	the	like.
Many	of	these	were	assigned	LaTeX	macros	at	some	point	in	the	distant	past,
and	these	macros	lived	on	long	past	their	usefulness.	In	the	current	markup,	most
of	these	entities	are	not	assigned	any	special	markup,	but	the	preferred	spellings
are	given	here	to	aid	authors	in	maintaining	the	consistency	of	presentation	in
the	Python	documentation.

Other	terms	and	words	deserve	special	mention	as	well;	these	conventions
should	be	used	to	ensure	consistency	throughout	the	documentation:

CPU
For	``central	processing	unit.''	Many	style	guides	say	this	should	be	spelled
out	on	the	first	use	(and	if	you	must	use	it,	do	so!).	For	the	Python
documentation,	this	abbreviation	should	be	avoided	since	there's	no
reasonable	way	to	predict	which	occurance	will	be	the	first	seen	by	the
reader.	It	is	better	to	use	the	word	``processor''	instead.

POSIX
The	name	assigned	to	a	particular	group	of	standards.	This	is	always
uppercase.	Use	the	macro	\POSIX	to	represent	this	name.

Python
The	name	of	our	favorite	programming	language	is	always	capitalized.

Unicode
The	name	of	a	character	set	and	matching	encoding.	This	is	always	written
capitalized.

http://developer.apple.com/documentation/UserExperience/Conceptual/APStyleGuide/AppleStyleGuide2003.pdf

UNIX

The	name	of	the	operating	system	developed	at	AT&T	Bell	Labs	in	the
early	1970s.	Use	the	macro	\UNIX	to	use	this	name.

Documenting	Python
Previous:	2	Directory	Structure	Up:	Documenting	Python	Next:	4	LaTeX
Primer

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3	Style	Guide	Up:	Documenting	Python	Next:	4.1	Syntax

4	LaTeX	Primer
This	section	is	a	brief	introduction	to	LaTeX	concepts	and	syntax,	to	provide
authors	enough	information	to	author	documents	productively	without	having	to
become	``TeXnicians.''	This	does	not	teach	everything	needed	to	know	about
writing	LaTeX	for	Python	documentation;	many	of	the	standard	``environments''
are	not	described	here	(though	you	will	learn	how	to	mark	something	as	an
environment).

Perhaps	the	most	important	concept	to	keep	in	mind	while	marking	up	Python
documentation	is	that	while	TeX	is	unstructured,	LaTeX	was	designed	as	a	layer
on	top	of	TeX	which	specifically	supports	structured	markup.	The	Python-
specific	markup	is	intended	to	extend	the	structure	provided	by	standard	LaTeX
document	classes	to	support	additional	information	specific	to	Python.

LaTeX	documents	contain	two	parts:	the	preamble	and	the	body.	The	preamble	is
used	to	specify	certain	metadata	about	the	document	itself,	such	as	the	title,	the
list	of	authors,	the	date,	and	the	class	the	document	belongs	to.	Additional
information	used	to	control	index	generation	and	the	use	of	bibliographic
databases	can	also	be	placed	in	the	preamble.	For	most	authors,	the	preamble	can
be	most	easily	created	by	copying	it	from	an	existing	document	and	modifying	a
few	key	pieces	of	information.

The	class	of	a	document	is	used	to	place	a	document	within	a	broad	category	of
documents	and	set	some	fundamental	formatting	properties.	For	Python
documentation,	two	classes	are	used:	the	manual	class	and	the	howto	class.
These	classes	also	define	the	additional	markup	used	to	document	Python
concepts	and	structures.	Specific	information	about	these	classes	is	provided	in
section	5,	``Document	Classes,''	below.	The	first	thing	in	the	preamble	is	the
declaration	of	the	document's	class.

After	the	class	declaration,	a	number	of	macros	are	used	to	provide	further
information	about	the	document	and	setup	any	additional	markup	that	is	needed.
No	output	is	generated	from	the	preamble;	it	is	an	error	to	include	free	text	in	the
preamble	because	it	would	cause	output.

The	document	body	follows	the	preamble.	This	contains	all	the	printed

components	of	the	document	marked	up	structurally.	Generic	LaTeX	structures
include	hierarchical	sections,	numbered	and	bulleted	lists,	and	special	structures
for	the	document	abstract	and	indexes.

Subsections

4.1	Syntax
4.2	Hierarchical	Structure
4.3	Common	Environments

Documenting	Python
Previous:	3	Style	Guide	Up:	Documenting	Python	Next:	4.1	Syntax

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4	LaTeX	Primer	Up:	4	LaTeX	Primer	Next:	4.2	Hierarchical	Structure

4.1	Syntax
There	are	some	things	that	an	author	of	Python	documentation	needs	to	know
about	LaTeX	syntax.

A	comment	is	started	by	the	``percent''	character	("%")	and	continues	through	the
end	of	the	line	and	all	leading	whitespace	on	the	following	line.	This	is	a	little
different	from	any	programming	language	I	know	of,	so	an	example	is	in	order:

This	is	text.%	comment

				This	is	more	text.		%	another	comment

Still	more	text.

The	first	non-comment	character	following	the	first	comment	is	the	letter	"T"	on
the	second	line;	the	leading	whitespace	on	that	line	is	consumed	as	part	of	the
first	comment.	This	means	that	there	is	no	space	between	the	first	and	second
sentences,	so	the	period	and	letter	"T"	will	be	directly	adjacent	in	the	typeset
document.

Note	also	that	though	the	first	non-comment	character	after	the	second	comment
is	the	letter	"S",	there	is	whitespace	preceding	the	comment,	so	the	two
sentences	are	separated	as	expected.

A	group	is	an	enclosure	for	a	collection	of	text	and	commands	which	encloses
the	formatting	context	and	constrains	the	scope	of	any	changes	to	that	context
made	by	commands	within	the	group.	Groups	can	be	nested	hierarchically.	The
formatting	context	includes	the	font	and	the	definition	of	additional	macros	(or
overrides	of	macros	defined	in	outer	groups).	Syntactically,	groups	are	enclosed
in	braces:

{text	in	a	group}

An	alternate	syntax	for	a	group	using	brackets,	[...],	is	used	by	macros	and
environment	constructors	which	take	optional	parameters;	brackets	do	not
normally	hold	syntactic	significance.	A	degenerate	group,	containing	only	one
atomic	bit	of	content,	does	not	need	to	have	an	explicit	group,	unless	it	is
required	to	avoid	ambiguity.	Since	Python	tends	toward	the	explicit,	groups	are
also	made	explicit	in	the	documentation	markup.

Groups	are	used	only	sparingly	in	the	Python	documentation,	except	for	their	use
in	marking	parameters	to	macros	and	environments.

A	macro	is	usually	a	simple	construct	which	is	identified	by	name	and	can	take
some	number	of	parameters.	In	normal	LaTeX	usage,	one	of	these	can	be
optional.	The	markup	is	introduced	using	the	backslash	character	("\"),	and	the
name	is	given	by	alphabetic	characters	(no	digits,	hyphens,	or	underscores).
Required	parameters	should	be	marked	as	a	group,	and	optional	parameters
should	be	marked	using	the	alternate	syntax	for	a	group.

For	example,	a	macro	which	takes	a	single	parameter	would	appear	like	this:

\name{parameter}

A	macro	which	takes	an	optional	parameter	would	be	typed	like	this	when	the
optional	parameter	is	given:

\name[optional]

If	both	optional	and	required	parameters	are	to	be	required,	it	looks	like	this:

\name[optional]{required}

A	macro	name	may	be	followed	by	a	space	or	newline;	a	space	between	the
macro	name	and	any	parameters	will	be	consumed,	but	this	usage	is	not
practiced	in	the	Python	documentation.	Such	a	space	is	still	consumed	if	there
are	no	parameters	to	the	macro,	in	which	case	inserting	an	empty	group	({})	or
explicit	word	space	("\	")	immediately	after	the	macro	name	helps	to	avoid
running	the	expansion	of	the	macro	into	the	following	text.	Macros	which	take
no	parameters	but	which	should	not	be	followed	by	a	word	space	do	not	need
special	treatment	if	the	following	character	in	the	document	source	if	not	a	name
character	(such	as	punctuation).

Each	line	of	this	example	shows	an	appropriate	way	to	write	text	which	includes
a	macro	which	takes	no	parameters:

This	\UNIX{}	is	followed	by	a	space.

This	\UNIX\	is	also	followed	by	a	space.

\UNIX,	followed	by	a	comma,	needs	no	additional	markup.

An	environment	is	a	larger	construct	than	a	macro,	and	can	be	used	for	things
with	more	content	than	would	conveniently	fit	in	a	macro	parameter.	They	are

primarily	used	when	formatting	parameters	need	to	be	changed	before	and	after
a	large	chunk	of	content,	but	the	content	itself	needs	to	be	highly	flexible.	Code
samples	are	presented	using	an	environment,	and	descriptions	of	functions,
methods,	and	classes	are	also	marked	using	environments.

Since	the	content	of	an	environment	is	free-form	and	can	consist	of	several
paragraphs,	they	are	actually	marked	using	a	pair	of	macros:	\begin	and
\end.	These	macros	both	take	the	name	of	the	environment	as	a	parameter.	An
example	is	the	environment	used	to	mark	the	abstract	of	a	document:

\begin{abstract}

		This	is	the	text	of	the	abstract.		It	concisely	explains	what

		information	is	found	in	the	document.

		It	can	consist	of	multiple	paragraphs.

\end{abstract}

An	environment	can	also	have	required	and	optional	parameters	of	its	own.
These	follow	the	parameter	of	the	\begin	macro.	This	example	shows	an
environment	which	takes	a	single	required	parameter:

\begin{datadesc}{controlnames}

		A	33-element	string	array	that	contains	the	\ASCII{}	mnemonics	for

		the	thirty-two	\ASCII{}	control	characters	from	0	(NUL)	to	0x1f

		(US),	in	order,	plus	the	mnemonic	\samp{SP}	for	the	space	character.

\end{datadesc}

There	are	a	number	of	less-used	marks	in	LaTeX	which	are	used	to	enter
characters	which	are	not	found	in	ASCII	or	which	a	considered	special,	or	active
in	TeX	or	LaTeX.	Given	that	these	are	often	used	adjacent	to	other	characters,
the	markup	required	to	produce	the	proper	character	may	need	to	be	followed	by
a	space	or	an	empty	group,	or	the	markup	can	be	enclosed	in	a	group.	Some
which	are	found	in	Python	documentation	are:

Character Markup
^ \textasciicircum

~ \textasciitilde

> \textgreater

< \textless

ç \c	c

ö \"o

ø \o

Documenting	Python
Previous:	4	LaTeX	Primer	Up:	4	LaTeX	Primer	Next:	4.2	Hierarchical	Structure

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.1	Syntax	Up:	4	LaTeX	Primer	Next:	4.3	Common	Environments

4.2	Hierarchical	Structure
LaTeX	expects	documents	to	be	arranged	in	a	conventional,	hierarchical	way,
with	chapters,	sections,	sub-sections,	appendixes,	and	the	like.	These	are	marked
using	macros	rather	than	environments,	probably	because	the	end	of	a	section
can	be	safely	inferred	when	a	section	of	equal	or	higher	level	starts.

There	are	six	``levels''	of	sectioning	in	the	document	classes	used	for	Python
documentation,	and	the	deepest	two	levels1	are	not	used.	The	levels	are:

Level Macro	Name Notes
1 \chapter (1)
2 \section

3 \subsection

4 \subsubsection

5 \paragraph (2)
6 \subparagraph

Notes:

(1)
Only	used	for	the	manual	documents,	as	described	in	section	5,
``Document	Classes.''

(2)
Not	the	same	as	a	paragraph	of	text;	nobody	seems	to	use	this.

Footnotes

...	levels1
The	deepest	levels	have	the	highest	numbers	in	the	table.

Documenting	Python

Previous:	4.1	Syntax	Up:	4	LaTeX	Primer	Next:	4.3	Common	Environments

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.2	Hierarchical	Structure	Up:	4	LaTeX	Primer	Next:	5	Document
Classes

4.3	Common	Environments
LaTeX	provides	a	variety	of	environments	even	without	the	additional	markup
provided	by	the	Python-specific	document	classes	introducted	in	the	next
section.	The	following	environments	are	provided	as	part	of	standard	LaTeX	and
are	being	used	in	the	standard	Python	documentation;	descriptions	will	be	added
here	as	time	allows.

abstract

alltt

description

displaymath

document

enumerate

figure

flushleft

itemize

list

math

quotation

quote

sloppypar

verbatim

Documenting	Python
Previous:	4.2	Hierarchical	Structure	Up:	4	LaTeX	Primer	Next:	5	Document
Classes

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.3	Common	Environments	Up:	Documenting	Python	Next:	6
Special	Markup	Constructs

5	Document	Classes
Two	LaTeX	document	classes	are	defined	specifically	for	use	with	the	Python
documentation.	The	manual	class	is	for	large	documents	which	are	sectioned
into	chapters,	and	the	howto	class	is	for	smaller	documents.

The	manual	documents	are	larger	and	are	used	for	most	of	the	standard
documents.	This	document	class	is	based	on	the	standard	LaTeX	report	class
and	is	formatted	very	much	like	a	long	technical	report.	The	Python	Reference
Manual	is	a	good	example	of	a	manual	document,	and	the	Python	Library
Reference	is	a	large	example.

The	howto	documents	are	shorter,	and	don't	have	the	large	structure	of	the
manual	documents.	This	class	is	based	on	the	standard	LaTeX	article	class
and	is	formatted	somewhat	like	the	Linux	Documentation	Project's	``HOWTO''
series	as	done	originally	using	the	LinuxDoc	software.	The	original	intent	for	the
document	class	was	that	it	serve	a	similar	role	as	the	LDP's	HOWTO	series,	but
the	applicability	of	the	class	turns	out	to	be	somewhat	broader.	This	class	is	used
for	``how-to''	documents	(this	document	is	an	example)	and	for	shorter	reference
manuals	for	small,	fairly	cohesive	module	libraries.	Examples	of	the	later	use
include	Using	Kerberos	from	Python,	which	contains	reference	material	for	an
extension	package.	These	documents	are	roughly	equivalent	to	a	single	chapter
from	a	larger	work.

Documenting	Python
Previous:	4.3	Common	Environments	Up:	Documenting	Python	Next:	6
Special	Markup	Constructs

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://starship.python.net/crew/fdrake/manuals/krb5py/krb5py.html

Previous:	5	Document	Classes	Up:	Documenting	Python	Next:	6.1	Markup	for
the

6	Special	Markup	Constructs
The	Python	document	classes	define	a	lot	of	new	environments	and	macros.	This
section	contains	the	reference	material	for	these	facilities.	Documentation	for
``standard''	LaTeX	constructs	is	not	included	here,	though	they	are	used	in	the
Python	documentation.

Subsections

6.1	Markup	for	the	Preamble
6.2	Meta-information	Markup
6.3	Information	Units
6.4	Showing	Code	Examples
6.5	Inline	Markup
6.6	Miscellaneous	Text	Markup
6.7	Module-specific	Markup
6.8	Library-level	Markup
6.9	Table	Markup
6.10	Reference	List	Markup
6.11	Index-generating	Markup
6.12	Grammar	Production	Displays
6.13	Graphical	Interface	Components

Documenting	Python
Previous:	5	Document	Classes	Up:	Documenting	Python	Next:	6.1	Markup	for
the

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6	Special	Markup	Constructs	Up:	6	Special	Markup	Constructs
Next:	6.2	Meta-information	Markup

6.1	Markup	for	the	Preamble
\release	{ver}

Set	the	version	number	for	the	software	described	in	the	document.

\setshortversion	{sver}
Specify	the	``short''	version	number	of	the	documented	software	to	be	sver.

Documenting	Python
Previous:	6	Special	Markup	Constructs	Up:	6	Special	Markup	Constructs
Next:	6.2	Meta-information	Markup

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.1	Markup	for	the	Up:	6	Special	Markup	Constructs	Next:	6.3
Information	Units

6.2	Meta-information	Markup
\sectionauthor	{author}{email}

Identifies	the	author	of	the	current	section.	author	should	be	the	author's
name	such	that	it	can	be	used	for	presentation	(though	it	isn't),	and	email
should	be	the	author's	email	address.	The	domain	name	portion	of	the
address	should	be	lower	case.

No	presentation	is	generated	from	this	markup,	but	it	is	used	to	help	keep
track	of	contributions.

Documenting	Python
Previous:	6.1	Markup	for	the	Up:	6	Special	Markup	Constructs	Next:	6.3
Information	Units

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.2	Meta-information	Markup	Up:	6	Special	Markup	Constructs
Next:	6.4	Showing	Code	Examples

6.3	Information	Units
XXX	Explain	terminology,	or	come	up	with	something	more	``lay.''

There	are	a	number	of	environments	used	to	describe	specific	features	provided
by	modules.	Each	environment	requires	parameters	needed	to	provide	basic
information	about	what	is	being	described,	and	the	environment	content	should
be	the	description.	Most	of	these	environments	make	entries	in	the	general	index
(if	one	is	being	produced	for	the	document);	if	no	index	entry	is	desired,	non-
indexing	variants	are	available	for	many	of	these	environments.	The
environments	have	names	of	the	form	featuredesc,	and	the	non-indexing
variants	are	named	featuredescni.	The	available	variants	are	explicitly
included	in	the	list	below.

For	each	of	these	environments,	the	first	parameter,	name,	provides	the	name	by
which	the	feature	is	accessed.

Environments	which	describe	features	of	objects	within	a	module,	such	as	object
methods	or	data	attributes,	allow	an	optional	type	name	parameter.	When	the
feature	is	an	attribute	of	class	instances,	type	name	only	needs	to	be	given	if	the
class	was	not	the	most	recently	described	class	in	the	module;	the	name	value
from	the	most	recent	\classdesc	is	implied.	For	features	of	built-in	or
extension	types,	the	type	name	value	should	always	be	provided.	Another	special
case	includes	methods	and	members	of	general	``protocols,''	such	as	the
formatter	and	writer	protocols	described	for	the	formatter	module:	these	may
be	documented	without	any	specific	implementation	classes,	and	will	always
require	the	type	name	parameter	to	be	provided.

\begin{cfuncdesc}	{type}{name}{args}	
\end{cfuncdesc}

Environment	used	to	described	a	C	function.	The	type	should	be	specified
as	a	typedef	name,	struct	tag,	or	the	name	of	a	primitive	type.	If	it	is
a	pointer	type,	the	trailing	asterisk	should	not	be	preceded	by	a	space.	name
should	be	the	name	of	the	function	(or	function-like	pre-processor	macro),
and	args	should	give	the	types	and	names	of	the	parameters.	The	names
need	to	be	given	so	they	may	be	used	in	the	description.

\begin{cmemberdesc}	{container}{type}{name}	
\end{cmemberdesc}

Description	for	a	structure	member.	container	should	be	the	typedef
name,	if	there	is	one,	otherwise	if	should	be	"struct	tag".	The	type	of
the	member	should	given	as	type,	and	the	name	should	be	given	as	name.
The	text	of	the	description	should	include	the	range	of	values	allowed,	how
the	value	should	be	interpreted,	and	whether	the	value	can	be	changed.
References	to	structure	members	in	text	should	use	the	\member	macro.

\begin{csimplemacrodesc}	{name}	
\end{csimplemacrodesc}

Documentation	for	a	``simple''	macro.	Simple	macros	are	macros	which	are
used	for	code	expansion,	but	which	do	not	take	arguments	so	cannot	be
described	as	functions.	This	is	not	to	be	used	for	simple	constant
definitions.	Examples	of	it's	use	in	the	Python	documentation	include
PyObject_HEAD	and	Py_BEGIN_ALLOW_THREADS.

\begin{ctypedesc}	[tag]{name}	
\end{ctypedesc}

Environment	used	to	described	a	C	type.	The	name	parameter	should	be	the
typedef	name.	If	the	type	is	defined	as	a	struct	without	a	typedef,
name	should	have	the	form	struct	tag.	name	will	be	added	to	the	index
unless	tag	is	provided,	in	which	case	tag	will	be	used	instead.	tag	should
not	be	used	for	a	typedef	name.

\begin{cvardesc}	{type}{name}	
\end{cvardesc}

Description	of	a	global	C	variable.	type	should	be	the	typedef	name,
struct	tag,	or	the	name	of	a	primitive	type.	If	variable	has	a	pointer
type,	the	trailing	asterisk	should	not	be	preceded	by	a	space.

\begin{datadesc}	{name}	
\end{datadesc}

This	environment	is	used	to	document	global	data	in	a	module,	including
both	variables	and	values	used	as	``defined	constants.''	Class	and	object
attributes	are	not	documented	using	this	environment.

\begin{datadescni}	{name}	
\end{datadescni}

Like	\datadesc,	but	without	creating	any	index	entries.

\begin{excclassdesc}	{name}{constructor	parameters}	
\end{excclassdesc}

Descibe	an	exception	defined	by	a	class.	constructor	parameters	should	not
include	the	self	parameter	or	the	parentheses	used	in	the	call	syntax.	To
describe	an	exception	class	without	describing	the	parameters	to	its
constructor,	use	the	\excdesc	environment.

\begin{excdesc}	{name}	
\end{excdesc}

Describe	an	exception.	In	the	case	of	class	exceptions,	the	constructor
parameters	are	not	described;	use	\excclassdesc	to	describe	an
exception	class	and	its	constructor.

\begin{funcdesc}	{name}{parameters}	
\end{funcdesc}

Describe	a	module-level	function.	parameters	should	not	include	the
parentheses	used	in	the	call	syntax.	Object	methods	are	not	documented
using	this	environment.	Bound	object	methods	placed	in	the	module
namespace	as	part	of	the	public	interface	of	the	module	are	documented
using	this,	as	they	are	equivalent	to	normal	functions	for	most	purposes.

The	description	should	include	information	about	the	parameters	required
and	how	they	are	used	(especially	whether	mutable	objects	passed	as
parameters	are	modified),	side	effects,	and	possible	exceptions.	A	small
example	may	be	provided.

\begin{funcdescni}	{name}{parameters}	
\end{funcdescni}

Like	\funcdesc,	but	without	creating	any	index	entries.

\begin{classdesc}	{name}{constructor	parameters}	
\end{classdesc}

Describe	a	class	and	its	constructor.	constructor	parameters	should	not
include	the	self	parameter	or	the	parentheses	used	in	the	call	syntax.

\begin{classdesc*}	{name}	
\end{classdesc*}

Describe	a	class	without	describing	the	constructor.	This	can	be	used	to
describe	classes	that	are	merely	containers	for	attributes	or	which	should
never	be	instantiated	or	subclassed	by	user	code.

\begin{memberdesc}	[type	name]{name}	
\end{memberdesc}

Describe	an	object	data	attribute.	The	description	should	include
information	about	the	type	of	the	data	to	be	expected	and	whether	it	may	be
changed	directly.

\begin{memberdescni}	[type	name]{name}	
\end{memberdescni}

Like	\memberdesc,	but	without	creating	any	index	entries.

\begin{methoddesc}	[type	name]{name}{parameters}	
\end{methoddesc}

Describe	an	object	method.	parameters	should	not	include	the	self
parameter	or	the	parentheses	used	in	the	call	syntax.	The	description	should
include	similar	information	to	that	described	for	\funcdesc.

\begin{methoddescni}	[type	name]{name}{parameters}	
\end{methoddescni}

Like	\methoddesc,	but	without	creating	any	index	entries.

Documenting	Python
Previous:	6.2	Meta-information	Markup	Up:	6	Special	Markup	Constructs
Next:	6.4	Showing	Code	Examples

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.3	Information	Units	Up:	6	Special	Markup	Constructs	Next:	6.5
Inline	Markup

6.4	Showing	Code	Examples
Examples	of	Python	source	code	or	interactive	sessions	are	represented	as
\verbatim	environments.	This	environment	is	a	standard	part	of	LaTeX.	It	is
important	to	only	use	spaces	for	indentation	in	code	examples	since	TeX	drops
tabs	instead	of	converting	them	to	spaces.

Representing	an	interactive	session	requires	including	the	prompts	and	output
along	with	the	Python	code.	No	special	markup	is	required	for	interactive
sessions.	After	the	last	line	of	input	or	output	presented,	there	should	not	be	an
``unused''	primary	prompt;	this	is	an	example	of	what	not	to	do:

>>>	1	+	1

2

>>>

Within	the	\verbatim	environment,	characters	special	to	LaTeX	do	not	need
to	be	specially	marked	in	any	way.	The	entire	example	will	be	presented	in	a
monospaced	font;	no	attempt	at	``pretty-printing''	is	made,	as	the	environment
must	work	for	non-Python	code	and	non-code	displays.	There	should	be	no
blank	lines	at	the	top	or	bottom	of	any	\verbatim	display.

Longer	displays	of	verbatim	text	may	be	included	by	storing	the	example	text	in
an	external	file	containing	only	plain	text.	The	file	may	be	included	using	the
standard	\verbatiminput	macro;	this	macro	takes	a	single	argument	naming
the	file	containing	the	text.	For	example,	to	include	the	Python	source	file
example.py,	use:

\verbatiminput{example.py}

Use	of	\verbatiminput	allows	easier	use	of	special	editing	modes	for	the
included	file.	The	file	should	be	placed	in	the	same	directory	as	the	LaTeX	files
for	the	document.

The	Python	Documentation	Special	Interest	Group	has	discussed	a	number	of
approaches	to	creating	pretty-printed	code	displays	and	interactive	sessions;	see
the	Doc-SIG	area	on	the	Python	Web	site	for	more	information	on	this	topic.

Documenting	Python
Previous:	6.3	Information	Units	Up:	6	Special	Markup	Constructs	Next:	6.5
Inline	Markup

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.4	Showing	Code	Examples	Up:	6	Special	Markup	Constructs
Next:	6.6	Miscellaneous	Text	Markup

6.5	Inline	Markup
The	macros	described	in	this	section	are	used	to	mark	just	about	anything
interesting	in	the	document	text.	They	may	be	used	in	headings	(though	anything
involving	hyperlinks	should	be	avoided	there)	as	well	as	in	the	body	text.

\bfcode	{text}
Like	\code,	but	also	makes	the	font	bold-face.

\cdata	{name}
The	name	of	a	C-language	variable.

\cfunction	{name}
The	name	of	a	C-language	function.	name	should	include	the	function	name
and	the	trailing	parentheses.

\character	{char}
A	character	when	discussing	the	character	rather	than	a	one-byte	string
value.	The	character	will	be	typeset	as	with	\samp.

\citetitle	[url]{title}
A	title	for	a	referenced	publication.	If	url	is	specified,	the	title	will	be	made
into	a	hyperlink	when	formatted	as	HTML.

\class	{name}
A	class	name;	a	dotted	name	may	be	used.

\code	{text}
A	short	code	fragment	or	literal	constant	value.	Typically,	it	should	not
include	any	spaces	since	no	quotation	marks	are	added.

\constant	{name}
The	name	of	a	``defined''	constant.	This	may	be	a	C-language	#define	or
a	Python	variable	that	is	not	intended	to	be	changed.

\csimplemacro	{name}
The	name	of	a	``simple''	macro.	Simple	macros	are	macros	which	are	used
for	code	expansion,	but	which	do	not	take	arguments	so	cannot	be	described

as	functions.	This	is	not	to	be	used	for	simple	constant	definitions.
Examples	of	it's	use	in	the	Python	documentation	include	PyObject_HEAD
and	Py_BEGIN_ALLOW_THREADS.

\ctype	{name}
The	name	of	a	C	typedef	or	structure.	For	structures	defined	without	a
typedef,	use	\ctype{struct	struct_tag}	to	make	it	clear	that
the	struct	is	required.

\deprecated	{version}{what	to	do}
Declare	whatever	is	being	described	as	being	deprecated	starting	with
release	version.	The	text	given	as	what	to	do	should	recommend	something
to	use	instead.	It	should	be	complete	sentences.	The	entire	deprecation
notice	will	be	presented	as	a	separate	paragraph;	it	should	either	preceed	or
succeed	the	description	of	the	deprecated	feature.

\dfn	{term}
Mark	the	defining	instance	of	term	in	the	text.	(No	index	entries	are
generated.)

\e

Produces	a	backslash.	This	is	convenient	in	\code,	\file,	and	similar
macros,	and	the	\alltt	environment,	and	is	only	defined	there.	To	create
a	backslash	in	ordinary	text	(such	as	the	contents	of	the	\citetitle
macro),	use	the	standard	\textbackslash	macro.

\email	{address}
An	email	address.	Note	that	this	is	not	hyperlinked	in	any	of	the	possible
output	formats.	The	domain	name	portion	of	the	address	should	be	lower
case.

\emph	{text}
Emphasized	text;	this	will	be	presented	in	an	italic	font.

\envvar	{name}
An	environment	variable.	Index	entries	are	generated.

\exception	{name}
The	name	of	an	exception.	A	dotted	name	may	be	used.

\file	{file	or	dir}
The	name	of	a	file	or	directory.	In	the	PDF	and	PostScript	outputs,	single
quotes	and	a	font	change	are	used	to	indicate	the	file	name,	but	no	quotes
are	used	in	the	HTML	output.	Warning:	The	\file	macro	cannot	be	used
in	the	content	of	a	section	title	due	to	processing	limitations.

\filenq	{file	or	dir}
Like	\file,	but	single	quotes	are	never	used.	This	can	be	used	in
conjunction	with	tables	if	a	column	will	only	contain	file	or	directory
names.	Warning:	The	\filenq	macro	cannot	be	used	in	the	content	of	a
section	title	due	to	processing	limitations.

\function	{name}
The	name	of	a	Python	function;	dotted	names	may	be	used.

\infinity

The	symbol	for	mathematical	infinity:	∞.	Some	Web	browsers	are	not	able
to	render	the	HTML	representation	of	this	symbol	properly,	but	support	is
growing.

\kbd	{key	sequence}
Mark	a	sequence	of	keystrokes.	What	form	key	sequence	takes	may	depend
on	platform-	or	application-specific	conventions.	When	there	are	no
relevant	conventions,	the	names	of	modifier	keys	should	be	spelled	out,	to
improve	accessibility	for	new	users	and	non-native	speakers.	For	example,
an	xemacs	key	sequence	may	be	marked	like	\kbd{C-x	C-f},	but
without	reference	to	a	specific	application	or	platform,	the	same	sequence
should	be	marked	as	\kbd{Control-x	Control-f}.

\keyword	{name}
The	name	of	a	keyword	in	a	programming	language.

\mailheader	{name}
The	name	of	an	RFC	822-style	mail	header.	This	markup	does	not	imply
that	the	header	is	being	used	in	an	email	message,	but	can	be	used	to	refer
to	any	header	of	the	same	``style.''	This	is	also	used	for	headers	defined	by
the	various	MIME	specifications.	The	header	name	should	be	entered	in	the
same	way	it	would	normally	be	found	in	practice,	with	the	camel-casing
conventions	being	preferred	where	there	is	more	than	one	common	usage.

http://www.faqs.org/rfcs/rfc822.html

The	colon	which	follows	the	name	of	the	header	should	not	be	included.
For	example:	\mailheader{Content-Type}.

\makevar	{name}
The	name	of	a	make	variable.

\manpage	{name}{section}
A	reference	to	a	UNIX	manual	page.

\member	{name}
The	name	of	a	data	attribute	of	an	object.

\method	{name}
The	name	of	a	method	of	an	object.	name	should	include	the	method	name
and	the	trailing	parentheses.	A	dotted	name	may	be	used.

\mimetype	{name}
The	name	of	a	MIME	type,	or	a	component	of	a	MIME	type	(the	major	or
minor	portion,	taken	alone).

\module	{name}
The	name	of	a	module;	a	dotted	name	may	be	used.	This	should	also	be
used	for	package	names.

\newsgroup	{name}
The	name	of	a	Usenet	newsgroup.

\note	{text}
An	especially	important	bit	of	information	about	an	API	that	a	user	should
be	aware	of	when	using	whatever	bit	of	API	the	note	pertains	to.	This
should	be	the	last	thing	in	the	paragraph	as	the	end	of	the	note	is	not
visually	marked	in	any	way.	The	content	of	text	should	be	written	in
complete	sentences	and	include	all	appropriate	punctuation.

\pep	{number}
A	reference	to	a	Python	Enhancement	Proposal.	This	generates	appropriate
index	entries.	The	text	"PEP	number"	is	generated;	in	the	HTML	output,
this	text	is	a	hyperlink	to	an	online	copy	of	the	specified	PEP.

\plusminus

The	symbol	for	indicating	a	value	that	may	take	a	positive	or	negative	value
of	a	specified	magnitude,	typically	represented	by	a	plus	sign	placed	over	a
minus	sign.	For	example:	\plusminus	3%.

\program	{name}
The	name	of	an	executable	program.	This	may	differ	from	the	file	name	for
the	executable	for	some	platforms.	In	particular,	the	.exe	(or	other)
extension	should	be	omitted	for	Windows	programs.

\programopt	{option}
A	command-line	option	to	an	executable	program.	Use	this	only	for	``short''
options,	and	include	the	leading	hyphen.

\longprogramopt	{option}
A	long	command-line	option	to	an	executable	program.	This	should	only	be
used	for	long	option	names	which	will	be	prefixed	by	two	hyphens;	the
hyphens	should	not	be	provided	as	part	of	option.

\refmodule	[key]{name}
Like	\module,	but	create	a	hyperlink	to	the	documentation	for	the	named
module.	Note	that	the	corresponding	\declaremodule	must	be	in	the
same	document.	If	the	\declaremodule	defines	a	module	key	different
from	the	module	name,	it	must	also	be	provided	as	key	to	the
\refmodule	macro.

\regexp	{string}
Mark	a	regular	expression.

\rfc	{number}
A	reference	to	an	Internet	Request	for	Comments.	This	generates
appropriate	index	entries.	The	text	"RFC	number"	is	generated;	in	the
HTML	output,	this	text	is	a	hyperlink	to	an	online	copy	of	the	specified
RFC.

\samp	{text}
A	short	code	sample,	but	possibly	longer	than	would	be	given	using
\code.	Since	quotation	marks	are	added,	spaces	are	acceptable.

\shortversion

The	``short''	version	number	of	the	documented	software,	as	specified	using
the	\setshortversion	macro	in	the	preamble.	For	Python,	the	short
version	number	for	a	release	is	the	first	three	characters	of	the
sys.version	value.	For	example,	versions	2.0b1	and	2.0.1	both	have	a
short	version	of	2.0.	This	may	not	apply	for	all	packages;	if
\setshortversion	is	not	used,	this	produces	an	empty	expansion.	See
also	the	\version	macro.

\strong	{text}
Strongly	emphasized	text;	this	will	be	presented	using	a	bold	font.

\ulink	{text}{url}
A	hypertext	link	with	a	target	specified	by	a	URL,	but	for	which	the	link
text	should	not	be	the	title	of	the	resource.	For	resources	being	referenced
by	name,	use	the	\citetitle	macro.	Not	all	formatted	versions	support
arbitrary	hypertext	links.	Note	that	many	characters	are	special	to	LaTeX
and	this	macro	does	not	always	do	the	right	thing.	In	particular,	the	tilde
character	("~")	is	mis-handled;	encoding	it	as	a	hex-sequence	does	work,
use	"%7e"	in	place	of	the	tilde	character.

\url	{url}
A	URL	(or	URN).	The	URL	will	be	presented	as	text.	In	the	HTML	and
PDF	formatted	versions,	the	URL	will	also	be	a	hyperlink.	This	can	be	used
when	referring	to	external	resources	without	specific	titles;	references	to
resources	which	have	titles	should	be	marked	using	the	\citetitle
macro.	See	the	comments	about	special	characters	in	the	description	of	the
\ulink	macro	for	special	considerations.

\var	{name}
The	name	of	a	variable	or	formal	parameter	in	running	text.

\version

The	version	number	of	the	described	software,	as	specified	using
\release	in	the	preamble.	See	also	the	\shortversion	macro.

\warning	{text}
An	important	bit	of	information	about	an	API	that	a	user	should	be	very
aware	of	when	using	whatever	bit	of	API	the	warning	pertains	to.	This

should	be	the	last	thing	in	the	paragraph	as	the	end	of	the	warning	is	not
visually	marked	in	any	way.	The	content	of	text	should	be	written	in
complete	sentences	and	include	all	appropriate	punctuation.	This	differs
from	\note	in	that	it	is	recommended	over	\note	for	information
regarding	security.

The	following	two	macros	are	used	to	describe	information	that's	associated	with
changes	from	one	release	to	another.	For	features	which	are	described	by	a	single
paragraph,	these	are	typically	added	as	separate	source	lines	at	the	end	of	the
paragraph.	When	adding	these	to	features	described	by	multiple	paragraphs,	they
are	usually	collected	in	a	single	separate	paragraph	after	the	description.	When
both	\versionadded	and	\versionchanged	are	used,
\versionadded	should	come	first;	the	versions	should	be	listed	in
chronological	order.	Both	of	these	should	come	before	availability	statements.
The	location	should	be	selected	so	the	explanation	makes	sense	and	may	vary	as
needed.

\versionadded	[explanation]{version}
The	version	of	Python	which	added	the	described	feature	to	the	library	or	C
API.	explanation	should	be	a	brief	explanation	of	the	change	consisting	of	a
capitalized	sentence	fragment;	a	period	will	be	appended	by	the	formatting
process.	When	this	applies	to	an	entire	module,	it	should	be	placed	at	the
top	of	the	module	section	before	any	prose.

\versionchanged	[explanation]{version}
The	version	of	Python	in	which	the	named	feature	was	changed	in	some
way	(new	parameters,	changed	side	effects,	etc.).	explanation	should	be	a
brief	explanation	of	the	change	consisting	of	a	capitalized	sentence
fragment;	a	period	will	be	appended	by	the	formatting	process.	This	should
not	generally	be	applied	to	modules.

Documenting	Python
Previous:	6.4	Showing	Code	Examples	Up:	6	Special	Markup	Constructs
Next:	6.6	Miscellaneous	Text	Markup

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.5	Inline	Markup	Up:	6	Special	Markup	Constructs	Next:	6.7
Module-specific	Markup

6.6	Miscellaneous	Text	Markup
In	addition	to	the	inline	markup,	some	additional	``block''	markup	is	defined	to
make	it	easier	to	bring	attention	to	various	bits	of	text.	The	markup	described
here	serves	this	purpose,	and	is	intended	to	be	used	when	marking	one	or	more
paragraphs	or	other	block	constructs	(such	as	\verbatim	environments).

\begin{notice}	[type]	
\end{notice}

Label	some	paragraphs	as	being	worthy	of	additional	attention	from	the
reader.	What	sort	of	attention	is	warrented	can	be	indicated	by	specifying
the	type	of	the	notice.	The	only	values	defined	for	type	are	note	and
warning;	these	are	equivalent	in	intent	to	the	inline	markup	of	the	same
name.	If	type	is	omitted,	note	is	used.	Additional	values	may	be	defined	in
the	future.

Documenting	Python
Previous:	6.5	Inline	Markup	Up:	6	Special	Markup	Constructs	Next:	6.7
Module-specific	Markup

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.6	Miscellaneous	Text	Markup	Up:	6	Special	Markup	Constructs
Next:	6.8	Library-level	Markup

6.7	Module-specific	Markup
The	markup	described	in	this	section	is	used	to	provide	information	about	a
module	being	documented.	A	typical	use	of	this	markup	appears	at	the	top	of	the
section	used	to	document	a	module.	A	typical	example	might	look	like	this:

\section{\module{spam}	---

									Access	to	the	SPAM	facility}

\declaremodule{extension}{spam}

		\platform{Unix}

\modulesynopsis{Access	to	the	SPAM	facility	of	\UNIX.}

\moduleauthor{Jane	Doe}{jane.doe@frobnitz.org}

Python	packages	--	collections	of	modules	that	can	be	described	as	a	unit	--	are
documented	using	the	same	markup	as	modules.	The	name	for	a	module	in	a
package	should	be	typed	in	``fully	qualified''	form	(it	should	include	the	package
name).	For	example,	a	module	``foo''	in	package	``bar''	should	be	marked	as
\module{bar.foo},	and	the	beginning	of	the	reference	section	would
appear	as:

\section{\module{bar.foo}	---

									Module	from	the	\module{bar}	package}

\declaremodule{extension}{bar.foo}

\modulesynopsis{Nifty	module	from	the	\module{bar}	package.}

\moduleauthor{Jane	Doe}{jane.doe@frobnitz.org}

Note	that	the	name	of	a	package	is	also	marked	using	\module.

\declaremodule	[key]{type}{name}
Requires	two	parameters:	module	type	("standard",	"builtin",
"extension",	or	""),	and	the	module	name.	An	optional	parameter	should
be	given	as	the	basis	for	the	module's	``key''	used	for	linking	to	or
referencing	the	section.	The	``key''	should	only	be	given	if	the	module's
name	contains	any	underscores,	and	should	be	the	name	with	the
underscores	stripped.	Note	that	the	type	parameter	must	be	one	of	the
values	listed	above	or	an	error	will	be	printed.	For	modules	which	are
contained	in	packages,	the	fully-qualified	name	should	be	given	as	name
parameter.	This	should	be	the	first	thing	after	the	\section	used	to
introduce	the	module.

\platform	{specifier}
Specifies	the	portability	of	the	module.	specifier	is	a	comma-separated	list
of	keys	that	specify	what	platforms	the	module	is	available	on.	The	keys	are
short	identifiers;	examples	that	are	in	use	include	"IRIX",	"Mac",
"Windows",	and	"Unix".	It	is	important	to	use	a	key	which	has	already
been	used	when	applicable.	This	is	used	to	provide	annotations	in	the
Module	Index	and	the	HTML	and	GNU	info	output.

\modulesynopsis	{text}
The	text	is	a	short,	``one	line''	description	of	the	module	that	can	be	used	as
part	of	the	chapter	introduction.	This	is	must	be	placed	after
\declaremodule.	The	synopsis	is	used	in	building	the	contents	of	the
table	inserted	as	the	\localmoduletable.	No	text	is	produced	at	the
point	of	the	markup.

\moduleauthor	{name}{email}
This	macro	is	used	to	encode	information	about	who	authored	a	module.
This	is	currently	not	used	to	generate	output,	but	can	be	used	to	help
determine	the	origin	of	the	module.

Documenting	Python
Previous:	6.6	Miscellaneous	Text	Markup	Up:	6	Special	Markup	Constructs
Next:	6.8	Library-level	Markup

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.7	Module-specific	Markup	Up:	6	Special	Markup	Constructs	Next:
6.9	Table	Markup

6.8	Library-level	Markup
This	markup	is	used	when	describing	a	selection	of	modules.	For	example,	the
Macintosh	Library	Modules	document	uses	this	to	help	provide	an	overview	of
the	modules	in	the	collection,	and	many	chapters	in	the	Python	Library
Reference	use	it	for	the	same	purpose.

\localmoduletable

If	a	.syn	file	exists	for	the	current	chapter	(or	for	the	entire	document	in
howto	documents),	a	\synopsistable	is	created	with	the	contents
loaded	from	the	.syn	file.

Documenting	Python
Previous:	6.7	Module-specific	Markup	Up:	6	Special	Markup	Constructs	Next:
6.9	Table	Markup

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.8	Library-level	Markup	Up:	6	Special	Markup	Constructs	Next:
6.10	Reference	List	Markup

6.9	Table	Markup
There	are	three	general-purpose	table	environments	defined	which	should	be
used	whenever	possible.	These	environments	are	defined	to	provide	tables	of
specific	widths	and	some	convenience	for	formatting.	These	environments	are
not	meant	to	be	general	replacements	for	the	standard	LaTeX	table
environments,	but	can	be	used	for	an	advantage	when	the	documents	are
processed	using	the	tools	for	Python	documentation	processing.	In	particular,	the
generated	HTML	looks	good!	There	is	also	an	advantage	for	the	eventual
conversion	of	the	documentation	to	XML	(see	section	9,	``Future	Directions'').

Each	environment	is	named	\tablecols,	where	cols	is	the	number	of	columns
in	the	table	specified	in	lower-case	Roman	numerals.	Within	each	of	these
environments,	an	additional	macro,	\linecols,	is	defined,	where	cols	matches
the	cols	value	of	the	corresponding	table	environment.	These	are	supported	for
cols	values	of	ii,	iii,	and	iv.	These	environments	are	all	built	on	top	of	the
\tabular	environment.	Variants	based	on	the	\longtable	environment	are
also	provided.

Note	that	all	tables	in	the	standard	Python	documentation	use	vertical	lines
between	columns,	and	this	must	be	specified	in	the	markup	for	each	table.	A
general	border	around	the	outside	of	the	table	is	not	used,	but	would	be	the
responsibility	of	the	processor;	the	document	markup	should	not	include	an
exterior	border.

The	\longtable-based	variants	of	the	table	environments	are	formatted	with
extra	space	before	and	after,	so	should	only	be	used	on	tables	which	are	long
enough	that	splitting	over	multiple	pages	is	reasonable;	tables	with	fewer	than
twenty	rows	should	never	by	marked	using	the	long	flavors	of	the	table
environments.	The	header	row	is	repeated	across	the	top	of	each	part	of	the	table.

\begin{tableii}	{colspec}{col1font}{heading1}{heading2}	
\end{tableii}

Create	a	two-column	table	using	the	LaTeX	column	specifier	colspec.	The
column	specifier	should	indicate	vertical	bars	between	columns	as
appropriate	for	the	specific	table,	but	should	not	specify	vertical	bars	on	the
outside	of	the	table	(that	is	considered	a	stylesheet	issue).	The	col1font

parameter	is	used	as	a	stylistic	treatment	of	the	first	column	of	the	table:	the
first	column	is	presented	as	\col1font{column1}.	To	avoid	treating	the
first	column	specially,	col1font	may	be	"textrm".	The	column	headings
are	taken	from	the	values	heading1	and	heading2.

\begin{longtableii}	...	
\end{longtableii}

Like	\tableii,	but	produces	a	table	which	may	be	broken	across	page
boundaries.	The	parameters	are	the	same	as	for	\tableii.

\lineii	{column1}{column2}
Create	a	single	table	row	within	a	\tableii	or	\longtableii
environment.	The	text	for	the	first	column	will	be	generated	by	applying	the
macro	named	by	the	col1font	value	when	the	\tableii	was	opened.

\begin{tableiii}	{colspec}{col1font}{heading1}{heading2}
{heading3}	
\end{tableiii}

Like	the	\tableii	environment,	but	with	a	third	column.	The	heading	for
the	third	column	is	given	by	heading3.

\begin{longtableiii}	...	
\end{longtableiii}

Like	\tableiii,	but	produces	a	table	which	may	be	broken	across	page
boundaries.	The	parameters	are	the	same	as	for	\tableiii.

\lineiii	{column1}{column2}{column3}
Like	the	\lineii	macro,	but	with	a	third	column.	The	text	for	the	third
column	is	given	by	column3.

\begin{tableiv}	{colspec}{col1font}{heading1}{heading2}
{heading3}{heading4}	
\end{tableiv}

Like	the	\tableiii	environment,	but	with	a	fourth	column.	The	heading
for	the	fourth	column	is	given	by	heading4.

\begin{longtableiv}	...	
\end{longtableiv}

Like	\tableiv,	but	produces	a	table	which	may	be	broken	across	page

boundaries.	The	parameters	are	the	same	as	for	\tableiv.

\lineiv	{column1}{column2}{column3}{column4}
Like	the	\lineiii	macro,	but	with	a	fourth	column.	The	text	for	the
fourth	column	is	given	by	column4.

\begin{tablev}	{colspec}{col1font}{heading1}{heading2}{heading3}
{heading4}{heading5}	
\end{tablev}

Like	the	\tableiv	environment,	but	with	a	fifth	column.	The	heading	for
the	fifth	column	is	given	by	heading5.

\begin{longtablev}	...	
\end{longtablev}

Like	\tablev,	but	produces	a	table	which	may	be	broken	across	page
boundaries.	The	parameters	are	the	same	as	for	\tablev.

\linev	{column1}{column2}{column3}{column4}{column5}
Like	the	\lineiv	macro,	but	with	a	fifth	column.	The	text	for	the	fifth
column	is	given	by	column5.

An	additional	table-like	environment	is	\synopsistable.	The	table
generated	by	this	environment	contains	two	columns,	and	each	row	is	defined	by
an	alternate	definition	of	\modulesynopsis.	This	environment	is	not
normally	used	by	authors,	but	is	created	by	the	\localmoduletable	macro.

Here	is	a	small	example	of	a	table	given	in	the	documentation	for	the
warnings	module;	markup	inside	the	table	cells	is	minimal	so	the	markup	for
the	table	itself	is	readily	discernable.	Here	is	the	markup	for	the	table:

\begin{tableii}{l|l}{exception}{Class}{Description}

		\lineii{Warning}

									{This	is	the	base	class	of	all	warning	category	classes.		It

										is	a	subclass	of	\exception{Exception}.}

		\lineii{UserWarning}

									{The	default	category	for	\function{warn()}.}

		\lineii{DeprecationWarning}

									{Base	category	for	warnings	about	deprecated	features.}

		\lineii{SyntaxWarning}

									{Base	category	for	warnings	about	dubious	syntactic

										features.}

		\lineii{RuntimeWarning}

									{Base	category	for	warnings	about	dubious	runtime	features.}

		\lineii{FutureWarning}

									{Base	category	for	warnings	about	constructs	that	will	change

									semantically	in	the	future.}

\end{tableii}

Here	is	the	resulting	table:

Class Description
Warning This	is	the	base	class	of	all	warning	category

classes.	It	is	a	subclass	of	Exception.
UserWarning The	default	category	for	warn().
DeprecationWarning Base	category	for	warnings	about	deprecated

features.
SyntaxWarning Base	category	for	warnings	about	dubious

syntactic	features.
RuntimeWarning Base	category	for	warnings	about	dubious

runtime	features.

Note	that	the	class	names	are	implicitly	marked	using	the	\exception	macro,
since	that	is	given	as	the	col1font	value	for	the	\tableii	environment.	To
create	a	table	using	different	markup	for	the	first	column,	use	textrm	for	the
col1font	value	and	mark	each	entry	individually.

To	add	a	horizontal	line	between	vertical	sections	of	a	table,	use	the	standard
\hline	macro	between	the	rows	which	should	be	separated:

\begin{tableii}{l|l}{constant}{Language}{Audience}

		\lineii{APL}{Masochists.}

		\lineii{BASIC}{First-time	programmers	on	PC	hardware.}

		\lineii{C}{\UNIX{}	\&\	Linux	kernel	developers.}

				\hline

		\lineii{Python}{Everyone!}

\end{tableii}

Note	that	not	all	presentation	formats	are	capable	of	displaying	a	horizontal	rule
in	this	position.	This	is	how	the	table	looks	in	the	format	you're	reading	now:

Language Audience
APL Masochists.
C UNIX	&	Linux	kernel	developers.

JavaScript Web	developers.
Python Everyone!

Documenting	Python
Previous:	6.8	Library-level	Markup	Up:	6	Special	Markup	Constructs	Next:
6.10	Reference	List	Markup

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.9	Table	Markup	Up:	6	Special	Markup	Constructs	Next:	6.11
Index-generating	Markup

6.10	Reference	List	Markup
Many	sections	include	a	list	of	references	to	module	documentation	or	external
documents.	These	lists	are	created	using	the	\seealso	or	\seealso*
environments.	These	environments	define	some	additional	macros	to	support
creating	reference	entries	in	a	reasonable	manner.

The	\seealso	environment	is	typically	placed	in	a	section	just	before	any	sub-
sections.	This	is	done	to	ensure	that	reference	links	related	to	the	section	are	not
hidden	in	a	subsection	in	the	hypertext	renditions	of	the	documentation.	For	the
HTML	output,	it	is	shown	as	a	``side	bar,''	boxed	off	from	the	main	flow	of	the
text.	The	\seealso*	environment	is	different	in	that	it	should	be	used	when	a
list	of	references	is	being	presented	as	part	of	the	primary	content;	it	is	not
specially	set	off	from	the	text.

\begin{seealso}	
\end{seealso}

This	environment	creates	a	``See	also:''	heading	and	defines	the	markup
used	to	describe	individual	references.

\begin{seealso*}	
\end{seealso*}

This	environment	is	used	to	create	a	list	of	references	which	form	part	of
the	main	content.	It	is	not	given	a	special	header	and	is	not	set	off	from	the
main	flow	of	the	text.	It	provides	the	same	additional	markup	used	to
describe	individual	references.

For	each	of	the	following	macros,	why	should	be	one	or	more	complete
sentences,	starting	with	a	capital	letter	(unless	it	starts	with	an	identifier,	which
should	not	be	modified),	and	ending	with	the	appropriate	punctuation.

These	macros	are	only	defined	within	the	content	of	the	\seealso	and
\seealso*	environments.

\seelink	{url}{linktext}{why}
References	to	specific	on-line	resources	should	be	given	using	the
\seelink	macro	if	they	don't	have	a	meaningful	title	but	there	is	some
short	description	of	what's	at	the	end	of	the	link.	Online	documents	which

have	identifiable	titles	should	be	referenced	using	the	\seetitle	macro,
using	the	optional	parameter	to	that	macro	to	provide	the	URL.

\seemodule	[key]{name}{why}
Refer	to	another	module.	why	should	be	a	brief	explanation	of	why	the
reference	may	be	interesting.	The	module	name	is	given	in	name,	with	the
link	key	given	in	key	if	necessary.	In	the	HTML	and	PDF	conversions,	the
module	name	will	be	a	hyperlink	to	the	referred-to	module.	Note:	The
module	must	be	documented	in	the	same	document	(the	corresponding
\declaremodule	is	required).

\seepep	{number}{title}{why}
Refer	to	an	Python	Enhancement	Proposal	(PEP).	number	should	be	the
official	number	assigned	by	the	PEP	Editor,	title	should	be	the	human-
readable	title	of	the	PEP	as	found	in	the	official	copy	of	the	document,	and
why	should	explain	what's	interesting	about	the	PEP.	This	should	be	used	to
refer	the	reader	to	PEPs	which	specify	interfaces	or	language	features
relevant	to	the	material	in	the	annotated	section	of	the	documentation.

\seerfc	{number}{title}{why}
Refer	to	an	IETF	Request	for	Comments	(RFC).	Otherwise	very	similar	to
\seepep.	This	should	be	used	to	refer	the	reader	to	PEPs	which	specify
protocols	or	data	formats	relevant	to	the	material	in	the	annotated	section	of
the	documentation.

\seetext	{text}
Add	arbitrary	text	text	to	the	``See	also:''	list.	This	can	be	used	to	refer	to
off-line	materials	or	on-line	materials	using	the	\url	macro.	This	should
consist	of	one	or	more	complete	sentences.

\seetitle	[url]{title}{why}
Add	a	reference	to	an	external	document	named	title.	If	url	is	given,	the	title
is	made	a	hyperlink	in	the	HTML	version	of	the	documentation,	and
displayed	below	the	title	in	the	typeset	versions	of	the	documentation.

\seeurl	{url}{why}
References	to	specific	on-line	resources	should	be	given	using	the
\seeurl	macro	if	they	don't	have	a	meaningful	title.	Online	documents
which	have	identifiable	titles	should	be	referenced	using	the	\seetitle

macro,	using	the	optional	parameter	to	that	macro	to	provide	the	URL.

Documenting	Python
Previous:	6.9	Table	Markup	Up:	6	Special	Markup	Constructs	Next:	6.11
Index-generating	Markup

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.10	Reference	List	Markup	Up:	6	Special	Markup	Constructs	Next:
6.12	Grammar	Production	Displays

6.11	Index-generating	Markup
Effective	index	generation	for	technical	documents	can	be	very	difficult,
especially	for	someone	familiar	with	the	topic	but	not	the	creation	of	indexes.
Much	of	the	difficulty	arises	in	the	area	of	terminology:	including	the	terms	an
expert	would	use	for	a	concept	is	not	sufficient.	Coming	up	with	the	terms	that	a
novice	would	look	up	is	fairly	difficult	for	an	author	who,	typically,	is	an	expert
in	the	area	she	is	writing	on.

The	truly	difficult	aspects	of	index	generation	are	not	areas	with	which	the
documentation	tools	can	help.	However,	ease	of	producing	the	index	once
content	decisions	are	made	is	within	the	scope	of	the	tools.	Markup	is	provided
which	the	processing	software	is	able	to	use	to	generate	a	variety	of	kinds	of
index	entry	with	minimal	effort.	Additionally,	many	of	the	environments
described	in	section	6.3,	``Information	Units,''	will	generate	appropriate	entries
into	the	general	and	module	indexes.

The	following	macro	can	be	used	to	control	the	generation	of	index	data,	and
should	be	used	in	the	document	preamble:

\makemodindex

This	should	be	used	in	the	document	preamble	if	a	``Module	Index''	is
desired	for	a	document	containing	reference	material	on	many	modules.
This	causes	a	data	file	libjobname.idx	to	be	created	from	the
\declaremodule	macros.	This	file	can	be	processed	by	the	makeindex
program	to	generate	a	file	which	can	be	\input	into	the	document	at	the
desired	location	of	the	module	index.

There	are	a	number	of	macros	that	are	useful	for	adding	index	entries	for
particular	concepts,	many	of	which	are	specific	to	programming	languages	or
even	Python.

\bifuncindex	{name}
Add	an	index	entry	referring	to	a	built-in	function	named	name;	parentheses
should	not	be	included	after	name.

\exindex	{exception}
Add	a	reference	to	an	exception	named	exception.	The	exception	should	be

class-based.

\kwindex	{keyword}
Add	a	reference	to	a	language	keyword	(not	a	keyword	parameter	in	a
function	or	method	call).

\obindex	{object	type}
Add	an	index	entry	for	a	built-in	object	type.

\opindex	{operator}
Add	a	reference	to	an	operator,	such	as	"+".

\refmodindex	[key]{module}
Add	an	index	entry	for	module	module;	if	module	contains	an	underscore,
the	optional	parameter	key	should	be	provided	as	the	same	string	with
underscores	removed.	An	index	entry	``module	(module)''	will	be
generated.	This	is	intended	for	use	with	non-standard	modules	implemented
in	Python.

\refexmodindex	[key]{module}
As	for	\refmodindex,	but	the	index	entry	will	be	``module	(extension
module).''	This	is	intended	for	use	with	non-standard	modules	not
implemented	in	Python.

\refbimodindex	[key]{module}
As	for	\refmodindex,	but	the	index	entry	will	be	``module	(built-in
module).''	This	is	intended	for	use	with	standard	modules	not	implemented
in	Python.

\refstmodindex	[key]{module}
As	for	\refmodindex,	but	the	index	entry	will	be	``module	(standard
module).''	This	is	intended	for	use	with	standard	modules	implemented	in
Python.

\stindex	{statement}
Add	an	index	entry	for	a	statement	type,	such	as	print	or	try/finally.

XXX	Need	better	examples	of	difference	from	\kwindex.

Additional	macros	are	provided	which	are	useful	for	conveniently	creating
general	index	entries	which	should	appear	at	many	places	in	the	index	by
rotating	a	list	of	words.	These	are	simple	macros	that	simply	use	\index	to
build	some	number	of	index	entries.	Index	entries	build	using	these	macros
contain	both	primary	and	secondary	text.

\indexii	{word1}{word2}
Build	two	index	entries.	This	is	exactly	equivalent	to	using
\index{word1!word2}	and	\index{word2!word1}.

\indexiii	{word1}{word2}{word3}
Build	three	index	entries.	This	is	exactly	equivalent	to	using
\index{word1!word2	word3},	\index{word2!word3,	word1},	and
\index{word3!word1	word2}.

\indexiv	{word1}{word2}{word3}{word4}
Build	four	index	entries.	This	is	exactly	equivalent	to	using
\index{word1!word2	word3	word4},	\index{word2!word3
word4,	word1},	\index{word3!word4,	word1	word2},	and
\index{word4!word1	word2	word3}.

Documenting	Python
Previous:	6.10	Reference	List	Markup	Up:	6	Special	Markup	Constructs	Next:
6.12	Grammar	Production	Displays

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.11	Index-generating	Markup	Up:	6	Special	Markup	Constructs
Next:	6.13	Graphical	Interface	Components

6.12	Grammar	Production	Displays
Special	markup	is	available	for	displaying	the	productions	of	a	formal	grammar.
The	markup	is	simple	and	does	not	attempt	to	model	all	aspects	of	BNF	(or	any
derived	forms),	but	provides	enough	to	allow	context-free	grammars	to	be
displayed	in	a	way	that	causes	uses	of	a	symbol	to	be	rendered	as	hyperlinks	to
the	definition	of	the	symbol.	There	is	one	environment	and	a	pair	of	macros:

\begin{productionlist}	[language]	
\end{productionlist}

This	environment	is	used	to	enclose	a	group	of	productions.	The	two
macros	are	only	defined	within	this	environment.	If	a	document	descibes
more	than	one	language,	the	optional	parameter	language	should	be	used	to
distinguish	productions	between	languages.	The	value	of	the	parameter
should	be	a	short	name	that	can	be	used	as	part	of	a	filename;	colons	or
other	characters	that	can't	be	used	in	filename	across	platforms	should	be
included.

\production	{name}{definition}
A	production	rule	in	the	grammar.	The	rule	defines	the	symbol	name	to	be
definition.	name	should	not	contain	any	markup,	and	the	use	of	hyphens	in
a	document	which	supports	more	than	one	grammar	is	undefined.	definition
may	contain	\token	macros	and	any	additional	content	needed	to	describe
the	grammatical	model	of	symbol.	Only	one	\production	may	be	used
to	define	a	symbol	--	multiple	definitions	are	not	allowed.

\token	{name}
The	name	of	a	symbol	defined	by	a	\production	macro,	used	in	the
definition	of	a	symbol.	Where	possible,	this	will	be	rendered	as	a	hyperlink
to	the	definition	of	the	symbol	name.

Note	that	the	entire	grammar	does	not	need	to	be	defined	in	a	single
\productionlist	environment;	any	number	of	groupings	may	be	used	to
describe	the	grammar.	Every	use	of	the	\token	must	correspond	to	a
\production.

The	following	is	an	example	taken	from	the	Python	Reference	Manual:

\begin{productionlist}

		\production{identifier}

													{(\token{letter}|"_")	(\token{letter}	|	\token{digit}	|	"_")*}

		\production{letter}

													{\token{lowercase}	|	\token{uppercase}}

		\production{lowercase}

													{"a"..."z"}

		\production{uppercase}

													{"A"..."Z"}

		\production{digit}

													{"0"..."9"}

\end{productionlist}

Documenting	Python
Previous:	6.11	Index-generating	Markup	Up:	6	Special	Markup	Constructs
Next:	6.13	Graphical	Interface	Components

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.12	Grammar	Production	Displays	Up:	6	Special	Markup
Constructs	Next:	7	Processing	Tools

6.13	Graphical	Interface	Components
The	components	of	graphical	interfaces	will	be	assigned	markup,	but	most	of	the
specifics	have	not	been	determined.

\guilabel	{label}
Labels	presented	as	part	of	an	interactive	user	interface	should	be	marked
using	\guilabel.	This	includes	labels	from	text-based	interfaces	such	as
those	created	using	curses	or	other	text-based	libraries.	Any	label	used	in
the	interface	should	be	marked	with	this	macro,	including	button	labels,
window	titles,	field	names,	menu	and	menu	selection	names,	and	even
values	in	selection	lists.

\menuselection	{menupath}
Menu	selections	should	be	marked	using	a	combination	of
\menuselection	and	\sub.	This	macro	is	used	to	mark	a	complete
sequence	of	menu	selections,	including	selecting	submenus	and	choosing	a
specific	operation,	or	any	subsequence	of	such	a	sequence.	The	names	of
individual	selections	should	be	separated	by	occurances	of	\sub.

For	example,	to	mark	the	selection	``Start	>	Programs'',	use	this	markup:

\menuselection{Start	\sub	Programs}

When	including	a	selection	that	includes	some	trailing	indicator,	such	as	the
ellipsis	some	operating	systems	use	to	indicate	that	the	command	opens	a
dialog,	the	indicator	should	be	omitted	from	the	selection	name.

Individual	selection	names	within	the	\menuselection	should	not	be
marked	using	\guilabel	since	that's	implied	by	using
\menuselection.

\sub

Separator	for	menu	selections	that	include	multiple	levels.	This	macro	is
only	defined	within	the	context	of	the	\menuselection	macro.

Documenting	Python

Previous:	6.12	Grammar	Production	Displays	Up:	6	Special	Markup
Constructs	Next:	7	Processing	Tools

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.13	Graphical	Interface	Components	Up:	Documenting	Python
Next:	7.1	External	Tools

7	Processing	Tools

Subsections

7.1	External	Tools
7.2	Internal	Tools
7.3	Working	on	Cygwin

Documenting	Python
Previous:	6.13	Graphical	Interface	Components	Up:	Documenting	Python
Next:	7.1	External	Tools

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7	Processing	Tools	Up:	7	Processing	Tools	Next:	7.2	Internal	Tools

7.1	External	Tools
Many	tools	are	needed	to	be	able	to	process	the	Python	documentation	if	all
supported	formats	are	required.	This	section	lists	the	tools	used	and	when	each	is
required.	Consult	the	Doc/README	file	to	see	if	there	are	specific	version
requirements	for	any	of	these.

dvips
This	program	is	a	typical	part	of	TeX	installations.	It	is	used	to	generate
PostScript	from	the	``device	independent''	.dvi	files.	It	is	needed	for	the
conversion	to	PostScript.

emacs
Emacs	is	the	kitchen	sink	of	programmers'	editors,	and	a	damn	fine	kitchen
sink	it	is.	It	also	comes	with	some	of	the	processing	needed	to	support	the
proper	menu	structures	for	Texinfo	documents	when	an	info	conversion	is
desired.	This	is	needed	for	the	info	conversion.	Using	xemacs	instead	of
FSF	emacs	may	lead	to	instability	in	the	conversion,	but	that's	because
nobody	seems	to	maintain	the	Emacs	Texinfo	code	in	a	portable	manner.

latex
LaTeX	is	a	large	and	extensible	macro	package	by	Leslie	Lamport,	based
on	TeX,	a	world-class	typesetter	by	Donald	Knuth.	It	is	used	for	the
conversion	to	PostScript,	and	is	needed	for	the	HTML	conversion	as	well
(LaTeX2HTML	requires	one	of	the	intermediate	files	it	creates).

latex2html
Probably	the	longest	Perl	script	anyone	ever	attempted	to	maintain.	This
converts	LaTeX	documents	to	HTML	documents,	and	does	a	pretty
reasonable	job.	It	is	required	for	the	conversions	to	HTML	and	GNU	info.

lynx
This	is	a	text-mode	Web	browser	which	includes	an	HTML-to-plain	text
conversion.	This	is	used	to	convert	howto	documents	to	text.

make
Just	about	any	version	should	work	for	the	standard	documents,	but	GNU
make	is	required	for	the	experimental	processes	in	Doc/tools/sgmlconv/,

at	least	while	they're	experimental.	This	is	not	required	for	running	the
mkhowto	script.

makeindex
This	is	a	standard	program	for	converting	LaTeX	index	data	to	a	formatted
index;	it	should	be	included	with	all	LaTeX	installations.	It	is	needed	for	the
PDF	and	PostScript	conversions.

makeinfo
GNU	makeinfo	is	used	to	convert	Texinfo	documents	to	GNU	info	files.
Since	Texinfo	is	used	as	an	intermediate	format	in	the	info	conversion,	this
program	is	needed	in	that	conversion.

pdflatex
pdfTeX	is	a	relatively	new	variant	of	TeX,	and	is	used	to	generate	the	PDF
version	of	the	manuals.	It	is	typically	installed	as	part	of	most	of	the	large
TeX	distributions.	pdflatex	is	pdfTeX	using	the	LaTeX	format.

perl
Perl	is	required	for	LaTeX2HTML	and	one	of	the	scripts	used	to	post-
process	LaTeX2HTML	output,	as	well	as	the	HTML-to-Texinfo	conversion.
This	is	required	for	the	HTML	and	GNU	info	conversions.

python
Python	is	used	for	many	of	the	scripts	in	the	Doc/tools/	directory;	it	is
required	for	all	conversions.	This	shouldn't	be	a	problem	if	you're	interested
in	writing	documentation	for	Python!

Documenting	Python
Previous:	7	Processing	Tools	Up:	7	Processing	Tools	Next:	7.2	Internal	Tools

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.1	External	Tools	Up:	7	Processing	Tools	Next:	7.3	Working	on
Cygwin

7.2	Internal	Tools
This	section	describes	the	various	scripts	that	are	used	to	implement	various
stages	of	document	processing	or	to	orchestrate	entire	build	sequences.	Most	of
these	tools	are	only	useful	in	the	context	of	building	the	standard	documentation,
but	some	are	more	general.

mkhowto
This	is	the	primary	script	used	to	format	third-party	documents.	It	contains
all	the	logic	needed	to	``get	it	right.''	The	proper	way	to	use	this	script	is	to
make	a	symbolic	link	to	it	or	run	it	in	place;	the	actual	script	file	must	be
stored	as	part	of	the	documentation	source	tree,	though	it	may	be	used	to
format	documents	outside	the	tree.	Use	mkhowto	--help	for	a	list	of
command	line	options.

mkhowto	can	be	used	for	both	howto	and	manual	class	documents.	It	is
usually	a	good	idea	to	always	use	the	latest	version	of	this	tool	rather	than	a
version	from	an	older	source	release	of	Python.	It	can	be	used	to	generate
DVI,	HTML,	PDF,	PostScript,	and	plain	text	documents.	The	GNU	info
and	iSilo	formats	will	be	supported	by	this	script	in	some	future	version.

Use	the	--help	option	on	this	script's	command	line	to	get	a	summary	of
options	for	this	script.

XXX	Need	more	here.

Documenting	Python
Previous:	7.1	External	Tools	Up:	7	Processing	Tools	Next:	7.3	Working	on
Cygwin

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.2	Internal	Tools	Up:	7	Processing	Tools	Next:	8	Including	Graphics

7.3	Working	on	Cygwin
Installing	the	required	tools	under	Cygwin	under	Cygwin	can	be	a	little	tedious,
if	only	because	many	packages	are	more	difficult	to	install	under	Cygwin.

Using	the	Cygwin	installer,	make	sure	your	Cygwin	installation	includes	Perl,
Python,	and	the	TeX	packages.	Perl	and	Python	are	located	under	Interpreters
in	the	installer.	The	TeX	packages	are	located	in	the	Text	section;	installing	the
tetex-beta,	texmf,	texmf-base,	and	texmf-extra	ensures	that	all
the	required	packages	are	available.	(There	may	be	a	more	minimal	set,	but	I've
not	spent	time	trying	to	minimize	the	installation.)

The	netpbm	package	is	used	by	LaTeX2HTML,	and	must	be	installed	before
LaTeX2HTML	can	be	successfully	installed,	even	though	they	will	never	be
used	for	most	Python	documentation.	References	to	download	locations	are
located	in	the	netpbm	README.	Install	according	to	the	instructions.

LaTeX2HTML	can	be	installed	from	the	source	archive,	but	only	after	munging
one	of	the	files	in	the	distribution.	Edit	the	file	L2hos.pm	in	the	top	level	of	the
unpacked	distribution;	near	the	bottom	of	the	file,	change	the	text	$^O	with	the
text	'unix'.	Proceed	using	this	command	to	build	and	install	the	software:

%	./configure	&&	make	install

You	should	now	be	able	to	build	at	least	the	DVI,	HTML,	PDF,	and	PostScript
versions	of	the	formatted	documentation.

Documenting	Python
Previous:	7.2	Internal	Tools	Up:	7	Processing	Tools	Next:	8	Including	Graphics

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://netpbm.sourceforge.net/README

Previous:	7.3	Working	on	Cygwin	Up:	Documenting	Python	Next:	9	Future
Directions

8	Including	Graphics
The	standard	documentation	included	with	Python	makes	no	use	of	diagrams	or
images;	this	is	intentional.	The	outside	tools	used	to	format	the	documentation
have	not	always	been	suited	to	working	with	graphics.	As	the	tools	have	evolved
and	been	improved	by	their	maintainers,	support	for	graphics	has	improved.

The	internal	tools,	starting	with	the	mkhowto	script,	do	not	provide	any	direct
support	for	graphics.	However,	mkhowto	will	not	interfere	with	graphics
support	in	the	external	tools.

Experience	using	graphics	together	with	these	tools	and	the	howto	and
manual	document	classes	is	not	extensive,	but	has	been	known	to	work.	The
basic	approach	is	this:

1.	 Create	the	image	or	graphic	using	your	favorite	application.

2.	 Convert	the	image	to	a	format	supported	by	the	conversion	to	your	desired
output	format.	If	you	want	to	generate	HTML	or	PostScript,	you	can
convert	the	image	or	graphic	to	encapsulated	PostScript	(a	.eps	file);
LaTeX2HTML	can	convert	that	to	a	.gif	file;	it	may	be	possible	to	provide	a
.gif	file	directly.	If	you	want	to	generate	PDF,	you	need	to	provide	an
``encapsulated''	PDF	file.	This	can	be	generated	from	encapsulated
PostScript	using	the	epstopdf	tool	provided	with	the	teTeX	distribution	on
Linux	and	UNIX.

3.	 In	your	document,	add	this	line	to	``import''	the	general	graphics	support
package	graphicx:

\usepackage{graphicx}

4.	 Where	you	want	to	include	your	graphic	or	image,	include	markup	similar
to	this:

\begin{figure}

		\centering

		\includegraphics[width=5in]{myimage}

		\caption{Description	of	my	image}

\end{figure}

In	particular,	note	for	the	\includegraphics	macro	that	no	file
extension	is	provided.	If	you're	only	interested	in	one	target	format,	you	can
include	the	extension	of	the	appropriate	input	file,	but	to	allow	support	for
multiple	formats,	omitting	the	extension	makes	life	easier.

5.	 Run	mkhowto	normally.

If	you're	working	on	systems	which	support	some	sort	of	make	facility,	you	can
use	that	to	ensure	the	intermediate	graphic	formats	are	kept	up	to	date.	This
example	shows	a	Makefile	used	to	format	a	document	containing	a	diagram
created	using	the	dia	application:

default:	pdf

all:					html	pdf	ps

html:			mydoc/mydoc.html

pdf:				mydoc.pdf

ps:					mydoc.ps

mydoc/mydoc.html:		mydoc.tex	mygraphic.eps

								mkhowto	--html	$<

mydoc.pdf:		mydoc.tex	mygraphic.pdf

								mkhowto	--pdf	$<

mydoc.ps:			mydoc.tex	mygraphic.eps

								mkhowto	--postscript	$<

.SUFFIXES:	.dia	.eps	.pdf

.dia.eps:

								dia	--nosplash	--export	$@	$<

.eps.pdf:

								epstopdf	$<

Documenting	Python
Previous:	7.3	Working	on	Cygwin	Up:	Documenting	Python	Next:	9	Future
Directions

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8	Including	Graphics	Up:	Documenting	Python	Next:	9.1	Structured
Documentation

9	Future	Directions
The	history	of	the	Python	documentation	is	full	of	changes,	most	of	which	have
been	fairly	small	and	evolutionary.	There	has	been	a	great	deal	of	discussion
about	making	large	changes	in	the	markup	languages	and	tools	used	to	process
the	documentation.	This	section	deals	with	the	nature	of	the	changes	and	what
appears	to	be	the	most	likely	path	of	future	development.

Subsections

9.1	Structured	Documentation
9.2	Discussion	Forums

Documenting	Python
Previous:	8	Including	Graphics	Up:	Documenting	Python	Next:	9.1	Structured
Documentation

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	9	Future	Directions	Up:	9	Future	Directions	Next:	9.2	Discussion
Forums

9.1	Structured	Documentation
Most	of	the	small	changes	to	the	LaTeX	markup	have	been	made	with	an	eye	to
divorcing	the	markup	from	the	presentation,	making	both	a	bit	more
maintainable.	Over	the	course	of	1998,	a	large	number	of	changes	were	made
with	exactly	this	in	mind;	previously,	changes	had	been	made	but	in	a	less
systematic	manner	and	with	more	concern	for	not	needing	to	update	the	existing
content.	The	result	has	been	a	highly	structured	and	semantically	loaded	markup
language	implemented	in	LaTeX.	With	almost	no	basic	TeX	or	LaTeX	markup	in
use,	however,	the	markup	syntax	is	about	the	only	evidence	of	LaTeX	in	the
actual	document	sources.

One	side	effect	of	this	is	that	while	we've	been	able	to	use	standard	``engines''
for	manipulating	the	documents,	such	as	LaTeX	and	LaTeX2HTML,	most	of	the
actual	transformations	have	been	created	specifically	for	Python.	The	LaTeX
document	classes	and	LaTeX2HTML	support	are	both	complete
implementations	of	the	specific	markup	designed	for	these	documents.

Combining	highly	customized	markup	with	the	somewhat	esoteric	systems	used
to	process	the	documents	leads	us	to	ask	some	questions:	Can	we	do	this	more
easily?	and,	Can	we	do	this	better?	After	a	great	deal	of	discussion	with	the
community,	we	have	determined	that	actively	pursuing	modern	structured
documentation	systems	is	worth	some	investment	of	time.

There	appear	to	be	two	real	contenders	in	this	arena:	the	Standard	General
Markup	Language	(SGML),	and	the	Extensible	Markup	Language	(XML).	Both
of	these	standards	have	advantages	and	disadvantages,	and	many	advantages	are
shared.

SGML	offers	advantages	which	may	appeal	most	to	authors,	especially	those
using	ordinary	text	editors.	There	are	also	additional	abilities	to	define	content
models.	A	number	of	high-quality	tools	with	demonstrated	maturity	are
available,	but	most	are	not	free;	for	those	which	are,	portability	issues	remain	a
problem.

The	advantages	of	XML	include	the	availability	of	a	large	number	of	evolving
tools.	Unfortunately,	many	of	the	associated	standards	are	still	evolving,	and	the
tools	will	have	to	follow	along.	This	means	that	developing	a	robust	tool	set	that

uses	more	than	the	basic	XML	1.0	recommendation	is	not	possible	in	the	short
term.	The	promised	availability	of	a	wide	variety	of	high-quality	tools	which
support	some	of	the	most	important	related	standards	is	not	immediate.	Many
tools	are	likely	to	be	free,	and	the	portability	issues	of	those	which	are,	are	not
expected	to	be	significant.

It	turns	out	that	converting	to	an	XML	or	SGML	system	holds	promise	for
translators	as	well;	how	much	can	be	done	to	ease	the	burden	on	translators
remains	to	be	seen,	and	may	have	some	impact	on	the	schema	and	specific
technologies	used.

XXX	Eventual	migration	to	XML.

The	documentation	will	be	moved	to	XML	in	the	future,	and	tools	are	being
written	which	will	convert	the	documentation	from	the	current	format	to
something	close	to	a	finished	version,	to	the	extent	that	the	desired	information
is	already	present	in	the	documentation.	Some	XSLT	stylesheets	have	been
started	for	presenting	a	preliminary	XML	version	as	HTML,	but	the	results	are
fairly	rough.

The	timeframe	for	the	conversion	is	not	clear	since	there	doesn't	seem	to	be
much	time	available	to	work	on	this,	but	the	appearant	benefits	are	growing
more	substantial	at	a	moderately	rapid	pace.

Documenting	Python
Previous:	9	Future	Directions	Up:	9	Future	Directions	Next:	9.2	Discussion
Forums

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	9.1	Structured	Documentation	Up:	9	Future	Directions	Next:	About
this	document	...

9.2	Discussion	Forums
Discussion	of	the	future	of	the	Python	documentation	and	related	topics	takes
place	in	the	Documentation	Special	Interest	Group,	or	``Doc-SIG.''	Information
on	the	group,	including	mailing	list	archives	and	subscription	information,	is
available	at	http://www.python.org/sigs/doc-sig/.	The	SIG	is	open	to	all
interested	parties.

Comments	and	bug	reports	on	the	standard	documents	should	be	sent	to
docs@python.org.	This	may	include	comments	about	formatting,	content,
grammatical	and	spelling	errors,	or	this	document.	You	can	also	send	comments
on	this	document	directly	to	the	author	at	fdrake@acm.org.

Documenting	Python
Previous:	9.1	Structured	Documentation	Up:	9	Future	Directions	Next:	About
this	document	...

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/sigs/doc-sig/

Up:	Python	Documentation	Index	Next:	1	Introduction

Installing	Python	Modules
Greg	Ward

Python	Software	Foundation	Email:	distutils-sig@python.org

Release	2.4b2
13	November	2004

Abstract:

This	document	describes	the	Python	Distribution	Utilities	(``Distutils'')	from	the
end-user's	point-of-view,	describing	how	to	extend	the	capabilities	of	a	standard
Python	installation	by	building	and	installing	third-party	Python	modules	and
extensions.

1	Introduction
1.1	Best	case:	trivial	installation
1.2	The	new	standard:	Distutils

2	Standard	Build	and	Install
2.1	Platform	variations
2.2	Splitting	the	job	up
2.3	How	building	works
2.4	How	installation	works

3	Alternate	Installation
3.1	Alternate	installation:	the	home	scheme
3.2	Alternate	installation:	UNIX	(the	prefix	scheme)
3.3	Alternate	installation:	Windows	(the	prefix	scheme)

4	Custom	Installation
4.1	Modifying	Python's	Search	Path

5	Distutils	Configuration	Files
5.1	Location	and	names	of	config	files
5.2	Syntax	of	config	files

6	Building	Extensions:	Tips	and	Tricks
6.1	Tweaking	compiler/linker	flags
6.2	Using	non-Microsoft	compilers	on	Windows

6.2.1	Borland	C++
6.2.2	GNU	C	/	Cygwin	/	MinGW

About	this	document	...

Installing	Python	Modules
Up:	Python	Documentation	Index	Next:	1	Introduction

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Installing	Python	Modules	Up:	Installing	Python	Modules	Next:	2
Standard	Build	and

Subsections

1.1	Best	case:	trivial	installation
1.2	The	new	standard:	Distutils

1	Introduction
Although	Python's	extensive	standard	library	covers	many	programming	needs,
there	often	comes	a	time	when	you	need	to	add	some	new	functionality	to	your
Python	installation	in	the	form	of	third-party	modules.	This	might	be	necessary
to	support	your	own	programming,	or	to	support	an	application	that	you	want	to
use	and	that	happens	to	be	written	in	Python.

In	the	past,	there	has	been	little	support	for	adding	third-party	modules	to	an
existing	Python	installation.	With	the	introduction	of	the	Python	Distribution
Utilities	(Distutils	for	short)	in	Python	2.0,	this	changed.

This	document	is	aimed	primarily	at	the	people	who	need	to	install	third-party
Python	modules:	end-users	and	system	administrators	who	just	need	to	get	some
Python	application	running,	and	existing	Python	programmers	who	want	to	add
some	new	goodies	to	their	toolbox.	You	don't	need	to	know	Python	to	read	this
document;	there	will	be	some	brief	forays	into	using	Python's	interactive	mode
to	explore	your	installation,	but	that's	it.	If	you're	looking	for	information	on	how
to	distribute	your	own	Python	modules	so	that	others	may	use	them,	see	the
Distributing	Python	Modules	manual.

1.1	Best	case:	trivial	installation
In	the	best	case,	someone	will	have	prepared	a	special	version	of	the	module
distribution	you	want	to	install	that	is	targeted	specifically	at	your	platform	and
is	installed	just	like	any	other	software	on	your	platform.	For	example,	the
module	developer	might	make	an	executable	installer	available	for	Windows
users,	an	RPM	package	for	users	of	RPM-based	Linux	systems	(Red	Hat,	SuSE,
Mandrake,	and	many	others),	a	Debian	package	for	users	of	Debian-based	Linux
systems,	and	so	forth.

In	that	case,	you	would	download	the	installer	appropriate	to	your	platform	and
do	the	obvious	thing	with	it:	run	it	if	it's	an	executable	installer,	rpm	--
install	it	if	it's	an	RPM,	etc.	You	don't	need	to	run	Python	or	a	setup	script,
you	don't	need	to	compile	anything--you	might	not	even	need	to	read	any
instructions	(although	it's	always	a	good	idea	to	do	so	anyways).

Of	course,	things	will	not	always	be	that	easy.	You	might	be	interested	in	a
module	distribution	that	doesn't	have	an	easy-to-use	installer	for	your	platform.
In	that	case,	you'll	have	to	start	with	the	source	distribution	released	by	the
module's	author/maintainer.	Installing	from	a	source	distribution	is	not	too	hard,
as	long	as	the	modules	are	packaged	in	the	standard	way.	The	bulk	of	this
document	is	about	building	and	installing	modules	from	standard	source
distributions.

1.2	The	new	standard:	Distutils
If	you	download	a	module	source	distribution,	you	can	tell	pretty	quickly	if	it
was	packaged	and	distributed	in	the	standard	way,	i.e.	using	the	Distutils.	First,
the	distribution's	name	and	version	number	will	be	featured	prominently	in	the
name	of	the	downloaded	archive,	e.g.	foo-1.0.tar.gz	or	widget-0.9.7.zip.	Next,
the	archive	will	unpack	into	a	similarly-named	directory:	foo-1.0	or	widget-
0.9.7.	Additionally,	the	distribution	will	contain	a	setup	script	setup.py,	and	a
file	named	README.txt	or	possibly	just	README,	which	should	explain	that
building	and	installing	the	module	distribution	is	a	simple	matter	of	running

python	setup.py	install

If	all	these	things	are	true,	then	you	already	know	how	to	build	and	install	the
modules	you've	just	downloaded:	Run	the	command	above.	Unless	you	need	to
install	things	in	a	non-standard	way	or	customize	the	build	process,	you	don't
really	need	this	manual.	Or	rather,	the	above	command	is	everything	you	need	to
get	out	of	this	manual.

Installing	Python	Modules
Previous:	Installing	Python	Modules	Up:	Installing	Python	Modules	Next:	2
Standard	Build	and

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1	Introduction	Up:	Installing	Python	Modules	Next:	3	Alternate
Installation

Subsections

2.1	Platform	variations
2.2	Splitting	the	job	up
2.3	How	building	works
2.4	How	installation	works

2	Standard	Build	and	Install
As	described	in	section	1.2,	building	and	installing	a	module	distribution	using
the	Distutils	is	usually	one	simple	command:

python	setup.py	install

On	UNIX,	you'd	run	this	command	from	a	shell	prompt;	on	Windows,	you	have	to
open	a	command	prompt	window	(``DOS	box'')	and	do	it	there;	on	Mac	OS,
things	are	a	tad	more	complicated	(see	below).

2.1	Platform	variations
You	should	always	run	the	setup	command	from	the	distribution	root	directory,
i.e.	the	top-level	subdirectory	that	the	module	source	distribution	unpacks	into.
For	example,	if	you've	just	downloaded	a	module	source	distribution	foo-
1.0.tar.gz	onto	a	UNIX	system,	the	normal	thing	to	do	is:

gunzip	-c	foo-1.0.tar.gz	|	tar	xf	-				#	unpacks	into	directory	foo-1.0

cd	foo-1.0

python	setup.py	install

On	Windows,	you'd	probably	download	foo-1.0.zip.	If	you	downloaded	the
archive	file	to	C:\Temp,	then	it	would	unpack	into	C:\Temp\foo-1.0;	you	can
use	either	a	archive	manipulator	with	a	graphical	user	interface	(such	as	WinZip)
or	a	command-line	tool	(such	as	unzip	or	pkunzip)	to	unpack	the	archive.	Then,
open	a	command	prompt	window	(``DOS	box''),	and	run:

cd	c:\Temp\foo-1.0

python	setup.py	install

2.2	Splitting	the	job	up
Running	setup.py	install	builds	and	installs	all	modules	in	one	run.	If
you	prefer	to	work	incrementally--especially	useful	if	you	want	to	customize	the
build	process,	or	if	things	are	going	wrong--you	can	use	the	setup	script	to	do
one	thing	at	a	time.	This	is	particularly	helpful	when	the	build	and	install	will	be
done	by	different	users--for	example,	you	might	want	to	build	a	module
distribution	and	hand	it	off	to	a	system	administrator	for	installation	(or	do	it
yourself,	with	super-user	privileges).

For	example,	you	can	build	everything	in	one	step,	and	then	install	everything	in
a	second	step,	by	invoking	the	setup	script	twice:

python	setup.py	build

python	setup.py	install

If	you	do	this,	you	will	notice	that	running	the	install	command	first	runs	the
build	command,	which--in	this	case--quickly	notices	that	it	has	nothing	to	do,
since	everything	in	the	build	directory	is	up-to-date.

You	may	not	need	this	ability	to	break	things	down	often	if	all	you	do	is	install
modules	downloaded	off	the	'net,	but	it's	very	handy	for	more	advanced	tasks.	If
you	get	into	distributing	your	own	Python	modules	and	extensions,	you'll	run
lots	of	individual	Distutils	commands	on	their	own.

2.3	How	building	works
As	implied	above,	the	build	command	is	responsible	for	putting	the	files	to
install	into	a	build	directory.	By	default,	this	is	build	under	the	distribution	root;
if	you're	excessively	concerned	with	speed,	or	want	to	keep	the	source	tree
pristine,	you	can	change	the	build	directory	with	the	--build-base	option.	For
example:

python	setup.py	build	--build-base=/tmp/pybuild/foo-1.0

(Or	you	could	do	this	permanently	with	a	directive	in	your	system	or	personal
Distutils	configuration	file;	see	section	5.)	Normally,	this	isn't	necessary.

The	default	layout	for	the	build	tree	is	as	follows:

---	build/	---	lib/

or

---	build/	---	lib.<plat>/

															temp.<plat>/

where	<plat>	expands	to	a	brief	description	of	the	current	OS/hardware
platform	and	Python	version.	The	first	form,	with	just	a	lib	directory,	is	used	for
``pure	module	distributions''--that	is,	module	distributions	that	include	only	pure
Python	modules.	If	a	module	distribution	contains	any	extensions	(modules
written	in	C/C++),	then	the	second	form,	with	two	<plat>	directories,	is	used.
In	that	case,	the	temp.plat	directory	holds	temporary	files	generated	by	the
compile/link	process	that	don't	actually	get	installed.	In	either	case,	the	lib	(or
lib.plat)	directory	contains	all	Python	modules	(pure	Python	and	extensions)	that
will	be	installed.

In	the	future,	more	directories	will	be	added	to	handle	Python	scripts,
documentation,	binary	executables,	and	whatever	else	is	needed	to	handle	the
job	of	installing	Python	modules	and	applications.

2.4	How	installation	works
After	the	build	command	runs	(whether	you	run	it	explicitly,	or	the	install
command	does	it	for	you),	the	work	of	the	install	command	is	relatively
simple:	all	it	has	to	do	is	copy	everything	under	build/lib	(or	build/lib.plat)	to
your	chosen	installation	directory.

If	you	don't	choose	an	installation	directory--i.e.,	if	you	just	run	setup.py
install--then	the	install	command	installs	to	the	standard	location	for	third-
party	Python	modules.	This	location	varies	by	platform	and	by	how	you
built/installed	Python	itself.	On	UNIX	and	Mac	OS,	it	also	depends	on	whether
the	module	distribution	being	installed	is	pure	Python	or	contains	extensions
(``non-pure''):

Platform Standard	installation
location

Default	value Notes

UNIX

(pure)
prefix/lib/python2.4/site-
packages

/usr/local/lib/python2.4/site-
packages

(1)

UNIX

(non-
pure)

exec-
prefix/lib/python2.4/site-
packages

/usr/local/lib/python2.4/site-
packages

(1)

Windows prefix C:\Python (2)
Mac	OS
(pure)

prefix:Lib:site-packages Python:Lib:site-packages

Mac	OS
(non-
pure)

prefix:Lib:site-packages Python:Lib:site-packages

Notes:

(1)
Most	Linux	distributions	include	Python	as	a	standard	part	of	the	system,	so
prefix	and	exec-prefix	are	usually	both	/usr	on	Linux.	If	you	build	Python
yourself	on	Linux	(or	any	UNIX-like	system),	the	default	prefix	and	exec-
prefix	are	/usr/local.

(2)
The	default	installation	directory	on	Windows	was	C:\Program

Files\Python	under	Python	1.6a1,	1.5.2,	and	earlier.

prefix	and	exec-prefix	stand	for	the	directories	that	Python	is	installed	to,	and
where	it	finds	its	libraries	at	run-time.	They	are	always	the	same	under	Windows
and	Mac	OS,	and	very	often	the	same	under	UNIX.	You	can	find	out	what	your
Python	installation	uses	for	prefix	and	exec-prefix	by	running	Python	in
interactive	mode	and	typing	a	few	simple	commands.	Under	UNIX,	just	type
python	at	the	shell	prompt.	Under	Windows,	choose	Start	>	Programs	>
Python	2.4	>	Python	(command	line).	Once	the	interpreter	is	started,	you	type
Python	code	at	the	prompt.	For	example,	on	my	Linux	system,	I	type	the	three
Python	statements	shown	below,	and	get	the	output	as	shown,	to	find	out	my
prefix	and	exec-prefix:

Python	2.4	(#26,	Aug		7	2004,	17:19:02)	

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>	import	sys

>>>	sys.prefix

'/usr'

>>>	sys.exec_prefix

'/usr'

If	you	don't	want	to	install	modules	to	the	standard	location,	or	if	you	don't	have
permission	to	write	there,	then	you	need	to	read	about	alternate	installations	in
section	3.	If	you	want	to	customize	your	installation	directories	more	heavily,	see
section	4	on	custom	installations.

Installing	Python	Modules
Previous:	1	Introduction	Up:	Installing	Python	Modules	Next:	3	Alternate
Installation

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2	Standard	Build	and	Up:	Installing	Python	Modules	Next:	4	Custom
Installation

Subsections

3.1	Alternate	installation:	the	home	scheme
3.2	Alternate	installation:	UNIX	(the	prefix	scheme)
3.3	Alternate	installation:	Windows	(the	prefix	scheme)

3	Alternate	Installation
Often,	it	is	necessary	or	desirable	to	install	modules	to	a	location	other	than	the
standard	location	for	third-party	Python	modules.	For	example,	on	a	UNIX	system
you	might	not	have	permission	to	write	to	the	standard	third-party	module
directory.	Or	you	might	wish	to	try	out	a	module	before	making	it	a	standard	part
of	your	local	Python	installation.	This	is	especially	true	when	upgrading	a
distribution	already	present:	you	want	to	make	sure	your	existing	base	of	scripts
still	works	with	the	new	version	before	actually	upgrading.

The	Distutils	install	command	is	designed	to	make	installing	module
distributions	to	an	alternate	location	simple	and	painless.	The	basic	idea	is	that
you	supply	a	base	directory	for	the	installation,	and	the	install	command	picks
a	set	of	directories	(called	an	installation	scheme)	under	this	base	directory	in
which	to	install	files.	The	details	differ	across	platforms,	so	read	whichever	of
the	following	sections	applies	to	you.

3.1	Alternate	installation:	the	home	scheme
The	idea	behind	the	``home	scheme''	is	that	you	build	and	maintain	a	personal
stash	of	Python	modules.	This	scheme's	name	is	derived	from	the	idea	of	a
``home''	directory	on	UNIX,	since	it's	not	unusual	for	a	UNIX	user	to	make	their
home	directory	have	a	layout	similar	to	/usr/	or	/usr/local/.	This	scheme	can	be
used	by	anyone,	regardless	of	the	operating	system	their	installing	for.

Installing	a	new	module	distribution	is	as	simple	as

python	setup.py	install	--home=<dir>

where	you	can	supply	any	directory	you	like	for	the	--home	option.	On	UNIX,
lazy	typists	can	just	type	a	tilde	(~);	the	install	command	will	expand	this	to
your	home	directory:

python	setup.py	install	--home=~

The	--home	option	defines	the	installation	base	directory.	Files	are	installed	to
the	following	directories	under	the	installation	base	as	follows:

Type	of	file Installation	Directory Override	option
pure	module	distribution home/lib/python --install-purelib
non-pure	module	distribution home/lib/python --install-platlib
scripts home/bin --install-scripts
data home/share --install-data

Changed	in	version	2.4:	The	--home	option	used	to	be	supported	only	on	UNIX.

3.2	Alternate	installation:	UNIX	(the	prefix
scheme)
The	``prefix	scheme''	is	useful	when	you	wish	to	use	one	Python	installation	to
perform	the	build/install	(i.e.,	to	run	the	setup	script),	but	install	modules	into	the
third-party	module	directory	of	a	different	Python	installation	(or	something	that
looks	like	a	different	Python	installation).	If	this	sounds	a	trifle	unusual,	it	is--
that's	why	the	``home	scheme''	comes	first.	However,	there	are	at	least	two
known	cases	where	the	prefix	scheme	will	be	useful.

First,	consider	that	many	Linux	distributions	put	Python	in	/usr,	rather	than	the
more	traditional	/usr/local.	This	is	entirely	appropriate,	since	in	those	cases
Python	is	part	of	``the	system''	rather	than	a	local	add-on.	However,	if	you	are
installing	Python	modules	from	source,	you	probably	want	them	to	go	in
/usr/local/lib/python2.X	rather	than	/usr/lib/python2.X.	This	can	be	done	with

/usr/bin/python	setup.py	install	--prefix=/usr/local

Another	possibility	is	a	network	filesystem	where	the	name	used	to	write	to	a
remote	directory	is	different	from	the	name	used	to	read	it:	for	example,	the
Python	interpreter	accessed	as	/usr/local/bin/python	might	search	for	modules
in	/usr/local/lib/python2.X,	but	those	modules	would	have	to	be	installed	to,
say,	/mnt/@server/export/lib/python2.X.	This	could	be	done	with

/usr/local/bin/python	setup.py	install	--prefix=/mnt/@server/export

In	either	case,	the	--prefix	option	defines	the	installation	base,	and	the	--exec-
prefix	option	defines	the	platform-specific	installation	base,	which	is	used	for
platform-specific	files.	(Currently,	this	just	means	non-pure	module	distributions,
but	could	be	expanded	to	C	libraries,	binary	executables,	etc.)	If	--exec-prefix	is
not	supplied,	it	defaults	to	--prefix.	Files	are	installed	as	follows:

Type	of	file Installation	Directory Override
option

pure	module
distribution

prefix/lib/python2.X/site-
packages

--install-
purelib

non-pure	module
distribution

exec-prefix/lib/python2.X/site-
packages

--install-
platlib

scripts prefix/bin --install-
scripts

data prefix/share --install-data

There	is	no	requirement	that	--prefix	or	--exec-prefix	actually	point	to	an
alternate	Python	installation;	if	the	directories	listed	above	do	not	already	exist,
they	are	created	at	installation	time.

Incidentally,	the	real	reason	the	prefix	scheme	is	important	is	simply	that	a
standard	UNIX	installation	uses	the	prefix	scheme,	but	with	--prefix	and	--exec-
prefix	supplied	by	Python	itself	as	sys.prefix	and	sys.exec_prefix.
Thus,	you	might	think	you'll	never	use	the	prefix	scheme,	but	every	time	you	run
python	setup.py	install	without	any	other	options,	you're	using	it.

Note	that	installing	extensions	to	an	alternate	Python	installation	has	no	effect	on
how	those	extensions	are	built:	in	particular,	the	Python	header	files	(Python.h
and	friends)	installed	with	the	Python	interpreter	used	to	run	the	setup	script	will
be	used	in	compiling	extensions.	It	is	your	responsibility	to	ensure	that	the
interpreter	used	to	run	extensions	installed	in	this	way	is	compatible	with	the
interpreter	used	to	build	them.	The	best	way	to	do	this	is	to	ensure	that	the	two
interpreters	are	the	same	version	of	Python	(possibly	different	builds,	or	possibly
copies	of	the	same	build).	(Of	course,	if	your	--prefix	and	--exec-prefix	don't
even	point	to	an	alternate	Python	installation,	this	is	immaterial.)

3.3	Alternate	installation:	Windows	(the	prefix
scheme)
Windows	has	no	concept	of	a	user's	home	directory,	and	since	the	standard
Python	installation	under	Windows	is	simpler	than	under	UNIX,	the	--prefix
option	has	traditionally	been	used	to	install	additional	packages	in	separate
locations	on	Windows.

python	setup.py	install	--prefix="\Temp\Python"

to	install	modules	to	the	\Temp\Python	directory	on	the	current	drive.

The	installation	base	is	defined	by	the	--prefix	option;	the	--exec-prefix	option	is
not	supported	under	Windows.	Files	are	installed	as	follows:

Type	of	file Installation	Directory Override	option
pure	module	distribution prefix --install-purelib
non-pure	module	distribution prefix --install-platlib
scripts prefix\Scripts --install-scripts
data prefix\Data --install-data

Installing	Python	Modules
Previous:	2	Standard	Build	and	Up:	Installing	Python	Modules	Next:	4	Custom
Installation

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3	Alternate	Installation	Up:	Installing	Python	Modules	Next:	5
Distutils	Configuration	Files

Subsections

4.1	Modifying	Python's	Search	Path

4	Custom	Installation
Sometimes,	the	alternate	installation	schemes	described	in	section	3	just	don't	do
what	you	want.	You	might	want	to	tweak	just	one	or	two	directories	while
keeping	everything	under	the	same	base	directory,	or	you	might	want	to
completely	redefine	the	installation	scheme.	In	either	case,	you're	creating	a
custom	installation	scheme.

You	probably	noticed	the	column	of	``override	options''	in	the	tables	describing
the	alternate	installation	schemes	above.	Those	options	are	how	you	define	a
custom	installation	scheme.	These	override	options	can	be	relative,	absolute,	or
explicitly	defined	in	terms	of	one	of	the	installation	base	directories.	(There	are
two	installation	base	directories,	and	they	are	normally	the	same--they	only
differ	when	you	use	the	UNIX	``prefix	scheme''	and	supply	different	--prefix	and
--exec-prefix	options.)

For	example,	say	you're	installing	a	module	distribution	to	your	home	directory
under	UNIX--but	you	want	scripts	to	go	in	~/scripts	rather	than	~/bin.	As	you
might	expect,	you	can	override	this	directory	with	the	--install-scripts	option;	in
this	case,	it	makes	most	sense	to	supply	a	relative	path,	which	will	be	interpreted
relative	to	the	installation	base	directory	(your	home	directory,	in	this	case):

python	setup.py	install	--home=~	--install-scripts=scripts

Another	UNIX	example:	suppose	your	Python	installation	was	built	and	installed
with	a	prefix	of	/usr/local/python,	so	under	a	standard	installation	scripts	will
wind	up	in	/usr/local/python/bin.	If	you	want	them	in	/usr/local/bin	instead,
you	would	supply	this	absolute	directory	for	the	--install-scripts	option:

python	setup.py	install	--install-scripts=/usr/local/bin

(This	performs	an	installation	using	the	``prefix	scheme,''	where	the	prefix	is
whatever	your	Python	interpreter	was	installed	with--	/usr/local/python	in	this
case.)

If	you	maintain	Python	on	Windows,	you	might	want	third-party	modules	to	live
in	a	subdirectory	of	prefix,	rather	than	right	in	prefix	itself.	This	is	almost	as
easy	as	customizing	the	script	installation	directory--you	just	have	to	remember

that	there	are	two	types	of	modules	to	worry	about,	pure	modules	and	non-pure
modules	(i.e.,	modules	from	a	non-pure	distribution).	For	example:

python	setup.py	install	--install-purelib=Site	--install-platlib=Site

The	specified	installation	directories	are	relative	to	prefix.	Of	course,	you	also
have	to	ensure	that	these	directories	are	in	Python's	module	search	path,	such	as
by	putting	a	.pth	file	in	prefix.	See	section	4.1	to	find	out	how	to	modify
Python's	search	path.

If	you	want	to	define	an	entire	installation	scheme,	you	just	have	to	supply	all	of
the	installation	directory	options.	The	recommended	way	to	do	this	is	to	supply
relative	paths;	for	example,	if	you	want	to	maintain	all	Python	module-related
files	under	python	in	your	home	directory,	and	you	want	a	separate	directory	for
each	platform	that	you	use	your	home	directory	from,	you	might	define	the
following	installation	scheme:

python	setup.py	install	--home=~	\

																								--install-purelib=python/lib	\

																								--install-platlib=python/lib.$PLAT	\

																								--install-scripts=python/scripts

																								--install-data=python/data

or,	equivalently,

python	setup.py	install	--home=~/python	\

																								--install-purelib=lib	\

																								--install-platlib='lib.$PLAT'	\

																								--install-scripts=scripts

																								--install-data=data

$PLAT	is	not	(necessarily)	an	environment	variable--it	will	be	expanded	by	the
Distutils	as	it	parses	your	command	line	options,	just	as	it	does	when	parsing
your	configuration	file(s).

Obviously,	specifying	the	entire	installation	scheme	every	time	you	install	a	new
module	distribution	would	be	very	tedious.	Thus,	you	can	put	these	options	into
your	Distutils	config	file	(see	section	5):

[install]

install-base=$HOME

install-purelib=python/lib

install-platlib=python/lib.$PLAT

install-scripts=python/scripts

install-data=python/data

or,	equivalently,

[install]

install-base=$HOME/python

install-purelib=lib

install-platlib=lib.$PLAT

install-scripts=scripts

install-data=data

Note	that	these	two	are	not	equivalent	if	you	supply	a	different	installation	base
directory	when	you	run	the	setup	script.	For	example,

python	setup.py	--install-base=/tmp

would	install	pure	modules	to	/tmp/python/lib	in	the	first	case,	and	to	/tmp/lib	in
the	second	case.	(For	the	second	case,	you	probably	want	to	supply	an
installation	base	of	/tmp/python.)

You	probably	noticed	the	use	of	$HOME	and	$PLAT	in	the	sample	configuration
file	input.	These	are	Distutils	configuration	variables,	which	bear	a	strong
resemblance	to	environment	variables.	In	fact,	you	can	use	environment
variables	in	config	files	on	platforms	that	have	such	a	notion	but	the	Distutils
additionally	define	a	few	extra	variables	that	may	not	be	in	your	environment,
such	as	$PLAT.	(And	of	course,	on	systems	that	don't	have	environment
variables,	such	as	Mac	OS	9,	the	configuration	variables	supplied	by	the
Distutils	are	the	only	ones	you	can	use.)	See	section	5	for	details.

4.1	Modifying	Python's	Search	Path
When	the	Python	interpreter	executes	an	import	statement,	it	searches	for	both
Python	code	and	extension	modules	along	a	search	path.	A	default	value	for	the
path	is	configured	into	the	Python	binary	when	the	interpreter	is	built.	You	can
determine	the	path	by	importing	the	sys	module	and	printing	the	value	of
sys.path.

$	python

Python	2.2	(#11,	Oct		3	2002,	13:31:27)

[GCC	2.96	20000731	(Red	Hat	Linux	7.3	2.96-112)]	on	linux2

Type	``help'',	``copyright'',	``credits''	or	``license''	for	more	information.

>>>	import	sys

>>>	sys.path

['',	'/usr/local/lib/python2.3',	'/usr/local/lib/python2.3/plat-linux2',	

	'/usr/local/lib/python2.3/lib-tk',	'/usr/local/lib/python2.3/lib-dynload',	

	'/usr/local/lib/python2.3/site-packages']

>>>

The	null	string	in	sys.path	represents	the	current	working	directory.

The	expected	convention	for	locally	installed	packages	is	to	put	them	in	the
.../site-packages/	directory,	but	you	may	want	to	install	Python	modules	into
some	arbitrary	directory.	For	example,	your	site	may	have	a	convention	of
keeping	all	software	related	to	the	web	server	under	/www.	Add-on	Python
modules	might	then	belong	in	/www/python,	and	in	order	to	import	them,	this
directory	must	be	added	to	sys.path.	There	are	several	different	ways	to	add
the	directory.

The	most	convenient	way	is	to	add	a	path	configuration	file	to	a	directory	that's
already	on	Python's	path,	usually	to	the	.../site-packages/	directory.	Path
configuration	files	have	an	extension	of	.pth,	and	each	line	must	contain	a	single
path	that	will	be	appended	to	sys.path.	(Because	the	new	paths	are	appended
to	sys.path,	modules	in	the	added	directories	will	not	override	standard
modules.	This	means	you	can't	use	this	mechanism	for	installing	fixed	versions
of	standard	modules.)

Paths	can	be	absolute	or	relative,	in	which	case	they're	relative	to	the	directory
containing	the	.pth	file.	Any	directories	added	to	the	search	path	will	be	scanned
in	turn	for	.pth	files.	See	site	module	documentation	for	more	information.

http://www.python.org/dev/doc/devel/lib/module-site.html

A	slightly	less	convenient	way	is	to	edit	the	site.py	file	in	Python's	standard
library,	and	modify	sys.path.	site.py	is	automatically	imported	when	the
Python	interpreter	is	executed,	unless	the	-S	switch	is	supplied	to	suppress	this
behaviour.	So	you	could	simply	edit	site.py	and	add	two	lines	to	it:

import	sys

sys.path.append('/www/python/')

However,	if	you	reinstall	the	same	major	version	of	Python	(perhaps	when
upgrading	from	2.2	to	2.2.2,	for	example)	site.py	will	be	overwritten	by	the
stock	version.	You'd	have	to	remember	that	it	was	modified	and	save	a	copy
before	doing	the	installation.

There	are	two	environment	variables	that	can	modify	sys.path.
PYTHONHOME	sets	an	alternate	value	for	the	prefix	of	the	Python	installation.
For	example,	if	PYTHONHOME	is	set	to	"/www/python",	the	search	path
will	be	set	to	['',	'/www/python/lib/python2.2/',
'/www/python/lib/python2.3/plat-linux2',	...].

The	PYTHONPATH	variable	can	be	set	to	a	list	of	paths	that	will	be	added	to	the
beginning	of	sys.path.	For	example,	if	PYTHONPATH	is	set	to
"/www/python:/opt/py",	the	search	path	will	begin	with
['/www/python',	'/opt/py'].	(Note	that	directories	must	exist	in	order
to	be	added	to	sys.path;	the	site	module	removes	paths	that	don't	exist.)

Finally,	sys.path	is	just	a	regular	Python	list,	so	any	Python	application	can
modify	it	by	adding	or	removing	entries.

Installing	Python	Modules
Previous:	3	Alternate	Installation	Up:	Installing	Python	Modules	Next:	5
Distutils	Configuration	Files

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4	Custom	Installation	Up:	Installing	Python	Modules	Next:	6	Building
Extensions:	Tips

Subsections

5.1	Location	and	names	of	config	files
5.2	Syntax	of	config	files

5	Distutils	Configuration	Files
As	mentioned	above,	you	can	use	Distutils	configuration	files	to	record	personal
or	site	preferences	for	any	Distutils	options.	That	is,	any	option	to	any	command
can	be	stored	in	one	of	two	or	three	(depending	on	your	platform)	configuration
files,	which	will	be	consulted	before	the	command-line	is	parsed.	This	means
that	configuration	files	will	override	default	values,	and	the	command-line	will
in	turn	override	configuration	files.	Furthermore,	if	multiple	configuration	files
apply,	values	from	``earlier''	files	are	overridden	by	``later''	files.

5.1	Location	and	names	of	config	files
The	names	and	locations	of	the	configuration	files	vary	slightly	across	platforms.
On	UNIX,	the	three	configuration	files	(in	the	order	they	are	processed)	are:

Type	of	file Location	and	filename Notes
system prefix/lib/pythonver/distutils/distutils.cfg (1)
personal $HOME/.pydistutils.cfg (2)
local setup.cfg (3)

On	Windows,	the	configuration	files	are:

Type	of	file Location	and	filename Notes
system prefix\Lib\distutils\distutils.cfg (4)
personal %HOME%\pydistutils.cfg (5)
local setup.cfg (3)

And	on	Mac	OS,	they	are:

Type	of	file Location	and	filename Notes
system prefix:Lib:distutils:distutils.cfg (6)
personal N/A
local setup.cfg (3)

Notes:

(1)
Strictly	speaking,	the	system-wide	configuration	file	lives	in	the	directory
where	the	Distutils	are	installed;	under	Python	1.6	and	later	on	UNIX,	this	is
as	shown.	For	Python	1.5.2,	the	Distutils	will	normally	be	installed	to
prefix/lib/python1.5/site-packages/distutils,	so	the	system	configuration
file	should	be	put	there	under	Python	1.5.2.

(2)
On	UNIX,	if	the	HOME	environment	variable	is	not	defined,	the	user's	home
directory	will	be	determined	with	the	getpwuid()	function	from	the
standard	pwd	module.

(3)
I.e.,	in	the	current	directory	(usually	the	location	of	the	setup	script).

(4)
(See	also	note	(1).)	Under	Python	1.6	and	later,	Python's	default
``installation	prefix''	is	C:\Python,	so	the	system	configuration	file	is
normally	C:\Python\Lib\distutils\distutils.cfg.	Under	Python	1.5.2,	the
default	prefix	was	C:\Program	Files\Python,	and	the	Distutils	were	not
part	of	the	standard	library--so	the	system	configuration	file	would	be
C:\Program	Files\Python\distutils\distutils.cfg	in	a	standard	Python	1.5.2
installation	under	Windows.

(5)
On	Windows,	if	the	HOME	environment	variable	is	not	defined,	no
personal	configuration	file	will	be	found	or	used.	(In	other	words,	the
Distutils	make	no	attempt	to	guess	your	home	directory	on	Windows.)

(6)
(See	also	notes	(1)	and	(4).)	The	default	installation	prefix	is	just	Python:,
so	under	Python	1.6	and	later	this	is
normallyPython:Lib:distutils:distutils.cfg.

5.2	Syntax	of	config	files
The	Distutils	configuration	files	all	have	the	same	syntax.	The	config	files	are
grouped	into	sections.	There	is	one	section	for	each	Distutils	command,	plus	a
global	section	for	global	options	that	affect	every	command.	Each	section
consists	of	one	option	per	line,	specified	as	option=value.

For	example,	the	following	is	a	complete	config	file	that	just	forces	all
commands	to	run	quietly	by	default:

[global]

verbose=0

If	this	is	installed	as	the	system	config	file,	it	will	affect	all	processing	of	any
Python	module	distribution	by	any	user	on	the	current	system.	If	it	is	installed	as
your	personal	config	file	(on	systems	that	support	them),	it	will	affect	only
module	distributions	processed	by	you.	And	if	it	is	used	as	the	setup.cfg	for	a
particular	module	distribution,	it	affects	only	that	distribution.

You	could	override	the	default	``build	base''	directory	and	make	the	build*
commands	always	forcibly	rebuild	all	files	with	the	following:

[build]

build-base=blib

force=1

which	corresponds	to	the	command-line	arguments

python	setup.py	build	--build-base=blib	--force

except	that	including	the	build	command	on	the	command-line	means	that
command	will	be	run.	Including	a	particular	command	in	config	files	has	no
such	implication;	it	only	means	that	if	the	command	is	run,	the	options	in	the
config	file	will	apply.	(Or	if	other	commands	that	derive	values	from	it	are	run,
they	will	use	the	values	in	the	config	file.)

You	can	find	out	the	complete	list	of	options	for	any	command	using	the	--help
option,	e.g.:

python	setup.py	build	--help

and	you	can	find	out	the	complete	list	of	global	options	by	using	--help	without
a	command:

python	setup.py	--help

See	also	the	``Reference''	section	of	the	``Distributing	Python	Modules''	manual.

Installing	Python	Modules
Previous:	4	Custom	Installation	Up:	Installing	Python	Modules	Next:	6	Building
Extensions:	Tips

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5	Distutils	Configuration	Files	Up:	Installing	Python	Modules	Next:
About	this	document	...

Subsections

6.1	Tweaking	compiler/linker	flags
6.2	Using	non-Microsoft	compilers	on	Windows

6.2.1	Borland	C++
6.2.2	GNU	C	/	Cygwin	/	MinGW

6	Building	Extensions:	Tips	and
Tricks
Whenever	possible,	the	Distutils	try	to	use	the	configuration	information	made
available	by	the	Python	interpreter	used	to	run	the	setup.py	script.	For	example,
the	same	compiler	and	linker	flags	used	to	compile	Python	will	also	be	used	for
compiling	extensions.	Usually	this	will	work	well,	but	in	complicated	situations
this	might	be	inappropriate.	This	section	discusses	how	to	override	the	usual
Distutils	behaviour.

6.1	Tweaking	compiler/linker	flags
Compiling	a	Python	extension	written	in	C	or	C++	will	sometimes	require
specifying	custom	flags	for	the	compiler	and	linker	in	order	to	use	a	particular
library	or	produce	a	special	kind	of	object	code.	This	is	especially	true	if	the
extension	hasn't	been	tested	on	your	platform,	or	if	you're	trying	to	cross-
compile	Python.

In	the	most	general	case,	the	extension	author	might	have	foreseen	that
compiling	the	extensions	would	be	complicated,	and	provided	a	Setup	file	for
you	to	edit.	This	will	likely	only	be	done	if	the	module	distribution	contains
many	separate	extension	modules,	or	if	they	often	require	elaborate	sets	of
compiler	flags	in	order	to	work.

A	Setup	file,	if	present,	is	parsed	in	order	to	get	a	list	of	extensions	to	build.
Each	line	in	a	Setup	describes	a	single	module.	Lines	have	the	following
structure:

	module	...	[sourcefile	...]	[cpparg	...]	[library	...]
	

Let's	examine	each	of	the	fields	in	turn.

module	is	the	name	of	the	extension	module	to	be	built,	and	should	be	a
valid	Python	identifier.	You	can't	just	change	this	in	order	to	rename	a
module	(edits	to	the	source	code	would	also	be	needed),	so	this	should	be
left	alone.

sourcefile	is	anything	that's	likely	to	be	a	source	code	file,	at	least	judging
by	the	filename.	Filenames	ending	in	.c	are	assumed	to	be	written	in	C,
filenames	ending	in	.C,	.cc,	and	.c++	are	assumed	to	be	C++,	and
filenames	ending	in	.m	or	.mm	are	assumed	to	be	in	Objective	C.

cpparg	is	an	argument	for	the	C	preprocessor,	and	is	anything	starting	with	-
I,	-D,	-U	or	-C.

library	is	anything	ending	in	.a	or	beginning	with	-l	or	-L.

If	a	particular	platform	requires	a	special	library	on	your	platform,	you	can	add	it
by	editing	the	Setup	file	and	running	python	setup.py	build.	For
example,	if	the	module	defined	by	the	line

foo	foomodule.c

must	be	linked	with	the	math	library	libm.a	on	your	platform,	simply	add	-lm	to
the	line:

foo	foomodule.c	-lm

Arbitrary	switches	intended	for	the	compiler	or	the	linker	can	be	supplied	with
the	-Xcompiler	arg	and	-Xlinker	arg	options:

foo	foomodule.c	-Xcompiler	-o32	-Xlinker	-shared	-lm

The	next	option	after	-Xcompiler	and	-Xlinker	will	be	appended	to	the	proper
command	line,	so	in	the	above	example	the	compiler	will	be	passed	the	-o32
option,	and	the	linker	will	be	passed	-shared.	If	a	compiler	option	requires	an
argument,	you'll	have	to	supply	multiple	-Xcompiler	options;	for	example,	to
pass	-x	c++	the	Setup	file	would	have	to	contain	-Xcompiler	-x	-
Xcompiler	c++.

Compiler	flags	can	also	be	supplied	through	setting	the	CFLAGS	environment
variable.	If	set,	the	contents	of	CFLAGS	will	be	added	to	the	compiler	flags
specified	in	the	Setup	file.

6.2	Using	non-Microsoft	compilers	on	Windows

6.2.1	Borland	C++

This	subsection	describes	the	necessary	steps	to	use	Distutils	with	the	Borland
C++	compiler	version	5.5.

First	you	have	to	know	that	Borland's	object	file	format	(OMF)	is	different	from
the	format	used	by	the	Python	version	you	can	download	from	the	Python	or
ActiveState	Web	site.	(Python	is	built	with	Microsoft	Visual	C++,	which	uses
COFF	as	the	object	file	format.)	For	this	reason	you	have	to	convert	Python's
library	python24.lib	into	the	Borland	format.	You	can	do	this	as	follows:

coff2omf	python24.lib	python24_bcpp.lib

The	coff2omf	program	comes	with	the	Borland	compiler.	The	file	python24.lib
is	in	the	Libs	directory	of	your	Python	installation.	If	your	extension	uses	other
libraries	(zlib,...)	you	have	to	convert	them	too.

The	converted	files	have	to	reside	in	the	same	directories	as	the	normal	libraries.

How	does	Distutils	manage	to	use	these	libraries	with	their	changed	names?	If
the	extension	needs	a	library	(eg.	foo)	Distutils	checks	first	if	it	finds	a	library
with	suffix	_bcpp	(eg.	foo_bcpp.lib)	and	then	uses	this	library.	In	the	case	it
doesn't	find	such	a	special	library	it	uses	the	default	name	(foo.lib.)1

To	let	Distutils	compile	your	extension	with	Borland	C++	you	now	have	to	type:

python	setup.py	build	--compiler=bcpp

If	you	want	to	use	the	Borland	C++	compiler	as	the	default,	you	could	specify
this	in	your	personal	or	system-wide	configuration	file	for	Distutils	(see
section	5.)

See	Also:

C++Builder	Compiler

http://www.borland.com/bcppbuilder/freecompiler/

Information	about	the	free	C++	compiler	from	Borland,	including
links	to	the	download	pages.

Creating	Python	Extensions	Using	Borland's	Free	Compiler
Document	describing	how	to	use	Borland's	free	command-line	C++
compiler	to	build	Python.

6.2.2	GNU	C	/	Cygwin	/	MinGW

This	section	describes	the	necessary	steps	to	use	Distutils	with	the	GNU	C/C++
compilers	in	their	Cygwin	and	MinGW	distributions.2For	a	Python	interpreter
that	was	built	with	Cygwin,	everything	should	work	without	any	of	these
following	steps.

These	compilers	require	some	special	libraries.	This	task	is	more	complex	than
for	Borland's	C++,	because	there	is	no	program	to	convert	the	library.

First	you	have	to	create	a	list	of	symbols	which	the	Python	DLL	exports.	(You
can	find	a	good	program	for	this	task	at
http://starship.python.net/crew/kernr/mingw32/Notes.html,	see	at	PExports
0.42h	there.)

pexports	python24.dll	>python24.def

Then	you	can	create	from	these	information	an	import	library	for	gcc.

dlltool	--dllname	python24.dll	--def	python24.def	--output-lib	libpython24.a

The	resulting	library	has	to	be	placed	in	the	same	directory	as	python24.lib.
(Should	be	the	libs	directory	under	your	Python	installation	directory.)

If	your	extension	uses	other	libraries	(zlib,...)	you	might	have	to	convert	them
too.	The	converted	files	have	to	reside	in	the	same	directories	as	the	normal
libraries	do.

To	let	Distutils	compile	your	extension	with	Cygwin	you	now	have	to	type

python	setup.py	build	--compiler=cygwin

http://www.cyberus.ca/~g_will/pyExtenDL.shtml
http://starship.python.net/crew/kernr/mingw32/Notes.html

and	for	Cygwin	in	no-cygwin	mode3	or	for	MinGW	type:

python	setup.py	build	--compiler=mingw32

If	you	want	to	use	any	of	these	options/compilers	as	default,	you	should	consider
to	write	it	in	your	personal	or	system-wide	configuration	file	for	Distutils	(see
section	5.)

See	Also:

Building	Python	modules	on	MS	Windows	platform	with	MinGW
Information	about	building	the	required	libraries	for	the	MinGW
environment.

http://pyopengl.sourceforge.net/ftp/win32-stuff/
Converted	import	libraries	in	Cygwin/MinGW	and	Borland	format,
and	a	script	to	create	the	registry	entries	needed	for	Distutils	to	locate
the	built	Python.

Footnotes

...foo.lib.)1
This	also	means	you	could	replace	all	existing	COFF-libraries	with	OMF-
libraries	of	the	same	name.

...	distributions.2
Check	http://sources.redhat.com/cygwin/	and	http://www.mingw.org/
for	more	information

...	mode3
Then	you	have	no	POSIX	emulation	available,	but	you	also	don't	need
cygwin1.dll.

Installing	Python	Modules

http://www.zope.org/Members/als/tips/win32_mingw_modules
http://pyopengl.sourceforge.net/ftp/win32-stuff/
http://sources.redhat.com/cygwin/
http://www.mingw.org/

Previous:	5	Distutils	Configuration	Files	Up:	Installing	Python	Modules	Next:
About	this	document	...

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Up:	Python	Documentation	Index	Next:	1.	An	Introduction	to

Distributing	Python	Modules
Greg	Ward	

Anthony	Baxter
Python	Software	Foundation	
Email:	distutils-sig@python.org

Release	2.4b2
13	November	2004

Abstract:

This	document	describes	the	Python	Distribution	Utilities	(``Distutils'')	from	the
module	developer's	point	of	view,	describing	how	to	use	the	Distutils	to	make
Python	modules	and	extensions	easily	available	to	a	wider	audience	with	very
little	overhead	for	build/release/install	mechanics.

1.	An	Introduction	to	Distutils
1.1	Concepts	&	Terminology
1.2	A	Simple	Example
1.3	General	Python	terminology
1.4	Distutils-specific	terminology

2.	Writing	the	Setup	Script
2.1	Listing	whole	packages
2.2	Listing	individual	modules
2.3	Describing	extension	modules

2.3.1	Extension	names	and	packages
2.3.2	Extension	source	files
2.3.3	Preprocessor	options
2.3.4	Library	options
2.3.5	Other	options

2.4	Installing	Scripts

2.5	Installing	Package	Data
2.6	Installing	Additional	Files
2.7	Additional	meta-data
2.8	Debugging	the	setup	script

3.	Writing	the	Setup	Configuration	File
4.	Creating	a	Source	Distribution

4.1	Specifying	the	files	to	distribute
4.2	Manifest-related	options

5.	Creating	Built	Distributions
5.1	Creating	dumb	built	distributions
5.2	Creating	RPM	packages
5.3	Creating	Windows	Installers

5.3.1	The	Postinstallation	script
6.	Registering	with	the	Package	Index
7.	Examples

7.1	Pure	Python	distribution	(by	module)
7.2	Pure	Python	distribution	(by	package)
7.3	Single	extension	module

8.	Extending	Distutils
8.1	Integrating	new	commands

9.	Command	Reference
9.1	Installing	modules:	the	install	command	family

9.1.1	install_data
9.1.2	install_scripts

9.2	Creating	a	source	distribution:	the	sdist	command
10.	API	Reference

10.1	distutils.core	--	Core	Distutils	functionality
10.2	distutils.ccompiler	--	CCompiler	base	class
10.3	distutils.unixccompiler	--	Unix	C	Compiler
10.4	distutils.msvccompiler	--	Microsoft	Compiler
10.5	distutils.bcppcompiler	--	Borland	Compiler
10.6	distutils.cygwincompiler	--	Cygwin	Compiler
10.7	distutils.emxccompiler	--	OS/2	EMX	Compiler
10.8	distutils.mwerkscompiler	--	Metrowerks	CodeWarrior
support
10.9	distutils.archive_util	--	Archiving	utilities
10.10	distutils.dep_util	--	Dependency	checking
10.11	distutils.dir_util	--	Directory	tree	operations

10.12	distutils.file_util	--	Single	file	operations
10.13	distutils.util	--	Miscellaneous	other	utility	functions
10.14	distutils.dist	--	The	Distribution	class
10.15	distutils.extension	--	The	Extension	class
10.16	distutils.debug	--	Distutils	debug	mode
10.17	distutils.errors	--	Distutils	exceptions
10.18	distutils.fancy_getopt	--	Wrapper	around	the	standard
getopt	module
10.19	distutils.filelist	--	The	FileList	class
10.20	distutils.log	--	Simple	PEP	282-style	logging
10.21	distutils.spawn	--	Spawn	a	sub-process
10.22	distutils.sysconfig	--	System	configuration
information
10.23	distutils.text_file	--	The	TextFile	class
10.24	distutils.version	--	Version	number	classes
10.25	distutils.cmd	--	Abstract	base	class	for	Distutils
commands
10.26	distutils.command	--	Individual	Distutils	commands
10.27	distutils.command.bdist	--	Build	a	binary	installer
10.28	distutils.command.bdist_packager	--	Abstract	base
class	for	packagers
10.29	distutils.command.bdist_dumb	--	Build	a	``dumb''
installer
10.30	distutils.command.bdist_rpm	--	Build	a	binary
distribution	as	a	Redhat	RPM	and	SRPM
10.31	distutils.command.bdist_wininst	--	Build	a
Windows	installer
10.32	distutils.command.sdist	--	Build	a	source	distribution
10.33	distutils.command.build	--	Build	all	files	of	a	package
10.34	distutils.command.build_clib	--	Build	any	C
libraries	in	a	package
10.35	distutils.command.build_ext	--	Build	any	extensions
in	a	package
10.36	distutils.command.build_py	--	Build	the	.py/.pyc	files
of	a	package
10.37	distutils.command.build_scripts	--	Build	the
scripts	of	a	package

10.38	distutils.command.clean	--	Clean	a	package	build	area
10.39	distutils.command.config	--	Perform	package
configuration
10.40	distutils.command.install	--	Install	a	package
10.41	distutils.command.install_data	--	Install	data	files
from	a	package
10.42	distutils.command.install_headers	--	Install
C/C++	header	files	from	a	package
10.43	distutils.command.install_lib	--	Install	library	files
from	a	package
10.44	distutils.command.install_scripts	--	Install	script
files	from	a	package
10.45	distutils.command.register	--	Register	a	module
with	the	Python	Package	Index
10.46	Creating	a	new	Distutils	command

Module	Index
Index
About	this	document	...

Distributing	Python	Modules
Up:	Python	Documentation	Index	Next:	1.	An	Introduction	to

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Distributing	Python	Modules	Up:	Distributing	Python	Modules	Next:
1.1	Concepts	&	Terminology

1.	An	Introduction	to	Distutils
This	document	covers	using	the	Distutils	to	distribute	your	Python	modules,
concentrating	on	the	role	of	developer/distributor:	if	you're	looking	for
information	on	installing	Python	modules,	you	should	refer	to	the	Installing
Python	Modules	manual.

Subsections

1.1	Concepts	&	Terminology
1.2	A	Simple	Example
1.3	General	Python	terminology
1.4	Distutils-specific	terminology

Distributing	Python	Modules
Previous:	Distributing	Python	Modules	Up:	Distributing	Python	Modules	Next:
1.1	Concepts	&	Terminology

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.	An	Introduction	to	Up:	1.	An	Introduction	to	Next:	1.2	A	Simple
Example

1.1	Concepts	&	Terminology
Using	the	Distutils	is	quite	simple,	both	for	module	developers	and	for
users/administrators	installing	third-party	modules.	As	a	developer,	your
responsibilities	(apart	from	writing	solid,	well-documented	and	well-tested	code,
of	course!)	are:

write	a	setup	script	(setup.py	by	convention)
(optional)	write	a	setup	configuration	file
create	a	source	distribution
(optional)	create	one	or	more	built	(binary)	distributions

Each	of	these	tasks	is	covered	in	this	document.

Not	all	module	developers	have	access	to	a	multitude	of	platforms,	so	it's	not
always	feasible	to	expect	them	to	create	a	multitude	of	built	distributions.	It	is
hoped	that	a	class	of	intermediaries,	called	packagers,	will	arise	to	address	this
need.	Packagers	will	take	source	distributions	released	by	module	developers,
build	them	on	one	or	more	platforms,	and	release	the	resulting	built	distributions.
Thus,	users	on	the	most	popular	platforms	will	be	able	to	install	most	popular
Python	module	distributions	in	the	most	natural	way	for	their	platform,	without
having	to	run	a	single	setup	script	or	compile	a	line	of	code.

Distributing	Python	Modules
Previous:	1.	An	Introduction	to	Up:	1.	An	Introduction	to	Next:	1.2	A	Simple
Example

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.1	Concepts	&	Terminology	Up:	1.	An	Introduction	to	Next:	1.3
General	Python	terminology

1.2	A	Simple	Example
The	setup	script	is	usually	quite	simple,	although	since	it's	written	in	Python,
there	are	no	arbitrary	limits	to	what	you	can	do	with	it,	though	you	should	be
careful	about	putting	arbitrarily	expensive	operations	in	your	setup	script.
Unlike,	say,	Autoconf-style	configure	scripts,	the	setup	script	may	be	run
multiple	times	in	the	course	of	building	and	installing	your	module	distribution.

If	all	you	want	to	do	is	distribute	a	module	called	foo,	contained	in	a	file
foo.py,	then	your	setup	script	can	be	as	simple	as	this:

from	distutils.core	import	setup

setup(name='foo',

						version='1.0',

						py_modules=['foo'],

)

Some	observations:

most	information	that	you	supply	to	the	Distutils	is	supplied	as	keyword
arguments	to	the	setup()	function
those	keyword	arguments	fall	into	two	categories:	package	metadata	(name,
version	number)	and	information	about	what's	in	the	package	(a	list	of	pure
Python	modules,	in	this	case)
modules	are	specified	by	module	name,	not	filename	(the	same	will	hold
true	for	packages	and	extensions)
it's	recommended	that	you	supply	a	little	more	metadata,	in	particular	your
name,	email	address	and	a	URL	for	the	project	(see	section	2	for	an
example)

To	create	a	source	distribution	for	this	module,	you	would	create	a	setup	script,
setup.py,	containing	the	above	code,	and	run:

python	setup.py	sdist

which	will	create	an	archive	file	(e.g.,	tarball	on	UNIX,	ZIP	file	on	Windows)
containing	your	setup	script	setup.py,	and	your	module	foo.py.	The	archive	file
will	be	named	foo-1.0.tar.gz	(or	.zip),	and	will	unpack	into	a	directory	foo-1.0.

If	an	end-user	wishes	to	install	your	foo	module,	all	she	has	to	do	is	download
foo-1.0.tar.gz	(or	.zip),	unpack	it,	and--from	the	foo-1.0	directory--run

python	setup.py	install

which	will	ultimately	copy	foo.py	to	the	appropriate	directory	for	third-party
modules	in	their	Python	installation.

This	simple	example	demonstrates	some	fundamental	concepts	of	the	Distutils.
First,	both	developers	and	installers	have	the	same	basic	user	interface,	i.e.	the
setup	script.	The	difference	is	which	Distutils	commands	they	use:	the	sdist
command	is	almost	exclusively	for	module	developers,	while	install	is	more
often	for	installers	(although	most	developers	will	want	to	install	their	own	code
occasionally).

If	you	want	to	make	things	really	easy	for	your	users,	you	can	create	one	or	more
built	distributions	for	them.	For	instance,	if	you	are	running	on	a	Windows
machine,	and	want	to	make	things	easy	for	other	Windows	users,	you	can	create
an	executable	installer	(the	most	appropriate	type	of	built	distribution	for	this
platform)	with	the	bdist_wininst	command.	For	example:

python	setup.py	bdist_wininst

will	create	an	executable	installer,	foo-1.0.win32.exe,	in	the	current	directory.

Other	useful	built	distribution	formats	are	RPM,	implemented	by	the	bdist_rpm
command,	Solaris	pkgtool	(bdist_pkgtool),	and	HP-UX	swinstall
(bdist_sdux).	For	example,	the	following	command	will	create	an	RPM	file
called	foo-1.0.noarch.rpm:

python	setup.py	bdist_rpm

(The	bdist_rpm	command	uses	the	rpm	executable,	therefore	this	has	to	be	run
on	an	RPM-based	system	such	as	Red	Hat	Linux,	SuSE	Linux,	or	Mandrake
Linux.)

You	can	find	out	what	distribution	formats	are	available	at	any	time	by	running

python	setup.py	bdist	--help-formats

Distributing	Python	Modules
Previous:	1.1	Concepts	&	Terminology	Up:	1.	An	Introduction	to	Next:	1.3
General	Python	terminology

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2	A	Simple	Example	Up:	1.	An	Introduction	to	Next:	1.4	Distutils-
specific	terminology

1.3	General	Python	terminology
If	you're	reading	this	document,	you	probably	have	a	good	idea	of	what	modules,
extensions,	and	so	forth	are.	Nevertheless,	just	to	be	sure	that	everyone	is
operating	from	a	common	starting	point,	we	offer	the	following	glossary	of
common	Python	terms:

module
the	basic	unit	of	code	reusability	in	Python:	a	block	of	code	imported	by
some	other	code.	Three	types	of	modules	concern	us	here:	pure	Python
modules,	extension	modules,	and	packages.

pure	Python	module
a	module	written	in	Python	and	contained	in	a	single	.py	file	(and	possibly
associated	.pyc	and/or	.pyo	files).	Sometimes	referred	to	as	a	``pure
module.''

extension	module
a	module	written	in	the	low-level	language	of	the	Python	implementation:
C/C++	for	Python,	Java	for	Jython.	Typically	contained	in	a	single
dynamically	loadable	pre-compiled	file,	e.g.	a	shared	object	(.so)	file	for
Python	extensions	on	UNIX,	a	DLL	(given	the	.pyd	extension)	for	Python
extensions	on	Windows,	or	a	Java	class	file	for	Jython	extensions.	(Note
that	currently,	the	Distutils	only	handles	C/C++	extensions	for	Python.)

package
a	module	that	contains	other	modules;	typically	contained	in	a	directory	in
the	filesystem	and	distinguished	from	other	directories	by	the	presence	of	a
file	__init__.py.

root	package
the	root	of	the	hierarchy	of	packages.	(This	isn't	really	a	package,	since	it
doesn't	have	an	__init__.py	file.	But	we	have	to	call	it	something.)	The	vast
majority	of	the	standard	library	is	in	the	root	package,	as	are	many	small,
standalone	third-party	modules	that	don't	belong	to	a	larger	module
collection.	Unlike	regular	packages,	modules	in	the	root	package	can	be
found	in	many	directories:	in	fact,	every	directory	listed	in	sys.path

contributes	modules	to	the	root	package.

Distributing	Python	Modules
Previous:	1.2	A	Simple	Example	Up:	1.	An	Introduction	to	Next:	1.4	Distutils-
specific	terminology

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.3	General	Python	terminology	Up:	1.	An	Introduction	to	Next:	2.
Writing	the	Setup

1.4	Distutils-specific	terminology
The	following	terms	apply	more	specifically	to	the	domain	of	distributing
Python	modules	using	the	Distutils:

module	distribution
a	collection	of	Python	modules	distributed	together	as	a	single
downloadable	resource	and	meant	to	be	installed	en	masse.	Examples	of
some	well-known	module	distributions	are	Numeric	Python,	PyXML,	PIL
(the	Python	Imaging	Library),	or	mxBase.	(This	would	be	called	a	package,
except	that	term	is	already	taken	in	the	Python	context:	a	single	module
distribution	may	contain	zero,	one,	or	many	Python	packages.)

pure	module	distribution
a	module	distribution	that	contains	only	pure	Python	modules	and
packages.	Sometimes	referred	to	as	a	``pure	distribution.''

non-pure	module	distribution
a	module	distribution	that	contains	at	least	one	extension	module.
Sometimes	referred	to	as	a	``non-pure	distribution.''

distribution	root
the	top-level	directory	of	your	source	tree	(or	source	distribution);	the
directory	where	setup.py	exists.	Generally	setup.py	will	be	run	from	this
directory.

Distributing	Python	Modules
Previous:	1.3	General	Python	terminology	Up:	1.	An	Introduction	to	Next:	2.
Writing	the	Setup

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.4	Distutils-specific	terminology	Up:	Distributing	Python	Modules
Next:	2.1	Listing	whole	packages

2.	Writing	the	Setup	Script
The	setup	script	is	the	centre	of	all	activity	in	building,	distributing,	and
installing	modules	using	the	Distutils.	The	main	purpose	of	the	setup	script	is	to
describe	your	module	distribution	to	the	Distutils,	so	that	the	various	commands
that	operate	on	your	modules	do	the	right	thing.	As	we	saw	in	section	1.2	above,
the	setup	script	consists	mainly	of	a	call	to	setup(),	and	most	information
supplied	to	the	Distutils	by	the	module	developer	is	supplied	as	keyword
arguments	to	setup().

Here's	a	slightly	more	involved	example,	which	we'll	follow	for	the	next	couple
of	sections:	the	Distutils'	own	setup	script.	(Keep	in	mind	that	although	the
Distutils	are	included	with	Python	1.6	and	later,	they	also	have	an	independent
existence	so	that	Python	1.5.2	users	can	use	them	to	install	other	module
distributions.	The	Distutils'	own	setup	script,	shown	here,	is	used	to	install	the
package	into	Python	1.5.2.)

#!/usr/bin/env	python

from	distutils.core	import	setup

setup(name='Distutils',

						version='1.0',

						description='Python	Distribution	Utilities',

						author='Greg	Ward',

						author_email='gward@python.net',

						url='http://www.python.org/sigs/distutils-sig/',

						packages=['distutils',	'distutils.command'],

)

There	are	only	two	differences	between	this	and	the	trivial	one-file	distribution
presented	in	section	1.2:	more	metadata,	and	the	specification	of	pure	Python
modules	by	package,	rather	than	by	module.	This	is	important	since	the	Distutils
consist	of	a	couple	of	dozen	modules	split	into	(so	far)	two	packages;	an	explicit
list	of	every	module	would	be	tedious	to	generate	and	difficult	to	maintain.	For
more	information	on	the	additional	meta-data,	see	section	2.7.

Note	that	any	pathnames	(files	or	directories)	supplied	in	the	setup	script	should
be	written	using	the	UNIX	convention,	i.e.	slash-separated.	The	Distutils	will	take
care	of	converting	this	platform-neutral	representation	into	whatever	is

appropriate	on	your	current	platform	before	actually	using	the	pathname.	This
makes	your	setup	script	portable	across	operating	systems,	which	of	course	is
one	of	the	major	goals	of	the	Distutils.	In	this	spirit,	all	pathnames	in	this
document	are	slash-separated.	(Mac	OS	programmers	should	keep	in	mind	that
the	absence	of	a	leading	slash	indicates	a	relative	path,	the	opposite	of	the	Mac
OS	convention	with	colons.)

This,	of	course,	only	applies	to	pathnames	given	to	Distutils	functions.	If	you,
for	example,	use	standard	Python	functions	such	as	glob.glob()	or
os.listdir()	to	specify	files,	you	should	be	careful	to	write	portable	code
instead	of	hardcoding	path	separators:

				glob.glob(os.path.join('mydir',	'subdir',	'*.html'))

				os.listdir(os.path.join('mydir',	'subdir'))

Subsections

2.1	Listing	whole	packages
2.2	Listing	individual	modules
2.3	Describing	extension	modules

2.3.1	Extension	names	and	packages
2.3.2	Extension	source	files
2.3.3	Preprocessor	options
2.3.4	Library	options
2.3.5	Other	options

2.4	Installing	Scripts
2.5	Installing	Package	Data
2.6	Installing	Additional	Files
2.7	Additional	meta-data
2.8	Debugging	the	setup	script

Distributing	Python	Modules
Previous:	1.4	Distutils-specific	terminology	Up:	Distributing	Python	Modules
Next:	2.1	Listing	whole	packages

Release	2.4b2,	documentation	updated	on	13	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.	Writing	the	Setup	Up:	2.	Writing	the	Setup	Next:	2.2	Listing
individual	modules

2.1	Listing	whole	packages
The	packages	option	tells	the	Distutils	to	process	(build,	distribute,	install,	etc.)
all	pure	Python	modules	found	in	each	package	mentioned	in	the	packages	list.
In	order	to	do	this,	of	course,	there	has	to	be	a	correspondence	between	package
names	and	directories	in	the	filesystem.	The	default	correspondence	is	the	most
obvious	one,	i.e.	package	distutils	is	found	in	the	directory	distutils	relative
to	the	distribution	root.	Thus,	when	you	say	packages	=	['foo']	in	your
setup	script,	you	are	promising	that	the	Distutils	will	find	a	file	foo/__init__.py
(which	might	be	spelled	differently	on	your	system,	but	you	get	the	idea)	relative
to	the	directory	where	your	setup	script	lives.	If	you	break	this	promise,	the
Distutils	will	issue	a	warning	but	still	process	the	broken	package	anyways.

If	you	use	a	different	convention	to	lay	out	your	source	directory,	that's	no
problem:	you	just	have	to	supply	the	package_dir	option	to	tell	the	Distutils
about	your	convention.	For	example,	say	you	keep	all	Python	source	under	lib,
so	that	modules	in	the	``root	package''	(i.e.,	not	in	any	package	at	all)	are	in	lib,
modules	in	the	foo	package	are	in	lib/foo,	and	so	forth.	Then	you	would	put

package_dir	=	{'':	'lib'}

in	your	setup	script.	The	keys	to	this	dictionary	are	package	names,	and	an
empty	package	name	stands	for	the	root	package.	The	values	are	directory	names
relative	to	your	distribution	root.	In	this	case,	when	you	say	packages	=
['foo'],	you	are	promising	that	the	file	lib/foo/__init__.py	exists.

Another	possible	convention	is	to	put	the	foo	package	right	in	lib,	the
foo.bar	package	in	lib/bar,	etc.	This	would	be	written	in	the	setup	script	as

package_dir	=	{'foo':	'lib'}

A	package:	dir	entry	in	the	package_dir	dictionary	implicitly	applies	to	all
packages	below	package,	so	the	foo.bar	case	is	automatically	handled	here.
In	this	example,	having	packages	=	['foo',	'foo.bar']	tells	the
Distutils	to	look	for	lib/__init__.py	and	lib/bar/__init__.py.	(Keep	in	mind	that
although	package_dir	applies	recursively,	you	must	explicitly	list	all	packages
in	packages:	the	Distutils	will	not	recursively	scan	your	source	tree	looking	for

any	directory	with	an	__init__.py	file.)

Distributing	Python	Modules
Previous:	2.	Writing	the	Setup	Up:	2.	Writing	the	Setup	Next:	2.2	Listing
individual	modules

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.1	Listing	whole	packages	Up:	2.	Writing	the	Setup	Next:	2.3
Describing	extension	modules

2.2	Listing	individual	modules
For	a	small	module	distribution,	you	might	prefer	to	list	all	modules	rather	than
listing	packages--especially	the	case	of	a	single	module	that	goes	in	the	``root
package''	(i.e.,	no	package	at	all).	This	simplest	case	was	shown	in	section	1.2;
here	is	a	slightly	more	involved	example:

py_modules	=	['mod1',	'pkg.mod2']

This	describes	two	modules,	one	of	them	in	the	``root''	package,	the	other	in	the
pkg	package.	Again,	the	default	package/directory	layout	implies	that	these	two
modules	can	be	found	in	mod1.py	and	pkg/mod2.py,	and	that	pkg/__init__.py
exists	as	well.	And	again,	you	can	override	the	package/directory
correspondence	using	the	package_dir	option.

Distributing	Python	Modules
Previous:	2.1	Listing	whole	packages	Up:	2.	Writing	the	Setup	Next:	2.3
Describing	extension	modules

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.2	Listing	individual	modules	Up:	2.	Writing	the	Setup	Next:	2.4
Installing	Scripts

Subsections

2.3.1	Extension	names	and	packages
2.3.2	Extension	source	files
2.3.3	Preprocessor	options
2.3.4	Library	options
2.3.5	Other	options

2.3	Describing	extension	modules
Just	as	writing	Python	extension	modules	is	a	bit	more	complicated	than	writing
pure	Python	modules,	describing	them	to	the	Distutils	is	a	bit	more	complicated.
Unlike	pure	modules,	it's	not	enough	just	to	list	modules	or	packages	and	expect
the	Distutils	to	go	out	and	find	the	right	files;	you	have	to	specify	the	extension
name,	source	file(s),	and	any	compile/link	requirements	(include	directories,
libraries	to	link	with,	etc.).

All	of	this	is	done	through	another	keyword	argument	to	setup(),	the
extensions	option.	extensions	is	just	a	list	of	Extension	instances,	each	of
which	describes	a	single	extension	module.	Suppose	your	distribution	includes	a
single	extension,	called	foo	and	implemented	by	foo.c.	If	no	additional
instructions	to	the	compiler/linker	are	needed,	describing	this	extension	is	quite
simple:

Extension('foo',	['foo.c'])

The	Extension	class	can	be	imported	from	distutils.core	along	with
setup().	Thus,	the	setup	script	for	a	module	distribution	that	contains	only
this	one	extension	and	nothing	else	might	be:

from	distutils.core	import	setup,	Extension

setup(name='foo',

						version='1.0',

						ext_modules=[Extension('foo',	['foo.c'])],

)

The	Extension	class	(actually,	the	underlying	extension-building	machinery
implemented	by	the	build_ext	command)	supports	a	great	deal	of	flexibility	in
describing	Python	extensions,	which	is	explained	in	the	following	sections.

2.3.1	Extension	names	and	packages
The	first	argument	to	the	Extension	constructor	is	always	the	name	of	the
extension,	including	any	package	names.	For	example,

Extension('foo',	['src/foo1.c',	'src/foo2.c'])

describes	an	extension	that	lives	in	the	root	package,	while

Extension('pkg.foo',	['src/foo1.c',	'src/foo2.c'])

describes	the	same	extension	in	the	pkg	package.	The	source	files	and	resulting
object	code	are	identical	in	both	cases;	the	only	difference	is	where	in	the
filesystem	(and	therefore	where	in	Python's	namespace	hierarchy)	the	resulting
extension	lives.

If	you	have	a	number	of	extensions	all	in	the	same	package	(or	all	under	the
same	base	package),	use	the	ext_package	keyword	argument	to	setup().	For
example,

setup(...

						ext_package='pkg',

						ext_modules=[Extension('foo',	['foo.c']),

																			Extension('subpkg.bar',	['bar.c'])],

)

will	compile	foo.c	to	the	extension	pkg.foo,	and	bar.c	to
pkg.subpkg.bar.

2.3.2	Extension	source	files
The	second	argument	to	the	Extension	constructor	is	a	list	of	source	files.
Since	the	Distutils	currently	only	support	C,	C++,	and	Objective-C	extensions,
these	are	normally	C/C++/Objective-C	source	files.	(Be	sure	to	use	appropriate
extensions	to	distinguish	C++	source	files:	.cc	and	.cpp	seem	to	be	recognized
by	both	UNIX	and	Windows	compilers.)

However,	you	can	also	include	SWIG	interface	(.i)	files	in	the	list;	the
build_ext	command	knows	how	to	deal	with	SWIG	extensions:	it	will	run
SWIG	on	the	interface	file	and	compile	the	resulting	C/C++	file	into	your
extension.

**	SWIG	support	is	rough	around	the	edges	and	largely	untested;	especially
SWIG	support	for	C++	extensions!	Explain	in	more	detail	here	when	the
interface	firms	up.	**

On	some	platforms,	you	can	include	non-source	files	that	are	processed	by	the
compiler	and	included	in	your	extension.	Currently,	this	just	means	Windows
message	text	(.mc)	files	and	resource	definition	(.rc)	files	for	Visual	C++.	These
will	be	compiled	to	binary	resource	(.res)	files	and	linked	into	the	executable.

2.3.3	Preprocessor	options
Three	optional	arguments	to	Extension	will	help	if	you	need	to	specify
include	directories	to	search	or	preprocessor	macros	to	define/undefine:
include_dirs,	define_macros,	and	undef_macros.

For	example,	if	your	extension	requires	header	files	in	the	include	directory
under	your	distribution	root,	use	the	include_dirs	option:

Extension('foo',	['foo.c'],	include_dirs=['include'])

You	can	specify	absolute	directories	there;	if	you	know	that	your	extension	will
only	be	built	on	UNIX	systems	with	X11R6	installed	to	/usr,	you	can	get	away
with

Extension('foo',	['foo.c'],	include_dirs=['/usr/include/X11'])

You	should	avoid	this	sort	of	non-portable	usage	if	you	plan	to	distribute	your
code:	it's	probably	better	to	write	C	code	like

#include	<X11/Xlib.h>

If	you	need	to	include	header	files	from	some	other	Python	extension,	you	can
take	advantage	of	the	fact	that	header	files	are	installed	in	a	consistent	way	by
the	Distutils	install_header	command.	For	example,	the	Numerical	Python
header	files	are	installed	(on	a	standard	Unix	installation)	to
/usr/local/include/python1.5/Numerical.	(The	exact	location	will	differ
according	to	your	platform	and	Python	installation.)	Since	the	Python	include
directory--/usr/local/include/python1.5	in	this	case--is	always	included	in	the
search	path	when	building	Python	extensions,	the	best	approach	is	to	write	C
code	like

#include	<Numerical/arrayobject.h>

If	you	must	put	the	Numerical	include	directory	right	into	your	header	search
path,	though,	you	can	find	that	directory	using	the	Distutils
distutils.sysconfig	module:

from	distutils.sysconfig	import	get_python_inc

incdir	=	os.path.join(get_python_inc(plat_specific=1),	'Numerical')

setup(...,

						Extension(...,	include_dirs=[incdir]),

)

Even	though	this	is	quite	portable--it	will	work	on	any	Python	installation,
regardless	of	platform--it's	probably	easier	to	just	write	your	C	code	in	the
sensible	way.

You	can	define	and	undefine	pre-processor	macros	with	the	define_macros
and	undef_macros	options.	define_macros	takes	a	list	of	(name,
value)	tuples,	where	name	is	the	name	of	the	macro	to	define	(a	string)	and
value	is	its	value:	either	a	string	or	None.	(Defining	a	macro	FOO	to	None	is
the	equivalent	of	a	bare	#define	FOO	in	your	C	source:	with	most	compilers,
this	sets	FOO	to	the	string	1.)	undef_macros	is	just	a	list	of	macros	to
undefine.

For	example:

Extension(...,

										define_macros=[('NDEBUG',	'1'),

																									('HAVE_STRFTIME',	None)],

										undef_macros=['HAVE_FOO',	'HAVE_BAR'])

is	the	equivalent	of	having	this	at	the	top	of	every	C	source	file:

#define	NDEBUG	1

#define	HAVE_STRFTIME

#undef	HAVE_FOO

#undef	HAVE_BAR

2.3.4	Library	options
You	can	also	specify	the	libraries	to	link	against	when	building	your	extension,
and	the	directories	to	search	for	those	libraries.	The	libraries	option	is	a	list
of	libraries	to	link	against,	library_dirs	is	a	list	of	directories	to	search	for
libraries	at	link-time,	and	runtime_library_dirs	is	a	list	of	directories	to
search	for	shared	(dynamically	loaded)	libraries	at	run-time.

For	example,	if	you	need	to	link	against	libraries	known	to	be	in	the	standard
library	search	path	on	target	systems

Extension(...,

										libraries=['gdbm',	'readline'])

If	you	need	to	link	with	libraries	in	a	non-standard	location,	you'll	have	to
include	the	location	in	library_dirs:

Extension(...,

										library_dirs=['/usr/X11R6/lib'],

										libraries=['X11',	'Xt'])

(Again,	this	sort	of	non-portable	construct	should	be	avoided	if	you	intend	to
distribute	your	code.)

**	Should	mention	clib	libraries	here	or	somewhere	else!	**

2.3.5	Other	options
There	are	still	some	other	options	which	can	be	used	to	handle	special	cases.

The	extra_objects	option	is	a	list	of	object	files	to	be	passed	to	the	linker.	These
files	must	not	have	extensions,	as	the	default	extension	for	the	compiler	is	used.

extra_compile_args	and	extra_link_args	can	be	used	to	specify	additional
command	line	options	for	the	respective	compiler	and	linker	command	lines.

export_symbols	is	only	useful	on	Windows.	It	can	contain	a	list	of	symbols
(functions	or	variables)	to	be	exported.	This	option	is	not	needed	when	building
compiled	extensions:	Distutils	will	automatically	add	initmodule	to	the	list
of	exported	symbols.

Distributing	Python	Modules
Previous:	2.2	Listing	individual	modules	Up:	2.	Writing	the	Setup	Next:	2.4
Installing	Scripts

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3	Describing	extension	modules	Up:	2.	Writing	the	Setup	Next:	2.5
Installing	Package	Data

2.4	Installing	Scripts
So	far	we	have	been	dealing	with	pure	and	non-pure	Python	modules,	which	are
usually	not	run	by	themselves	but	imported	by	scripts.

Scripts	are	files	containing	Python	source	code,	intended	to	be	started	from	the
command	line.	Scripts	don't	require	Distutils	to	do	anything	very	complicated.
The	only	clever	feature	is	that	if	the	first	line	of	the	script	starts	with	#!	and
contains	the	word	``python'',	the	Distutils	will	adjust	the	first	line	to	refer	to	the
current	interpreter	location.	By	default,	it	is	replaced	with	the	current	interpreter
location.	The	--executable	(or	-e)	option	will	allow	the	interpreter	path	to	be
explicitly	overridden.

The	scripts	option	simply	is	a	list	of	files	to	be	handled	in	this	way.	From	the
PyXML	setup	script:

setup(...	

						scripts=['scripts/xmlproc_parse',	'scripts/xmlproc_val']

)

Distributing	Python	Modules
Previous:	2.3	Describing	extension	modules	Up:	2.	Writing	the	Setup	Next:	2.5
Installing	Package	Data

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.4	Installing	Scripts	Up:	2.	Writing	the	Setup	Next:	2.6	Installing
Additional	Files

2.5	Installing	Package	Data
Often,	additional	files	need	to	be	installed	into	a	package.	These	files	are	often
data	that's	closely	related	to	the	package's	implementation,	or	text	files
containing	documentation	that	might	be	of	interest	to	programmers	using	the
package.	These	files	are	called	package	data.

Package	data	can	be	added	to	packages	using	the	package_data	keyword
argument	to	the	setup()	function.	The	value	must	be	a	mapping	from	package
name	to	a	list	of	relative	path	names	that	should	be	copied	into	the	package.	The
paths	are	interpreted	as	relative	to	the	directory	containing	the	package
(information	from	the	package_dir	mapping	is	used	if	appropriate);	that	is,
the	files	are	expected	to	be	part	of	the	package	in	the	source	directories.	They
may	contain	glob	patterns	as	well.

The	path	names	may	contain	directory	portions;	any	necessary	directories	will	be
created	in	the	installation.

For	example,	if	a	package	should	contain	a	subdirectory	with	several	data	files,
the	files	can	be	arranged	like	this	in	the	source	tree:

setup.py

src/

				mypkg/

								__init__.py

								module.py

								data/

												tables.dat

												spoons.dat

												forks.dat

The	corresponding	call	to	setup()	might	be:

setup(...,

						packages=['mypkg'],

						package_dir={'mypkg':	'src/mypkg'},

						package_data={'mypkg':	['data/*.dat']},

)

New	in	version	2.4.

Distributing	Python	Modules
Previous:	2.4	Installing	Scripts	Up:	2.	Writing	the	Setup	Next:	2.6	Installing
Additional	Files

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.5	Installing	Package	Data	Up:	2.	Writing	the	Setup	Next:	2.7
Additional	meta-data

2.6	Installing	Additional	Files
The	data_files	option	can	be	used	to	specify	additional	files	needed	by	the
module	distribution:	configuration	files,	message	catalogs,	data	files,	anything
which	doesn't	fit	in	the	previous	categories.

data_files	specifies	a	sequence	of	(directory,	files)	pairs	in	the	following	way:

setup(...

						data_files=[('bitmaps',	['bm/b1.gif',	'bm/b2.gif']),

																		('config',	['cfg/data.cfg']),

																		('/etc/init.d',	['init-script'])]

)

Note	that	you	can	specify	the	directory	names	where	the	data	files	will	be
installed,	but	you	cannot	rename	the	data	files	themselves.

Each	(directory,	files)	pair	in	the	sequence	specifies	the	installation	directory	and
the	files	to	install	there.	If	directory	is	a	relative	path,	it	is	interpreted	relative	to
the	installation	prefix	(Python's	sys.prefix	for	pure-Python	packages,
sys.exec_prefix	for	packages	that	contain	extension	modules).	Each	file
name	in	files	is	interpreted	relative	to	the	setup.py	script	at	the	top	of	the
package	source	distribution.	No	directory	information	from	files	is	used	to
determine	the	final	location	of	the	installed	file;	only	the	name	of	the	file	is	used.

You	can	specify	the	data_files	options	as	a	simple	sequence	of	files	without
specifying	a	target	directory,	but	this	is	not	recommended,	and	the	install
command	will	print	a	warning	in	this	case.	To	install	data	files	directly	in	the
target	directory,	an	empty	string	should	be	given	as	the	directory.

Distributing	Python	Modules
Previous:	2.5	Installing	Package	Data	Up:	2.	Writing	the	Setup	Next:	2.7
Additional	meta-data

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.6	Installing	Additional	Files	Up:	2.	Writing	the	Setup	Next:	2.8
Debugging	the	setup

2.7	Additional	meta-data
The	setup	script	may	include	additional	meta-data	beyond	the	name	and	version.
This	information	includes:

Meta-Data Description Value Notes
name name	of	the	package short

string
(1)

version version	of	this	release short
string

(1)(2)

author package	author's	name short
string

(3)

author_email email	address	of	the	package
author

email
address

(3)

maintainer package	maintainer's	name short
string

(3)

maintainer_email email	address	of	the	package
maintainer

email
address

(3)

url home	page	for	the	package URL (1)
description short,	summary	description	of

the	package
short
string

long_description longer	description	of	the
package

long
string

download_url location	where	the	package	may
be	downloaded

URL (4)

classifiers a	list	of	Trove	classifiers list	of
strings

(4)

Notes:

(1)
These	fields	are	required.

(2)
It	is	recommended	that	versions	take	the	form	major.minor[.patch[.sub]].

(3)

Either	the	author	or	the	maintainer	must	be	identified.
(4)

These	fields	should	not	be	used	if	your	package	is	to	be	compatible	with
Python	versions	prior	to	2.2.3	or	2.3.	The	list	is	available	from	the	PyPI
website.

'short	string'
A	single	line	of	text,	not	more	than	200	characters.

'long	string'
Multiple	lines	of	plain	text	in	reStructuredText	format	(see
http://docutils.sf.net/).

'list	of	strings'
See	below.

None	of	the	string	values	may	be	Unicode.

Encoding	the	version	information	is	an	art	in	itself.	Python	packages	generally
adhere	to	the	version	format	major.minor[.patch][sub].	The	major	number	is	0
for	initial,	experimental	releases	of	software.	It	is	incremented	for	releases	that
represent	major	milestones	in	a	package.	The	minor	number	is	incremented
when	important	new	features	are	added	to	the	package.	The	patch	number
increments	when	bug-fix	releases	are	made.	Additional	trailing	version
information	is	sometimes	used	to	indicate	sub-releases.	These	are	"a1,a2,...,aN"
(for	alpha	releases,	where	functionality	and	API	may	change),	"b1,b2,...,bN"	(for
beta	releases,	which	only	fix	bugs)	and	"pr1,pr2,...,prN"	(for	final	pre-release
release	testing).	Some	examples:

0.1.0
the	first,	experimental	release	of	a	package

1.0.1a2
the	second	alpha	release	of	the	first	patch	version	of	1.0

classifiers	are	specified	in	a	python	list:

setup(...

						classifiers=[

										'Development	Status	::	4	-	Beta',

										'Environment	::	Console',

										'Environment	::	Web	Environment',

										'Intended	Audience	::	End	Users/Desktop',

										'Intended	Audience	::	Developers',

http://www.python.org/pypi
http://docutils.sf.net/

										'Intended	Audience	::	System	Administrators',

										'License	::	OSI	Approved	::	Python	Software	Foundation	License',

										'Operating	System	::	MacOS	::	MacOS	X',

										'Operating	System	::	Microsoft	::	Windows',

										'Operating	System	::	POSIX',

										'Programming	Language	::	Python',

										'Topic	::	Communications	::	Email',

										'Topic	::	Office/Business',

										'Topic	::	Software	Development	::	Bug	Tracking',

],

)

If	you	wish	to	include	classifiers	in	your	setup.py	file	and	also	wish	to	remain
backwards-compatible	with	Python	releases	prior	to	2.2.3,	then	you	can	include
the	following	code	fragment	in	your	setup.py	before	the	setup()	call.

#	patch	distutils	if	it	can't	cope	with	the	"classifiers"	or

#	"download_url"	keywords

if	sys.version	<	'2.2.3':

				from	distutils.dist	import	DistributionMetadata

				DistributionMetadata.classifiers	=	None

				DistributionMetadata.download_url	=	None

Distributing	Python	Modules
Previous:	2.6	Installing	Additional	Files	Up:	2.	Writing	the	Setup	Next:	2.8
Debugging	the	setup

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.7	Additional	meta-data	Up:	2.	Writing	the	Setup	Next:	3.	Writing
the	Setup

2.8	Debugging	the	setup	script
Sometimes	things	go	wrong,	and	the	setup	script	doesn't	do	what	the	developer
wants.

Distutils	catches	any	exceptions	when	running	the	setup	script,	and	print	a
simple	error	message	before	the	script	is	terminated.	The	motivation	for	this
behaviour	is	to	not	confuse	administrators	who	don't	know	much	about	Python
and	are	trying	to	install	a	package.	If	they	get	a	big	long	traceback	from	deep
inside	the	guts	of	Distutils,	they	may	think	the	package	or	the	Python	installation
is	broken	because	they	don't	read	all	the	way	down	to	the	bottom	and	see	that	it's
a	permission	problem.

On	the	other	hand,	this	doesn't	help	the	developer	to	find	the	cause	of	the	failure.
For	this	purpose,	the	DISTUTILS_DEBUG	environment	variable	can	be	set	to
anything	except	an	empty	string,	and	distutils	will	now	print	detailed	information
what	it	is	doing,	and	prints	the	full	traceback	in	case	an	exception	occurs.

Distributing	Python	Modules
Previous:	2.7	Additional	meta-data	Up:	2.	Writing	the	Setup	Next:	3.	Writing
the	Setup

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.8	Debugging	the	setup	Up:	Distributing	Python	Modules	Next:	4.
Creating	a	Source

3.	Writing	the	Setup	Configuration
File
Often,	it's	not	possible	to	write	down	everything	needed	to	build	a	distribution	a
priori:	you	may	need	to	get	some	information	from	the	user,	or	from	the	user's
system,	in	order	to	proceed.	As	long	as	that	information	is	fairly	simple--a	list	of
directories	to	search	for	C	header	files	or	libraries,	for	example--then	providing	a
configuration	file,	setup.cfg,	for	users	to	edit	is	a	cheap	and	easy	way	to	solicit
it.	Configuration	files	also	let	you	provide	default	values	for	any	command
option,	which	the	installer	can	then	override	either	on	the	command-line	or	by
editing	the	config	file.

The	setup	configuration	file	is	a	useful	middle-ground	between	the	setup	script--
which,	ideally,	would	be	opaque	to	installers3.1--and	the	command-line	to	the
setup	script,	which	is	outside	of	your	control	and	entirely	up	to	the	installer.	In
fact,	setup.cfg	(and	any	other	Distutils	configuration	files	present	on	the	target
system)	are	processed	after	the	contents	of	the	setup	script,	but	before	the
command-line.	This	has	several	useful	consequences:

installers	can	override	some	of	what	you	put	in	setup.py	by	editing
setup.cfg
you	can	provide	non-standard	defaults	for	options	that	are	not	easily	set	in
setup.py
installers	can	override	anything	in	setup.cfg	using	the	command-line
options	to	setup.py

The	basic	syntax	of	the	configuration	file	is	simple:

[command]

option=value

...

where	command	is	one	of	the	Distutils	commands	(e.g.	build_py,	install),	and
option	is	one	of	the	options	that	command	supports.	Any	number	of	options	can
be	supplied	for	each	command,	and	any	number	of	command	sections	can	be
included	in	the	file.	Blank	lines	are	ignored,	as	are	comments,	which	run	from	a
"#"	character	until	the	end	of	the	line.	Long	option	values	can	be	split	across

multiple	lines	simply	by	indenting	the	continuation	lines.

You	can	find	out	the	list	of	options	supported	by	a	particular	command	with	the
universal	--help	option,	e.g.

>	python	setup.py	--help	build_ext

[...]

Options	for	'build_ext'	command:

		--build-lib	(-b)					directory	for	compiled	extension	modules

		--build-temp	(-t)				directory	for	temporary	files	(build	by-products)

		--inplace	(-i)							ignore	build-lib	and	put	compiled	extensions	into	the

																							source	directory	alongside	your	pure	Python	modules

		--include-dirs	(-I)		list	of	directories	to	search	for	header	files

		--define	(-D)								C	preprocessor	macros	to	define

		--undef	(-U)									C	preprocessor	macros	to	undefine

[...]

Note	that	an	option	spelled	--foo-bar	on	the	command-line	is	spelled	foo_bar	in
configuration	files.

For	example,	say	you	want	your	extensions	to	be	built	``in-place''--that	is,	you
have	an	extension	pkg.ext,	and	you	want	the	compiled	extension	file	(ext.so
on	UNIX,	say)	to	be	put	in	the	same	source	directory	as	your	pure	Python
modules	pkg.mod1	and	pkg.mod2.	You	can	always	use	the	--inplace	option
on	the	command-line	to	ensure	this:

python	setup.py	build_ext	--inplace

But	this	requires	that	you	always	specify	the	build_ext	command	explicitly,	and
remember	to	provide	--inplace.	An	easier	way	is	to	``set	and	forget''	this	option,
by	encoding	it	in	setup.cfg,	the	configuration	file	for	this	distribution:

[build_ext]

inplace=1

This	will	affect	all	builds	of	this	module	distribution,	whether	or	not	you
explcitly	specify	build_ext.	If	you	include	setup.cfg	in	your	source
distribution,	it	will	also	affect	end-user	builds--which	is	probably	a	bad	idea	for
this	option,	since	always	building	extensions	in-place	would	break	installation	of
the	module	distribution.	In	certain	peculiar	cases,	though,	modules	are	built	right
in	their	installation	directory,	so	this	is	conceivably	a	useful	ability.	(Distributing
extensions	that	expect	to	be	built	in	their	installation	directory	is	almost	always	a
bad	idea,	though.)

Another	example:	certain	commands	take	a	lot	of	options	that	don't	change	from
run	to	run;	for	example,	bdist_rpm	needs	to	know	everything	required	to
generate	a	``spec''	file	for	creating	an	RPM	distribution.	Some	of	this
information	comes	from	the	setup	script,	and	some	is	automatically	generated	by
the	Distutils	(such	as	the	list	of	files	installed).	But	some	of	it	has	to	be	supplied
as	options	to	bdist_rpm,	which	would	be	very	tedious	to	do	on	the	command-
line	for	every	run.	Hence,	here	is	a	snippet	from	the	Distutils'	own	setup.cfg:

[bdist_rpm]

release	=	1

packager	=	Greg	Ward	<gward@python.net>

doc_files	=	CHANGES.txt

												README.txt

												USAGE.txt

												doc/

												examples/

Note	that	the	doc_files	option	is	simply	a	whitespace-separated	string	split
across	multiple	lines	for	readability.

See	Also:

Installing	Python	Modules
More	information	on	the	configuration	files	is	available	in	the	manual
for	system	administrators.

Footnotes

...	installers3.1
This	ideal	probably	won't	be	achieved	until	auto-configuration	is	fully
supported	by	the	Distutils.

Distributing	Python	Modules
Previous:	2.8	Debugging	the	setup	Up:	Distributing	Python	Modules	Next:	4.

Creating	a	Source

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.	Writing	the	Setup	Up:	Distributing	Python	Modules	Next:	4.1
Specifying	the	files

4.	Creating	a	Source	Distribution
As	shown	in	section	1.2,	you	use	the	sdist	command	to	create	a	source
distribution.	In	the	simplest	case,

python	setup.py	sdist

(assuming	you	haven't	specified	any	sdist	options	in	the	setup	script	or	config
file),	sdist	creates	the	archive	of	the	default	format	for	the	current	platform.	The
default	format	is	a	gzip'ed	tar	file	(.tar.gz)	on	UNIX,	and	ZIP	file	on	Windows.	**
no	Mac	OS	support	here	**

You	can	specify	as	many	formats	as	you	like	using	the	--formats	option,	for
example:

python	setup.py	sdist	--formats=gztar,zip

to	create	a	gzipped	tarball	and	a	zip	file.	The	available	formats	are:

Format Description Notes
zip zip	file	(.zip) (1),(3)
gztar gzip'ed	tar	file	(.tar.gz) (2),(4)
bztar bzip2'ed	tar	file	(.tar.bz2) (4)
ztar compressed	tar	file	(.tar.Z) (4)
tar tar	file	(.tar) (4)

Notes:

(1)
default	on	Windows

(2)
default	on	UNIX

(3)
requires	either	external	zip	utility	or	zipfile	module	(part	of	the	standard
Python	library	since	Python	1.6)

(4)
requires	external	utilities:	tar	and	possibly	one	of	gzip,	bzip2,	or	compress

Subsections

4.1	Specifying	the	files	to	distribute
4.2	Manifest-related	options

Distributing	Python	Modules
Previous:	3.	Writing	the	Setup	Up:	Distributing	Python	Modules	Next:	4.1
Specifying	the	files

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.	Creating	a	Source	Up:	4.	Creating	a	Source	Next:	4.2	Manifest-
related	options

4.1	Specifying	the	files	to	distribute
If	you	don't	supply	an	explicit	list	of	files	(or	instructions	on	how	to	generate
one),	the	sdist	command	puts	a	minimal	default	set	into	the	source	distribution:

all	Python	source	files	implied	by	the	py_modules	and	packages	options
all	C	source	files	mentioned	in	the	ext_modules	or	libraries	options	(**
getting	C	library	sources	currently	broken--no
get_source_files()	method	in	build_clib.py!	**)
scripts	identified	by	the	scripts	option
anything	that	looks	like	a	test	script:	test/test*.py	(currently,	the	Distutils
don't	do	anything	with	test	scripts	except	include	them	in	source
distributions,	but	in	the	future	there	will	be	a	standard	for	testing	Python
module	distributions)
README.txt	(or	README),	setup.py	(or	whatever	you	called	your	setup
script),	and	setup.cfg

Sometimes	this	is	enough,	but	usually	you	will	want	to	specify	additional	files	to
distribute.	The	typical	way	to	do	this	is	to	write	a	manifest	template,	called
MANIFEST.in	by	default.	The	manifest	template	is	just	a	list	of	instructions	for
how	to	generate	your	manifest	file,	MANIFEST,	which	is	the	exact	list	of	files
to	include	in	your	source	distribution.	The	sdist	command	processes	this
template	and	generates	a	manifest	based	on	its	instructions	and	what	it	finds	in
the	filesystem.

If	you	prefer	to	roll	your	own	manifest	file,	the	format	is	simple:	one	filename
per	line,	regular	files	(or	symlinks	to	them)	only.	If	you	do	supply	your	own
MANIFEST,	you	must	specify	everything:	the	default	set	of	files	described
above	does	not	apply	in	this	case.

The	manifest	template	has	one	command	per	line,	where	each	command
specifies	a	set	of	files	to	include	or	exclude	from	the	source	distribution.	For	an
example,	again	we	turn	to	the	Distutils'	own	manifest	template:

include	*.txt

recursive-include	examples	*.txt	*.py

prune	examples/sample?/build

The	meanings	should	be	fairly	clear:	include	all	files	in	the	distribution	root
matching	*.txt,	all	files	anywhere	under	the	examples	directory	matching	*.txt
or	*.py,	and	exclude	all	directories	matching	examples/sample?/build.	All	of
this	is	done	after	the	standard	include	set,	so	you	can	exclude	files	from	the
standard	set	with	explicit	instructions	in	the	manifest	template.	(Or,	you	can	use
the	--no-defaults	option	to	disable	the	standard	set	entirely.)	There	are	several
other	commands	available	in	the	manifest	template	mini-language;	see
section	9.2.

The	order	of	commands	in	the	manifest	template	matters:	initially,	we	have	the
list	of	default	files	as	described	above,	and	each	command	in	the	template	adds
to	or	removes	from	that	list	of	files.	Once	we	have	fully	processed	the	manifest
template,	we	remove	files	that	should	not	be	included	in	the	source	distribution:

all	files	in	the	Distutils	``build''	tree	(default	build/)
all	files	in	directories	named	RCS,	CVS	or	.svn

Now	we	have	our	complete	list	of	files,	which	is	written	to	the	manifest	for
future	reference,	and	then	used	to	build	the	source	distribution	archive(s).

You	can	disable	the	default	set	of	included	files	with	the	--no-defaults	option,
and	you	can	disable	the	standard	exclude	set	with	--no-prune.

Following	the	Distutils'	own	manifest	template,	let's	trace	how	the	sdist
command	builds	the	list	of	files	to	include	in	the	Distutils	source	distribution:

1.	 include	all	Python	source	files	in	the	distutils	and	distutils/command
subdirectories	(because	packages	corresponding	to	those	two	directories
were	mentioned	in	the	packages	option	in	the	setup	script--see	section	2)

2.	 include	README.txt,	setup.py,	and	setup.cfg	(standard	files)
3.	 include	test/test*.py	(standard	files)
4.	 include	*.txt	in	the	distribution	root	(this	will	find	README.txt	a	second

time,	but	such	redundancies	are	weeded	out	later)
5.	 include	anything	matching	*.txt	or	*.py	in	the	sub-tree	under	examples,
6.	 exclude	all	files	in	the	sub-trees	starting	at	directories	matching

examples/sample?/build--this	may	exclude	files	included	by	the	previous
two	steps,	so	it's	important	that	the	prune	command	in	the	manifest
template	comes	after	the	recursive-include	command

7.	 exclude	the	entire	build	tree,	and	any	RCS,	CVS	and	.svn	directories

Just	like	in	the	setup	script,	file	and	directory	names	in	the	manifest	template
should	always	be	slash-separated;	the	Distutils	will	take	care	of	converting	them
to	the	standard	representation	on	your	platform.	That	way,	the	manifest	template
is	portable	across	operating	systems.

Distributing	Python	Modules
Previous:	4.	Creating	a	Source	Up:	4.	Creating	a	Source	Next:	4.2	Manifest-
related	options

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.1	Specifying	the	files	Up:	4.	Creating	a	Source	Next:	5.	Creating
Built	Distributions

4.2	Manifest-related	options
The	normal	course	of	operations	for	the	sdist	command	is	as	follows:

if	the	manifest	file,	MANIFEST	doesn't	exist,	read	MANIFEST.in	and
create	the	manifest
if	neither	MANIFEST	nor	MANIFEST.in	exist,	create	a	manifest	with	just
the	default	file	set
if	either	MANIFEST.in	or	the	setup	script	(setup.py)	are	more	recent	than
MANIFEST,	recreate	MANIFEST	by	reading	MANIFEST.in
use	the	list	of	files	now	in	MANIFEST	(either	just	generated	or	read	in)	to
create	the	source	distribution	archive(s)

There	are	a	couple	of	options	that	modify	this	behaviour.	First,	use	the	--no-
defaults	and	--no-prune	to	disable	the	standard	``include''	and	``exclude''	sets.

Second,	you	might	want	to	force	the	manifest	to	be	regenerated--for	example,	if
you	have	added	or	removed	files	or	directories	that	match	an	existing	pattern	in
the	manifest	template,	you	should	regenerate	the	manifest:

python	setup.py	sdist	--force-manifest

Or,	you	might	just	want	to	(re)generate	the	manifest,	but	not	create	a	source
distribution:

python	setup.py	sdist	--manifest-only

--manifest-only	implies	--force-manifest.	-o	is	a	shortcut	for	--manifest-only,
and	-f	for	--force-manifest.

Distributing	Python	Modules
Previous:	4.1	Specifying	the	files	Up:	4.	Creating	a	Source	Next:	5.	Creating
Built	Distributions

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.2	Manifest-related	options	Up:	Distributing	Python	Modules	Next:
5.1	Creating	dumb	built

5.	Creating	Built	Distributions
A	``built	distribution''	is	what	you're	probably	used	to	thinking	of	either	as	a
``binary	package''	or	an	``installer''	(depending	on	your	background).	It's	not
necessarily	binary,	though,	because	it	might	contain	only	Python	source	code
and/or	byte-code;	and	we	don't	call	it	a	package,	because	that	word	is	already
spoken	for	in	Python.	(And	``installer''	is	a	term	specific	to	the	world	of
mainstream	desktop	systems.)

A	built	distribution	is	how	you	make	life	as	easy	as	possible	for	installers	of	your
module	distribution:	for	users	of	RPM-based	Linux	systems,	it's	a	binary	RPM;
for	Windows	users,	it's	an	executable	installer;	for	Debian-based	Linux	users,	it's
a	Debian	package;	and	so	forth.	Obviously,	no	one	person	will	be	able	to	create
built	distributions	for	every	platform	under	the	sun,	so	the	Distutils	are	designed
to	enable	module	developers	to	concentrate	on	their	specialty--writing	code	and
creating	source	distributions--while	an	intermediary	species	called	packagers
springs	up	to	turn	source	distributions	into	built	distributions	for	as	many
platforms	as	there	are	packagers.

Of	course,	the	module	developer	could	be	his	own	packager;	or	the	packager
could	be	a	volunteer	``out	there''	somewhere	who	has	access	to	a	platform	which
the	original	developer	does	not;	or	it	could	be	software	periodically	grabbing
new	source	distributions	and	turning	them	into	built	distributions	for	as	many
platforms	as	the	software	has	access	to.	Regardless	of	who	they	are,	a	packager
uses	the	setup	script	and	the	bdist	command	family	to	generate	built
distributions.

As	a	simple	example,	if	I	run	the	following	command	in	the	Distutils	source	tree:

python	setup.py	bdist

then	the	Distutils	builds	my	module	distribution	(the	Distutils	itself	in	this	case),
does	a	``fake''	installation	(also	in	the	build	directory),	and	creates	the	default
type	of	built	distribution	for	my	platform.	The	default	format	for	built
distributions	is	a	``dumb''	tar	file	on	UNIX,	and	a	simple	executable	installer	on
Windows.	(That	tar	file	is	considered	``dumb''	because	it	has	to	be	unpacked	in	a
specific	location	to	work.)

Thus,	the	above	command	on	a	UNIX	system	creates	Distutils-1.0.plat.tar.gz;
unpacking	this	tarball	from	the	right	place	installs	the	Distutils	just	as	though
you	had	downloaded	the	source	distribution	and	run	python	setup.py
install.	(The	``right	place''	is	either	the	root	of	the	filesystem	or	Python's
prefix	directory,	depending	on	the	options	given	to	the	bdist_dumb	command;
the	default	is	to	make	dumb	distributions	relative	to	prefix.)

Obviously,	for	pure	Python	distributions,	this	isn't	any	simpler	than	just	running
python	setup.py	install--but	for	non-pure	distributions,	which	include
extensions	that	would	need	to	be	compiled,	it	can	mean	the	difference	between
someone	being	able	to	use	your	extensions	or	not.	And	creating	``smart''	built
distributions,	such	as	an	RPM	package	or	an	executable	installer	for	Windows,	is
far	more	convenient	for	users	even	if	your	distribution	doesn't	include	any
extensions.

The	bdist	command	has	a	--formats	option,	similar	to	the	sdist	command,
which	you	can	use	to	select	the	types	of	built	distribution	to	generate:	for
example,

python	setup.py	bdist	--format=zip

would,	when	run	on	a	UNIX	system,	create	Distutils-1.0.plat.zip--again,	this
archive	would	be	unpacked	from	the	root	directory	to	install	the	Distutils.

The	available	formats	for	built	distributions	are:

Format Description Notes
gztar gzipped	tar	file	(.tar.gz) (1),(3)
ztar compressed	tar	file	(.tar.Z) (3)
tar tar	file	(.tar) (3)
zip zip	file	(.zip) (4)
rpm RPM (5)
pkgtool Solaris	pkgtool
sdux HP-UX	swinstall
rpm RPM (5)
wininst self-extracting	ZIP	file	for	Windows (2),(4)

Notes:

(1)
default	on	UNIX

(2)
default	on	Windows	**	to-do!	**

(3)
requires	external	utilities:	tar	and	possibly	one	of	gzip,	bzip2,	or	compress

(4)
requires	either	external	zip	utility	or	zipfile	module	(part	of	the	standard
Python	library	since	Python	1.6)

(5)
requires	external	rpm	utility,	version	3.0.4	or	better	(use	rpm	--
version	to	find	out	which	version	you	have)

You	don't	have	to	use	the	bdist	command	with	the	--formats	option;	you	can
also	use	the	command	that	directly	implements	the	format	you're	interested	in.
Some	of	these	bdist	``sub-commands''	actually	generate	several	similar	formats;
for	instance,	the	bdist_dumb	command	generates	all	the	``dumb''	archive	formats
(tar,	ztar,	gztar,	and	zip),	and	bdist_rpm	generates	both	binary	and
source	RPMs.	The	bdist	sub-commands,	and	the	formats	generated	by	each,
are:

Command Formats
bdist_dumb tar,	ztar,	gztar,	zip
bdist_rpm rpm,	srpm
bdist_wininst wininst

The	following	sections	give	details	on	the	individual	bdist_*	commands.

Subsections

5.1	Creating	dumb	built	distributions
5.2	Creating	RPM	packages
5.3	Creating	Windows	Installers

5.3.1	The	Postinstallation	script

Distributing	Python	Modules
Previous:	4.2	Manifest-related	options	Up:	Distributing	Python	Modules	Next:
5.1	Creating	dumb	built

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.	Creating	Built	Distributions	Up:	5.	Creating	Built	Distributions
Next:	5.2	Creating	RPM	packages

5.1	Creating	dumb	built	distributions
**	Need	to	document	absolute	vs.	prefix-relative	packages	here,	but	first	I
have	to	implement	it!	**

Distributing	Python	Modules
Previous:	5.	Creating	Built	Distributions	Up:	5.	Creating	Built	Distributions
Next:	5.2	Creating	RPM	packages

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.1	Creating	dumb	built	Up:	5.	Creating	Built	Distributions	Next:	5.3
Creating	Windows	Installers

5.2	Creating	RPM	packages
The	RPM	format	is	used	by	many	popular	Linux	distributions,	including	Red
Hat,	SuSE,	and	Mandrake.	If	one	of	these	(or	any	of	the	other	RPM-based	Linux
distributions)	is	your	usual	environment,	creating	RPM	packages	for	other	users
of	that	same	distribution	is	trivial.	Depending	on	the	complexity	of	your	module
distribution	and	differences	between	Linux	distributions,	you	may	also	be	able	to
create	RPMs	that	work	on	different	RPM-based	distributions.

The	usual	way	to	create	an	RPM	of	your	module	distribution	is	to	run	the
bdist_rpm	command:

python	setup.py	bdist_rpm

or	the	bdist	command	with	the	--format	option:

python	setup.py	bdist	--formats=rpm

The	former	allows	you	to	specify	RPM-specific	options;	the	latter	allows	you	to
easily	specify	multiple	formats	in	one	run.	If	you	need	to	do	both,	you	can
explicitly	specify	multiple	bdist_*	commands	and	their	options:

python	setup.py	bdist_rpm	--packager="John	Doe	<jdoe@example.org>"	\

																bdist_wininst	--target_version="2.0"

Creating	RPM	packages	is	driven	by	a	.spec	file,	much	as	using	the	Distutils	is
driven	by	the	setup	script.	To	make	your	life	easier,	the	bdist_rpm	command
normally	creates	a	.spec	file	based	on	the	information	you	supply	in	the	setup
script,	on	the	command	line,	and	in	any	Distutils	configuration	files.	Various
options	and	sections	in	the	.spec	file	are	derived	from	options	in	the	setup	script
as	follows:

RPM	.spec	file	option	or	section Distutils	setup	script	option
Name name
Summary	(in	preamble) description
Version version
Vendor author	and	author_email,	or	

&	maintainer	and	maintainer_email

Copyright licence
Url url
%description	(section) long_description

Additionally,	there	many	options	in	.spec	files	that	don't	have	corresponding
options	in	the	setup	script.	Most	of	these	are	handled	through	options	to	the
bdist_rpm	command	as	follows:

RPM	.spec	file	option	or
section

bdist_rpm	option default	value

Release release ``1''
Group group ``Development/Libraries''
Vendor vendor (see	above)
Packager packager (none)
Provides provides (none)
Requires requires (none)
Conflicts conflicts (none)
Obsoletes obsoletes (none)
Distribution distribution_name (none)
BuildRequires build_requires (none)
Icon icon (none)

Obviously,	supplying	even	a	few	of	these	options	on	the	command-line	would	be
tedious	and	error-prone,	so	it's	usually	best	to	put	them	in	the	setup	configuration
file,	setup.cfg--see	section	3.	If	you	distribute	or	package	many	Python	module
distributions,	you	might	want	to	put	options	that	apply	to	all	of	them	in	your
personal	Distutils	configuration	file	(~/.pydistutils.cfg).

There	are	three	steps	to	building	a	binary	RPM	package,	all	of	which	are	handled
automatically	by	the	Distutils:

1.	 create	a	.spec	file,	which	describes	the	package	(analogous	to	the	Distutils
setup	script;	in	fact,	much	of	the	information	in	the	setup	script	winds	up	in
the	.spec	file)

2.	 create	the	source	RPM
3.	 create	the	``binary''	RPM	(which	may	or	may	not	contain	binary	code,

depending	on	whether	your	module	distribution	contains	Python

extensions)

Normally,	RPM	bundles	the	last	two	steps	together;	when	you	use	the	Distutils,
all	three	steps	are	typically	bundled	together.

If	you	wish,	you	can	separate	these	three	steps.	You	can	use	the	--spec-only
option	to	make	bdist_rpm	just	create	the	.spec	file	and	exit;	in	this	case,	the
.spec	file	will	be	written	to	the	``distribution	directory''--normally	dist/,	but
customizable	with	the	--dist-dir	option.	(Normally,	the	.spec	file	winds	up	deep
in	the	``build	tree,''	in	a	temporary	directory	created	by	bdist_rpm.)

Distributing	Python	Modules
Previous:	5.1	Creating	dumb	built	Up:	5.	Creating	Built	Distributions	Next:	5.3
Creating	Windows	Installers

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2	Creating	RPM	packages	Up:	5.	Creating	Built	Distributions	Next:
6.	Registering	with	the

Subsections

5.3.1	The	Postinstallation	script

5.3	Creating	Windows	Installers
Executable	installers	are	the	natural	format	for	binary	distributions	on	Windows.
They	display	a	nice	graphical	user	interface,	display	some	information	about	the
module	distribution	to	be	installed	taken	from	the	metadata	in	the	setup	script,	let
the	user	select	a	few	options,	and	start	or	cancel	the	installation.

Since	the	metadata	is	taken	from	the	setup	script,	creating	Windows	installers	is
usually	as	easy	as	running:

python	setup.py	bdist_wininst

or	the	bdist	command	with	the	--formats	option:

python	setup.py	bdist	--formats=wininst

If	you	have	a	pure	module	distribution	(only	containing	pure	Python	modules
and	packages),	the	resulting	installer	will	be	version	independent	and	have	a
name	like	foo-1.0.win32.exe.	These	installers	can	even	be	created	on	UNIX	or
Mac	OS	platforms.

If	you	have	a	non-pure	distribution,	the	extensions	can	only	be	created	on	a
Windows	platform,	and	will	be	Python	version	dependent.	The	installer	filename
will	reflect	this	and	now	has	the	form	foo-1.0.win32-py2.0.exe.	You	have	to
create	a	separate	installer	for	every	Python	version	you	want	to	support.

The	installer	will	try	to	compile	pure	modules	into	bytecode	after	installation	on
the	target	system	in	normal	and	optimizing	mode.	If	you	don't	want	this	to
happen	for	some	reason,	you	can	run	the	bdist_wininst	command	with	the	--
no-target-compile	and/or	the	--no-target-optimize	option.

By	default	the	installer	will	display	the	cool	``Python	Powered''	logo	when	it	is
run,	but	you	can	also	supply	your	own	bitmap	which	must	be	a	Windows	.bmp
file	with	the	--bitmap	option.

The	installer	will	also	display	a	large	title	on	the	desktop	background	window
when	it	is	run,	which	is	constructed	from	the	name	of	your	distribution	and	the
version	number.	This	can	be	changed	to	another	text	by	using	the	--title	option.

The	installer	file	will	be	written	to	the	``distribution	directory''	--	normally	dist/,
but	customizable	with	the	--dist-dir	option.

5.3.1	The	Postinstallation	script
Starting	with	Python	2.3,	a	postinstallation	script	can	be	specified	which	the	--
install-script	option.	The	basename	of	the	script	must	be	specified,	and	the
script	filename	must	also	be	listed	in	the	scripts	argument	to	the	setup	function.

This	script	will	be	run	at	installation	time	on	the	target	system	after	all	the	files
have	been	copied,	with	argv[1]	set	to	-install,	and	again	at	uninstallation	time
before	the	files	are	removed	with	argv[1]	set	to	-remove.

The	installation	script	runs	embedded	in	the	windows	installer,	every	output
(sys.stdout,	sys.stderr)	is	redirected	into	a	buffer	and	will	be	displayed
in	the	GUI	after	the	script	has	finished.

Some	functions	especially	useful	in	this	context	are	available	as	additional	built-
in	functions	in	the	installation	script.

directory_created(path)
file_created(path)

These	functions	should	be	called	when	a	directory	or	file	is	created	by	the
postinstall	script	at	installation	time.	It	will	register	path	with	the
uninstaller,	so	that	it	will	be	removed	when	the	distribution	is	uninstalled.
To	be	safe,	directories	are	only	removed	if	they	are	empty.

get_special_folder_path(csidl_string)
This	function	can	be	used	to	retrieve	special	folder	locations	on	Windows
like	the	Start	Menu	or	the	Desktop.	It	returns	the	full	path	to	the	folder.
csidl_string	must	be	one	of	the	following	strings:

"CSIDL_APPDATA"

"CSIDL_COMMON_STARTMENU"

"CSIDL_STARTMENU"

"CSIDL_COMMON_DESKTOPDIRECTORY"

"CSIDL_DESKTOPDIRECTORY"

"CSIDL_COMMON_STARTUP"

"CSIDL_STARTUP"

"CSIDL_COMMON_PROGRAMS"

"CSIDL_PROGRAMS"

"CSIDL_FONTS"

If	the	folder	cannot	be	retrieved,	OSError	is	raised.

Which	folders	are	available	depends	on	the	exact	Windows	version,	and
probably	also	the	configuration.	For	details	refer	to	Microsoft's
documentation	of	the	SHGetSpecialFolderPath()	function.

create_shortcut(target,	description,	filename[,	arguments[,	workdir[,
iconpath[,	iconindex]]]])

This	function	creates	a	shortcut.	target	is	the	path	to	the	program	to	be
started	by	the	shortcut.	description	is	the	description	of	the	sortcut.	filename
is	the	title	of	the	shortcut	that	the	user	will	see.	arguments	specifies	the
command	line	arguments,	if	any.	workdir	is	the	working	directory	for	the
program.	iconpath	is	the	file	containing	the	icon	for	the	shortcut,	and
iconindex	is	the	index	of	the	icon	in	the	file	iconpath.	Again,	for	details
consult	the	Microsoft	documentation	for	the	IShellLink	interface.

Distributing	Python	Modules
Previous:	5.2	Creating	RPM	packages	Up:	5.	Creating	Built	Distributions	Next:
6.	Registering	with	the

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.3	Creating	Windows	Installers	Up:	Distributing	Python	Modules
Next:	7.	Examples

6.	Registering	with	the	Package
Index
The	Python	Package	Index	(PyPI)	holds	meta-data	describing	distributions
packaged	with	distutils.	The	distutils	command	register	is	used	to	submit	your
distribution's	meta-data	to	the	index.	It	is	invoked	as	follows:

python	setup.py	register

Distutils	will	respond	with	the	following	prompt:

running	register

We	need	to	know	who	you	are,	so	please	choose	either:

	1.	use	your	existing	login,

	2.	register	as	a	new	user,

	3.	have	the	server	generate	a	new	password	for	you	(and	email	it	to	you),	or

	4.	quit

Your	selection	[default	1]:

Note:	if	your	username	and	password	are	saved	locally,	you	will	not	see	this
menu.

If	you	have	not	registered	with	PyPI,	then	you	will	need	to	do	so	now.	You
should	choose	option	2,	and	enter	your	details	as	required.	Soon	after	submitting
your	details,	you	will	receive	an	email	which	will	be	used	to	confirm	your
registration.

Once	you	are	registered,	you	may	choose	option	1	from	the	menu.	You	will	be
prompted	for	your	PyPI	username	and	password,	and	register	will	then	submit
your	meta-data	to	the	index.

You	may	submit	any	number	of	versions	of	your	distribution	to	the	index.	If	you
alter	the	meta-data	for	a	particular	version,	you	may	submit	it	again	and	the
index	will	be	updated.

PyPI	holds	a	record	for	each	(name,	version)	combination	submitted.	The	first
user	to	submit	information	for	a	given	name	is	designated	the	Owner	of	that
name.	They	may	submit	changes	through	the	register	command	or	through	the
web	interface.	They	may	also	designate	other	users	as	Owners	or	Maintainers.

Maintainers	may	edit	the	package	information,	but	not	designate	other	Owners
or	Maintainers.

By	default	PyPI	will	list	all	versions	of	a	given	package.	To	hide	certain
versions,	the	Hidden	property	should	be	set	to	yes.	This	must	be	edited	through
the	web	interface.

Distributing	Python	Modules
Previous:	5.3	Creating	Windows	Installers	Up:	Distributing	Python	Modules
Next:	7.	Examples

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.	Registering	with	the	Up:	Distributing	Python	Modules	Next:	7.1
Pure	Python	distribution

7.	Examples
This	chapter	provides	a	number	of	basic	examples	to	help	get	started	with
distutils.	Additional	information	about	using	distutils	can	be	found	in	the
Distutils	Cookbook.

See	Also:

Distutils	Cookbook
Collection	of	recipes	showing	how	to	achieve	more	control	over
distutils.

Subsections

7.1	Pure	Python	distribution	(by	module)
7.2	Pure	Python	distribution	(by	package)
7.3	Single	extension	module

Distributing	Python	Modules
Previous:	6.	Registering	with	the	Up:	Distributing	Python	Modules	Next:	7.1
Pure	Python	distribution

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/cgi-bin/moinmoin/DistutilsCookbook

Previous:	7.	Examples	Up:	7.	Examples	Next:	7.2	Pure	Python	distribution

7.1	Pure	Python	distribution	(by
module)
If	you're	just	distributing	a	couple	of	modules,	especially	if	they	don't	live	in	a
particular	package,	you	can	specify	them	individually	using	the	py_modules
option	in	the	setup	script.

In	the	simplest	case,	you'll	have	two	files	to	worry	about:	a	setup	script	and	the
single	module	you're	distributing,	foo.py	in	this	example:

<root>/

								setup.py

								foo.py

(In	all	diagrams	in	this	section,	<root>	will	refer	to	the	distribution	root
directory.)	A	minimal	setup	script	to	describe	this	situation	would	be:

from	distutils.core	import	setup

setup(name='foo',

						version='1.0',

						py_modules=['foo'],

)

Note	that	the	name	of	the	distribution	is	specified	independently	with	the	name
option,	and	there's	no	rule	that	says	it	has	to	be	the	same	as	the	name	of	the	sole
module	in	the	distribution	(although	that's	probably	a	good	convention	to
follow).	However,	the	distribution	name	is	used	to	generate	filenames,	so	you
should	stick	to	letters,	digits,	underscores,	and	hyphens.

Since	py_modules	is	a	list,	you	can	of	course	specify	multiple	modules,	eg.	if
you're	distributing	modules	foo	and	bar,	your	setup	might	look	like	this:

<root>/

								setup.py

								foo.py

								bar.py

and	the	setup	script	might	be
from	distutils.core	import	setup

setup(name='foobar',

						version='1.0',

						py_modules=['foo',	'bar'],

)

You	can	put	module	source	files	into	another	directory,	but	if	you	have	enough
modules	to	do	that,	it's	probably	easier	to	specify	modules	by	package	rather
than	listing	them	individually.

Distributing	Python	Modules
Previous:	7.	Examples	Up:	7.	Examples	Next:	7.2	Pure	Python	distribution

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.1	Pure	Python	distribution	Up:	7.	Examples	Next:	7.3	Single
extension	module

7.2	Pure	Python	distribution	(by
package)
If	you	have	more	than	a	couple	of	modules	to	distribute,	especially	if	they	are	in
multiple	packages,	it's	probably	easier	to	specify	whole	packages	rather	than
individual	modules.	This	works	even	if	your	modules	are	not	in	a	package;	you
can	just	tell	the	Distutils	to	process	modules	from	the	root	package,	and	that
works	the	same	as	any	other	package	(except	that	you	don't	have	to	have	an
__init__.py	file).

The	setup	script	from	the	last	example	could	also	be	written	as

from	distutils.core	import	setup

setup(name='foobar',

						version='1.0',

						packages=[''],

)

(The	empty	string	stands	for	the	root	package.)

If	those	two	files	are	moved	into	a	subdirectory,	but	remain	in	the	root	package,
e.g.:

<root>/

								setup.py

								src/						foo.py

																		bar.py

then	you	would	still	specify	the	root	package,	but	you	have	to	tell	the	Distutils
where	source	files	in	the	root	package	live:

from	distutils.core	import	setup

setup(name='foobar',

						version='1.0',

						package_dir={'':	'src'},

						packages=[''],

)

More	typically,	though,	you	will	want	to	distribute	multiple	modules	in	the	same
package	(or	in	sub-packages).	For	example,	if	the	foo	and	bar	modules	belong
in	package	foobar,	one	way	to	layout	your	source	tree	is

<root>/

								setup.py

								foobar/

																	__init__.py

																	foo.py

																	bar.py

This	is	in	fact	the	default	layout	expected	by	the	Distutils,	and	the	one	that
requires	the	least	work	to	describe	in	your	setup	script:

from	distutils.core	import	setup

setup(name='foobar',

						version='1.0',

						packages=['foobar'],

)

If	you	want	to	put	modules	in	directories	not	named	for	their	package,	then	you
need	to	use	the	package_dir	option	again.	For	example,	if	the	src	directory
holds	modules	in	the	foobar	package:

<root>/

								setup.py

								src/

																	__init__.py

																	foo.py

																	bar.py

an	appropriate	setup	script	would	be
from	distutils.core	import	setup

setup(name='foobar',

						version='1.0',

						package_dir={'foobar':	'src'},

						packages=['foobar'],

)

Or,	you	might	put	modules	from	your	main	package	right	in	the	distribution	root:

<root>/

								setup.py

								__init__.py

								foo.py

								bar.py

in	which	case	your	setup	script	would	be
from	distutils.core	import	setup

setup(name='foobar',

						version='1.0',

						package_dir={'foobar':	''},

						packages=['foobar'],

)

(The	empty	string	also	stands	for	the	current	directory.)

If	you	have	sub-packages,	they	must	be	explicitly	listed	in	packages,	but	any
entries	in	package_dir	automatically	extend	to	sub-packages.	(In	other	words,
the	Distutils	does	not	scan	your	source	tree,	trying	to	figure	out	which	directories
correspond	to	Python	packages	by	looking	for	__init__.py	files.)	Thus,	if	the
default	layout	grows	a	sub-package:

<root>/

								setup.py

								foobar/

																	__init__.py

																	foo.py

																	bar.py

																	subfoo/

																											__init__.py

																											blah.py

then	the	corresponding	setup	script	would	be
from	distutils.core	import	setup

setup(name='foobar',

						version='1.0',

						packages=['foobar',	'foobar.subfoo'],

)

(Again,	the	empty	string	in	package_dir	stands	for	the	current	directory.)

Distributing	Python	Modules
Previous:	7.1	Pure	Python	distribution	Up:	7.	Examples	Next:	7.3	Single
extension	module

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.2	Pure	Python	distribution	Up:	7.	Examples	Next:	8.	Extending
Distutils

7.3	Single	extension	module
Extension	modules	are	specified	using	the	ext_modules	option.	package_dir
has	no	effect	on	where	extension	source	files	are	found;	it	only	affects	the	source
for	pure	Python	modules.	The	simplest	case,	a	single	extension	module	in	a
single	C	source	file,	is:

<root>/

								setup.py

								foo.c

If	the	foo	extension	belongs	in	the	root	package,	the	setup	script	for	this	could
be

from	distutils.core	import	setup

setup(name='foobar',

						version='1.0',

						ext_modules=[Extension('foo',	['foo.c'])],

)

If	the	extension	actually	belongs	in	a	package,	say	foopkg,	then

With	exactly	the	same	source	tree	layout,	this	extension	can	be	put	in	the
foopkg	package	simply	by	changing	the	name	of	the	extension:

from	distutils.core	import	setup

setup(name='foobar',

						version='1.0',

						ext_modules=[Extension('foopkg.foo',	['foo.c'])],

)

Distributing	Python	Modules
Previous:	7.2	Pure	Python	distribution	Up:	7.	Examples	Next:	8.	Extending
Distutils

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.3	Single	extension	module	Up:	Distributing	Python	Modules	Next:
8.1	Integrating	new	commands

8.	Extending	Distutils
Distutils	can	be	extended	in	various	ways.	Most	extensions	take	the	form	of	new
commands	or	replacements	for	existing	commands.	New	commands	may	be
written	to	support	new	types	of	platform-specific	packaging,	for	example,	while
replacements	for	existing	commands	may	be	made	to	modify	details	of	how	the
command	operates	on	a	package.

Most	extensions	of	the	distutils	are	made	within	setup.py	scripts	that	want	to
modify	existing	commands;	many	simply	add	a	few	file	extensions	that	should
be	copied	into	packages	in	addition	to	.py	files	as	a	convenience.

Most	distutils	command	implementations	are	subclasses	of	the	Command	class
from	distutils.cmd.	New	commands	may	directly	inherit	from	Command,
while	replacements	often	derive	from	Command	indirectly,	directly	subclassing
the	command	they	are	replacing.	Commands	are	required	to	derive	from
Command.

Subsections

8.1	Integrating	new	commands

Distributing	Python	Modules
Previous:	7.3	Single	extension	module	Up:	Distributing	Python	Modules	Next:
8.1	Integrating	new	commands

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.	Extending	Distutils	Up:	8.	Extending	Distutils	Next:	9.	Command
Reference

8.1	Integrating	new	commands
There	are	different	ways	to	integrate	new	command	implementations	into
distutils.	The	most	difficult	is	to	lobby	for	the	inclusion	of	the	new	features	in
distutils	itself,	and	wait	for	(and	require)	a	version	of	Python	that	provides	that
support.	This	is	really	hard	for	many	reasons.

The	most	common,	and	possibly	the	most	reasonable	for	most	needs,	is	to
include	the	new	implementations	with	your	setup.py	script,	and	cause	the
distutils.core.setup()	function	use	them:

from	distutils.command.build_py	import	build_py	as	_build_py

from	distutils.core	import	setup

class	build_py(_build_py):

				"""Specialized	Python	source	builder."""

				#	implement	whatever	needs	to	be	different...

setup(cmdclass={'build_py':	build_py},

						...)

This	approach	is	most	valuable	if	the	new	implementations	must	be	used	to	use	a
particular	package,	as	everyone	interested	in	the	package	will	need	to	have	the
new	command	implementation.

Beginning	with	Python	2.4,	a	third	option	is	available,	intended	to	allow	new
commands	to	be	added	which	can	support	existing	setup.py	scripts	without
requiring	modifications	to	the	Python	installation.	This	is	expected	to	allow
third-party	extensions	to	provide	support	for	additional	packaging	systems,	but
the	commands	can	be	used	for	anything	distutils	commands	can	be	used	for.	A
new	configuration	option,	command_packages	(command-line	option	--
command-packages),	can	be	used	to	specify	additional	packages	to	be	searched
for	modules	implementing	commands.	Like	all	distutils	options,	this	can	be
specified	on	the	command	line	or	in	a	configuration	file.	This	option	can	only	be
set	in	the	[global]	section	of	a	configuration	file,	or	before	any	commands	on
the	command	line.	If	set	in	a	configuration	file,	it	can	be	overridden	from	the
command	line;	setting	it	to	an	empty	string	on	the	command	line	causes	the
default	to	be	used.	This	should	never	be	set	in	a	configuration	file	provided	with
a	package.

This	new	option	can	be	used	to	add	any	number	of	packages	to	the	list	of
packages	searched	for	command	implementations;	multiple	package	names
should	be	separated	by	commas.	When	not	specified,	the	search	is	only
performed	in	the	distutils.command	package.	When	setup.py	is	run	with
the	option	--command-packages	distcmds,buildcmds,	however,	the	packages
distutils.command,	distcmds,	and	buildcmds	will	be	searched	in
that	order.	New	commands	are	expected	to	be	implemented	in	modules	of	the
same	name	as	the	command	by	classes	sharing	the	same	name.	Given	the
example	command	line	option	above,	the	command	bdist_openpkg	could	be
implemented	by	the	class	distcmds.bdist_openpkg.bdist_openpkg
or	buildcmds.bdist_openpkg.bdist_openpkg.

Distributing	Python	Modules
Previous:	8.	Extending	Distutils	Up:	8.	Extending	Distutils	Next:	9.	Command
Reference

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	8.1	Integrating	new	commands	Up:	Distributing	Python	Modules
Next:	9.1	Installing	modules:	the

9.	Command	Reference

Subsections

9.1	Installing	modules:	the	install	command	family
9.1.1	install_data
9.1.2	install_scripts

9.2	Creating	a	source	distribution:	the	sdist	command

Distributing	Python	Modules
Previous:	8.1	Integrating	new	commands	Up:	Distributing	Python	Modules
Next:	9.1	Installing	modules:	the

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	9.	Command	Reference	Up:	9.	Command	Reference	Next:	9.2
Creating	a	source

Subsections

9.1.1	install_data
9.1.2	install_scripts

9.1	Installing	modules:	the	install
command	family
The	install	command	ensures	that	the	build	commands	have	been	run	and	then
runs	the	subcommands	install_lib,	install_data	and	install_scripts.

9.1.1	install_data

This	command	installs	all	data	files	provided	with	the	distribution.

9.1.2	install_scripts

This	command	installs	all	(Python)	scripts	in	the	distribution.

Distributing	Python	Modules
Previous:	9.	Command	Reference	Up:	9.	Command	Reference	Next:	9.2
Creating	a	source

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	9.1	Installing	modules:	the	Up:	9.	Command	Reference	Next:	10.
API	Reference

9.2	Creating	a	source	distribution:
the	sdist	command
**	fragment	moved	down	from	above:	needs	context!	**

The	manifest	template	commands	are:

Command Description
include	pat1	pat2	... include	all	files	matching	any	of	the	listed

patterns
exclude	pat1	pat2	... exclude	all	files	matching	any	of	the	listed

patterns
recursive-include	dir
pat1	pat2	...

include	all	files	under	dir	matching	any	of
the	listed	patterns

recursive-exclude	dir
pat1	pat2	...

exclude	all	files	under	dir	matching	any	of
the	listed	patterns

global-include	pat1	pat2
...

include	all	files	anywhere	in	the	source
tree	matching	
&	any	of	the	listed	patterns

global-exclude	pat1	pat2
...

exclude	all	files	anywhere	in	the	source
tree	matching	
&	any	of	the	listed	patterns

prune	dir exclude	all	files	under	dir
graft	dir include	all	files	under	dir

The	patterns	here	are	UNIX-style	``glob''	patterns:	*	matches	any	sequence	of
regular	filename	characters,	?	matches	any	single	regular	filename	character,	and
[range]	matches	any	of	the	characters	in	range	(e.g.,	a-z,	a-zA-Z,	a-f0-
9_.).	The	definition	of	``regular	filename	character''	is	platform-specific:	on
UNIX	it	is	anything	except	slash;	on	Windows	anything	except	backslash	or
colon;	on	Mac	OS	anything	except	colon.

**	Windows	and	Mac	OS	support	not	there	yet	**

Distributing	Python	Modules
Previous:	9.1	Installing	modules:	the	Up:	9.	Command	Reference	Next:	10.
API	Reference

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	9.2	Creating	a	source	Up:	Distributing	Python	Modules	Next:	10.1
distutils.core

10.	API	Reference

Subsections

10.1	distutils.core	--	Core	Distutils	functionality
10.2	distutils.ccompiler	--	CCompiler	base	class
10.3	distutils.unixccompiler	--	Unix	C	Compiler
10.4	distutils.msvccompiler	--	Microsoft	Compiler
10.5	distutils.bcppcompiler	--	Borland	Compiler
10.6	distutils.cygwincompiler	--	Cygwin	Compiler
10.7	distutils.emxccompiler	--	OS/2	EMX	Compiler
10.8	distutils.mwerkscompiler	--	Metrowerks	CodeWarrior
support
10.9	distutils.archive_util	--	Archiving	utilities
10.10	distutils.dep_util	--	Dependency	checking
10.11	distutils.dir_util	--	Directory	tree	operations
10.12	distutils.file_util	--	Single	file	operations
10.13	distutils.util	--	Miscellaneous	other	utility	functions
10.14	distutils.dist	--	The	Distribution	class
10.15	distutils.extension	--	The	Extension	class
10.16	distutils.debug	--	Distutils	debug	mode
10.17	distutils.errors	--	Distutils	exceptions
10.18	distutils.fancy_getopt	--	Wrapper	around	the	standard
getopt	module
10.19	distutils.filelist	--	The	FileList	class
10.20	distutils.log	--	Simple	PEP	282-style	logging
10.21	distutils.spawn	--	Spawn	a	sub-process
10.22	distutils.sysconfig	--	System	configuration	information
10.23	distutils.text_file	--	The	TextFile	class
10.24	distutils.version	--	Version	number	classes
10.25	distutils.cmd	--	Abstract	base	class	for	Distutils	commands
10.26	distutils.command	--	Individual	Distutils	commands
10.27	distutils.command.bdist	--	Build	a	binary	installer

10.28	distutils.command.bdist_packager	--	Abstract	base	class
for	packagers
10.29	distutils.command.bdist_dumb	--	Build	a	``dumb''	installer
10.30	distutils.command.bdist_rpm	--	Build	a	binary	distribution
as	a	Redhat	RPM	and	SRPM
10.31	distutils.command.bdist_wininst	--	Build	a	Windows
installer
10.32	distutils.command.sdist	--	Build	a	source	distribution
10.33	distutils.command.build	--	Build	all	files	of	a	package
10.34	distutils.command.build_clib	--	Build	any	C	libraries	in
a	package
10.35	distutils.command.build_ext	--	Build	any	extensions	in	a
package
10.36	distutils.command.build_py	--	Build	the	.py/.pyc	files	of	a
package
10.37	distutils.command.build_scripts	--	Build	the	scripts	of
a	package
10.38	distutils.command.clean	--	Clean	a	package	build	area
10.39	distutils.command.config	--	Perform	package
configuration
10.40	distutils.command.install	--	Install	a	package
10.41	distutils.command.install_data	--	Install	data	files	from
a	package
10.42	distutils.command.install_headers	--	Install	C/C++
header	files	from	a	package
10.43	distutils.command.install_lib	--	Install	library	files
from	a	package
10.44	distutils.command.install_scripts	--	Install	script	files
from	a	package
10.45	distutils.command.register	--	Register	a	module	with	the
Python	Package	Index
10.46	Creating	a	new	Distutils	command

Distributing	Python	Modules
Previous:	9.2	Creating	a	source	Up:	Distributing	Python	Modules	Next:	10.1
distutils.core

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.	API	Reference	Up:	10.	API	Reference	Next:	10.2
distutils.ccompiler

10.1	distutils.core	--	Core
Distutils	functionality
The	distutils.core	module	is	the	only	module	that	needs	to	be	installed	to
use	the	Distutils.	It	provides	the	setup()	(which	is	called	from	the	setup
script).	Indirectly	provides	the	distutils.dist.Distribution	and
distutils.cmd.Command	class.

setup(arguments)
The	basic	do-everything	function	that	does	most	everything	you	could	ever
ask	for	from	a	Distutils	method.	See	XXXXX

The	setup	function	takes	a	large	number	of	arguments.	These	are	laid	out	in
the	following	table.

argument
name

value type

name The	name	of	the
package

a	string

version The	version
number	of	the
package

See	distutils.version

description A	single	line
describing	the
package

a	string

long_description Longer
description	of	the
package

a	string

author The	name	of	the
package	author

a	string

author_email The	email
address	of	the
package	author

a	string

maintainer The	name	of	the a	string

current
maintainer,	if
different	from	the
author

maintainer_email The	email
address	of	the
current
maintainer,	if
different	from	the
author

url A	URL	for	the
package
(homepage)

a	URL

download_url A	URL	to
download	the
package

a	URL

packages A	list	of	Python
packages	that
distutils	will
manipulate

a	list	of	strings

py_modules A	list	of	Python
modules	that
distutils	will
manipulate

a	list	of	strings

scripts A	list	of
standalone	script
files	to	be	built
and	installed

a	list	of	strings

ext_modules A	list	of	Python
extensions	to	be
built

A	list	of	instances	of
distutils.core.Extension

classifiers A	list	of	Trove
categories	for	the
package

XXX	link	to	better	definition

distclass the
Distribution

class	to	use

A	subclass	of
distutils.core.Distribution

script_name The	name	of	the
setup.py	script	-
defaults	to
sys.argv[0]

a	string

script_args Arguments	to
supply	to	the
setup	script

a	list	of	strings

options default	options
for	the	setup
script

a	string

license The	license	for
the	package

keywords Descriptive	meta-
data.	See	PEP
314

platforms
cmdclass A	mapping	of

command	names
to	Command
subclasses

a	dictionary

run_setup(script_name[,	script_args=None,	stop_after='run'])
Run	a	setup	script	in	a	somewhat	controlled	environment,	and	return	the
distutils.dist.Distribution	instance	that	drives	things.	This	is
useful	if	you	need	to	find	out	the	distribution	meta-data	(passed	as	keyword
args	from	script	to	setup()),	or	the	contents	of	the	config	files	or
command-line.

script_name	is	a	file	that	will	be	run	with	execfile()	sys.argv[0]	will
be	replaced	with	script	for	the	duration	of	the	call.	script_args	is	a	list	of
strings;	if	supplied,	sys.argv[1:]	will	be	replaced	by	script_args	for	the
duration	of	the	call.

stop_after	tells	setup()	when	to	stop	processing;	possible	values:

value description
init Stop	after	the	Distribution	instance	has	been	created

http://www.python.org/peps/pep-0314.html

and	populated	with	the	keyword	arguments	to	setup()
config Stop	after	config	files	have	been	parsed	(and	their	data

stored	in	the	Distribution	instance)
commandline Stop	after	the	command-line	(sys.argv[1:]	or

script_args)	have	been	parsed	(and	the	data	stored	in	the
Distribution	instance.)

run Stop	after	all	commands	have	been	run	(the	same	as	if
setup()	had	been	called	in	the	usual	way).	This	is	the
default	value.

In	addition,	the	distutils.core	module	exposed	a	number	of	classes	that
live	elsewhere.

Extension	from	distutils.extension
Command	from	distutils.cmd
Distribution	from	distutils.dist

A	short	description	of	each	of	these	follows,	but	see	the	relevant	module	for	the
full	reference.

class	Extension

The	Extension	class	describes	a	single	C	or	C++extension	module	in	a	setup
script.	It	accepts	the	following	keyword	arguments	in	it's	constructor

argument	name value type
name the	full	name	of	the	extension,

including	any	packages	--	ie.	not	a
filename	or	pathname,	but	Python
dotted	name

string

sources list	of	source	filenames,	relative	to
the	distribution	root	(where	the
setup	script	lives),	in	Unix	form
(slash-separated)	for	portability.
Source	files	may	be	C,	C++,	SWIG
(.i),	platform-specific	resource
files,	or	whatever	else	is
recognized	by	the	build_ext

string

command	as	source	for	a	Python
extension.

include_dirs list	of	directories	to	search	for
C/C++	header	files	(in	UNIX	form
for	portability)

string

define_macros list	of	macros	to	define;	each
macro	is	defined	using	a	2-tuple,
where	'value'	is	either	the	string	to
define	it	to	or	None	to	define	it
without	a	particular	value
(equivalent	of	#define	FOO	in
source	or	-DFOO	on	UNIX	C
compiler	command	line)

(string,string)
tuple	or
(name,None)

undef_macros list	of	macros	to	undefine
explicitly

string

library_dirs list	of	directories	to	search	for
C/C++	libraries	at	link	time

string

libraries list	of	library	names	(not	filenames
or	paths)	to	link	against

string

runtime_library_dirs list	of	directories	to	search	for
C/C++	libraries	at	run	time	(for
shared	extensions,	this	is	when	the
extension	is	loaded)

string

extra_objects list	of	extra	files	to	link	with	(eg.
object	files	not	implied	by
'sources',	static	library	that	must	be
explicitly	specified,	binary
resource	files,	etc.)

string

extra_compile_args any	extra	platform-	and	compiler-
specific	information	to	use	when
compiling	the	source	files	in
'sources'.	For	platforms	and
compilers	where	a	command	line
makes	sense,	this	is	typically	a	list
of	command-line	arguments,	but
for	other	platforms	it	could	be
anything.

string

extra_link_args any	extra	platform-	and	compiler-
specific	information	to	use	when
linking	object	files	together	to
create	the	extension	(or	to	create	a
new	static	Python	interpreter).
Similar	interpretation	as	for
'extra_compile_args'.

string

export_symbols list	of	symbols	to	be	exported	from
a	shared	extension.	Not	used	on	all
platforms,	and	not	generally
necessary	for	Python	extensions,
which	typically	export	exactly	one
symbol:	init	+	extension_name.

string

depends list	of	files	that	the	extension
depends	on

string

language extension	language	(i.e.	'c',
'c++',	'objc').	Will	be
detected	from	the	source
extensions	if	not	provided.

string

class	Distribution
A	Distribution	describes	how	to	build,	install	and	package	up	a
Python	software	package.

See	the	setup()	function	for	a	list	of	keyword	arguments	accepted	by	the
Distribution	constructor.	setup()	creates	a	Distribution	instance.

class	Command
A	Command	class	(or	rather,	an	instance	of	one	of	it's	subclasses)
implement	a	single	distutils	command.

Distributing	Python	Modules
Previous:	10.	API	Reference	Up:	10.	API	Reference	Next:	10.2
distutils.ccompiler

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.1	distutils.core	Up:	10.	API	Reference	Next:	10.3
distutils.unixccompiler

10.2	distutils.ccompiler	--
CCompiler	base	class
This	module	provides	the	abstract	base	class	for	the	CCompiler	classes.	A
CCompiler	instance	can	be	used	for	all	the	compile	and	link	steps	needed	to
build	a	single	project.	Methods	are	provided	to	set	options	for	the	compiler	--
macro	definitions,	include	directories,	link	path,	libraries	and	the	like.

This	module	provides	the	following	functions.

gen_lib_options(compiler,	library_dirs,	runtime_library_dirs,	libraries)
Generate	linker	options	for	searching	library	directories	and	linking	with
specific	libraries.	libraries	and	library_dirs	are,	respectively,	lists	of	library
names	(not	filenames!)	and	search	directories.	Returns	a	list	of	command-
line	options	suitable	for	use	with	some	compiler	(depending	on	the	two
format	strings	passed	in).

gen_preprocess_options(macros,	include_dirs)
Generate	C	pre-processor	options	(-D,	-U,	-I)	as	used	by	at	least	two	types
of	compilers:	the	typical	UNIX	compiler	and	Visual	C++.	macros	is	the	usual
thing,	a	list	of	1-	or	2-tuples,	where	(name,)	means	undefine	(-U)	macro
name,	and	(name,value)	means	define	(-D)	macro	name	to	value.
include_dirs	is	just	a	list	of	directory	names	to	be	added	to	the	header	file
search	path	(-I).	Returns	a	list	of	command-line	options	suitable	for	either
UNIX	compilers	or	Visual	C++.

get_default_compiler(osname,	platform)
Determine	the	default	compiler	to	use	for	the	given	platform.

osname	should	be	one	of	the	standard	Python	OS	names	(i.e.	the	ones
returned	by	os.name)	and	platform	the	common	value	returned	by
sys.platform	for	the	platform	in	question.

The	default	values	are	os.name	and	sys.platform	in	case	the
parameters	are	not	given.

new_compiler(plat=None,	compiler=None,	verbose=0,	dry_run=0,force=0)
Factory	function	to	generate	an	instance	of	some	CCompiler	subclass	for
the	supplied	platform/compiler	combination.	plat	defaults	to	os.name	(eg.
'posix',	'nt'),	and	compiler	defaults	to	the	default	compiler	for	that
platform.	Currently	only	'posix'	and	'nt'	are	supported,	and	the
default	compilers	are	``traditional	UNIX	interface''	(UnixCCompiler
class)	and	Visual	C++(MSVCCompiler	class).	Note	that	it's	perfectly
possible	to	ask	for	a	UNIX	compiler	object	under	Windows,	and	a	Microsoft
compiler	object	under	UNIX--if	you	supply	a	value	for	compiler,	plat	is
ignored.

show_compilers()
Print	list	of	available	compilers	(used	by	the	--help-compiler	options	to
build,	build_ext,	build_clib).

class	CCompiler([verbose=0,	dry_run=0,	force=0])

The	abstract	base	class	CCompiler	defines	the	interface	that	must	be
implemented	by	real	compiler	classes.	The	class	also	has	some	utility
methods	used	by	several	compiler	classes.

The	basic	idea	behind	a	compiler	abstraction	class	is	that	each	instance	can
be	used	for	all	the	compile/link	steps	in	building	a	single	project.	Thus,
attributes	common	to	all	of	those	compile	and	link	steps	--	include
directories,	macros	to	define,	libraries	to	link	against,	etc.	--	are	attributes	of
the	compiler	instance.	To	allow	for	variability	in	how	individual	files	are
treated,	most	of	those	attributes	may	be	varied	on	a	per-compilation	or	per-
link	basis.

The	constructor	for	each	subclass	creates	an	instance	of	the	Compiler
object.	Flags	are	verbose	(show	verbose	output),	dry_run	(don't	actually
execute	the	steps)	and	force	(rebuild	everything,	regardless	of
dependencies).	All	of	these	flags	default	to	0	(off).	Note	that	you	probably
don't	want	to	instantiate	CCompiler	or	one	of	it's	subclasses	directly	-	use
the	distutils.CCompiler.new_compiler()	factory	function
instead.

The	following	methods	allow	you	to	manually	alter	compiler	options	for	the
instance	of	the	Compiler	class.

add_include_dir(dir)
Add	dir	to	the	list	of	directories	that	will	be	searched	for	header	files.
The	compiler	is	instructed	to	search	directories	in	the	order	in	which
they	are	supplied	by	successive	calls	to	add_include_dir().

set_include_dirs(dirs)
Set	the	list	of	directories	that	will	be	searched	to	dirs	(a	list	of	strings).
Overrides	any	preceding	calls	to	add_include_dir();	subsequent
calls	to	add_include_dir()	add	to	the	list	passed	to
set_include_dirs().	This	does	not	affect	any	list	of	standard
include	directories	that	the	compiler	may	search	by	default.

add_library(libname)

Add	libname	to	the	list	of	libraries	that	will	be	included	in	all	links
driven	by	this	compiler	object.	Note	that	libname	should	*not*	be	the
name	of	a	file	containing	a	library,	but	the	name	of	the	library	itself:
the	actual	filename	will	be	inferred	by	the	linker,	the	compiler,	or	the
compiler	class	(depending	on	the	platform).

The	linker	will	be	instructed	to	link	against	libraries	in	the	order	they
were	supplied	to	add_library()	and/or	set_libraries().	It
is	perfectly	valid	to	duplicate	library	names;	the	linker	will	be
instructed	to	link	against	libraries	as	many	times	as	they	are
mentioned.

set_libraries(libnames)
Set	the	list	of	libraries	to	be	included	in	all	links	driven	by	this
compiler	object	to	libnames	(a	list	of	strings).	This	does	not	affect	any
standard	system	libraries	that	the	linker	may	include	by	default.

add_library_dir(dir)
Add	dir	to	the	list	of	directories	that	will	be	searched	for	libraries
specified	to	add_library()	and	set_libraries().	The	linker
will	be	instructed	to	search	for	libraries	in	the	order	they	are	supplied

to	add_library_dir()	and/or	set_library_dirs().

set_library_dirs(dirs)
Set	the	list	of	library	search	directories	to	dirs	(a	list	of	strings).	This
does	not	affect	any	standard	library	search	path	that	the	linker	may
search	by	default.

add_runtime_library_dir(dir)
Add	dir	to	the	list	of	directories	that	will	be	searched	for	shared
libraries	at	runtime.

set_runtime_library_dirs(dirs)
Set	the	list	of	directories	to	search	for	shared	libraries	at	runtime	to
dirs	(a	list	of	strings).	This	does	not	affect	any	standard	search	path
that	the	runtime	linker	may	search	by	default.

define_macro(name[,	value=None])
Define	a	preprocessor	macro	for	all	compilations	driven	by	this
compiler	object.	The	optional	parameter	value	should	be	a	string;	if	it
is	not	supplied,	then	the	macro	will	be	defined	without	an	explicit
value	and	the	exact	outcome	depends	on	the	compiler	used	(XXX
true?	does	ANSI	say	anything	about	this?)

undefine_macro(name)
Undefine	a	preprocessor	macro	for	all	compilations	driven	by	this
compiler	object.	If	the	same	macro	is	defined	by	define_macro()
and	undefined	by	undefine_macro()	the	last	call	takes
precedence	(including	multiple	redefinitions	or	undefinitions).	If	the
macro	is	redefined/undefined	on	a	per-compilation	basis	(ie.	in	the	call
to	compile()),	then	that	takes	precedence.

add_link_object(object)
Add	object	to	the	list	of	object	files	(or	analogues,	such	as	explicitly
named	library	files	or	the	output	of	``resource	compilers'')	to	be
included	in	every	link	driven	by	this	compiler	object.

set_link_objects(objects)

Set	the	list	of	object	files	(or	analogues)	to	be	included	in	every	link	to
objects.	This	does	not	affect	any	standard	object	files	that	the	linker
may	include	by	default	(such	as	system	libraries).

The	following	methods	implement	methods	for	autodetection	of	compiler
options,	providing	some	functionality	similar	to	GNU	autoconf.

detect_language(sources)
Detect	the	language	of	a	given	file,	or	list	of	files.	Uses	the	instance
attributes	language_map	(a	dictionary),	and	language_order	(a
list)	to	do	the	job.

find_library_file(dirs,	lib[,	debug=0])
Search	the	specified	list	of	directories	for	a	static	or	shared	library	file
lib	and	return	the	full	path	to	that	file.	If	debug	is	true,	look	for	a
debugging	version	(if	that	makes	sense	on	the	current	platform).
Return	None	if	lib	wasn't	found	in	any	of	the	specified	directories.

has_function(funcname	[,	includes=None,	include_dirs=None,
libraries=None,	library_dirs=None])

Return	a	boolean	indicating	whether	funcname	is	supported	on	the
current	platform.	The	optional	arguments	can	be	used	to	augment	the
compilation	environment	by	providing	additional	include	files	and
paths	and	libraries	and	paths.

library_dir_option(dir)
Return	the	compiler	option	to	add	dir	to	the	list	of	directories	searched
for	libraries.

library_option(lib)
Return	the	compiler	option	to	add	dir	to	the	list	of	libraries	linked	into
the	shared	library	or	executable.

runtime_library_dir_option(dir)
Return	the	compiler	option	to	add	dir	to	the	list	of	directories	searched
for	runtime	libraries.

set_executables(**args)
Define	the	executables	(and	options	for	them)	that	will	be	run	to
perform	the	various	stages	of	compilation.	The	exact	set	of	executables
that	may	be	specified	here	depends	on	the	compiler	class	(via	the
'executables'	class	attribute),	but	most	will	have:

attribute description
compiler the	C/C++	compiler
linker_so linker	used	to	create	shared	objects	and	libraries
linker_exe linker	used	to	create	binary	executables
archiver static	library	creator

On	platforms	with	a	command-line	(UNIX,	DOS/Windows),	each	of
these	is	a	string	that	will	be	split	into	executable	name	and	(optional)
list	of	arguments.	(Splitting	the	string	is	done	similarly	to	how	UNIX

shells	operate:	words	are	delimited	by	spaces,	but	quotes	and
backslashes	can	override	this.	See
distutils.util.split_quoted().)

The	following	methods	invoke	stages	in	the	build	process.

compile(
sources[,	output_dir=None,	macros=None,
include_dirs=None,	debug=0,	extra_preargs=None,
extra_postargs=None,	depends=None])

Compile	one	or	more	source	files.	Generates	object	files	(e.g.
transforms	a	.c	file	to	a	.o	file.)

sources	must	be	a	list	of	filenames,	most	likely	C/C++	files,	but	in
reality	anything	that	can	be	handled	by	a	particular	compiler	and
compiler	class	(eg.	MSVCCompiler	can	handle	resource	files	in
sources).	Return	a	list	of	object	filenames,	one	per	source	filename	in
sources.	Depending	on	the	implementation,	not	all	source	files	will
necessarily	be	compiled,	but	all	corresponding	object	filenames	will	be
returned.

If	output_dir	is	given,	object	files	will	be	put	under	it,	while	retaining
their	original	path	component.	That	is,	foo/bar.c	normally	compiles	to
foo/bar.o	(for	a	UNIX	implementation);	if	output_dir	is	build,	then	it

would	compile	to	build/foo/bar.o.

macros,	if	given,	must	be	a	list	of	macro	definitions.	A	macro
definition	is	either	a	(name,	value)	2-tuple	or	a	(name,)	1-tuple.	The
former	defines	a	macro;	if	the	value	is	None,	the	macro	is	defined
without	an	explicit	value.	The	1-tuple	case	undefines	a	macro.	Later
definitions/redefinitions/undefinitions	take	precedence.

include_dirs,	if	given,	must	be	a	list	of	strings,	the	directories	to	add	to
the	default	include	file	search	path	for	this	compilation	only.

debug	is	a	boolean;	if	true,	the	compiler	will	be	instructed	to	output
debug	symbols	in	(or	alongside)	the	object	file(s).

extra_preargs	and	extra_postargs	are	implementation-	dependent.	On
platforms	that	have	the	notion	of	a	command-line	(e.g.	UNIX,
DOS/Windows),	they	are	most	likely	lists	of	strings:	extra	command-
line	arguments	to	prepand/append	to	the	compiler	command	line.	On
other	platforms,	consult	the	implementation	class	documentation.	In
any	event,	they	are	intended	as	an	escape	hatch	for	those	occasions
when	the	abstract	compiler	framework	doesn't	cut	the	mustard.

depends,	if	given,	is	a	list	of	filenames	that	all	targets	depend	on.	If	a
source	file	is	older	than	any	file	in	depends,	then	the	source	file	will	be
recompiled.	This	supports	dependency	tracking,	but	only	at	a	coarse
granularity.

Raises	CompileError	on	failure.

create_static_lib(objects,	output_libname[,	output_dir=None,
debug=0,	target_lang=None])

Link	a	bunch	of	stuff	together	to	create	a	static	library	file.	The
``bunch	of	stuff''	consists	of	the	list	of	object	files	supplied	as	objects,
the	extra	object	files	supplied	to	add_link_object()	and/or
set_link_objects(),	the	libraries	supplied	to
add_library()	and/or	set_libraries(),	and	the	libraries
supplied	as	libraries	(if	any).

output_libname	should	be	a	library	name,	not	a	filename;	the	filename

will	be	inferred	from	the	library	name.	output_dir	is	the	directory
where	the	library	file	will	be	put.	XXX	defaults	to	what?

debug	is	a	boolean;	if	true,	debugging	information	will	be	included	in
the	library	(note	that	on	most	platforms,	it	is	the	compile	step	where
this	matters:	the	debug	flag	is	included	here	just	for	consistency).

target_lang	is	the	target	language	for	which	the	given	objects	are	being
compiled.	This	allows	specific	linkage	time	treatment	of	certain
languages.

Raises	LibError	on	failure.

link(

target_desc,	objects,	output_filename[,	output_dir=None,
libraries=None,	library_dirs=None,	runtime_library_dirs=None,
export_symbols=None,	debug=0,	extra_preargs=None,
extra_postargs=None,	build_temp=None,	target_lang=None])

Link	a	bunch	of	stuff	together	to	create	an	executable	or	shared	library
file.

The	``bunch	of	stuff''	consists	of	the	list	of	object	files	supplied	as
objects.	output_filename	should	be	a	filename.	If	output_dir	is
supplied,	output_filename	is	relative	to	it	(i.e.	output_filename	can
provide	directory	components	if	needed).

libraries	is	a	list	of	libraries	to	link	against.	These	are	library	names,
not	filenames,	since	they're	translated	into	filenames	in	a	platform-
specific	way	(eg.	foo	becomes	libfoo.a	on	UNIX	and	foo.lib	on
DOS/Windows).	However,	they	can	include	a	directory	component,
which	means	the	linker	will	look	in	that	specific	directory	rather	than
searching	all	the	normal	locations.

library_dirs,	if	supplied,	should	be	a	list	of	directories	to	search	for
libraries	that	were	specified	as	bare	library	names	(ie.	no	directory
component).	These	are	on	top	of	the	system	default	and	those	supplied
to	add_library_dir()	and/or	set_library_dirs().
runtime_library_dirs	is	a	list	of	directories	that	will	be	embedded	into
the	shared	library	and	used	to	search	for	other	shared	libraries	that	*it*
depends	on	at	run-time.	(This	may	only	be	relevant	on	UNIX.)

export_symbols	is	a	list	of	symbols	that	the	shared	library	will	export.
(This	appears	to	be	relevant	only	on	Windows.)

debug	is	as	for	compile()	and	create_static_lib(),	with
the	slight	distinction	that	it	actually	matters	on	most	platforms	(as
opposed	to	create_static_lib(),	which	includes	a	debug	flag
mostly	for	form's	sake).

extra_preargs	and	extra_postargs	are	as	for	compile()	(except	of
course	that	they	supply	command-line	arguments	for	the	particular
linker	being	used).

target_lang	is	the	target	language	for	which	the	given	objects	are	being
compiled.	This	allows	specific	linkage	time	treatment	of	certain
languages.

Raises	LinkError	on	failure.

link_executable(

objects,	output_progname[,	output_dir=None,
libraries=None,	library_dirs=None,
runtime_library_dirs=None,	debug=0,
extra_preargs=None,	extra_postargs=None,
target_lang=None])

Link	an	executable.	output_progname	is	the	name	of	the	file
executable,	while	objects	are	a	list	of	object	filenames	to	link	in.	Other
arguments	are	as	for	the	link	method.

link_shared_lib(

objects,	output_libname[,	output_dir=None,
libraries=None,	library_dirs=None,
runtime_library_dirs=None,
export_symbols=None,	debug=0,
extra_preargs=None,	extra_postargs=None,
build_temp=None,	target_lang=None])

Link	a	shared	library.	output_libname	is	the	name	of	the	output	library,
while	objects	is	a	list	of	object	filenames	to	link	in.	Other	arguments
are	as	for	the	link	method.

link_shared_object(

objects,	output_filename[,	output_dir=None,
libraries=None,	library_dirs=None,
runtime_library_dirs=None,
export_symbols=None,	debug=0,
extra_preargs=None,	extra_postargs=None,
build_temp=None,	target_lang=None])

Link	a	shared	object.	output_filename	is	the	name	of	the	shared	object
that	will	be	created,	while	objects	is	a	list	of	object	filenames	to	link
in.	Other	arguments	are	as	for	the	link	method.

preprocess(
source[,	output_file=None,	macros=None,
include_dirs=None,	extra_preargs=None,
extra_postargs=None])

Preprocess	a	single	C/C++	source	file,	named	in	source.	Output	will	be
written	to	file	named	output_file,	or	stdout	if	output_file	not	supplied.
macros	is	a	list	of	macro	definitions	as	for	compile(),	which	will
augment	the	macros	set	with	define_macro()	and
undefine_macro().	include_dirs	is	a	list	of	directory	names	that
will	be	added	to	the	default	list,	in	the	same	way	as
add_include_dir().

Raises	PreprocessError	on	failure.

The	following	utility	methods	are	defined	by	the	CCompiler	class,	for	use
by	the	various	concrete	subclasses.

executable_filename(basename[,	strip_dir=0,	output_dir=''])
Returns	the	filename	of	the	executable	for	the	given	basename.
Typically	for	non-Windows	platforms	this	is	the	same	as	the
basename,	while	Windows	will	get	a	.exe	added.

library_filename(libname[,	lib_type='static',	strip_dir=0,
output_dir=''])

Returns	the	filename	for	the	given	library	name	on	the	current
platform.	On	UNIX	a	library	with	lib_type	of	'static'	will	typically
be	of	the	form	liblibname.a,	while	a	lib_type	of	'dynamic'	will	be
of	the	form	liblibname.so.

object_filenames(source_filenames[,	strip_dir=0,	output_dir=''])
Returns	the	name	of	the	object	files	for	the	given	source	files.
source_filenames	should	be	a	list	of	filenames.

shared_object_filename(basename[,	strip_dir=0,
output_dir=''])

Returns	the	name	of	a	shared	object	file	for	the	given	file	name
basename.

execute(func,	args[,	msg=None,	level=1])
Invokes	distutils.util.execute()	This	method	invokes	a
Python	function	func	with	the	given	arguments	args,	after	logging	and
taking	into	account	the	dry_run	flag.	XXX	see	also.

spawn(cmd)
Invokes	distutils.util.spawn().	This	invokes	an	external
process	to	run	the	given	command.	XXX	see	also.

mkpath(name[,	mode=511])

Invokes	distutils.dir_util.mkpath().	This	creates	a
directory	and	any	missing	ancestor	directories.	XXX	see	also.

move_file(src,	dst)
Invokes	distutils.file_util.move_file().	Renames	src
to	dst.	XXX	see	also.

announce(msg[,	level=1])
Write	a	message	using	distutils.log.debug().	XXX	see	also.

warn(msg)
Write	a	warning	message	msg	to	standard	error.

debug_print(msg)
If	the	debug	flag	is	set	on	this	CCompiler	instance,	print	msg	to
standard	output,	otherwise	do	nothing.

Distributing	Python	Modules
Previous:	10.1	distutils.core	Up:	10.	API	Reference	Next:	10.3
distutils.unixccompiler

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.2	distutils.ccompiler	Up:	10.	API	Reference	Next:	10.4
distutils.msvccompiler

10.3	distutils.unixccompiler	--
Unix	C	Compiler
This	module	provides	the	UnixCCompiler	class,	a	subclass	of	CCompiler
that	handles	the	typical	UNIX-style	command-line	C	compiler:

macros	defined	with	-Dname[=value]
macros	undefined	with	-Uname
include	search	directories	specified	with	-Idir
libraries	specified	with	-llib
library	search	directories	specified	with	-Ldir
compile	handled	by	cc	(or	similar)	executable	with	-c	option:	compiles	.c	to
.o
link	static	library	handled	by	ar	command	(possibly	with	ranlib)
link	shared	library	handled	by	cc	-shared

Distributing	Python	Modules
Previous:	10.2	distutils.ccompiler	Up:	10.	API	Reference	Next:	10.4
distutils.msvccompiler

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.3	distutils.unixccompiler	Up:	10.	API	Reference	Next:	10.5
distutils.bcppcompiler

10.4	distutils.msvccompiler	--
Microsoft	Compiler
This	module	provides	MSVCCompiler,	an	implementation	of	the	abstract
CCompiler	class	for	Microsoft	Visual	Studio.	It	should	also	work	using	the
freely	available	compiler	provided	as	part	of	the	.Net	SDK	download.	XXX
download	link.

Distributing	Python	Modules
Previous:	10.3	distutils.unixccompiler	Up:	10.	API	Reference	Next:	10.5
distutils.bcppcompiler

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.4	distutils.msvccompiler	Up:	10.	API	Reference	Next:	10.6
distutils.cygwincompiler

10.5	distutils.bcppcompiler	--
Borland	Compiler
This	module	provides	BorlandCCompiler,	an	subclass	of	the	abstract
CCompiler	class	for	the	Borland	C++	compiler.

Distributing	Python	Modules
Previous:	10.4	distutils.msvccompiler	Up:	10.	API	Reference	Next:	10.6
distutils.cygwincompiler

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.5	distutils.bcppcompiler	Up:	10.	API	Reference	Next:	10.7
distutils.emxccompiler

10.6	distutils.cygwincompiler	--
Cygwin	Compiler
This	module	provides	the	CygwinCCompiler	class,	a	subclass	of
UnixCCompiler	that	handles	the	Cygwin	port	of	the	GNU	C	compiler	to
Windows.	It	also	contains	the	Mingw32CCompiler	class	which	handles	the
mingw32	port	of	GCC	(same	as	cygwin	in	no-cygwin	mode).

Distributing	Python	Modules
Previous:	10.5	distutils.bcppcompiler	Up:	10.	API	Reference	Next:	10.7
distutils.emxccompiler

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.6	distutils.cygwincompiler	Up:	10.	API	Reference	Next:	10.8
distutils.mwerkscompiler

10.7	distutils.emxccompiler	--
OS/2	EMX	Compiler
This	module	provides	the	EMXCCompiler	class,	a	subclass	of
UnixCCompiler	that	handles	the	EMX	port	of	the	GNU	C	compiler	to	OS/2.

Distributing	Python	Modules
Previous:	10.6	distutils.cygwincompiler	Up:	10.	API	Reference	Next:	10.8
distutils.mwerkscompiler

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.7	distutils.emxccompiler	Up:	10.	API	Reference	Next:	10.9
distutils.archive_util

10.8	distutils.mwerkscompiler	--
Metrowerks	CodeWarrior	support
Contains	MWerksCompiler,	an	implementation	of	the	abstract	CCompiler
class	for	MetroWerks	CodeWarrior	on	the	Macintosh.	Needs	work	to	support
CW	on	Windows.

Distributing	Python	Modules
Previous:	10.7	distutils.emxccompiler	Up:	10.	API	Reference	Next:	10.9
distutils.archive_util

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.8	distutils.mwerkscompiler	Up:	10.	API	Reference	Next:	10.10
distutils.dep_util

10.9	distutils.archive_util	--
Archiving	utilities
This	module	provides	a	few	functions	for	creating	archive	files,	such	as	tarballs
or	zipfiles.

make_archive(base_name,	format[,	root_dir=None,	base_dir=None,
verbose=0,	dry_run=0])

Create	an	archive	file	(eg.	zip	or	tar).	base_name	is	the	name	of	the	file
to	create,	minus	any	format-specific	extension;	format	is	the	archive	format:
one	of	zip,	tar,	ztar,	or	gztar.	root_dir	is	a	directory	that	will	be	the
root	directory	of	the	archive;	ie.	we	typically	chdir	into	root_dir	before
creating	the	archive.	base_dir	is	the	directory	where	we	start	archiving
from;	ie.	base_dir	will	be	the	common	prefix	of	all	files	and	directories	in
the	archive.	root_dir	and	base_dir	both	default	to	the	current	directory.
Returns	the	name	of	the	archive	file.

Warning:	This	should	be	changed	to	support	bz2	files

make_tarball(base_name,	base_dir[,	compress='gzip',	verbose=0,
dry_run=0])

'Create	an	(optional	compressed)	archive	as	a	tar	file	from	all	files	in	and
under	base_dir.	compress	must	be	'gzip'	(the	default),	'compress',
'bzip2',	or	None.	Both	'tar'	and	the	compression	utility	named	by
'compress'	must	be	on	the	default	program	search	path,	so	this	is	probably
UNIX-specific.	The	output	tar	file	will	be	named	base_dir.tar,	possibly	plus
the	appropriate	compression	extension	(.gz,	.bz2	or	.Z).	Return	the	output
filename.

Warning:	This	should	be	replaced	with	calls	to	the	tarfile	module.

make_zipfile(base_name,	base_dir[,	verbose=0,	dry_run=0])
Create	a	zip	file	from	all	files	in	and	under	base_dir.	The	output	zip	file	will
be	named	base_dir	+	.zip.	Uses	either	the	zipfile	Python	module	(if

available)	or	the	InfoZIP	zip	utility	(if	installed	and	found	on	the	default
search	path).	If	neither	tool	is	available,	raises	DistutilsExecError.
Returns	the	name	of	the	output	zip	file.

Distributing	Python	Modules
Previous:	10.8	distutils.mwerkscompiler	Up:	10.	API	Reference	Next:	10.10
distutils.dep_util

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.9	distutils.archive_util	Up:	10.	API	Reference	Next:	10.11
distutils.dir_util

10.10	distutils.dep_util	--
Dependency	checking
This	module	provides	functions	for	performing	simple,	timestamp-based
dependency	of	files	and	groups	of	files;	also,	functions	based	entirely	on	such
timestamp	dependency	analysis.

newer(source,	target)
Return	true	if	source	exists	and	is	more	recently	modified	than	target,	or	if
source	exists	and	target	doesn't.	Return	false	if	both	exist	and	target	is	the
same	age	or	newer	than	source.	Raise	DistutilsFileError	if	source
does	not	exist.

newer_pairwise(sources,	targets)
Walk	two	filename	lists	in	parallel,	testing	if	each	source	is	newer	than	its
corresponding	target.	Return	a	pair	of	lists	(sources,	targets)	where	source
is	newer	than	target,	according	to	the	semantics	of	newer()

newer_group(sources,	target[,	missing='error'])
Return	true	if	target	is	out-of-date	with	respect	to	any	file	listed	in	sources
In	other	words,	if	target	exists	and	is	newer	than	every	file	in	sources,
return	false;	otherwise	return	true.	missing	controls	what	we	do	when	a
source	file	is	missing;	the	default	('error')	is	to	blow	up	with	an
OSError	from	inside	os.stat();	if	it	is	'ignore',	we	silently	drop
any	missing	source	files;	if	it	is	'newer',	any	missing	source	files	make
us	assume	that	target	is	out-of-date	(this	is	handy	in	``dry-run''	mode:	it'll
make	you	pretend	to	carry	out	commands	that	wouldn't	work	because	inputs
are	missing,	but	that	doesn't	matter	because	you're	not	actually	going	to	run
the	commands).

Distributing	Python	Modules
Previous:	10.9	distutils.archive_util	Up:	10.	API	Reference	Next:	10.11
distutils.dir_util

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.10	distutils.dep_util	Up:	10.	API	Reference	Next:	10.12
distutils.file_util

10.11	distutils.dir_util	--
Directory	tree	operations
This	module	provides	functions	for	operating	on	directories	and	trees	of
directories.

mkpath(name[,	mode=0777,	verbose=0,	dry_run=0])
Create	a	directory	and	any	missing	ancestor	directories.	If	the	directory
already	exists	(or	if	name	is	the	empty	string,	which	means	the	current
directory,	which	of	course	exists),	then	do	nothing.	Raise
DistutilsFileError	if	unable	to	create	some	directory	along	the	way
(eg.	some	sub-path	exists,	but	is	a	file	rather	than	a	directory).	If	verbose	is
true,	print	a	one-line	summary	of	each	mkdir	to	stdout.	Return	the	list	of
directories	actually	created.

create_tree(base_dir,	files[,	mode=0777,	verbose=0,	dry_run=0])
Create	all	the	empty	directories	under	base_dir	needed	to	put	files	there.
base_dir	is	just	the	a	name	of	a	directory	which	doesn't	necessarily	exist
yet;	files	is	a	list	of	filenames	to	be	interpreted	relative	to	base_dir.
base_dir	+	the	directory	portion	of	every	file	in	files	will	be	created	if	it
doesn't	already	exist.	mode,	verbose	and	dry_run	flags	are	as	for
mkpath().

copy_tree(src,	dst[preserve_mode=1,	preserve_times=1,
preserve_symlinks=0,	update=0,	verbose=0,	dry_run=0])

Copy	an	entire	directory	tree	src	to	a	new	location	dst.	Both	src	and	dst
must	be	directory	names.	If	src	is	not	a	directory,	raise
DistutilsFileError.	If	dst	does	not	exist,	it	is	created	with	mkpath().
The	end	result	of	the	copy	is	that	every	file	in	src	is	copied	to	dst,	and
directories	under	src	are	recursively	copied	to	dst.	Return	the	list	of	files
that	were	copied	or	might	have	been	copied,	using	their	output	name.	The
return	value	is	unaffected	by	update	or	dry_run:	it	is	simply	the	list	of	all
files	under	src,	with	the	names	changed	to	be	under	dst.

preserve_mode	and	preserve_times	are	the	same	as	for	copy_file	in
distutils.file_util;	note	that	they	only	apply	to	regular	files,	not
to	directories.	If	preserve_symlinks	is	true,	symlinks	will	be	copied	as
symlinks	(on	platforms	that	support	them!);	otherwise	(the	default),	the
destination	of	the	symlink	will	be	copied.	update	and	verbose	are	the	same
as	for	copy_file().

remove_tree(directory[verbose=0,	dry_run=0])
Recursively	remove	directory	and	all	files	and	directories	underneath	it.
Any	errors	are	ignored	(apart	from	being	reported	to	stdout	if	verbose	is
true).

**	Some	of	this	could	be	replaced	with	the	shutil	module?	**

Distributing	Python	Modules
Previous:	10.10	distutils.dep_util	Up:	10.	API	Reference	Next:	10.12
distutils.file_util

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.11	distutils.dir_util	Up:	10.	API	Reference	Next:	10.13	distutils.util

10.12	distutils.file_util	--
Single	file	operations
This	module	contains	some	utility	functions	for	operating	on	individual	files.

copy_file(src,	dst[preserve_mode=1,	preserve_times=1,	update=0,
link=None,	verbose=0,	dry_run=0])

Copy	file	src	to	dst.	If	dst	is	a	directory,	then	src	is	copied	there	with	the
same	name;	otherwise,	it	must	be	a	filename.	(If	the	file	exists,	it	will	be
ruthlessly	clobbered.)	If	preserve_mode	is	true	(the	default),	the	file's	mode
(type	and	permission	bits,	or	whatever	is	analogous	on	the	current	platform)
is	copied.	If	preserve_times	is	true	(the	default),	the	last-modified	and	last-
access	times	are	copied	as	well.	If	update	is	true,	src	will	only	be	copied	if
dst	does	not	exist,	or	if	dst	does	exist	but	is	older	than	src.

link	allows	you	to	make	hard	links	(using	os.link)	or	symbolic	links
(using	os.symlink)	instead	of	copying:	set	it	to	'hard'	or	'sym';	if	it
is	None	(the	default),	files	are	copied.	Don't	set	link	on	systems	that	don't
support	it:	copy_file()	doesn't	check	if	hard	or	symbolic	linking	is
available.	It	uses	_copy_file_contents()	to	copy	file	contents.

Return	a	tuple	"(dest_name,	copied)":	dest_name	is	the	actual	name
of	the	output	file,	and	copied	is	true	if	the	file	was	copied	(or	would	have
been	copied,	if	dry_run	true).

move_file(src,	dst[verbose,	dry_run])
Move	file	src	to	dst.	If	dst	is	a	directory,	the	file	will	be	moved	into	it	with
the	same	name;	otherwise,	src	is	just	renamed	to	dst.	Returns	the	new	full
name	of	the	file.	Warning:	Handles	cross-device	moves	on	Unix	using
copy_file().	What	about	other	systems???

write_file(filename,	contents)
Create	a	file	called	filename	and	write	contents	(a	sequence	of	strings
without	line	terminators)	to	it.

Distributing	Python	Modules
Previous:	10.11	distutils.dir_util	Up:	10.	API	Reference	Next:	10.13	distutils.util

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.12	distutils.file_util	Up:	10.	API	Reference	Next:	10.14
distutils.dist

10.13	distutils.util	--
Miscellaneous	other	utility	functions
This	module	contains	other	assorted	bits	and	pieces	that	don't	fit	into	any	other
utility	module.

get_platform()
Return	a	string	that	identifies	the	current	platform.	This	is	used	mainly	to
distinguish	platform-specific	build	directories	and	platform-specific	built
distributions.	Typically	includes	the	OS	name	and	version	and	the
architecture	(as	supplied	by	'os.uname()'),	although	the	exact	information
included	depends	on	the	OS;	eg.	for	IRIX	the	architecture	isn't	particularly
important	(IRIX	only	runs	on	SGI	hardware),	but	for	Linux	the	kernel
version	isn't	particularly	important.

Examples	of	returned	values:

linux-i586

linux-alpha

solaris-2.6-sun4u

irix-5.3

irix64-6.2

For	non-POSIX	platforms,	currently	just	returns	sys.platform.

convert_path(pathname)
Return	'pathname'	as	a	name	that	will	work	on	the	native	filesystem,	i.e.
split	it	on	'/'	and	put	it	back	together	again	using	the	current	directory
separator.	Needed	because	filenames	in	the	setup	script	are	always	supplied
in	Unix	style,	and	have	to	be	converted	to	the	local	convention	before	we
can	actually	use	them	in	the	filesystem.	Raises	ValueError	on	non-UNIX-
ish	systems	if	pathname	either	starts	or	ends	with	a	slash.

change_root(new_root,	pathname)
Return	pathname	with	new_root	prepended.	If	pathname	is	relative,	this	is

equivalent	to	"os.path.join(new_root,pathname)"Otherwise,	it
requires	making	pathname	relative	and	then	joining	the	two,	which	is	tricky
on	DOS/Windows	and	Mac	OS.

check_environ()
Ensure	that	'os.environ'	has	all	the	environment	variables	we	guarantee	that
users	can	use	in	config	files,	command-line	options,	etc.	Currently	this
includes:

HOME	-	user's	home	directory	(UNIX	only)
PLAT	-	description	of	the	current	platform,	including	hardware	and	OS
(see	get_platform())

subst_vars(s,	local_vars)
Perform	shell/Perl-style	variable	substitution	on	s.	Every	occurrence	of	$
followed	by	a	name	is	considered	a	variable,	and	variable	is	substituted	by
the	value	found	in	the	local_vars	dictionary,	or	in	os.environ	if	it's	not
in	local_vars.	os.environ	is	first	checked/augmented	to	guarantee	that	it
contains	certain	values:	see	check_environ().	Raise	ValueError
for	any	variables	not	found	in	either	local_vars	or	os.environ.

Note	that	this	is	not	a	fully-fledged	string	interpolation	function.	A	valid
$variable	can	consist	only	of	upper	and	lower	case	letters,	numbers	and
an	underscore.	No	{	}	or	style	quoting	is	available.

grok_environment_error(exc[,	prefix=tex2html_deferred"'error:
'"])

Generate	a	useful	error	message	from	an	EnvironmentError
(IOError	or	OSError)	exception	object.	Handles	Python	1.5.1	and	later
styles,	and	does	what	it	can	to	deal	with	exception	objects	that	don't	have	a
filename	(which	happens	when	the	error	is	due	to	a	two-file	operation,	such
as	rename()	or	link()).	Returns	the	error	message	as	a	string	prefixed
with	prefix.

split_quoted(s)
Split	a	string	up	according	to	Unix	shell-like	rules	for	quotes	and
backslashes.	In	short:	words	are	delimited	by	spaces,	as	long	as	those
spaces	are	not	escaped	by	a	backslash,	or	inside	a	quoted	string.	Single	and

double	quotes	are	equivalent,	and	the	quote	characters	can	be	backslash-
escaped.	The	backslash	is	stripped	from	any	two-character	escape	sequence,
leaving	only	the	escaped	character.	The	quote	characters	are	stripped	from
any	quoted	string.	Returns	a	list	of	words.

execute(func,	args[,	msg=None,	verbose=0,	dry_run=0])
Perform	some	action	that	affects	the	outside	world	(for	instance,	writing	to
the	filesystem).	Such	actions	are	special	because	they	are	disabled	by	the
dry_run	flag.	This	method	takes	care	of	all	that	bureaucracy	for	you;	all	you
have	to	do	is	supply	the	function	to	call	and	an	argument	tuple	for	it	(to
embody	the	``external	action''	being	performed),	and	an	optional	message	to
print.

strtobool(val)
Convert	a	string	representation	of	truth	to	true	(1)	or	false	(0).

True	values	are	y,	yes,	t,	true,	on	and	1;	false	values	are	n,	no,	f,
false,	off	and	0.	Raises	ValueError	if	val	is	anything	else.

byte_compile(py_files[,	optimize=0,	force=0,	prefix=None,
base_dir=None,	verbose=1,	dry_run=0,	direct=None])

Byte-compile	a	collection	of	Python	source	files	to	either	.pyc	or	.pyo	files
in	the	same	directory.	py_files	is	a	list	of	files	to	compile;	any	files	that	don't
end	in	.py	are	silently	skipped.	optimize	must	be	one	of	the	following:

0	-	don't	optimize	(generate	.pyc)
1	-	normal	optimization	(like	"python	-O")
2	-	extra	optimization	(like	"python	-OO")

If	force	is	true,	all	files	are	recompiled	regardless	of	timestamps.

The	source	filename	encoded	in	each	bytecode	file	defaults	to	the	filenames
listed	in	py_files;	you	can	modify	these	with	prefix	and	basedir.	prefix	is	a
string	that	will	be	stripped	off	of	each	source	filename,	and	base_dir	is	a
directory	name	that	will	be	prepended	(after	prefix	is	stripped).	You	can
supply	either	or	both	(or	neither)	of	prefix	and	base_dir,	as	you	wish.

If	dry_run	is	true,	doesn't	actually	do	anything	that	would	affect	the
filesystem.

Byte-compilation	is	either	done	directly	in	this	interpreter	process	with	the
standard	py_compile	module,	or	indirectly	by	writing	a	temporary	script
and	executing	it.	Normally,	you	should	let	byte_compile()	figure	out
to	use	direct	compilation	or	not	(see	the	source	for	details).	The	direct	flag
is	used	by	the	script	generated	in	indirect	mode;	unless	you	know	what
you're	doing,	leave	it	set	to	None.

rfc822_escape(header)
Return	a	version	of	header	escaped	for	inclusion	in	an	RFC	822	header,	by
ensuring	there	are	8	spaces	space	after	each	newline.	Note	that	it	does	no
other	modification	of	the	string.

Distributing	Python	Modules
Previous:	10.12	distutils.file_util	Up:	10.	API	Reference	Next:	10.14
distutils.dist

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.faqs.org/rfcs/rfc822.html

Previous:	10.13	distutils.util	Up:	10.	API	Reference	Next:	10.15
distutils.extension

10.14	distutils.dist	--	The
Distribution	class
This	module	provides	the	Distribution	class,	which	represents	the	module
distribution	being	built/installed/distributed.

Distributing	Python	Modules
Previous:	10.13	distutils.util	Up:	10.	API	Reference	Next:	10.15
distutils.extension

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.14	distutils.dist	Up:	10.	API	Reference	Next:	10.16
distutils.debug

10.15	distutils.extension	--	The
Extension	class
This	module	provides	the	Extension	class,	used	to	describe	C/C++	extension
modules	in	setup	scripts.

Distributing	Python	Modules
Previous:	10.14	distutils.dist	Up:	10.	API	Reference	Next:	10.16
distutils.debug

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.15	distutils.extension	Up:	10.	API	Reference	Next:	10.17
distutils.errors

10.16	distutils.debug	--	Distutils
debug	mode
This	module	provides	the	DEBUG	flag.

Distributing	Python	Modules
Previous:	10.15	distutils.extension	Up:	10.	API	Reference	Next:	10.17
distutils.errors

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.16	distutils.debug	Up:	10.	API	Reference	Next:	10.18
distutils.fancy_getopt

10.17	distutils.errors	--	Distutils
exceptions
Provides	exceptions	used	by	the	Distutils	modules.	Note	that	Distutils	modules
may	raise	standard	exceptions;	in	particular,	SystemExit	is	usually	raised	for
errors	that	are	obviously	the	end-user's	fault	(eg.	bad	command-line	arguments).

This	module	is	safe	to	use	in	"from	...	import	*"	mode;	it	only	exports
symbols	whose	names	start	with	Distutils	and	end	with	Error.

Distributing	Python	Modules
Previous:	10.16	distutils.debug	Up:	10.	API	Reference	Next:	10.18
distutils.fancy_getopt

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.17	distutils.errors	Up:	10.	API	Reference	Next:	10.19
distutils.filelist

10.18	distutils.fancy_getopt	--
Wrapper	around	the	standard	getopt
module
This	module	provides	a	wrapper	around	the	standard	getopt	module	that
provides	the	following	additional	features:

short	and	long	options	are	tied	together
options	have	help	strings,	so	fancy_getopt	could	potentially	create	a
complete	usage	summary
options	set	attributes	of	a	passed-in	object
boolean	options	can	have	``negative	aliases''	--	eg.	if	--quiet	is	the
``negative	alias''	of	--verbose,	then	--quiet	on	the	command	line	sets
verbose	to	false.

**	Should	be	replaced	with	optik	(which	is	also	now	known	as	optparse
in	Python	2.3	and	later).	**

fancy_getopt(options,	negative_opt,	object,	args)
Wrapper	function.	options	is	a	list	of	"(long_option,
short_option,	help_string)"	3-tuples	as	described	in	the
constructor	for	FancyGetopt.	negative_opt	should	be	a	dictionary
mapping	option	names	to	option	names,	both	the	key	and	value	should	be	in
the	options	list.	object	is	an	object	which	will	be	used	to	store	values	(see
the	getopt()	method	of	the	FancyGetopt	class).	args	is	the	argument
list.	Will	use	sys.argv[1:]	if	you	pass	None	as	args.

wrap_text(text,	width)
Wraps	text	to	less	than	width	wide.

Warning:	Should	be	replaced	with	textwrap	(which	is	available	in
Python	2.3	and	later).

class	FancyGetopt([option_table=None])

The	option_table	is	a	list	of	3-tuples:	"(long_option,
short_option,	help_string)"

If	an	option	takes	an	argument,	it's	long_option	should	have	'='	appended;
short_option	should	just	be	a	single	character,	no	':'	in	any	case.
short_option	should	be	None	if	a	long_option	doesn't	have	a	corresponding
short_option.	All	option	tuples	must	have	long	options.

The	FancyGetopt	class	provides	the	following	methods:

getopt([args=None,	object=None])
Parse	command-line	options	in	args.	Store	as	attributes	on	object.

If	args	is	None	or	not	supplied,	uses	sys.argv[1:].	If	object	is	None
or	not	supplied,	creates	a	new	OptionDummy	instance,	stores	option
values	there,	and	returns	a	tuple	"(args,	object)".	If	object	is
supplied,	it	is	modified	in	place	and	getopt()	just	returns	args;	in	both
cases,	the	returned	args	is	a	modified	copy	of	the	passed-in	args	list,	which
is	left	untouched.

get_option_order()
Returns	the	list	of	"(option,	value)"	tuples	processed	by	the	previous
run	of	getopt()	Raises	RuntimeError	if	getopt()	hasn't	been
called	yet.

generate_help([header=None])
Generate	help	text	(a	list	of	strings,	one	per	suggested	line	of	output)	from
the	option	table	for	this	FancyGetopt	object.

If	supplied,	prints	the	supplied	header	at	the	top	of	the	help.

Distributing	Python	Modules
Previous:	10.17	distutils.errors	Up:	10.	API	Reference	Next:	10.19
distutils.filelist

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.18	distutils.fancy_getopt	Up:	10.	API	Reference	Next:	10.20
distutils.log

10.19	distutils.filelist	--	The
FileList	class
This	module	provides	the	FileList	class,	used	for	poking	about	the
filesystem	and	building	lists	of	files.

Distributing	Python	Modules
Previous:	10.18	distutils.fancy_getopt	Up:	10.	API	Reference	Next:	10.20
distutils.log

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.19	distutils.filelist	Up:	10.	API	Reference	Next:	10.21
distutils.spawn

10.20	distutils.log	--	Simple	PEP
282-style	logging
Warning:	Should	be	replaced	with	standard	logging	module.

Distributing	Python	Modules
Previous:	10.19	distutils.filelist	Up:	10.	API	Reference	Next:	10.21
distutils.spawn

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.20	distutils.log	Up:	10.	API	Reference	Next:	10.22
distutils.sysconfig

10.21	distutils.spawn	--	Spawn	a
sub-process
This	module	provides	the	spawn()	function,	a	front-end	to	various	platform-
specific	functions	for	launching	another	program	in	a	sub-process.	Also	provides
find_executable()	to	search	the	path	for	a	given	executable	name.

Distributing	Python	Modules
Previous:	10.20	distutils.log	Up:	10.	API	Reference	Next:	10.22
distutils.sysconfig

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.21	distutils.spawn	Up:	10.	API	Reference	Next:	10.23
distutils.text_file

10.22	distutils.sysconfig	--
System	configuration	information
The	distutils.sysconfig	module	provides	access	to	Python's	low-level
configuration	information.	The	specific	configuration	variables	available	depend
heavily	on	the	platform	and	configuration.	The	specific	variables	depend	on	the
build	process	for	the	specific	version	of	Python	being	run;	the	variables	are	those
found	in	the	Makefile	and	configuration	header	that	are	installed	with	Python	on
UNIX	systems.	The	configuration	header	is	called	pyconfig.h	for	Python	versions
starting	with	2.2,	and	config.h	for	earlier	versions	of	Python.

Some	additional	functions	are	provided	which	perform	some	useful
manipulations	for	other	parts	of	the	distutils	package.

PREFIX

The	result	of	os.path.normpath(sys.prefix).

EXEC_PREFIX

The	result	of	os.path.normpath(sys.exec_prefix).

get_config_var(name)
Return	the	value	of	a	single	variable.	This	is	equivalent	to
get_config_vars().get(name).

get_config_vars(...)
Return	a	set	of	variable	definitions.	If	there	are	no	arguments,	this	returns	a
dictionary	mapping	names	of	configuration	variables	to	values.	If
arguments	are	provided,	they	should	be	strings,	and	the	return	value	will	be
a	sequence	giving	the	associated	values.	If	a	given	name	does	not	have	a
corresponding	value,	None	will	be	included	for	that	variable.

get_config_h_filename()
Return	the	full	path	name	of	the	configuration	header.	For	UNIX,	this	will	be
the	header	generated	by	the	configure	script;	for	other	platforms	the	header
will	have	been	supplied	directly	by	the	Python	source	distribution.	The	file

is	a	platform-specific	text	file.

get_makefile_filename()
Return	the	full	path	name	of	the	Makefile	used	to	build	Python.	For	UNIX,
this	will	be	a	file	generated	by	the	configure	script;	the	meaning	for	other
platforms	will	vary.	The	file	is	a	platform-specific	text	file,	if	it	exists.	This
function	is	only	useful	on	POSIX	platforms.

get_python_inc([plat_specific[,	prefix]])
Return	the	directory	for	either	the	general	or	platform-dependent	C	include
files.	If	plat_specific	is	true,	the	platform-dependent	include	directory	is
returned;	if	false	or	omitted,	the	platform-independent	directory	is	returned.
If	prefix	is	given,	it	is	used	as	either	the	prefix	instead	of	PREFIX,	or	as	the
exec-prefix	instead	of	EXEC_PREFIX	if	plat_specific	is	true.

get_python_lib([plat_specific[,	standard_lib[,	prefix]]])
Return	the	directory	for	either	the	general	or	platform-dependent	library
installation.	If	plat_specific	is	true,	the	platform-dependent	include
directory	is	returned;	if	false	or	omitted,	the	platform-independent	directory
is	returned.	If	prefix	is	given,	it	is	used	as	either	the	prefix	instead	of
PREFIX,	or	as	the	exec-prefix	instead	of	EXEC_PREFIX	if	plat_specific	is
true.	If	standard_lib	is	true,	the	directory	for	the	standard	library	is	returned
rather	than	the	directory	for	the	installation	of	third-party	extensions.

The	following	function	is	only	intended	for	use	within	the	distutils
package.

customize_compiler(compiler)
Do	any	platform-specific	customization	of	a
distutils.ccompiler.CCompiler	instance.

This	function	is	only	needed	on	UNIX	at	this	time,	but	should	be	called
consistently	to	support	forward-compatibility.	It	inserts	the	information	that
varies	across	UNIX	flavors	and	is	stored	in	Python's	Makefile.	This
information	includes	the	selected	compiler,	compiler	and	linker	options,	and
the	extension	used	by	the	linker	for	shared	objects.

This	function	is	even	more	special-purpose,	and	should	only	be	used	from

Python's	own	build	procedures.

set_python_build()
Inform	the	distutils.sysconfig	module	that	it	is	being	used	as	part
of	the	build	process	for	Python.	This	changes	a	lot	of	relative	locations	for
files,	allowing	them	to	be	located	in	the	build	area	rather	than	in	an	installed
Python.

Distributing	Python	Modules
Previous:	10.21	distutils.spawn	Up:	10.	API	Reference	Next:	10.23
distutils.text_file

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.22	distutils.sysconfig	Up:	10.	API	Reference	Next:	10.24
distutils.version

10.23	distutils.text_file	--	The
TextFile	class
This	module	provides	the	TextFile	class,	which	gives	an	interface	to	text	files
that	(optionally)	takes	care	of	stripping	comments,	ignoring	blank	lines,	and
joining	lines	with	backslashes.

class	TextFile([filename=None,	file=None,	**options])
This	class	provides	a	file-like	object	that	takes	care	of	all	the	things	you
commonly	want	to	do	when	processing	a	text	file	that	has	some	line-by-line
syntax:	strip	comments	(as	long	as	#	is	your	comment	character),	skip	blank
lines,	join	adjacent	lines	by	escaping	the	newline	(ie.	backslash	at	end	of
line),	strip	leading	and/or	trailing	whitespace.	All	of	these	are	optional	and
independently	controllable.

The	class	provides	a	warn()	method	so	you	can	generate	warning
messages	that	report	physical	line	number,	even	if	the	logical	line	in
question	spans	multiple	physical	lines.	Also	provides	unreadline()	for
implementing	line-at-a-time	lookahead.

TextFile	instances	are	create	with	either	filename,	file,	or	both.
RuntimeError	is	raised	if	both	are	None.	filename	should	be	a	string,
and	file	a	file	object	(or	something	that	provides	readline()	and
close()	methods).	It	is	recommended	that	you	supply	at	least	filename,
so	that	TextFile	can	include	it	in	warning	messages.	If	file	is	not
supplied,	TextFile	creates	its	own	using	the	open()	builtin.

The	options	are	all	boolean,	and	affect	the	values	returned	by	readline()

option
name

description default

strip	from	"#"	to	end-of-line,	as	well	as	any
whitespace	leading	up	to	the	"#"--unless	it	is	escaped
by	a	backslash

true

strip	leading	whitespace	from	each	line	before false

returning	it
strip	trailing	whitespace	(including	line	terminator!)
from	each	line	before	returning	it.

true

skip	lines	that	are	empty	*after*	stripping	comments
and	whitespace.	(If	both	lstrip_ws	and	rstrip_ws	are
false,	then	some	lines	may	consist	of	solely
whitespace:	these	will	*not*	be	skipped,	even	if
skip_blanks	is	true.)

true

if	a	backslash	is	the	last	non-newline	character	on	a
line	after	stripping	comments	and	whitespace,	join
the	following	line	to	it	to	form	one	logical	line;	if	N
consecutive	lines	end	with	a	backslash,	then	N+1
physical	lines	will	be	joined	to	form	one	logical	line.

false

strip	leading	whitespace	from	lines	that	are	joined	to
their	predecessor;	only	matters	if	"(join_lines
and	not	lstrip_ws)"

false

Note	that	since	rstrip_ws	can	strip	the	trailing	newline,	the	semantics	of
readline()	must	differ	from	those	of	the	builtin	file	object's
readline()	method!	In	particular,	readline()	returns	None	for	end-
of-file:	an	empty	string	might	just	be	a	blank	line	(or	an	all-whitespace
line),	if	rstrip_ws	is	true	but	skip_blanks	is	not.

open(filename)
Open	a	new	file	filename.	This	overrides	any	file	or	filename
constructor	arguments.

close()
Close	the	current	file	and	forget	everything	we	know	about	it
(including	the	filename	and	the	current	line	number).

warn(msg[,line=None])
Print	(to	stderr)	a	warning	message	tied	to	the	current	logical	line	in
the	current	file.	If	the	current	logical	line	in	the	file	spans	multiple
physical	lines,	the	warning	refers	to	the	whole	range,	such	as
""lines	3-5"".	If	line	is	supplied,	it	overrides	the	current	line
number;	it	may	be	a	list	or	tuple	to	indicate	a	range	of	physical	lines,

or	an	integer	for	a	single	physical	line.

readline()
Read	and	return	a	single	logical	line	from	the	current	file	(or	from	an
internal	buffer	if	lines	have	previously	been	``unread''	with
unreadline()).	If	the	join_lines	option	is	true,	this	may	involve
reading	multiple	physical	lines	concatenated	into	a	single	string.
Updates	the	current	line	number,	so	calling	warn()	after
readline()	emits	a	warning	about	the	physical	line(s)	just	read.
Returns	None	on	end-of-file,	since	the	empty	string	can	occur	if
rstrip_ws	is	true	but	strip_blanks	is	not.

readlines()
Read	and	return	the	list	of	all	logical	lines	remaining	in	the	current	file.
This	updates	the	current	line	number	to	the	last	line	of	the	file.

unreadline(line)
Push	line	(a	string)	onto	an	internal	buffer	that	will	be	checked	by
future	readline()	calls.	Handy	for	implementing	a	parser	with
line-at-a-time	lookahead.	Note	that	lines	that	are	``unread''	with
unreadline	are	not	subsequently	re-cleansed	(whitespace	stripped,
or	whatever)	when	read	with	readline.	If	multiple	calls	are	made	to
unreadline	before	a	call	to	readline,	the	lines	will	be	returned
most	in	most	recent	first	order.

Distributing	Python	Modules
Previous:	10.22	distutils.sysconfig	Up:	10.	API	Reference	Next:	10.24
distutils.version

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.23	distutils.text_file	Up:	10.	API	Reference	Next:	10.25
distutils.cmd

10.24	distutils.version	--
Version	number	classes

Distributing	Python	Modules
Previous:	10.23	distutils.text_file	Up:	10.	API	Reference	Next:	10.25
distutils.cmd

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.24	distutils.version	Up:	10.	API	Reference	Next:	10.26
distutils.command

10.25	distutils.cmd	--	Abstract
base	class	for	Distutils	commands
This	module	supplies	the	abstract	base	class	Command.

class	Command(dist)
Abstract	base	class	for	defining	command	classes,	the	``worker	bees''	of	the
Distutils.	A	useful	analogy	for	command	classes	is	to	think	of	them	as
subroutines	with	local	variables	called	options.	The	options	are	declared	in
initialize_options()	and	defined	(given	their	final	values)	in
finalize_options(),	both	of	which	must	be	defined	by	every
command	class.	The	distinction	between	the	two	is	necessary	because
option	values	might	come	from	the	outside	world	(command	line,	config
file,	...),	and	any	options	dependent	on	other	options	must	be	computed
after	these	outside	influences	have	been	processed	--	hence
finalize_options().	The	body	of	the	subroutine,	where	it	does	all	its
work	based	on	the	values	of	its	options,	is	the	run()	method,	which	must
also	be	implemented	by	every	command	class.

The	class	constructor	takes	a	single	argument	dist,	a	Distribution
instance.

Distributing	Python	Modules
Previous:	10.24	distutils.version	Up:	10.	API	Reference	Next:	10.26
distutils.command

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.25	distutils.cmd	Up:	10.	API	Reference	Next:	10.27
distutils.command.bdist

10.26	distutils.command	--
Individual	Distutils	commands

Distributing	Python	Modules
Previous:	10.25	distutils.cmd	Up:	10.	API	Reference	Next:	10.27
distutils.command.bdist

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.26	distutils.command	Up:	10.	API	Reference	Next:	10.28
distutils.command.bdist_packager

10.27	distutils.command.bdist	--
Build	a	binary	installer

Distributing	Python	Modules
Previous:	10.26	distutils.command	Up:	10.	API	Reference	Next:	10.28
distutils.command.bdist_packager

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.27	distutils.command.bdist	Up:	10.	API	Reference	Next:	10.29
distutils.command.bdist_dumb

10.28
distutils.command.bdist_packager

--	Abstract	base	class	for	packagers

Distributing	Python	Modules
Previous:	10.27	distutils.command.bdist	Up:	10.	API	Reference	Next:	10.29
distutils.command.bdist_dumb

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.28	distutils.command.bdist_packager	Up:	10.	API	Reference
Next:	10.30	distutils.command.bdist_rpm

10.29
distutils.command.bdist_dumb	-
-	Build	a	``dumb''	installer

Distributing	Python	Modules
Previous:	10.28	distutils.command.bdist_packager	Up:	10.	API	Reference
Next:	10.30	distutils.command.bdist_rpm

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.29	distutils.command.bdist_dumb	Up:	10.	API	Reference	Next:
10.31	distutils.command.bdist_wininst

10.30
distutils.command.bdist_rpm	--
Build	a	binary	distribution	as	a
Redhat	RPM	and	SRPM

Distributing	Python	Modules
Previous:	10.29	distutils.command.bdist_dumb	Up:	10.	API	Reference	Next:
10.31	distutils.command.bdist_wininst

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.30	distutils.command.bdist_rpm	Up:	10.	API	Reference	Next:
10.32	distutils.command.sdist

10.31
distutils.command.bdist_wininst

--	Build	a	Windows	installer

Distributing	Python	Modules
Previous:	10.30	distutils.command.bdist_rpm	Up:	10.	API	Reference	Next:
10.32	distutils.command.sdist

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.31	distutils.command.bdist_wininst	Up:	10.	API	Reference	Next:
10.33	distutils.command.build

10.32	distutils.command.sdist	--
Build	a	source	distribution

Distributing	Python	Modules
Previous:	10.31	distutils.command.bdist_wininst	Up:	10.	API	Reference	Next:
10.33	distutils.command.build

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.32	distutils.command.sdist	Up:	10.	API	Reference	Next:	10.34
distutils.command.build_clib

10.33	distutils.command.build	--
Build	all	files	of	a	package

Distributing	Python	Modules
Previous:	10.32	distutils.command.sdist	Up:	10.	API	Reference	Next:	10.34
distutils.command.build_clib

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.33	distutils.command.build	Up:	10.	API	Reference	Next:	10.35
distutils.command.build_ext

10.34
distutils.command.build_clib	-
-	Build	any	C	libraries	in	a	package

Distributing	Python	Modules
Previous:	10.33	distutils.command.build	Up:	10.	API	Reference	Next:	10.35
distutils.command.build_ext

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.34	distutils.command.build_clib	Up:	10.	API	Reference	Next:
10.36	distutils.command.build_py

10.35
distutils.command.build_ext	--
Build	any	extensions	in	a	package

Distributing	Python	Modules
Previous:	10.34	distutils.command.build_clib	Up:	10.	API	Reference	Next:
10.36	distutils.command.build_py

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.35	distutils.command.build_ext	Up:	10.	API	Reference	Next:
10.37	distutils.command.build_scripts

10.36
distutils.command.build_py	--
Build	the	.py/.pyc	files	of	a	package

Distributing	Python	Modules
Previous:	10.35	distutils.command.build_ext	Up:	10.	API	Reference	Next:
10.37	distutils.command.build_scripts

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.36	distutils.command.build_py	Up:	10.	API	Reference	Next:
10.38	distutils.command.clean

10.37
distutils.command.build_scripts

--	Build	the	scripts	of	a	package

Distributing	Python	Modules
Previous:	10.36	distutils.command.build_py	Up:	10.	API	Reference	Next:
10.38	distutils.command.clean

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.37	distutils.command.build_scripts	Up:	10.	API	Reference	Next:
10.39	distutils.command.config

10.38	distutils.command.clean	--
Clean	a	package	build	area

Distributing	Python	Modules
Previous:	10.37	distutils.command.build_scripts	Up:	10.	API	Reference	Next:
10.39	distutils.command.config

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.38	distutils.command.clean	Up:	10.	API	Reference	Next:	10.40
distutils.command.install

10.39	distutils.command.config
--	Perform	package	configuration

Distributing	Python	Modules
Previous:	10.38	distutils.command.clean	Up:	10.	API	Reference	Next:	10.40
distutils.command.install

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.39	distutils.command.config	Up:	10.	API	Reference	Next:	10.41
distutils.command.install_data

10.40
distutils.command.install	--
Install	a	package

Distributing	Python	Modules
Previous:	10.39	distutils.command.config	Up:	10.	API	Reference	Next:	10.41
distutils.command.install_data

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.40	distutils.command.install	Up:	10.	API	Reference	Next:	10.42
distutils.command.install_headers

10.41
distutils.command.install_data

--	Install	data	files	from	a	package

Distributing	Python	Modules
Previous:	10.40	distutils.command.install	Up:	10.	API	Reference	Next:	10.42
distutils.command.install_headers

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.41	distutils.command.install_data	Up:	10.	API	Reference	Next:
10.43	distutils.command.install_lib

10.42
distutils.command.install_headers

--	Install	C/C++	header	files	from	a
package

Distributing	Python	Modules
Previous:	10.41	distutils.command.install_data	Up:	10.	API	Reference	Next:
10.43	distutils.command.install_lib

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.42	distutils.command.install_headers	Up:	10.	API	Reference
Next:	10.44	distutils.command.install_scripts

10.43
distutils.command.install_lib

--	Install	library	files	from	a	package

Distributing	Python	Modules
Previous:	10.42	distutils.command.install_headers	Up:	10.	API	Reference
Next:	10.44	distutils.command.install_scripts

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.43	distutils.command.install_lib	Up:	10.	API	Reference	Next:
10.45	distutils.command.register

10.44
distutils.command.install_scripts

--	Install	script	files	from	a	package

Distributing	Python	Modules
Previous:	10.43	distutils.command.install_lib	Up:	10.	API	Reference	Next:
10.45	distutils.command.register

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	10.44	distutils.command.install_scripts	Up:	10.	API	Reference	Next:
10.46	Creating	a	new

10.45
distutils.command.register	--
Register	a	module	with	the	Python
Package	Index
The	register	command	registers	the	package	with	the	Python	Package	Index.
This	is	described	in	more	detail	in	PEP	301.

Distributing	Python	Modules
Previous:	10.44	distutils.command.install_scripts	Up:	10.	API	Reference	Next:
10.46	Creating	a	new

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.python.org/peps/pep-0301.html

Previous:	10.45	distutils.command.register	Up:	10.	API	Reference	Next:
Module	Index

10.46	Creating	a	new	Distutils
command
This	section	outlines	the	steps	to	create	a	new	Distutils	command.

A	new	command	lives	in	a	module	in	the	distutils.command	package.
There	is	a	sample	template	in	that	directory	called	command_template.	Copy
this	file	to	a	new	module	with	the	same	name	as	the	new	command	you're
implementing.	This	module	should	implement	a	class	with	the	same	name	as	the
module	(and	the	command).	So,	for	instance,	to	create	the	command
peel_banana	(so	that	users	can	run	"setup.py	peel_banana"),	you'd
copy	command_template	to	distutils/command/peel_banana.py,	then	edit	it
so	that	it's	implementing	the	class	peel_banana,	a	subclass	of
distutils.cmd.Command.

Subclasses	of	Command	must	define	the	following	methods.

initialize_options()(S)
et	default	values	for	all	the	options	that	this	command	supports.	Note	that
these	defaults	may	be	overridden	by	other	commands,	by	the	setup	script,
by	config	files,	or	by	the	command-line.	Thus,	this	is	not	the	place	to	code
dependencies	between	options;	generally,	initialize_options()
implementations	are	just	a	bunch	of	"self.foo	=	None"	assignments.

finalize_options()
Set	final	values	for	all	the	options	that	this	command	supports.	This	is
always	called	as	late	as	possible,	ie.	after	any	option	assignments	from	the
command-line	or	from	other	commands	have	been	done.	Thus,	this	is	the
place	to	to	code	option	dependencies:	if	foo	depends	on	bar,	then	it	is	safe
to	set	foo	from	bar	as	long	as	foo	still	has	the	same	value	it	was	assigned	in
initialize_options().

run()
A	command's	raison	d'etre:	carry	out	the	action	it	exists	to	perform,
controlled	by	the	options	initialized	in	initialize_options(),

customized	by	other	commands,	the	setup	script,	the	command-line,	and
config	files,	and	finalized	in	finalize_options().	All	terminal	output
and	filesystem	interaction	should	be	done	by	run().

sub_commands	formalizes	the	notion	of	a	``family''	of	commands,	eg.	install
as	the	parent	with	sub-commands	install_lib,	install_headers,	etc.
The	parent	of	a	family	of	commands	defines	sub_commands	as	a	class	attribute;
it's	a	list	of	2-tuples	"(command_name,	predicate)",	with
command_name	a	string	and	predicate	an	unbound	method,	a	string	or	None.
predicate	is	a	method	of	the	parent	command	that	determines	whether	the
corresponding	command	is	applicable	in	the	current	situation.	(Eg.	we
install_headers	is	only	applicable	if	we	have	any	C	header	files	to
install.)	If	predicate	is	None,	that	command	is	always	applicable.

sub_commands	is	usually	defined	at	the	*end*	of	a	class,	because	predicates	can
be	unbound	methods,	so	they	must	already	have	been	defined.	The	canonical
example	is	the	install	command.

Distributing	Python	Modules
Previous:	10.45	distutils.command.register	Up:	10.	API	Reference	Next:
Module	Index

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Module	Index	Up:	Distributing	Python	Modules	Next:	About	this
document	...

Index

a	|	b	|	c	|	d	|	e	|	f	|	g	|	h	|	i	|	l	|	m	|	n	|	o	|	p	|	r	|	s	|	t	|	u	|	w

A

add_include_dir()	(CCompiler	method)
add_library()	(CCompiler	method)
add_library_dir()	(CCompiler	method)

add_link_object()	(CCompiler	method)
add_runtime_library_dir()	(CCompiler
method)
announce()	(CCompiler	method)

B

byte_compile()	(in	module
distutils.util)

C

CCompiler	(class	in	distutils.ccompiler)
change_root()	(in	module	distutils.util)
check_environ()	(in	module
distutils.util)
close()	(TextFile	method)
Command	(class	in	distutils.cmd)
Command	(class	in	distutils.core)
compile()	(CCompiler	method)

convert_path()	(in	module	distutils.util)
copy_file()	(in	module
distutils.file_util)
copy_tree()	(in	module
distutils.dir_util)
create_shortcut()
create_static_lib()	(CCompiler	method)
create_tree()	(in	module
distutils.dir_util)
customize_compiler()	(in	module
distutils.sysconfig)

D

debug_print()	(CCompiler	method)
define_macro()	(CCompiler	method)
detect_language()	(CCompiler	method)
directory_created()
Distribution	(class	in	distutils.core)
distutils.archive_util	(standard	module)
distutils.bcppcompiler	(standard
module)
distutils.ccompiler	(standard	module)
distutils.cmd	(standard	module)
distutils.command	(standard	module)
distutils.command.bdist	(standard
module)
distutils.command.bdist_dumb
(standard	module)
distutils.command.bdist_packager
(standard	module)
distutils.command.bdist_rpm	(standard
module)
distutils.command.bdist_wininst
(standard	module)
distutils.command.build	(standard
module)
distutils.command.build_clib	(standard
module)
distutils.command.build_ext	(standard
module)
distutils.command.build_py	(standard
module)
distutils.command.build_scripts
(standard	module)
distutils.command.clean	(standard
module)
distutils.command.config	(standard

distutils.command.install_lib	(standard
module)
distutils.command.install_scripts
(standard	module)
distutils.command.register	(standard
module)
distutils.command.sdist	(standard
module)
distutils.core	(standard	module)
distutils.cygwinccompiler	(standard
module)
distutils.debug	(standard	module)
distutils.dep_util	(standard	module)
distutils.dir_util	(standard	module)
distutils.dist	(standard	module)
distutils.emxccompiler	(standard
module)
distutils.errors	(standard	module)
distutils.extension	(standard	module)
distutils.fancy_getopt	(standard
module)
distutils.file_util	(standard	module)
distutils.filelist	(standard	module)
distutils.log	(standard	module)
distutils.msvccompiler	(standard
module)
distutils.mwerkscompiler	(standard
module)
distutils.spawn	(standard	module)
distutils.sysconfig	(standard	module)
distutils.text_file	(standard	module)

module)
distutils.command.install	(standard
module)
distutils.command.install_data
(standard	module)
distutils.command.install_headers
(standard	module)

distutils.unixccompiler	(standard
module)
distutils.util	(standard	module)
distutils.version	(standard	module)

E

environment	variables
HOME
PLAT

EXEC_PREFIX	(in	module
distutils.sysconfig)
executable_filename()	(CCompiler
method)

execute()	(CCompiler	method)
execute()	(in	module	distutils.util)
Extension	(class	in	distutils.core)

F

fancy_getopt()	(in	module
distutils.fancy_getopt)
FancyGetopt	(class	in
distutils.fancy_getopt)
file_created()

finalize_options()	(Command	method)
find_library_file()	(CCompiler	method)

G

gen_lib_options()	(in	module
distutils.ccompiler)
gen_preprocess_options()	(in	module
distutils.ccompiler)
generate_help()	(FancyGetopt	method)
get_config_h_filename()	(in	module
distutils.sysconfig)
get_config_var()	(in	module
distutils.sysconfig)
get_config_vars()	(in	module
distutils.sysconfig)
get_default_compiler()	(in	module
distutils.ccompiler)
get_makefile_filename()	(in	module
distutils.sysconfig)

get_option_order()	(FancyGetopt
method)
get_platform()	(in	module	distutils.util)
get_python_inc()	(in	module
distutils.sysconfig)
get_python_lib()	(in	module
distutils.sysconfig)
get_special_folder_path()
getopt()	(FancyGetopt	method)
grok_environment_error()	(in	module
distutils.util)

H

has_function()	(CCompiler	method) HOME	(environment	variable)

I

initialize_options()()	(Command
method)

L

library_dir_option()	(CCompiler
method)
library_filename()	(CCompiler	method)
library_option()	(CCompiler	method)
link()	(CCompiler	method)

link_executable()	(CCompiler	method)
link_shared_lib()	(CCompiler	method)
link_shared_object()	(CCompiler
method)

M

make_archive()	(in	module
distutils.archive_util)
make_tarball()	(in	module
distutils.archive_util)
make_zipfile()	(in	module
distutils.archive_util)
mkpath()	(CCompiler	method)

mkpath()	(in	module	distutils.dir_util)
move_file()	(CCompiler	method)
move_file()	(in	module
distutils.file_util)

N

new_compiler()	(in	module
distutils.ccompiler)
newer()	(in	module	distutils.dep_util)

newer_group()	(in	module
distutils.dep_util)
newer_pairwise()	(in	module
distutils.dep_util)

O

object_filenames()	(CCompiler
method) open()	(TextFile	method)

P

PLAT	(environment	variable)
PREFIX	(in	module	distutils.sysconfig) preprocess()	(CCompiler	method)

R

readline()	(TextFile	method)
readlines()	(TextFile	method)
remove_tree()	(in	module
distutils.dir_util)
rfc822_escape()	(in	module
distutils.util)

run()	(Command	method)
run_setup()	(in	module	distutils.core)
runtime_library_dir_option()
(CCompiler	method)

S

set_executables()	(CCompiler	method)
set_include_dirs()	(CCompiler	method)
set_libraries()	(CCompiler	method)
set_library_dirs()	(CCompiler	method)
set_link_objects()	(CCompiler	method)
set_python_build()	(in	module
distutils.sysconfig)
set_runtime_library_dirs()	(CCompiler
method)

setup()	(in	module	distutils.core)
shared_object_filename()	(CCompiler
method)
show_compilers()	(in	module
distutils.ccompiler)
spawn()	(CCompiler	method)
split_quoted()	(in	module	distutils.util)
strtobool()	(in	module	distutils.util)
subst_vars()	(in	module	distutils.util)

T

TextFile	(class	in	distutils.text_file)

U

undefine_macro()	(CCompiler	method) unreadline()	(TextFile	method)

W

warn()	(CCompiler	method)
warn()	(TextFile	method)

wrap_text()	(in	module
distutils.fancy_getopt)
write_file()	(in	module
distutils.file_util)

Distributing	Python	Modules
Previous:	Module	Index	Up:	Distributing	Python	Modules	Next:	About	this
document	...

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Up:	Python	Documentation	Index	Next:	Contents

What's	New	in	Python	2.4
A.M.	Kuchling

Python	Software	Foundation	Email:	amk@amk.ca

Contents
1	PEP	218:	Built-In	Set	Objects
2	PEP	237:	Unifying	Long	Integers	and	Integers
3	PEP	289:	Generator	Expressions
4	PEP	292:	Simpler	String	Substitutions
5	PEP	318:	Decorators	for	Functions	and	Methods
6	PEP	322:	Reverse	Iteration
7	PEP	324:	New	subprocess	Module
8	PEP	327:	Decimal	Data	Type

8.1	Why	is	Decimal	needed?
8.2	The	Decimal	type
8.3	The	Context	type

9	PEP	328:	Multi-line	Imports
10	PEP	331:	Locale-Independent	Float/String	Conversions
11	Other	Language	Changes

11.1	Optimizations
12	New,	Improved,	and	Deprecated	Modules

12.1	cookielib
12.2	doctest

13	Build	and	C	API	Changes
13.1	Port-Specific	Changes

14	Porting	to	Python	2.4
15	Acknowledgements
About	this	document	...

What's	New	in	Python	2.4

Up:	Python	Documentation	Index	Next:	Contents

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	What's	New	in	Python	Up:	What's	New	in	Python	Next:	1	PEP	218:
Built-In

Contents
1	PEP	218:	Built-In	Set	Objects
2	PEP	237:	Unifying	Long	Integers	and	Integers
3	PEP	289:	Generator	Expressions
4	PEP	292:	Simpler	String	Substitutions
5	PEP	318:	Decorators	for	Functions	and	Methods
6	PEP	322:	Reverse	Iteration
7	PEP	324:	New	subprocess	Module
8	PEP	327:	Decimal	Data	Type

8.1	Why	is	Decimal	needed?
8.2	The	Decimal	type
8.3	The	Context	type

9	PEP	328:	Multi-line	Imports
10	PEP	331:	Locale-Independent	Float/String	Conversions
11	Other	Language	Changes

11.1	Optimizations
12	New,	Improved,	and	Deprecated	Modules

12.1	cookielib
12.2	doctest

13	Build	and	C	API	Changes
13.1	Port-Specific	Changes

14	Porting	to	Python	2.4
15	Acknowledgements
About	this	document	...

This	article	explains	the	new	features	in	Python	2.4,	released	in	December	2004.

Python	2.4	is	a	medium-sized	release.	It	doesn't	introduce	as	many	changes	as
the	radical	Python	2.2,	but	introduces	more	features	than	the	conservative	2.3
release.	The	most	significant	new	language	features	are	function	decorators	and
generator	expressions;	most	other	changes	are	to	the	standard	library.

According	to	the	CVS	change	logs,	there	were	481	patches	applied	and	502	bugs
fixed	between	Python	2.3	and	2.4.	Both	figures	are	likely	to	be	underestimates.

This	article	doesn't	attempt	to	provide	a	complete	specification	of	every	single
new	feature,	but	instead	provides	a	brief	introduction	to	each	feature.	For	full

details,	you	should	refer	to	the	documentation	for	Python	2.4,	such	as	the	Python
Library	Reference	and	the	Python	Reference	Manual.	Often	you	will	be	referred
to	the	PEP	for	a	particular	new	feature	for	explanations	of	the	implementation
and	design	rationale.

What's	New	in	Python	2.4
Previous:	What's	New	in	Python	Up:	What's	New	in	Python	Next:	1	PEP	218:
Built-In

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	15	Acknowledgements	Up:	What's	New	in	Python

About	this	document	...
What's	New	in	Python	2.4

This	document	was	generated	using	the	LaTeX2HTML	translator.

LaTeX2HTML	is	Copyright	©	1993,	1994,	1995,	1996,	1997,	Nikos	Drakos,
Computer	Based	Learning	Unit,	University	of	Leeds,	and	Copyright	©	1997,
1998,	Ross	Moore,	Mathematics	Department,	Macquarie	University,	Sydney.

The	application	of	LaTeX2HTML	to	the	Python	documentation	has	been	heavily
tailored	by	Fred	L.	Drake,	Jr.	Original	navigation	icons	were	contributed	by
Christopher	Petrilli.

http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://cbl.leeds.ac.uk/nikos/personal.html
http://www.maths.mq.edu.au/~ross/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/

Comments	and	Questions
General	comments	and	questions	regarding	this	document	should	be	sent	by
email	to	docs@python.org.	If	you	find	specific	errors	in	this	document,	either	in
the	content	or	the	presentation,	please	report	the	bug	at	the	Python	Bug	Tracker
at	SourceForge.	If	you	are	able	to	provide	suggested	text,	either	to	replace
existing	incorrect	or	unclear	material,	or	additional	text	to	supplement	what's
already	available,	we'd	appreciate	the	contribution.	There's	no	need	to	worry
about	text	markup;	our	documentation	team	will	gladly	take	care	of	that.

Questions	regarding	how	to	use	the	information	in	this	document	should	be	sent
to	the	Python	news	group,	comp.lang.python,	or	the	Python	mailing	list	(which
is	gated	to	the	newsgroup	and	carries	the	same	content).

For	any	of	these	channels,	please	be	sure	not	to	send	HTML	email.	Thanks.

What's	New	in	Python	2.4
Previous:	15	Acknowledgements	Up:	What's	New	in	Python

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

mailto:docs@python.org
http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/
news:comp.lang.python
http://www.python.org/mailman/listinfo/python-list

Previous:	14	Porting	to	Python	Up:	What's	New	in	Python	Next:	About	this
document	...

15	Acknowledgements
The	author	would	like	to	thank	the	following	people	for	offering	suggestions,
corrections	and	assistance	with	various	drafts	of	this	article:	Koray	Can,	Hye-
Shik	Chang,	Michael	Dyck,	Raymond	Hettinger,	Brian	Hurt,	Hamish	Lawson,
Fredrik	Lundh.

What's	New	in	Python	2.4
Previous:	14	Porting	to	Python	Up:	What's	New	in	Python	Next:	About	this
document	...

Release	1.01.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Front	Matter	Up:	Python	Tutorial	Next:	1.	Whetting	Your	Appetite

Contents
Front	Matter
1.	Whetting	Your	Appetite
2.	Using	the	Python	Interpreter

2.1	Invoking	the	Interpreter
2.1.1	Argument	Passing
2.1.2	Interactive	Mode

2.2	The	Interpreter	and	Its	Environment
2.2.1	Error	Handling
2.2.2	Executable	Python	Scripts
2.2.3	Source	Code	Encoding
2.2.4	The	Interactive	Startup	File

3.	An	Informal	Introduction	to	Python
3.1	Using	Python	as	a	Calculator

3.1.1	Numbers
3.1.2	Strings
3.1.3	Unicode	Strings
3.1.4	Lists

3.2	First	Steps	Towards	Programming
4.	More	Control	Flow	Tools

4.1	if	Statements
4.2	for	Statements
4.3	The	range()	Function
4.4	break	and	continue	Statements,	and	else	Clauses	on	Loops
4.5	pass	Statements
4.6	Defining	Functions
4.7	More	on	Defining	Functions

4.7.1	Default	Argument	Values
4.7.2	Keyword	Arguments
4.7.3	Arbitrary	Argument	Lists
4.7.4	Unpacking	Argument	Lists
4.7.5	Lambda	Forms
4.7.6	Documentation	Strings

5.	Data	Structures
5.1	More	on	Lists

5.1.1	Using	Lists	as	Stacks

5.1.2	Using	Lists	as	Queues
5.1.3	Functional	Programming	Tools
5.1.4	List	Comprehensions

5.2	The	del	statement
5.3	Tuples	and	Sequences
5.4	Sets
5.5	Dictionaries
5.6	Looping	Techniques
5.7	More	on	Conditions
5.8	Comparing	Sequences	and	Other	Types

6.	Modules
6.1	More	on	Modules

6.1.1	The	Module	Search	Path
6.1.2	``Compiled''	Python	files

6.2	Standard	Modules
6.3	The	dir()	Function
6.4	Packages

6.4.1	Importing	*	From	a	Package
6.4.2	Intra-package	References
6.4.3	Packages	in	Multiple	Directories

7.	Input	and	Output
7.1	Fancier	Output	Formatting
7.2	Reading	and	Writing	Files

7.2.1	Methods	of	File	Objects
7.2.2	The	pickle	Module

8.	Errors	and	Exceptions
8.1	Syntax	Errors
8.2	Exceptions
8.3	Handling	Exceptions
8.4	Raising	Exceptions
8.5	User-defined	Exceptions
8.6	Defining	Clean-up	Actions

9.	Classes
9.1	A	Word	About	Terminology
9.2	Python	Scopes	and	Name	Spaces
9.3	A	First	Look	at	Classes

9.3.1	Class	Definition	Syntax
9.3.2	Class	Objects
9.3.3	Instance	Objects

9.3.4	Method	Objects
9.4	Random	Remarks
9.5	Inheritance

9.5.1	Multiple	Inheritance
9.6	Private	Variables
9.7	Odds	and	Ends
9.8	Exceptions	Are	Classes	Too
9.9	Iterators
9.10	Generators
9.11	Generator	Expressions

10.	Brief	Tour	of	the	Standard	Library
10.1	Operating	System	Interface
10.2	File	Wildcards
10.3	Command	Line	Arguments
10.4	Error	Output	Redirection	and	Program	Termination
10.5	String	Pattern	Matching
10.6	Mathematics
10.7	Internet	Access
10.8	Dates	and	Times
10.9	Data	Compression
10.10	Performance	Measurement
10.11	Quality	Control
10.12	Batteries	Included

11.	Brief	Tour	of	the	Standard	Library	-	Part	II
11.1	Output	Formatting
11.2	Templating
11.3	Working	with	Binary	Data	Record	Layouts
11.4	Multi-threading
11.5	Logging
11.6	Weak	References
11.7	Tools	for	Working	with	Lists
11.8	Decimal	Floating	Point	Arithmetic

12.	What	Now?
A.	Interactive	Input	Editing	and	History	Substitution

A.1	Line	Editing
A.2	History	Substitution
A.3	Key	Bindings
A.4	Commentary

B.	Floating	Point	Arithmetic:	Issues	and	Limitations

B.1	Representation	Error
C.	History	and	License

C.1	History	of	the	software
C.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
C.3	Licenses	and	Acknowledgements	for	Incorporated	Software

C.3.1	Mersenne	Twister
C.3.2	Sockets
C.3.3	Floating	point	exception	control
C.3.4	MD5	message	digest	algorithm
C.3.5	Asynchronous	socket	services
C.3.6	Cookie	management
C.3.7	Profiling
C.3.8	Execution	tracing
C.3.9	UUencode	and	UUdecode	functions
C.3.10	XML	Remote	Procedure	Calls

D.	Glossary
Index
About	this	document	...

Python	Tutorial
Previous:	Front	Matter	Up:	Python	Tutorial	Next:	1.	Whetting	Your	Appetite

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Index	Up:	Python	Tutorial

About	this	document	...
Python	Tutorial,	29	November	2004,	Release	2.4

This	document	was	generated	using	the	LaTeX2HTML	translator.

LaTeX2HTML	is	Copyright	©	1993,	1994,	1995,	1996,	1997,	Nikos	Drakos,
Computer	Based	Learning	Unit,	University	of	Leeds,	and	Copyright	©	1997,
1998,	Ross	Moore,	Mathematics	Department,	Macquarie	University,	Sydney.

The	application	of	LaTeX2HTML	to	the	Python	documentation	has	been	heavily
tailored	by	Fred	L.	Drake,	Jr.	Original	navigation	icons	were	contributed	by
Christopher	Petrilli.

http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://cbl.leeds.ac.uk/nikos/personal.html
http://www.maths.mq.edu.au/~ross/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/

Comments	and	Questions
General	comments	and	questions	regarding	this	document	should	be	sent	by
email	to	docs@python.org.	If	you	find	specific	errors	in	this	document,	either	in
the	content	or	the	presentation,	please	report	the	bug	at	the	Python	Bug	Tracker
at	SourceForge.	If	you	are	able	to	provide	suggested	text,	either	to	replace
existing	incorrect	or	unclear	material,	or	additional	text	to	supplement	what's
already	available,	we'd	appreciate	the	contribution.	There's	no	need	to	worry
about	text	markup;	our	documentation	team	will	gladly	take	care	of	that.

Questions	regarding	how	to	use	the	information	in	this	document	should	be	sent
to	the	Python	news	group,	comp.lang.python,	or	the	Python	mailing	list	(which
is	gated	to	the	newsgroup	and	carries	the	same	content).

For	any	of	these	channels,	please	be	sure	not	to	send	HTML	email.	Thanks.

Python	Tutorial
Previous:	Index	Up:	Python	Tutorial

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

mailto:docs@python.org
http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/
news:comp.lang.python
http://www.python.org/mailman/listinfo/python-list

Previous:	2.3.6	Sequence	Types	Up:	2.3.6	Sequence	Types	Next:	2.3.6.2
String	Formatting	Operations

2.3.6.1	String	Methods

These	are	the	string	methods	which	both	8-bit	strings	and	Unicode	objects
support:

capitalize()
Return	a	copy	of	the	string	with	only	its	first	character	capitalized.

For	8-bit	strings,	this	method	is	locale-dependent.

center(width[,	fillchar])
Return	centered	in	a	string	of	length	width.	Padding	is	done	using	the
specified	fillchar	(default	is	a	space).	Changed	in	version	2.4:	Support	for
the	fillchar	argument.

count(sub[,	start[,	end]])
Return	the	number	of	occurrences	of	substring	sub	in	string	S[start:end].
Optional	arguments	start	and	end	are	interpreted	as	in	slice	notation.

decode([encoding[,	errors]])
Decodes	the	string	using	the	codec	registered	for	encoding.	encoding
defaults	to	the	default	string	encoding.	errors	may	be	given	to	set	a	different
error	handling	scheme.	The	default	is	'strict',	meaning	that	encoding
errors	raise	UnicodeError.	Other	possible	values	are	'ignore',
'replace'	and	any	other	name	registered	via
codecs.register_error.	New	in	version	2.2.	Changed	in	version
2.3:	Support	for	other	error	handling	schemes	added.

encode([encoding[,errors]])
Return	an	encoded	version	of	the	string.	Default	encoding	is	the	current
default	string	encoding.	errors	may	be	given	to	set	a	different	error
handling	scheme.	The	default	for	errors	is	'strict',	meaning	that
encoding	errors	raise	a	UnicodeError.	Other	possible	values	are

'ignore',	'replace',	'xmlcharrefreplace',
'backslashreplace'	and	any	other	name	registered	via
codecs.register_error.	For	a	list	of	possible	encodings,	see
section	4.9.2.	New	in	version	2.0.	Changed	in	version	2.3:	Support	for
'xmlcharrefreplace'	and	'backslashreplace'	and	other	error
handling	schemes	added.

endswith(suffix[,	start[,	end]])
Return	True	if	the	string	ends	with	the	specified	suffix,	otherwise	return
False.	With	optional	start,	test	beginning	at	that	position.	With	optional
end,	stop	comparing	at	that	position.

expandtabs([tabsize])
Return	a	copy	of	the	string	where	all	tab	characters	are	expanded	using
spaces.	If	tabsize	is	not	given,	a	tab	size	of	8	characters	is	assumed.

find(sub[,	start[,	end]])
Return	the	lowest	index	in	the	string	where	substring	sub	is	found,	such	that
sub	is	contained	in	the	range	[start,	end).	Optional	arguments	start	and	end
are	interpreted	as	in	slice	notation.	Return	-1	if	sub	is	not	found.

index(sub[,	start[,	end]])
Like	find(),	but	raise	ValueError	when	the	substring	is	not	found.

isalnum()
Return	true	if	all	characters	in	the	string	are	alphanumeric	and	there	is	at
least	one	character,	false	otherwise.

For	8-bit	strings,	this	method	is	locale-dependent.

isalpha()
Return	true	if	all	characters	in	the	string	are	alphabetic	and	there	is	at	least
one	character,	false	otherwise.

For	8-bit	strings,	this	method	is	locale-dependent.

isdigit()

Return	true	if	all	characters	in	the	string	are	digits	and	there	is	at	least	one
character,	false	otherwise.

For	8-bit	strings,	this	method	is	locale-dependent.

islower()
Return	true	if	all	cased	characters	in	the	string	are	lowercase	and	there	is	at
least	one	cased	character,	false	otherwise.

For	8-bit	strings,	this	method	is	locale-dependent.

isspace()
Return	true	if	there	are	only	whitespace	characters	in	the	string	and	there	is
at	least	one	character,	false	otherwise.

For	8-bit	strings,	this	method	is	locale-dependent.

istitle()
Return	true	if	the	string	is	a	titlecased	string	and	there	is	at	least	one
character,	for	example	uppercase	characters	may	only	follow	uncased
characters	and	lowercase	characters	only	cased	ones.	Return	false
otherwise.

For	8-bit	strings,	this	method	is	locale-dependent.

isupper()
Return	true	if	all	cased	characters	in	the	string	are	uppercase	and	there	is	at
least	one	cased	character,	false	otherwise.

For	8-bit	strings,	this	method	is	locale-dependent.

join(seq)
Return	a	string	which	is	the	concatenation	of	the	strings	in	the	sequence
seq.	The	separator	between	elements	is	the	string	providing	this	method.

ljust(width[,	fillchar])
Return	the	string	left	justified	in	a	string	of	length	width.	Padding	is	done
using	the	specified	fillchar	(default	is	a	space).	The	original	string	is

returned	if	width	is	less	than	len(s).	Changed	in	version	2.4:	Support	for
the	fillchar	argument.

lower()
Return	a	copy	of	the	string	converted	to	lowercase.

For	8-bit	strings,	this	method	is	locale-dependent.

lstrip([chars])
Return	a	copy	of	the	string	with	leading	characters	removed.	If	chars	is
omitted	or	None,	whitespace	characters	are	removed.	If	given	and	not
None,	chars	must	be	a	string;	the	characters	in	the	string	will	be	stripped
from	the	beginning	of	the	string	this	method	is	called	on.	Changed	in
version	2.2.2:	Support	for	the	chars	argument.

replace(old,	new[,	count])
Return	a	copy	of	the	string	with	all	occurrences	of	substring	old	replaced	by
new.	If	the	optional	argument	count	is	given,	only	the	first	count
occurrences	are	replaced.

rfind(sub	[,start	[,end]])
Return	the	highest	index	in	the	string	where	substring	sub	is	found,	such
that	sub	is	contained	within	s[start,end].	Optional	arguments	start	and	end
are	interpreted	as	in	slice	notation.	Return	-1	on	failure.

rindex(sub[,	start[,	end]])
Like	rfind()	but	raises	ValueError	when	the	substring	sub	is	not
found.

rjust(width[,	fillchar])
Return	the	string	right	justified	in	a	string	of	length	width.	Padding	is	done
using	the	specified	fillchar	(default	is	a	space).	The	original	string	is
returned	if	width	is	less	than	len(s).	Changed	in	version	2.4:	Support	for
the	fillchar	argument.

rsplit([sep	[,maxsplit]])
Return	a	list	of	the	words	in	the	string,	using	sep	as	the	delimiter	string.	If

maxsplit	is	given,	at	most	maxsplit	splits	are	done,	the	rightmost	ones.	If	sep
is	not	specified	or	None,	any	whitespace	string	is	a	separator.	New	in
version	2.4.

rstrip([chars])
Return	a	copy	of	the	string	with	trailing	characters	removed.	If	chars	is
omitted	or	None,	whitespace	characters	are	removed.	If	given	and	not
None,	chars	must	be	a	string;	the	characters	in	the	string	will	be	stripped
from	the	end	of	the	string	this	method	is	called	on.	Changed	in	version
2.2.2:	Support	for	the	chars	argument.

split([sep	[,maxsplit]])
Return	a	list	of	the	words	in	the	string,	using	sep	as	the	delimiter	string.	If
maxsplit	is	given,	at	most	maxsplit	splits	are	done.	(thus,	the	list	will	have	at
most	maxsplit+1	elements).	If	maxsplit	is	not	specified	or	is	zero,	then	there
is	no	limit	on	the	number	of	splits	(all	possible	splits	are	made).
Consecutive	delimiters	are	not	grouped	together	and	are	deemed	to	delimit
empty	strings	(for	example,	"'1,,2'.split(',')"returns	"['1',
'',	'2']").	The	sep	argument	may	consist	of	multiple	characters	(for
example,	"'1,	2,	3'.split(',	')"	returns	"['1',	'2',
'3']").	Splitting	an	empty	string	with	a	specified	separator	returns	an
empty	list.

If	sep	is	not	specified	or	is	None,	a	different	splitting	algorithm	is	applied.
Words	are	separated	by	arbitrary	length	strings	of	whitespace	characters
(spaces,	tabs,	newlines,	returns,	and	formfeeds).	Consecutive	whitespace
delimiters	are	treated	as	a	single	delimiter	("'1	2	3'.split()"	returns
"['1',	'2',	'3']").	Splitting	an	empty	string	returns	"['']".

splitlines([keepends])
Return	a	list	of	the	lines	in	the	string,	breaking	at	line	boundaries.	Line
breaks	are	not	included	in	the	resulting	list	unless	keepends	is	given	and
true.

startswith(prefix[,	start[,	end]])
Return	True	if	string	starts	with	the	prefix,	otherwise	return	False.	With
optional	start,	test	string	beginning	at	that	position.	With	optional	end,	stop

comparing	string	at	that	position.

strip([chars])
Return	a	copy	of	the	string	with	leading	and	trailing	characters	removed.	If
chars	is	omitted	or	None,	whitespace	characters	are	removed.	If	given	and
not	None,	chars	must	be	a	string;	the	characters	in	the	string	will	be
stripped	from	the	both	ends	of	the	string	this	method	is	called	on.	Changed
in	version	2.2.2:	Support	for	the	chars	argument.

swapcase()
Return	a	copy	of	the	string	with	uppercase	characters	converted	to
lowercase	and	vice	versa.

For	8-bit	strings,	this	method	is	locale-dependent.

title()
Return	a	titlecased	version	of	the	string:	words	start	with	uppercase
characters,	all	remaining	cased	characters	are	lowercase.

For	8-bit	strings,	this	method	is	locale-dependent.

translate(table[,	deletechars])
Return	a	copy	of	the	string	where	all	characters	occurring	in	the	optional
argument	deletechars	are	removed,	and	the	remaining	characters	have	been
mapped	through	the	given	translation	table,	which	must	be	a	string	of
length	256.

For	Unicode	objects,	the	translate()	method	does	not	accept	the
optional	deletechars	argument.	Instead,	it	returns	a	copy	of	the	s	where	all
characters	have	been	mapped	through	the	given	translation	table	which
must	be	a	mapping	of	Unicode	ordinals	to	Unicode	ordinals,	Unicode
strings	or	None.	Unmapped	characters	are	left	untouched.	Characters
mapped	to	None	are	deleted.	Note,	a	more	flexible	approach	is	to	create	a
custom	character	mapping	codec	using	the	codecs	module	(see
encodings.cp1251	for	an	example).

upper()
Return	a	copy	of	the	string	converted	to	uppercase.

For	8-bit	strings,	this	method	is	locale-dependent.

zfill(width)
Return	the	numeric	string	left	filled	with	zeros	in	a	string	of	length	width.
The	original	string	is	returned	if	width	is	less	than	len(s).	New	in	version
2.2.2.

Python	Library	Reference
Previous:	2.3.6	Sequence	Types	Up:	2.3.6	Sequence	Types	Next:	2.3.6.2
String	Formatting	Operations

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.6.1	String	Methods	Up:	2.3.6	Sequence	Types	Next:	2.3.6.3
XRange	Type

2.3.6.2	String	Formatting	Operations

String	and	Unicode	objects	have	one	unique	built-in	operation:	the	%	operator
(modulo).	This	is	also	known	as	the	string	formatting	or	interpolation	operator.
Given	format	%	values	(where	format	is	a	string	or	Unicode	object),	%
conversion	specifications	in	format	are	replaced	with	zero	or	more	elements	of
values.	The	effect	is	similar	to	the	using	sprintf()	in	the	C	language.	If
format	is	a	Unicode	object,	or	if	any	of	the	objects	being	converted	using	the	%s
conversion	are	Unicode	objects,	the	result	will	also	be	a	Unicode	object.

If	format	requires	a	single	argument,	values	may	be	a	single	non-tuple	object.2.8
Otherwise,	values	must	be	a	tuple	with	exactly	the	number	of	items	specified	by
the	format	string,	or	a	single	mapping	object	(for	example,	a	dictionary).

A	conversion	specifier	contains	two	or	more	characters	and	has	the	following
components,	which	must	occur	in	this	order:

1.	 The	"%"	character,	which	marks	the	start	of	the	specifier.
2.	 Mapping	key	(optional),	consisting	of	a	parenthesised	sequence	of

characters	(for	example,	(somename)).
3.	 Conversion	flags	(optional),	which	affect	the	result	of	some	conversion

types.
4.	 Minimum	field	width	(optional).	If	specified	as	an	"*"	(asterisk),	the	actual

width	is	read	from	the	next	element	of	the	tuple	in	values,	and	the	object	to
convert	comes	after	the	minimum	field	width	and	optional	precision.

5.	 Precision	(optional),	given	as	a	"."	(dot)	followed	by	the	precision.	If
specified	as	"*"	(an	asterisk),	the	actual	width	is	read	from	the	next	element
of	the	tuple	in	values,	and	the	value	to	convert	comes	after	the	precision.

6.	 Length	modifier	(optional).
7.	 Conversion	type.

When	the	right	argument	is	a	dictionary	(or	other	mapping	type),	then	the
formats	in	the	string	must	include	a	parenthesised	mapping	key	into	that
dictionary	inserted	immediately	after	the	"%"	character.	The	mapping	key	selects
the	value	to	be	formatted	from	the	mapping.	For	example:

>>>	print	'%(language)s	has	%(#)03d	quote	types.'	%	\

										{'language':	"Python",	"#":	2}

Python	has	002	quote	types.

In	this	case	no	*	specifiers	may	occur	in	a	format	(since	they	require	a	sequential
parameter	list).

The	conversion	flag	characters	are:

Flag Meaning
# The	value	conversion	will	use	the	``alternate	form''	(where	defined

below).
0 The	conversion	will	be	zero	padded	for	numeric	values.
- The	converted	value	is	left	adjusted	(overrides	the	"0"	conversion	if

both	are	given).
	 (a	space)	A	blank	should	be	left	before	a	positive	number	(or	empty

string)	produced	by	a	signed	conversion.
+ A	sign	character	("+"	or	"-")	will	precede	the	conversion	(overrides	a

"space"	flag).

The	length	modifier	may	be	h,	l,	and	L	may	be	present,	but	are	ignored	as	they
are	not	necessary	for	Python.

The	conversion	types	are:

Conversion Meaning Notes
d Signed	integer	decimal.
i Signed	integer	decimal.
o Unsigned	octal. (1)
u Unsigned	decimal.
x Unsigned	hexidecimal	(lowercase). (2)
X Unsigned	hexidecimal	(uppercase). (2)
e Floating	point	exponential	format	(lowercase).
E Floating	point	exponential	format	(uppercase).
f Floating	point	decimal	format.
F Floating	point	decimal	format.
g Same	as	"e"	if	exponent	is	greater	than	-4	or	less	than

precision,	"f"	otherwise.
G Same	as	"E"	if	exponent	is	greater	than	-4	or	less	than

precision,	"F"	otherwise.
c Single	character	(accepts	integer	or	single	character

string).
r String	(converts	any	python	object	using	repr()). (3)
s String	(converts	any	python	object	using	str()). (4)
% No	argument	is	converted,	results	in	a	"%"	character

in	the	result.

Notes:

(1)
The	alternate	form	causes	a	leading	zero	("0")	to	be	inserted	between	left-
hand	padding	and	the	formatting	of	the	number	if	the	leading	character	of
the	result	is	not	already	a	zero.

(2)
The	alternate	form	causes	a	leading	'0x'	or	'0X'	(depending	on	whether
the	"x"	or	"X"	format	was	used)	to	be	inserted	between	left-hand	padding
and	the	formatting	of	the	number	if	the	leading	character	of	the	result	is	not
already	a	zero.

(3)
The	%r	conversion	was	added	in	Python	2.0.

(4)
If	the	object	or	format	provided	is	a	unicode	string,	the	resulting	string
will	also	be	unicode.

Since	Python	strings	have	an	explicit	length,	%s	conversions	do	not	assume	that
'\0'	is	the	end	of	the	string.

For	safety	reasons,	floating	point	precisions	are	clipped	to	50;	%f	conversions
for	numbers	whose	absolute	value	is	over	1e25	are	replaced	by	%g
conversions.2.9	All	other	errors	raise	exceptions.

Additional	string	operations	are	defined	in	standard	modules	string	and	re.

Footnotes

...	object.2.8
To	format	only	a	tuple	you	should	therefore	provide	a	singleton	tuple	whose
only	element	is	the	tuple	to	be	formatted.

...	conversions.2.9
These	numbers	are	fairly	arbitrary.	They	are	intended	to	avoid	printing
endless	strings	of	meaningless	digits	without	hampering	correct	use	and
without	having	to	know	the	exact	precision	of	floating	point	values	on	a
particular	machine.

Python	Library	Reference
Previous:	2.3.6.1	String	Methods	Up:	2.3.6	Sequence	Types	Next:	2.3.6.3
XRange	Type

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Front	Matter	Up:	Python	Library	Reference	Next:	1.	Introduction

Contents
Front	Matter
1.	Introduction
2.	Built-In	Objects

2.1	Built-in	Functions
2.2	Non-essential	Built-in	Functions
2.3	Built-in	Types

2.3.1	Truth	Value	Testing
2.3.2	Boolean	Operations
2.3.3	Comparisons
2.3.4	Numeric	Types
2.3.5	Iterator	Types
2.3.6	Sequence	Types
2.3.7	Set	Types
2.3.8	Mapping	Types
2.3.9	File	Objects
2.3.10	Other	Built-in	Types
2.3.11	Special	Attributes

2.4	Built-in	Exceptions
2.5	Built-in	Constants

3.	Python	Runtime	Services
3.1	sys	--	System-specific	parameters	and	functions
3.2	gc	--	Garbage	Collector	interface
3.3	weakref	--	Weak	references

3.3.1	Weak	Reference	Objects
3.3.2	Example
3.3.3	Weak	References	in	Extension	Types

3.4	fpectl	--	Floating	point	exception	control
3.4.1	Example
3.4.2	Limitations	and	other	considerations

3.5	atexit	--	Exit	handlers
3.5.1	atexit	Example

3.6	types	--	Names	for	built-in	types
3.7	UserDict	--	Class	wrapper	for	dictionary	objects
3.8	UserList	--	Class	wrapper	for	list	objects
3.9	UserString	--	Class	wrapper	for	string	objects

3.10	operator	--	Standard	operators	as	functions.
3.10.1	Mapping	Operators	to	Functions

3.11	inspect	--	Inspect	live	objects
3.11.1	Types	and	members
3.11.2	Retrieving	source	code
3.11.3	Classes	and	functions
3.11.4	The	interpreter	stack

3.12	traceback	--	Print	or	retrieve	a	stack	traceback
3.12.1	Traceback	Example

3.13	linecache	--	Random	access	to	text	lines
3.14	pickle	--	Python	object	serialization

3.14.1	Relationship	to	other	Python	modules
3.14.2	Data	stream	format
3.14.3	Usage
3.14.4	What	can	be	pickled	and	unpickled?
3.14.5	The	pickle	protocol
3.14.6	Subclassing	Unpicklers
3.14.7	Example

3.15	cPickle	--	A	faster	pickle
3.16	copy_reg	--	Register	pickle	support	functions
3.17	shelve	--	Python	object	persistence

3.17.1	Restrictions
3.17.2	Example

3.18	copy	--	Shallow	and	deep	copy	operations
3.19	marshal	--	Internal	Python	object	serialization
3.20	warnings	--	Warning	control

3.20.1	Warning	Categories
3.20.2	The	Warnings	Filter
3.20.3	Available	Functions

3.21	imp	--	Access	the	import	internals
3.21.1	Examples

3.22	pkgutil	--	Package	extension	utility
3.23	code	--	Interpreter	base	classes

3.23.1	Interactive	Interpreter	Objects
3.23.2	Interactive	Console	Objects

3.24	codeop	--	Compile	Python	code
3.25	pprint	--	Data	pretty	printer

3.25.1	PrettyPrinter	Objects
3.26	repr	--	Alternate	repr()	implementation

3.26.1	Repr	Objects
3.26.2	Subclassing	Repr	Objects

3.27	new	--	Creation	of	runtime	internal	objects
3.28	site	--	Site-specific	configuration	hook
3.29	user	--	User-specific	configuration	hook
3.30	__builtin__	--	Built-in	functions
3.31	__main__	--	Top-level	script	environment
3.32	__future__	--	Future	statement	definitions

4.	String	Services
4.1	string	--	Common	string	operations

4.1.1	String	constants
4.1.2	Template	strings
4.1.3	String	functions
4.1.4	Deprecated	string	functions

4.2	re	--	Regular	expression	operations
4.2.1	Regular	Expression	Syntax
4.2.2	Matching	vs	Searching
4.2.3	Module	Contents
4.2.4	Regular	Expression	Objects
4.2.5	Match	Objects
4.2.6	Examples

4.3	struct	--	Interpret	strings	as	packed	binary	data
4.4	difflib	--	Helpers	for	computing	deltas

4.4.1	SequenceMatcher	Objects
4.4.2	SequenceMatcher	Examples
4.4.3	Differ	Objects
4.4.4	Differ	Example

4.5	fpformat	--	Floating	point	conversions
4.6	StringIO	--	Read	and	write	strings	as	files
4.7	cStringIO	--	Faster	version	of	StringIO
4.8	textwrap	--	Text	wrapping	and	filling
4.9	codecs	--	Codec	registry	and	base	classes

4.9.1	Codec	Base	Classes
4.9.2	Standard	Encodings
4.9.3	encodings.idna	--	Internationalized	Domain	Names	in
Applications

4.10	unicodedata	--	Unicode	Database
4.11	stringprep	--	Internet	String	Preparation

5.	Miscellaneous	Services

5.1	pydoc	--	Documentation	generator	and	online	help	system
5.2	doctest	--	Test	interactive	Python	examples

5.2.1	Simple	Usage:	Checking	Examples	in	Docstrings
5.2.2	Simple	Usage:	Checking	Examples	in	a	Text	File
5.2.3	How	It	Works
5.2.4	Basic	API
5.2.5	Unittest	API
5.2.6	Advanced	API
5.2.7	Debugging
5.2.8	Soapbox

5.3	unittest	--	Unit	testing	framework
5.3.1	Basic	example
5.3.2	Organizing	test	code
5.3.3	Re-using	old	test	code
5.3.4	Classes	and	functions
5.3.5	TestCase	Objects
5.3.6	TestSuite	Objects
5.3.7	TestResult	Objects
5.3.8	TestLoader	Objects

5.4	test	--	Regression	tests	package	for	Python
5.4.1	Writing	Unit	Tests	for	the	test	package
5.4.2	Running	tests	using	test.regrtest

5.5	test.test_support	--	Utility	functions	for	tests
5.6	decimal	--	Decimal	floating	point	arithmetic

5.6.1	Quick-start	Tutorial
5.6.2	Decimal	objects
5.6.3	Context	objects
5.6.4	Signals
5.6.5	Floating	Point	Notes
5.6.6	Working	with	threads
5.6.7	Recipes

5.7	math	--	Mathematical	functions
5.8	cmath	--	Mathematical	functions	for	complex	numbers
5.9	random	--	Generate	pseudo-random	numbers
5.10	whrandom	--	Pseudo-random	number	generator
5.11	bisect	--	Array	bisection	algorithm

5.11.1	Examples
5.12	collections	--	High-performance	container	datatypes

5.12.1	Recipes

5.13	heapq	--	Heap	queue	algorithm
5.13.1	Theory

5.14	array	--	Efficient	arrays	of	numeric	values
5.15	sets	--	Unordered	collections	of	unique	elements

5.15.1	Set	Objects
5.15.2	Example
5.15.3	Protocol	for	automatic	conversion	to	immutable

5.16	itertools	--	Functions	creating	iterators	for	efficient	looping
5.16.1	Itertool	functions
5.16.2	Examples
5.16.3	Recipes

5.17	ConfigParser	--	Configuration	file	parser
5.17.1	RawConfigParser	Objects
5.17.2	ConfigParser	Objects
5.17.3	SafeConfigParser	Objects

5.18	fileinput	--	Iterate	over	lines	from	multiple	input	streams
5.19	calendar	--	General	calendar-related	functions
5.20	cmd	--	Support	for	line-oriented	command	interpreters

5.20.1	Cmd	Objects
5.21	shlex	--	Simple	lexical	analysis

5.21.1	shlex	Objects
5.21.2	Parsing	Rules

6.	Generic	Operating	System	Services
6.1	os	--	Miscellaneous	operating	system	interfaces

6.1.1	Process	Parameters
6.1.2	File	Object	Creation
6.1.3	File	Descriptor	Operations
6.1.4	Files	and	Directories
6.1.5	Process	Management
6.1.6	Miscellaneous	System	Information
6.1.7	Miscellaneous	Functions

6.2	os.path	--	Common	pathname	manipulations
6.3	dircache	--	Cached	directory	listings
6.4	stat	--	Interpreting	stat()	results
6.5	statcache	--	An	optimization	of	os.stat()
6.6	statvfs	--	Constants	used	with	os.statvfs()
6.7	filecmp	--	File	and	Directory	Comparisons

6.7.1	The	dircmp	class
6.8	subprocess	--	Subprocess	management

6.8.1	Using	the	subprocess	Module
6.8.2	Popen	Objects
6.8.3	Replacing	Older	Functions	with	the	subprocess	Module

6.9	popen2	--	Subprocesses	with	accessible	I/O	streams
6.9.1	Popen3	and	Popen4	Objects
6.9.2	Flow	Control	Issues

6.10	datetime	--	Basic	date	and	time	types
6.10.1	Available	Types
6.10.2	timedelta	Objects
6.10.3	date	Objects
6.10.4	datetime	Objects
6.10.5	time	Objects
6.10.6	tzinfo	Objects
6.10.7	strftime()	Behavior

6.11	time	--	Time	access	and	conversions
6.12	sched	--	Event	scheduler

6.12.1	Scheduler	Objects
6.13	mutex	--	Mutual	exclusion	support

6.13.1	Mutex	Objects
6.14	getpass	--	Portable	password	input
6.15	curses	--	Terminal	handling	for	character-cell	displays

6.15.1	Functions
6.15.2	Window	Objects
6.15.3	Constants

6.16	curses.textpad	--	Text	input	widget	for	curses	programs
6.16.1	Textbox	objects

6.17	curses.wrapper	--	Terminal	handler	for	curses	programs
6.18	curses.ascii	--	Utilities	for	ASCII	characters
6.19	curses.panel	--	A	panel	stack	extension	for	curses.

6.19.1	Functions
6.19.2	Panel	Objects

6.20	getopt	--	Parser	for	command	line	options
6.21	optparse	--	More	powerful	command	line	option	parser

6.21.1	Background
6.21.2	Tutorial
6.21.3	Reference	Guide
6.21.4	Option	Callbacks

6.22	tempfile	--	Generate	temporary	files	and	directories
6.23	errno	--	Standard	errno	system	symbols

6.24	glob	--	Unix	style	pathname	pattern	expansion
6.25	fnmatch	--	Unix	filename	pattern	matching
6.26	shutil	--	High-level	file	operations

6.26.1	Example
6.27	locale	--	Internationalization	services

6.27.1	Background,	details,	hints,	tips	and	caveats
6.27.2	For	extension	writers	and	programs	that	embed	Python
6.27.3	Access	to	message	catalogs

6.28	gettext	--	Multilingual	internationalization	services
6.28.1	GNU	gettext	API
6.28.2	Class-based	API
6.28.3	Internationalizing	your	programs	and	modules
6.28.4	Acknowledgements

6.29	logging	--	Logging	facility	for	Python
6.29.1	Logger	Objects
6.29.2	Basic	example
6.29.3	Logging	to	multiple	destinations
6.29.4	Sending	and	receiving	logging	events	across	a	network
6.29.5	Handler	Objects
6.29.6	Formatter	Objects
6.29.7	Filter	Objects
6.29.8	LogRecord	Objects
6.29.9	Thread	Safety
6.29.10	Configuration

6.30	platform	--	Access	to	underlying	platform's	identifying	data.
6.30.1	Cross	Platform
6.30.2	Java	Platform
6.30.3	Windows	Platform
6.30.4	Mac	OS	Platform
6.30.5	Unix	Platforms

7.	Optional	Operating	System	Services
7.1	signal	--	Set	handlers	for	asynchronous	events

7.1.1	Example
7.2	socket	--	Low-level	networking	interface

7.2.1	Socket	Objects
7.2.2	SSL	Objects
7.2.3	Example

7.3	select	--	Waiting	for	I/O	completion
7.3.1	Polling	Objects

7.4	thread	--	Multiple	threads	of	control
7.5	threading	--	Higher-level	threading	interface

7.5.1	Lock	Objects
7.5.2	RLock	Objects
7.5.3	Condition	Objects
7.5.4	Semaphore	Objects
7.5.5	Event	Objects
7.5.6	Thread	Objects
7.5.7	Timer	Objects

7.6	dummy_thread	--	Drop-in	replacement	for	the	thread	module
7.7	dummy_threading	--	Drop-in	replacement	for	the	threading	module
7.8	Queue	--	A	synchronized	queue	class

7.8.1	Queue	Objects
7.9	mmap	--	Memory-mapped	file	support
7.10	anydbm	--	Generic	access	to	DBM-style	databases
7.11	dbhash	--	DBM-style	interface	to	the	BSD	database	library

7.11.1	Database	Objects
7.12	whichdb	--	Guess	which	DBM	module	created	a	database
7.13	bsddb	--	Interface	to	Berkeley	DB	library

7.13.1	Hash,	BTree	and	Record	Objects
7.14	dumbdbm	--	Portable	DBM	implementation

7.14.1	Dumbdbm	Objects
7.15	zlib	--	Compression	compatible	with	gzip
7.16	gzip	--	Support	for	gzip	files
7.17	bz2	--	Compression	compatible	with	bzip2

7.17.1	(De)compression	of	files
7.17.2	Sequential	(de)compression
7.17.3	One-shot	(de)compression

7.18	zipfile	--	Work	with	ZIP	archives
7.18.1	ZipFile	Objects
7.18.2	PyZipFile	Objects
7.18.3	ZipInfo	Objects

7.19	tarfile	--	Read	and	write	tar	archive	files
7.19.1	TarFile	Objects
7.19.2	TarInfo	Objects
7.19.3	Examples

7.20	readline	--	GNU	readline	interface
7.20.1	Example

7.21	rlcompleter	--	Completion	function	for	GNU	readline

7.21.1	Completer	Objects
8.	Unix	Specific	Services

8.1	posix	--	The	most	common	POSIX	system	calls
8.1.1	Large	File	Support
8.1.2	Module	Contents

8.2	pwd	--	The	password	database
8.3	grp	--	The	group	database
8.4	crypt	--	Function	to	check	Unix	passwords
8.5	dl	--	Call	C	functions	in	shared	objects

8.5.1	Dl	Objects
8.6	dbm	--	Simple	``database''	interface
8.7	gdbm	--	GNU's	reinterpretation	of	dbm
8.8	termios	--	POSIX	style	tty	control

8.8.1	Example
8.9	tty	--	Terminal	control	functions
8.10	pty	--	Pseudo-terminal	utilities
8.11	fcntl	--	The	fcntl()	and	ioctl()	system	calls
8.12	pipes	--	Interface	to	shell	pipelines

8.12.1	Template	Objects
8.13	posixfile	--	File-like	objects	with	locking	support
8.14	resource	--	Resource	usage	information

8.14.1	Resource	Limits
8.14.2	Resource	Usage

8.15	nis	--	Interface	to	Sun's	NIS	(Yellow	Pages)
8.16	syslog	--	Unix	syslog	library	routines
8.17	commands	--	Utilities	for	running	commands

9.	The	Python	Debugger
9.1	Debugger	Commands
9.2	How	It	Works

10.	The	Python	Profiler
10.1	Introduction	to	the	profiler
10.2	How	Is	This	Profiler	Different	From	The	Old	Profiler?
10.3	Instant	Users	Manual
10.4	What	Is	Deterministic	Profiling?
10.5	Reference	Manual

10.5.1	The	Stats	Class
10.6	Limitations
10.7	Calibration
10.8	Extensions	--	Deriving	Better	Profilers

10.9	hotshot	--	High	performance	logging	profiler
10.9.1	Profile	Objects
10.9.2	Using	hotshot	data
10.9.3	Example	Usage

10.10	timeit	--	Measure	execution	time	of	small	code	snippets
10.10.1	Command	Line	Interface
10.10.2	Examples

11.	Internet	Protocols	and	Support
11.1	webbrowser	--	Convenient	Web-browser	controller

11.1.1	Browser	Controller	Objects
11.2	cgi	--	Common	Gateway	Interface	support.

11.2.1	Introduction
11.2.2	Using	the	cgi	module
11.2.3	Higher	Level	Interface
11.2.4	Old	classes
11.2.5	Functions
11.2.6	Caring	about	security
11.2.7	Installing	your	CGI	script	on	a	Unix	system
11.2.8	Testing	your	CGI	script
11.2.9	Debugging	CGI	scripts
11.2.10	Common	problems	and	solutions

11.3	cgitb	--	Traceback	manager	for	CGI	scripts
11.4	urllib	--	Open	arbitrary	resources	by	URL

11.4.1	URLopener	Objects
11.4.2	Examples

11.5	urllib2	--	extensible	library	for	opening	URLs
11.5.1	Request	Objects
11.5.2	OpenerDirector	Objects
11.5.3	BaseHandler	Objects
11.5.4	HTTPRedirectHandler	Objects
11.5.5	HTTPCookieProcessor	Objects
11.5.6	ProxyHandler	Objects
11.5.7	HTTPPasswordMgr	Objects
11.5.8	AbstractBasicAuthHandler	Objects
11.5.9	HTTPBasicAuthHandler	Objects
11.5.10	ProxyBasicAuthHandler	Objects
11.5.11	AbstractDigestAuthHandler	Objects
11.5.12	HTTPDigestAuthHandler	Objects
11.5.13	ProxyDigestAuthHandler	Objects

11.5.14	HTTPHandler	Objects
11.5.15	HTTPSHandler	Objects
11.5.16	FileHandler	Objects
11.5.17	FTPHandler	Objects
11.5.18	CacheFTPHandler	Objects
11.5.19	GopherHandler	Objects
11.5.20	UnknownHandler	Objects
11.5.21	HTTPErrorProcessor	Objects
11.5.22	Examples

11.6	httplib	--	HTTP	protocol	client
11.6.1	HTTPConnection	Objects
11.6.2	HTTPResponse	Objects
11.6.3	Examples

11.7	ftplib	--	FTP	protocol	client
11.7.1	FTP	Objects

11.8	gopherlib	--	Gopher	protocol	client
11.9	poplib	--	POP3	protocol	client

11.9.1	POP3	Objects
11.9.2	POP3	Example

11.10	imaplib	--	IMAP4	protocol	client
11.10.1	IMAP4	Objects
11.10.2	IMAP4	Example

11.11	nntplib	--	NNTP	protocol	client
11.11.1	NNTP	Objects

11.12	smtplib	--	SMTP	protocol	client
11.12.1	SMTP	Objects
11.12.2	SMTP	Example

11.13	smtpd	--	SMTP	Server
11.13.1	SMTPServer	Objects
11.13.2	DebuggingServer	Objects
11.13.3	PureProxy	Objects
11.13.4	MailmanProxy	Objects

11.14	telnetlib	--	Telnet	client
11.14.1	Telnet	Objects
11.14.2	Telnet	Example

11.15	urlparse	--	Parse	URLs	into	components
11.16	SocketServer	--	A	framework	for	network	servers
11.17	BaseHTTPServer	--	Basic	HTTP	server
11.18	SimpleHTTPServer	--	Simple	HTTP	request	handler

11.19	CGIHTTPServer	--	CGI-capable	HTTP	request	handler
11.20	cookielib	--	Cookie	handling	for	HTTP	clients

11.20.1	CookieJar	and	FileCookieJar	Objects
11.20.2	FileCookieJar	subclasses	and	co-operation	with	web
browsers
11.20.3	CookiePolicy	Objects
11.20.4	DefaultCookiePolicy	Objects
11.20.5	Cookie	Objects
11.20.6	Examples

11.21	Cookie	--	HTTP	state	management
11.21.1	Cookie	Objects
11.21.2	Morsel	Objects
11.21.3	Example

11.22	xmlrpclib	--	XML-RPC	client	access
11.22.1	ServerProxy	Objects
11.22.2	Boolean	Objects
11.22.3	DateTime	Objects
11.22.4	Binary	Objects
11.22.5	Fault	Objects
11.22.6	ProtocolError	Objects
11.22.7	MultiCall	Objects
11.22.8	Convenience	Functions
11.22.9	Example	of	Client	Usage

11.23	SimpleXMLRPCServer	--	Basic	XML-RPC	server
11.23.1	SimpleXMLRPCServer	Objects
11.23.2	CGIXMLRPCRequestHandler

11.24	DocXMLRPCServer	--	Self-documenting	XML-RPC	server
11.24.1	DocXMLRPCServer	Objects
11.24.2	DocCGIXMLRPCRequestHandler

11.25	asyncore	--	Asynchronous	socket	handler
11.25.1	asyncore	Example	basic	HTTP	client

11.26	asynchat	--	Asynchronous	socket	command/response	handler
11.26.1	asynchat	-	Auxiliary	Classes	and	Functions
11.26.2	asynchat	Example

12.	Internet	Data	Handling
12.1	formatter	--	Generic	output	formatting

12.1.1	The	Formatter	Interface
12.1.2	Formatter	Implementations
12.1.3	The	Writer	Interface

12.1.4	Writer	Implementations
12.2	email	--	An	email	and	MIME	handling	package

12.2.1	Representing	an	email	message
12.2.2	Parsing	email	messages
12.2.3	Generating	MIME	documents
12.2.4	Creating	email	and	MIME	objects	from	scratch
12.2.5	Internationalized	headers
12.2.6	Representing	character	sets
12.2.7	Encoders
12.2.8	Exception	and	Defect	classes
12.2.9	Miscellaneous	utilities
12.2.10	Iterators
12.2.11	Package	History
12.2.12	Differences	from	mimelib
12.2.13	Examples

12.3	mailcap	--	Mailcap	file	handling.
12.4	mailbox	--	Read	various	mailbox	formats

12.4.1	Mailbox	Objects
12.5	mhlib	--	Access	to	MH	mailboxes

12.5.1	MH	Objects
12.5.2	Folder	Objects
12.5.3	Message	Objects

12.6	mimetools	--	Tools	for	parsing	MIME	messages
12.6.1	Additional	Methods	of	Message	Objects

12.7	mimetypes	--	Map	filenames	to	MIME	types
12.7.1	MimeTypes	Objects

12.8	MimeWriter	--	Generic	MIME	file	writer
12.8.1	MimeWriter	Objects

12.9	mimify	--	MIME	processing	of	mail	messages
12.10	multifile	--	Support	for	files	containing	distinct	parts

12.10.1	MultiFile	Objects
12.10.2	MultiFile	Example

12.11	rfc822	--	Parse	RFC	2822	mail	headers
12.11.1	Message	Objects
12.11.2	AddressList	Objects

12.12	base64	--	RFC	3548:	Base16,	Base32,	Base64	Data	Encodings
12.13	binascii	--	Convert	between	binary	and	ASCII
12.14	binhex	--	Encode	and	decode	binhex4	files

12.14.1	Notes

12.15	quopri	--	Encode	and	decode	MIME	quoted-printable	data
12.16	uu	--	Encode	and	decode	uuencode	files
12.17	xdrlib	--	Encode	and	decode	XDR	data

12.17.1	Packer	Objects
12.17.2	Unpacker	Objects
12.17.3	Exceptions

12.18	netrc	--	netrc	file	processing
12.18.1	netrc	Objects

12.19	robotparser	--	Parser	for	robots.txt
12.20	csv	--	CSV	File	Reading	and	Writing

12.20.1	Module	Contents
12.20.2	Dialects	and	Formatting	Parameters
12.20.3	Reader	Objects
12.20.4	Writer	Objects
12.20.5	Examples

13.	Structured	Markup	Processing	Tools
13.1	HTMLParser	--	Simple	HTML	and	XHTML	parser

13.1.1	Example	HTML	Parser	Application
13.2	sgmllib	--	Simple	SGML	parser
13.3	htmllib	--	A	parser	for	HTML	documents

13.3.1	HTMLParser	Objects
13.4	htmlentitydefs	--	Definitions	of	HTML	general	entities
13.5	xml.parsers.expat	--	Fast	XML	parsing	using	Expat

13.5.1	XMLParser	Objects
13.5.2	ExpatError	Exceptions
13.5.3	Example
13.5.4	Content	Model	Descriptions
13.5.5	Expat	error	constants

13.6	xml.dom	--	The	Document	Object	Model	API
13.6.1	Module	Contents
13.6.2	Objects	in	the	DOM
13.6.3	Conformance

13.7	xml.dom.minidom	--	Lightweight	DOM	implementation
13.7.1	DOM	Objects
13.7.2	DOM	Example
13.7.3	minidom	and	the	DOM	standard

13.8	xml.dom.pulldom	--	Support	for	building	partial	DOM	trees
13.8.1	DOMEventStream	Objects

13.9	xml.sax	--	Support	for	SAX2	parsers

13.9.1	SAXException	Objects
13.10	xml.sax.handler	--	Base	classes	for	SAX	handlers

13.10.1	ContentHandler	Objects
13.10.2	DTDHandler	Objects
13.10.3	EntityResolver	Objects
13.10.4	ErrorHandler	Objects

13.11	xml.sax.saxutils	--	SAX	Utilities
13.12	xml.sax.xmlreader	--	Interface	for	XML	parsers

13.12.1	XMLReader	Objects
13.12.2	IncrementalParser	Objects
13.12.3	Locator	Objects
13.12.4	InputSource	Objects
13.12.5	The	Attributes	Interface
13.12.6	The	AttributesNS	Interface

13.13	xmllib	--	A	parser	for	XML	documents
13.13.1	XML	Namespaces

14.	Multimedia	Services
14.1	audioop	--	Manipulate	raw	audio	data
14.2	imageop	--	Manipulate	raw	image	data
14.3	aifc	--	Read	and	write	AIFF	and	AIFC	files
14.4	sunau	--	Read	and	write	Sun	AU	files

14.4.1	AU_read	Objects
14.4.2	AU_write	Objects

14.5	wave	--	Read	and	write	WAV	files
14.5.1	Wave_read	Objects
14.5.2	Wave_write	Objects

14.6	chunk	--	Read	IFF	chunked	data
14.7	colorsys	--	Conversions	between	color	systems
14.8	rgbimg	--	Read	and	write	``SGI	RGB''	files
14.9	imghdr	--	Determine	the	type	of	an	image
14.10	sndhdr	--	Determine	type	of	sound	file
14.11	ossaudiodev	--	Access	to	OSS-compatible	audio	devices

14.11.1	Audio	Device	Objects
14.11.2	Mixer	Device	Objects

15.	Cryptographic	Services
15.1	hmac	--	Keyed-Hashing	for	Message	Authentication
15.2	md5	--	MD5	message	digest	algorithm
15.3	sha	--	SHA-1	message	digest	algorithm

16.	Graphical	User	Interfaces	with	Tk

16.1	Tkinter	--	Python	interface	to	Tcl/Tk
16.1.1	Tkinter	Modules
16.1.2	Tkinter	Life	Preserver
16.1.3	A	(Very)	Quick	Look	at	Tcl/Tk
16.1.4	Mapping	Basic	Tk	into	Tkinter
16.1.5	How	Tk	and	Tkinter	are	Related
16.1.6	Handy	Reference

16.2	Tix	--	Extension	widgets	for	Tk
16.2.1	Using	Tix
16.2.2	Tix	Widgets
16.2.3	Tix	Commands

16.3	ScrolledText	--	Scrolled	Text	Widget
16.4	turtle	--	Turtle	graphics	for	Tk

16.4.1	Pen	and	RawPen	Objects
16.5	Idle

16.5.1	Menus
16.5.2	Basic	editing	and	navigation
16.5.3	Syntax	colors

16.6	Other	Graphical	User	Interface	Packages
17.	Restricted	Execution

17.1	rexec	--	Restricted	execution	framework
17.1.1	RExec	Objects
17.1.2	Defining	restricted	environments
17.1.3	An	example

17.2	Bastion	--	Restricting	access	to	objects
18.	Python	Language	Services

18.1	parser	--	Access	Python	parse	trees
18.1.1	Creating	AST	Objects
18.1.2	Converting	AST	Objects
18.1.3	Queries	on	AST	Objects
18.1.4	Exceptions	and	Error	Handling
18.1.5	AST	Objects
18.1.6	Examples

18.2	symbol	--	Constants	used	with	Python	parse	trees
18.3	token	--	Constants	used	with	Python	parse	trees
18.4	keyword	--	Testing	for	Python	keywords
18.5	tokenize	--	Tokenizer	for	Python	source
18.6	tabnanny	--	Detection	of	ambiguous	indentation
18.7	pyclbr	--	Python	class	browser	support

18.7.1	Class	Descriptor	Objects
18.7.2	Function	Descriptor	Objects

18.8	py_compile	--	Compile	Python	source	files
18.9	compileall	--	Byte-compile	Python	libraries
18.10	dis	--	Disassembler	for	Python	byte	code

18.10.1	Python	Byte	Code	Instructions
18.11	pickletools	--	Tools	for	pickle	developers.
18.12	distutils	--	Building	and	installing	Python	modules

19.	Python	compiler	package
19.1	The	basic	interface
19.2	Limitations
19.3	Python	Abstract	Syntax

19.3.1	AST	Nodes
19.3.2	Assignment	nodes
19.3.3	Examples

19.4	Using	Visitors	to	Walk	ASTs
19.5	Bytecode	Generation

20.	SGI	IRIX	Specific	Services
20.1	al	--	Audio	functions	on	the	SGI

20.1.1	Configuration	Objects
20.1.2	Port	Objects

20.2	AL	--	Constants	used	with	the	al	module
20.3	cd	--	CD-ROM	access	on	SGI	systems

20.3.1	Player	Objects
20.3.2	Parser	Objects

20.4	fl	--	FORMS	library	for	graphical	user	interfaces
20.4.1	Functions	Defined	in	Module	fl
20.4.2	Form	Objects
20.4.3	FORMS	Objects

20.5	FL	--	Constants	used	with	the	fl	module
20.6	flp	--	Functions	for	loading	stored	FORMS	designs
20.7	fm	--	Font	Manager	interface
20.8	gl	--	Graphics	Library	interface
20.9	DEVICE	--	Constants	used	with	the	gl	module
20.10	GL	--	Constants	used	with	the	gl	module
20.11	imgfile	--	Support	for	SGI	imglib	files
20.12	jpeg	--	Read	and	write	JPEG	files

21.	SunOS	Specific	Services
21.1	sunaudiodev	--	Access	to	Sun	audio	hardware

21.1.1	Audio	Device	Objects
21.2	SUNAUDIODEV	--	Constants	used	with	sunaudiodev

22.	MS	Windows	Specific	Services
22.1	msvcrt	-	Useful	routines	from	the	MS	VC++	runtime

22.1.1	File	Operations
22.1.2	Console	I/O
22.1.3	Other	Functions

22.2	_winreg	-	Windows	registry	access
22.2.1	Registry	Handle	Objects

22.3	winsound	--	Sound-playing	interface	for	Windows
A.	Undocumented	Modules

A.1	Frameworks
A.2	Miscellaneous	useful	utilities
A.3	Platform	specific	modules
A.4	Multimedia
A.5	Obsolete
A.6	SGI-specific	Extension	modules

B.	Reporting	Bugs
C.	History	and	License

C.1	History	of	the	software
C.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
C.3	Licenses	and	Acknowledgements	for	Incorporated	Software

C.3.1	Mersenne	Twister
C.3.2	Sockets
C.3.3	Floating	point	exception	control
C.3.4	MD5	message	digest	algorithm
C.3.5	Asynchronous	socket	services
C.3.6	Cookie	management
C.3.7	Profiling
C.3.8	Execution	tracing
C.3.9	UUencode	and	UUdecode	functions
C.3.10	XML	Remote	Procedure	Calls

Module	Index
Index
About	this	document	...

Python	Library	Reference
Previous:	Front	Matter	Up:	Python	Library	Reference	Next:	1.	Introduction

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	C.3.10	XML	Remote	Procedure	Up:	Python	Library	Reference	Next:
Index

Module	Index
This	index	only	lists	modules	documented	in	this	manual.	The	Global	Module
Index	lists	all	modules	that	are	documented	in	this	set	of	manuals.

Some	module	names	are	followed	by	an	annotation	indicating	what	platform
they	are	available	on.

__builtin__

__future__

__main__

_winreg	(Windows)
aifc

AL	(IRIX)
al	(IRIX)
anydbm

array

asynchat

asyncore

atexit

audioop

base64

BaseHTTPServer

Bastion

binascii

binhex

bisect

bsddb	(Unix,
Windows)
bz2

calendar

cd	(IRIX)
cgi

CGIHTTPServer

cgitb

chunk

dumbdbm

dummy_thread

dummy_threading

email.Charset

email.Encoders

email.Errors

email.Generator

email.Header

email.Iterators

email.Message

email.Parser

email.Utils

email

encodings.idna

errno

exceptions

fcntl	(Unix)
filecmp

fileinput

FL	(IRIX)
fl	(IRIX)
flp	(IRIX)
fm	(IRIX)
fnmatch

formatter

fpectl	(Unix)
fpformat

mimetools

mimetypes

MimeWriter

mimify

mmap

msvcrt	(Windows)
multifile

mutex

netrc

new

nis	(UNIX)
nntplib

operator

optparse

os.path

os

ossaudiodev	(Linux,
FreeBSD)
parser

pdb

pickle

pickletools

pipes	(Unix)
pkgutil

platform

popen2	(Unix,	Windows)
poplib

posix	(Unix)

SocketServer

stat

statcache

statvfs

string

StringIO

stringprep

struct

subprocess

sunau

SUNAUDIODEV

(SunOS
sunaudiodev

(SunOS
symbol

sys

syslog

tabnanny

tarfile

telnetlib

tempfile

termios

test.test_support

test

textwrap

thread

threading

time

cmath

cmd

code

codecs

codeop

collections

colorsys

commands	(Unix)
compileall

compiler.ast

compiler.visitor

compiler

ConfigParser

Cookie

cookielib

copy

copy_reg

cPickle

crypt	(Unix)
cStringIO

csv

curses.ascii

curses.panel

curses.textpad

curses.wrapper

curses

datetime

dbhash	(Unix,
Windows)
dbm	(Unix)
decimal

DEVICE	(IRIX)
difflib

dircache

dis

distutils

dl	(Unix)
doctest

ftplib

gc

gdbm	(Unix)
getopt

getpass

gettext

GL	(IRIX)
gl	(IRIX)
glob

gopherlib

grp	(Unix)
gzip

heapq

hmac

hotshot.stats

hotshot

htmlentitydefs

htmllib

HTMLParser

httplib

imageop

imaplib

imgfile	(IRIX)
imghdr

imp

inspect

itertools

jpeg	(IRIX)
keyword

linecache

locale

logging

mailbox

mailcap

marshal

math

md5

mhlib

posixfile	(Unix)
pprint

profile

pstats

pty	(IRIX,	Linux)
pwd	(Unix)
py_compile

pyclbr

pydoc

Queue

quopri

random

re

readline	(Unix)
repr

resource	(Unix)
rexec

rfc822

rgbimg

rlcompleter	(Unix)
robotparser

sched

ScrolledText	(Tk)
select

sets

sgmllib

sha

shelve

shlex

shutil

signal

SimpleHTTPServer

SimpleXMLRPCServer

site

smtpd

smtplib

sndhdr

socket

timeit

Tix

Tkinter

token

tokenize

traceback

tty	(
turtle

types

unicodedata

unittest

urllib2

urllib

urlparse

user

UserDict

UserList

UserString

uu

warnings

wave

weakref

webbrowser

whichdb

whrandom

winsound

xdrlib

xml.dom.minidom

xml.dom.pulldom

xml.dom

xml.parsers.expat

xml.sax.handler

xml.sax.saxutils

xml.sax.xmlreader

xml.sax

xmllib

xmlrpclib

zipfile

zlib

DocXMLRPCServer

Python	Library	Reference
Previous:	C.3.10	XML	Remote	Procedure	Up:	Python	Library	Reference	Next:
Index

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Index	Up:	Python	Library	Reference

About	this	document	...
Python	Library	Reference,	29	November	2004,	Release	2.4

This	document	was	generated	using	the	LaTeX2HTML	translator.

LaTeX2HTML	is	Copyright	©	1993,	1994,	1995,	1996,	1997,	Nikos	Drakos,
Computer	Based	Learning	Unit,	University	of	Leeds,	and	Copyright	©	1997,
1998,	Ross	Moore,	Mathematics	Department,	Macquarie	University,	Sydney.

The	application	of	LaTeX2HTML	to	the	Python	documentation	has	been	heavily
tailored	by	Fred	L.	Drake,	Jr.	Original	navigation	icons	were	contributed	by
Christopher	Petrilli.

http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://cbl.leeds.ac.uk/nikos/personal.html
http://www.maths.mq.edu.au/~ross/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/

Comments	and	Questions
General	comments	and	questions	regarding	this	document	should	be	sent	by
email	to	docs@python.org.	If	you	find	specific	errors	in	this	document,	either	in
the	content	or	the	presentation,	please	report	the	bug	at	the	Python	Bug	Tracker
at	SourceForge.	If	you	are	able	to	provide	suggested	text,	either	to	replace
existing	incorrect	or	unclear	material,	or	additional	text	to	supplement	what's
already	available,	we'd	appreciate	the	contribution.	There's	no	need	to	worry
about	text	markup;	our	documentation	team	will	gladly	take	care	of	that.

Questions	regarding	how	to	use	the	information	in	this	document	should	be	sent
to	the	Python	news	group,	comp.lang.python,	or	the	Python	mailing	list	(which
is	gated	to	the	newsgroup	and	carries	the	same	content).

For	any	of	these	channels,	please	be	sure	not	to	send	HTML	email.	Thanks.

Python	Library	Reference
Previous:	Index	Up:	Python	Library	Reference

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

mailto:docs@python.org
http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/
news:comp.lang.python
http://www.python.org/mailman/listinfo/python-list

Previous:	2.3.4	Numeric	Types	Up:	2.3.4	Numeric	Types	Next:	2.3.5	Iterator
Types

2.3.4.1	Bit-string	Operations	on	Integer	Types

Plain	and	long	integer	types	support	additional	operations	that	make	sense	only
for	bit-strings.	Negative	numbers	are	treated	as	their	2's	complement	value	(for
long	integers,	this	assumes	a	sufficiently	large	number	of	bits	that	no	overflow
occurs	during	the	operation).

The	priorities	of	the	binary	bit-wise	operations	are	all	lower	than	the	numeric
operations	and	higher	than	the	comparisons;	the	unary	operation	"~"	has	the
same	priority	as	the	other	unary	numeric	operations	("+"	and	"-").

This	table	lists	the	bit-string	operations	sorted	in	ascending	priority	(operations
in	the	same	box	have	the	same	priority):

Operation Result Notes
x	|	y bitwise	or	of	x	and	y
x	^	y bitwise	exclusive	or	of	x	and	y
x	&	y bitwise	and	of	x	and	y
x	<<	n x	shifted	left	by	n	bits (1),	(2)
x	>>	n x	shifted	right	by	n	bits (1),	(3)
~x the	bits	of	x	inverted

Notes:

(1)
Negative	shift	counts	are	illegal	and	cause	a	ValueError	to	be	raised.

(2)
A	left	shift	by	n	bits	is	equivalent	to	multiplication	by	pow(2,	n)	without
overflow	check.

(3)
A	right	shift	by	n	bits	is	equivalent	to	division	by	pow(2,	n)	without
overflow	check.

Python	Library	Reference
Previous:	2.3.4	Numeric	Types	Up:	2.3.4	Numeric	Types	Next:	2.3.5	Iterator
Types

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.6.2	String	Formatting	Operations	Up:	2.3.6	Sequence	Types
Next:	2.3.6.4	Mutable	Sequence	Types

2.3.6.3	XRange	Type

The	xrange	type	is	an	immutable	sequence	which	is	commonly	used	for
looping.	The	advantage	of	the	xrange	type	is	that	an	xrange	object	will
always	take	the	same	amount	of	memory,	no	matter	the	size	of	the	range	it
represents.	There	are	no	consistent	performance	advantages.

XRange	objects	have	very	little	behavior:	they	only	support	indexing,	iteration,
and	the	len()	function.

Python	Library	Reference
Previous:	2.3.6.2	String	Formatting	Operations	Up:	2.3.6	Sequence	Types
Next:	2.3.6.4	Mutable	Sequence	Types

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.6.3	XRange	Type	Up:	2.3.6	Sequence	Types	Next:	2.3.7	Set
Types

2.3.6.4	Mutable	Sequence	Types

List	objects	support	additional	operations	that	allow	in-place	modification	of	the
object.	Other	mutable	sequence	types	(when	added	to	the	language)	should	also
support	these	operations.	Strings	and	tuples	are	immutable	sequence	types:	such
objects	cannot	be	modified	once	created.	The	following	operations	are	defined
on	mutable	sequence	types	(where	x	is	an	arbitrary	object):

Operation Result Notes
s[i]	=	x item	i	of	s	is	replaced	by	x
s[i:j]	=	t slice	of	s	from	i	to	j	is	replaced	by	t
del	s[i:j] same	as	s[i:j]	=	[]
s[i:j:k]	=	t the	elements	of	s[i:j:k]	are

replaced	by	those	of	t
(1)

del	s[i:j:k] removes	the	elements	of	s[i:j:k]
from	the	list

s.append(x) same	as	s[len(s):len(s)]	=
[x]

(2)

s.extend(x) same	as	s[len(s):len(s)]	=	x (3)
s.count(x) return	number	of	i's	for	which	s[i]

==	x
s.index(x[,	i[,

j]])
return	smallest	k	such	that	s[k]	==
x	and	i	<=	k	<	j

(4)

s.insert(i,	x) same	as	s[i:i]	=	[x] (5)
s.pop([i]) same	as	x	=	s[i];	del	s[i];

return	x
(6)

s.remove(x) same	as	del	s[s.index(x)] (4)
s.reverse() reverses	the	items	of	s	in	place (7)

s.sort([cmp[,	key[,
reverse]]])

sort	the	items	of	s	in	place (7),	(8),
(9),	(10)

Notes:

(1)
t	must	have	the	same	length	as	the	slice	it	is	replacing.

(2)
The	C	implementation	of	Python	has	historically	accepted	multiple
parameters	and	implicitly	joined	them	into	a	tuple;	this	no	longer	works	in
Python	2.0.	Use	of	this	misfeature	has	been	deprecated	since	Python	1.4.

(3)
Raises	an	exception	when	x	is	not	a	list	object.

(4)
Raises	ValueError	when	x	is	not	found	in	s.	When	a	negative	index	is
passed	as	the	second	or	third	parameter	to	the	index()	method,	the	list
length	is	added,	as	for	slice	indices.	If	it	is	still	negative,	it	is	truncated	to
zero,	as	for	slice	indices.	Changed	in	version	2.3:	Previously,	index()
didn't	have	arguments	for	specifying	start	and	stop	positions.

(5)
When	a	negative	index	is	passed	as	the	first	parameter	to	the	insert()
method,	the	list	length	is	added,	as	for	slice	indices.	If	it	is	still	negative,	it
is	truncated	to	zero,	as	for	slice	indices.	Changed	in	version	2.3:	Previously,
all	negative	indices	were	truncated	to	zero.

(6)
The	pop()	method	is	only	supported	by	the	list	and	array	types.	The
optional	argument	i	defaults	to	-1,	so	that	by	default	the	last	item	is
removed	and	returned.

(7)
The	sort()	and	reverse()	methods	modify	the	list	in	place	for
economy	of	space	when	sorting	or	reversing	a	large	list.	To	remind	you	that
they	operate	by	side	effect,	they	don't	return	the	sorted	or	reversed	list.

(8)
The	sort()	method	takes	optional	arguments	for	controlling	the
comparisons.

cmp	specifies	a	custom	comparison	function	of	two	arguments	(list	items)

which	should	return	a	negative,	zero	or	positive	number	depending	on
whether	the	first	argument	is	considered	smaller	than,	equal	to,	or	larger
than	the	second	argument:	"cmp=lambda	x,y:	cmp(x.lower(),	y.lower())"

key	specifies	a	function	of	one	argument	that	is	used	to	extract	a	comparison
key	from	each	list	element:	"cmp=str.lower"

reverse	is	a	boolean	value.	If	set	to	True,	then	the	list	elements	are	sorted
as	if	each	comparison	were	reversed.

In	general,	the	key	and	reverse	conversion	processes	are	much	faster	than
specifying	an	equivalent	cmp	function.	This	is	because	cmp	is	called
multiple	times	for	each	list	element	while	key	and	reverse	touch	each
element	only	once.

Changed	in	version	2.3:	Support	for	None	as	an	equivalent	to	omitting	cmp
was	added.

Changed	in	version	2.4:	Support	for	key	and	reverse	was	added.

(9)
Starting	with	Python	2.3,	the	sort()	method	is	guaranteed	to	be	stable.	A
sort	is	stable	if	it	guarantees	not	to	change	the	relative	order	of	elements
that	compare	equal	--	this	is	helpful	for	sorting	in	multiple	passes	(for
example,	sort	by	department,	then	by	salary	grade).

(10)
While	a	list	is	being	sorted,	the	effect	of	attempting	to	mutate,	or	even
inspect,	the	list	is	undefined.	The	C	implementation	of	Python	2.3	and
newer	makes	the	list	appear	empty	for	the	duration,	and	raises
ValueError	if	it	can	detect	that	the	list	has	been	mutated	during	a	sort.

Python	Library	Reference
Previous:	2.3.6.3	XRange	Type	Up:	2.3.6	Sequence	Types	Next:	2.3.7	Set
Types

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.10	Other	Built-in	Types	Up:	2.3.10	Other	Built-in	Types	Next:
2.3.10.2	Classes	and	Class

2.3.10.1	Modules

The	only	special	operation	on	a	module	is	attribute	access:	m.name,	where	m	is
a	module	and	name	accesses	a	name	defined	in	m's	symbol	table.	Module
attributes	can	be	assigned	to.	(Note	that	the	import	statement	is	not,	strictly
speaking,	an	operation	on	a	module	object;	import	foo	does	not	require	a
module	object	named	foo	to	exist,	rather	it	requires	an	(external)	definition	for	a
module	named	foo	somewhere.)

A	special	member	of	every	module	is	__dict__.	This	is	the	dictionary
containing	the	module's	symbol	table.	Modifying	this	dictionary	will	actually
change	the	module's	symbol	table,	but	direct	assignment	to	the	__dict__
attribute	is	not	possible	(you	can	write	m.__dict__['a']	=	1,	which
defines	m.a	to	be	1,	but	you	can't	write	m.__dict__	=	{}).	Modifying
__dict__	directly	is	not	recommended.

Modules	built	into	the	interpreter	are	written	like	this:	<module	'sys'
(built-in)>.	If	loaded	from	a	file,	they	are	written	as	<module	'os'
from	'/usr/local/lib/python2.4/os.pyc'>.

Python	Library	Reference
Previous:	2.3.10	Other	Built-in	Types	Up:	2.3.10	Other	Built-in	Types	Next:
2.3.10.2	Classes	and	Class

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.10.1	Modules	Up:	2.3.10	Other	Built-in	Types	Next:	2.3.10.3
Functions

2.3.10.2	Classes	and	Class	Instances

See	chapters	3	and	7	of	the	Python	Reference	Manual	for	these.

Python	Library	Reference
Previous:	2.3.10.1	Modules	Up:	2.3.10	Other	Built-in	Types	Next:	2.3.10.3
Functions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.10.2	Classes	and	Class	Up:	2.3.10	Other	Built-in	Types	Next:
2.3.10.4	Methods

2.3.10.3	Functions

Function	objects	are	created	by	function	definitions.	The	only	operation	on	a
function	object	is	to	call	it:	func(argument-list).

There	are	really	two	flavors	of	function	objects:	built-in	functions	and	user-
defined	functions.	Both	support	the	same	operation	(to	call	the	function),	but	the
implementation	is	different,	hence	the	different	object	types.

See	the	Python	Reference	Manual	for	more	information.

Python	Library	Reference
Previous:	2.3.10.2	Classes	and	Class	Up:	2.3.10	Other	Built-in	Types	Next:
2.3.10.4	Methods

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.10.3	Functions	Up:	2.3.10	Other	Built-in	Types	Next:	2.3.10.5
Code	Objects

2.3.10.4	Methods

Methods	are	functions	that	are	called	using	the	attribute	notation.	There	are	two
flavors:	built-in	methods	(such	as	append()	on	lists)	and	class	instance
methods.	Built-in	methods	are	described	with	the	types	that	support	them.

The	implementation	adds	two	special	read-only	attributes	to	class	instance
methods:	m.im_self	is	the	object	on	which	the	method	operates,	and
m.im_func	is	the	function	implementing	the	method.	Calling	m(arg-1,	arg-
2,	...,	arg-n)	is	completely	equivalent	to	calling
m.im_func(m.im_self,	arg-1,	arg-2,	...,	arg-n).

Class	instance	methods	are	either	bound	or	unbound,	referring	to	whether	the
method	was	accessed	through	an	instance	or	a	class,	respectively.	When	a
method	is	unbound,	its	im_self	attribute	will	be	None	and	if	called,	an
explicit	self	object	must	be	passed	as	the	first	argument.	In	this	case,	self
must	be	an	instance	of	the	unbound	method's	class	(or	a	subclass	of	that	class),
otherwise	a	TypeError	is	raised.

Like	function	objects,	methods	objects	support	getting	arbitrary	attributes.
However,	since	method	attributes	are	actually	stored	on	the	underlying	function
object	(meth.im_func),	setting	method	attributes	on	either	bound	or	unbound
methods	is	disallowed.	Attempting	to	set	a	method	attribute	results	in	a
TypeError	being	raised.	In	order	to	set	a	method	attribute,	you	need	to
explicitly	set	it	on	the	underlying	function	object:

class	C:

				def	method(self):

								pass

c	=	C()

c.method.im_func.whoami	=	'my	name	is	c'

See	the	Python	Reference	Manual	for	more	information.

Python	Library	Reference

Previous:	2.3.10.3	Functions	Up:	2.3.10	Other	Built-in	Types	Next:	2.3.10.5
Code	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.10.4	Methods	Up:	2.3.10	Other	Built-in	Types	Next:	2.3.10.6
Type	Objects

2.3.10.5	Code	Objects

Code	objects	are	used	by	the	implementation	to	represent	``pseudo-compiled''
executable	Python	code	such	as	a	function	body.	They	differ	from	function
objects	because	they	don't	contain	a	reference	to	their	global	execution
environment.	Code	objects	are	returned	by	the	built-in	compile()	function
and	can	be	extracted	from	function	objects	through	their	func_code	attribute.

A	code	object	can	be	executed	or	evaluated	by	passing	it	(instead	of	a	source
string)	to	the	exec	statement	or	the	built-in	eval()	function.

See	the	Python	Reference	Manual	for	more	information.

Python	Library	Reference
Previous:	2.3.10.4	Methods	Up:	2.3.10	Other	Built-in	Types	Next:	2.3.10.6
Type	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.10.5	Code	Objects	Up:	2.3.10	Other	Built-in	Types	Next:
2.3.10.7	The	Null	Object

2.3.10.6	Type	Objects

Type	objects	represent	the	various	object	types.	An	object's	type	is	accessed	by
the	built-in	function	type().	There	are	no	special	operations	on	types.	The
standard	module	types	defines	names	for	all	standard	built-in	types.

Types	are	written	like	this:	<type	'int'>.

Python	Library	Reference
Previous:	2.3.10.5	Code	Objects	Up:	2.3.10	Other	Built-in	Types	Next:
2.3.10.7	The	Null	Object

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.10.6	Type	Objects	Up:	2.3.10	Other	Built-in	Types	Next:	2.3.10.8
The	Ellipsis	Object

2.3.10.7	The	Null	Object

This	object	is	returned	by	functions	that	don't	explicitly	return	a	value.	It
supports	no	special	operations.	There	is	exactly	one	null	object,	named	None	(a
built-in	name).

It	is	written	as	None.

Python	Library	Reference
Previous:	2.3.10.6	Type	Objects	Up:	2.3.10	Other	Built-in	Types	Next:	2.3.10.8
The	Ellipsis	Object

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.10.7	The	Null	Object	Up:	2.3.10	Other	Built-in	Types	Next:
2.3.10.9	Boolean	Values

2.3.10.8	The	Ellipsis	Object

This	object	is	used	by	extended	slice	notation	(see	the	Python	Reference
Manual).	It	supports	no	special	operations.	There	is	exactly	one	ellipsis	object,
named	Ellipsis	(a	built-in	name).

It	is	written	as	Ellipsis.

Python	Library	Reference
Previous:	2.3.10.7	The	Null	Object	Up:	2.3.10	Other	Built-in	Types	Next:
2.3.10.9	Boolean	Values

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.10.8	The	Ellipsis	Object	Up:	2.3.10	Other	Built-in	Types	Next:
2.3.10.10	Internal	Objects

2.3.10.9	Boolean	Values

Boolean	values	are	the	two	constant	objects	False	and	True.	They	are	used	to
represent	truth	values	(although	other	values	can	also	be	considered	false	or
true).	In	numeric	contexts	(for	example	when	used	as	the	argument	to	an
arithmetic	operator),	they	behave	like	the	integers	0	and	1,	respectively.	The
built-in	function	bool()	can	be	used	to	cast	any	value	to	a	Boolean,	if	the
value	can	be	interpreted	as	a	truth	value	(see	section	Truth	Value	Testing	above).

They	are	written	as	False	and	True,	respectively.

Python	Library	Reference
Previous:	2.3.10.8	The	Ellipsis	Object	Up:	2.3.10	Other	Built-in	Types	Next:
2.3.10.10	Internal	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.3.10.9	Boolean	Values	Up:	2.3.10	Other	Built-in	Types	Next:
2.3.11	Special	Attributes

2.3.10.10	Internal	Objects

See	the	Python	Reference	Manual	for	this	information.	It	describes	stack	frame
objects,	traceback	objects,	and	slice	objects.

Python	Library	Reference
Previous:	2.3.10.9	Boolean	Values	Up:	2.3.10	Other	Built-in	Types	Next:
2.3.11	Special	Attributes

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.14.5	The	pickle	protocol	Up:	3.14.5	The	pickle	protocol	Next:
3.14.5.2	Pickling	and	unpickling

3.14.5.1	Pickling	and	unpickling	normal	class	instances

When	a	pickled	class	instance	is	unpickled,	its	__init__()	method	is
normally	not	invoked.	If	it	is	desirable	that	the	__init__()	method	be	called
on	unpickling,	an	old-style	class	can	define	a	method	__getinitargs__(),
which	should	return	a	tuple	containing	the	arguments	to	be	passed	to	the	class
constructor	(i.e.	__init__()).	The	__getinitargs__()	method	is	called
at	pickle	time;	the	tuple	it	returns	is	incorporated	in	the	pickle	for	the	instance.

New-style	types	can	provide	a	__getnewargs__()	method	that	is	used	for
protocol	2.	Implementing	this	method	is	needed	if	the	type	establishes	some
internal	invariants	when	the	instance	is	created,	or	if	the	memory	allocation	is
affected	by	the	values	passed	to	the	__new__()	method	for	the	type	(as	it	is	for
tuples	and	strings).	Instances	of	a	new-style	type	C	are	created	using

	obj	=	C.__new__(C,	*args)
	

where	args	is	the	result	of	calling	__getnewargs__()	on	the	original	object;
if	there	is	no	__getnewargs__(),	an	empty	tuple	is	assumed.

Classes	can	further	influence	how	their	instances	are	pickled;	if	the	class	defines
the	method	__getstate__(),	it	is	called	and	the	return	state	is	pickled	as	the
contents	for	the	instance,	instead	of	the	contents	of	the	instance's	dictionary.	If
there	is	no	__getstate__()	method,	the	instance's	__dict__	is	pickled.

Upon	unpickling,	if	the	class	also	defines	the	method	__setstate__(),	it	is
called	with	the	unpickled	state.3.6	If	there	is	no	__setstate__()	method,	the
pickled	state	must	be	a	dictionary	and	its	items	are	assigned	to	the	new	instance's
dictionary.	If	a	class	defines	both	__getstate__()	and	__setstate__(),
the	state	object	needn't	be	a	dictionary	and	these	methods	can	do	what	they
want.3.7

Warning: 	For	new-style	classes,	if	__getstate__()

returns	a	false	value,	the	__setstate__()	method	will	not	be
called.

Footnotes

...	state.3.6
These	methods	can	also	be	used	to	implement	copying	class	instances.

...	want.3.7
This	protocol	is	also	used	by	the	shallow	and	deep	copying	operations
defined	in	the	copy	module.

Python	Library	Reference
Previous:	3.14.5	The	pickle	protocol	Up:	3.14.5	The	pickle	protocol	Next:
3.14.5.2	Pickling	and	unpickling

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.14.5.1	Pickling	and	unpickling	Up:	3.14.5	The	pickle	protocol	Next:
3.14.5.3	Pickling	and	unpickling

3.14.5.2	Pickling	and	unpickling	extension	types

When	the	Pickler	encounters	an	object	of	a	type	it	knows	nothing	about	--
such	as	an	extension	type	--	it	looks	in	two	places	for	a	hint	of	how	to	pickle	it.
One	alternative	is	for	the	object	to	implement	a	__reduce__()	method.	If
provided,	at	pickling	time	__reduce__()	will	be	called	with	no	arguments,
and	it	must	return	either	a	string	or	a	tuple.

If	a	string	is	returned,	it	names	a	global	variable	whose	contents	are	pickled	as
normal.	The	string	returned	by	__reduce__	should	be	the	object's	local	name
relative	to	its	module;	the	pickle	module	searches	the	module	namespace	to
determine	the	object's	module.

When	a	tuple	is	returned,	it	must	be	between	two	and	five	elements	long.
Optional	elements	can	either	be	omitted,	or	None	can	be	provided	as	their	value.
The	semantics	of	each	element	are:

A	callable	object	that	will	be	called	to	create	the	initial	version	of	the
object.	The	next	element	of	the	tuple	will	provide	arguments	for	this
callable,	and	later	elements	provide	additional	state	information	that	will
subsequently	be	used	to	fully	reconstruct	the	pickled	date.

In	the	unpickling	environment	this	object	must	be	either	a	class,	a	callable
registered	as	a	``safe	constructor''	(see	below),	or	it	must	have	an	attribute
__safe_for_unpickling__	with	a	true	value.	Otherwise,	an
UnpicklingError	will	be	raised	in	the	unpickling	environment.	Note
that	as	usual,	the	callable	itself	is	pickled	by	name.

A	tuple	of	arguments	for	the	callable	object,	or	None.
Deprecated	since	release	2.3.	If	this	item	is	None,	then	instead	of	calling
the	callable	directly,	its	__basicnew__()	method	is	called	without
arguments;	this	method	should	also	return	the	unpickled	object.	Providing
None	is	deprecated,	however;	return	a	tuple	of	arguments	instead.

Optionally,	the	object's	state,	which	will	be	passed	to	the	object's

__setstate__()	method	as	described	in	section	3.14.5.	If	the	object
has	no	__setstate__()	method,	then,	as	above,	the	value	must	be	a
dictionary	and	it	will	be	added	to	the	object's	__dict__.

Optionally,	an	iterator	(and	not	a	sequence)	yielding	successive	list	items.
These	list	items	will	be	pickled,	and	appended	to	the	object	using	either
obj.append(item)	or	obj.extend(list_of_items).	This	is	primarily
used	for	list	subclasses,	but	may	be	used	by	other	classes	as	long	as	they
have	append()	and	extend()	methods	with	the	appropriate	signature.
(Whether	append()	or	extend()	is	used	depends	on	which	pickle
protocol	version	is	used	as	well	as	the	number	of	items	to	append,	so	both
must	be	supported.)

Optionally,	an	iterator	(not	a	sequence)	yielding	successive	dictionary
items,	which	should	be	tuples	of	the	form	(key,	value).	These	items	will
be	pickled	and	stored	to	the	object	using	obj[key]	=	value.	This	is
primarily	used	for	dictionary	subclasses,	but	may	be	used	by	other	classes
as	long	as	they	implement	__setitem__.

It	is	sometimes	useful	to	know	the	protocol	version	when	implementing
__reduce__.	This	can	be	done	by	implementing	a	method	named
__reduce_ex__	instead	of	__reduce__.	__reduce_ex__,	when	it
exists,	is	called	in	preference	over	__reduce__	(you	may	still	provide
__reduce__	for	backwards	compatibility).	The	__reduce_ex__	method
will	be	called	with	a	single	integer	argument,	the	protocol	version.

The	object	class	implements	both	__reduce__	and	__reduce_ex__;
however,	if	a	subclass	overrides	__reduce__	but	not	__reduce_ex__,	the
__reduce_ex__	implementation	detects	this	and	calls	__reduce__.

An	alternative	to	implementing	a	__reduce__()	method	on	the	object	to	be
pickled,	is	to	register	the	callable	with	the	copy_reg	module.	This	module
provides	a	way	for	programs	to	register	``reduction	functions''	and	constructors
for	user-defined	types.	Reduction	functions	have	the	same	semantics	and
interface	as	the	__reduce__()	method	described	above,	except	that	they	are
called	with	a	single	argument,	the	object	to	be	pickled.

The	registered	constructor	is	deemed	a	``safe	constructor''	for	purposes	of
unpickling	as	described	above.

Python	Library	Reference
Previous:	3.14.5.1	Pickling	and	unpickling	Up:	3.14.5	The	pickle	protocol	Next:
3.14.5.3	Pickling	and	unpickling

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.14.5.2	Pickling	and	unpickling	Up:	3.14.5	The	pickle	protocol	Next:
3.14.6	Subclassing	Unpicklers

3.14.5.3	Pickling	and	unpickling	external	objects

For	the	benefit	of	object	persistence,	the	pickle	module	supports	the	notion	of
a	reference	to	an	object	outside	the	pickled	data	stream.	Such	objects	are
referenced	by	a	``persistent	id'',	which	is	just	an	arbitrary	string	of	printable
ASCII	characters.	The	resolution	of	such	names	is	not	defined	by	the	pickle
module;	it	will	delegate	this	resolution	to	user	defined	functions	on	the	pickler
and	unpickler.3.8

To	define	external	persistent	id	resolution,	you	need	to	set	the
persistent_id	attribute	of	the	pickler	object	and	the	persistent_load
attribute	of	the	unpickler	object.

To	pickle	objects	that	have	an	external	persistent	id,	the	pickler	must	have	a
custom	persistent_id()	method	that	takes	an	object	as	an	argument	and
returns	either	None	or	the	persistent	id	for	that	object.	When	None	is	returned,
the	pickler	simply	pickles	the	object	as	normal.	When	a	persistent	id	string	is
returned,	the	pickler	will	pickle	that	string,	along	with	a	marker	so	that	the
unpickler	will	recognize	the	string	as	a	persistent	id.

To	unpickle	external	objects,	the	unpickler	must	have	a	custom
persistent_load()	function	that	takes	a	persistent	id	string	and	returns	the
referenced	object.

Here's	a	silly	example	that	might	shed	more	light:

import	pickle

from	cStringIO	import	StringIO

src	=	StringIO()

p	=	pickle.Pickler(src)

def	persistent_id(obj):

				if	hasattr(obj,	'x'):

								return	'the	value	%d'	%	obj.x

				else:

								return	None

p.persistent_id	=	persistent_id

class	Integer:

				def	__init__(self,	x):

								self.x	=	x

				def	__str__(self):

								return	'My	name	is	integer	%d'	%	self.x

i	=	Integer(7)

print	i

p.dump(i)

datastream	=	src.getvalue()

print	repr(datastream)

dst	=	StringIO(datastream)

up	=	pickle.Unpickler(dst)

class	FancyInteger(Integer):

				def	__str__(self):

								return	'I	am	the	integer	%d'	%	self.x

def	persistent_load(persid):

				if	persid.startswith('the	value	'):

								value	=	int(persid.split()[2])

								return	FancyInteger(value)

				else:

								raise	pickle.UnpicklingError,	'Invalid	persistent	id'

up.persistent_load	=	persistent_load

j	=	up.load()

print	j

In	the	cPickle	module,	the	unpickler's	persistent_load	attribute	can
also	be	set	to	a	Python	list,	in	which	case,	when	the	unpickler	reaches	a
persistent	id,	the	persistent	id	string	will	simply	be	appended	to	this	list.	This
functionality	exists	so	that	a	pickle	data	stream	can	be	``sniffed''	for	object
references	without	actually	instantiating	all	the	objects	in	a	pickle.3.9	Setting
persistent_load	to	a	list	is	usually	used	in	conjunction	with	the
noload()	method	on	the	Unpickler.

Footnotes

...	unpickler.3.8
The	actual	mechanism	for	associating	these	user	defined	functions	is

slightly	different	for	pickle	and	cPickle.	The	description	given	here
works	the	same	for	both	implementations.	Users	of	the	pickle	module
could	also	use	subclassing	to	effect	the	same	results,	overriding	the
persistent_id()	and	persistent_load()	methods	in	the
derived	classes.

...	pickle.3.9
We'll	leave	you	with	the	image	of	Guido	and	Jim	sitting	around	sniffing
pickles	in	their	living	rooms.

Python	Library	Reference
Previous:	3.14.5.2	Pickling	and	unpickling	Up:	3.14.5	The	pickle	protocol	Next:
3.14.6	Subclassing	Unpicklers

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.9.1	Codec	Base	Classes	Up:	4.9.1	Codec	Base	Classes	Next:
4.9.1.2	StreamWriter	Objects

4.9.1.1	Codec	Objects

The	Codec	class	defines	these	methods	which	also	define	the	function
interfaces	of	the	stateless	encoder	and	decoder:

encode(input[,	errors])
Encodes	the	object	input	and	returns	a	tuple	(output	object,	length
consumed).	While	codecs	are	not	restricted	to	use	with	Unicode,	in	a
Unicode	context,	encoding	converts	a	Unicode	object	to	a	plain	string	using
a	particular	character	set	encoding	(e.g.,	cp1252	or	iso-8859-1).

errors	defines	the	error	handling	to	apply.	It	defaults	to	'strict'
handling.

The	method	may	not	store	state	in	the	Codec	instance.	Use
StreamCodec	for	codecs	which	have	to	keep	state	in	order	to	make
encoding/decoding	efficient.

The	encoder	must	be	able	to	handle	zero	length	input	and	return	an	empty
object	of	the	output	object	type	in	this	situation.

decode(input[,	errors])
Decodes	the	object	input	and	returns	a	tuple	(output	object,	length
consumed).	In	a	Unicode	context,	decoding	converts	a	plain	string	encoded
using	a	particular	character	set	encoding	to	a	Unicode	object.

input	must	be	an	object	which	provides	the	bf_getreadbuf	buffer	slot.
Python	strings,	buffer	objects	and	memory	mapped	files	are	examples	of
objects	providing	this	slot.

errors	defines	the	error	handling	to	apply.	It	defaults	to	'strict'
handling.

The	method	may	not	store	state	in	the	Codec	instance.	Use
StreamCodec	for	codecs	which	have	to	keep	state	in	order	to	make

encoding/decoding	efficient.

The	decoder	must	be	able	to	handle	zero	length	input	and	return	an	empty
object	of	the	output	object	type	in	this	situation.

The	StreamWriter	and	StreamReader	classes	provide	generic	working
interfaces	which	can	be	used	to	implement	new	encodings	submodules	very
easily.	See	encodings.utf_8	for	an	example	on	how	this	is	done.

Python	Library	Reference
Previous:	4.9.1	Codec	Base	Classes	Up:	4.9.1	Codec	Base	Classes	Next:
4.9.1.2	StreamWriter	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.9.1.1	Codec	Objects	Up:	4.9.1	Codec	Base	Classes	Next:	4.9.1.3
StreamReader	Objects

4.9.1.2	StreamWriter	Objects

The	StreamWriter	class	is	a	subclass	of	Codec	and	defines	the	following
methods	which	every	stream	writer	must	define	in	order	to	be	compatible	to	the
Python	codec	registry.

class	StreamWriter(stream[,	errors])
Constructor	for	a	StreamWriter	instance.

All	stream	writers	must	provide	this	constructor	interface.	They	are	free	to
add	additional	keyword	arguments,	but	only	the	ones	defined	here	are	used
by	the	Python	codec	registry.

stream	must	be	a	file-like	object	open	for	writing	(binary)	data.

The	StreamWriter	may	implement	different	error	handling	schemes	by
providing	the	errors	keyword	argument.	These	parameters	are	predefined:

'strict'	Raise	ValueError	(or	a	subclass);	this	is	the	default.
'ignore'	Ignore	the	character	and	continue	with	the	next.
'replace'	Replace	with	a	suitable	replacement	character
'xmlcharrefreplace'	Replace	with	the	appropriate	XML
character	reference
'backslashreplace'	Replace	with	backslashed	escape
sequences.

The	errors	argument	will	be	assigned	to	an	attribute	of	the	same	name.
Assigning	to	this	attribute	makes	it	possible	to	switch	between	different
error	handling	strategies	during	the	lifetime	of	the	StreamWriter	object.

The	set	of	allowed	values	for	the	errors	argument	can	be	extended	with
register_error().

write(object)
Writes	the	object's	contents	encoded	to	the	stream.

writelines(list)
Writes	the	concatenated	list	of	strings	to	the	stream	(possibly	by	reusing	the
write()	method).

reset()
Flushes	and	resets	the	codec	buffers	used	for	keeping	state.

Calling	this	method	should	ensure	that	the	data	on	the	output	is	put	into	a
clean	state,	that	allows	appending	of	new	fresh	data	without	having	to
rescan	the	whole	stream	to	recover	state.

In	addition	to	the	above	methods,	the	StreamWriter	must	also	inherit	all
other	methods	and	attribute	from	the	underlying	stream.

Python	Library	Reference
Previous:	4.9.1.1	Codec	Objects	Up:	4.9.1	Codec	Base	Classes	Next:	4.9.1.3
StreamReader	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.9.1.2	StreamWriter	Objects	Up:	4.9.1	Codec	Base	Classes	Next:
4.9.1.4	StreamReaderWriter	Objects

4.9.1.3	StreamReader	Objects

The	StreamReader	class	is	a	subclass	of	Codec	and	defines	the	following
methods	which	every	stream	reader	must	define	in	order	to	be	compatible	to	the
Python	codec	registry.

class	StreamReader(stream[,	errors])
Constructor	for	a	StreamReader	instance.

All	stream	readers	must	provide	this	constructor	interface.	They	are	free	to
add	additional	keyword	arguments,	but	only	the	ones	defined	here	are	used
by	the	Python	codec	registry.

stream	must	be	a	file-like	object	open	for	reading	(binary)	data.

The	StreamReader	may	implement	different	error	handling	schemes	by
providing	the	errors	keyword	argument.	These	parameters	are	defined:

'strict'	Raise	ValueError	(or	a	subclass);	this	is	the	default.
'ignore'	Ignore	the	character	and	continue	with	the	next.
'replace'	Replace	with	a	suitable	replacement	character.

The	errors	argument	will	be	assigned	to	an	attribute	of	the	same	name.
Assigning	to	this	attribute	makes	it	possible	to	switch	between	different
error	handling	strategies	during	the	lifetime	of	the	StreamReader	object.

The	set	of	allowed	values	for	the	errors	argument	can	be	extended	with
register_error().

read([size[,	chars]])
Decodes	data	from	the	stream	and	returns	the	resulting	object.

chars	indicates	the	number	of	characters	to	read	from	the	stream.	read()
will	never	return	more	than	chars	characters,	but	it	might	return	less,	if
there	are	not	enough	characters	available.

size	indicates	the	approximate	maximum	number	of	bytes	to	read	from	the
stream	for	decoding	purposes.	The	decoder	can	modify	this	setting	as
appropriate.	The	default	value	-1	indicates	to	read	and	decode	as	much	as
possible.	size	is	intended	to	prevent	having	to	decode	huge	files	in	one	step.

The	method	should	use	a	greedy	read	strategy	meaning	that	it	should	read
as	much	data	as	is	allowed	within	the	definition	of	the	encoding	and	the
given	size,	e.g.	if	optional	encoding	endings	or	state	markers	are	available
on	the	stream,	these	should	be	read	too.

Changed	in	version	2.4:	chars	argument	added.

readline([size[,	keepends]])
Read	one	line	from	the	input	stream	and	return	the	decoded	data.

size,	if	given,	is	passed	as	size	argument	to	the	stream's	readline()
method.

If	keepends	is	false	lineends	will	be	stripped	from	the	lines	returned.

Changed	in	version	2.4:	keepends	argument	added.

readlines([sizehint[,	keepends]])
Read	all	lines	available	on	the	input	stream	and	return	them	as	list	of	lines.

Line	breaks	are	implemented	using	the	codec's	decoder	method	and	are
included	in	the	list	entries	if	keepends	is	true.

sizehint,	if	given,	is	passed	as	size	argument	to	the	stream's	read()
method.

reset()
Resets	the	codec	buffers	used	for	keeping	state.

Note	that	no	stream	repositioning	should	take	place.	This	method	is
primarily	intended	to	be	able	to	recover	from	decoding	errors.

In	addition	to	the	above	methods,	the	StreamReader	must	also	inherit	all
other	methods	and	attribute	from	the	underlying	stream.

The	next	two	base	classes	are	included	for	convenience.	They	are	not	needed	by
the	codec	registry,	but	may	provide	useful	in	practice.

Python	Library	Reference
Previous:	4.9.1.2	StreamWriter	Objects	Up:	4.9.1	Codec	Base	Classes	Next:
4.9.1.4	StreamReaderWriter	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.9.1.3	StreamReader	Objects	Up:	4.9.1	Codec	Base	Classes	Next:
4.9.1.5	StreamRecoder	Objects

4.9.1.4	StreamReaderWriter	Objects

The	StreamReaderWriter	allows	wrapping	streams	which	work	in	both
read	and	write	modes.

The	design	is	such	that	one	can	use	the	factory	functions	returned	by	the
lookup()	function	to	construct	the	instance.

class	StreamReaderWriter(stream,	Reader,	Writer,	errors)
Creates	a	StreamReaderWriter	instance.	stream	must	be	a	file-like
object.	Reader	and	Writer	must	be	factory	functions	or	classes	providing	the
StreamReader	and	StreamWriter	interface	resp.	Error	handling	is
done	in	the	same	way	as	defined	for	the	stream	readers	and	writers.

StreamReaderWriter	instances	define	the	combined	interfaces	of
StreamReader	and	StreamWriter	classes.	They	inherit	all	other	methods
and	attribute	from	the	underlying	stream.

Python	Library	Reference
Previous:	4.9.1.3	StreamReader	Objects	Up:	4.9.1	Codec	Base	Classes	Next:
4.9.1.5	StreamRecoder	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	4.9.1.4	StreamReaderWriter	Objects	Up:	4.9.1	Codec	Base
Classes	Next:	4.9.2	Standard	Encodings

4.9.1.5	StreamRecoder	Objects

The	StreamRecoder	provide	a	frontend	-	backend	view	of	encoding	data
which	is	sometimes	useful	when	dealing	with	different	encoding	environments.

The	design	is	such	that	one	can	use	the	factory	functions	returned	by	the
lookup()	function	to	construct	the	instance.

class	StreamRecoder(stream,	encode,	decode,	Reader,	Writer,	errors)
Creates	a	StreamRecoder	instance	which	implements	a	two-way
conversion:	encode	and	decode	work	on	the	frontend	(the	input	to	read()
and	output	of	write())	while	Reader	and	Writer	work	on	the	backend
(reading	and	writing	to	the	stream).

You	can	use	these	objects	to	do	transparent	direct	recodings	from	e.g.	Latin-
1	to	UTF-8	and	back.

stream	must	be	a	file-like	object.

encode,	decode	must	adhere	to	the	Codec	interface,	Reader,	Writer	must
be	factory	functions	or	classes	providing	objects	of	the	StreamReader
and	StreamWriter	interface	respectively.

encode	and	decode	are	needed	for	the	frontend	translation,	Reader	and
Writer	for	the	backend	translation.	The	intermediate	format	used	is
determined	by	the	two	sets	of	codecs,	e.g.	the	Unicode	codecs	will	use
Unicode	as	intermediate	encoding.

Error	handling	is	done	in	the	same	way	as	defined	for	the	stream	readers
and	writers.

StreamRecoder	instances	define	the	combined	interfaces	of
StreamReader	and	StreamWriter	classes.	They	inherit	all	other	methods
and	attribute	from	the	underlying	stream.

Python	Library	Reference
Previous:	4.9.1.4	StreamReaderWriter	Objects	Up:	4.9.1	Codec	Base
Classes	Next:	4.9.2	Standard	Encodings

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.3	How	It	Works	Up:	5.2.3	How	It	Works	Next:	5.2.3.2	How	are
Docstring

5.2.3.1	Which	Docstrings	Are	Examined?

The	module	docstring,	and	all	function,	class	and	method	docstrings	are
searched.	Objects	imported	into	the	module	are	not	searched.

In	addition,	if	M.__test__	exists	and	"is	true",	it	must	be	a	dict,	and	each
entry	maps	a	(string)	name	to	a	function	object,	class	object,	or	string.	Function
and	class	object	docstrings	found	from	M.__test__	are	searched,	and	strings
are	treated	as	if	they	were	docstrings.	In	output,	a	key	K	in	M.__test__
appears	with	name

<name	of	M>.__test__.K

Any	classes	found	are	recursively	searched	similarly,	to	test	docstrings	in	their
contained	methods	and	nested	classes.

Changed	in	version	2.4:	A	"private	name"	concept	is	deprecated	and	no	longer
documented.

Python	Library	Reference
Previous:	5.2.3	How	It	Works	Up:	5.2.3	How	It	Works	Next:	5.2.3.2	How	are
Docstring

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.3.1	Which	Docstrings	Are	Up:	5.2.3	How	It	Works	Next:	5.2.3.3
What's	the	Execution

5.2.3.2	How	are	Docstring	Examples	Recognized?

In	most	cases	a	copy-and-paste	of	an	interactive	console	session	works	fine,	but
doctest	isn't	trying	to	do	an	exact	emulation	of	any	specific	Python	shell.	All
hard	tab	characters	are	expanded	to	spaces,	using	8-column	tab	stops.	If	you
don't	believe	tabs	should	mean	that,	too	bad:	don't	use	hard	tabs,	or	write	your
own	DocTestParser	class.

Changed	in	version	2.4:	Expanding	tabs	to	spaces	is	new;	previous	versions	tried
to	preserve	hard	tabs,	with	confusing	results.

>>>	#	comments	are	ignored

>>>	x	=	12

>>>	x

12

>>>	if	x	==	13:

...					print	"yes"

...	else:

...					print	"no"

...					print	"NO"

...					print	"NO!!!"

...

no

NO

NO!!!

>>>

Any	expected	output	must	immediately	follow	the	final	'>>>	'	or	'...	'	line
containing	the	code,	and	the	expected	output	(if	any)	extends	to	the	next	'>>>	'
or	all-whitespace	line.

The	fine	print:

Expected	output	cannot	contain	an	all-whitespace	line,	since	such	a	line	is
taken	to	signal	the	end	of	expected	output.	If	expected	output	does	contain	a
blank	line,	put	<BLANKLINE>	in	your	doctest	example	each	place	a	blank
line	is	expected.	Changed	in	version	2.4:	<BLANKLINE>	was	added;	there
was	no	way	to	use	expected	output	containing	empty	lines	in	previous
versions.

Output	to	stdout	is	captured,	but	not	output	to	stderr	(exception	tracebacks
are	captured	via	a	different	means).

If	you	continue	a	line	via	backslashing	in	an	interactive	session,	or	for	any
other	reason	use	a	backslash,	you	should	use	a	raw	docstring,	which	will
preserve	your	backslashes	exactly	as	you	type	them:

>>>	def	f(x):

...					r'''Backslashes	in	a	raw	docstring:	m\n'''

>>>	print	f.__doc__

Backslashes	in	a	raw	docstring:	m\n

Otherwise,	the	backslash	will	be	interpreted	as	part	of	the	string.	For
example,	the	"\"	above	would	be	interpreted	as	a	newline	character.
Alternatively,	you	can	double	each	backslash	in	the	doctest	version	(and	not
use	a	raw	string):

>>>	def	f(x):

...					'''Backslashes	in	a	raw	docstring:	m\\n'''

>>>	print	f.__doc__

Backslashes	in	a	raw	docstring:	m\n

The	starting	column	doesn't	matter:

		>>>	assert	"Easy!"

								>>>	import	math

												>>>	math.floor(1.9)

												1.0

and	as	many	leading	whitespace	characters	are	stripped	from	the	expected
output	as	appeared	in	the	initial	'>>>	'	line	that	started	the	example.

Python	Library	Reference
Previous:	5.2.3.1	Which	Docstrings	Are	Up:	5.2.3	How	It	Works	Next:	5.2.3.3
What's	the	Execution

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.3.2	How	are	Docstring	Up:	5.2.3	How	It	Works	Next:	5.2.3.4
What	About	Exceptions?

5.2.3.3	What's	the	Execution	Context?

By	default,	each	time	doctest	finds	a	docstring	to	test,	it	uses	a	shallow	copy
of	M's	globals,	so	that	running	tests	doesn't	change	the	module's	real	globals,	and
so	that	one	test	in	M	can't	leave	behind	crumbs	that	accidentally	allow	another
test	to	work.	This	means	examples	can	freely	use	any	names	defined	at	top-level
in	M,	and	names	defined	earlier	in	the	docstring	being	run.	Examples	cannot	see
names	defined	in	other	docstrings.

You	can	force	use	of	your	own	dict	as	the	execution	context	by	passing
globs=your_dict	to	testmod()	or	testfile()	instead.

Python	Library	Reference
Previous:	5.2.3.2	How	are	Docstring	Up:	5.2.3	How	It	Works	Next:	5.2.3.4
What	About	Exceptions?

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.3.3	What's	the	Execution	Up:	5.2.3	How	It	Works	Next:	5.2.3.5
Option	Flags	and

5.2.3.4	What	About	Exceptions?

No	problem,	provided	that	the	traceback	is	the	only	output	produced	by	the
example:	just	paste	in	the	traceback.	Since	tracebacks	contain	details	that	are
likely	to	change	rapidly	(for	example,	exact	file	paths	and	line	numbers),	this	is
one	case	where	doctest	works	hard	to	be	flexible	in	what	it	accepts.

Simple	example:

>>>	[1,	2,	3].remove(42)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ValueError:	list.remove(x):	x	not	in	list

That	doctest	succeeds	if	ValueError	is	raised,	with	the
"list.remove(x):	x	not	in	list"	detail	as	shown.

The	expected	output	for	an	exception	must	start	with	a	traceback	header,	which
may	be	either	of	the	following	two	lines,	indented	the	same	as	the	first	line	of	the
example:

Traceback	(most	recent	call	last):

Traceback	(innermost	last):

The	traceback	header	is	followed	by	an	optional	traceback	stack,	whose	contents
are	ignored	by	doctest.	The	traceback	stack	is	typically	omitted,	or	copied
verbatim	from	an	interactive	session.

The	traceback	stack	is	followed	by	the	most	interesting	part:	the	line(s)
containing	the	exception	type	and	detail.	This	is	usually	the	last	line	of	a
traceback,	but	can	extend	across	multiple	lines	if	the	exception	has	a	multi-line
detail:

>>>	raise	ValueError('multi\n				line\ndetail')

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ValueError:	multi

				line

detail

The	last	three	lines	(starting	with	ValueError)	are	compared	against	the
exception's	type	and	detail,	and	the	rest	are	ignored.

Best	practice	is	to	omit	the	traceback	stack,	unless	it	adds	significant
documentation	value	to	the	example.	So	the	last	example	is	probably	better	as:

>>>	raise	ValueError('multi\n				line\ndetail')

Traceback	(most	recent	call	last):

				...

ValueError:	multi

				line

detail

Note	that	tracebacks	are	treated	very	specially.	In	particular,	in	the	rewritten
example,	the	use	of	"..."	is	independent	of	doctest's	ELLIPSIS	option.	The
ellipsis	in	that	example	could	be	left	out,	or	could	just	as	well	be	three	(or	three
hundred)	commas	or	digits,	or	an	indented	transcript	of	a	Monty	Python	skit.

Some	details	you	should	read	once,	but	won't	need	to	remember:

Doctest	can't	guess	whether	your	expected	output	came	from	an	exception
traceback	or	from	ordinary	printing.	So,	e.g.,	an	example	that	expects
"ValueError:	42	is	prime"	will	pass	whether	ValueError	is
actually	raised	or	if	the	example	merely	prints	that	traceback	text.	In
practice,	ordinary	output	rarely	begins	with	a	traceback	header	line,	so	this
doesn't	create	real	problems.

Each	line	of	the	traceback	stack	(if	present)	must	be	indented	further	than
the	first	line	of	the	example,	or	start	with	a	non-alphanumeric	character.
The	first	line	following	the	traceback	header	indented	the	same	and	starting
with	an	alphanumeric	is	taken	to	be	the	start	of	the	exception	detail.	Of
course	this	does	the	right	thing	for	genuine	tracebacks.

When	the	IGNORE_EXCEPTION_DETAIL	doctest	option	is	is	specified,
everything	following	the	leftmost	colon	is	ignored.

The	interactive	shell	omits	the	traceback	header	line	for	some
SyntaxErrors.	But	doctest	uses	the	traceback	header	line	to	distinguish
exceptions	from	non-exceptions.	So	in	the	rare	case	where	you	need	to	test
a	SyntaxError	that	omits	the	traceback	header,	you	will	need	to
manually	add	the	traceback	header	line	to	your	test	example.

For	some	SyntaxErrors,	Python	displays	the	character	position	of	the
syntax	error,	using	a	^	marker:

>>>	1	1

		File	"<stdin>",	line	1

				1	1

						^

SyntaxError:	invalid	syntax

Since	the	lines	showing	the	position	of	the	error	come	before	the	exception
type	and	detail,	they	are	not	checked	by	doctest.	For	example,	the	following
test	would	pass,	even	though	it	puts	the	^	marker	in	the	wrong	location:

>>>	1	1

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1

				1	1

				^

SyntaxError:	invalid	syntax

Changed	in	version	2.4:	The	ability	to	handle	a	multi-line	exception	detail,	and
the	IGNORE_EXCEPTION_DETAIL	doctest	option,	were	added.

Python	Library	Reference
Previous:	5.2.3.3	What's	the	Execution	Up:	5.2.3	How	It	Works	Next:	5.2.3.5
Option	Flags	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.3.4	What	About	Exceptions?	Up:	5.2.3	How	It	Works	Next:
5.2.3.6	Warnings

5.2.3.5	Option	Flags	and	Directives

A	number	of	option	flags	control	various	aspects	of	doctest's	behavior.	Symbolic
names	for	the	flags	are	supplied	as	module	constants,	which	can	be	or'ed
together	and	passed	to	various	functions.	The	names	can	also	be	used	in	doctest
directives	(see	below).

The	first	group	of	options	define	test	semantics,	controlling	aspects	of	how
doctest	decides	whether	actual	output	matches	an	example's	expected	output:

DONT_ACCEPT_TRUE_FOR_1

By	default,	if	an	expected	output	block	contains	just	1,	an	actual	output
block	containing	just	1	or	just	True	is	considered	to	be	a	match,	and
similarly	for	0	versus	False.	When	DONT_ACCEPT_TRUE_FOR_1	is
specified,	neither	substitution	is	allowed.	The	default	behavior	caters	to	that
Python	changed	the	return	type	of	many	functions	from	integer	to	boolean;
doctests	expecting	"little	integer"	output	still	work	in	these	cases.	This
option	will	probably	go	away,	but	not	for	several	years.

DONT_ACCEPT_BLANKLINE

By	default,	if	an	expected	output	block	contains	a	line	containing	only	the
string	<BLANKLINE>,	then	that	line	will	match	a	blank	line	in	the	actual
output.	Because	a	genuinely	blank	line	delimits	the	expected	output,	this	is
the	only	way	to	communicate	that	a	blank	line	is	expected.	When
DONT_ACCEPT_BLANKLINE	is	specified,	this	substitution	is	not	allowed.

NORMALIZE_WHITESPACE

When	specified,	all	sequences	of	whitespace	(blanks	and	newlines)	are
treated	as	equal.	Any	sequence	of	whitespace	within	the	expected	output
will	match	any	sequence	of	whitespace	within	the	actual	output.	By	default,
whitespace	must	match	exactly.	NORMALIZE_WHITESPACE	is	especially
useful	when	a	line	of	expected	output	is	very	long,	and	you	want	to	wrap	it
across	multiple	lines	in	your	source.

ELLIPSIS

When	specified,	an	ellipsis	marker	(...)	in	the	expected	output	can	match
any	substring	in	the	actual	output.	This	includes	substrings	that	span	line
boundaries,	and	empty	substrings,	so	it's	best	to	keep	usage	of	this	simple.
Complicated	uses	can	lead	to	the	same	kinds	of	"oops,	it	matched	too
much!"	surprises	that	.*	is	prone	to	in	regular	expressions.

IGNORE_EXCEPTION_DETAIL

When	specified,	an	example	that	expects	an	exception	passes	if	an
exception	of	the	expected	type	is	raised,	even	if	the	exception	detail	does
not	match.	For	example,	an	example	expecting	"ValueError:	42"	will
pass	if	the	actual	exception	raised	is	"ValueError:	3*14",	but	will	fail,
e.g.,	if	TypeError	is	raised.

Note	that	a	similar	effect	can	be	obtained	using	ELLIPSIS,	and
IGNORE_EXCEPTION_DETAIL	may	go	away	when	Python	releases	prior
to	2.4	become	uninteresting.	Until	then,	IGNORE_EXCEPTION_DETAIL
is	the	only	clear	way	to	write	a	doctest	that	doesn't	care	about	the	exception
detail	yet	continues	to	pass	under	Python	releases	prior	to	2.4	(doctest
directives	appear	to	be	comments	to	them).	For	example,

>>>	(1,	2)[3]	=	'moo'	#doctest:	+IGNORE_EXCEPTION_DETAIL

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

TypeError:	object	doesn't	support	item	assignment

passes	under	Python	2.4	and	Python	2.3.	The	detail	changed	in	2.4,	to	say
"does	not"	instead	of	"doesn't".

COMPARISON_FLAGS

A	bitmask	or'ing	together	all	the	comparison	flags	above.

The	second	group	of	options	controls	how	test	failures	are	reported:

REPORT_UDIFF

When	specified,	failures	that	involve	multi-line	expected	and	actual	outputs
are	displayed	using	a	unified	diff.

REPORT_CDIFF

When	specified,	failures	that	involve	multi-line	expected	and	actual	outputs
will	be	displayed	using	a	context	diff.

REPORT_NDIFF

When	specified,	differences	are	computed	by	difflib.Differ,	using
the	same	algorithm	as	the	popular	ndiff.py	utility.	This	is	the	only	method
that	marks	differences	within	lines	as	well	as	across	lines.	For	example,	if	a
line	of	expected	output	contains	digit	1	where	actual	output	contains	letter
l,	a	line	is	inserted	with	a	caret	marking	the	mismatching	column	positions.

REPORT_ONLY_FIRST_FAILURE

When	specified,	display	the	first	failing	example	in	each	doctest,	but
suppress	output	for	all	remaining	examples.	This	will	prevent	doctest	from
reporting	correct	examples	that	break	because	of	earlier	failures;	but	it
might	also	hide	incorrect	examples	that	fail	independently	of	the	first
failure.	When	REPORT_ONLY_FIRST_FAILURE	is	specified,	the
remaining	examples	are	still	run,	and	still	count	towards	the	total	number	of
failures	reported;	only	the	output	is	suppressed.

REPORTING_FLAGS

A	bitmask	or'ing	together	all	the	reporting	flags	above.

"Doctest	directives"	may	be	used	to	modify	the	option	flags	for	individual
examples.	Doctest	directives	are	expressed	as	a	special	Python	comment
following	an	example's	source	code:

directive ::= "#"	"doctest:"

directive_options

directive_options ::= directive_option	(","

directive_option)*

directive_option ::= on_or_off

directive_option_name

on_or_off ::= "+"	|	"-"

directive_option_name ::= "DONT_ACCEPT_BLANKLINE"

|

"NORMALIZE_WHITESPACE"

|	...

Download	entire	grammar	as	text.

Whitespace	is	not	allowed	between	the	+	or	-	and	the	directive	option	name.

The	directive	option	name	can	be	any	of	the	option	flag	names	explained	above.

An	example's	doctest	directives	modify	doctest's	behavior	for	that	single
example.	Use	+	to	enable	the	named	behavior,	or	-	to	disable	it.

For	example,	this	test	passes:

>>>	print	range(20)	#doctest:	+NORMALIZE_WHITESPACE

[0,			1,		2,		3,		4,		5,		6,		7,		8,		9,

10,		11,	12,	13,	14,	15,	16,	17,	18,	19]

Without	the	directive	it	would	fail,	both	because	the	actual	output	doesn't	have
two	blanks	before	the	single-digit	list	elements,	and	because	the	actual	output	is
on	a	single	line.	This	test	also	passes,	and	also	requires	a	directive	to	do	so:

>>>	print	range(20)	#	doctest:+ELLIPSIS

[0,	1,	...,	18,	19]

Multiple	directives	can	be	used	on	a	single	physical	line,	separated	by	commas:

>>>	print	range(20)	#	doctest:	+ELLIPSIS,	+NORMALIZE_WHITESPACE

[0,				1,	...,			18,				19]

If	multiple	directive	comments	are	used	for	a	single	example,	then	they	are
combined:

>>>	print	range(20)	#	doctest:	+ELLIPSIS

...																	#	doctest:	+NORMALIZE_WHITESPACE

[0,				1,	...,			18,				19]

As	the	previous	example	shows,	you	can	add	"..."	lines	to	your	example
containing	only	directives.	This	can	be	useful	when	an	example	is	too	long	for	a
directive	to	comfortably	fit	on	the	same	line:

>>>	print	range(5)	+	range(10,20)	+	range(30,40)	+	range(50,60)

...	#	doctest:	+ELLIPSIS

[0,	...,	4,	10,	...,	19,	30,	...,	39,	50,	...,	59]

Note	that	since	all	options	are	disabled	by	default,	and	directives	apply	only	to
the	example	they	appear	in,	enabling	options	(via	+	in	a	directive)	is	usually	the
only	meaningful	choice.	However,	option	flags	can	also	be	passed	to	functions
that	run	doctests,	establishing	different	defaults.	In	such	cases,	disabling	an
option	via	-	in	a	directive	can	be	useful.

Changed	in	version	2.4:	Constants	DONT_ACCEPT_BLANKLINE,
NORMALIZE_WHITESPACE,	ELLIPSIS,	IGNORE_EXCEPTION_DETAIL,
REPORT_UDIFF,	REPORT_CDIFF,	REPORT_NDIFF,
REPORT_ONLY_FIRST_FAILURE,	COMPARISON_FLAGS	and
REPORTING_FLAGS	were	added;	by	default	<BLANKLINE>	in	expected
output	matches	an	empty	line	in	actual	output;	and	doctest	directives	were
added.

There's	also	a	way	to	register	new	option	flag	names,	although	this	isn't	useful
unless	you	intend	to	extend	doctest	internals	via	subclassing:

register_optionflag(name)
Create	a	new	option	flag	with	a	given	name,	and	return	the	new	flag's
integer	value.	register_optionflag()	can	be	used	when	subclassing
OutputChecker	or	DocTestRunner	to	create	new	options	that	are
supported	by	your	subclasses.	register_optionflag	should	always
be	called	using	the	following	idiom:

		MY_FLAG	=	register_optionflag('MY_FLAG')

New	in	version	2.4.

Python	Library	Reference
Previous:	5.2.3.4	What	About	Exceptions?	Up:	5.2.3	How	It	Works	Next:
5.2.3.6	Warnings

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.3.5	Option	Flags	and	Up:	5.2.3	How	It	Works	Next:	5.2.4	Basic
API

5.2.3.6	Warnings

doctest	is	serious	about	requiring	exact	matches	in	expected	output.	If	even	a
single	character	doesn't	match,	the	test	fails.	This	will	probably	surprise	you	a
few	times,	as	you	learn	exactly	what	Python	does	and	doesn't	guarantee	about
output.	For	example,	when	printing	a	dict,	Python	doesn't	guarantee	that	the	key-
value	pairs	will	be	printed	in	any	particular	order,	so	a	test	like

>>>	foo()

{"Hermione":	"hippogryph",	"Harry":	"broomstick"}

is	vulnerable!	One	workaround	is	to	do

>>>	foo()	==	{"Hermione":	"hippogryph",	"Harry":	"broomstick"}

True

instead.	Another	is	to	do

>>>	d	=	foo().items()

>>>	d.sort()

>>>	d

[('Harry',	'broomstick'),	('Hermione',	'hippogryph')]

There	are	others,	but	you	get	the	idea.

Another	bad	idea	is	to	print	things	that	embed	an	object	address,	like

>>>	id(1.0)	#	certain	to	fail	some	of	the	time

7948648

>>>	class	C:	pass

>>>	C()			#	the	default	repr()	for	instances	embeds	an	address

<__main__.C	instance	at	0x00AC18F0>

The	ELLIPSIS	directive	gives	a	nice	approach	for	the	last	example:

>>>	C()	#doctest:	+ELLIPSIS

<__main__.C	instance	at	0x...>

Floating-point	numbers	are	also	subject	to	small	output	variations	across
platforms,	because	Python	defers	to	the	platform	C	library	for	float	formatting,

and	C	libraries	vary	widely	in	quality	here.

>>>	1./7		#	risky

0.14285714285714285

>>>	print	1./7	#	safer

0.142857142857

>>>	print	round(1./7,	6)	#	much	safer

0.142857

Numbers	of	the	form	I/2.**J	are	safe	across	all	platforms,	and	I	often
contrive	doctest	examples	to	produce	numbers	of	that	form:

>>>	3./4		#	utterly	safe

0.75

Simple	fractions	are	also	easier	for	people	to	understand,	and	that	makes	for
better	documentation.

Python	Library	Reference
Previous:	5.2.3.5	Option	Flags	and	Up:	5.2.3	How	It	Works	Next:	5.2.4	Basic
API

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.6	Advanced	API	Up:	5.2.6	Advanced	API	Next:	5.2.6.2	Example
Objects

5.2.6.1	DocTest	Objects

class	DocTest(examples,	globs,	name,	filename,	lineno,	docstring)
A	collection	of	doctest	examples	that	should	be	run	in	a	single	namespace.
The	constructor	arguments	are	used	to	initialize	the	member	variables	of	the
same	names.	New	in	version	2.4.

DocTest	defines	the	following	member	variables.	They	are	initialized	by	the
constructor,	and	should	not	be	modified	directly.

examples

A	list	of	Example	objects	encoding	the	individual	interactive	Python
examples	that	should	be	run	by	this	test.

globs

The	namespace	(aka	globals)	that	the	examples	should	be	run	in.	This	is	a
dictionary	mapping	names	to	values.	Any	changes	to	the	namespace	made
by	the	examples	(such	as	binding	new	variables)	will	be	reflected	in	globs
after	the	test	is	run.

name

A	string	name	identifying	the	DocTest.	Typically,	this	is	the	name	of	the
object	or	file	that	the	test	was	extracted	from.

filename

The	name	of	the	file	that	this	DocTest	was	extracted	from;	or	None	if	the
filename	is	unknown,	or	if	the	DocTest	was	not	extracted	from	a	file.

lineno

The	line	number	within	filename	where	this	DocTest	begins,	or	None
if	the	line	number	is	unavailable.	This	line	number	is	zero-based	with
respect	to	the	beginning	of	the	file.

docstring

The	string	that	the	test	was	extracted	from,	or	`None`	if	the	string	is

unavailable,	or	if	the	test	was	not	extracted	from	a	string.

Python	Library	Reference
Previous:	5.2.6	Advanced	API	Up:	5.2.6	Advanced	API	Next:	5.2.6.2	Example
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.6.1	DocTest	Objects	Up:	5.2.6	Advanced	API	Next:	5.2.6.3
DocTestFinder	objects

5.2.6.2	Example	Objects

class	Example(source,	want[,	exc_msg][,	lineno][,	indent][,	options])
A	single	interactive	example,	consisting	of	a	Python	statement	and	its
expected	output.	The	constructor	arguments	are	used	to	initialize	the
member	variables	of	the	same	names.	New	in	version	2.4.

Example	defines	the	following	member	variables.	They	are	initialized	by	the
constructor,	and	should	not	be	modified	directly.

source

A	string	containing	the	example's	source	code.	This	source	code	consists	of
a	single	Python	statement,	and	always	ends	with	a	newline;	the	constructor
adds	a	newline	when	necessary.

want

The	expected	output	from	running	the	example's	source	code	(either	from
stdout,	or	a	traceback	in	case	of	exception).	want	ends	with	a	newline
unless	no	output	is	expected,	in	which	case	it's	an	empty	string.	The
constructor	adds	a	newline	when	necessary.

exc_msg

The	exception	message	generated	by	the	example,	if	the	example	is
expected	to	generate	an	exception;	or	None	if	it	is	not	expected	to	generate
an	exception.	This	exception	message	is	compared	against	the	return	value
of	traceback.format_exception_only().	exc_msg	ends	with	a
newline	unless	it's	None.	The	constructor	adds	a	newline	if	needed.

lineno

The	line	number	within	the	string	containing	this	example	where	the
example	begins.	This	line	number	is	zero-based	with	respect	to	the
beginning	of	the	containing	string.

indent

The	example's	indentation	in	the	containing	string,	i.e.,	the	number	of	space

characters	that	preceed	the	example's	first	prompt.

options

A	dictionary	mapping	from	option	flags	to	True	or	False,	which	is	used
to	override	default	options	for	this	example.	Any	option	flags	not	contained
in	this	dictionary	are	left	at	their	default	value	(as	specified	by	the
DocTestRunner's	optionflags).	By	default,	no	options	are	set.

Python	Library	Reference
Previous:	5.2.6.1	DocTest	Objects	Up:	5.2.6	Advanced	API	Next:	5.2.6.3
DocTestFinder	objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.6.2	Example	Objects	Up:	5.2.6	Advanced	API	Next:	5.2.6.4
DocTestParser	objects

5.2.6.3	DocTestFinder	objects

class	DocTestFinder([verbose][,	parser][,	recurse][,	exclude_empty])
A	processing	class	used	to	extract	the	DocTests	that	are	relevant	to	a
given	object,	from	its	docstring	and	the	docstrings	of	its	contained	objects.
DocTests	can	currently	be	extracted	from	the	following	object	types:
modules,	functions,	classes,	methods,	staticmethods,	classmethods,	and
properties.

The	optional	argument	verbose	can	be	used	to	display	the	objects	searched
by	the	finder.	It	defaults	to	False	(no	output).

The	optional	argument	parser	specifies	the	DocTestParser	object	(or	a
drop-in	replacement)	that	is	used	to	extract	doctests	from	docstrings.

If	the	optional	argument	recurse	is	false,	then	DocTestFinder.find()
will	only	examine	the	given	object,	and	not	any	contained	objects.

If	the	optional	argument	exclude_empty	is	false,	then
DocTestFinder.find()	will	include	tests	for	objects	with	empty
docstrings.

New	in	version	2.4.

DocTestFinder	defines	the	following	method:

find(obj[,	name][,	module][,	globs][,	extraglobs])
Return	a	list	of	the	DocTests	that	are	defined	by	obj's	docstring,	or	by	any
of	its	contained	objects'	docstrings.

The	optional	argument	name	specifies	the	object's	name;	this	name	will	be
used	to	construct	names	for	the	returned	DocTests.	If	name	is	not
specified,	then	obj.__name__	is	used.

The	optional	parameter	module	is	the	module	that	contains	the	given	object.

If	the	module	is	not	specified	or	is	None,	then	the	test	finder	will	attempt	to
automatically	determine	the	correct	module.	The	object's	module	is	used:

As	a	default	namespace,	if	globs	is	not	specified.
To	prevent	the	DocTestFinder	from	extracting	DocTests	from	objects
that	are	imported	from	other	modules.	(Contained	objects	with
modules	other	than	module	are	ignored.)
To	find	the	name	of	the	file	containing	the	object.
To	help	find	the	line	number	of	the	object	within	its	file.

If	module	is	False,	no	attempt	to	find	the	module	will	be	made.	This	is
obscure,	of	use	mostly	in	testing	doctest	itself:	if	module	is	False,	or	is
None	but	cannot	be	found	automatically,	then	all	objects	are	considered	to
belong	to	the	(non-existent)	module,	so	all	contained	objects	will
(recursively)	be	searched	for	doctests.

The	globals	for	each	DocTest	is	formed	by	combining	globs	and
extraglobs	(bindings	in	extraglobs	override	bindings	in	globs).	A	new
shallow	copy	of	the	globals	dictionary	is	created	for	each	DocTest.	If
globs	is	not	specified,	then	it	defaults	to	the	module's	__dict__,	if	specified,
or	{}	otherwise.	If	extraglobs	is	not	specified,	then	it	defaults	to	{}.

Python	Library	Reference
Previous:	5.2.6.2	Example	Objects	Up:	5.2.6	Advanced	API	Next:	5.2.6.4
DocTestParser	objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.6.3	DocTestFinder	objects	Up:	5.2.6	Advanced	API	Next:	5.2.6.5
DocTestRunner	objects

5.2.6.4	DocTestParser	objects

class	DocTestParser()
A	processing	class	used	to	extract	interactive	examples	from	a	string,	and
use	them	to	create	a	DocTest	object.	New	in	version	2.4.

DocTestParser	defines	the	following	methods:

get_doctest(string,	globs,	name,	filename,	lineno)
Extract	all	doctest	examples	from	the	given	string,	and	collect	them	into	a
DocTest	object.

globs,	name,	filename,	and	lineno	are	attributes	for	the	new	DocTest
object.	See	the	documentation	for	DocTest	for	more	information.

get_examples(string[,	name])
Extract	all	doctest	examples	from	the	given	string,	and	return	them	as	a	list
of	Example	objects.	Line	numbers	are	0-based.	The	optional	argument
name	is	a	name	identifying	this	string,	and	is	only	used	for	error	messages.

parse(string[,	name])
Divide	the	given	string	into	examples	and	intervening	text,	and	return	them
as	a	list	of	alternating	Examples	and	strings.	Line	numbers	for	the
Examples	are	0-based.	The	optional	argument	name	is	a	name	identifying
this	string,	and	is	only	used	for	error	messages.

Python	Library	Reference
Previous:	5.2.6.3	DocTestFinder	objects	Up:	5.2.6	Advanced	API	Next:	5.2.6.5
DocTestRunner	objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.6.4	DocTestParser	objects	Up:	5.2.6	Advanced	API	Next:	5.2.6.6
OutputChecker	objects

5.2.6.5	DocTestRunner	objects

class	DocTestRunner([checker][,	verbose][,	optionflags])
A	processing	class	used	to	execute	and	verify	the	interactive	examples	in	a
DocTest.

The	comparison	between	expected	outputs	and	actual	outputs	is	done	by	an
OutputChecker.	This	comparison	may	be	customized	with	a	number	of
option	flags;	see	section	5.2.3	for	more	information.	If	the	option	flags	are
insufficient,	then	the	comparison	may	also	be	customized	by	passing	a
subclass	of	OutputChecker	to	the	constructor.

The	test	runner's	display	output	can	be	controlled	in	two	ways.	First,	an
output	function	can	be	passed	to	TestRunner.run();	this	function	will
be	called	with	strings	that	should	be	displayed.	It	defaults	to
sys.stdout.write.	If	capturing	the	output	is	not	sufficient,	then	the
display	output	can	be	also	customized	by	subclassing	DocTestRunner,	and
overriding	the	methods	report_start,	report_success,
report_unexpected_exception,	and	report_failure.

The	optional	keyword	argument	checker	specifies	the	OutputChecker
object	(or	drop-in	replacement)	that	should	be	used	to	compare	the	expected
outputs	to	the	actual	outputs	of	doctest	examples.

The	optional	keyword	argument	verbose	controls	the	DocTestRunner's
verbosity.	If	verbose	is	True,	then	information	is	printed	about	each
example,	as	it	is	run.	If	verbose	is	False,	then	only	failures	are	printed.	If
verbose	is	unspecified,	or	None,	then	verbose	output	is	used	iff	the
command-line	switch	-v	is	used.

The	optional	keyword	argument	optionflags	can	be	used	to	control	how	the
test	runner	compares	expected	output	to	actual	output,	and	how	it	displays
failures.	For	more	information,	see	section	5.2.3.

New	in	version	2.4.

DocTestParser	defines	the	following	methods:

report_start(out,	test,	example)
Report	that	the	test	runner	is	about	to	process	the	given	example.	This
method	is	provided	to	allow	subclasses	of	DocTestRunner	to	customize
their	output;	it	should	not	be	called	directly.

example	is	the	example	about	to	be	processed.	test	is	the	test	containing
example.	out	is	the	output	function	that	was	passed	to
DocTestRunner.run().

report_success(out,	test,	example,	got)
Report	that	the	given	example	ran	successfully.	This	method	is	provided	to
allow	subclasses	of	DocTestRunner	to	customize	their	output;	it	should
not	be	called	directly.

example	is	the	example	about	to	be	processed.	got	is	the	actual	output	from
the	example.	test	is	the	test	containing	example.	out	is	the	output	function
that	was	passed	to	DocTestRunner.run().

report_failure(out,	test,	example,	got)
Report	that	the	given	example	failed.	This	method	is	provided	to	allow
subclasses	of	DocTestRunner	to	customize	their	output;	it	should	not	be
called	directly.

example	is	the	example	about	to	be	processed.	got	is	the	actual	output	from
the	example.	test	is	the	test	containing	example.	out	is	the	output	function
that	was	passed	to	DocTestRunner.run().

report_unexpected_exception(out,	test,	example,	exc_info)
Report	that	the	given	example	raised	an	unexpected	exception.	This	method
is	provided	to	allow	subclasses	of	DocTestRunner	to	customize	their
output;	it	should	not	be	called	directly.

example	is	the	example	about	to	be	processed.	exc_info	is	a	tuple	containing
information	about	the	unexpected	exception	(as	returned	by
sys.exc_info()).	test	is	the	test	containing	example.	out	is	the	output
function	that	was	passed	to	DocTestRunner.run().

run(test[,	compileflags][,	out][,	clear_globs])
Run	the	examples	in	test	(a	DocTest	object),	and	display	the	results	using
the	writer	function	out.

The	examples	are	run	in	the	namespace	test.globs.	If	clear_globs	is
true	(the	default),	then	this	namespace	will	be	cleared	after	the	test	runs,	to
help	with	garbage	collection.	If	you	would	like	to	examine	the	namespace
after	the	test	completes,	then	use	clear_globs=False.

compileflags	gives	the	set	of	flags	that	should	be	used	by	the	Python
compiler	when	running	the	examples.	If	not	specified,	then	it	will	default	to
the	set	of	future-import	flags	that	apply	to	globs.

The	output	of	each	example	is	checked	using	the	DocTestRunner's
output	checker,	and	the	results	are	formatted	by	the
DocTestRunner.report_*	methods.

summarize([verbose])
Print	a	summary	of	all	the	test	cases	that	have	been	run	by	this
DocTestRunner,	and	return	a	tuple	"(failure_count,	test_count)".

The	optional	verbose	argument	controls	how	detailed	the	summary	is.	If	the
verbosity	is	not	specified,	then	the	DocTestRunner's	verbosity	is	used.

Python	Library	Reference
Previous:	5.2.6.4	DocTestParser	objects	Up:	5.2.6	Advanced	API	Next:	5.2.6.6
OutputChecker	objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	5.2.6.5	DocTestRunner	objects	Up:	5.2.6	Advanced	API	Next:	5.2.7
Debugging

5.2.6.6	OutputChecker	objects

class	OutputChecker()
A	class	used	to	check	the	whether	the	actual	output	from	a	doctest	example
matches	the	expected	output.	OutputChecker	defines	two	methods:
check_output,	which	compares	a	given	pair	of	outputs,	and	returns	true
if	they	match;	and	output_difference,	which	returns	a	string
describing	the	differences	between	two	outputs.	New	in	version	2.4.

OutputChecker	defines	the	following	methods:

check_output(want,	got,	optionflags)
Return	True	iff	the	actual	output	from	an	example	(got)	matches	the
expected	output	(want).	These	strings	are	always	considered	to	match	if
they	are	identical;	but	depending	on	what	option	flags	the	test	runner	is
using,	several	non-exact	match	types	are	also	possible.	See	section	5.2.3	for
more	information	about	option	flags.

output_difference(example,	got,	optionflags)
Return	a	string	describing	the	differences	between	the	expected	output	for	a
given	example	(example)	and	the	actual	output	(got).	optionflags	is	the	set
of	option	flags	used	to	compare	want	and	got.

Python	Library	Reference
Previous:	5.2.6.5	DocTestRunner	objects	Up:	5.2.6	Advanced	API	Next:	5.2.7
Debugging

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.8.1	Using	the	subprocess	Up:	6.8.1	Using	the	subprocess	Next:
6.8.1.2	Exceptions

6.8.1.1	Convenience	Functions

This	module	also	defines	one	shortcut	function:

call(*args,	**kwargs)
Run	command	with	arguments.	Wait	for	command	to	complete,	then	return
the	returncode	attribute.

The	arguments	are	the	same	as	for	the	Popen	constructor.	Example:

				retcode	=	call(["ls",	"-l"])

Python	Library	Reference
Previous:	6.8.1	Using	the	subprocess	Up:	6.8.1	Using	the	subprocess	Next:
6.8.1.2	Exceptions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.8.1.1	Convenience	Functions	Up:	6.8.1	Using	the	subprocess
Next:	6.8.1.3	Security

6.8.1.2	Exceptions

Exceptions	raised	in	the	child	process,	before	the	new	program	has	started	to
execute,	will	be	re-raised	in	the	parent.	Additionally,	the	exception	object	will
have	one	extra	attribute	called	child_traceback,	which	is	a	string
containing	traceback	information	from	the	childs	point	of	view.

The	most	common	exception	raised	is	OSError.	This	occurs,	for	example,
when	trying	to	execute	a	non-existent	file.	Applications	should	prepare	for
OSError	exceptions.

A	ValueError	will	be	raised	if	Popen	is	called	with	invalid	arguments.

Python	Library	Reference
Previous:	6.8.1.1	Convenience	Functions	Up:	6.8.1	Using	the	subprocess
Next:	6.8.1.3	Security

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.8.1.2	Exceptions	Up:	6.8.1	Using	the	subprocess	Next:	6.8.2
Popen	Objects

6.8.1.3	Security

Unlike	some	other	popen	functions,	this	implementation	will	never	call	/bin/sh
implicitly.	This	means	that	all	characters,	including	shell	metacharacters,	can
safely	be	passed	to	child	processes.

Python	Library	Reference
Previous:	6.8.1.2	Exceptions	Up:	6.8.1	Using	the	subprocess	Next:	6.8.2
Popen	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.8.3	Replacing	Older	Functions	Up:	6.8.3	Replacing	Older
Functions	Next:	6.8.3.2	Replacing	shell	pipe

6.8.3.1	Replacing	/bin/sh	shell	backquote

output=`mycmd	myarg`

==>

output	=	Popen(["mycmd",	"myarg"],	stdout=PIPE).communicate()[0]

Python	Library	Reference
Previous:	6.8.3	Replacing	Older	Functions	Up:	6.8.3	Replacing	Older
Functions	Next:	6.8.3.2	Replacing	shell	pipe

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.8.3.1	Replacing	/bin/sh	shell	Up:	6.8.3	Replacing	Older
Functions	Next:	6.8.3.3	Replacing	os.system()

6.8.3.2	Replacing	shell	pipe	line

output=`dmesg	|	grep	hda`

==>

p1	=	Popen(["dmesg"],	stdout=PIPE)

p2	=	Popen(["grep",	"hda"],	stdin=p1.stdout)

output	=	p2.communicate()[0]

Python	Library	Reference
Previous:	6.8.3.1	Replacing	/bin/sh	shell	Up:	6.8.3	Replacing	Older
Functions	Next:	6.8.3.3	Replacing	os.system()

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.8.3.2	Replacing	shell	pipe	Up:	6.8.3	Replacing	Older	Functions
Next:	6.8.3.4	Replacing	os.spawn*

6.8.3.3	Replacing	os.system()

sts	=	os.system("mycmd"	+	"	myarg")

==>

p	=	Popen("mycmd"	+	"	myarg",	shell=True)

sts	=	os.waitpid(p.pid,	0)

Notes:

Calling	the	program	through	the	shell	is	usually	not	required.
It's	easier	to	look	at	the	returncode	attribute	than	the	exit	status.

A	more	realistic	example	would	look	like	this:

try:

				retcode	=	call("mycmd"	+	"	myarg",	shell=True)

				if	retcode	<	0:

								print	>>sys.stderr,	"Child	was	terminated	by	signal",	-retcode

				else:

								print	>>sys.stderr,	"Child	returned",	retcode

except	OSError,	e:

				print	>>sys.stderr,	"Execution	failed:",	e

Python	Library	Reference
Previous:	6.8.3.2	Replacing	shell	pipe	Up:	6.8.3	Replacing	Older	Functions
Next:	6.8.3.4	Replacing	os.spawn*

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.8.3.3	Replacing	os.system()	Up:	6.8.3	Replacing	Older	Functions
Next:	6.8.3.5	Replacing	os.popen*

6.8.3.4	Replacing	os.spawn*

P_NOWAIT	example:

pid	=	os.spawnlp(os.P_NOWAIT,	"/bin/mycmd",	"mycmd",	"myarg")

==>

pid	=	Popen(["/bin/mycmd",	"myarg"]).pid

P_WAIT	example:

retcode	=	os.spawnlp(os.P_WAIT,	"/bin/mycmd",	"mycmd",	"myarg")

==>

retcode	=	call(["/bin/mycmd",	"myarg"])

Vector	example:

os.spawnvp(os.P_NOWAIT,	path,	args)

==>

Popen([path]	+	args[1:])

Environment	example:

os.spawnlpe(os.P_NOWAIT,	"/bin/mycmd",	"mycmd",	"myarg",	env)

==>

Popen(["/bin/mycmd",	"myarg"],	env={"PATH":	"/usr/bin"})

Python	Library	Reference
Previous:	6.8.3.3	Replacing	os.system()	Up:	6.8.3	Replacing	Older	Functions
Next:	6.8.3.5	Replacing	os.popen*

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.8.3.4	Replacing	os.spawn*	Up:	6.8.3	Replacing	Older	Functions
Next:	6.8.3.6	Replacing	popen2.*

6.8.3.5	Replacing	os.popen*

pipe	=	os.popen(cmd,	mode='r',	bufsize)

==>

pipe	=	Popen(cmd,	shell=True,	bufsize=bufsize,	stdout=PIPE).stdout

pipe	=	os.popen(cmd,	mode='w',	bufsize)

==>

pipe	=	Popen(cmd,	shell=True,	bufsize=bufsize,	stdin=PIPE).stdin

(child_stdin,	child_stdout)	=	os.popen2(cmd,	mode,	bufsize)

==>

p	=	Popen(cmd,	shell=True,	bufsize=bufsize,

										stdin=PIPE,	stdout=PIPE,	close_fds=True)

(child_stdin,	child_stdout)	=	(p.stdin,	p.stdout)

(child_stdin,

	child_stdout,

	child_stderr)	=	os.popen3(cmd,	mode,	bufsize)

==>

p	=	Popen(cmd,	shell=True,	bufsize=bufsize,

										stdin=PIPE,	stdout=PIPE,	stderr=PIPE,	close_fds=True)

(child_stdin,

	child_stdout,

	child_stderr)	=	(p.stdin,	p.stdout,	p.stderr)

(child_stdin,	child_stdout_and_stderr)	=	os.popen4(cmd,	mode,	bufsize)

==>

p	=	Popen(cmd,	shell=True,	bufsize=bufsize,

										stdin=PIPE,	stdout=PIPE,	stderr=STDOUT,	close_fds=True)

(child_stdin,	child_stdout_and_stderr)	=	(p.stdin,	p.stdout)

Python	Library	Reference
Previous:	6.8.3.4	Replacing	os.spawn*	Up:	6.8.3	Replacing	Older	Functions
Next:	6.8.3.6	Replacing	popen2.*

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.8.3.5	Replacing	os.popen*	Up:	6.8.3	Replacing	Older	Functions
Next:	6.9	popen2

6.8.3.6	Replacing	popen2.*

Note:	If	the	cmd	argument	to	popen2	functions	is	a	string,	the	command	is
executed	through	/bin/sh.	If	it	is	a	list,	the	command	is	directly	executed.

(child_stdout,	child_stdin)	=	popen2.popen2("somestring",	bufsize,	mode)

==>

p	=	Popen(["somestring"],	shell=True,	bufsize=bufsize

										stdin=PIPE,	stdout=PIPE,	close_fds=True)

(child_stdout,	child_stdin)	=	(p.stdout,	p.stdin)

(child_stdout,	child_stdin)	=	popen2.popen2(["mycmd",	"myarg"],	bufsize,	mode)

==>

p	=	Popen(["mycmd",	"myarg"],	bufsize=bufsize,

										stdin=PIPE,	stdout=PIPE,	close_fds=True)

(child_stdout,	child_stdin)	=	(p.stdout,	p.stdin)

The	popen2.Popen3	and	popen3.Popen4	basically	works	as	subprocess.Popen,
except	that:

subprocess.Popen	raises	an	exception	if	the	execution	fails

the	capturestderr	argument	is	replaced	with	the	stderr	argument.

stdin=PIPE	and	stdout=PIPE	must	be	specified.

popen2	closes	all	file	descriptors	by	default,	but	you	have	to	specify
close_fds=True	with	subprocess.Popen.

Python	Library	Reference
Previous:	6.8.3.5	Replacing	os.popen*	Up:	6.8.3	Replacing	Older	Functions
Next:	6.9	popen2

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.1	Background	Up:	6.21.1	Background	Next:	6.21.1.2	What	are
options

6.21.1.1	Terminology

argument
a	string	entered	on	the	command-line,	and	passed	by	the	shell	to	execl()
or	execv().	In	Python,	arguments	are	elements	of	sys.argv[1:]
(sys.argv[0]	is	the	name	of	the	program	being	executed).	UNIX	shells
also	use	the	term	``word''.

It	is	occasionally	desirable	to	substitute	an	argument	list	other	than
sys.argv[1:],	so	you	should	read	``argument''	as	``an	element	of
sys.argv[1:],	or	of	some	other	list	provided	as	a	substitute	for
sys.argv[1:]''.

option
an	argument	used	to	supply	extra	information	to	guide	or	customize	the
execution	of	a	program.	There	are	many	different	syntaxes	for	options;	the
traditional	UNIX	syntax	is	a	hyphen	(``-'')	followed	by	a	single	letter,	e.g.	"-
x"	or	"-F".	Also,	traditional	UNIX	syntax	allows	multiple	options	to	be
merged	into	a	single	argument,	e.g.	"-x	-F"	is	equivalent	to	"-xF".	The
GNU	project	introduced	"-"	followed	by	a	series	of	hyphen-separated
words,	e.g.	"-file"	or	"-dry-run".	These	are	the	only	two	option
syntaxes	provided	by	optparse.

Some	other	option	syntaxes	that	the	world	has	seen	include:

a	hyphen	followed	by	a	few	letters,	e.g.	"-pf"	(this	is	not	the	same	as
multiple	options	merged	into	a	single	argument)

a	hyphen	followed	by	a	whole	word,	e.g.	"-file"	(this	is	technically
equivalent	to	the	previous	syntax,	but	they	aren't	usually	seen	in	the
same	program)

a	plus	sign	followed	by	a	single	letter,	or	a	few	letters,	or	a	word,	e.g.
"+f",	"+rgb"

a	slash	followed	by	a	letter,	or	a	few	letters,	or	a	word,	e.g.	"/f",
"/file"

These	option	syntaxes	are	not	supported	by	optparse,	and	they	never
will	be.	This	is	deliberate:	the	first	three	are	non-standard	on	any
environment,	and	the	last	only	makes	sense	if	you're	exclusively	targeting
VMS,	MS-DOS,	and/or	Windows.

option	argument
an	argument	that	follows	an	option,	is	closely	associated	with	that	option,
and	is	consumed	from	the	argument	list	when	that	option	is.	With
optparse,	option	arguments	may	either	be	in	a	separate	argument	from
their	option:

-f	foo

--file	foo

or	included	in	the	same	argument:

-ffoo

--file=foo

Typically,	a	given	option	either	takes	an	argument	or	it	doesn't.	Lots	of
people	want	an	``optional	option	arguments''	feature,	meaning	that	some
options	will	take	an	argument	if	they	see	it,	and	won't	if	they	don't.	This	is
somewhat	controversial,	because	it	makes	parsing	ambiguous:	if	"-a"
takes	an	optional	argument	and	"-b"	is	another	option	entirely,	how	do	we
interpret	"-ab"?	Because	of	this	ambiguity,	optparse	does	not	support
this	feature.

positional	argument
something	leftover	in	the	argument	list	after	options	have	been	parsed,	i.e.
after	options	and	their	arguments	have	been	parsed	and	removed	from	the
argument	list.

required	option
an	option	that	must	be	supplied	on	the	command-line;	note	that	the	phrase
``required	option''	is	self-contradictory	in	English.	optparse	doesn't
prevent	you	from	implementing	required	options,	but	doesn't	give	you
much	help	at	it	either.	See	examples/required_1.py	and
examples/required_2.py	in	the	optparse	source	distribution	for

two	ways	to	implement	required	options	with	optparse.

For	example,	consider	this	hypothetical	command-line:

prog	-v	--report	/tmp/report.txt	foo	bar

"-v"	and	"-report"	are	both	options.	Assuming	that	--report	takes	one
argument,	"/tmp/report.txt"	is	an	option	argument.	"foo"	and	"bar"
are	positional	arguments.

Python	Library	Reference
Previous:	6.21.1	Background	Up:	6.21.1	Background	Next:	6.21.1.2	What	are
options

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.1.1	Terminology	Up:	6.21.1	Background	Next:	6.21.1.3	What
are	positional

6.21.1.2	What	are	options	for?

Options	are	used	to	provide	extra	information	to	tune	or	customize	the	execution
of	a	program.	In	case	it	wasn't	clear,	options	are	usually	optional.	A	program
should	be	able	to	run	just	fine	with	no	options	whatsoever.	(Pick	a	random
program	from	the	UNIX	or	GNU	toolsets.	Can	it	run	without	any	options	at	all
and	still	make	sense?	The	main	exceptions	are	find,	tar,	and	dd--all	of	which
are	mutant	oddballs	that	have	been	rightly	criticized	for	their	non-standard
syntax	and	confusing	interfaces.)

Lots	of	people	want	their	programs	to	have	``required	options''.	Think	about	it.	If
it's	required,	then	it's	not	optional!	If	there	is	a	piece	of	information	that	your
program	absolutely	requires	in	order	to	run	successfully,	that's	what	positional
arguments	are	for.

As	an	example	of	good	command-line	interface	design,	consider	the	humble	cp
utility,	for	copying	files.	It	doesn't	make	much	sense	to	try	to	copy	files	without
supplying	a	destination	and	at	least	one	source.	Hence,	cp	fails	if	you	run	it	with
no	arguments.	However,	it	has	a	flexible,	useful	syntax	that	does	not	require	any
options	at	all:

cp	SOURCE	DEST

cp	SOURCE	...	DEST-DIR

You	can	get	pretty	far	with	just	that.	Most	cp	implementations	provide	a	bunch
of	options	to	tweak	exactly	how	the	files	are	copied:	you	can	preserve	mode	and
modification	time,	avoid	following	symlinks,	ask	before	clobbering	existing
files,	etc.	But	none	of	this	distracts	from	the	core	mission	of	cp,	which	is	to	copy
either	one	file	to	another,	or	several	files	to	another	directory.

Python	Library	Reference
Previous:	6.21.1.1	Terminology	Up:	6.21.1	Background	Next:	6.21.1.3	What
are	positional

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.1.2	What	are	options	Up:	6.21.1	Background	Next:	6.21.2
Tutorial

6.21.1.3	What	are	positional	arguments	for?

Positional	arguments	are	for	those	pieces	of	information	that	your	program
absolutely,	positively	requires	to	run.

A	good	user	interface	should	have	as	few	absolute	requirements	as	possible.	If
your	program	requires	17	distinct	pieces	of	information	in	order	to	run
successfully,	it	doesn't	much	matter	how	you	get	that	information	from	the	user--
most	people	will	give	up	and	walk	away	before	they	successfully	run	the
program.	This	applies	whether	the	user	interface	is	a	command-line,	a
configuration	file,	or	a	GUI:	if	you	make	that	many	demands	on	your	users,	most
of	them	will	simply	give	up.

In	short,	try	to	minimize	the	amount	of	information	that	users	are	absolutely
required	to	supply--use	sensible	defaults	whenever	possible.	Of	course,	you	also
want	to	make	your	programs	reasonably	flexible.	That's	what	options	are	for.
Again,	it	doesn't	matter	if	they	are	entries	in	a	config	file,	widgets	in	the
``Preferences''	dialog	of	a	GUI,	or	command-line	options--the	more	options	you
implement,	the	more	flexible	your	program	is,	and	the	more	complicated	its
implementation	becomes.	Too	much	flexibility	has	drawbacks	as	well,	of	course;
too	many	options	can	overwhelm	users	and	make	your	code	much	harder	to
maintain.

Python	Library	Reference
Previous:	6.21.1.2	What	are	options	Up:	6.21.1	Background	Next:	6.21.2
Tutorial

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.2	Tutorial	Up:	6.21.2	Tutorial	Next:	6.21.2.2	The	store	action

6.21.2.1	Understanding	option	actions

Actions	tell	optparse	what	to	do	when	it	encounters	an	option	on	the
command	line.	There	is	a	fixed	set	of	actions	hard-coded	into	optparse;
adding	new	actions	is	an	advanced	topic	covered	in	section	,	Extending
optparse.	Most	actions	tell	optparse	to	store	a	value	in	some	variable--for
example,	take	a	string	from	the	command	line	and	store	it	in	an	attribute	of
options.

If	you	don't	specify	an	option	action,	optparse	defaults	to	store.

Python	Library	Reference
Previous:	6.21.2	Tutorial	Up:	6.21.2	Tutorial	Next:	6.21.2.2	The	store	action

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.2.1	Understanding	option	actions	Up:	6.21.2	Tutorial	Next:
6.21.2.3	Handling	boolean	(flag)

6.21.2.2	The	store	action

The	most	common	option	action	is	store,	which	tells	optparse	to	take	the
next	argument	(or	the	remainder	of	the	current	argument),	ensure	that	it	is	of	the
correct	type,	and	store	it	to	your	chosen	destination.

For	example:

parser.add_option("-f",	"--file",

																		action="store",	type="string",	dest="filename")

Now	let's	make	up	a	fake	command	line	and	ask	optparse	to	parse	it:

args	=	["-f",	"foo.txt"]

(options,	args)	=	parser.parse_args(args)

When	optparse	sees	the	option	string	"-f",	it	consumes	the	next	argument,
"foo.txt",	and	stores	it	in	options.filename.	So,	after	this	call	to
parse_args(),	options.filename	is	"foo.txt".

Some	other	option	types	supported	by	optparse	are	int	and	float.	Here's
an	option	that	expects	an	integer	argument:

parser.add_option("-n",	type="int",	dest="num")

Note	that	this	option	has	no	long	option	string,	which	is	perfectly	acceptable.
Also,	there's	no	explicit	action,	since	the	default	is	store.

Let's	parse	another	fake	command-line.	This	time,	we'll	jam	the	option	argument
right	up	against	the	option:	since	"-n42"	(one	argument)	is	equivalent	to	"-n
42"	(two	arguments),	the	code

(options,	args)	=	parser.parse_args(["-n42"])

print	options.num

will	print	"42".

If	you	don't	specify	a	type,	optparse	assumes	string.	Combined	with	the

fact	that	the	default	action	is	store,	that	means	our	first	example	can	be	a	lot
shorter:

parser.add_option("-f",	"--file",	dest="filename")

If	you	don't	supply	a	destination,	optparse	figures	out	a	sensible	default	from
the	option	strings:	if	the	first	long	option	string	is	"-foo-bar",	then	the
default	destination	is	foo_bar.	If	there	are	no	long	option	strings,	optparse
looks	at	the	first	short	option	string:	the	default	destination	for	"-f"	is	f.

optparse	also	includes	built-in	long	and	complex	types.	Adding	types	is
covered	in	section	,	Extending	optparse.

Python	Library	Reference
Previous:	6.21.2.1	Understanding	option	actions	Up:	6.21.2	Tutorial	Next:
6.21.2.3	Handling	boolean	(flag)

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.2.2	The	store	action	Up:	6.21.2	Tutorial	Next:	6.21.2.4	Other
actions

6.21.2.3	Handling	boolean	(flag)	options

Flag	options--set	a	variable	to	true	or	false	when	a	particular	option	is	seen--are
quite	common.	optparse	supports	them	with	two	separate	actions,
store_true	and	store_false.	For	example,	you	might	have	a	verbose
flag	that	is	turned	on	with	"-v"	and	off	with	"-q":

parser.add_option("-v",	action="store_true",	dest="verbose")

parser.add_option("-q",	action="store_false",	dest="verbose")

Here	we	have	two	different	options	with	the	same	destination,	which	is	perfectly
OK.	(It	just	means	you	have	to	be	a	bit	careful	when	setting	default	values--see
below.)

When	optparse	encounters	"-v"	on	the	command	line,	it	sets
options.verbose	to	True;	when	it	encounters	"-q",
options.verbose	is	set	to	False.

Python	Library	Reference
Previous:	6.21.2.2	The	store	action	Up:	6.21.2	Tutorial	Next:	6.21.2.4	Other
actions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.2.3	Handling	boolean	(flag)	Up:	6.21.2	Tutorial	Next:	6.21.2.5
Default	values

6.21.2.4	Other	actions

Some	other	actions	supported	by	optparse	are:

store_const

store	a	constant	value
append

append	this	option's	argument	to	a	list
count

increment	a	counter	by	one
callback

call	a	specified	function

These	are	covered	in	section	6.21.3,	Reference	Guide	and	section	6.21.4,	Option
Callbacks.

Python	Library	Reference
Previous:	6.21.2.3	Handling	boolean	(flag)	Up:	6.21.2	Tutorial	Next:	6.21.2.5
Default	values

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.2.4	Other	actions	Up:	6.21.2	Tutorial	Next:	6.21.2.6	Generating
help

6.21.2.5	Default	values

All	of	the	above	examples	involve	setting	some	variable	(the	``destination'')
when	certain	command-line	options	are	seen.	What	happens	if	those	options	are
never	seen?	Since	we	didn't	supply	any	defaults,	they	are	all	set	to	None.	This	is
usually	fine,	but	sometimes	you	want	more	control.	optparse	lets	you	supply
a	default	value	for	each	destination,	which	is	assigned	before	the	command	line
is	parsed.

First,	consider	the	verbose/quiet	example.	If	we	want	optparse	to	set	verbose
to	True	unless	"-q"	is	seen,	then	we	can	do	this:

parser.add_option("-v",	action="store_true",	dest="verbose",	default=True)

parser.add_option("-q",	action="store_false",	dest="verbose")

Since	default	values	apply	to	the	destination	rather	than	to	any	particular	option,
and	these	two	options	happen	to	have	the	same	destination,	this	is	exactly
equivalent:

parser.add_option("-v",	action="store_true",	dest="verbose")

parser.add_option("-q",	action="store_false",	dest="verbose",	default=True)

Consider	this:

parser.add_option("-v",	action="store_true",	dest="verbose",	default=False)

parser.add_option("-q",	action="store_false",	dest="verbose",	default=True)

Again,	the	default	value	for	verbose	will	be	True:	the	last	default	value	supplied
for	any	particular	destination	is	the	one	that	counts.

A	clearer	way	to	specify	default	values	is	the	set_defaults()	method	of
OptionParser,	which	you	can	call	at	any	time	before	calling	parse_args():

parser.set_defaults(verbose=True)

parser.add_option(...)

(options,	args)	=	parser.parse_args()

As	before,	the	last	value	specified	for	a	given	option	destination	is	the	one	that

counts.	For	clarity,	try	to	use	one	method	or	the	other	of	setting	default	values,
not	both.

Python	Library	Reference
Previous:	6.21.2.4	Other	actions	Up:	6.21.2	Tutorial	Next:	6.21.2.6	Generating
help

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.2.5	Default	values	Up:	6.21.2	Tutorial	Next:	6.21.2.7	Printing	a
version

6.21.2.6	Generating	help

optparse's	ability	to	generate	help	and	usage	text	automatically	is	useful	for
creating	user-friendly	command-line	interfaces.	All	you	have	to	do	is	supply	a
help	value	for	each	option,	and	optionally	a	short	usage	message	for	your
whole	program.	Here's	an	OptionParser	populated	with	user-friendly
(documented)	options:

usage	=	"usage:	%prog	[options]	arg1	arg2"

parser	=	OptionParser(usage=usage)

parser.add_option("-v",	"--verbose",

																		action="store_true",	dest="verbose",	default=True,

																		help="make	lots	of	noise	[default]")

parser.add_option("-q",	"--quiet",

																		action="store_false",	dest="verbose",	

																		help="be	vewwy	quiet	(I'm	hunting	wabbits)")

parser.add_option("-f",	"--filename",

																		metavar="FILE",	help="write	output	to	FILE"),

parser.add_option("-m",	"--mode",

																		default="intermediate",

																		help="interaction	mode:	novice,	intermediate,	"

																							"or	expert	[default:	%default]")

If	optparse	encounters	either	"-h"	or	"-help"	on	the	command-line,	or	if
you	just	call	parser.print_help(),	it	prints	the	following	to	standard
output:

usage:	<yourscript>	[options]	arg1	arg2

options:

		-h,	--help												show	this	help	message	and	exit

		-v,	--verbose									make	lots	of	noise	[default]

		-q,	--quiet											be	vewwy	quiet	(I'm	hunting	wabbits)

		-f	FILE,	--filename=FILE

																								write	output	to	FILE

		-m	MODE,	--mode=MODE		interaction	mode:	novice,	intermediate,	or

																								expert	[default:	intermediate]

(If	the	help	output	is	triggered	by	a	help	option,	optparse	exits	after	printing
the	help	text.)

There's	a	lot	going	on	here	to	help	optparse	generate	the	best	possible	help

message:

the	script	defines	its	own	usage	message:
usage	=	"usage:	%prog	[options]	arg1	arg2"

optparse	expands	"%prog"	in	the	usage	string	to	the	name	of	the
current	program,	i.e.	os.path.basename(sys.argv[0]).	The
expanded	string	is	then	printed	before	the	detailed	option	help.

If	you	don't	supply	a	usage	string,	optparse	uses	a	bland	but	sensible
default:	``usage:	%prog	[options]",	which	is	fine	if	your	script
doesn't	take	any	positional	arguments.

every	option	defines	a	help	string,	and	doesn't	worry	about	line-	wrapping--
optparse	takes	care	of	wrapping	lines	and	making	the	help	output	look
good.

options	that	take	a	value	indicate	this	fact	in	their	automatically-generated
help	message,	e.g.	for	the	``mode''	option:

-m	MODE,	--mode=MODE

Here,	``MODE''	is	called	the	meta-variable:	it	stands	for	the	argument	that
the	user	is	expected	to	supply	to	-m/--mode.	By	default,	optparse
converts	the	destination	variable	name	to	uppercase	and	uses	that	for	the
meta-variable.	Sometimes,	that's	not	what	you	want--for	example,	the	--
filename	option	explicitly	sets	metavar="FILE",	resulting	in	this
automatically-generated	option	description:

-f	FILE,	--filename=FILE

This	is	important	for	more	than	just	saving	space,	though:	the	manually
written	help	text	uses	the	meta-variable	``FILE''	to	clue	the	user	in	that
there's	a	connection	between	the	semi-formal	syntax	``-f	FILE''	and	the
informal	semantic	description	``write	output	to	FILE''.	This	is	a	simple	but
effective	way	to	make	your	help	text	a	lot	clearer	and	more	useful	for	end
users.

options	that	have	a	default	value	can	include	%default	in	the	help	string-
-optparse	will	replace	it	with	str()	of	the	option's	default	value.	If	an

option	has	no	default	value	(or	the	default	value	is	None),	%default
expands	to	none.

Python	Library	Reference
Previous:	6.21.2.5	Default	values	Up:	6.21.2	Tutorial	Next:	6.21.2.7	Printing	a
version

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.2.6	Generating	help	Up:	6.21.2	Tutorial	Next:	6.21.2.8	How
optparse	handles

6.21.2.7	Printing	a	version	string

Similar	to	the	brief	usage	string,	optparse	can	also	print	a	version	string	for
your	program.	You	have	to	supply	the	string	as	the	version	argument	to
OptionParser:

parser	=	OptionParser(usage="%prog	[-f]	[-q]",	version="%prog	1.0")

Note	that	"%prog"	is	expanded	just	like	it	is	in	usage.	Apart	from	that,
version	can	contain	anything	you	like.	When	you	supply	it,	optparse
automatically	adds	a	"-version"	option	to	your	parser.	If	it	encounters	this
option	on	the	command	line,	it	expands	your	version	string	(by	replacing
"%prog"),	prints	it	to	stdout,	and	exits.

For	example,	if	your	script	is	called	/usr/bin/foo:

$	/usr/bin/foo	--version

foo	1.0

Python	Library	Reference
Previous:	6.21.2.6	Generating	help	Up:	6.21.2	Tutorial	Next:	6.21.2.8	How
optparse	handles

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.2.7	Printing	a	version	Up:	6.21.2	Tutorial	Next:	6.21.2.9	Putting
it	all

6.21.2.8	How	optparse	handles	errors

There	are	two	broad	classes	of	errors	that	optparse	has	to	worry	about:
programmer	errors	and	user	errors.	Programmer	errors	are	usually	erroneous
calls	to	parse.add_option(),	e.g.	invalid	option	strings,	unknown	option
attributes,	missing	option	attributes,	etc.	These	are	dealt	with	in	the	usual	way:
raise	an	exception	(either	optparse.OptionError	or	TypeError)	and	let
the	program	crash.

Handling	user	errors	is	much	more	important,	since	they	are	guaranteed	to
happen	no	matter	how	stable	your	code	is.	optparse	can	automatically	detect
some	user	errors,	such	as	bad	option	arguments	(passing	"-n	4x"	where	-n
takes	an	integer	argument),	missing	arguments	("-n"	at	the	end	of	the	command
line,	where	-n	takes	an	argument	of	any	type).	Also,	you	can	call
parser.error()	to	signal	an	application-defined	error	condition:

(options,	args)	=	parser.parse_args()

[...]

if	options.a	and	options.b:

				parser.error("options	-a	and	-b	are	mutually	exclusive")

In	either	case,	optparse	handles	the	error	the	same	way:	it	prints	the
program's	usage	message	and	an	error	message	to	standard	error	and	exits	with
error	status	2.

Consider	the	first	example	above,	where	the	user	passes	"4x"	to	an	option	that
takes	an	integer:

$	/usr/bin/foo	-n	4x

usage:	foo	[options]

foo:	error:	option	-n:	invalid	integer	value:	'4x'

Or,	where	the	user	fails	to	pass	a	value	at	all:

$	/usr/bin/foo	-n

usage:	foo	[options]

foo:	error:	-n	option	requires	an	argument

optparse-generated	error	messages	take	care	always	to	mention	the	option
involved	in	the	error;	be	sure	to	do	the	same	when	calling	parser.error()
from	your	application	code.

If	optparse's	default	error-handling	behaviour	does	not	suite	your	needs,
you'll	need	to	subclass	OptionParser	and	override	exit()	and/or	error().

Python	Library	Reference
Previous:	6.21.2.7	Printing	a	version	Up:	6.21.2	Tutorial	Next:	6.21.2.9	Putting
it	all

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.2.8	How	optparse	handles	Up:	6.21.2	Tutorial	Next:	6.21.3
Reference	Guide

6.21.2.9	Putting	it	all	together

Here's	what	optparse-based	scripts	usually	look	like:

from	optparse	import	OptionParser

[...]

def	main():

				usage	=	"usage:	%prog	[options]	arg"

				parser	=	OptionParser(usage)

				parser.add_option("-f",	"--file",	dest="filename",

																						help="read	data	from	FILENAME")

				parser.add_option("-v",	"--verbose",

																						action="store_true",	dest="verbose")

				parser.add_option("-q",	"--quiet",

																						action="store_false",	dest="verbose")

				[...]

				(options,	args)	=	parser.parse_args()

				if	len(args)	!=	1:

								parser.error("incorrect	number	of	arguments")

				if	options.verbose:

								print	"reading	%s..."	%	options.filename

				[...]

if	__name__	==	"__main__":

				main()

Python	Library	Reference
Previous:	6.21.2.8	How	optparse	handles	Up:	6.21.2	Tutorial	Next:	6.21.3
Reference	Guide

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.3	Reference	Guide	Up:	6.21.3	Reference	Guide	Next:	6.21.3.2
Defining	options

6.21.3.1	Populating	the	parser

There	are	several	ways	to	populate	the	parser	with	options.	The	preferred	way	is
by	using	OptionParser.add_option(),	as	shown	in	section	6.21.2,	the
tutorial.	add_option()	can	be	called	in	one	of	two	ways:

pass	it	an	Option	instance	(as	returned	by	make_option())

pass	it	any	combination	of	positional	and	keyword	arguments	that	are
acceptable	to	make_option()	(i.e.,	to	the	Option	constructor),	and	it
will	create	the	Option	instance	for	you

The	other	alternative	is	to	pass	a	list	of	pre-constructed	Option	instances	to	the
OptionParser	constructor,	as	in:

option_list	=	[

				make_option("-f",	"--filename",

																action="store",	type="string",	dest="filename"),

				make_option("-q",	"--quiet",

																action="store_false",	dest="verbose"),

]

parser	=	OptionParser(option_list=option_list)

(make_option()	is	a	factory	function	for	creating	Option	instances;	currently
it	is	an	alias	for	the	Option	constructor.	A	future	version	of	optparse	may	split
Option	into	several	classes,	and	make_option()	will	pick	the	right	class	to
instantiate.	Do	not	instantiate	Option	directly.)

Python	Library	Reference
Previous:	6.21.3	Reference	Guide	Up:	6.21.3	Reference	Guide	Next:	6.21.3.2
Defining	options

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.3.1	Populating	the	parser	Up:	6.21.3	Reference	Guide	Next:
6.21.3.3	Standard	option	actions

6.21.3.2	Defining	options

Each	Option	instance	represents	a	set	of	synonymous	command-line	option
strings,	e.g.	-f	and	--file.	You	can	specify	any	number	of	short	or	long	option
strings,	but	you	must	specify	at	least	one	overall	option	string.

The	canonical	way	to	create	an	Option	instance	is	by	calling	make_option(),
so	that	is	what	will	be	shown	here.	However,	the	most	common	and	convenient
way	is	to	use	parser.add_option().	Note	that	make_option()	and
parser.add_option()	have	identical	call	signatures:

make_option(opt_str,	...,	attr=value,	...)

parser.add_option(opt_str,	...,	attr=value,	...)

To	define	an	option	with	only	a	short	option	string:

make_option("-f",	attr=value,	...)

And	to	define	an	option	with	only	a	long	option	string:

make_option("--foo",	attr=value,	...)

The	attr=value	keyword	arguments	define	option	attributes,	i.e.	attributes	of
the	Option	object.	The	most	important	option	attribute	is	action,	and	it	largely
determines	what	other	attributes	are	relevant	or	required.	If	you	pass	irrelevant
option	attributes,	or	fail	to	pass	required	ones,	optparse	raises	an	OptionError
exception	explaining	your	mistake.

An	options's	action	determines	what	optparse	does	when	it	encounters	this
option	on	the	command-line.	The	actions	hard-coded	into	optparse	are:

store

store	this	option's	argument	[default]
store_const

store	a	constant	value
store_true

store	a	true	value

store_false

store	a	false	value
append

append	this	option's	argument	to	a	list
count

increment	a	counter	by	one
callback

call	a	specified	function
help

print	a	usage	message	including	all	options	and	the	documentation	for	them

(If	you	don't	supply	an	action,	the	default	is	store.	For	this	action,	you	may
also	supply	type	and	dest	option	attributes;	see	below.)

As	you	can	see,	most	actions	involve	storing	or	updating	a	value	somewhere.
optparse	always	creates	an	instance	of	optparse.Values	specifically	for
this	purpose;	we	refer	to	this	instance	as	options.	Option	arguments	(and	various
other	values)	are	stored	as	attributes	of	this	object,	according	to	the	dest
(destination)	option	attribute.

For	example,	when	you	call

parser.parse_args()

one	of	the	first	things	optparse	does	is	create	the	options	object:

options	=	Values()

If	one	of	the	options	in	this	parser	is	defined	with

make_option("-f",	"--file",	action="store",	type="string",	dest="filename")

and	the	command-line	being	parsed	includes	any	of	the	following:

-ffoo

-f	foo

--file=foo

--file	foo

then	optparse,	on	seeing	the	-f	or	--file	option,	will	do	the	equivalent	of

options.filename	=	"foo"

The	type	and	dest	option	attributes	are	almost	as	important	as	action,	but
action	is	the	only	one	that	makes	sense	for	all	options.

Python	Library	Reference
Previous:	6.21.3.1	Populating	the	parser	Up:	6.21.3	Reference	Guide	Next:
6.21.3.3	Standard	option	actions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.3.2	Defining	options	Up:	6.21.3	Reference	Guide	Next:	6.21.3.4
Standard	option	types

6.21.3.3	Standard	option	actions

The	various	option	actions	all	have	slightly	different	requirements	and	effects.
Most	actions	have	several	relevant	option	attributes	which	you	may	specify	to
guide	optparse's	behaviour;	a	few	have	required	attributes,	which	you	must
specify	for	any	option	using	that	action.

store	[relevant:	type,	dest,	nargs,	choices]

The	option	must	be	followed	by	an	argument,	which	is	converted	to	a	value
according	to	type	and	stored	in	dest.	If	nargs	>	1,	multiple	arguments
will	be	consumed	from	the	command	line;	all	will	be	converted	according
to	type	and	stored	to	dest	as	a	tuple.	See	the	``Option	types''	section
below.

If	choices	is	supplied	(a	list	or	tuple	of	strings),	the	type	defaults	to
choice.

If	type	is	not	supplied,	it	defaults	to	string.

If	dest	is	not	supplied,	optparse	derives	a	destination	from	the	first
long	option	string	(e.g.,	"-foo-bar"	implies	foo_bar).	If	there	are	no
long	option	strings,	optparse	derives	a	destination	from	the	first	short
option	string	(e.g.,	"-f"	implies	f).

Example:

parser.add_option("-f")

parser.add_option("-p",	type="float",	nargs=3,	dest="point")

As	it	parses	the	command	line

-f	foo.txt	-p	1	-3.5	4	-fbar.txt

optparse	will	set

options.f	=	"foo.txt"

options.point	=	(1.0,	-3.5,	4.0)

options.f	=	"bar.txt"

store_const	[required:	const;	relevant:	dest]

The	value	const	is	stored	in	dest.

Example:

parser.add_option("-q",	"--quiet",

																		action="store_const",	const=0,	dest="verbose")

parser.add_option("-v",	"--verbose",

																		action="store_const",	const=1,	dest="verbose")

parser.add_option("--noisy",

																		action="store_const",	const=2,	dest="verbose")

If	"-noisy"	is	seen,	optparse	will	set

options.verbose	=	2

store_true	[relevant:	dest]

A	special	case	of	store_const	that	stores	a	true	value	to	dest.

store_false	[relevant:	dest]

Like	store_true,	but	stores	a	false	value.

Example:

parser.add_option("--clobber",	action="store_true",	dest="clobber")

parser.add_option("--no-clobber",	action="store_false",	dest="clobber")

append	[relevant:	type,	dest,	nargs,	choices]

The	option	must	be	followed	by	an	argument,	which	is	appended	to	the	list
in	dest.	If	no	default	value	for	dest	is	supplied,	an	empty	list	is
automatically	created	when	optparse	first	encounters	this	option	on	the
command-line.	If	nargs	>	1,	multiple	arguments	are	consumed,	and	a
tuple	of	length	nargs	is	appended	to	dest.

The	defaults	for	type	and	dest	are	the	same	as	for	the	store	action.

Example:

parser.add_option("-t",	"--tracks",	action="append",	type="int")

If	"-t3"	is	seen	on	the	command-line,	optparse	does	the	equivalent	of:

options.tracks	=	[]

options.tracks.append(int("3"))

If,	a	little	later	on,	"-tracks=4"	is	seen,	it	does:

options.tracks.append(int("4"))

count	[relevant:	dest]

Increment	the	integer	stored	at	dest.	If	no	default	value	is	supplied,	dest
is	set	to	zero	before	being	incremented	the	first	time.

Example:

parser.add_option("-v",	action="count",	dest="verbosity")

The	first	time	"-v"	is	seen	on	the	command	line,	optparse	does	the
equivalent	of:

options.verbosity	=	0

options.verbosity	+=	1

Every	subsequent	occurrence	of	"-v"	results	in

options.verbosity	+=	1

callback	[required:	callback;	relevant:	type,	nargs,
callback_args,	callback_kwargs]

Call	the	function	specified	by	callback.	The	signature	of	this	function
should	be

func(option	:	Option,

					opt	:	string,

					value	:	any,

					parser	:	OptionParser,

					*args,	**kwargs)

See	section	6.21.4,	Option	Callbacks	for	more	detail.

help

Prints	a	complete	help	message	for	all	the	options	in	the	current	option
parser.	The	help	message	is	constructed	from	the	usage	string	passed	to
OptionParser's	constructor	and	the	help	string	passed	to	every	option.

If	no	help	string	is	supplied	for	an	option,	it	will	still	be	listed	in	the	help
message.	To	omit	an	option	entirely,	use	the	special	value
optparse.SUPPRESS_HELP.

optparse	automatically	adds	a	help	option	to	all	OptionParsers,	so	you
do	not	normally	need	to	create	one.

Example:

from	optparse	import	OptionParser,	SUPPRESS_HELP

parser	=	OptionParser()

parser.add_option("-h",	"--help",	action="help"),

parser.add_option("-v",	action="store_true",	dest="verbose",

																		help="Be	moderately	verbose")

parser.add_option("--file",	dest="filename",

																		help="Input	file	to	read	data	from"),

parser.add_option("--secret",	help=SUPPRESS_HELP)

If	optparse	sees	either	"-h"	or	"-help"	on	the	command	line,	it	will
print	something	like	the	following	help	message	to	stdout	(assuming
sys.argv[0]	is	"foo.py"):

usage:	foo.py	[options]

options:

		-h,	--help								Show	this	help	message	and	exit

		-v																Be	moderately	verbose

		--file=FILENAME			Input	file	to	read	data	from

After	printing	the	help	message,	optparse	terminates	your	process	with
sys.exit(0).

version

Prints	the	version	number	supplied	to	the	OptionParser	to	stdout	and	exits.

The	version	number	is	actually	formatted	and	printed	by	the
print_version()	method	of	OptionParser.	Generally	only	relevant	if
the	version	argument	is	supplied	to	the	OptionParser	constructor.	As
with	help	options,	you	will	rarely	create	version	options,	since
optparse	automatically	adds	them	when	needed.

Python	Library	Reference
Previous:	6.21.3.2	Defining	options	Up:	6.21.3	Reference	Guide	Next:	6.21.3.4
Standard	option	types

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.3.3	Standard	option	actions	Up:	6.21.3	Reference	Guide	Next:
6.21.3.5	Querying	and	manipulating

6.21.3.4	Standard	option	types

optparse	has	six	built-in	option	types:	string,	int,	long,	choice,
float	and	complex.	If	you	need	to	add	new	option	types,	see	section	,
Extending	optparse.

Arguments	to	string	options	are	not	checked	or	converted	in	any	way:	the	text	on
the	command	line	is	stored	in	the	destination	(or	passed	to	the	callback)	as-is.

Integer	arguments	are	passed	to	int()	to	convert	them	to	Python	integers.	If
int()	fails,	so	will	optparse,	although	with	a	more	useful	error	message.
(Internally,	optparse	raises	OptionValueError;	OptionParser	catches	this
exception	higher	up	and	terminates	your	program	with	a	useful	error	message.)

Likewise,	float	arguments	are	passed	to	float()	for	conversion,	long
arguments	to	long(),	and	complex	arguments	to	complex().	Apart	from
that,	they	are	handled	identically	to	integer	arguments.

choice	options	are	a	subtype	of	string	options.	The	choices	option
attribute	(a	sequence	of	strings)	defines	the	set	of	allowed	option	arguments.
optparse.option.check_choice()	compares	user-supplied	option
arguments	against	this	master	list	and	raises	OptionValueError	if	an	invalid
string	is	given.

Python	Library	Reference
Previous:	6.21.3.3	Standard	option	actions	Up:	6.21.3	Reference	Guide	Next:
6.21.3.5	Querying	and	manipulating

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.3.4	Standard	option	types	Up:	6.21.3	Reference	Guide	Next:
6.21.3.6	Conflicts	between	options

6.21.3.5	Querying	and	manipulating	your	option	parser

Sometimes,	it's	useful	to	poke	around	your	option	parser	and	see	what's	there.
OptionParser	provides	a	couple	of	methods	to	help	you	out:

has_option(opt_str)

Return	true	if	the	OptionParser	has	an	option	with	option	string	opt_str
(e.g.,	"-q"	or	"-verbose").

get_option(opt_str)

Returns	the	Option	instance	with	the	option	string	opt_str,	or	None	if
no	options	have	that	option	string.

remove_option(opt_str)

If	the	OptionParser	has	an	option	corresponding	to	opt_str,	that	option	is
removed.	If	that	option	provided	any	other	option	strings,	all	of	those	option
strings	become	invalid.

If	opt_str	does	not	occur	in	any	option	belonging	to	this	OptionParser,
raises	ValueError.

Python	Library	Reference
Previous:	6.21.3.4	Standard	option	types	Up:	6.21.3	Reference	Guide	Next:
6.21.3.6	Conflicts	between	options

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.3.5	Querying	and	manipulating	Up:	6.21.3	Reference	Guide
Next:	6.21.4	Option	Callbacks

6.21.3.6	Conflicts	between	options

If	you're	not	careful,	it's	easy	to	define	options	with	conflicting	option	strings:

parser.add_option("-n",	"--dry-run",	...)

[...]

parser.add_option("-n",	"--noisy",	...)

(This	is	particularly	true	if	you've	defined	your	own	OptionParser	subclass	with
some	standard	options.)

Every	time	you	add	an	option,	optparse	checks	for	conflicts	with	existing
options.	If	it	finds	any,	it	invokes	the	current	conflict-handling	mechanism.	You
can	set	the	conflict-handling	mechanism	either	in	the	constructor:

parser	=	OptionParser(...,	conflict_handler="...")

or	with	a	separate	call:

parser.set_conflict_handler("...")

The	available	conflict-handling	mechanisms	are:

error	(default)
assume	option	conflicts	are	a	programming	error	and	raise
OptionConflictError

resolve

resolve	option	conflicts	intelligently	(see	below)

As	an	example,	let's	define	an	OptionParser	that	resolves	conflicts	intelligently
and	add	conflicting	options	to	it:

parser	=	OptionParser(conflict_handler="resolve")

parser.add_option("-n",	"--dry-run",	...,	help="do	no	harm")

parser.add_option("-n",	"--noisy",	...,	help="be	noisy")

At	this	point,	optparse	detects	that	a	previously-added	option	is	already	using
the	"-n"	option	string.	Since	conflict_handler	is	"resolve",	it

resolves	the	situation	by	removing	"-n"	from	the	earlier	option's	list	of	option
strings.	Now	"-dry-run"	is	the	only	way	for	the	user	to	activate	that	option.
If	the	user	asks	for	help,	the	help	message	will	reflect	that:

options:

		--dry-run					do	no	harm

		[...]

		-n,	--noisy			be	noisy

It's	possible	to	whittle	away	the	option	strings	for	a	previously-added	option	until
there	are	none	left,	and	the	user	has	no	way	of	invoking	that	option	from	the
command-line.	In	that	case,	optparse	removes	that	option	completely,	so	it
doesn't	show	up	in	help	text	or	anywhere	else.	Carrying	on	with	our	existing
OptionParser:

parser.add_option("--dry-run",	...,	help="new	dry-run	option")

At	this	point,	the	original	-n/-dry-run	option	is	no	longer	accessible,	so
optparse	removes	it,	leaving	this	help	text:

options:

		[...]

		-n,	--noisy			be	noisy

		--dry-run					new	dry-run	option

Python	Library	Reference
Previous:	6.21.3.5	Querying	and	manipulating	Up:	6.21.3	Reference	Guide
Next:	6.21.4	Option	Callbacks

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.4	Option	Callbacks	Up:	6.21.4	Option	Callbacks	Next:	6.21.4.2
How	callbacks	are

6.21.4.1	Defining	a	callback	option

As	always,	the	easiest	way	to	define	a	callback	option	is	by	using	the
parser.add_option()	method.	Apart	from	action,	the	only	option
attribute	you	must	specify	is	callback,	the	function	to	call:

parser.add_option("-c",	action="callback",	callback=my_callback)

callback	is	a	function	(or	other	callable	object),	so	you	must	have	already
defined	my_callback()	when	you	create	this	callback	option.	In	this	simple
case,	optparse	doesn't	even	know	if	-c	takes	any	arguments,	which	usually
means	that	the	option	takes	no	arguments--the	mere	presence	of	-c	on	the
command-line	is	all	it	needs	to	know.	In	some	circumstances,	though,	you	might
want	your	callback	to	consume	an	arbitrary	number	of	command-line	arguments.
This	is	where	writing	callbacks	gets	tricky;	it's	covered	later	in	this	section.

optparse	always	passes	four	particular	arguments	to	your	callback,	and	it	will
only	pass	additional	arguments	if	you	specify	them	via	callback_args	and
callback_kwargs.	Thus,	the	minimal	callback	function	signature	is:

def	my_callback(option,	opt,	value,	parser):

The	four	arguments	to	a	callback	are	described	below.

There	are	several	other	option	attributes	that	you	can	supply	when	you	define	a
callback	option:

type

has	its	usual	meaning:	as	with	the	store	or	append	actions,	it	instructs
optparse	to	consume	one	argument	and	convert	it	to	type.	Rather	than
storing	the	converted	value(s)	anywhere,	though,	optparse	passes	it	to
your	callback	function.

nargs

also	has	its	usual	meaning:	if	it	is	supplied	and	>	1,	optparse	will
consume	nargs	arguments,	each	of	which	must	be	convertible	to	type.	It
then	passes	a	tuple	of	converted	values	to	your	callback.

callback_args

a	tuple	of	extra	positional	arguments	to	pass	to	the	callback
callback_kwargs

a	dictionary	of	extra	keyword	arguments	to	pass	to	the	callback

Python	Library	Reference
Previous:	6.21.4	Option	Callbacks	Up:	6.21.4	Option	Callbacks	Next:	6.21.4.2
How	callbacks	are

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.4.1	Defining	a	callback	Up:	6.21.4	Option	Callbacks	Next:
6.21.4.3	Raising	errors	in

6.21.4.2	How	callbacks	are	called

All	callbacks	are	called	as	follows:

func(option,	opt_str,	value,	parser,	*args,	**kwargs)

where

option

is	the	Option	instance	that's	calling	the	callback
opt_str

is	the	option	string	seen	on	the	command-line	that's	triggering	the	callback.
(If	an	abbreviated	long	option	was	used,	opt_str	will	be	the	full,
canonical	option	string--e.g.	if	the	user	puts	"-foo"	on	the	command-line
as	an	abbreviation	for	"-foobar",	then	opt_str	will	be	"-foobar".)

value

is	the	argument	to	this	option	seen	on	the	command-line.	optparse	will
only	expect	an	argument	if	type	is	set;	the	type	of	value	will	be	the	type
implied	by	the	option's	type.	If	type	for	this	option	is	None	(no	argument
expected),	then	value	will	be	None.	If	nargs	>	1,	value	will	be	a	tuple
of	values	of	the	appropriate	type.

parser

is	the	OptionParser	instance	driving	the	whole	thing,	mainly	useful	because
you	can	access	some	other	interesting	data	through	its	instance	attributes:
parser.largs

the	current	list	of	leftover	arguments,	ie.	arguments	that	have	been
consumed	but	are	neither	options	nor	option	arguments.	Feel	free	to
modify	parser.largs,	e.g.	by	adding	more	arguments	to	it.	(This
list	will	become	args,	the	second	return	value	of	parse_args().)

parser.rargs

the	current	list	of	remaining	arguments,	ie.	with	opt_str	and	value
(if	applicable)	removed,	and	only	the	arguments	following	them	still
there.	Feel	free	to	modify	parser.rargs,	e.g.	by	consuming	more
arguments.

parser.values

the	object	where	option	values	are	by	default	stored	(an	instance	of
optparse.OptionValues).	This	lets	callbacks	use	the	same	mechanism
as	the	rest	of	optparse	for	storing	option	values;	you	don't	need	to
mess	around	with	globals	or	closures.	You	can	also	access	or	modify
the	value(s)	of	any	options	already	encountered	on	the	command-line.

args
is	a	tuple	of	arbitrary	positional	arguments	supplied	via	the
callback_args	option	attribute.

kwargs

is	a	dictionary	of	arbitrary	keyword	arguments	supplied	via
callback_kwargs.

Python	Library	Reference
Previous:	6.21.4.1	Defining	a	callback	Up:	6.21.4	Option	Callbacks	Next:
6.21.4.3	Raising	errors	in

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.4.2	How	callbacks	are	Up:	6.21.4	Option	Callbacks	Next:
6.21.4.4	Callback	example	1:

6.21.4.3	Raising	errors	in	a	callback

The	callback	function	should	raise	OptionValueError	if	there	are	any	problems
with	the	option	or	its	argument(s).	optparse	catches	this	and	terminates	the
program,	printing	the	error	message	you	supply	to	stderr.	Your	message	should
be	clear,	concise,	accurate,	and	mention	the	option	at	fault.	Otherwise,	the	user
will	have	a	hard	time	figuring	out	what	he	did	wrong.

Python	Library	Reference
Previous:	6.21.4.2	How	callbacks	are	Up:	6.21.4	Option	Callbacks	Next:
6.21.4.4	Callback	example	1:

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.4.3	Raising	errors	in	Up:	6.21.4	Option	Callbacks	Next:
6.21.4.5	Callback	example	2:

6.21.4.4	Callback	example	1:	trivial	callback

Here's	an	example	of	a	callback	option	that	takes	no	arguments,	and	simply
records	that	the	option	was	seen:

def	record_foo_seen(option,	opt_str,	value,	parser):

				parser.saw_foo	=	True

parser.add_option("--foo",	action="callback",	callback=record_foo_seen)

Of	course,	you	could	do	that	with	the	store_true	action.

Python	Library	Reference
Previous:	6.21.4.3	Raising	errors	in	Up:	6.21.4	Option	Callbacks	Next:
6.21.4.5	Callback	example	2:

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.4.4	Callback	example	1:	Up:	6.21.4	Option	Callbacks	Next:
6.21.4.6	Callback	example	3:

6.21.4.5	Callback	example	2:	check	option	order

Here's	a	slightly	more	interesting	example:	record	the	fact	that	"-a"	is	seen,	but
blow	up	if	it	comes	after	"-b"	in	the	command-line.

def	check_order(option,	opt_str,	value,	parser):

				if	parser.values.b:

								raise	OptionValueError("can't	use	-a	after	-b")

				parser.values.a	=	1

[...]

parser.add_option("-a",	action="callback",	callback=check_order)

parser.add_option("-b",	action="store_true",	dest="b")

Python	Library	Reference
Previous:	6.21.4.4	Callback	example	1:	Up:	6.21.4	Option	Callbacks	Next:
6.21.4.6	Callback	example	3:

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.4.5	Callback	example	2:	Up:	6.21.4	Option	Callbacks	Next:
6.21.4.7	Callback	example	4:

6.21.4.6	Callback	example	3:	check	option	order
(generalized)

If	you	want	to	re-use	this	callback	for	several	similar	options	(set	a	flag,	but
blow	up	if	"-b"	has	already	been	seen),	it	needs	a	bit	of	work:	the	error
message	and	the	flag	that	it	sets	must	be	generalized.

def	check_order(option,	opt_str,	value,	parser):

				if	parser.values.b:

								raise	OptionValueError("can't	use	%s	after	-b"	%	opt_str)

				setattr(parser.values,	option.dest,	1)

[...]

parser.add_option("-a",	action="callback",	callback=check_order,	dest='a')

parser.add_option("-b",	action="store_true",	dest="b")

parser.add_option("-c",	action="callback",	callback=check_order,	dest='c')

Python	Library	Reference
Previous:	6.21.4.5	Callback	example	2:	Up:	6.21.4	Option	Callbacks	Next:
6.21.4.7	Callback	example	4:

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.4.6	Callback	example	3:	Up:	6.21.4	Option	Callbacks	Next:
6.21.4.8	Callback	example	5:

6.21.4.7	Callback	example	4:	check	arbitrary	condition

Of	course,	you	could	put	any	condition	in	there--you're	not	limited	to	checking
the	values	of	already-defined	options.	For	example,	if	you	have	options	that
should	not	be	called	when	the	moon	is	full,	all	you	have	to	do	is	this:

def	check_moon(option,	opt_str,	value,	parser):

				if	is_moon_full():

								raise	OptionValueError("%s	option	invalid	when	moon	is	full"

																															%	opt_str)

				setattr(parser.values,	option.dest,	1)

[...]

parser.add_option("--foo",

																		action="callback",	callback=check_moon,	dest="foo")

(The	definition	of	is_moon_full()	is	left	as	an	exercise	for	the	reader.)

Python	Library	Reference
Previous:	6.21.4.6	Callback	example	3:	Up:	6.21.4	Option	Callbacks	Next:
6.21.4.8	Callback	example	5:

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.4.7	Callback	example	4:	Up:	6.21.4	Option	Callbacks	Next:
6.21.4.9	Callback	example	6:

6.21.4.8	Callback	example	5:	fixed	arguments

Things	get	slightly	more	interesting	when	you	define	callback	options	that	take	a
fixed	number	of	arguments.	Specifying	that	a	callback	option	takes	arguments	is
similar	to	defining	a	store	or	append	option:	if	you	define	type,	then	the
option	takes	one	argument	that	must	be	convertible	to	that	type;	if	you	further
define	nargs,	then	the	option	takes	nargs	arguments.

Here's	an	example	that	just	emulates	the	standard	store	action:

def	store_value(option,	opt_str,	value,	parser):

				setattr(parser.values,	option.dest,	value)

[...]

parser.add_option("--foo",

																		action="callback",	callback=store_value,

																		type="int",	nargs=3,	dest="foo")

Note	that	optparse	takes	care	of	consuming	3	arguments	and	converting	them
to	integers	for	you;	all	you	have	to	do	is	store	them.	(Or	whatever;	obviously	you
don't	need	a	callback	for	this	example.)

Python	Library	Reference
Previous:	6.21.4.7	Callback	example	4:	Up:	6.21.4	Option	Callbacks	Next:
6.21.4.9	Callback	example	6:

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.21.4.8	Callback	example	5:	Up:	6.21.4	Option	Callbacks	Next:
6.22	tempfile

6.21.4.9	Callback	example	6:	variable	arguments

Things	get	hairy	when	you	want	an	option	to	take	a	variable	number	of
arguments.	For	this	case,	you	must	write	a	callback,	as	optparse	doesn't
provide	any	built-in	capabilities	for	it.	And	you	have	to	deal	with	certain
intricacies	of	conventional	UNIX	command-line	parsing	that	optparse
normally	handles	for	you.	In	particular,	callbacks	should	implement	the
conventional	rules	for	bare	"-"	and	"-"	arguments:

either	"-"	or	"-"	can	be	option	arguments

bare	"-"	(if	not	the	argument	to	some	option):	halt	command-line
processing	and	discard	the	"-"

bare	"-"	(if	not	the	argument	to	some	option):	halt	command-line
processing	but	keep	the	"-"	(append	it	to	parser.largs)

If	you	want	an	option	that	takes	a	variable	number	of	arguments,	there	are
several	subtle,	tricky	issues	to	worry	about.	The	exact	implementation	you
choose	will	be	based	on	which	trade-offs	you're	willing	to	make	for	your
application	(which	is	why	optparse	doesn't	support	this	sort	of	thing	directly).

Nevertheless,	here's	a	stab	at	a	callback	for	an	option	with	variable	arguments:

def	vararg_callback(option,	opt_str,	value,	parser):

				assert	value	is	None

				done	=	0

				value	=	[]

				rargs	=	parser.rargs

				while	rargs:

								arg	=	rargs[0]

								#	Stop	if	we	hit	an	arg	like	"--foo",	"-a",	"-fx",	"--file=f",

								#	etc.		Note	that	this	also	stops	on	"-3"	or	"-3.0",	so	if

								#	your	option	takes	numeric	values,	you	will	need	to	handle

								#	this.

								if	((arg[:2]	==	"--"	and	len(arg)	>	2)	or

												(arg[:1]	==	"-"	and	len(arg)	>	1	and	arg[1]	!=	"-")):

												break

								else:

												value.append(arg)

												del	rargs[0]

					setattr(parser.values,	option.dest,	value)

[...]

parser.add_option("-c",	"--callback",

																		action="callback",	callback=varargs)

The	main	weakness	with	this	particular	implementation	is	that	negative	numbers
in	the	arguments	following	"-c"	will	be	interpreted	as	further	options	(probably
causing	an	error),	rather	than	as	arguments	to	"-c".	Fixing	this	is	left	as	an
exercise	for	the	reader.

Python	Library	Reference
Previous:	6.21.4.8	Callback	example	5:	Up:	6.21.4	Option	Callbacks	Next:
6.22	tempfile

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.28.2	Class-based	API	Up:	6.28.2	Class-based	API	Next:	6.28.2.2
The	GNUTranslations	class

6.28.2.1	The	NullTranslations	class

Translation	classes	are	what	actually	implement	the	translation	of	original	source
file	message	strings	to	translated	message	strings.	The	base	class	used	by	all
translation	classes	is	NullTranslations;	this	provides	the	basic	interface
you	can	use	to	write	your	own	specialized	translation	classes.	Here	are	the
methods	of	NullTranslations:

__init__([fp])
Takes	an	optional	file	object	fp,	which	is	ignored	by	the	base	class.
Initializes	``protected''	instance	variables	_info	and	_charset	which	are	set
by	derived	classes,	as	well	as	_fallback,	which	is	set	through
add_fallback.	It	then	calls	self._parse(fp)	if	fp	is	not	None.

_parse(fp)
No-op'd	in	the	base	class,	this	method	takes	file	object	fp,	and	reads	the	data
from	the	file,	initializing	its	message	catalog.	If	you	have	an	unsupported
message	catalog	file	format,	you	should	override	this	method	to	parse	your
format.

add_fallback(fallback)
Add	fallback	as	the	fallback	object	for	the	current	translation	object.	A
translation	object	should	consult	the	fallback	if	it	cannot	provide	a
translation	for	a	given	message.

gettext(message)
If	a	fallback	has	been	set,	forward	gettext()	to	the	fallback.	Otherwise,
return	the	translated	message.	Overridden	in	derived	classes.

lgettext(message)
If	a	fallback	has	been	set,	forward	lgettext()	to	the	fallback.
Otherwise,	return	the	translated	message.	Overridden	in	derived	classes.

New	in	version	2.4.

ugettext(message)
If	a	fallback	has	been	set,	forward	ugettext()	to	the	fallback.
Otherwise,	return	the	translated	message	as	a	Unicode	string.	Overridden	in
derived	classes.

ngettext(singular,	plural,	n)
If	a	fallback	has	been	set,	forward	ngettext()	to	the	fallback.
Otherwise,	return	the	translated	message.	Overridden	in	derived	classes.

New	in	version	2.3.

lngettext(singular,	plural,	n)
If	a	fallback	has	been	set,	forward	ngettext()	to	the	fallback.
Otherwise,	return	the	translated	message.	Overridden	in	derived	classes.

New	in	version	2.4.

ungettext(singular,	plural,	n)
If	a	fallback	has	been	set,	forward	ungettext()	to	the	fallback.
Otherwise,	return	the	translated	message	as	a	Unicode	string.	Overridden	in
derived	classes.

New	in	version	2.3.

info()
Return	the	``protected''	_info	variable.

charset()
Return	the	``protected''	_charset	variable.

output_charset()
Return	the	``protected''	_output_charset	variable,	which	defines	the
encoding	used	to	return	translated	messages.

New	in	version	2.4.

set_output_charset(charset)

Change	the	``protected''	_output_charset	variable,	which	defines	the
encoding	used	to	return	translated	messages.

New	in	version	2.4.

install([unicode])
If	the	unicode	flag	is	false,	this	method	installs	self.gettext()	into
the	built-in	namespace,	binding	it	to	"_".	If	unicode	is	true,	it	binds
self.ugettext()	instead.	By	default,	unicode	is	false.

Note	that	this	is	only	one	way,	albeit	the	most	convenient	way,	to	make	the
_	function	available	to	your	application.	Because	it	affects	the	entire
application	globally,	and	specifically	the	built-in	namespace,	localized
modules	should	never	install	_.	Instead,	they	should	use	this	code	to	make
_	available	to	their	module:

import	gettext

t	=	gettext.translation('mymodule',	...)

_	=	t.gettext

This	puts	_	only	in	the	module's	global	namespace	and	so	only	affects	calls
within	this	module.

Python	Library	Reference
Previous:	6.28.2	Class-based	API	Up:	6.28.2	Class-based	API	Next:	6.28.2.2
The	GNUTranslations	class

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.28.2.1	The	NullTranslations	class	Up:	6.28.2	Class-based	API
Next:	6.28.2.3	Solaris	message	catalog

6.28.2.2	The	GNUTranslations	class

The	gettext	module	provides	one	additional	class	derived	from
NullTranslations:	GNUTranslations.	This	class	overrides
_parse()	to	enable	reading	GNU	gettext	format	.mo	files	in	both	big-endian
and	little-endian	format.	It	also	coerces	both	message	ids	and	message	strings	to
Unicode.

GNUTranslations	parses	optional	meta-data	out	of	the	translation	catalog.	It
is	convention	with	GNU	gettext	to	include	meta-data	as	the	translation	for	the
empty	string.	This	meta-data	is	in	RFC	822-style	key:	value	pairs,	and
should	contain	the	Project-Id-Version	key.	If	the	key	Content-Type
is	found,	then	the	charset	property	is	used	to	initialize	the	``protected''
_charset	instance	variable,	defaulting	to	None	if	not	found.	If	the	charset
encoding	is	specified,	then	all	message	ids	and	message	strings	read	from	the
catalog	are	converted	to	Unicode	using	this	encoding.	The	ugettext()
method	always	returns	a	Unicode,	while	the	gettext()	returns	an	encoded	8-
bit	string.	For	the	message	id	arguments	of	both	methods,	either	Unicode	strings
or	8-bit	strings	containing	only	US-ASCII	characters	are	acceptable.	Note	that
the	Unicode	version	of	the	methods	(i.e.	ugettext()	and	ungettext())
are	the	recommended	interface	to	use	for	internationalized	Python	programs.

The	entire	set	of	key/value	pairs	are	placed	into	a	dictionary	and	set	as	the
``protected''	_info	instance	variable.

If	the	.mo	file's	magic	number	is	invalid,	or	if	other	problems	occur	while
reading	the	file,	instantiating	a	GNUTranslations	class	can	raise	IOError.

The	following	methods	are	overridden	from	the	base	class	implementation:

gettext(message)
Look	up	the	message	id	in	the	catalog	and	return	the	corresponding
message	string,	as	an	8-bit	string	encoded	with	the	catalog's	charset
encoding,	if	known.	If	there	is	no	entry	in	the	catalog	for	the	message	id,
and	a	fallback	has	been	set,	the	look	up	is	forwarded	to	the	fallback's

http://www.faqs.org/rfcs/rfc822.html

gettext()	method.	Otherwise,	the	message	id	is	returned.

lgettext(message)
Equivalent	to	gettext(),	but	the	translation	is	returned	in	the	preferred
system	encoding,	if	no	other	encoding	was	explicitly	set	with
set_output_charset().

New	in	version	2.4.

ugettext(message)
Look	up	the	message	id	in	the	catalog	and	return	the	corresponding
message	string,	as	a	Unicode	string.	If	there	is	no	entry	in	the	catalog	for
the	message	id,	and	a	fallback	has	been	set,	the	look	up	is	forwarded	to	the
fallback's	ugettext()	method.	Otherwise,	the	message	id	is	returned.

ngettext(singular,	plural,	n)
Do	a	plural-forms	lookup	of	a	message	id.	singular	is	used	as	the	message
id	for	purposes	of	lookup	in	the	catalog,	while	n	is	used	to	determine	which
plural	form	to	use.	The	returned	message	string	is	an	8-bit	string	encoded
with	the	catalog's	charset	encoding,	if	known.

If	the	message	id	is	not	found	in	the	catalog,	and	a	fallback	is	specified,	the
request	is	forwarded	to	the	fallback's	ngettext()	method.	Otherwise,
when	n	is	1	singular	is	returned,	and	plural	is	returned	in	all	other	cases.

New	in	version	2.3.

lngettext(singular,	plural,	n)
Equivalent	to	gettext(),	but	the	translation	is	returned	in	the	preferred
system	encoding,	if	no	other	encoding	was	explicitly	set	with
set_output_charset().

New	in	version	2.4.

ungettext(singular,	plural,	n)
Do	a	plural-forms	lookup	of	a	message	id.	singular	is	used	as	the	message
id	for	purposes	of	lookup	in	the	catalog,	while	n	is	used	to	determine	which
plural	form	to	use.	The	returned	message	string	is	a	Unicode	string.

If	the	message	id	is	not	found	in	the	catalog,	and	a	fallback	is	specified,	the
request	is	forwarded	to	the	fallback's	ungettext()	method.	Otherwise,
when	n	is	1	singular	is	returned,	and	plural	is	returned	in	all	other	cases.

Here	is	an	example:

n	=	len(os.listdir('.'))

cat	=	GNUTranslations(somefile)

message	=	cat.ungettext(

				'There	is	%(num)d	file	in	this	directory',

				'There	are	%(num)d	files	in	this	directory',

				n)	%	{'num':	n}

New	in	version	2.3.

Python	Library	Reference
Previous:	6.28.2.1	The	NullTranslations	class	Up:	6.28.2	Class-based	API
Next:	6.28.2.3	Solaris	message	catalog

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.28.2.2	The	GNUTranslations	class	Up:	6.28.2	Class-based	API
Next:	6.28.2.4	The	Catalog	constructor

6.28.2.3	Solaris	message	catalog	support

The	Solaris	operating	system	defines	its	own	binary	.mo	file	format,	but	since	no
documentation	can	be	found	on	this	format,	it	is	not	supported	at	this	time.

Python	Library	Reference
Previous:	6.28.2.2	The	GNUTranslations	class	Up:	6.28.2	Class-based	API
Next:	6.28.2.4	The	Catalog	constructor

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.28.2.3	Solaris	message	catalog	Up:	6.28.2	Class-based	API	Next:
6.28.3	Internationalizing	your	programs

6.28.2.4	The	Catalog	constructor

GNOME	uses	a	version	of	the	gettext	module	by	James	Henstridge,	but	this
version	has	a	slightly	different	API.	Its	documented	usage	was:

import	gettext

cat	=	gettext.Catalog(domain,	localedir)

_	=	cat.gettext

print	_('hello	world')

For	compatibility	with	this	older	module,	the	function	Catalog()	is	an	alias
for	the	translation()	function	described	above.

One	difference	between	this	module	and	Henstridge's:	his	catalog	objects
supported	access	through	a	mapping	API,	but	this	appears	to	be	unused	and	so	is
not	currently	supported.

Python	Library	Reference
Previous:	6.28.2.3	Solaris	message	catalog	Up:	6.28.2	Class-based	API	Next:
6.28.3	Internationalizing	your	programs

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.28.3	Internationalizing	your	programs	Up:	6.28.3
Internationalizing	your	programs	Next:	6.28.3.2	Localizing	your	application

6.28.3.1	Localizing	your	module

If	you	are	localizing	your	module,	you	must	take	care	not	to	make	global
changes,	e.g.	to	the	built-in	namespace.	You	should	not	use	the	GNU	gettext
API	but	instead	the	class-based	API.

Let's	say	your	module	is	called	``spam''	and	the	module's	various	natural
language	translation	.mo	files	reside	in	/usr/share/locale	in	GNU	gettext
format.	Here's	what	you	would	put	at	the	top	of	your	module:

import	gettext

t	=	gettext.translation('spam',	'/usr/share/locale')

_	=	t.lgettext

If	your	translators	were	providing	you	with	Unicode	strings	in	their	.po	files,
you'd	instead	do:

import	gettext

t	=	gettext.translation('spam',	'/usr/share/locale')

_	=	t.ugettext

Python	Library	Reference
Previous:	6.28.3	Internationalizing	your	programs	Up:	6.28.3
Internationalizing	your	programs	Next:	6.28.3.2	Localizing	your	application

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.28.3.1	Localizing	your	module	Up:	6.28.3	Internationalizing	your
programs	Next:	6.28.3.3	Changing	languages	on

6.28.3.2	Localizing	your	application

If	you	are	localizing	your	application,	you	can	install	the	_()	function	globally
into	the	built-in	namespace,	usually	in	the	main	driver	file	of	your	application.
This	will	let	all	your	application-specific	files	just	use	_('...')	without
having	to	explicitly	install	it	in	each	file.

In	the	simple	case	then,	you	need	only	add	the	following	bit	of	code	to	the	main
driver	file	of	your	application:

import	gettext

gettext.install('myapplication')

If	you	need	to	set	the	locale	directory	or	the	unicode	flag,	you	can	pass	these	into
the	install()	function:

import	gettext

gettext.install('myapplication',	'/usr/share/locale',	unicode=1)

Python	Library	Reference
Previous:	6.28.3.1	Localizing	your	module	Up:	6.28.3	Internationalizing	your
programs	Next:	6.28.3.3	Changing	languages	on

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.28.3.2	Localizing	your	application	Up:	6.28.3	Internationalizing
your	programs	Next:	6.28.3.4	Deferred	translations

6.28.3.3	Changing	languages	on	the	fly

If	your	program	needs	to	support	many	languages	at	the	same	time,	you	may
want	to	create	multiple	translation	instances	and	then	switch	between	them
explicitly,	like	so:

import	gettext

lang1	=	gettext.translation('myapplication',	languages=['en'])

lang2	=	gettext.translation('myapplication',	languages=['fr'])

lang3	=	gettext.translation('myapplication',	languages=['de'])

#	start	by	using	language1

lang1.install()

#	...	time	goes	by,	user	selects	language	2

lang2.install()

#	...	more	time	goes	by,	user	selects	language	3

lang3.install()

Python	Library	Reference
Previous:	6.28.3.2	Localizing	your	application	Up:	6.28.3	Internationalizing
your	programs	Next:	6.28.3.4	Deferred	translations

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.28.3.3	Changing	languages	on	Up:	6.28.3	Internationalizing	your
programs	Next:	6.28.3.5	gettext()	vs.	lgettext()

6.28.3.4	Deferred	translations

In	most	coding	situations,	strings	are	translated	where	they	are	coded.
Occasionally	however,	you	need	to	mark	strings	for	translation,	but	defer	actual
translation	until	later.	A	classic	example	is:

animals	=	['mollusk',

											'albatross',

	 			'rat',

	 			'penguin',

	 			'python',

]

#	...

for	a	in	animals:

				print	a

Here,	you	want	to	mark	the	strings	in	the	animals	list	as	being	translatable,	but
you	don't	actually	want	to	translate	them	until	they	are	printed.

Here	is	one	way	you	can	handle	this	situation:

def	_(message):	return	message

animals	=	[_('mollusk'),

											_('albatross'),

	 			_('rat'),

	 			_('penguin'),

	 			_('python'),

]

del	_

#	...

for	a	in	animals:

				print	_(a)

This	works	because	the	dummy	definition	of	_()	simply	returns	the	string
unchanged.	And	this	dummy	definition	will	temporarily	override	any	definition
of	_()	in	the	built-in	namespace	(until	the	del	command).	Take	care,	though	if
you	have	a	previous	definition	of	_	in	the	local	namespace.

Note	that	the	second	use	of	_()	will	not	identify	``a''	as	being	translatable	to	the
pygettext	program,	since	it	is	not	a	string.

Another	way	to	handle	this	is	with	the	following	example:

def	N_(message):	return	message

animals	=	[N_('mollusk'),

											N_('albatross'),

	 			N_('rat'),

	 			N_('penguin'),

	 			N_('python'),

]

#	...

for	a	in	animals:

				print	_(a)

In	this	case,	you	are	marking	translatable	strings	with	the	function	N_(),6.6
which	won't	conflict	with	any	definition	of	_().	However,	you	will	need	to
teach	your	message	extraction	program	to	look	for	translatable	strings	marked
with	N_().	pygettext	and	xpot	both	support	this	through	the	use	of	command
line	switches.

Footnotes

...N_(),6.6
The	choice	of	N_()	here	is	totally	arbitrary;	it	could	have	just	as	easily
been	MarkThisStringForTranslation().

Python	Library	Reference
Previous:	6.28.3.3	Changing	languages	on	Up:	6.28.3	Internationalizing	your
programs	Next:	6.28.3.5	gettext()	vs.	lgettext()

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.28.3.4	Deferred	translations	Up:	6.28.3	Internationalizing	your
programs	Next:	6.28.4	Acknowledgements

6.28.3.5	gettext()	vs.	lgettext()

In	Python	2.4	the	lgettext()	family	of	functions	were	introduced.	The
intention	of	these	functions	is	to	provide	an	alternative	which	is	more	compliant
with	the	current	implementation	of	GNU	gettext.	Unlike	gettext(),	which
returns	strings	encoded	with	the	same	codeset	used	in	the	translation	file,
lgettext()	will	return	strings	encoded	with	the	preferred	system	encoding,
as	returned	by	locale.getpreferredencoding().	Also	notice	that
Python	2.4	introduces	new	functions	to	explicitly	choose	the	codeset	used	in
translated	strings.	If	a	codeset	is	explicitly	set,	even	lgettext()	will	return
translated	strings	in	the	requested	codeset,	as	would	be	expected	in	the	GNU
gettext	implementation.

Python	Library	Reference
Previous:	6.28.3.4	Deferred	translations	Up:	6.28.3	Internationalizing	your
programs	Next:	6.28.4	Acknowledgements

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.5	Handler	Objects	Up:	6.29.5	Handler	Objects	Next:	6.29.5.2
FileHandler

6.29.5.1	StreamHandler

The	StreamHandler	class	sends	logging	output	to	streams	such	as	sys.stdout,
sys.stderr	or	any	file-like	object	(or,	more	precisely,	any	object	which	supports
write()	and	flush()	methods).

class	StreamHandler([strm])
Returns	a	new	instance	of	the	StreamHandler	class.	If	strm	is	specified,
the	instance	will	use	it	for	logging	output;	otherwise,	sys.stderr	will	be
used.

emit(record)
If	a	formatter	is	specified,	it	is	used	to	format	the	record.	The	record	is	then
written	to	the	stream	with	a	trailing	newline.	If	exception	information	is
present,	it	is	formatted	using	traceback.print_exception()	and
appended	to	the	stream.

flush()
Flushes	the	stream	by	calling	its	flush()	method.	Note	that	the
close()	method	is	inherited	from	Handler	and	so	does	nothing,	so	an
explicit	flush()	call	may	be	needed	at	times.

Python	Library	Reference
Previous:	6.29.5	Handler	Objects	Up:	6.29.5	Handler	Objects	Next:	6.29.5.2
FileHandler

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.5.1	StreamHandler	Up:	6.29.5	Handler	Objects	Next:	6.29.5.3
RotatingFileHandler

6.29.5.2	FileHandler

The	FileHandler	class	sends	logging	output	to	a	disk	file.	It	inherits	the
output	functionality	from	StreamHandler.

class	FileHandler(filename[,	mode])
Returns	a	new	instance	of	the	FileHandler	class.	The	specified	file	is
opened	and	used	as	the	stream	for	logging.	If	mode	is	not	specified,	'a'	is
used.	By	default,	the	file	grows	indefinitely.

close()
Closes	the	file.

emit(record)
Outputs	the	record	to	the	file.

Python	Library	Reference
Previous:	6.29.5.1	StreamHandler	Up:	6.29.5	Handler	Objects	Next:	6.29.5.3
RotatingFileHandler

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.5.2	FileHandler	Up:	6.29.5	Handler	Objects	Next:	6.29.5.4
TimedRotatingFileHandler

6.29.5.3	RotatingFileHandler

The	RotatingFileHandler	class	supports	rotation	of	disk	log	files.

class	RotatingFileHandler(filename[,	mode[,	maxBytes[,
backupCount]]])

Returns	a	new	instance	of	the	RotatingFileHandler	class.	The
specified	file	is	opened	and	used	as	the	stream	for	logging.	If	mode	is	not
specified,	'a'	is	used.	By	default,	the	file	grows	indefinitely.

You	can	use	the	maxBytes	and	backupCount	values	to	allow	the	file	to
rollover	at	a	predetermined	size.	When	the	size	is	about	to	be	exceeded,	the
file	is	closed	and	a	new	file	is	silently	opened	for	output.	Rollover	occurs
whenever	the	current	log	file	is	nearly	maxBytes	in	length;	if	maxBytes	is
zero,	rollover	never	occurs.	If	backupCount	is	non-zero,	the	system	will
save	old	log	files	by	appending	the	extensions	".1",	".2"	etc.,	to	the
filename.	For	example,	with	a	backupCount	of	5	and	a	base	file	name	of
app.log,	you	would	get	app.log,	app.log.1,	app.log.2,	up	to	app.log.5.
The	file	being	written	to	is	always	app.log.	When	this	file	is	filled,	it	is
closed	and	renamed	to	app.log.1,	and	if	files	app.log.1,	app.log.2,	etc.
exist,	then	they	are	renamed	to	app.log.2,	app.log.3	etc.	respectively.

doRollover()
Does	a	rollover,	as	described	above.

emit(record)
Outputs	the	record	to	the	file,	catering	for	rollover	as	described	previously.

Python	Library	Reference
Previous:	6.29.5.2	FileHandler	Up:	6.29.5	Handler	Objects	Next:	6.29.5.4
TimedRotatingFileHandler

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.5.3	RotatingFileHandler	Up:	6.29.5	Handler	Objects	Next:
6.29.5.5	SocketHandler

6.29.5.4	TimedRotatingFileHandler

The	TimedRotatingFileHandler	class	supports	rotation	of	disk	log	files
at	certain	timed	intervals.

class	TimedRotatingFileHandler(filename	[,when	[,interval
[,backupCount]]])

Returns	a	new	instance	of	the	TimedRotatingFileHandler	class.
The	specified	file	is	opened	and	used	as	the	stream	for	logging.	On	rotating
it	also	sets	the	filename	suffix.	Rotating	happens	based	on	the	product	of
when	and	interval.

You	can	use	the	when	to	specify	the	type	of	interval.	The	list	of	possible
values	is,	note	that	they	are	not	case	sensitive:

Value Type	of	interval
S Seconds
M Minutes
H Hours
D Days
W Week	day	(0=Monday)
midnight Roll	over	at	midnight

If	backupCount	is	non-zero,	the	system	will	save	old	log	files	by	appending
the	extensions	".1",	".2"	etc.,	to	the	filename.	For	example,	with	a
backupCount	of	5	and	a	base	file	name	of	app.log,	you	would	get	app.log,
app.log.1,	app.log.2,	up	to	app.log.5.	The	file	being	written	to	is	always
app.log.	When	this	file	is	filled,	it	is	closed	and	renamed	to	app.log.1,	and
if	files	app.log.1,	app.log.2,	etc.	exist,	then	they	are	renamed	to
app.log.2,	app.log.3	etc.	respectively.

doRollover()
Does	a	rollover,	as	described	above.

emit(record)
Outputs	the	record	to	the	file,	catering	for	rollover	as	described	above.

Python	Library	Reference
Previous:	6.29.5.3	RotatingFileHandler	Up:	6.29.5	Handler	Objects	Next:
6.29.5.5	SocketHandler

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.5.4	TimedRotatingFileHandler	Up:	6.29.5	Handler	Objects
Next:	6.29.5.6	DatagramHandler

6.29.5.5	SocketHandler

The	SocketHandler	class	sends	logging	output	to	a	network	socket.	The
base	class	uses	a	TCP	socket.

class	SocketHandler(host,	port)
Returns	a	new	instance	of	the	SocketHandler	class	intended	to
communicate	with	a	remote	machine	whose	address	is	given	by	host	and
port.

close()
Closes	the	socket.

handleError()

emit()
Pickles	the	record's	attribute	dictionary	and	writes	it	to	the	socket	in	binary
format.	If	there	is	an	error	with	the	socket,	silently	drops	the	packet.	If	the
connection	was	previously	lost,	re-establishes	the	connection.	To	unpickle
the	record	at	the	receiving	end	into	a	LogRecord,	use	the
makeLogRecord()	function.

handleError()
Handles	an	error	which	has	occurred	during	emit().	The	most	likely
cause	is	a	lost	connection.	Closes	the	socket	so	that	we	can	retry	on	the	next
event.

makeSocket()
This	is	a	factory	method	which	allows	subclasses	to	define	the	precise	type
of	socket	they	want.	The	default	implementation	creates	a	TCP	socket
(socket.SOCK_STREAM).

makePickle(record)

Pickles	the	record's	attribute	dictionary	in	binary	format	with	a	length
prefix,	and	returns	it	ready	for	transmission	across	the	socket.

send(packet)
Send	a	pickled	string	packet	to	the	socket.	This	function	allows	for	partial
sends	which	can	happen	when	the	network	is	busy.

Python	Library	Reference
Previous:	6.29.5.4	TimedRotatingFileHandler	Up:	6.29.5	Handler	Objects
Next:	6.29.5.6	DatagramHandler

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.5.5	SocketHandler	Up:	6.29.5	Handler	Objects	Next:	6.29.5.7
SysLogHandler

6.29.5.6	DatagramHandler

The	DatagramHandler	class	inherits	from	SocketHandler	to	support
sending	logging	messages	over	UDP	sockets.

class	DatagramHandler(host,	port)
Returns	a	new	instance	of	the	DatagramHandler	class	intended	to
communicate	with	a	remote	machine	whose	address	is	given	by	host	and
port.

emit()
Pickles	the	record's	attribute	dictionary	and	writes	it	to	the	socket	in	binary
format.	If	there	is	an	error	with	the	socket,	silently	drops	the	packet.	To
unpickle	the	record	at	the	receiving	end	into	a	LogRecord,	use	the
makeLogRecord()	function.

makeSocket()
The	factory	method	of	SocketHandler	is	here	overridden	to	create	a
UDP	socket	(socket.SOCK_DGRAM).

send(s)
Send	a	pickled	string	to	a	socket.

Python	Library	Reference
Previous:	6.29.5.5	SocketHandler	Up:	6.29.5	Handler	Objects	Next:	6.29.5.7
SysLogHandler

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.5.6	DatagramHandler	Up:	6.29.5	Handler	Objects	Next:
6.29.5.8	NTEventLogHandler

6.29.5.7	SysLogHandler

The	SysLogHandler	class	supports	sending	logging	messages	to	a	remote	or
local	UNIX	syslog.

class	SysLogHandler([address[,	facility]])
Returns	a	new	instance	of	the	SysLogHandler	class	intended	to
communicate	with	a	remote	UNIX	machine	whose	address	is	given	by
address	in	the	form	of	a	(host,	port)	tuple.	If	address	is	not	specified,
('localhost',	514)	is	used.	The	address	is	used	to	open	a	UDP
socket.	If	facility	is	not	specified,	LOG_USER	is	used.

close()
Closes	the	socket	to	the	remote	host.

emit(record)
The	record	is	formatted,	and	then	sent	to	the	syslog	server.	If	exception
information	is	present,	it	is	not	sent	to	the	server.

encodePriority(facility,	priority)
Encodes	the	facility	and	priority	into	an	integer.	You	can	pass	in	strings	or
integers	-	if	strings	are	passed,	internal	mapping	dictionaries	are	used	to
convert	them	to	integers.

Python	Library	Reference
Previous:	6.29.5.6	DatagramHandler	Up:	6.29.5	Handler	Objects	Next:
6.29.5.8	NTEventLogHandler

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.5.7	SysLogHandler	Up:	6.29.5	Handler	Objects	Next:	6.29.5.9
SMTPHandler

6.29.5.8	NTEventLogHandler

The	NTEventLogHandler	class	supports	sending	logging	messages	to	a	local
Windows	NT,	Windows	2000	or	Windows	XP	event	log.	Before	you	can	use	it,
you	need	Mark	Hammond's	Win32	extensions	for	Python	installed.

class	NTEventLogHandler(appname[,	dllname[,	logtype]])
Returns	a	new	instance	of	the	NTEventLogHandler	class.	The	appname
is	used	to	define	the	application	name	as	it	appears	in	the	event	log.	An
appropriate	registry	entry	is	created	using	this	name.	The	dllname	should
give	the	fully	qualified	pathname	of	a	.dll	or	.exe	which	contains	message
definitions	to	hold	in	the	log	(if	not	specified,	'win32service.pyd'	is
used	-	this	is	installed	with	the	Win32	extensions	and	contains	some	basic
placeholder	message	definitions.	Note	that	use	of	these	placeholders	will
make	your	event	logs	big,	as	the	entire	message	source	is	held	in	the	log.	If
you	want	slimmer	logs,	you	have	to	pass	in	the	name	of	your	own	.dll	or
.exe	which	contains	the	message	definitions	you	want	to	use	in	the	event
log).	The	logtype	is	one	of	'Application',	'System'	or
'Security',	and	defaults	to	'Application'.

close()
At	this	point,	you	can	remove	the	application	name	from	the	registry	as	a
source	of	event	log	entries.	However,	if	you	do	this,	you	will	not	be	able	to
see	the	events	as	you	intended	in	the	Event	Log	Viewer	-	it	needs	to	be	able
to	access	the	registry	to	get	the	.dll	name.	The	current	version	does	not	do
this	(in	fact	it	doesn't	do	anything).

emit(record)
Determines	the	message	ID,	event	category	and	event	type,	and	then	logs
the	message	in	the	NT	event	log.

getEventCategory(record)
Returns	the	event	category	for	the	record.	Override	this	if	you	want	to
specify	your	own	categories.	This	version	returns	0.

getEventType(record)
Returns	the	event	type	for	the	record.	Override	this	if	you	want	to	specify
your	own	types.	This	version	does	a	mapping	using	the	handler's	typemap
attribute,	which	is	set	up	in	__init__()	to	a	dictionary	which	contains
mappings	for	DEBUG,	INFO,	WARNING,	ERROR	and	CRITICAL.	If	you
are	using	your	own	levels,	you	will	either	need	to	override	this	method	or
place	a	suitable	dictionary	in	the	handler's	typemap	attribute.

getMessageID(record)
Returns	the	message	ID	for	the	record.	If	you	are	using	your	own	messages,
you	could	do	this	by	having	the	msg	passed	to	the	logger	being	an	ID	rather
than	a	format	string.	Then,	in	here,	you	could	use	a	dictionary	lookup	to	get
the	message	ID.	This	version	returns	1,	which	is	the	base	message	ID	in
win32service.pyd.

Python	Library	Reference
Previous:	6.29.5.7	SysLogHandler	Up:	6.29.5	Handler	Objects	Next:	6.29.5.9
SMTPHandler

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.5.8	NTEventLogHandler	Up:	6.29.5	Handler	Objects	Next:
6.29.5.10	MemoryHandler

6.29.5.9	SMTPHandler

The	SMTPHandler	class	supports	sending	logging	messages	to	an	email
address	via	SMTP.

class	SMTPHandler(mailhost,	fromaddr,	toaddrs,	subject)
Returns	a	new	instance	of	the	SMTPHandler	class.	The	instance	is
initialized	with	the	from	and	to	addresses	and	subject	line	of	the	email.	The
toaddrs	should	be	a	list	of	strings	without	domain	names	(That's	what	the
mailhost	is	for).	To	specify	a	non-standard	SMTP	port,	use	the	(host,	port)
tuple	format	for	the	mailhost	argument.	If	you	use	a	string,	the	standard
SMTP	port	is	used.

emit(record)
Formats	the	record	and	sends	it	to	the	specified	addressees.

getSubject(record)
If	you	want	to	specify	a	subject	line	which	is	record-dependent,	override
this	method.

Python	Library	Reference
Previous:	6.29.5.8	NTEventLogHandler	Up:	6.29.5	Handler	Objects	Next:
6.29.5.10	MemoryHandler

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.5.9	SMTPHandler	Up:	6.29.5	Handler	Objects	Next:	6.29.5.11
HTTPHandler

6.29.5.10	MemoryHandler

The	MemoryHandler	supports	buffering	of	logging	records	in	memory,
periodically	flushing	them	to	a	target	handler.	Flushing	occurs	whenever	the
buffer	is	full,	or	when	an	event	of	a	certain	severity	or	greater	is	seen.

MemoryHandler	is	a	subclass	of	the	more	general	BufferingHandler,
which	is	an	abstract	class.	This	buffers	logging	records	in	memory.	Whenever
each	record	is	added	to	the	buffer,	a	check	is	made	by	calling	shouldFlush()
to	see	if	the	buffer	should	be	flushed.	If	it	should,	then	flush()	is	expected	to
do	the	needful.

class	BufferingHandler(capacity)
Initializes	the	handler	with	a	buffer	of	the	specified	capacity.

emit(record)
Appends	the	record	to	the	buffer.	If	shouldFlush()	returns	true,	calls
flush()	to	process	the	buffer.

flush()
You	can	override	this	to	implement	custom	flushing	behavior.	This	version
just	zaps	the	buffer	to	empty.

shouldFlush(record)
Returns	true	if	the	buffer	is	up	to	capacity.	This	method	can	be	overridden
to	implement	custom	flushing	strategies.

class	MemoryHandler(capacity[,	flushLevel	[,	target]])
Returns	a	new	instance	of	the	MemoryHandler	class.	The	instance	is
initialized	with	a	buffer	size	of	capacity.	If	flushLevel	is	not	specified,
ERROR	is	used.	If	no	target	is	specified,	the	target	will	need	to	be	set	using
setTarget()	before	this	handler	does	anything	useful.

close()

Calls	flush(),	sets	the	target	to	None	and	clears	the	buffer.

flush()
For	a	MemoryHandler,	flushing	means	just	sending	the	buffered	records
to	the	target,	if	there	is	one.	Override	if	you	want	different	behavior.

setTarget(target)
Sets	the	target	handler	for	this	handler.

shouldFlush(record)
Checks	for	buffer	full	or	a	record	at	the	flushLevel	or	higher.

Python	Library	Reference
Previous:	6.29.5.9	SMTPHandler	Up:	6.29.5	Handler	Objects	Next:	6.29.5.11
HTTPHandler

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.5.10	MemoryHandler	Up:	6.29.5	Handler	Objects	Next:	6.29.6
Formatter	Objects

6.29.5.11	HTTPHandler

The	HTTPHandler	class	supports	sending	logging	messages	to	a	Web	server,
using	either	"GET"	or	"POST"	semantics.

class	HTTPHandler(host,	url[,	method])
Returns	a	new	instance	of	the	HTTPHandler	class.	The	instance	is
initialized	with	a	host	address,	url	and	HTTP	method.	If	no	method	is
specified,	"GET"	is	used.

emit(record)
Sends	the	record	to	the	Web	server	as	an	URL-encoded	dictionary.

Python	Library	Reference
Previous:	6.29.5.10	MemoryHandler	Up:	6.29.5	Handler	Objects	Next:	6.29.6
Formatter	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.10	Configuration	Up:	6.29.10	Configuration	Next:	6.29.10.2
Configuration	file	format

6.29.10.1	Configuration	functions

The	following	functions	allow	the	logging	module	to	be	configured.	Before	they
can	be	used,	you	must	import	logging.config.	Their	use	is	optional	--	you
can	configure	the	logging	module	entirely	by	making	calls	to	the	main	API
(defined	in	logging	itself)	and	defining	handlers	which	are	declared	either	in
logging	or	logging.handlers.

fileConfig(fname[,	defaults])
Reads	the	logging	configuration	from	a	ConfigParser-format	file	named
fname.	This	function	can	be	called	several	times	from	an	application,
allowing	an	end	user	the	ability	to	select	from	various	pre-canned
configurations	(if	the	developer	provides	a	mechanism	to	present	the
choices	and	load	the	chosen	configuration).	Defaults	to	be	passed	to
ConfigParser	can	be	specified	in	the	defaults	argument.

listen([port])
Starts	up	a	socket	server	on	the	specified	port,	and	listens	for	new
configurations.	If	no	port	is	specified,	the	module's	default
DEFAULT_LOGGING_CONFIG_PORT	is	used.	Logging	configurations
will	be	sent	as	a	file	suitable	for	processing	by	fileConfig().	Returns	a
Thread	instance	on	which	you	can	call	start()	to	start	the	server,	and
which	you	can	join()	when	appropriate.	To	stop	the	server,	call
stopListening().

stopListening()
Stops	the	listening	server	which	was	created	with	a	call	to	listen().	This
is	typically	called	before	calling	join()	on	the	return	value	from
listen().

Python	Library	Reference
Previous:	6.29.10	Configuration	Up:	6.29.10	Configuration	Next:	6.29.10.2
Configuration	file	format

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.29.10.1	Configuration	functions	Up:	6.29.10	Configuration	Next:
6.30	platform

6.29.10.2	Configuration	file	format

The	configuration	file	format	understood	by	fileConfig()	is	based	on
ConfigParser	functionality.	The	file	must	contain	sections	called	[loggers],
[handlers]	and	[formatters]	which	identify	by	name	the	entities	of
each	type	which	are	defined	in	the	file.	For	each	such	entity,	there	is	a	separate
section	which	identified	how	that	entity	is	configured.	Thus,	for	a	logger	named
log01	in	the	[loggers]	section,	the	relevant	configuration	details	are	held	in
a	section	[logger_log01].	Similarly,	a	handler	called	hand01	in	the
[handlers]	section	will	have	its	configuration	held	in	a	section	called
[handler_hand01],	while	a	formatter	called	form01	in	the
[formatters]	section	will	have	its	configuration	specified	in	a	section	called
[formatter_form01].	The	root	logger	configuration	must	be	specified	in	a
section	called	[logger_root].

Examples	of	these	sections	in	the	file	are	given	below.

[loggers]

keys=root,log02,log03,log04,log05,log06,log07

[handlers]

keys=hand01,hand02,hand03,hand04,hand05,hand06,hand07,hand08,hand09

[formatters]

keys=form01,form02,form03,form04,form05,form06,form07,form08,form09

The	root	logger	must	specify	a	level	and	a	list	of	handlers.	An	example	of	a	root
logger	section	is	given	below.

[logger_root]

level=NOTSET

handlers=hand01

The	level	entry	can	be	one	of	DEBUG,	INFO,	WARNING,	ERROR,
CRITICAL	or	NOTSET.	For	the	root	logger	only,	NOTSET	means	that	all
messages	will	be	logged.	Level	values	are	eval()uated	in	the	context	of	the
logging	package's	namespace.

The	handlers	entry	is	a	comma-separated	list	of	handler	names,	which	must
appear	in	the	[handlers]	section.	These	names	must	appear	in	the
[handlers]	section	and	have	corresponding	sections	in	the	configuration	file.

For	loggers	other	than	the	root	logger,	some	additional	information	is	required.
This	is	illustrated	by	the	following	example.

[logger_parser]

level=DEBUG

handlers=hand01

propagate=1

qualname=compiler.parser

The	level	and	handlers	entries	are	interpreted	as	for	the	root	logger,	except
that	if	a	non-root	logger's	level	is	specified	as	NOTSET,	the	system	consults
loggers	higher	up	the	hierarchy	to	determine	the	effective	level	of	the	logger.
The	propagate	entry	is	set	to	1	to	indicate	that	messages	must	propagate	to
handlers	higher	up	the	logger	hierarchy	from	this	logger,	or	0	to	indicate	that
messages	are	not	propagated	to	handlers	up	the	hierarchy.	The	qualname	entry
is	the	hierarchical	channel	name	of	the	logger,	that	is	to	say	the	name	used	by	the
application	to	get	the	logger.

Sections	which	specify	handler	configuration	are	exemplified	by	the	following.

[handler_hand01]

class=StreamHandler

level=NOTSET

formatter=form01

args=(sys.stdout,)

The	class	entry	indicates	the	handler's	class	(as	determined	by	eval()	in	the
logging	package's	namespace).	The	level	is	interpreted	as	for	loggers,	and
NOTSET	is	taken	to	mean	"log	everything".

The	formatter	entry	indicates	the	key	name	of	the	formatter	for	this	handler.
If	blank,	a	default	formatter	(logging._defaultFormatter)	is	used.	If	a
name	is	specified,	it	must	appear	in	the	[formatters]	section	and	have	a
corresponding	section	in	the	configuration	file.

The	args	entry,	when	eval()uated	in	the	context	of	the	logging	package's
namespace,	is	the	list	of	arguments	to	the	constructor	for	the	handler	class.	Refer
to	the	constructors	for	the	relevant	handlers,	or	to	the	examples	below,	to	see

how	typical	entries	are	constructed.

[handler_hand02]

class=FileHandler

level=DEBUG

formatter=form02

args=('python.log',	'w')

[handler_hand03]

class=handlers.SocketHandler

level=INFO

formatter=form03

args=('localhost',	handlers.DEFAULT_TCP_LOGGING_PORT)

[handler_hand04]

class=handlers.DatagramHandler

level=WARN

formatter=form04

args=('localhost',	handlers.DEFAULT_UDP_LOGGING_PORT)

[handler_hand05]

class=handlers.SysLogHandler

level=ERROR

formatter=form05

args=(('localhost',	handlers.SYSLOG_UDP_PORT),	handlers.SysLogHandler.LOG_USER)

[handler_hand06]

class=handlers.NTEventLogHandler

level=CRITICAL

formatter=form06

args=('Python	Application',	'',	'Application')

[handler_hand07]

class=handlers.SMTPHandler

level=WARN

formatter=form07

args=('localhost',	'from@abc',	['user1@abc',	'user2@xyz'],	'Logger	Subject')

[handler_hand08]

class=handlers.MemoryHandler

level=NOTSET

formatter=form08

target=

args=(10,	ERROR)

[handler_hand09]

class=handlers.HTTPHandler

level=NOTSET

formatter=form09

args=('localhost:9022',	'/log',	'GET')

Sections	which	specify	formatter	configuration	are	typified	by	the	following.

[formatter_form01]

format=F1	%(asctime)s	%(levelname)s	%(message)s

datefmt=

The	format	entry	is	the	overall	format	string,	and	the	datefmt	entry	is	the
strftime()-compatible	date/time	format	string.	If	empty,	the	package
substitutes	ISO8601	format	date/times,	which	is	almost	equivalent	to	specifying
the	date	format	string	"The	ISO8601	format	also	specifies	milliseconds,	which
are	appended	to	the	result	of	using	the	above	format	string,	with	a	comma
separator.	An	example	time	in	ISO8601	format	is	2003-01-23
00:29:50,411.

Python	Library	Reference
Previous:	6.29.10.1	Configuration	functions	Up:	6.29.10	Configuration	Next:
6.30	platform

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	6.30.3	Windows	Platform	Up:	6.30.3	Windows	Platform	Next:	6.30.4
Mac	OS	Platform

6.30.3.1	Win95/98	specific

popen(cmd,	mode='r',	bufsize=None)
Portable	popen()	interface.	Find	a	working	popen	implementation
preferring	win32pipe.popen().	On	Windows	NT,
win32pipe.popen()	should	work;	on	Windows	9x	it	hangs	due	to	bugs
in	the	MS	C	library.

Python	Library	Reference
Previous:	6.30.3	Windows	Platform	Up:	6.30.3	Windows	Platform	Next:	6.30.4
Mac	OS	Platform

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.5.4	Semaphore	Objects	Up:	7.5.4	Semaphore	Objects	Next:	7.5.5
Event	Objects

7.5.4.1	Semaphore	Example

Semaphores	are	often	used	to	guard	resources	with	limited	capacity,	for	example,
a	database	server.	In	any	situation	where	the	size	of	the	resource	size	is	fixed,
you	should	use	a	bounded	semaphore.	Before	spawning	any	worker	threads,
your	main	thread	would	initialize	the	semaphore:

maxconnections	=	5

...

pool_sema	=	BoundedSemaphore(value=maxconnections)

Once	spawned,	worker	threads	call	the	semaphore's	acquire	and	release	methods
when	they	need	to	connect	to	the	server:

pool_sema.acquire()

conn	=	connectdb()

...	use	connection	...

conn.close()

pool_sema.release()

The	use	of	a	bounded	semaphore	reduces	the	chance	that	a	programming	error
which	causes	the	semaphore	to	be	released	more	than	it's	acquired	will	go
undetected.

Python	Library	Reference
Previous:	7.5.4	Semaphore	Objects	Up:	7.5.4	Semaphore	Objects	Next:	7.5.5
Event	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.1	Representing	an	email	Up:	12.2.1	Representing	an	email
Next:	12.2.2	Parsing	email	messages

12.2.1.1	Deprecated	methods

Changed	in	version	2.4:	The	add_payload()	method	was	removed;	use	the
attach()	method	instead.

The	following	methods	are	deprecated.	They	are	documented	here	for
completeness.

get_type([failobj])
Return	the	message's	content	type,	as	a	string	of	the	form
maintype/subtype	as	taken	from	the	Content-Type:	header.	The	returned
string	is	coerced	to	lowercase.

If	there	is	no	Content-Type:	header	in	the	message,	failobj	is	returned
(defaults	to	None).

Deprecated	since	release	2.2.2.	Use	the	get_content_type()	method
instead.

get_main_type([failobj])
Return	the	message's	main	content	type.	This	essentially	returns	the
maintype	part	of	the	string	returned	by	get_type(),	with	the	same
semantics	for	failobj.

Deprecated	since	release	2.2.2.	Use	the	get_content_maintype()
method	instead.

get_subtype([failobj])
Return	the	message's	sub-content	type.	This	essentially	returns	the	subtype
part	of	the	string	returned	by	get_type(),	with	the	same	semantics	for
failobj.

Deprecated	since	release	2.2.2.	Use	the	get_content_subtype()
method	instead.

Python	Library	Reference
Previous:	12.2.1	Representing	an	email	Up:	12.2.1	Representing	an	email
Next:	12.2.2	Parsing	email	messages

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.2	Parsing	email	messages	Up:	12.2.2	Parsing	email
messages	Next:	12.2.2.2	Parser	class	API

12.2.2.1	FeedParser	API

New	in	version	2.4.

The	FeedParser	provides	an	API	that	is	conducive	to	incremental	parsing	of
email	messages,	such	as	would	be	necessary	when	reading	the	text	of	an	email
message	from	a	source	that	can	block	(e.g.	a	socket).	The	FeedParser	can	of
course	be	used	to	parse	an	email	message	fully	contained	in	a	string	or	a	file,	but
the	classic	Parser	API	may	be	more	convenient	for	such	use	cases.	The
semantics	and	results	of	the	two	parser	APIs	are	identical.

The	FeedParser's	API	is	simple;	you	create	an	instance,	feed	it	a	bunch	of
text	until	there's	no	more	to	feed	it,	then	close	the	parser	to	retrieve	the	root
message	object.	The	FeedParser	is	extremely	accurate	when	parsing
standards-compliant	messages,	and	it	does	a	very	good	job	of	parsing	non-
compliant	messages,	providing	information	about	how	a	message	was	deemed
broken.	It	will	populate	a	message	object's	defects	attribute	with	a	list	of	any
problems	it	found	in	a	message.	See	the	email.Errors	module	for	the	list	of
defects	that	it	can	find.

Here	is	the	API	for	the	FeedParser:

class	FeedParser([_factory])
Create	a	FeedParser	instance.	Optional	_factory	is	a	no-argument
callable	that	will	be	called	whenever	a	new	message	object	is	needed.	It
defaults	to	the	email.Message.Message	class.

feed(data)
Feed	the	FeedParser	some	more	data.	data	should	be	a	string	containing
one	or	more	lines.	The	lines	can	be	partial	and	the	FeedParser	will	stitch
such	partial	lines	together	properly.	The	lines	in	the	string	can	have	any	of
the	common	three	line	endings,	carriage	return,	newline,	or	carriage	return
and	newline	(they	can	even	be	mixed).

close()
Closing	a	FeedParser	completes	the	parsing	of	all	previously	fed	data,
and	returns	the	root	message	object.	It	is	undefined	what	happens	if	you
feed	more	data	to	a	closed	FeedParser.

Python	Library	Reference
Previous:	12.2.2	Parsing	email	messages	Up:	12.2.2	Parsing	email
messages	Next:	12.2.2.2	Parser	class	API

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.2.1	FeedParser	API	Up:	12.2.2	Parsing	email	messages	Next:
12.2.2.3	Additional	notes

12.2.2.2	Parser	class	API

The	Parser	provides	an	API	that	can	be	used	to	parse	a	message	when	the
complete	contents	of	the	message	are	available	in	a	string	or	file.	The
email.Parser	module	also	provides	a	second	class,	called	HeaderParser
which	can	be	used	if	you're	only	interested	in	the	headers	of	the	message.
HeaderParser	can	be	much	faster	in	these	situations,	since	it	does	not
attempt	to	parse	the	message	body,	instead	setting	the	payload	to	the	raw	body	as
a	string.	HeaderParser	has	the	same	API	as	the	Parser	class.

class	Parser([_class[,	strict]])
The	constructor	for	the	Parser	class	takes	an	optional	argument	_class.
This	must	be	a	callable	factory	(such	as	a	function	or	a	class),	and	it	is	used
whenever	a	sub-message	object	needs	to	be	created.	It	defaults	to
Message	(see	email.Message).	The	factory	will	be	called	without
arguments.

The	optional	strict	flag	is	ignored.

Deprecated	since	release	2.4.	Because	the	Parser	class	is	a	backward
compatible	API	wrapper	around	the	new-in-Python	2.4	FeedParser,	all
parsing	is	effectively	non-strict.	You	should	simply	stop	passing	a	strict	flag
to	the	Parser	constructor.

Changed	in	version	2.2.2:	The	strict	flag	was	added.	Changed	in	version
2.4:	The	strict	flag	was	deprecated.

The	other	public	Parser	methods	are:

parse(fp[,	headersonly])
Read	all	the	data	from	the	file-like	object	fp,	parse	the	resulting	text,	and
return	the	root	message	object.	fp	must	support	both	the	readline()	and
the	read()	methods	on	file-like	objects.

The	text	contained	in	fp	must	be	formatted	as	a	block	of	RFC	2822	style
headers	and	header	continuation	lines,	optionally	preceded	by	a	envelope
header.	The	header	block	is	terminated	either	by	the	end	of	the	data	or	by	a
blank	line.	Following	the	header	block	is	the	body	of	the	message	(which
may	contain	MIME-encoded	subparts).

Optional	headersonly	is	as	with	the	parse()	method.

Changed	in	version	2.2.2:	The	headersonly	flag	was	added.

parsestr(text[,	headersonly])
Similar	to	the	parse()	method,	except	it	takes	a	string	object	instead	of	a
file-like	object.	Calling	this	method	on	a	string	is	exactly	equivalent	to
wrapping	text	in	a	StringIO	instance	first	and	calling	parse().

Optional	headersonly	is	a	flag	specifying	whether	to	stop	parsing	after
reading	the	headers	or	not.	The	default	is	False,	meaning	it	parses	the
entire	contents	of	the	file.

Changed	in	version	2.2.2:	The	headersonly	flag	was	added.

Since	creating	a	message	object	structure	from	a	string	or	a	file	object	is	such	a
common	task,	two	functions	are	provided	as	a	convenience.	They	are	available
in	the	top-level	email	package	namespace.

message_from_string(s[,	_class[,	strict]])
Return	a	message	object	structure	from	a	string.	This	is	exactly	equivalent
to	Parser().parsestr(s).	Optional	_class	and	strict	are	interpreted
as	with	the	Parser	class	constructor.

Changed	in	version	2.2.2:	The	strict	flag	was	added.

message_from_file(fp[,	_class[,	strict]])
Return	a	message	object	structure	tree	from	an	open	file	object.	This	is
exactly	equivalent	to	Parser().parse(fp).	Optional	_class	and	strict
are	interpreted	as	with	the	Parser	class	constructor.

Changed	in	version	2.2.2:	The	strict	flag	was	added.

http://www.faqs.org/rfcs/rfc2822.html

Here's	an	example	of	how	you	might	use	this	at	an	interactive	Python	prompt:

>>>	import	email

>>>	msg	=	email.message_from_string(myString)

Python	Library	Reference
Previous:	12.2.2.1	FeedParser	API	Up:	12.2.2	Parsing	email	messages	Next:
12.2.2.3	Additional	notes

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.2.2	Parser	class	API	Up:	12.2.2	Parsing	email	messages	Next:
12.2.3	Generating	MIME	documents

12.2.2.3	Additional	notes

Here	are	some	notes	on	the	parsing	semantics:

Most	non-multipart	type	messages	are	parsed	as	a	single	message	object
with	a	string	payload.	These	objects	will	return	False	for
is_multipart().	Their	get_payload()	method	will	return	a	string
object.

All	multipart	type	messages	will	be	parsed	as	a	container	message	object
with	a	list	of	sub-message	objects	for	their	payload.	The	outer	container
message	will	return	True	for	is_multipart()	and	their
get_payload()	method	will	return	the	list	of	Message	subparts.

Most	messages	with	a	content	type	of	message/*	(e.g.	message/delivery-
status	and	message/rfc822)	will	also	be	parsed	as	container	object
containing	a	list	payload	of	length	1.	Their	is_multipart()	method
will	return	True.	The	single	element	in	the	list	payload	will	be	a	sub-
message	object.

Some	non-standards	compliant	messages	may	not	be	internally	consistent
about	their	multipart-edness.	Such	messages	may	have	a	Content-Type:
header	of	type	multipart,	but	their	is_multipart()	method	may	return
False.	If	such	messages	were	parsed	with	the	FeedParser,	they	will
have	an	instance	of	the	MultipartInvariantViolationDefect
class	in	their	defects	attribute	list.	See	email.Errors	for	details.

Python	Library	Reference
Previous:	12.2.2.2	Parser	class	API	Up:	12.2.2	Parsing	email	messages	Next:
12.2.3	Generating	MIME	documents

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	12.2.3	Generating	MIME	documents	Up:	12.2.3	Generating	MIME
documents	Next:	12.2.4	Creating	email	and

12.2.3.1	Deprecated	methods

The	following	methods	are	deprecated	in	email	version	2.	They	are
documented	here	for	completeness.

__call__(msg[,	unixfrom])
This	method	is	identical	to	the	flatten()	method.

Deprecated	since	release	2.2.2.	Use	the	flatten()	method	instead.

Python	Library	Reference
Previous:	12.2.3	Generating	MIME	documents	Up:	12.2.3	Generating	MIME
documents	Next:	12.2.4	Creating	email	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6.2	Objects	in	the	Up:	13.6.2	Objects	in	the	Next:	13.6.2.2	Node
Objects

13.6.2.1	DOMImplementation	Objects

The	DOMImplementation	interface	provides	a	way	for	applications	to
determine	the	availability	of	particular	features	in	the	DOM	they	are	using.
DOM	Level	2	added	the	ability	to	create	new	Document	and	DocumentType
objects	using	the	DOMImplementation	as	well.

hasFeature(feature,	version)

Python	Library	Reference
Previous:	13.6.2	Objects	in	the	Up:	13.6.2	Objects	in	the	Next:	13.6.2.2	Node
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6.2.1	DOMImplementation	Objects	Up:	13.6.2	Objects	in	the
Next:	13.6.2.3	NodeList	Objects

13.6.2.2	Node	Objects

All	of	the	components	of	an	XML	document	are	subclasses	of	Node.

nodeType

An	integer	representing	the	node	type.	Symbolic	constants	for	the	types	are
on	the	Node	object:	ELEMENT_NODE,	ATTRIBUTE_NODE,
TEXT_NODE,	CDATA_SECTION_NODE,	ENTITY_NODE,
PROCESSING_INSTRUCTION_NODE,	COMMENT_NODE,
DOCUMENT_NODE,	DOCUMENT_TYPE_NODE,	NOTATION_NODE.	This
is	a	read-only	attribute.

parentNode

The	parent	of	the	current	node,	or	None	for	the	document	node.	The	value
is	always	a	Node	object	or	None.	For	Element	nodes,	this	will	be	the
parent	element,	except	for	the	root	element,	in	which	case	it	will	be	the
Document	object.	For	Attr	nodes,	this	is	always	None.	This	is	a	read-
only	attribute.

attributes

A	NamedNodeMap	of	attribute	objects.	Only	elements	have	actual	values
for	this;	others	provide	None	for	this	attribute.	This	is	a	read-only	attribute.

previousSibling

The	node	that	immediately	precedes	this	one	with	the	same	parent.	For
instance	the	element	with	an	end-tag	that	comes	just	before	the	self
element's	start-tag.	Of	course,	XML	documents	are	made	up	of	more	than
just	elements	so	the	previous	sibling	could	be	text,	a	comment,	or
something	else.	If	this	node	is	the	first	child	of	the	parent,	this	attribute	will
be	None.	This	is	a	read-only	attribute.

nextSibling

The	node	that	immediately	follows	this	one	with	the	same	parent.	See	also
previousSibling.	If	this	is	the	last	child	of	the	parent,	this	attribute
will	be	None.	This	is	a	read-only	attribute.

childNodes

A	list	of	nodes	contained	within	this	node.	This	is	a	read-only	attribute.

firstChild

The	first	child	of	the	node,	if	there	are	any,	or	None.	This	is	a	read-only
attribute.

lastChild

The	last	child	of	the	node,	if	there	are	any,	or	None.	This	is	a	read-only
attribute.

localName

The	part	of	the	tagName	following	the	colon	if	there	is	one,	else	the	entire
tagName.	The	value	is	a	string.

prefix

The	part	of	the	tagName	preceding	the	colon	if	there	is	one,	else	the	empty
string.	The	value	is	a	string,	or	None

namespaceURI

The	namespace	associated	with	the	element	name.	This	will	be	a	string	or
None.	This	is	a	read-only	attribute.

nodeName

This	has	a	different	meaning	for	each	node	type;	see	the	DOM	specification
for	details.	You	can	always	get	the	information	you	would	get	here	from
another	property	such	as	the	tagName	property	for	elements	or	the	name
property	for	attributes.	For	all	node	types,	the	value	of	this	attribute	will	be
either	a	string	or	None.	This	is	a	read-only	attribute.

nodeValue

This	has	a	different	meaning	for	each	node	type;	see	the	DOM	specification
for	details.	The	situation	is	similar	to	that	with	nodeName.	The	value	is	a
string	or	None.

hasAttributes()
Returns	true	if	the	node	has	any	attributes.

hasChildNodes()

Returns	true	if	the	node	has	any	child	nodes.

isSameNode(other)
Returns	true	if	other	refers	to	the	same	node	as	this	node.	This	is	especially
useful	for	DOM	implementations	which	use	any	sort	of	proxy	architecture
(because	more	than	one	object	can	refer	to	the	same	node).

Note: 	This	is	based	on	a	proposed	DOM	Level	3	API
which	is	still	in	the	``working	draft''	stage,	but	this	particular
interface	appears	uncontroversial.	Changes	from	the	W3C
will	not	necessarily	affect	this	method	in	the	Python	DOM
interface	(though	any	new	W3C	API	for	this	would	also	be
supported).

appendChild(newChild)
Add	a	new	child	node	to	this	node	at	the	end	of	the	list	of	children,
returning	newChild.

insertBefore(newChild,	refChild)
Insert	a	new	child	node	before	an	existing	child.	It	must	be	the	case	that
refChild	is	a	child	of	this	node;	if	not,	ValueError	is	raised.	newChild	is
returned.	If	refChild	is	None,	it	inserts	newChild	at	the	end	of	the	children's
list.

removeChild(oldChild)
Remove	a	child	node.	oldChild	must	be	a	child	of	this	node;	if	not,
ValueError	is	raised.	oldChild	is	returned	on	success.	If	oldChild	will
not	be	used	further,	its	unlink()	method	should	be	called.

replaceChild(newChild,	oldChild)
Replace	an	existing	node	with	a	new	node.	It	must	be	the	case	that	oldChild
is	a	child	of	this	node;	if	not,	ValueError	is	raised.

normalize()
Join	adjacent	text	nodes	so	that	all	stretches	of	text	are	stored	as	single
Text	instances.	This	simplifies	processing	text	from	a	DOM	tree	for	many

applications.	New	in	version	2.1.

cloneNode(deep)
Clone	this	node.	Setting	deep	means	to	clone	all	child	nodes	as	well.	This
returns	the	clone.

Python	Library	Reference
Previous:	13.6.2.1	DOMImplementation	Objects	Up:	13.6.2	Objects	in	the
Next:	13.6.2.3	NodeList	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6.2.2	Node	Objects	Up:	13.6.2	Objects	in	the	Next:	13.6.2.4
DocumentType	Objects

13.6.2.3	NodeList	Objects

A	NodeList	represents	a	sequence	of	nodes.	These	objects	are	used	in	two
ways	in	the	DOM	Core	recommendation:	the	Element	objects	provides	one	as
its	list	of	child	nodes,	and	the	getElementsByTagName()	and
getElementsByTagNameNS()	methods	of	Node	return	objects	with	this
interface	to	represent	query	results.

The	DOM	Level	2	recommendation	defines	one	method	and	one	attribute	for
these	objects:

item(i)
Return	the	i'th	item	from	the	sequence,	if	there	is	one,	or	None.	The	index	i
is	not	allowed	to	be	less	then	zero	or	greater	than	or	equal	to	the	length	of
the	sequence.

length

The	number	of	nodes	in	the	sequence.

In	addition,	the	Python	DOM	interface	requires	that	some	additional	support	is
provided	to	allow	NodeList	objects	to	be	used	as	Python	sequences.	All
NodeList	implementations	must	include	support	for	__len__()	and
__getitem__();	this	allows	iteration	over	the	NodeList	in	for	statements
and	proper	support	for	the	len()	built-in	function.

If	a	DOM	implementation	supports	modification	of	the	document,	the
NodeList	implementation	must	also	support	the	__setitem__()	and
__delitem__()	methods.

Python	Library	Reference
Previous:	13.6.2.2	Node	Objects	Up:	13.6.2	Objects	in	the	Next:	13.6.2.4
DocumentType	Objects

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6.2.3	NodeList	Objects	Up:	13.6.2	Objects	in	the	Next:	13.6.2.5
Document	Objects

13.6.2.4	DocumentType	Objects

Information	about	the	notations	and	entities	declared	by	a	document	(including
the	external	subset	if	the	parser	uses	it	and	can	provide	the	information)	is
available	from	a	DocumentType	object.	The	DocumentType	for	a	document
is	available	from	the	Document	object's	doctype	attribute;	if	there	is	no
DOCTYPE	declaration	for	the	document,	the	document's	doctype	attribute	will
be	set	to	None	instead	of	an	instance	of	this	interface.

DocumentType	is	a	specialization	of	Node,	and	adds	the	following	attributes:

publicId

The	public	identifier	for	the	external	subset	of	the	document	type	definition.
This	will	be	a	string	or	None.

systemId

The	system	identifier	for	the	external	subset	of	the	document	type
definition.	This	will	be	a	URI	as	a	string,	or	None.

internalSubset

A	string	giving	the	complete	internal	subset	from	the	document.	This	does
not	include	the	brackets	which	enclose	the	subset.	If	the	document	has	no
internal	subset,	this	should	be	None.

name

The	name	of	the	root	element	as	given	in	the	DOCTYPE	declaration,	if
present.

entities

This	is	a	NamedNodeMap	giving	the	definitions	of	external	entities.	For
entity	names	defined	more	than	once,	only	the	first	definition	is	provided
(others	are	ignored	as	required	by	the	XML	recommendation).	This	may	be
None	if	the	information	is	not	provided	by	the	parser,	or	if	no	entities	are
defined.

notations

This	is	a	NamedNodeMap	giving	the	definitions	of	notations.	For	notation
names	defined	more	than	once,	only	the	first	definition	is	provided	(others
are	ignored	as	required	by	the	XML	recommendation).	This	may	be	None
if	the	information	is	not	provided	by	the	parser,	or	if	no	notations	are
defined.

Python	Library	Reference
Previous:	13.6.2.3	NodeList	Objects	Up:	13.6.2	Objects	in	the	Next:	13.6.2.5
Document	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6.2.4	DocumentType	Objects	Up:	13.6.2	Objects	in	the	Next:
13.6.2.6	Element	Objects

13.6.2.5	Document	Objects

A	Document	represents	an	entire	XML	document,	including	its	constituent
elements,	attributes,	processing	instructions,	comments	etc.	Remeber	that	it
inherits	properties	from	Node.

documentElement

The	one	and	only	root	element	of	the	document.

createElement(tagName)
Create	and	return	a	new	element	node.	The	element	is	not	inserted	into	the
document	when	it	is	created.	You	need	to	explicitly	insert	it	with	one	of	the
other	methods	such	as	insertBefore()	or	appendChild().

createElementNS(namespaceURI,	tagName)
Create	and	return	a	new	element	with	a	namespace.	The	tagName	may	have
a	prefix.	The	element	is	not	inserted	into	the	document	when	it	is	created.
You	need	to	explicitly	insert	it	with	one	of	the	other	methods	such	as
insertBefore()	or	appendChild().

createTextNode(data)
Create	and	return	a	text	node	containing	the	data	passed	as	a	parameter.	As
with	the	other	creation	methods,	this	one	does	not	insert	the	node	into	the
tree.

createComment(data)
Create	and	return	a	comment	node	containing	the	data	passed	as	a
parameter.	As	with	the	other	creation	methods,	this	one	does	not	insert	the
node	into	the	tree.

createProcessingInstruction(target,	data)
Create	and	return	a	processing	instruction	node	containing	the	target	and
data	passed	as	parameters.	As	with	the	other	creation	methods,	this	one
does	not	insert	the	node	into	the	tree.

createAttribute(name)
Create	and	return	an	attribute	node.	This	method	does	not	associate	the
attribute	node	with	any	particular	element.	You	must	use
setAttributeNode()	on	the	appropriate	Element	object	to	use	the
newly	created	attribute	instance.

createAttributeNS(namespaceURI,	qualifiedName)
Create	and	return	an	attribute	node	with	a	namespace.	The	tagName	may
have	a	prefix.	This	method	does	not	associate	the	attribute	node	with	any
particular	element.	You	must	use	setAttributeNode()	on	the
appropriate	Element	object	to	use	the	newly	created	attribute	instance.

getElementsByTagName(tagName)
Search	for	all	descendants	(direct	children,	children's	children,	etc.)	with	a
particular	element	type	name.

getElementsByTagNameNS(namespaceURI,	localName)
Search	for	all	descendants	(direct	children,	children's	children,	etc.)	with	a
particular	namespace	URI	and	localname.	The	localname	is	the	part	of	the
namespace	after	the	prefix.

Python	Library	Reference
Previous:	13.6.2.4	DocumentType	Objects	Up:	13.6.2	Objects	in	the	Next:
13.6.2.6	Element	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6.2.5	Document	Objects	Up:	13.6.2	Objects	in	the	Next:	13.6.2.7
Attr	Objects

13.6.2.6	Element	Objects

Element	is	a	subclass	of	Node,	so	inherits	all	the	attributes	of	that	class.

tagName

The	element	type	name.	In	a	namespace-using	document	it	may	have	colons
in	it.	The	value	is	a	string.

getElementsByTagName(tagName)
Same	as	equivalent	method	in	the	Document	class.

getElementsByTagNameNS(tagName)
Same	as	equivalent	method	in	the	Document	class.

getAttribute(attname)
Return	an	attribute	value	as	a	string.

getAttributeNode(attrname)
Return	the	Attr	node	for	the	attribute	named	by	attrname.

getAttributeNS(namespaceURI,	localName)
Return	an	attribute	value	as	a	string,	given	a	namespaceURI	and
localName.

getAttributeNodeNS(namespaceURI,	localName)
Return	an	attribute	value	as	a	node,	given	a	namespaceURI	and	localName.

removeAttribute(attname)
Remove	an	attribute	by	name.	No	exception	is	raised	if	there	is	no	matching
attribute.

removeAttributeNode(oldAttr)
Remove	and	return	oldAttr	from	the	attribute	list,	if	present.	If	oldAttr	is	not

present,	NotFoundErr	is	raised.

removeAttributeNS(namespaceURI,	localName)
Remove	an	attribute	by	name.	Note	that	it	uses	a	localName,	not	a	qname.
No	exception	is	raised	if	there	is	no	matching	attribute.

setAttribute(attname,	value)
Set	an	attribute	value	from	a	string.

setAttributeNode(newAttr)
Add	a	new	attibute	node	to	the	element,	replacing	an	existing	attribute	if
necessary	if	the	name	attribute	matches.	If	a	replacement	occurs,	the	old
attribute	node	will	be	returned.	If	newAttr	is	already	in	use,
InuseAttributeErr	will	be	raised.

setAttributeNodeNS(newAttr)
Add	a	new	attibute	node	to	the	element,	replacing	an	existing	attribute	if
necessary	if	the	namespaceURI	and	localName	attributes	match.	If	a
replacement	occurs,	the	old	attribute	node	will	be	returned.	If	newAttr	is
already	in	use,	InuseAttributeErr	will	be	raised.

setAttributeNS(namespaceURI,	qname,	value)
Set	an	attribute	value	from	a	string,	given	a	namespaceURI	and	a	qname.
Note	that	a	qname	is	the	whole	attribute	name.	This	is	different	than	above.

Python	Library	Reference
Previous:	13.6.2.5	Document	Objects	Up:	13.6.2	Objects	in	the	Next:	13.6.2.7
Attr	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6.2.6	Element	Objects	Up:	13.6.2	Objects	in	the	Next:	13.6.2.8
NamedNodeMap	Objects

13.6.2.7	Attr	Objects

Attr	inherits	from	Node,	so	inherits	all	its	attributes.

name

The	attribute	name.	In	a	namespace-using	document	it	may	have	colons	in
it.

localName

The	part	of	the	name	following	the	colon	if	there	is	one,	else	the	entire
name.	This	is	a	read-only	attribute.

prefix

The	part	of	the	name	preceding	the	colon	if	there	is	one,	else	the	empty
string.

Python	Library	Reference
Previous:	13.6.2.6	Element	Objects	Up:	13.6.2	Objects	in	the	Next:	13.6.2.8
NamedNodeMap	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6.2.7	Attr	Objects	Up:	13.6.2	Objects	in	the	Next:	13.6.2.9
Comment	Objects

13.6.2.8	NamedNodeMap	Objects

NamedNodeMap	does	not	inherit	from	Node.

length

The	length	of	the	attribute	list.

item(index)
Return	an	attribute	with	a	particular	index.	The	order	you	get	the	attributes
in	is	arbitrary	but	will	be	consistent	for	the	life	of	a	DOM.	Each	item	is	an
attribute	node.	Get	its	value	with	the	value	attribbute.

There	are	also	experimental	methods	that	give	this	class	more	mapping	behavior.
You	can	use	them	or	you	can	use	the	standardized	getAttribute*()	family
of	methods	on	the	Element	objects.

Python	Library	Reference
Previous:	13.6.2.7	Attr	Objects	Up:	13.6.2	Objects	in	the	Next:	13.6.2.9
Comment	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6.2.8	NamedNodeMap	Objects	Up:	13.6.2	Objects	in	the	Next:
13.6.2.10	Text	and	CDATASection

13.6.2.9	Comment	Objects

Comment	represents	a	comment	in	the	XML	document.	It	is	a	subclass	of
Node,	but	cannot	have	child	nodes.

data

The	content	of	the	comment	as	a	string.	The	attribute	contains	all	characters
between	the	leading	<!--	and	trailing	-->,	but	does	not	include	them.

Python	Library	Reference
Previous:	13.6.2.8	NamedNodeMap	Objects	Up:	13.6.2	Objects	in	the	Next:
13.6.2.10	Text	and	CDATASection

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6.2.9	Comment	Objects	Up:	13.6.2	Objects	in	the	Next:	13.6.2.11
ProcessingInstruction	Objects

13.6.2.10	Text	and	CDATASection	Objects

The	Text	interface	represents	text	in	the	XML	document.	If	the	parser	and
DOM	implementation	support	the	DOM's	XML	extension,	portions	of	the	text
enclosed	in	CDATA	marked	sections	are	stored	in	CDATASection	objects.
These	two	interfaces	are	identical,	but	provide	different	values	for	the
nodeType	attribute.

These	interfaces	extend	the	Node	interface.	They	cannot	have	child	nodes.

data

The	content	of	the	text	node	as	a	string.

Note: 	The	use	of	a	CDATASection	node	does	not	indicate
that	the	node	represents	a	complete	CDATA	marked	section,	only
that	the	content	of	the	node	was	part	of	a	CDATA	section.	A
single	CDATA	section	may	be	represented	by	more	than	one
node	in	the	document	tree.	There	is	no	way	to	determine	whether
two	adjacent	CDATASection	nodes	represent	different	CDATA
marked	sections.

Python	Library	Reference
Previous:	13.6.2.9	Comment	Objects	Up:	13.6.2	Objects	in	the	Next:	13.6.2.11
ProcessingInstruction	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6.2.10	Text	and	CDATASection	Up:	13.6.2	Objects	in	the	Next:
13.6.2.12	Exceptions

13.6.2.11	ProcessingInstruction	Objects

Represents	a	processing	instruction	in	the	XML	document;	this	inherits	from	the
Node	interface	and	cannot	have	child	nodes.

target

The	content	of	the	processing	instruction	up	to	the	first	whitespace
character.	This	is	a	read-only	attribute.

data

The	content	of	the	processing	instruction	following	the	first	whitespace
character.

Python	Library	Reference
Previous:	13.6.2.10	Text	and	CDATASection	Up:	13.6.2	Objects	in	the	Next:
13.6.2.12	Exceptions

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6.2.11	ProcessingInstruction	Objects	Up:	13.6.2	Objects	in	the
Next:	13.6.3	Conformance

13.6.2.12	Exceptions

New	in	version	2.1.

The	DOM	Level	2	recommendation	defines	a	single	exception,
DOMException,	and	a	number	of	constants	that	allow	applications	to
determine	what	sort	of	error	occurred.	DOMException	instances	carry	a	code
attribute	that	provides	the	appropriate	value	for	the	specific	exception.

The	Python	DOM	interface	provides	the	constants,	but	also	expands	the	set	of
exceptions	so	that	a	specific	exception	exists	for	each	of	the	exception	codes
defined	by	the	DOM.	The	implementations	must	raise	the	appropriate	specific
exception,	each	of	which	carries	the	appropriate	value	for	the	code	attribute.

exception	DOMException
Base	exception	class	used	for	all	specific	DOM	exceptions.	This	exception
class	cannot	be	directly	instantiated.

exception	DomstringSizeErr
Raised	when	a	specified	range	of	text	does	not	fit	into	a	string.	This	is	not
known	to	be	used	in	the	Python	DOM	implementations,	but	may	be
received	from	DOM	implementations	not	written	in	Python.

exception	HierarchyRequestErr
Raised	when	an	attempt	is	made	to	insert	a	node	where	the	node	type	is	not
allowed.

exception	IndexSizeErr
Raised	when	an	index	or	size	parameter	to	a	method	is	negative	or	exceeds
the	allowed	values.

exception	InuseAttributeErr
Raised	when	an	attempt	is	made	to	insert	an	Attr	node	that	is	already
present	elsewhere	in	the	document.

exception	InvalidAccessErr

Raised	if	a	parameter	or	an	operation	is	not	supported	on	the	underlying
object.

exception	InvalidCharacterErr
This	exception	is	raised	when	a	string	parameter	contains	a	character	that	is
not	permitted	in	the	context	it's	being	used	in	by	the	XML	1.0
recommendation.	For	example,	attempting	to	create	an	Element	node
with	a	space	in	the	element	type	name	will	cause	this	error	to	be	raised.

exception	InvalidModificationErr
Raised	when	an	attempt	is	made	to	modify	the	type	of	a	node.

exception	InvalidStateErr
Raised	when	an	attempt	is	made	to	use	an	object	that	is	not	defined	or	is	no
longer	usable.

exception	NamespaceErr
If	an	attempt	is	made	to	change	any	object	in	a	way	that	is	not	permitted
with	regard	to	the	Namespaces	in	XML	recommendation,	this	exception	is
raised.

exception	NotFoundErr
Exception	when	a	node	does	not	exist	in	the	referenced	context.	For
example,	NamedNodeMap.removeNamedItem()	will	raise	this	if	the
node	passed	in	does	not	exist	in	the	map.

exception	NotSupportedErr
Raised	when	the	implementation	does	not	support	the	requested	type	of
object	or	operation.

exception	NoDataAllowedErr
This	is	raised	if	data	is	specified	for	a	node	which	does	not	support	data.

exception	NoModificationAllowedErr
Raised	on	attempts	to	modify	an	object	where	modifications	are	not
allowed	(such	as	for	read-only	nodes).

exception	SyntaxErr
Raised	when	an	invalid	or	illegal	string	is	specified.

http://www.w3.org/TR/REC-xml-names/

exception	WrongDocumentErr
Raised	when	a	node	is	inserted	in	a	different	document	than	it	currently
belongs	to,	and	the	implementation	does	not	support	migrating	the	node
from	one	document	to	the	other.

The	exception	codes	defined	in	the	DOM	recommendation	map	to	the
exceptions	described	above	according	to	this	table:

Constant Exception
DOMSTRING_SIZE_ERR DomstringSizeErr

HIERARCHY_REQUEST_ERR HierarchyRequestErr

INDEX_SIZE_ERR IndexSizeErr

INUSE_ATTRIBUTE_ERR InuseAttributeErr

INVALID_ACCESS_ERR InvalidAccessErr

INVALID_CHARACTER_ERR InvalidCharacterErr

INVALID_MODIFICATION_ERR InvalidModificationErr

INVALID_STATE_ERR InvalidStateErr

NAMESPACE_ERR NamespaceErr

NOT_FOUND_ERR NotFoundErr

NOT_SUPPORTED_ERR NotSupportedErr

NO_DATA_ALLOWED_ERR NoDataAllowedErr

NO_MODIFICATION_ALLOWED_ERR NoModificationAllowedErr

SYNTAX_ERR SyntaxErr

WRONG_DOCUMENT_ERR WrongDocumentErr

Python	Library	Reference
Previous:	13.6.2.11	ProcessingInstruction	Objects	Up:	13.6.2	Objects	in	the
Next:	13.6.3	Conformance

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6.3	Conformance	Up:	13.6.3	Conformance	Next:	13.6.3.2
Accessor	Methods

13.6.3.1	Type	Mapping

The	primitive	IDL	types	used	in	the	DOM	specification	are	mapped	to	Python
types	according	to	the	following	table.

IDL	Type Python	Type
boolean IntegerType	(with	a	value	of	0	or	1)
int IntegerType

long	int IntegerType

unsigned	int IntegerType

Additionally,	the	DOMString	defined	in	the	recommendation	is	mapped	to	a
Python	string	or	Unicode	string.	Applications	should	be	able	to	handle	Unicode
whenever	a	string	is	returned	from	the	DOM.

The	IDL	null	value	is	mapped	to	None,	which	may	be	accepted	or	provided	by
the	implementation	whenever	null	is	allowed	by	the	API.

Python	Library	Reference
Previous:	13.6.3	Conformance	Up:	13.6.3	Conformance	Next:	13.6.3.2
Accessor	Methods

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	13.6.3.1	Type	Mapping	Up:	13.6.3	Conformance	Next:	13.7
xml.dom.minidom

13.6.3.2	Accessor	Methods

The	mapping	from	OMG	IDL	to	Python	defines	accessor	functions	for	IDL
attribute	declarations	in	much	the	way	the	Java	mapping	does.	Mapping	the
IDL	declarations

readonly	attribute	string	someValue;

									attribute	string	anotherValue;

yields	three	accessor	functions:	a	``get''	method	for	someValue
(_get_someValue()),	and	``get''	and	``set''	methods	for	anotherValue
(_get_anotherValue()	and	_set_anotherValue()).	The	mapping,	in
particular,	does	not	require	that	the	IDL	attributes	are	accessible	as	normal
Python	attributes:	object.someValue	is	not	required	to	work,	and	may	raise	an
AttributeError.

The	Python	DOM	API,	however,	does	require	that	normal	attribute	access	work.
This	means	that	the	typical	surrogates	generated	by	Python	IDL	compilers	are
not	likely	to	work,	and	wrapper	objects	may	be	needed	on	the	client	if	the	DOM
objects	are	accessed	via	CORBA.	While	this	does	require	some	additional
consideration	for	CORBA	DOM	clients,	the	implementers	with	experience	using
DOM	over	CORBA	from	Python	do	not	consider	this	a	problem.	Attributes	that
are	declared	readonly	may	not	restrict	write	access	in	all	DOM
implementations.

Additionally,	the	accessor	functions	are	not	required.	If	provided,	they	should
take	the	form	defined	by	the	Python	IDL	mapping,	but	these	methods	are
considered	unnecessary	since	the	attributes	are	accessible	directly	from	Python.
``Set''	accessors	should	never	be	provided	for	readonly	attributes.

Python	Library	Reference
Previous:	13.6.3.1	Type	Mapping	Up:	13.6.3	Conformance	Next:	13.7
xml.dom.minidom

Release	2.4,	documentation	updated	on	29	November	2004.

See	About	this	document...	for	information	on	suggesting	changes.

"	handleSlideshowTitle(slideshow.getElementsByTagName("title")[0])	slides	=
slideshow.getElementsByTagName("slide")	handleToc(slides)
handleSlides(slides)	print	""	def	handleSlides(slides):	for	slide	in	slides:
handleSlide(slide)	def	handleSlide(slide):
handleSlideTitle(slide.getElementsByTagName("title")[0])
handlePoints(slide.getElementsByTagName("point"))	def
handleSlideshowTitle(title):	print	""	%	getText(title.childNodes)	def
handleSlideTitle(title):	print	"

%s

"	%	getText(title.childNodes)	def	handlePoints(points):	print	"

"	for	point	in	points:	handlePoint(point)	print	"

"	def	handlePoint(point):	print	"
%s

"	%	getText(point.childNodes)	def	handleToc(slides):	for	slide	in	slides:	title	=
slide.getElementsByTagName("title")[0]	print	"

%s

"	%	getText(title.childNodes)	handleSlideshow(dom)

Previous:	16.1.2	Tkinter	Life	Preserver	Up:	16.1.2	Tkinter	Life	Preserver	Next:
16.1.2.2	A	Simple	Hello

16.1.2.1	How	To	Use	This	Section

This	section	is	designed	in	two	parts:	the	first	half	(roughly)	covers	background
material,	while	the	second	half	can	be	taken	to	the	keyboard	as	a	handy
reference.

When	trying	to	answer	questions	of	the	form	``how	do	I	do	blah'',	it	is	often	best
to	find	out	how	to	do``blah''	in	straight	Tk,	and	then	convert	this	back	into	the
corresponding	Tkinter	call.	Python	programmers	can	often	guess	at	the
correct	Python	command	by	looking	at	the	Tk	documentation.	This	means	that	in
order	to	use	Tkinter,	you	will	have	to	know	a	little	bit	about	Tk.	This	document
can't	fulfill	that	role,	so	the	best	we	can	do	is	point	you	to	the	best	documentation
that	exists.	Here	are	some	hints:

The	authors	strongly	suggest	getting	a	copy	of	the	Tk	man	pages.
Specifically,	the	man	pages	in	the	mann	directory	are	most	useful.	The
man3	man	pages	describe	the	C	interface	to	the	Tk	library	and	thus	are	not
especially	helpful	for	script	writers.

Addison-Wesley	publishes	a	book	called	Tcl	and	the	Tk	Toolkit	by	John
Ousterhout	(ISBN	0-201-63337-X)	which	is	a	good	introduction	to	Tcl	and
Tk	for	the	novice.	The	book	is	not	exhaustive,	and	for	many	details	it	defers
to	the	man	pages.

Tkinter.py	is	a	last	resort	for	most,	but	can	be	a	good	place	to	go	when
nothing	else	makes	sense.

See	Also:

ActiveState	Tcl	Home	Page
The	Tk/Tcl	development	is	largely	taking	place	at	ActiveState.

Tcl	and	the	Tk	Toolkit
The	book	by	John	Ousterhout,	the	inventor	of	Tcl	.

http://tcl.activestate.com/
http://www.amazon.com/exec/obidos/ASIN/020163337X

Practical	Programming	in	Tcl	and	Tk
Brent	Welch's	encyclopedic	book.

Python	Library	Reference
Previous:	16.1.2	Tkinter	Life	Preserver	Up:	16.1.2	Tkinter	Life	Preserver	Next:
16.1.2.2	A	Simple	Hello

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://www.amazon.com/exec/obidos/ASIN/0130220280

Previous:	16.1.2.1	How	To	Use	Up:	16.1.2	Tkinter	Life	Preserver	Next:	16.1.3
A	(Very)	Quick

16.1.2.2	A	Simple	Hello	World	Program

from	Tkinter	import	*

class	Application(Frame):

				def	say_hi(self):

								print	"hi	there,	everyone!"

				def	createWidgets(self):

								self.QUIT	=	Button(self)

								self.QUIT["text"]	=	"QUIT"

								self.QUIT["fg"]			=	"red"

								self.QUIT["command"]	=		self.quit

								self.QUIT.pack({"side":	"left"})

								self.hi_there	=	Button(self)

								self.hi_there["text"]	=	"Hello",

								self.hi_there["command"]	=	self.say_hi

								self.hi_there.pack({"side":	"left"})

				def	__init__(self,	master=None):

								Frame.__init__(self,	master)

								self.pack()

								self.createWidgets()

app	=	Application()

app.mainloop()

Python	Library	Reference
Previous:	16.1.2.1	How	To	Use	Up:	16.1.2	Tkinter	Life	Preserver	Next:	16.1.3
A	(Very)	Quick

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.1.6	Handy	Reference	Up:	16.1.6	Handy	Reference	Next:	16.1.6.2
The	Packer

16.1.6.1	Setting	Options

Options	control	things	like	the	color	and	border	width	of	a	widget.	Options	can
be	set	in	three	ways:

At	object	creation	time,	using	keyword	arguments
:

fred	=	Button(self,	fg	=	"red",	bg	=	"blue")

After	object	creation,	treating	the	option	name	like	a	dictionary	index
:

fred["fg"]	=	"red"

fred["bg"]	=	"blue"

Use	the	config()	method	to	update	multiple	attrs	subesequent	to	object
creation

:
fred.config(fg	=	"red",	bg	=	"blue")

For	a	complete	explanation	of	a	given	option	and	its	behavior,	see	the	Tk	man
pages	for	the	widget	in	question.

Note	that	the	man	pages	list	"STANDARD	OPTIONS"	and	"WIDGET
SPECIFIC	OPTIONS"	for	each	widget.	The	former	is	a	list	of	options	that	are
common	to	many	widgets,	the	latter	are	the	options	that	are	ideosyncratic	to	that
particular	widget.	The	Standard	Options	are	documented	on	the	options(3)	man
page.

No	distinction	between	standard	and	widget-specific	options	is	made	in	this
document.	Some	options	don't	apply	to	some	kinds	of	widgets.	Whether	a	given
widget	responds	to	a	particular	option	depends	on	the	class	of	the	widget;
buttons	have	a	command	option,	labels	do	not.

The	options	supported	by	a	given	widget	are	listed	in	that	widget's	man	page,	or
can	be	queried	at	runtime	by	calling	the	config()	method	without	arguments,

or	by	calling	the	keys()	method	on	that	widget.	The	return	value	of	these	calls
is	a	dictionary	whose	key	is	the	name	of	the	option	as	a	string	(for	example,
'relief')	and	whose	values	are	5-tuples.

Some	options,	like	bg	are	synonyms	for	common	options	with	long	names	(bg
is	shorthand	for	"background").	Passing	the	config()	method	the	name	of	a
shorthand	option	will	return	a	2-tuple,	not	5-tuple.	The	2-tuple	passed	back	will
contain	the	name	of	the	synonym	and	the	``real''	option	(such	as	('bg',
'background')).

Index Meaning Example
0 option	name 'relief'

1 option	name	for	database	lookup 'relief'

2 option	class	for	database	lookup 'Relief'

3 default	value 'raised'

4 current	value 'groove'

Example:

>>>	print	fred.config()

{'relief'	:	('relief',	'relief',	'Relief',	'raised',	'groove')}

Of	course,	the	dictionary	printed	will	include	all	the	options	available	and	their
values.	This	is	meant	only	as	an	example.

Python	Library	Reference
Previous:	16.1.6	Handy	Reference	Up:	16.1.6	Handy	Reference	Next:	16.1.6.2
The	Packer

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.1.6.1	Setting	Options	Up:	16.1.6	Handy	Reference	Next:	16.1.6.3
Packer	Options

16.1.6.2	The	Packer

The	packer	is	one	of	Tk's	geometry-management	mechanisms.

Geometry	managers	are	used	to	specify	the	relative	positioning	of	the
positioning	of	widgets	within	their	container	-	their	mutual	master.	In	contrast	to
the	more	cumbersome	placer	(which	is	used	less	commonly,	and	we	do	not
cover	here),	the	packer	takes	qualitative	relationship	specification	-	above,	to	the
left	of,	filling,	etc	-	and	works	everything	out	to	determine	the	exact	placement
coordinates	for	you.

The	size	of	any	master	widget	is	determined	by	the	size	of	the	"slave	widgets"
inside.	The	packer	is	used	to	control	where	slave	widgets	appear	inside	the
master	into	which	they	are	packed.	You	can	pack	widgets	into	frames,	and
frames	into	other	frames,	in	order	to	achieve	the	kind	of	layout	you	desire.
Additionally,	the	arrangement	is	dynamically	adjusted	to	accommodate
incremental	changes	to	the	configuration,	once	it	is	packed.

Note	that	widgets	do	not	appear	until	they	have	had	their	geometry	specified
with	a	geometry	manager.	It's	a	common	early	mistake	to	leave	out	the	geometry
specification,	and	then	be	surprised	when	the	widget	is	created	but	nothing
appears.	A	widget	will	appear	only	after	it	has	had,	for	example,	the	packer's
pack()	method	applied	to	it.

The	pack()	method	can	be	called	with	keyword-option/value	pairs	that	control
where	the	widget	is	to	appear	within	its	container,	and	how	it	is	to	behave	when
the	main	application	window	is	resized.	Here	are	some	examples:

				fred.pack()																					#	defaults	to	side	=	"top"

				fred.pack(side	=	"left")

				fred.pack(expand	=	1)

Python	Library	Reference
Previous:	16.1.6.1	Setting	Options	Up:	16.1.6	Handy	Reference	Next:	16.1.6.3
Packer	Options

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.1.6.2	The	Packer	Up:	16.1.6	Handy	Reference	Next:	16.1.6.4
Coupling	Widget	Variables

16.1.6.3	Packer	Options

For	more	extensive	information	on	the	packer	and	the	options	that	it	can	take,
see	the	man	pages	and	page	183	of	John	Ousterhout's	book.

anchor
Anchor	type.	Denotes	where	the	packer	is	to	place	each	slave	in	its	parcel.

expand
Boolean,	0	or	1.

fill
Legal	values:	'x',	'y',	'both',	'none'.

ipadx	and	ipady
A	distance	-	designating	internal	padding	on	each	side	of	the	slave	widget.

padx	and	pady
A	distance	-	designating	external	padding	on	each	side	of	the	slave	widget.

side
Legal	values	are:	'left',	'right',	'top',	'bottom'.

Python	Library	Reference
Previous:	16.1.6.2	The	Packer	Up:	16.1.6	Handy	Reference	Next:	16.1.6.4
Coupling	Widget	Variables

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.1.6.3	Packer	Options	Up:	16.1.6	Handy	Reference	Next:	16.1.6.5
The	Window	Manager

16.1.6.4	Coupling	Widget	Variables

The	current-value	setting	of	some	widgets	(like	text	entry	widgets)	can	be
connected	directly	to	application	variables	by	using	special	options.	These
options	are	variable,	textvariable,	onvalue,	offvalue,	and
value.	This	connection	works	both	ways:	if	the	variable	changes	for	any
reason,	the	widget	it's	connected	to	will	be	updated	to	reflect	the	new	value.

Unfortunately,	in	the	current	implementation	of	Tkinter	it	is	not	possible	to
hand	over	an	arbitrary	Python	variable	to	a	widget	through	a	variable	or
textvariable	option.	The	only	kinds	of	variables	for	which	this	works	are
variables	that	are	subclassed	from	a	class	called	Variable,	defined	in	the
Tkinter	module.

There	are	many	useful	subclasses	of	Variable	already	defined:	StringVar,
IntVar,	DoubleVar,	and	BooleanVar.	To	read	the	current	value	of	such	a
variable,	call	the	get()	method	on	it,	and	to	change	its	value	you	call	the
set()	method.	If	you	follow	this	protocol,	the	widget	will	always	track	the
value	of	the	variable,	with	no	further	intervention	on	your	part.

For	example:

class	App(Frame):

				def	__init__(self,	master=None):

								Frame.__init__(self,	master)

								self.pack()

								

								self.entrythingy	=	Entry()

								self.entrythingy.pack()

								

								self.button.pack()

								#	here	is	the	application	variable

								self.contents	=	StringVar()

								#	set	it	to	some	value

								self.contents.set("this	is	a	variable")

								#	tell	the	entry	widget	to	watch	this	variable

								self.entrythingy["textvariable"]	=	self.contents

								

								#	and	here	we	get	a	callback	when	the	user	hits	return.

								#	we	will	have	the	program	print	out	the	value	of	the

								#	application	variable	when	the	user	hits	return

								self.entrythingy.bind('<Key-Return>',

																														self.print_contents)

				def	print_contents(self,	event):

								print	"hi.	contents	of	entry	is	now	---->",	\

														self.contents.get()

Python	Library	Reference
Previous:	16.1.6.3	Packer	Options	Up:	16.1.6	Handy	Reference	Next:	16.1.6.5
The	Window	Manager

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.1.6.4	Coupling	Widget	Variables	Up:	16.1.6	Handy	Reference
Next:	16.1.6.6	Tk	Option	Data

16.1.6.5	The	Window	Manager

In	Tk,	there	is	a	utility	command,	wm,	for	interacting	with	the	window	manager.
Options	to	the	wm	command	allow	you	to	control	things	like	titles,	placement,
icon	bitmaps,	and	the	like.	In	Tkinter,	these	commands	have	been
implemented	as	methods	on	the	Wm	class.	Toplevel	widgets	are	subclassed	from
the	Wm	class,	and	so	can	call	the	Wm	methods	directly.

To	get	at	the	toplevel	window	that	contains	a	given	widget,	you	can	often	just
refer	to	the	widget's	master.	Of	course	if	the	widget	has	been	packed	inside	of	a
frame,	the	master	won't	represent	a	toplevel	window.	To	get	at	the	toplevel
window	that	contains	an	arbitrary	widget,	you	can	call	the	_root()	method.
This	method	begins	with	an	underscore	to	denote	the	fact	that	this	function	is
part	of	the	implementation,	and	not	an	interface	to	Tk	functionality.

Here	are	some	examples	of	typical	usage:

from	Tkinter	import	*

class	App(Frame):

				def	__init__(self,	master=None):

								Frame.__init__(self,	master)

								self.pack()

#	create	the	application

myapp	=	App()

#

#	here	are	method	calls	to	the	window	manager	class

#

myapp.master.title("My	Do-Nothing	Application")

myapp.master.maxsize(1000,	400)

#	start	the	program

myapp.mainloop()

Python	Library	Reference
Previous:	16.1.6.4	Coupling	Widget	Variables	Up:	16.1.6	Handy	Reference
Next:	16.1.6.6	Tk	Option	Data

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.1.6.5	The	Window	Manager	Up:	16.1.6	Handy	Reference	Next:
16.1.6.7	Bindings	and	Events

16.1.6.6	Tk	Option	Data	Types

anchor
Legal	values	are	points	of	the	compass:	"n",	"ne",	"e",	"se",	"s",
"sw",	"w",	"nw",	and	also	"center".

bitmap
There	are	eight	built-in,	named	bitmaps:	'error',	'gray25',
'gray50',	'hourglass',	'info',	'questhead',	'question',
'warning'.	To	specify	an	X	bitmap	filename,	give	the	full	path	to	the
file,	preceded	with	an	@,	as	in
"@/usr/contrib/bitmap/gumby.bit".

boolean
You	can	pass	integers	0	or	1	or	the	strings	"yes"	or	"no"	.

callback
This	is	any	Python	function	that	takes	no	arguments.	For	example:

				def	print_it():

												print	"hi	there"

				fred["command"]	=	print_it

color
Colors	can	be	given	as	the	names	of	X	colors	in	the	rgb.txt	file,	or	as	strings
representing	RGB	values	in	4	bit:	"#RGB",	8	bit:	"#RRGGBB",	12	bit"
"#RRRGGGBBB",	or	16	bit	"#RRRRGGGGBBBB"	ranges,	where	R,G,B
here	represent	any	legal	hex	digit.	See	page	160	of	Ousterhout's	book	for
details.

cursor
The	standard	X	cursor	names	from	cursorfont.h	can	be	used,	without	the
XC_	prefix.	For	example	to	get	a	hand	cursor	(XC_hand2),	use	the	string
"hand2".	You	can	also	specify	a	bitmap	and	mask	file	of	your	own.	See
page	179	of	Ousterhout's	book.

distance
Screen	distances	can	be	specified	in	either	pixels	or	absolute	distances.
Pixels	are	given	as	numbers	and	absolute	distances	as	strings,	with	the
trailing	character	denoting	units:	c	for	centimeters,	i	for	inches,	m	for
millimeters,	p	for	printer's	points.	For	example,	3.5	inches	is	expressed	as
"3.5i".

font
Tk	uses	a	list	font	name	format,	such	as	{courier	10	bold}.	Font
sizes	with	positive	numbers	are	measured	in	points;	sizes	with	negative
numbers	are	measured	in	pixels.

geometry
This	is	a	string	of	the	form	"widthxheight",	where	width	and	height	are
measured	in	pixels	for	most	widgets	(in	characters	for	widgets	displaying
text).	For	example:	fred["geometry"]	=	"200x100".

justify
Legal	values	are	the	strings:	"left",	"center",	"right",	and
"fill".

region
This	is	a	string	with	four	space-delimited	elements,	each	of	which	is	a	legal
distance	(see	above).	For	example:	"2	3	4	5"	and	"3i	2i	4.5i	2i"
and	"3c	2c	4c	10.43c"	are	all	legal	regions.

relief
Determines	what	the	border	style	of	a	widget	will	be.	Legal	values	are:
"raised",	"sunken",	"flat",	"groove",	and	"ridge".

scrollcommand
This	is	almost	always	the	set()	method	of	some	scrollbar	widget,	but	can
be	any	widget	method	that	takes	a	single	argument.	Refer	to	the	file
Demo/tkinter/matt/canvas-with-scrollbars.py	in	the	Python	source
distribution	for	an	example.

wrap:
Must	be	one	of:	"none",	"char",	or	"word".

Python	Library	Reference
Previous:	16.1.6.5	The	Window	Manager	Up:	16.1.6	Handy	Reference	Next:
16.1.6.7	Bindings	and	Events

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.1.6.6	Tk	Option	Data	Up:	16.1.6	Handy	Reference	Next:	16.1.6.8
The	index	Parameter

16.1.6.7	Bindings	and	Events

The	bind	method	from	the	widget	command	allows	you	to	watch	for	certain
events	and	to	have	a	callback	function	trigger	when	that	event	type	occurs.	The
form	of	the	bind	method	is:

				def	bind(self,	sequence,	func,	add=''):

where:

sequence
is	a	string	that	denotes	the	target	kind	of	event.	(See	the	bind	man	page	and
page	201	of	John	Ousterhout's	book	for	details).

func
is	a	Python	function,	taking	one	argument,	to	be	invoked	when	the	event
occurs.	An	Event	instance	will	be	passed	as	the	argument.	(Functions
deployed	this	way	are	commonly	known	as	callbacks.)

add
is	optional,	either	""	or	"+".	Passing	an	empty	string	denotes	that	this
binding	is	to	replace	any	other	bindings	that	this	event	is	associated	with.
Preceeding	with	a	"+"	means	that	this	function	is	to	be	added	to	the	list	of
functions	bound	to	this	event	type.

For	example:

				def	turnRed(self,	event):

								event.widget["activeforeground"]	=	"red"

				self.button.bind("<Enter>",	self.turnRed)

Notice	how	the	widget	field	of	the	event	is	being	accesed	in	the	turnRed()
callback.	This	field	contains	the	widget	that	caught	the	X	event.	The	following
table	lists	the	other	event	fields	you	can	access,	and	how	they	are	denoted	in	Tk,
which	can	be	useful	when	referring	to	the	Tk	man	pages.

Tk						Tkinter	Event	Field													Tk						Tkinter	Event	Field	

--						-------------------													--						-------------------

%f						focus																											%A						char

%h						height																										%E						send_event

%k						keycode																									%K						keysym

%s						state																											%N						keysym_num

%t						time																												%T						type

%w						width																											%W						widget

%x						x																															%X						x_root

%y						y																															%Y						y_root

Python	Library	Reference
Previous:	16.1.6.6	Tk	Option	Data	Up:	16.1.6	Handy	Reference	Next:	16.1.6.8
The	index	Parameter

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.1.6.7	Bindings	and	Events	Up:	16.1.6	Handy	Reference	Next:
16.1.6.9	Images

16.1.6.8	The	index	Parameter

A	number	of	widgets	require``index''	parameters	to	be	passed.	These	are	used	to
point	at	a	specific	place	in	a	Text	widget,	or	to	particular	characters	in	an	Entry
widget,	or	to	particular	menu	items	in	a	Menu	widget.

Entry	widget	indexes	(index,	view	index,	etc.)
Entry	widgets	have	options	that	refer	to	character	positions	in	the	text	being
displayed.	You	can	use	these	Tkinter	functions	to	access	these	special
points	in	text	widgets:

AtEnd()
refers	to	the	last	position	in	the	text

AtInsert()
refers	to	the	point	where	the	text	cursor	is

AtSelFirst()
indicates	the	beginning	point	of	the	selected	text

AtSelLast()
denotes	the	last	point	of	the	selected	text	and	finally

At(x[,	y])
refers	to	the	character	at	pixel	location	x,	y	(with	y	not	used	in	the	case
of	a	text	entry	widget,	which	contains	a	single	line	of	text).

Text	widget	indexes
The	index	notation	for	Text	widgets	is	very	rich	and	is	best	described	in	the
Tk	man	pages.

Menu	indexes	(menu.invoke(),	menu.entryconfig(),	etc.)

Some	options	and	methods	for	menus	manipulate	specific	menu	entries.
Anytime	a	menu	index	is	needed	for	an	option	or	a	parameter,	you	may	pass
in:

an	integer	which	refers	to	the	numeric	position	of	the	entry	in	the
widget,	counted	from	the	top,	starting	with	0;
the	string	'active',	which	refers	to	the	menu	position	that	is
currently	under	the	cursor;
the	string	"last"	which	refers	to	the	last	menu	item;
An	integer	preceded	by	@,	as	in	@6,	where	the	integer	is	interpreted	as
a	y	pixel	coordinate	in	the	menu's	coordinate	system;
the	string	"none",	which	indicates	no	menu	entry	at	all,	most	often
used	with	menu.activate()	to	deactivate	all	entries,	and	finally,
a	text	string	that	is	pattern	matched	against	the	label	of	the	menu	entry,
as	scanned	from	the	top	of	the	menu	to	the	bottom.	Note	that	this	index
type	is	considered	after	all	the	others,	which	means	that	matches	for
menu	items	labelled	last,	active,	or	none	may	be	interpreted	as
the	above	literals,	instead.

Python	Library	Reference
Previous:	16.1.6.7	Bindings	and	Events	Up:	16.1.6	Handy	Reference	Next:
16.1.6.9	Images

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.1.6.8	The	index	Parameter	Up:	16.1.6	Handy	Reference	Next:
16.2	Tix

16.1.6.9	Images

Bitmap/Pixelmap	images	can	be	created	through	the	subclasses	of
Tkinter.Image:

BitmapImage	can	be	used	for	X11	bitmap	data.
PhotoImage	can	be	used	for	GIF	and	PPM/PGM	color	bitmaps.

Either	type	of	image	is	created	through	either	the	file	or	the	data	option
(other	options	are	available	as	well).

The	image	object	can	then	be	used	wherever	an	image	option	is	supported	by
some	widget	(e.g.	labels,	buttons,	menus).	In	these	cases,	Tk	will	not	keep	a
reference	to	the	image.	When	the	last	Python	reference	to	the	image	object	is
deleted,	the	image	data	is	deleted	as	well,	and	Tk	will	display	an	empty	box
wherever	the	image	was	used.

Python	Library	Reference
Previous:	16.1.6.8	The	index	Parameter	Up:	16.1.6	Handy	Reference	Next:
16.2	Tix

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.2.2	Tix	Widgets	Up:	16.2.2	Tix	Widgets	Next:	16.2.2.2	File
Selectors

16.2.2.1	Basic	Widgets

class	Balloon()
A	Balloon	that	pops	up	over	a	widget	to	provide	help.	When	the	user	moves
the	cursor	inside	a	widget	to	which	a	Balloon	widget	has	been	bound,	a
small	pop-up	window	with	a	descriptive	message	will	be	shown	on	the
screen.

class	ButtonBox()
The	ButtonBox	widget	creates	a	box	of	buttons,	such	as	is	commonly	used
for	Ok	Cancel.

class	ComboBox()
The	ComboBox	widget	is	similar	to	the	combo	box	control	in	MS
Windows.	The	user	can	select	a	choice	by	either	typing	in	the	entry
subwdget	or	selecting	from	the	listbox	subwidget.

class	Control()
The	Control	widget	is	also	known	as	the	SpinBox	widget.	The	user	can
adjust	the	value	by	pressing	the	two	arrow	buttons	or	by	entering	the	value
directly	into	the	entry.	The	new	value	will	be	checked	against	the	user-
defined	upper	and	lower	limits.

class	LabelEntry()
The	LabelEntry	widget	packages	an	entry	widget	and	a	label	into	one	mega
widget.	It	can	be	used	be	used	to	simplify	the	creation	of	``entry-form''	type
of	interface.

class	LabelFrame()
The	LabelFrame	widget	packages	a	frame	widget	and	a	label	into	one	mega
widget.	To	create	widgets	inside	a	LabelFrame	widget,	one	creates	the	new
widgets	relative	to	the	frame	subwidget	and	manage	them	inside	the
frame	subwidget.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixBalloon.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixButtonBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixComboBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixControl.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixLabelEntry.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixLabelFrame.htm

class	Meter()
The	Meter	widget	can	be	used	to	show	the	progress	of	a	background	job
which	may	take	a	long	time	to	execute.

class	OptionMenu()
The	OptionMenu	creates	a	menu	button	of	options.

class	PopupMenu()
The	PopupMenu	widget	can	be	used	as	a	replacement	of	the	tk_popup
command.	The	advantage	of	the	Tix	PopupMenu	widget	is	it	requires	less
application	code	to	manipulate.

class	Select()
The	Select	widget	is	a	container	of	button	subwidgets.	It	can	be	used	to
provide	radio-box	or	check-box	style	of	selection	options	for	the	user.

class	StdButtonBox()
The	StdButtonBox	widget	is	a	group	of	standard	buttons	for	Motif-like
dialog	boxes.

Python	Library	Reference
Previous:	16.2.2	Tix	Widgets	Up:	16.2.2	Tix	Widgets	Next:	16.2.2.2	File
Selectors

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixMeter.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixOptionMenu.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixPopupMenu.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixSelect.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixStdButtonBox.htm

Previous:	16.2.2.1	Basic	Widgets	Up:	16.2.2	Tix	Widgets	Next:	16.2.2.3
Hierachical	ListBox

16.2.2.2	File	Selectors

class	DirList()
The	DirList	widget	displays	a	list	view	of	a	directory,	its	previous
directories	and	its	sub-directories.	The	user	can	choose	one	of	the
directories	displayed	in	the	list	or	change	to	another	directory.

class	DirTree()
The	DirTree	widget	displays	a	tree	view	of	a	directory,	its	previous
directories	and	its	sub-directories.	The	user	can	choose	one	of	the
directories	displayed	in	the	list	or	change	to	another	directory.

class	DirSelectDialog()
The	DirSelectDialog	widget	presents	the	directories	in	the	file	system	in	a
dialog	window.	The	user	can	use	this	dialog	window	to	navigate	through
the	file	system	to	select	the	desired	directory.

class	DirSelectBox()
The	DirSelectBox	is	similar	to	the	standard	Motif(TM)	directory-
selection	box.	It	is	generally	used	for	the	user	to	choose	a	directory.
DirSelectBox	stores	the	directories	mostly	recently	selected	into	a
ComboBox	widget	so	that	they	can	be	quickly	selected	again.

class	ExFileSelectBox()
The	ExFileSelectBox	widget	is	usually	embedded	in	a
tixExFileSelectDialog	widget.	It	provides	an	convenient	method	for	the
user	to	select	files.	The	style	of	the	ExFileSelectBox	widget	is	very
similar	to	the	standard	file	dialog	on	MS	Windows	3.1.

class	FileSelectBox()
The	FileSelectBox	is	similar	to	the	standard	Motif(TM)	file-selection	box.
It	is	generally	used	for	the	user	to	choose	a	file.	FileSelectBox	stores	the
files	mostly	recently	selected	into	a	ComboBox	widget	so	that	they	can	be
quickly	selected	again.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirTree.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirSelectDialog.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixExFileSelectBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixFileSelectBox.htm

class	FileEntry()
The	FileEntry	widget	can	be	used	to	input	a	filename.	The	user	can	type	in
the	filename	manually.	Alternatively,	the	user	can	press	the	button	widget
that	sits	next	to	the	entry,	which	will	bring	up	a	file	selection	dialog.

Python	Library	Reference
Previous:	16.2.2.1	Basic	Widgets	Up:	16.2.2	Tix	Widgets	Next:	16.2.2.3
Hierachical	ListBox

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixFileEntry.htm

Previous:	16.2.2.2	File	Selectors	Up:	16.2.2	Tix	Widgets	Next:	16.2.2.4
Tabular	ListBox

16.2.2.3	Hierachical	ListBox

class	HList()
The	HList	widget	can	be	used	to	display	any	data	that	have	a	hierarchical
structure,	for	example,	file	system	directory	trees.	The	list	entries	are
indented	and	connected	by	branch	lines	according	to	their	places	in	the
hierachy.

class	CheckList()
The	CheckList	widget	displays	a	list	of	items	to	be	selected	by	the	user.
CheckList	acts	similarly	to	the	Tk	checkbutton	or	radiobutton	widgets,
except	it	is	capable	of	handling	many	more	items	than	checkbuttons	or
radiobuttons.

class	Tree()
The	Tree	widget	can	be	used	to	display	hierachical	data	in	a	tree	form.	The
user	can	adjust	the	view	of	the	tree	by	opening	or	closing	parts	of	the	tree.

Python	Library	Reference
Previous:	16.2.2.2	File	Selectors	Up:	16.2.2	Tix	Widgets	Next:	16.2.2.4
Tabular	ListBox

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixHList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixCheckList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixTree.htm

Previous:	16.2.2.3	Hierachical	ListBox	Up:	16.2.2	Tix	Widgets	Next:	16.2.2.5
Manager	Widgets

16.2.2.4	Tabular	ListBox

class	TList()
The	TList	widget	can	be	used	to	display	data	in	a	tabular	format.	The	list
entries	of	a	TList	widget	are	similar	to	the	entries	in	the	Tk	listbox
widget.	The	main	differences	are	(1)	the	TList	widget	can	display	the	list
entries	in	a	two	dimensional	format	and	(2)	you	can	use	graphical	images	as
well	as	multiple	colors	and	fonts	for	the	list	entries.

Python	Library	Reference
Previous:	16.2.2.3	Hierachical	ListBox	Up:	16.2.2	Tix	Widgets	Next:	16.2.2.5
Manager	Widgets

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixTList.htm

Previous:	16.2.2.4	Tabular	ListBox	Up:	16.2.2	Tix	Widgets	Next:	16.2.2.6
Image	Types

16.2.2.5	Manager	Widgets

class	PanedWindow()
The	PanedWindow	widget	allows	the	user	to	interactively	manipulate	the
sizes	of	several	panes.	The	panes	can	be	arranged	either	vertically	or
horizontally.	The	user	changes	the	sizes	of	the	panes	by	dragging	the	resize
handle	between	two	panes.

class	ListNoteBook()
The	ListNoteBook	widget	is	very	similar	to	the	TixNoteBook	widget:	it
can	be	used	to	display	many	windows	in	a	limited	space	using	a	notebook
metaphor.	The	notebook	is	divided	into	a	stack	of	pages	(windows).	At	one
time	only	one	of	these	pages	can	be	shown.	The	user	can	navigate	through
these	pages	by	choosing	the	name	of	the	desired	page	in	the	hlist
subwidget.

class	NoteBook()
The	NoteBook	widget	can	be	used	to	display	many	windows	in	a	limited
space	using	a	notebook	metaphor.	The	notebook	is	divided	into	a	stack	of
pages.	At	one	time	only	one	of	these	pages	can	be	shown.	The	user	can
navigate	through	these	pages	by	choosing	the	visual	``tabs''	at	the	top	of	the
NoteBook	widget.

Python	Library	Reference
Previous:	16.2.2.4	Tabular	ListBox	Up:	16.2.2	Tix	Widgets	Next:	16.2.2.6
Image	Types

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixPanedWindow.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixListNoteBook.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixNoteBook.htm

Previous:	16.2.2.5	Manager	Widgets	Up:	16.2.2	Tix	Widgets	Next:	16.2.2.7
Miscellaneous	Widgets

16.2.2.6	Image	Types

The	Tix	module	adds:

pixmap	capabilities	to	all	Tix	and	Tkinter	widgets	to	create	color
images	from	XPM	files.

Compound	image	types	can	be	used	to	create	images	that	consists	of
multiple	horizontal	lines;	each	line	is	composed	of	a	series	of	items	(texts,
bitmaps,	images	or	spaces)	arranged	from	left	to	right.	For	example,	a
compound	image	can	be	used	to	display	a	bitmap	and	a	text	string
simutaneously	in	a	Tk	Button	widget.

Python	Library	Reference
Previous:	16.2.2.5	Manager	Widgets	Up:	16.2.2	Tix	Widgets	Next:	16.2.2.7
Miscellaneous	Widgets

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/pixmap.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/compound.html

Previous:	16.2.2.6	Image	Types	Up:	16.2.2	Tix	Widgets	Next:	16.2.2.8	Form
Geometry	Manager

16.2.2.7	Miscellaneous	Widgets

class	InputOnly()
The	InputOnly	widgets	are	to	accept	inputs	from	the	user,	which	can	be
done	with	the	bind	command	(UNIX	only).

Python	Library	Reference
Previous:	16.2.2.6	Image	Types	Up:	16.2.2	Tix	Widgets	Next:	16.2.2.8	Form
Geometry	Manager

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixInputOnly.htm

Previous:	16.2.2.7	Miscellaneous	Widgets	Up:	16.2.2	Tix	Widgets	Next:	16.2.3
Tix	Commands

16.2.2.8	Form	Geometry	Manager

In	addition,	Tix	augments	Tkinter	by	providing:

class	Form()
The	Form	geometry	manager	based	on	attachment	rules	for	all	Tk	widgets.

Python	Library	Reference
Previous:	16.2.2.7	Miscellaneous	Widgets	Up:	16.2.2	Tix	Widgets	Next:	16.2.3
Tix	Commands

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixForm.htm

Previous:	16.5.1	Menus	Up:	16.5.1	Menus	Next:	16.5.1.2	Edit	menu

16.5.1.1	File	menu

New	window
create	a	new	editing	window

Open...
open	an	existing	file

Open	module...
open	an	existing	module	(searches	sys.path)

Class	browser
show	classes	and	methods	in	current	file

Path	browser
show	sys.path	directories,	modules,	classes	and	methods

Save
save	current	window	to	the	associated	file	(unsaved	windows	have	a	*
before	and	after	the	window	title)

Save	As...
save	current	window	to	new	file,	which	becomes	the	associated	file

Save	Copy	As...
save	current	window	to	different	file	without	changing	the	associated	file

Close
close	current	window	(asks	to	save	if	unsaved)

Exit
close	all	windows	and	quit	IDLE	(asks	to	save	if	unsaved)

Python	Library	Reference
Previous:	16.5.1	Menus	Up:	16.5.1	Menus	Next:	16.5.1.2	Edit	menu

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.5.1.1	File	menu	Up:	16.5.1	Menus	Next:	16.5.1.3	Windows	menu

16.5.1.2	Edit	menu

Undo
Undo	last	change	to	current	window	(max	1000	changes)

Redo
Redo	last	undone	change	to	current	window

Cut
Copy	selection	into	system-wide	clipboard;	then	delete	selection

Copy
Copy	selection	into	system-wide	clipboard

Paste
Insert	system-wide	clipboard	into	window

Select	All
Select	the	entire	contents	of	the	edit	buffer

Find...
Open	a	search	dialog	box	with	many	options

Find	again
Repeat	last	search

Find	selection
Search	for	the	string	in	the	selection

Find	in	Files...
Open	a	search	dialog	box	for	searching	files

Replace...
Open	a	search-and-replace	dialog	box

Go	to	line
Ask	for	a	line	number	and	show	that	line

Indent	region
Shift	selected	lines	right	4	spaces

Dedent	region
Shift	selected	lines	left	4	spaces

Comment	out	region
Insert	##	in	front	of	selected	lines

Uncomment	region

Remove	leading	#	or	##	from	selected	lines
Tabify	region

Turns	leading	stretches	of	spaces	into	tabs
Untabify	region

Turn	all	tabs	into	the	right	number	of	spaces
Expand	word

Expand	the	word	you	have	typed	to	match	another	word	in	the	same	buffer;
repeat	to	get	a	different	expansion

Format	Paragraph
Reformat	the	current	blank-line-separated	paragraph

Import	module
Import	or	reload	the	current	module

Run	script
Execute	the	current	file	in	the	__main__	namespace

Python	Library	Reference
Previous:	16.5.1.1	File	menu	Up:	16.5.1	Menus	Next:	16.5.1.3	Windows	menu

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.5.1.2	Edit	menu	Up:	16.5.1	Menus	Next:	16.5.1.4	Debug	menu
(in

16.5.1.3	Windows	menu

Zoom	Height
toggles	the	window	between	normal	size	(24x80)	and	maximum	height.

The	rest	of	this	menu	lists	the	names	of	all	open	windows;	select	one	to	bring	it
to	the	foreground	(deiconifying	it	if	necessary).

Python	Library	Reference
Previous:	16.5.1.2	Edit	menu	Up:	16.5.1	Menus	Next:	16.5.1.4	Debug	menu
(in

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.5.1.3	Windows	menu	Up:	16.5.1	Menus	Next:	16.5.2	Basic
editing	and

16.5.1.4	Debug	menu	(in	the	Python	Shell	window	only)

Go	to	file/line
look	around	the	insert	point	for	a	filename	and	linenumber,	open	the	file,
and	show	the	line.

Open	stack	viewer
show	the	stack	traceback	of	the	last	exception

Debugger	toggle
Run	commands	in	the	shell	under	the	debugger

JIT	Stack	viewer	toggle
Open	stack	viewer	on	traceback

Python	Library	Reference
Previous:	16.5.1.3	Windows	menu	Up:	16.5.1	Menus	Next:	16.5.2	Basic
editing	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.5.2	Basic	editing	and	Up:	16.5.2	Basic	editing	and	Next:	16.5.2.2
Python	Shell	window

16.5.2.1	Automatic	indentation

After	a	block-opening	statement,	the	next	line	is	indented	by	4	spaces	(in	the
Python	Shell	window	by	one	tab).	After	certain	keywords	(break,	return	etc.)	the
next	line	is	dedented.	In	leading	indentation,	Backspace	deletes	up	to	4	spaces	if
they	are	there.	Tab	inserts	1-4	spaces	(in	the	Python	Shell	window	one	tab).	See
also	the	indent/dedent	region	commands	in	the	edit	menu.

Python	Library	Reference
Previous:	16.5.2	Basic	editing	and	Up:	16.5.2	Basic	editing	and	Next:	16.5.2.2
Python	Shell	window

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.5.2.1	Automatic	indentation	Up:	16.5.2	Basic	editing	and	Next:
16.5.3	Syntax	colors

16.5.2.2	Python	Shell	window

C-C	interrupts	executing	command
C-D	sends	end-of-file;	closes	window	if	typed	at	a	"»>	"	prompt

Alt-p	retrieves	previous	command	matching	what	you	have	typed
Alt-n	retrieves	next
Return	while	on	any	previous	command	retrieves	that	command
Alt-/	(Expand	word)	is	also	useful	here

Python	Library	Reference
Previous:	16.5.2.1	Automatic	indentation	Up:	16.5.2	Basic	editing	and	Next:
16.5.3	Syntax	colors

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	16.5.3	Syntax	colors	Up:	16.5.3	Syntax	colors	Next:	16.6	Other
Graphical	User

16.5.3.1	Command	line	usage

idle.py	[-c	command]	[-d]	[-e]	[-s]	[-t	title]	[arg]	...

-c	command		run	this	command

-d										enable	debugger

-e										edit	mode;	arguments	are	files	to	be	edited

-s										run	$IDLESTARTUP	or	$PYTHONSTARTUP	first

-t	title				set	title	of	shell	window

If	there	are	arguments:

1.	 If	-e	is	used,	arguments	are	files	opened	for	editing	and	sys.argv	reflects
the	arguments	passed	to	IDLE	itself.

2.	 Otherwise,	if	-c	is	used,	all	arguments	are	placed	in	sys.argv[1:...],
with	sys.argv[0]	set	to	'-c'.

3.	 Otherwise,	if	neither	-e	nor	-c	is	used,	the	first	argument	is	a	script	which	is
executed	with	the	remaining	arguments	in	sys.argv[1:...]	and
sys.argv[0]	set	to	the	script	name.	If	the	script	name	is	'-',	no	script	is
executed	but	an	interactive	Python	session	is	started;	the	arguments	are	still
available	in	sys.argv.

Python	Library	Reference
Previous:	16.5.3	Syntax	colors	Up:	16.5.3	Syntax	colors	Next:	16.6	Other
Graphical	User

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.1.6	Examples	Up:	18.1.6	Examples	Next:	18.1.6.2	Information
Discovery

18.1.6.1	Emulation	of	compile()

While	many	useful	operations	may	take	place	between	parsing	and	bytecode
generation,	the	simplest	operation	is	to	do	nothing.	For	this	purpose,	using	the
parser	module	to	produce	an	intermediate	data	structure	is	equivalent	to	the
code

>>>	code	=	compile('a	+	5',	'file.py',	'eval')

>>>	a	=	5

>>>	eval(code)

10

The	equivalent	operation	using	the	parser	module	is	somewhat	longer,	and
allows	the	intermediate	internal	parse	tree	to	be	retained	as	an	AST	object:

>>>	import	parser

>>>	ast	=	parser.expr('a	+	5')

>>>	code	=	ast.compile('file.py')

>>>	a	=	5

>>>	eval(code)

10

An	application	which	needs	both	AST	and	code	objects	can	package	this	code
into	readily	available	functions:

import	parser

def	load_suite(source_string):

				ast	=	parser.suite(source_string)

				return	ast,	ast.compile()

def	load_expression(source_string):

				ast	=	parser.expr(source_string)

				return	ast,	ast.compile()

Python	Library	Reference
Previous:	18.1.6	Examples	Up:	18.1.6	Examples	Next:	18.1.6.2	Information
Discovery

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	18.1.6.1	Emulation	of	compile()	Up:	18.1.6	Examples	Next:	18.2
symbol

18.1.6.2	Information	Discovery

Some	applications	benefit	from	direct	access	to	the	parse	tree.	The	remainder	of
this	section	demonstrates	how	the	parse	tree	provides	access	to	module
documentation	defined	in	docstrings	without	requiring	that	the	code	being
examined	be	loaded	into	a	running	interpreter	via	import.	This	can	be	very
useful	for	performing	analyses	of	untrusted	code.

Generally,	the	example	will	demonstrate	how	the	parse	tree	may	be	traversed	to
distill	interesting	information.	Two	functions	and	a	set	of	classes	are	developed
which	provide	programmatic	access	to	high	level	function	and	class	definitions
provided	by	a	module.	The	classes	extract	information	from	the	parse	tree	and
provide	access	to	the	information	at	a	useful	semantic	level,	one	function
provides	a	simple	low-level	pattern	matching	capability,	and	the	other	function
defines	a	high-level	interface	to	the	classes	by	handling	file	operations	on	behalf
of	the	caller.	All	source	files	mentioned	here	which	are	not	part	of	the	Python
installation	are	located	in	the	Demo/parser/	directory	of	the	distribution.

The	dynamic	nature	of	Python	allows	the	programmer	a	great	deal	of	flexibility,
but	most	modules	need	only	a	limited	measure	of	this	when	defining	classes,
functions,	and	methods.	In	this	example,	the	only	definitions	that	will	be
considered	are	those	which	are	defined	in	the	top	level	of	their	context,	e.g.,	a
function	defined	by	a	def	statement	at	column	zero	of	a	module,	but	not	a
function	defined	within	a	branch	of	an	if	...	else	construct,	though	there	are
some	good	reasons	for	doing	so	in	some	situations.	Nesting	of	definitions	will	be
handled	by	the	code	developed	in	the	example.

To	construct	the	upper-level	extraction	methods,	we	need	to	know	what	the	parse
tree	structure	looks	like	and	how	much	of	it	we	actually	need	to	be	concerned
about.	Python	uses	a	moderately	deep	parse	tree	so	there	are	a	large	number	of
intermediate	nodes.	It	is	important	to	read	and	understand	the	formal	grammar
used	by	Python.	This	is	specified	in	the	file	Grammar/Grammar	in	the
distribution.	Consider	the	simplest	case	of	interest	when	searching	for
docstrings:	a	module	consisting	of	a	docstring	and	nothing	else.	(See	file
docstring.py.)

"""Some	documentation.

"""

Using	the	interpreter	to	take	a	look	at	the	parse	tree,	we	find	a	bewildering	mass
of	numbers	and	parentheses,	with	the	documentation	buried	deep	in	nested
tuples.

>>>	import	parser

>>>	import	pprint

>>>	ast	=	parser.suite(open('docstring.py').read())

>>>	tup	=	ast.totuple()

>>>	pprint.pprint(tup)

(257,

	(264,

		(265,

			(266,

				(267,

					(307,

						(287,

							(288,

								(289,

									(290,

										(292,

											(293,

												(294,

													(295,

														(296,

															(297,

																(298,

																	(299,

																		(300,	(3,	'"""Some	documentation.\n"""'))))))))))))))))),

			(4,	''))),

	(4,	''),

	(0,	''))

The	numbers	at	the	first	element	of	each	node	in	the	tree	are	the	node	types;	they
map	directly	to	terminal	and	non-terminal	symbols	in	the	grammar.
Unfortunately,	they	are	represented	as	integers	in	the	internal	representation,	and
the	Python	structures	generated	do	not	change	that.	However,	the	symbol	and
token	modules	provide	symbolic	names	for	the	node	types	and	dictionaries
which	map	from	the	integers	to	the	symbolic	names	for	the	node	types.

In	the	output	presented	above,	the	outermost	tuple	contains	four	elements:	the
integer	257	and	three	additional	tuples.	Node	type	257	has	the	symbolic	name
file_input.	Each	of	these	inner	tuples	contains	an	integer	as	the	first
element;	these	integers,	264,	4,	and	0,	represent	the	node	types	stmt,

NEWLINE,	and	ENDMARKER,	respectively.	Note	that	these	values	may	change
depending	on	the	version	of	Python	you	are	using;	consult	symbol.py	and
token.py	for	details	of	the	mapping.	It	should	be	fairly	clear	that	the	outermost
node	is	related	primarily	to	the	input	source	rather	than	the	contents	of	the	file,
and	may	be	disregarded	for	the	moment.	The	stmt	node	is	much	more
interesting.	In	particular,	all	docstrings	are	found	in	subtrees	which	are	formed
exactly	as	this	node	is	formed,	with	the	only	difference	being	the	string	itself.
The	association	between	the	docstring	in	a	similar	tree	and	the	defined	entity
(class,	function,	or	module)	which	it	describes	is	given	by	the	position	of	the
docstring	subtree	within	the	tree	defining	the	described	structure.

By	replacing	the	actual	docstring	with	something	to	signify	a	variable
component	of	the	tree,	we	allow	a	simple	pattern	matching	approach	to	check
any	given	subtree	for	equivalence	to	the	general	pattern	for	docstrings.	Since	the
example	demonstrates	information	extraction,	we	can	safely	require	that	the	tree
be	in	tuple	form	rather	than	list	form,	allowing	a	simple	variable	representation
to	be	['variable_name'].	A	simple	recursive	function	can	implement	the
pattern	matching,	returning	a	Boolean	and	a	dictionary	of	variable	name	to	value
mappings.	(See	file	example.py.)

from	types	import	ListType,	TupleType

def	match(pattern,	data,	vars=None):

				if	vars	is	None:

								vars	=	{}

				if	type(pattern)	is	ListType:

								vars[pattern[0]]	=	data

								return	1,	vars

				if	type(pattern)	is	not	TupleType:

								return	(pattern	==	data),	vars

				if	len(data)	!=	len(pattern):

								return	0,	vars

				for	pattern,	data	in	map(None,	pattern,	data):

								same,	vars	=	match(pattern,	data,	vars)

								if	not	same:

												break

				return	same,	vars

Using	this	simple	representation	for	syntactic	variables	and	the	symbolic	node
types,	the	pattern	for	the	candidate	docstring	subtrees	becomes	fairly	readable.
(See	file	example.py.)

import	symbol

import	token

DOCSTRING_STMT_PATTERN	=	(

				symbol.stmt,

				(symbol.simple_stmt,

					(symbol.small_stmt,

						(symbol.expr_stmt,

							(symbol.testlist,

								(symbol.test,

									(symbol.and_test,

										(symbol.not_test,

											(symbol.comparison,

												(symbol.expr,

													(symbol.xor_expr,

														(symbol.and_expr,

															(symbol.shift_expr,

																(symbol.arith_expr,

																	(symbol.term,

																		(symbol.factor,

																			(symbol.power,

																				(symbol.atom,

																					(token.STRING,	['docstring'])

)))))))))))))))),

					(token.NEWLINE,	'')

))

Using	the	match()	function	with	this	pattern,	extracting	the	module	docstring
from	the	parse	tree	created	previously	is	easy:

>>>	found,	vars	=	match(DOCSTRING_STMT_PATTERN,	tup[1])

>>>	found

1

>>>	vars

{'docstring':	'"""Some	documentation.\n"""'}

Once	specific	data	can	be	extracted	from	a	location	where	it	is	expected,	the
question	of	where	information	can	be	expected	needs	to	be	answered.	When
dealing	with	docstrings,	the	answer	is	fairly	simple:	the	docstring	is	the	first
stmt	node	in	a	code	block	(file_input	or	suite	node	types).	A	module
consists	of	a	single	file_input	node,	and	class	and	function	definitions	each
contain	exactly	one	suite	node.	Classes	and	functions	are	readily	identified	as
subtrees	of	code	block	nodes	which	start	with	(stmt,	(compound_stmt,
(classdef,	...	or	(stmt,	(compound_stmt,	(funcdef,
Note	that	these	subtrees	cannot	be	matched	by	match()	since	it	does	not
support	multiple	sibling	nodes	to	match	without	regard	to	number.	A	more
elaborate	matching	function	could	be	used	to	overcome	this	limitation,	but	this	is
sufficient	for	the	example.

Given	the	ability	to	determine	whether	a	statement	might	be	a	docstring	and
extract	the	actual	string	from	the	statement,	some	work	needs	to	be	performed	to
walk	the	parse	tree	for	an	entire	module	and	extract	information	about	the	names
defined	in	each	context	of	the	module	and	associate	any	docstrings	with	the
names.	The	code	to	perform	this	work	is	not	complicated,	but	bears	some
explanation.

The	public	interface	to	the	classes	is	straightforward	and	should	probably	be
somewhat	more	flexible.	Each	``major''	block	of	the	module	is	described	by	an
object	providing	several	methods	for	inquiry	and	a	constructor	which	accepts	at
least	the	subtree	of	the	complete	parse	tree	which	it	represents.	The
ModuleInfo	constructor	accepts	an	optional	name	parameter	since	it	cannot
otherwise	determine	the	name	of	the	module.

The	public	classes	include	ClassInfo,	FunctionInfo,	and	ModuleInfo.
All	objects	provide	the	methods	get_name(),	get_docstring(),
get_class_names(),	and	get_class_info().	The	ClassInfo
objects	support	get_method_names()	and	get_method_info()	while
the	other	classes	provide	get_function_names()	and
get_function_info().

Within	each	of	the	forms	of	code	block	that	the	public	classes	represent,	most	of
the	required	information	is	in	the	same	form	and	is	accessed	in	the	same	way,
with	classes	having	the	distinction	that	functions	defined	at	the	top	level	are
referred	to	as	``methods.''	Since	the	difference	in	nomenclature	reflects	a	real
semantic	distinction	from	functions	defined	outside	of	a	class,	the
implementation	needs	to	maintain	the	distinction.	Hence,	most	of	the
functionality	of	the	public	classes	can	be	implemented	in	a	common	base	class,
SuiteInfoBase,	with	the	accessors	for	function	and	method	information
provided	elsewhere.	Note	that	there	is	only	one	class	which	represents	function
and	method	information;	this	parallels	the	use	of	the	def	statement	to	define
both	types	of	elements.

Most	of	the	accessor	functions	are	declared	in	SuiteInfoBase	and	do	not
need	to	be	overridden	by	subclasses.	More	importantly,	the	extraction	of	most
information	from	a	parse	tree	is	handled	through	a	method	called	by	the
SuiteInfoBase	constructor.	The	example	code	for	most	of	the	classes	is
clear	when	read	alongside	the	formal	grammar,	but	the	method	which	recursively
creates	new	information	objects	requires	further	examination.	Here	is	the

relevant	part	of	the	SuiteInfoBase	definition	from	example.py:

class	SuiteInfoBase:

				_docstring	=	''

				_name	=	''

				def	__init__(self,	tree	=	None):

								self._class_info	=	{}

								self._function_info	=	{}

								if	tree:

												self._extract_info(tree)

				def	_extract_info(self,	tree):

								#	extract	docstring

								if	len(tree)	==	2:

												found,	vars	=	match(DOCSTRING_STMT_PATTERN[1],	tree[1])

								else:

												found,	vars	=	match(DOCSTRING_STMT_PATTERN,	tree[3])

								if	found:

												self._docstring	=	eval(vars['docstring'])

								#	discover	inner	definitions

								for	node	in	tree[1:]:

												found,	vars	=	match(COMPOUND_STMT_PATTERN,	node)

												if	found:

																cstmt	=	vars['compound']

																if	cstmt[0]	==	symbol.funcdef:

																				name	=	cstmt[2][1]

																				self._function_info[name]	=	FunctionInfo(cstmt)

																elif	cstmt[0]	==	symbol.classdef:

																				name	=	cstmt[2][1]

																				self._class_info[name]	=	ClassInfo(cstmt)

After	initializing	some	internal	state,	the	constructor	calls	the
_extract_info()	method.	This	method	performs	the	bulk	of	the
information	extraction	which	takes	place	in	the	entire	example.	The	extraction
has	two	distinct	phases:	the	location	of	the	docstring	for	the	parse	tree	passed	in,
and	the	discovery	of	additional	definitions	within	the	code	block	represented	by
the	parse	tree.

The	initial	if	test	determines	whether	the	nested	suite	is	of	the	``short	form''	or
the	``long	form.''	The	short	form	is	used	when	the	code	block	is	on	the	same	line
as	the	definition	of	the	code	block,	as	in

def	square(x):	"Square	an	argument.";	return	x	**	2

while	the	long	form	uses	an	indented	block	and	allows	nested	definitions:

def	make_power(exp):

				"Make	a	function	that	raises	an	argument	to	the	exponent	`exp'."

				def	raiser(x,	y=exp):

								return	x	**	y

				return	raiser

When	the	short	form	is	used,	the	code	block	may	contain	a	docstring	as	the	first,
and	possibly	only,	small_stmt	element.	The	extraction	of	such	a	docstring	is
slightly	different	and	requires	only	a	portion	of	the	complete	pattern	used	in	the
more	common	case.	As	implemented,	the	docstring	will	only	be	found	if	there	is
only	one	small_stmt	node	in	the	simple_stmt	node.	Since	most	functions
and	methods	which	use	the	short	form	do	not	provide	a	docstring,	this	may	be
considered	sufficient.	The	extraction	of	the	docstring	proceeds	using	the
match()	function	as	described	above,	and	the	value	of	the	docstring	is	stored
as	an	attribute	of	the	SuiteInfoBase	object.

After	docstring	extraction,	a	simple	definition	discovery	algorithm	operates	on
the	stmt	nodes	of	the	suite	node.	The	special	case	of	the	short	form	is	not
tested;	since	there	are	no	stmt	nodes	in	the	short	form,	the	algorithm	will
silently	skip	the	single	simple_stmt	node	and	correctly	not	discover	any
nested	definitions.

Each	statement	in	the	code	block	is	categorized	as	a	class	definition,	function	or
method	definition,	or	something	else.	For	the	definition	statements,	the	name	of
the	element	defined	is	extracted	and	a	representation	object	appropriate	to	the
definition	is	created	with	the	defining	subtree	passed	as	an	argument	to	the
constructor.	The	representation	objects	are	stored	in	instance	variables	and	may
be	retrieved	by	name	using	the	appropriate	accessor	methods.

The	public	classes	provide	any	accessors	required	which	are	more	specific	than
those	provided	by	the	SuiteInfoBase	class,	but	the	real	extraction	algorithm
remains	common	to	all	forms	of	code	blocks.	A	high-level	function	can	be	used
to	extract	the	complete	set	of	information	from	a	source	file.	(See	file
example.py.)

def	get_docs(fileName):

				import	os

				import	parser

				source	=	open(fileName).read()

				basename	=	os.path.basename(os.path.splitext(fileName)[0])

				ast	=	parser.suite(source)

				return	ModuleInfo(ast.totuple(),	basename)

This	provides	an	easy-to-use	interface	to	the	documentation	of	a	module.	If
information	is	required	which	is	not	extracted	by	the	code	of	this	example,	the
code	may	be	extended	at	clearly	defined	points	to	provide	additional	capabilities.

Python	Library	Reference
Previous:	18.1.6.1	Emulation	of	compile()	Up:	18.1.6	Examples	Next:	18.2
symbol

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Front	Matter	Up:	Python	Reference	Manual	Next:	1.	Introduction

Contents
Front	Matter
1.	Introduction

1.1	Notation
2.	Lexical	analysis

2.1	Line	structure
2.1.1	Logical	lines
2.1.2	Physical	lines
2.1.3	Comments
2.1.4	Encoding	declarations
2.1.5	Explicit	line	joining
2.1.6	Implicit	line	joining
2.1.7	Blank	lines
2.1.8	Indentation
2.1.9	Whitespace	between	tokens

2.2	Other	tokens
2.3	Identifiers	and	keywords

2.3.1	Keywords
2.3.2	Reserved	classes	of	identifiers

2.4	Literals
2.4.1	String	literals
2.4.2	String	literal	concatenation
2.4.3	Numeric	literals
2.4.4	Integer	and	long	integer	literals
2.4.5	Floating	point	literals
2.4.6	Imaginary	literals

2.5	Operators
2.6	Delimiters

3.	Data	model
3.1	Objects,	values	and	types
3.2	The	standard	type	hierarchy
3.3	Special	method	names

3.3.1	Basic	customization
3.3.2	Customizing	attribute	access
3.3.3	Customizing	class	creation
3.3.4	Emulating	callable	objects

3.3.5	Emulating	container	types
3.3.6	Additional	methods	for	emulation	of	sequence	types
3.3.7	Emulating	numeric	types
3.3.8	Coercion	rules

4.	Execution	model
4.1	Naming	and	binding

4.1.1	Interaction	with	dynamic	features
4.2	Exceptions

5.	Expressions
5.1	Arithmetic	conversions
5.2	Atoms

5.2.1	Identifiers	(Names)
5.2.2	Literals
5.2.3	Parenthesized	forms
5.2.4	List	displays
5.2.5	Generator	expressions
5.2.6	Dictionary	displays
5.2.7	String	conversions

5.3	Primaries
5.3.1	Attribute	references
5.3.2	Subscriptions
5.3.3	Slicings
5.3.4	Calls

5.4	The	power	operator
5.5	Unary	arithmetic	operations
5.6	Binary	arithmetic	operations
5.7	Shifting	operations
5.8	Binary	bit-wise	operations
5.9	Comparisons
5.10	Boolean	operations
5.11	Lambdas
5.12	Expression	lists
5.13	Evaluation	order
5.14	Summary

6.	Simple	statements
6.1	Expression	statements
6.2	Assert	statements
6.3	Assignment	statements

6.3.1	Augmented	assignment	statements

6.4	The	pass	statement
6.5	The	del	statement
6.6	The	print	statement
6.7	The	return	statement
6.8	The	yield	statement
6.9	The	raise	statement
6.10	The	break	statement
6.11	The	continue	statement
6.12	The	import	statement

6.12.1	Future	statements
6.13	The	global	statement
6.14	The	exec	statement

7.	Compound	statements
7.1	The	if	statement
7.2	The	while	statement
7.3	The	for	statement
7.4	The	try	statement
7.5	Function	definitions
7.6	Class	definitions

8.	Top-level	components
8.1	Complete	Python	programs
8.2	File	input
8.3	Interactive	input
8.4	Expression	input

A.	History	and	License
A.1	History	of	the	software
A.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
A.3	Licenses	and	Acknowledgements	for	Incorporated	Software

A.3.1	Mersenne	Twister
A.3.2	Sockets
A.3.3	Floating	point	exception	control
A.3.4	MD5	message	digest	algorithm
A.3.5	Asynchronous	socket	services
A.3.6	Cookie	management
A.3.7	Profiling
A.3.8	Execution	tracing
A.3.9	UUencode	and	UUdecode	functions
A.3.10	XML	Remote	Procedure	Calls

Index

About	this	document	...

Python	Reference	Manual
Previous:	Front	Matter	Up:	Python	Reference	Manual	Next:	1.	Introduction

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Index	Up:	Python	Reference	Manual

About	this	document	...
Python	Reference	Manual,	29	November	2004,	Release	2.4

This	document	was	generated	using	the	LaTeX2HTML	translator.

LaTeX2HTML	is	Copyright	©	1993,	1994,	1995,	1996,	1997,	Nikos	Drakos,
Computer	Based	Learning	Unit,	University	of	Leeds,	and	Copyright	©	1997,
1998,	Ross	Moore,	Mathematics	Department,	Macquarie	University,	Sydney.

The	application	of	LaTeX2HTML	to	the	Python	documentation	has	been	heavily
tailored	by	Fred	L.	Drake,	Jr.	Original	navigation	icons	were	contributed	by
Christopher	Petrilli.

http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://cbl.leeds.ac.uk/nikos/personal.html
http://www.maths.mq.edu.au/~ross/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/

Comments	and	Questions
General	comments	and	questions	regarding	this	document	should	be	sent	by
email	to	docs@python.org.	If	you	find	specific	errors	in	this	document,	either	in
the	content	or	the	presentation,	please	report	the	bug	at	the	Python	Bug	Tracker
at	SourceForge.	If	you	are	able	to	provide	suggested	text,	either	to	replace
existing	incorrect	or	unclear	material,	or	additional	text	to	supplement	what's
already	available,	we'd	appreciate	the	contribution.	There's	no	need	to	worry
about	text	markup;	our	documentation	team	will	gladly	take	care	of	that.

Questions	regarding	how	to	use	the	information	in	this	document	should	be	sent
to	the	Python	news	group,	comp.lang.python,	or	the	Python	mailing	list	(which
is	gated	to	the	newsgroup	and	carries	the	same	content).

For	any	of	these	channels,	please	be	sure	not	to	send	HTML	email.	Thanks.

Python	Reference	Manual
Previous:	Index	Up:	Python	Reference	Manual

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

mailto:docs@python.org
http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/
news:comp.lang.python
http://www.python.org/mailman/listinfo/python-list

Previous:	3.3.2	Customizing	attribute	access	Up:	3.3.2	Customizing	attribute
access	Next:	3.3.2.2	Implementing	Descriptors

3.3.2.1	More	attribute	access	for	new-style	classes

The	following	methods	only	apply	to	new-style	classes.

__getattribute__(self,	name)
Called	unconditionally	to	implement	attribute	accesses	for	instances	of	the
class.	If	the	class	also	defines	__getattr__,	it	will	never	be	called
(unless	called	explicitly).	This	method	should	return	the	(computed)
attribute	value	or	raise	an	AttributeError	exception.	In	order	to	avoid
infinite	recursion	in	this	method,	its	implementation	should	always	call	the
base	class	method	with	the	same	name	to	access	any	attributes	it	needs,	for
example,	"object.__getattribute__(self,	name)".

Python	Reference	Manual
Previous:	3.3.2	Customizing	attribute	access	Up:	3.3.2	Customizing	attribute
access	Next:	3.3.2.2	Implementing	Descriptors

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3.2.1	More	attribute	access	Up:	3.3.2	Customizing	attribute
access	Next:	3.3.2.3	Invoking	Descriptors

3.3.2.2	Implementing	Descriptors

The	following	methods	only	apply	when	an	instance	of	the	class	containing	the
method	(a	so-called	descriptor	class)	appears	in	the	class	dictionary	of	another
new-style	class,	known	as	the	owner	class.	In	the	examples	below,	``the
attribute''	refers	to	the	attribute	whose	name	is	the	key	of	the	property	in	the
owner	class'	__dict__.	Descriptors	can	only	be	implemented	as	new-style
classes	themselves.

__get__(self,	instance,	owner)
Called	to	get	the	attribute	of	the	owner	class	(class	attribute	access)	or	of	an
instance	of	that	class	(instance	attribute	acces).	owner	is	always	the	owner
class,	while	instance	is	the	instance	that	the	attribute	was	accessed	through,
or	None	when	the	attribute	is	accessed	through	the	owner.	This	method
should	return	the	(computed)	attribute	value	or	raise	an
AttributeError	exception.

__set__(self,	instance,	value)
Called	to	set	the	attribute	on	an	instance	instance	of	the	owner	class	to	a
new	value,	value.

__delete__(self,	instance)
Called	to	delete	the	attribute	on	an	instance	instance	of	the	owner	class.

Python	Reference	Manual
Previous:	3.3.2.1	More	attribute	access	Up:	3.3.2	Customizing	attribute
access	Next:	3.3.2.3	Invoking	Descriptors

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3.2.2	Implementing	Descriptors	Up:	3.3.2	Customizing	attribute
access	Next:	3.3.2.4	__slots__

3.3.2.3	Invoking	Descriptors

In	general,	a	descriptor	is	an	object	attribute	with	``binding	behavior'',	one	whose
attribute	access	has	been	overridden	by	methods	in	the	descriptor	protocol:
__get__(),	__set__(),	and	__delete__().	If	any	of	those	methods	are
defined	for	an	object,	it	is	said	to	be	a	descriptor.

The	default	behavior	for	attribute	access	is	to	get,	set,	or	delete	the	attribute	from
an	object's	dictionary.	For	instance,	a.x	has	a	lookup	chain	starting	with
a.__dict__['x'],	then	type(a).__dict__['x'],	and	continuing
through	the	base	classes	of	type(a)	excluding	metaclasses.

However,	if	the	looked-up	value	is	an	object	defining	one	of	the	descriptor
methods,	then	Python	may	override	the	default	behavior	and	invoke	the
descriptor	method	instead.	Where	this	occurs	in	the	precedence	chain	depends	on
which	descriptor	methods	were	defined	and	how	they	were	called.	Note	that
descriptors	are	only	invoked	for	new	style	objects	or	classes	(ones	that	subclass
object()	or	type()).

The	starting	point	for	descriptor	invocation	is	a	binding,	a.x.	How	the
arguments	are	assembled	depends	on	a:

Direct	Call
The	simplest	and	least	common	call	is	when	user	code	directly	invokes	a
descriptor	method:	x.__get__(a).

Instance	Binding
If	binding	to	a	new-style	object	instance,	a.x	is	transformed	into	the	call:
type(a).__dict__['x'].__get__(a,	type(a)).

Class	Binding
If	binding	to	a	new-style	class,	A.x	is	transformed	into	the	call:
A.__dict__['x'].__get__(None,	A).

Super	Binding

If	a	is	an	instance	of	super,	then	the	binding	super(B,	obj).m()
searches	obj.__class__.__mro__	for	the	base	class	A	immediately
preceding	B	and	then	invokes	the	descriptor	with	the	call:
A.__dict__['m'].__get__(obj,	A).

For	instance	bindings,	the	precedence	of	descriptor	invocation	depends	on	the
which	descriptor	methods	are	defined.	Data	descriptors	define	both	__get__()
and	__set__().	Non-data	descriptors	have	just	the	__get__()	method.
Data	descriptors	always	override	a	redefinition	in	an	instance	dictionary.	In
contrast,	non-data	descriptors	can	be	overridden	by	instances.

Python	methods	(including	staticmethod()	and	classmethod())	are
implemented	as	non-data	descriptors.	Accordingly,	instances	can	redefine	and
override	methods.	This	allows	individual	instances	to	acquire	behaviors	that
differ	from	other	instances	of	the	same	class.

The	property()	function	is	implemented	as	a	data	descriptor.	Accordingly,
instances	cannot	override	the	behavior	of	a	property.

Python	Reference	Manual
Previous:	3.3.2.2	Implementing	Descriptors	Up:	3.3.2	Customizing	attribute
access	Next:	3.3.2.4	__slots__

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	3.3.2.3	Invoking	Descriptors	Up:	3.3.2	Customizing	attribute
access	Next:	3.3.3	Customizing	class	creation

3.3.2.4	__slots__

By	default,	instances	of	both	old	and	new-style	classes	have	a	dictionary	for
attribute	storage.	This	wastes	space	for	objects	having	very	few	instance
variables.	The	space	consumption	can	become	acute	when	creating	large
numbers	of	instances.

The	default	can	be	overridden	by	defining	__slots__	in	a	new-style	class
definition.	The	__slots__	declaration	takes	a	sequence	of	instance	variables	and
reserves	just	enough	space	in	each	instance	to	hold	a	value	for	each	variable.
Space	is	saved	because	__dict__	is	not	created	for	each	instance.

__slots__

This	class	variable	can	be	assigned	a	string,	iterable,	or	sequence	of	strings
with	variable	names	used	by	instances.	If	defined	in	a	new-style	class,
__slots__	reserves	space	for	the	declared	variables	and	prevents	the
automatic	creation	of	__dict__	and	__weakref__	for	each	instance.	New	in
version	2.2.

Notes	on	using	__slots__

Without	a	__dict__	variable,	instances	cannot	be	assigned	new	variables	not
listed	in	the	__slots__	definition.	Attempts	to	assign	to	an	unlisted	variable
name	raises	AttributeError.	If	dynamic	assignment	of	new	variables
is	desired,	then	add	'__dict__'	to	the	sequence	of	strings	in	the
__slots__	declaration.	Changed	in	version	2.3:	Previously,	adding
'__dict__'	to	the	__slots__	declaration	would	not	enable	the
assignment	of	new	attributes	not	specifically	listed	in	the	sequence	of
instance	variable	names.

Without	a	__weakref__	variable	for	each	instance,	classes	defining
__slots__	do	not	support	weak	references	to	its	instances.	If	weak	reference
support	is	needed,	then	add	'__weakref__'	to	the	sequence	of	strings	in
the	__slots__	declaration.	Changed	in	version	2.3:	Previously,	adding
'__weakref__'	to	the	__slots__	declaration	would	not	enable	support

for	weak	references.

__slots__	are	implemented	at	the	class	level	by	creating	descriptors	(3.3.2)
for	each	variable	name.	As	a	result,	class	attributes	cannot	be	used	to	set
default	values	for	instance	variables	defined	by	__slots__;	otherwise,	the
class	attribute	would	overwrite	the	descriptor	assignment.

If	a	class	defines	a	slot	also	defined	in	a	base	class,	the	instance	variable
defined	by	the	base	class	slot	is	inaccessible	(except	by	retrieving	its
descriptor	directly	from	the	base	class).	This	renders	the	meaning	of	the
program	undefined.	In	the	future,	a	check	may	be	added	to	prevent	this.

The	action	of	a	__slots__	declaration	is	limited	to	the	class	where	it	is
defined.	As	a	result,	subclasses	will	have	a	__dict__	unless	they	also	define
__slots__.

__slots__	do	not	work	for	classes	derived	from	``variable-length''	built-in
types	such	as	long,	str	and	tuple.

Any	non-string	iterable	may	be	assigned	to	__slots__.	Mappings	may	also
be	used;	however,	in	the	future,	special	meaning	may	be	assigned	to	the
values	corresponding	to	each	key.

Python	Reference	Manual
Previous:	3.3.2.3	Invoking	Descriptors	Up:	3.3.2	Customizing	attribute
access	Next:	3.3.3	Customizing	class	creation

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Front	Matter	Up:	Macintosh	Library	Modules	Next:	1.	Using	Python
on

Contents
Front	Matter
1.	Using	Python	on	a	Mac	OS	9	Macintosh

1.1	Getting	and	Installing	MacPython-OSX
1.1.1	How	to	run	a	Python	script
1.1.2	Running	scripts	with	a	GUI
1.1.3	configuration

1.2	Getting	and	Installing	MacPython-OS9
1.2.1	Entering	the	interactive	Interpreter
1.2.2	How	to	run	a	Python	script
1.2.3	Simulating	command	line	arguments
1.2.4	Creating	a	Python	script
1.2.5	Configuration

1.3	The	IDE
1.3.1	Using	the	``Python	Interactive''	window
1.3.2	Writing	a	Python	Script
1.3.3	Executing	a	script	from	within	the	IDE
1.3.4	``Save	as''	versus	``Save	as	Applet''

2.	MacPython	Modules
2.1	mac	--	Implementations	for	the	os	module
2.2	macpath	--	MacOS	path	manipulation	functions
2.3	macfs	--	Various	file	system	services

2.3.1	FSSpec	Objects
2.3.2	Alias	Objects
2.3.3	FInfo	Objects

2.4	ic	--	Access	to	Internet	Config
2.4.1	IC	Objects

2.5	MacOS	--	Access	to	Mac	OS	interpreter	features
2.6	macostools	--	Convenience	routines	for	file	manipulation
2.7	findertools	--	The	finder's	Apple	Events	interface
2.8	EasyDialogs	--	Basic	Macintosh	dialogs

2.8.1	ProgressBar	Objects
2.9	FrameWork	--	Interactive	application	framework

2.9.1	Application	Objects
2.9.2	Window	Objects
2.9.3	ControlsWindow	Object

2.9.4	ScrolledWindow	Object
2.9.5	DialogWindow	Objects

2.10	autoGIL	--	Global	Interpreter	Lock	handling	in	event	loops
3.	MacPython	OSA	Modules

3.1	gensuitemodule	--	Generate	OSA	stub	packages
3.2	aetools	--	OSA	client	support
3.3	aepack	--	Conversion	between	Python	variables	and	AppleEvent
data	containers
3.4	aetypes	--	AppleEvent	objects
3.5	MiniAEFrame	--	Open	Scripting	Architecture	server	support

3.5.1	AEServer	Objects
4.	MacOS	Toolbox	Modules

4.1	Carbon.AE	--	Apple	Events
4.2	Carbon.AH	--	Apple	Help
4.3	Carbon.App	--	Appearance	Manager
4.4	Carbon.CF	--	Core	Foundation
4.5	Carbon.CG	--	Core	Graphics
4.6	Carbon.CarbonEvt	--	Carbon	Event	Manager
4.7	Carbon.Cm	--	Component	Manager
4.8	Carbon.Ctl	--	Control	Manager
4.9	Carbon.Dlg	--	Dialog	Manager
4.10	Carbon.Evt	--	Event	Manager
4.11	Carbon.Fm	--	Font	Manager
4.12	Carbon.Folder	--	Folder	Manager
4.13	Carbon.Help	--	Help	Manager
4.14	Carbon.List	--	List	Manager
4.15	Carbon.Menu	--	Menu	Manager
4.16	Carbon.Mlte	--	MultiLingual	Text	Editor
4.17	Carbon.Qd	--	QuickDraw
4.18	Carbon.Qdoffs	--	QuickDraw	Offscreen
4.19	Carbon.Qt	--	QuickTime
4.20	Carbon.Res	--	Resource	Manager	and	Handles
4.21	Carbon.Scrap	--	Scrap	Manager
4.22	Carbon.Snd	--	Sound	Manager
4.23	Carbon.TE	--	TextEdit
4.24	Carbon.Win	--	Window	Manager
4.25	ColorPicker	--	Color	selection	dialog

5.	Undocumented	Modules
5.1	applesingle	--	AppleSingle	decoder

5.2	buildtools	--	Helper	module	for	BuildApplet	and	Friends
5.3	py_resource	--	Resources	from	Python	code
5.4	cfmfile	--	Code	Fragment	Resource	module
5.5	icopen	--	Internet	Config	replacement	for	open()
5.6	macerrors	--	Mac	OS	Errors
5.7	macresource	--	Locate	script	resources
5.8	Nav	--	NavServices	calls
5.9	mkcwproject	--	Create	CodeWarrior	projects
5.10	nsremote	--	Wrapper	around	Netscape	OSA	modules
5.11	PixMapWrapper	--	Wrapper	for	PixMap	objects
5.12	preferences	--	Application	preferences	manager
5.13	pythonprefs	--	Preferences	manager	for	Python
5.14	quietconsole	--	Non-visible	standard	output
5.15	videoreader	--	Read	QuickTime	movies
5.16	W	--	Widgets	built	on	FrameWork
5.17	waste	--	non-Apple	TextEdit	replacement

A.	History	and	License
A.1	History	of	the	software
A.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
A.3	Licenses	and	Acknowledgements	for	Incorporated	Software

A.3.1	Mersenne	Twister
A.3.2	Sockets
A.3.3	Floating	point	exception	control
A.3.4	MD5	message	digest	algorithm
A.3.5	Asynchronous	socket	services
A.3.6	Cookie	management
A.3.7	Profiling
A.3.8	Execution	tracing
A.3.9	UUencode	and	UUdecode	functions
A.3.10	XML	Remote	Procedure	Calls

Module	Index
Index
About	this	document	...

Macintosh	Library	Modules
Previous:	Front	Matter	Up:	Macintosh	Library	Modules	Next:	1.	Using	Python
on

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	A.3.10	XML	Remote	Procedure	Up:	Macintosh	Library	Modules
Next:	Index

Module	Index
This	index	only	lists	modules	documented	in	this	manual.	The	Global	Module
Index	lists	all	modules	that	are	documented	in	this	set	of	manuals.

Some	module	names	are	followed	by	an	annotation	indicating	what	platform
they	are	available	on.

aepack	(Mac)
aetools	(Mac)
aetypes	(Mac)
applesingle

(Mac)
autoGIL	(Mac)
buildtools	(Mac)
Carbon.AE	(Mac)
Carbon.AH	(Mac)
Carbon.App	(Mac)
Carbon.CaronEvt

(Mac)
Carbon.CF	(Mac)
Carbon.CG	(Mac)
Carbon.Cm	(Mac)
Carbon.Ctl	(Mac)
Carbon.Dlg	(Mac)

Carbon.Evt

(Mac)
Carbon.Fm

(Mac)
Carbon.Folder

(Mac)
Carbon.Help

(Mac)
Carbon.List

(Mac)
Carbon.Menu

(Mac)
Carbon.Mlte

(Mac)
Carbon.Qd

(Mac)
Carbon.Qdoffs

(Mac)
Carbon.Qt

(Mac)
Carbon.Res

(Mac)
Carbon.Scrap

(Mac)
Carbon.Snd

(Mac)
Carbon.TE

(Mac)

Carbon.Win

(Mac)
cfmfile	(Mac)
ColorPicker

(Mac)
EasyDialogs

(Mac)
findertools

(Mac)
FrameWork	(Mac)
gensuitemodule

(Mac)
ic	(Mac)
icopen	(Mac)
mac	(Mac)
macerrors	(Mac)
macfs	(Mac)
MacOS	(Mac)
macostools

(Mac)

macpath

macresource

(Mac)
MiniAEFrame

(Mac)
mkcwproject

(Mac)
Nav	(Mac)
nsremote	(Mac
PixMapWrapper

(Mac)
preferences

(Mac)
py_resource

(Mac)
pythonprefs

(Mac)
quietconsole

(Mac)
videoreader

(Mac)
W	(Mac)
waste	(Mac)

Macintosh	Library	Modules
Previous:	A.3.10	XML	Remote	Procedure	Up:	Macintosh	Library	Modules
Next:	Index

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Index	Up:	Macintosh	Library	Modules

About	this	document	...
Macintosh	Library	Modules,	29	November	2004,	Release	2.4

This	document	was	generated	using	the	LaTeX2HTML	translator.

LaTeX2HTML	is	Copyright	©	1993,	1994,	1995,	1996,	1997,	Nikos	Drakos,
Computer	Based	Learning	Unit,	University	of	Leeds,	and	Copyright	©	1997,
1998,	Ross	Moore,	Mathematics	Department,	Macquarie	University,	Sydney.

The	application	of	LaTeX2HTML	to	the	Python	documentation	has	been	heavily
tailored	by	Fred	L.	Drake,	Jr.	Original	navigation	icons	were	contributed	by
Christopher	Petrilli.

http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://cbl.leeds.ac.uk/nikos/personal.html
http://www.maths.mq.edu.au/~ross/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/

Comments	and	Questions
General	comments	and	questions	regarding	this	document	should	be	sent	by
email	to	docs@python.org.	If	you	find	specific	errors	in	this	document,	either	in
the	content	or	the	presentation,	please	report	the	bug	at	the	Python	Bug	Tracker
at	SourceForge.	If	you	are	able	to	provide	suggested	text,	either	to	replace
existing	incorrect	or	unclear	material,	or	additional	text	to	supplement	what's
already	available,	we'd	appreciate	the	contribution.	There's	no	need	to	worry
about	text	markup;	our	documentation	team	will	gladly	take	care	of	that.

Questions	regarding	how	to	use	the	information	in	this	document	should	be	sent
to	the	Python	news	group,	comp.lang.python,	or	the	Python	mailing	list	(which
is	gated	to	the	newsgroup	and	carries	the	same	content).

For	any	of	these	channels,	please	be	sure	not	to	send	HTML	email.	Thanks.

Macintosh	Library	Modules
Previous:	Index	Up:	Macintosh	Library	Modules

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

mailto:docs@python.org
http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/
news:comp.lang.python
http://www.python.org/mailman/listinfo/python-list

Previous:	1.2.2	How	to	run	Up:	1.2.2	How	to	run	Next:	1.2.2.2	Set	Creator	and

1.2.2.1	Drag	and	drop

One	of	the	easiest	ways	to	launch	a	Python	script	is	via	``Drag	and	Drop''.	This	is
just	like	launching	a	text	file	in	the	Finder	by	``dragging''	it	over	your	word
processor's	icon	and	``dropping''	it	there.	Make	sure	that	you	use	an	icon
referring	to	the	PythonInterpreter,	not	the	IDE	or	Idle	icons	which	have
different	behaviour	which	is	described	below.

Some	things	that	might	have	gone	wrong:

A	window	flashes	after	dropping	the	script	onto	the	PythonInterpreter,	but
then	disappears.	Most	likely	this	is	a	configuration	issue;	your
PythonInterpreter	is	setup	to	exit	immediately	upon	completion,	but	your
script	assumes	that	if	it	prints	something	that	text	will	stick	around	for	a
while.	To	fix	this,	see	section	1.2.5.

When	you	waved	the	script	icon	over	the	PythonInterpreter,	the
PythonInterpreter	icon	did	not	hilight.	Most	likely	the	Creator	code	and
document	type	is	unset	(or	set	incorrectly)	-	this	often	happens	when	a	file
originates	on	a	non-Mac	computer.	See	section	1.2.2	for	more	details.

Macintosh	Library	Modules
Previous:	1.2.2	How	to	run	Up:	1.2.2	How	to	run	Next:	1.2.2.2	Set	Creator	and

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2.2.1	Drag	and	drop	Up:	1.2.2	How	to	run	Next:	1.2.3	Simulating
command	line

1.2.2.2	Set	Creator	and	Double	Click

If	the	script	that	you	want	to	launch	has	the	appropriate	Creator	Code	and	File
Type	you	can	simply	double-click	on	the	script	to	launch	it.	To	be	``double-
clickable''	a	file	needs	to	be	of	type	"TEXT",	with	a	creator	code	of	"Pyth".

Setting	the	creator	code	and	filetype	can	be	done	with	the	IDE	(see	sections	1.3.2
and	1.3.4),	with	an	editor	with	a	Python	mode	(BBEdit)	-	see	section	1.2.4,	or
with	assorted	other	Mac	utilities,	but	a	script	(fixfiletypes.py)	has	been	included
in	the	MacPython	distribution,	making	it	possible	to	set	the	proper	Type	and
Creator	Codes	with	Python.

The	fixfiletypes.py	script	will	change	the	file	type	and	creator	codes	for	the
indicated	directory.	To	use	fixfiletypes.py:

1.	 Locate	it	in	the	scripts	folder	of	the	Mac	folder	of	the	MacPython
distribution.

2.	 Put	all	of	the	scripts	that	you	want	to	fix	in	a	folder	with	nothing	else	in	it.

3.	 Double-click	on	the	fixfiletypes.py	icon.

4.	 Navigate	into	the	folder	of	files	you	want	to	fix,	and	press	the	``Select
current	folder''	button.

Macintosh	Library	Modules
Previous:	1.2.2.1	Drag	and	drop	Up:	1.2.2	How	to	run	Next:	1.2.3	Simulating
command	line

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2.4	Creating	a	Python	Up:	1.2.4	Creating	a	Python	Next:	1.2.4.2
Editors	with	Python

1.2.4.1	In	an	editor

You	can	create	a	text	file	with	any	word	processing	program	such	as	MSWord
or	AppleWorks	but	you	need	to	make	sure	that	the	file	is	saved	as	``ASCII''	or
``plain	text''.	This	also	works	for	TextEdit,	but	you	need	to	use	the	command
``Make	Plain	Text``	in	the	``Format``	menu	before	trying	to	save.

Macintosh	Library	Modules
Previous:	1.2.4	Creating	a	Python	Up:	1.2.4	Creating	a	Python	Next:	1.2.4.2
Editors	with	Python

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2.4.1	In	an	editor	Up:	1.2.4	Creating	a	Python	Next:	1.2.4.3	BBedit

1.2.4.2	Editors	with	Python	modes

Several	text	editors	have	additional	features	that	add	functionality	when	you	are
creating	a	Python	script.	These	can	include	coloring	Python	keywords	to	make
your	code	easier	to	read,	module	browsing,	or	a	built-in	debugger.	These	include
Alpha,	Pepper,	and	BBedit,	and	the	MacPython	IDE	(Section	1.3).

Macintosh	Library	Modules
Previous:	1.2.4.1	In	an	editor	Up:	1.2.4	Creating	a	Python	Next:	1.2.4.3	BBedit

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2.4.2	Editors	with	Python	Up:	1.2.4	Creating	a	Python	Next:	1.2.5
Configuration

1.2.4.3	BBedit

If	you	use	BBEdit	to	create	your	scripts	you	will	want	to	tell	it	about	the	Python
creator	code	so	that	you	can	simply	double	click	on	the	saved	file	to	launch	it.

Launch	BBEdit.
Select	``Preferences''	from	the	``Edit''	menu.
Select	``File	Types''	from	the	scrolling	list.
click	on	the	``Add...''	button	and	navigate	to	PythonInterpreter	in	the	main
directory	of	the	MacPython	distribution;	click	``open''.
Click	on	the	``Save''	button	in	the	Preferences	panel.

Macintosh	Library	Modules
Previous:	1.2.4.2	Editors	with	Python	Up:	1.2.4	Creating	a	Python	Next:	1.2.5
Configuration

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2.5	Configuration	Up:	1.2.5	Configuration	Next:	1.2.5.2	Adding
modules	to

1.2.5.1	EditPythonPrefs

EditPythonPrefs	gives	you	the	capability	to	configure	Python	to	behave	the
way	you	want	it	to.	There	are	two	ways	to	use	EditPythonPrefs,	you	can	use	it
to	set	the	preferences	in	general,	or	you	can	drop	a	particular	Python	engine	onto
it	to	customize	only	that	version.	The	latter	can	be	handy	if,	for	example,	you
want	to	have	a	second	copy	of	the	PythonInterpreter	that	keeps	the	output
window	open	on	a	normal	exit	even	though	you	prefer	to	normally	not	work	that
way.

To	change	the	default	preferences,	simply	double-click	on	EditPythonPrefs.	To
change	the	preferences	only	for	one	copy	of	the	Interpreter,	drop	the	icon	for	that
copy	onto	EditPythonPrefs.	You	can	also	use	EditPythonPrefs	in	this	fashion
to	set	the	preferences	of	the	Python	IDE	and	any	applets	you	create	-	see	section
1.3.4.

Macintosh	Library	Modules
Previous:	1.2.5	Configuration	Up:	1.2.5	Configuration	Next:	1.2.5.2	Adding
modules	to

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2.5.1	EditPythonPrefs	Up:	1.2.5	Configuration	Next:	1.2.5.3
Default	startup	options

1.2.5.2	Adding	modules	to	the	Module	Search	Path

When	executing	an	import	statement,	Python	looks	for	modules	in	places
defined	by	the	sys.path	To	edit	the	sys.path	on	a	Mac,	launch
EditPythonPrefs,	and	enter	them	into	the	largish	field	at	the	top	(one	per	line).

Since	MacPython	defines	a	main	Python	directory,	the	easiest	thing	is	to	add
folders	to	search	within	the	main	Python	directory.	To	add	a	folder	of	scripts	that
you	created	called	``My	Folder''	located	in	the	main	Python	Folder,	enter
"$(PYTHON):My	Folder"	onto	a	new	line.

To	add	the	Desktop	under	OS	9	or	below,	add
"StartupDriveName:Desktop	Folder"	on	a	new	line.

Macintosh	Library	Modules
Previous:	1.2.5.1	EditPythonPrefs	Up:	1.2.5	Configuration	Next:	1.2.5.3
Default	startup	options

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	1.2.5.2	Adding	modules	to	Up:	1.2.5	Configuration	Next:	1.3	The
IDE

1.2.5.3	Default	startup	options

The	``Default	startup	options...''	button	in	the	EditPythonPrefs	dialog	box	gives
you	many	options	including	the	ability	to	keep	the	``Output''	window	open	after
the	script	terminates,	and	the	ability	to	enter	interactive	mode	after	the
termination	of	the	run	script.	The	latter	can	be	very	helpful	if	you	want	to
examine	the	objects	that	were	created	during	your	script.

Macintosh	Library	Modules
Previous:	1.2.5.2	Adding	modules	to	Up:	1.2.5	Configuration	Next:	1.3	The
IDE

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Front	Matter	Up:	Extending	and	Embedding	the	Next:	1.	Extending
Python	with

Contents
Front	Matter
1.	Extending	Python	with	C	or	C++

1.1	A	Simple	Example
1.2	Intermezzo:	Errors	and	Exceptions
1.3	Back	to	the	Example
1.4	The	Module's	Method	Table	and	Initialization	Function
1.5	Compilation	and	Linkage
1.6	Calling	Python	Functions	from	C
1.7	Extracting	Parameters	in	Extension	Functions
1.8	Keyword	Parameters	for	Extension	Functions
1.9	Building	Arbitrary	Values
1.10	Reference	Counts

1.10.1	Reference	Counting	in	Python
1.10.2	Ownership	Rules
1.10.3	Thin	Ice
1.10.4	NULL	Pointers

1.11	Writing	Extensions	in	C++
1.12	Providing	a	C	API	for	an	Extension	Module

2.	Defining	New	Types
2.1	The	Basics

2.1.1	Adding	data	and	methods	to	the	Basic	example
2.1.2	Providing	finer	control	over	data	attributes
2.1.3	Supporting	cyclic	garbage	collection

2.2	Type	Methods
2.2.1	Finalization	and	De-allocation
2.2.2	Object	Presentation
2.2.3	Attribute	Management
2.2.4	Object	Comparison
2.2.5	Abstract	Protocol	Support
2.2.6	More	Suggestions

3.	Building	C	and	C++	Extensions	with	distutils
3.1	Distributing	your	extension	modules

4.	Building	C	and	C++	Extensions	on	Windows
4.1	A	Cookbook	Approach
4.2	Differences	Between	Unix	and	Windows

4.3	Using	DLLs	in	Practice
5.	Embedding	Python	in	Another	Application

5.1	Very	High	Level	Embedding
5.2	Beyond	Very	High	Level	Embedding:	An	overview
5.3	Pure	Embedding
5.4	Extending	Embedded	Python
5.5	Embedding	Python	in	C++
5.6	Linking	Requirements

A.	Reporting	Bugs
B.	History	and	License

B.1	History	of	the	software
B.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
B.3	Licenses	and	Acknowledgements	for	Incorporated	Software

B.3.1	Mersenne	Twister
B.3.2	Sockets
B.3.3	Floating	point	exception	control
B.3.4	MD5	message	digest	algorithm
B.3.5	Asynchronous	socket	services
B.3.6	Cookie	management
B.3.7	Profiling
B.3.8	Execution	tracing
B.3.9	UUencode	and	UUdecode	functions
B.3.10	XML	Remote	Procedure	Calls

About	this	document	...

Extending	and	Embedding	the	Python
Interpreter

Previous:	Front	Matter	Up:	Extending	and	Embedding	the	Next:	1.	Extending
Python	with

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	B.3.10	XML	Remote	Procedure	Up:	Extending	and	Embedding	the

About	this	document	...
Extending	and	Embedding	the	Python	Interpreter,	29	November	2004,
Release	2.4

This	document	was	generated	using	the	LaTeX2HTML	translator.

LaTeX2HTML	is	Copyright	©	1993,	1994,	1995,	1996,	1997,	Nikos	Drakos,
Computer	Based	Learning	Unit,	University	of	Leeds,	and	Copyright	©	1997,
1998,	Ross	Moore,	Mathematics	Department,	Macquarie	University,	Sydney.

The	application	of	LaTeX2HTML	to	the	Python	documentation	has	been	heavily
tailored	by	Fred	L.	Drake,	Jr.	Original	navigation	icons	were	contributed	by
Christopher	Petrilli.

http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://cbl.leeds.ac.uk/nikos/personal.html
http://www.maths.mq.edu.au/~ross/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/

Comments	and	Questions
General	comments	and	questions	regarding	this	document	should	be	sent	by
email	to	docs@python.org.	If	you	find	specific	errors	in	this	document,	either	in
the	content	or	the	presentation,	please	report	the	bug	at	the	Python	Bug	Tracker
at	SourceForge.	If	you	are	able	to	provide	suggested	text,	either	to	replace
existing	incorrect	or	unclear	material,	or	additional	text	to	supplement	what's
already	available,	we'd	appreciate	the	contribution.	There's	no	need	to	worry
about	text	markup;	our	documentation	team	will	gladly	take	care	of	that.

Questions	regarding	how	to	use	the	information	in	this	document	should	be	sent
to	the	Python	news	group,	comp.lang.python,	or	the	Python	mailing	list	(which
is	gated	to	the	newsgroup	and	carries	the	same	content).

For	any	of	these	channels,	please	be	sure	not	to	send	HTML	email.	Thanks.

Extending	and	Embedding	the	Python
Interpreter

Previous:	B.3.10	XML	Remote	Procedure	Up:	Extending	and	Embedding	the

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

mailto:docs@python.org
http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/
news:comp.lang.python
http://www.python.org/mailman/listinfo/python-list

Previous:	2.2.3	Attribute	Management	Up:	2.2.3	Attribute	Management	Next:
2.2.3.2	Type-specific	Attribute	Management

2.2.3.1	Generic	Attribute	Management

New	in	version	2.2.

Most	extension	types	only	use	simple	attributes.	So,	what	makes	the	attributes
simple?	There	are	only	a	couple	of	conditions	that	must	be	met:

1.	 The	name	of	the	attributes	must	be	known	when	PyType_Ready()	is
called.

2.	 No	special	processing	is	needed	to	record	that	an	attribute	was	looked	up	or
set,	nor	do	actions	need	to	be	taken	based	on	the	value.

Note	that	this	list	does	not	place	any	restrictions	on	the	values	of	the	attributes,
when	the	values	are	computed,	or	how	relevant	data	is	stored.

When	PyType_Ready()	is	called,	it	uses	three	tables	referenced	by	the	type
object	to	create	descriptors	which	are	placed	in	the	dictionary	of	the	type	object.
Each	descriptor	controls	access	to	one	attribute	of	the	instance	object.	Each	of
the	tables	is	optional;	if	all	three	are	NULL,	instances	of	the	type	will	only	have
attributes	that	are	inherited	from	their	base	type,	and	should	leave	the
tp_getattro	and	tp_setattro	fields	NULL	as	well,	allowing	the	base
type	to	handle	attributes.

The	tables	are	declared	as	three	fields	of	the	type	object:

				struct	PyMethodDef	*tp_methods;

				struct	PyMemberDef	*tp_members;

				struct	PyGetSetDef	*tp_getset;

If	tp_methods	is	not	NULL,	it	must	refer	to	an	array	of	PyMethodDef
structures.	Each	entry	in	the	table	is	an	instance	of	this	structure:

typedef	struct	PyMethodDef	{

				char								*ml_name;							/*	method	name	*/

				PyCFunction		ml_meth;							/*	implementation	function	*/

				int										ml_flags;						/*	flags	*/

				char								*ml_doc;								/*	docstring	*/

}	PyMethodDef;

One	entry	should	be	defined	for	each	method	provided	by	the	type;	no	entries	are
needed	for	methods	inherited	from	a	base	type.	One	additional	entry	is	needed	at
the	end;	it	is	a	sentinel	that	marks	the	end	of	the	array.	The	ml_name	field	of
the	sentinel	must	be	NULL.

XXX	Need	to	refer	to	some	unified	discussion	of	the	structure	fields,	shared	with
the	next	section.

The	second	table	is	used	to	define	attributes	which	map	directly	to	data	stored	in
the	instance.	A	variety	of	primitive	C	types	are	supported,	and	access	may	be
read-only	or	read-write.	The	structures	in	the	table	are	defined	as:

typedef	struct	PyMemberDef	{

				char	*name;

				int			type;

				int			offset;

				int			flags;

				char	*doc;

}	PyMemberDef;

For	each	entry	in	the	table,	a	descriptor	will	be	constructed	and	added	to	the	type
which	will	be	able	to	extract	a	value	from	the	instance	structure.	The	type	field
should	contain	one	of	the	type	codes	defined	in	the	structmember.h	header;	the
value	will	be	used	to	determine	how	to	convert	Python	values	to	and	from	C
values.	The	flags	field	is	used	to	store	flags	which	control	how	the	attribute
can	be	accessed.

XXX	Need	to	move	some	of	this	to	a	shared	section!

The	following	flag	constants	are	defined	in	structmember.h;	they	may	be
combined	using	bitwise-OR.

Constant Meaning
READONLY Never	writable.
RO Shorthand	for	READONLY.
READ_RESTRICTED Not	readable	in	restricted	mode.
WRITE_RESTRICTED Not	writable	in	restricted	mode.
RESTRICTED Not	readable	or	writable	in	restricted	mode.

An	interesting	advantage	of	using	the	tp_members	table	to	build	descriptors
that	are	used	at	runtime	is	that	any	attribute	defined	this	way	can	have	an
associated	doc	string	simply	by	providing	the	text	in	the	table.	An	application
can	use	the	introspection	API	to	retrieve	the	descriptor	from	the	class	object,	and
get	the	doc	string	using	its	__doc__	attribute.

As	with	the	tp_methods	table,	a	sentinel	entry	with	a	name	value	of	NULL	is
required.

Extending	and	Embedding	the	Python
Interpreter

Previous:	2.2.3	Attribute	Management	Up:	2.2.3	Attribute	Management	Next:
2.2.3.2	Type-specific	Attribute	Management

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	2.2.3.1	Generic	Attribute	Management	Up:	2.2.3	Attribute
Management	Next:	2.2.4	Object	Comparison

2.2.3.2	Type-specific	Attribute	Management

For	simplicity,	only	the	char*	version	will	be	demonstrated	here;	the	type	of
the	name	parameter	is	the	only	difference	between	the	char*	and	PyObject*
flavors	of	the	interface.	This	example	effectively	does	the	same	thing	as	the
generic	example	above,	but	does	not	use	the	generic	support	added	in	Python
2.2.	The	value	in	showing	this	is	two-fold:	it	demonstrates	how	basic	attribute
management	can	be	done	in	a	way	that	is	portable	to	older	versions	of	Python,
and	explains	how	the	handler	functions	are	called,	so	that	if	you	do	need	to
extend	their	functionality,	you'll	understand	what	needs	to	be	done.

The	tp_getattr	handler	is	called	when	the	object	requires	an	attribute	look-
up.	It	is	called	in	the	same	situations	where	the	__getattr__()	method	of	a
class	would	be	called.

A	likely	way	to	handle	this	is	(1)	to	implement	a	set	of	functions	(such	as
newdatatype_getSize()	and	newdatatype_setSize()	in	the
example	below),	(2)	provide	a	method	table	listing	these	functions,	and	(3)
provide	a	getattr	function	that	returns	the	result	of	a	lookup	in	that	table.	The
method	table	uses	the	same	structure	as	the	tp_methods	field	of	the	type
object.

Here	is	an	example:

static	PyMethodDef	newdatatype_methods[]	=	{

				{"getSize",	(PyCFunction)newdatatype_getSize,	METH_VARARGS,

					"Return	the	current	size."},

				{"setSize",	(PyCFunction)newdatatype_setSize,	METH_VARARGS,

					"Set	the	size."},

				{NULL,	NULL,	0,	NULL}											/*	sentinel	*/

};

static	PyObject	*

newdatatype_getattr(newdatatypeobject	*obj,	char	*name)

{

				return	Py_FindMethod(newdatatype_methods,	(PyObject	*)obj,	name);

}

The	tp_setattr	handler	is	called	when	the	__setattr__()	or

__delattr__()	method	of	a	class	instance	would	be	called.	When	an
attribute	should	be	deleted,	the	third	parameter	will	be	NULL.	Here	is	an
example	that	simply	raises	an	exception;	if	this	were	really	all	you	wanted,	the
tp_setattr	handler	should	be	set	to	NULL.

static	int

newdatatype_setattr(newdatatypeobject	*obj,	char	*name,	PyObject	*v)

{

				(void)PyErr_Format(PyExc_RuntimeError,	"Read-only	attribute:	\%s",	name);

				return	-1;

}

Extending	and	Embedding	the	Python
Interpreter

Previous:	2.2.3.1	Generic	Attribute	Management	Up:	2.2.3	Attribute
Management	Next:	2.2.4	Object	Comparison

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Front	Matter	Up:	Python/C	API	Reference	Manual	Next:	1.
Introduction

Contents
Front	Matter
1.	Introduction

1.1	Include	Files
1.2	Objects,	Types	and	Reference	Counts

1.2.1	Reference	Counts
1.2.2	Types

1.3	Exceptions
1.4	Embedding	Python

2.	The	Very	High	Level	Layer
3.	Reference	Counting
4.	Exception	Handling

4.1	Standard	Exceptions
4.2	Deprecation	of	String	Exceptions

5.	Utilities
5.1	Operating	System	Utilities
5.2	Process	Control
5.3	Importing	Modules
5.4	Data	marshalling	support
5.5	Parsing	arguments	and	building	values

6.	Abstract	Objects	Layer
6.1	Object	Protocol
6.2	Number	Protocol
6.3	Sequence	Protocol
6.4	Mapping	Protocol
6.5	Iterator	Protocol
6.6	Buffer	Protocol

7.	Concrete	Objects	Layer
7.1	Fundamental	Objects

7.1.1	Type	Objects
7.1.2	The	None	Object

7.2	Numeric	Objects
7.2.1	Plain	Integer	Objects
7.2.2	Boolean	Objects
7.2.3	Long	Integer	Objects
7.2.4	Floating	Point	Objects

7.2.5	Complex	Number	Objects
7.3	Sequence	Objects

7.3.1	String	Objects
7.3.2	Unicode	Objects
7.3.3	Buffer	Objects
7.3.4	Tuple	Objects
7.3.5	List	Objects

7.4	Mapping	Objects
7.4.1	Dictionary	Objects

7.5	Other	Objects
7.5.1	File	Objects
7.5.2	Instance	Objects
7.5.3	Method	Objects
7.5.4	Module	Objects
7.5.5	Iterator	Objects
7.5.6	Descriptor	Objects
7.5.7	Slice	Objects
7.5.8	Weak	Reference	Objects
7.5.9	CObjects
7.5.10	Cell	Objects
7.5.11	Generator	Objects
7.5.12	DateTime	Objects

8.	Initialization,	Finalization,	and	Threads
8.1	Thread	State	and	the	Global	Interpreter	Lock
8.2	Profiling	and	Tracing
8.3	Advanced	Debugger	Support

9.	Memory	Management
9.1	Overview
9.2	Memory	Interface
9.3	Examples

10.	Object	Implementation	Support
10.1	Allocating	Objects	on	the	Heap
10.2	Common	Object	Structures
10.3	Type	Objects
10.4	Mapping	Object	Structures
10.5	Number	Object	Structures
10.6	Sequence	Object	Structures
10.7	Buffer	Object	Structures
10.8	Supporting	the	Iterator	Protocol

10.9	Supporting	Cyclic	Garbage	Collection
A.	Reporting	Bugs
B.	History	and	License

B.1	History	of	the	software
B.2	Terms	and	conditions	for	accessing	or	otherwise	using	Python
B.3	Licenses	and	Acknowledgements	for	Incorporated	Software

B.3.1	Mersenne	Twister
B.3.2	Sockets
B.3.3	Floating	point	exception	control
B.3.4	MD5	message	digest	algorithm
B.3.5	Asynchronous	socket	services
B.3.6	Cookie	management
B.3.7	Profiling
B.3.8	Execution	tracing
B.3.9	UUencode	and	UUdecode	functions
B.3.10	XML	Remote	Procedure	Calls

Index
About	this	document	...

Python/C	API	Reference	Manual
Previous:	Front	Matter	Up:	Python/C	API	Reference	Manual	Next:	1.
Introduction

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Index	Up:	Python/C	API	Reference	Manual

About	this	document	...
Python/C	API	Reference	Manual,	29	November	2004,	Release	2.4

This	document	was	generated	using	the	LaTeX2HTML	translator.

LaTeX2HTML	is	Copyright	©	1993,	1994,	1995,	1996,	1997,	Nikos	Drakos,
Computer	Based	Learning	Unit,	University	of	Leeds,	and	Copyright	©	1997,
1998,	Ross	Moore,	Mathematics	Department,	Macquarie	University,	Sydney.

The	application	of	LaTeX2HTML	to	the	Python	documentation	has	been	heavily
tailored	by	Fred	L.	Drake,	Jr.	Original	navigation	icons	were	contributed	by
Christopher	Petrilli.

http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://cbl.leeds.ac.uk/nikos/personal.html
http://www.maths.mq.edu.au/~ross/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/

Comments	and	Questions
General	comments	and	questions	regarding	this	document	should	be	sent	by
email	to	docs@python.org.	If	you	find	specific	errors	in	this	document,	either	in
the	content	or	the	presentation,	please	report	the	bug	at	the	Python	Bug	Tracker
at	SourceForge.	If	you	are	able	to	provide	suggested	text,	either	to	replace
existing	incorrect	or	unclear	material,	or	additional	text	to	supplement	what's
already	available,	we'd	appreciate	the	contribution.	There's	no	need	to	worry
about	text	markup;	our	documentation	team	will	gladly	take	care	of	that.

Questions	regarding	how	to	use	the	information	in	this	document	should	be	sent
to	the	Python	news	group,	comp.lang.python,	or	the	Python	mailing	list	(which
is	gated	to	the	newsgroup	and	carries	the	same	content).

For	any	of	these	channels,	please	be	sure	not	to	send	HTML	email.	Thanks.

Python/C	API	Reference	Manual
Previous:	Index	Up:	Python/C	API	Reference	Manual

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

mailto:docs@python.org
http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/
news:comp.lang.python
http://www.python.org/mailman/listinfo/python-list

Previous:	1.2.1	Reference	Counts	Up:	1.2.1	Reference	Counts	Next:	1.2.2
Types

1.2.1.1	Reference	Count	Details

The	reference	count	behavior	of	functions	in	the	Python/C	API	is	best	explained
in	terms	of	ownership	of	references.	Ownership	pertains	to	references,	never	to
objects	(objects	are	not	owned:	they	are	always	shared).	"Owning	a	reference"
means	being	responsible	for	calling	Py_DECREF	on	it	when	the	reference	is	no
longer	needed.	Ownership	can	also	be	transferred,	meaning	that	the	code	that
receives	ownership	of	the	reference	then	becomes	responsible	for	eventually
decref'ing	it	by	calling	Py_DECREF()	or	Py_XDECREF()	when	it's	no	longer
needed	-or	passing	on	this	responsibility	(usually	to	its	caller).	When	a	function
passes	ownership	of	a	reference	on	to	its	caller,	the	caller	is	said	to	receive	a	new
reference.	When	no	ownership	is	transferred,	the	caller	is	said	to	borrow	the
reference.	Nothing	needs	to	be	done	for	a	borrowed	reference.

Conversely,	when	a	calling	function	passes	it	a	reference	to	an	object,	there	are
two	possibilities:	the	function	steals	a	reference	to	the	object,	or	it	does	not.	Few
functions	steal	references;	the	two	notable	exceptions	are
PyList_SetItem()	and	PyTuple_SetItem(),	which	steal	a	reference	to
the	item	(but	not	to	the	tuple	or	list	into	which	the	item	is	put!).	These	functions
were	designed	to	steal	a	reference	because	of	a	common	idiom	for	populating	a
tuple	or	list	with	newly	created	objects;	for	example,	the	code	to	create	the	tuple
(1,	2,	"three")	could	look	like	this	(forgetting	about	error	handling	for
the	moment;	a	better	way	to	code	this	is	shown	below):

PyObject	*t;

t	=	PyTuple_New(3);

PyTuple_SetItem(t,	0,	PyInt_FromLong(1L));

PyTuple_SetItem(t,	1,	PyInt_FromLong(2L));

PyTuple_SetItem(t,	2,	PyString_FromString("three"));

Incidentally,	PyTuple_SetItem()	is	the	only	way	to	set	tuple	items;
PySequence_SetItem()	and	PyObject_SetItem()	refuse	to	do	this
since	tuples	are	an	immutable	data	type.	You	should	only	use
PyTuple_SetItem()	for	tuples	that	you	are	creating	yourself.

Equivalent	code	for	populating	a	list	can	be	written	using	PyList_New()	and

PyList_SetItem().	Such	code	can	also	use	PySequence_SetItem();
this	illustrates	the	difference	between	the	two	(the	extra	Py_DECREF()	calls):

PyObject	*l,	*x;

l	=	PyList_New(3);

x	=	PyInt_FromLong(1L);

PySequence_SetItem(l,	0,	x);	Py_DECREF(x);

x	=	PyInt_FromLong(2L);

PySequence_SetItem(l,	1,	x);	Py_DECREF(x);

x	=	PyString_FromString("three");

PySequence_SetItem(l,	2,	x);	Py_DECREF(x);

You	might	find	it	strange	that	the	``recommended''	approach	takes	more	code.
However,	in	practice,	you	will	rarely	use	these	ways	of	creating	and	populating	a
tuple	or	list.	There's	a	generic	function,	Py_BuildValue(),	that	can	create
most	common	objects	from	C	values,	directed	by	a	format	string.	For	example,
the	above	two	blocks	of	code	could	be	replaced	by	the	following	(which	also
takes	care	of	the	error	checking):

PyObject	*t,	*l;

t	=	Py_BuildValue("(iis)",	1,	2,	"three");

l	=	Py_BuildValue("[iis]",	1,	2,	"three");

It	is	much	more	common	to	use	PyObject_SetItem()	and	friends	with
items	whose	references	you	are	only	borrowing,	like	arguments	that	were	passed
in	to	the	function	you	are	writing.	In	that	case,	their	behaviour	regarding
reference	counts	is	much	saner,	since	you	don't	have	to	increment	a	reference
count	so	you	can	give	a	reference	away	(``have	it	be	stolen'').	For	example,	this
function	sets	all	items	of	a	list	(actually,	any	mutable	sequence)	to	a	given	item:

int

set_all(PyObject	*target,	PyObject	*item)

{

				int	i,	n;

				n	=	PyObject_Length(target);

				if	(n	<	0)

								return	-1;

				for	(i	=	0;	i	<	n;	i++)	{

								if	(PyObject_SetItem(target,	i,	item)	<	0)

												return	-1;

				}

				return	0;

}

The	situation	is	slightly	different	for	function	return	values.	While	passing	a
reference	to	most	functions	does	not	change	your	ownership	responsibilities	for
that	reference,	many	functions	that	return	a	referece	to	an	object	give	you
ownership	of	the	reference.	The	reason	is	simple:	in	many	cases,	the	returned
object	is	created	on	the	fly,	and	the	reference	you	get	is	the	only	reference	to	the
object.	Therefore,	the	generic	functions	that	return	object	references,	like
PyObject_GetItem()	and	PySequence_GetItem(),	always	return	a
new	reference	(the	caller	becomes	the	owner	of	the	reference).

It	is	important	to	realize	that	whether	you	own	a	reference	returned	by	a	function
depends	on	which	function	you	call	only	--	the	plumage	(the	type	of	the	object
passed	as	an	argument	to	the	function)	doesn't	enter	into	it!	Thus,	if	you	extract
an	item	from	a	list	using	PyList_GetItem(),	you	don't	own	the	reference	--
but	if	you	obtain	the	same	item	from	the	same	list	using
PySequence_GetItem()	(which	happens	to	take	exactly	the	same
arguments),	you	do	own	a	reference	to	the	returned	object.

Here	is	an	example	of	how	you	could	write	a	function	that	computes	the	sum	of
the	items	in	a	list	of	integers;	once	using	PyList_GetItem(),	and	once
using	PySequence_GetItem().

long

sum_list(PyObject	*list)

{

				int	i,	n;

				long	total	=	0;

				PyObject	*item;

				n	=	PyList_Size(list);

				if	(n	<	0)

								return	-1;	/*	Not	a	list	*/

				for	(i	=	0;	i	<	n;	i++)	{

								item	=	PyList_GetItem(list,	i);	/*	Can't	fail	*/

								if	(!PyInt_Check(item))	continue;	/*	Skip	non-integers	*/

								total	+=	PyInt_AsLong(item);

				}

				return	total;

}

long

sum_sequence(PyObject	*sequence)

{

				int	i,	n;

				long	total	=	0;

				PyObject	*item;

				n	=	PySequence_Length(sequence);

				if	(n	<	0)

								return	-1;	/*	Has	no	length	*/

				for	(i	=	0;	i	<	n;	i++)	{

								item	=	PySequence_GetItem(sequence,	i);

								if	(item	==	NULL)

												return	-1;	/*	Not	a	sequence,	or	other	failure	*/

								if	(PyInt_Check(item))

												total	+=	PyInt_AsLong(item);

								Py_DECREF(item);	/*	Discard	reference	ownership	*/

				}

				return	total;

}

Python/C	API	Reference	Manual
Previous:	1.2.1	Reference	Counts	Up:	1.2.1	Reference	Counts	Next:	1.2.2
Types

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.2.5	Complex	Number	Objects	Up:	7.2.5	Complex	Number
Objects	Next:	7.2.5.2	Complex	Numbers	as

7.2.5.1	Complex	Numbers	as	C	Structures

Note	that	the	functions	which	accept	these	structures	as	parameters	and	return
them	as	results	do	so	by	value	rather	than	dereferencing	them	through	pointers.
This	is	consistent	throughout	the	API.

Py_complex

The	C	structure	which	corresponds	to	the	value	portion	of	a	Python
complex	number	object.	Most	of	the	functions	for	dealing	with	complex
number	objects	use	structures	of	this	type	as	input	or	output	values,	as
appropriate.	It	is	defined	as:

typedef	struct	{

			double	real;

			double	imag;

}	Py_complex;

Py_complex	_Py_c_sum(Py_complex	left,	Py_complex	right)
Return	the	sum	of	two	complex	numbers,	using	the	C	Py_complex
representation.

Py_complex	_Py_c_diff(Py_complex	left,	Py_complex	right)
Return	the	difference	between	two	complex	numbers,	using	the	C
Py_complex	representation.

Py_complex	_Py_c_neg(Py_complex	complex)
Return	the	negation	of	the	complex	number	complex,	using	the	C
Py_complex	representation.

Py_complex	_Py_c_prod(Py_complex	left,	Py_complex	right)
Return	the	product	of	two	complex	numbers,	using	the	C	Py_complex
representation.

Py_complex	_Py_c_quot(Py_complex	dividend,	Py_complex	divisor)
Return	the	quotient	of	two	complex	numbers,	using	the	C	Py_complex

representation.

Py_complex	_Py_c_pow(Py_complex	num,	Py_complex	exp)
Return	the	exponentiation	of	num	by	exp,	using	the	C	Py_complex
representation.

Python/C	API	Reference	Manual
Previous:	7.2.5	Complex	Number	Objects	Up:	7.2.5	Complex	Number
Objects	Next:	7.2.5.2	Complex	Numbers	as

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.2.5.1	Complex	Numbers	as	Up:	7.2.5	Complex	Number	Objects
Next:	7.3	Sequence	Objects

7.2.5.2	Complex	Numbers	as	Python	Objects

PyComplexObject

This	subtype	of	PyObject	represents	a	Python	complex	number	object.

PyTypeObject	PyComplex_Type
This	instance	of	PyTypeObject	represents	the	Python	complex	number
type.

int	PyComplex_Check(PyObject	*p)
Returns	true	if	its	argument	is	a	PyComplexObject	or	a	subtype	of
PyComplexObject.	Changed	in	version	2.2:	Allowed	subtypes	to	be
accepted.

int	PyComplex_CheckExact(PyObject	*p)
Returns	true	if	its	argument	is	a	PyComplexObject,	but	not	a	subtype	of
PyComplexObject.	New	in	version	2.2.

PyObject*	PyComplex_FromCComplex(Py_complex	v)
Return	value:	New	reference.
Create	a	new	Python	complex	number	object	from	a	C	Py_complex
value.

PyObject*	PyComplex_FromDoubles(double	real,	double	imag)
Return	value:	New	reference.
Returns	a	new	PyComplexObject	object	from	real	and	imag.

double	PyComplex_RealAsDouble(PyObject	*op)
Returns	the	real	part	of	op	as	a	C	double.

double	PyComplex_ImagAsDouble(PyObject	*op)
Returns	the	imaginary	part	of	op	as	a	C	double.

PyObject	*op)

Py_complex	PyComplex_AsCComplex(
Returns	the	Py_complex	value	of	the	complex	number	op.

Python/C	API	Reference	Manual
Previous:	7.2.5.1	Complex	Numbers	as	Up:	7.2.5	Complex	Number	Objects
Next:	7.3	Sequence	Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.3.2	Unicode	Objects	Up:	7.3.2	Unicode	Objects	Next:	7.3.2.2
Methods	and	Slot

7.3.2.1	Built-in	Codecs

Python	provides	a	set	of	builtin	codecs	which	are	written	in	C	for	speed.	All	of
these	codecs	are	directly	usable	via	the	following	functions.

Many	of	the	following	APIs	take	two	arguments	encoding	and	errors.	These
parameters	encoding	and	errors	have	the	same	semantics	as	the	ones	of	the
builtin	unicode()	Unicode	object	constructor.

Setting	encoding	to	NULL	causes	the	default	encoding	to	be	used	which	is
ASCII.	The	file	system	calls	should	use
Py_FileSystemDefaultEncoding	as	the	encoding	for	file	names.	This
variable	should	be	treated	as	read-only:	On	some	systems,	it	will	be	a	pointer	to
a	static	string,	on	others,	it	will	change	at	run-time	(such	as	when	the	application
invokes	setlocale).

Error	handling	is	set	by	errors	which	may	also	be	set	to	NULL	meaning	to	use	the
default	handling	defined	for	the	codec.	Default	error	handling	for	all	builtin
codecs	is	``strict''	(ValueError	is	raised).

The	codecs	all	use	a	similar	interface.	Only	deviation	from	the	following	generic
ones	are	documented	for	simplicity.

These	are	the	generic	codec	APIs:

PyObject*	PyUnicode_Decode(const	char	*s,	int	size,	const	char*encoding,	const	char	*errors)
Return	value:	New	reference.
Create	a	Unicode	object	by	decoding	size	bytes	of	the	encoded	string	s.
encoding	and	errors	have	the	same	meaning	as	the	parameters	of	the	same
name	in	the	unicode()	builtin	function.	The	codec	to	be	used	is	looked
up	using	the	Python	codec	registry.	Returns	NULL	if	an	exception	was
raised	by	the	codec.

const	Py_UNICODE	*s,	int	size,	const	char

PyObject*	PyUnicode_Encode(*encoding,	const	char	*errors)

Return	value:	New	reference.
Encodes	the	Py_UNICODE	buffer	of	the	given	size	and	returns	a	Python
string	object.	encoding	and	errors	have	the	same	meaning	as	the	parameters
of	the	same	name	in	the	Unicode	encode()	method.	The	codec	to	be	used
is	looked	up	using	the	Python	codec	registry.	Returns	NULL	if	an	exception
was	raised	by	the	codec.

PyObject*	PyUnicode_AsEncodedString(
PyObject	*unicode,	const
char	*encoding,	const	char
*errors)

Return	value:	New	reference.
Encodes	a	Unicode	object	and	returns	the	result	as	Python	string	object.
encoding	and	errors	have	the	same	meaning	as	the	parameters	of	the	same
name	in	the	Unicode	encode()	method.	The	codec	to	be	used	is	looked
up	using	the	Python	codec	registry.	Returns	NULL	if	an	exception	was
raised	by	the	codec.

These	are	the	UTF-8	codec	APIs:

PyObject*	PyUnicode_DecodeUTF8(const	char	*s,	int	size,	const	char*errors)
Return	value:	New	reference.
Creates	a	Unicode	object	by	decoding	size	bytes	of	the	UTF-8	encoded
string	s.	Returns	NULL	if	an	exception	was	raised	by	the	codec.

PyObject*	PyUnicode_DecodeUTF8Stateful(
const	char	*s,	int	size,
const	char	*errors,	int
*consumed)

If	consumed	is	NULL,	behaves	like	PyUnicode_DecodeUTF8().	If
consumed	is	not	NULL,	trailing	incomplete	UTF-8	byte	sequences	will	not
be	treated	as	an	error.	Those	bytes	will	not	be	decoded	and	the	number	of
bytes	that	have	been	decoded	will	be	stored	in	consumed.	New	in	version
2.4.

PyObject*	PyUnicode_EncodeUTF8(const	Py_UNICODE	*s,	int	size,const	char	*errors)

Return	value:	New	reference.
Encodes	the	Py_UNICODE	buffer	of	the	given	size	using	UTF-8	and
returns	a	Python	string	object.	Returns	NULL	if	an	exception	was	raised	by
the	codec.

PyObject*	PyUnicode_AsUTF8String(PyObject	*unicode)
Return	value:	New	reference.
Encodes	a	Unicode	objects	using	UTF-8	and	returns	the	result	as	Python
string	object.	Error	handling	is	``strict''.	Returns	NULL	if	an	exception	was
raised	by	the	codec.

These	are	the	UTF-16	codec	APIs:

PyObject*	PyUnicode_DecodeUTF16(const	char	*s,	int	size,	const	char*errors,	int	*byteorder)
Return	value:	New	reference.
Decodes	length	bytes	from	a	UTF-16	encoded	buffer	string	and	returns	the
corresponding	Unicode	object.	errors	(if	non-NULL)	defines	the	error
handling.	It	defaults	to	``strict''.

If	byteorder	is	non-NULL,	the	decoder	starts	decoding	using	the	given	byte
order:

			*byteorder	==	-1:	little	endian

			*byteorder	==	0:		native	order

			*byteorder	==	1:		big	endian

and	then	switches	according	to	all	byte	order	marks	(BOM)	it	finds	in	the
input	data.	BOMs	are	not	copied	into	the	resulting	Unicode	string.	After
completion,	*byteorder	is	set	to	the	current	byte	order	at	the	end	of	input
data.

If	byteorder	is	NULL,	the	codec	starts	in	native	order	mode.

Returns	NULL	if	an	exception	was	raised	by	the	codec.

PyObject*	PyUnicode_DecodeUTF16Stateful(

const	char	*s,	int	size,
const	char	*errors,	int
*byteorder,	int
*consumed)

If	consumed	is	NULL,	behaves	like	PyUnicode_DecodeUTF16().	If
consumed	is	not	NULL,	PyUnicode_DecodeUTF16Stateful()	will
not	treat	trailing	incomplete	UTF-16	byte	sequences	(i.e.	an	odd	number	of
bytes	or	a	split	surrogate	pair)	as	an	error.	Those	bytes	will	not	be	decoded
and	the	number	of	bytes	that	have	been	decoded	will	be	stored	in	consumed.
New	in	version	2.4.

PyObject*	PyUnicode_EncodeUTF16(const	Py_UNICODE	*s,	int	size,const	char	*errors,	int	byteorder)
Return	value:	New	reference.
Returns	a	Python	string	object	holding	the	UTF-16	encoded	value	of	the
Unicode	data	in	s.	If	byteorder	is	not	0,	output	is	written	according	to	the
following	byte	order:

			byteorder	==	-1:	little	endian

			byteorder	==	0:		native	byte	order	(writes	a	BOM	mark)

			byteorder	==	1:		big	endian

If	byteorder	is	0,	the	output	string	will	always	start	with	the	Unicode	BOM
mark	(U+FEFF).	In	the	other	two	modes,	no	BOM	mark	is	prepended.

If	Py_UNICODE_WIDE	is	defined,	a	single	Py_UNICODE	value	may	get
represented	as	a	surrogate	pair.	If	it	is	not	defined,	each	Py_UNICODE
values	is	interpreted	as	an	UCS-2	character.

Returns	NULL	if	an	exception	was	raised	by	the	codec.

PyObject*	PyUnicode_AsUTF16String(PyObject	*unicode)
Return	value:	New	reference.
Returns	a	Python	string	using	the	UTF-16	encoding	in	native	byte	order.
The	string	always	starts	with	a	BOM	mark.	Error	handling	is	``strict''.
Returns	NULL	if	an	exception	was	raised	by	the	codec.

These	are	the	``Unicode	Escape''	codec	APIs:

PyObject*	PyUnicode_DecodeUnicodeEscape(const	char	*s,	int	size,const	char	*errors)
Return	value:	New	reference.
Creates	a	Unicode	object	by	decoding	size	bytes	of	the	Unicode-Escape

encoded	string	s.	Returns	NULL	if	an	exception	was	raised	by	the	codec.

PyObject*	PyUnicode_EncodeUnicodeEscape(
const	Py_UNICODE
*s,	int	size,	const	char
*errors)

Return	value:	New	reference.
Encodes	the	Py_UNICODE	buffer	of	the	given	size	using	Unicode-Escape
and	returns	a	Python	string	object.	Returns	NULL	if	an	exception	was	raised
by	the	codec.

PyObject*	PyUnicode_AsUnicodeEscapeString(PyObject	*unicode)
Return	value:	New	reference.
Encodes	a	Unicode	objects	using	Unicode-Escape	and	returns	the	result	as
Python	string	object.	Error	handling	is	``strict''.	Returns	NULL	if	an
exception	was	raised	by	the	codec.

These	are	the	``Raw	Unicode	Escape''	codec	APIs:

PyObject*	PyUnicode_DecodeRawUnicodeEscape(
const	char	*s,	int
size,	const	char
*errors)

Return	value:	New	reference.
Creates	a	Unicode	object	by	decoding	size	bytes	of	the	Raw-Unicode-
Escape	encoded	string	s.	Returns	NULL	if	an	exception	was	raised	by	the
codec.

PyObject*	PyUnicode_EncodeRawUnicodeEscape(

const
Py_UNICODE	*s,
int	size,	const	char
*errors)

Return	value:	New	reference.
Encodes	the	Py_UNICODE	buffer	of	the	given	size	using	Raw-Unicode-
Escape	and	returns	a	Python	string	object.	Returns	NULL	if	an	exception
was	raised	by	the	codec.

PyObject*	PyUnicode_AsRawUnicodeEscapeString(PyObject*unicode)
Return	value:	New	reference.

Encodes	a	Unicode	objects	using	Raw-Unicode-Escape	and	returns	the
result	as	Python	string	object.	Error	handling	is	``strict''.	Returns	NULL	if	an
exception	was	raised	by	the	codec.

These	are	the	Latin-1	codec	APIs:	Latin-1	corresponds	to	the	first	256	Unicode
ordinals	and	only	these	are	accepted	by	the	codecs	during	encoding.

PyObject*	PyUnicode_DecodeLatin1(const	char	*s,	int	size,	const	char*errors)
Return	value:	New	reference.
Creates	a	Unicode	object	by	decoding	size	bytes	of	the	Latin-1	encoded
string	s.	Returns	NULL	if	an	exception	was	raised	by	the	codec.

PyObject*	PyUnicode_EncodeLatin1(const	Py_UNICODE	*s,	int	size,const	char	*errors)
Return	value:	New	reference.
Encodes	the	Py_UNICODE	buffer	of	the	given	size	using	Latin-1	and
returns	a	Python	string	object.	Returns	NULL	if	an	exception	was	raised	by
the	codec.

PyObject*	PyUnicode_AsLatin1String(PyObject	*unicode)
Return	value:	New	reference.
Encodes	a	Unicode	objects	using	Latin-1	and	returns	the	result	as	Python
string	object.	Error	handling	is	``strict''.	Returns	NULL	if	an	exception	was
raised	by	the	codec.

These	are	the	ASCII	codec	APIs.	Only	7-bit	ASCII	data	is	accepted.	All	other
codes	generate	errors.

PyObject*	PyUnicode_DecodeASCII(const	char	*s,	int	size,	const	char*errors)
Return	value:	New	reference.
Creates	a	Unicode	object	by	decoding	size	bytes	of	the	ASCII	encoded
string	s.	Returns	NULL	if	an	exception	was	raised	by	the	codec.

PyObject*	PyUnicode_EncodeASCII(const	Py_UNICODE	*s,	int	size,const	char	*errors)
Return	value:	New	reference.

Encodes	the	Py_UNICODE	buffer	of	the	given	size	using	ASCII	and
returns	a	Python	string	object.	Returns	NULL	if	an	exception	was	raised	by
the	codec.

PyObject*	PyUnicode_AsASCIIString(PyObject	*unicode)
Return	value:	New	reference.
Encodes	a	Unicode	objects	using	ASCII	and	returns	the	result	as	Python
string	object.	Error	handling	is	``strict''.	Returns	NULL	if	an	exception	was
raised	by	the	codec.

These	are	the	mapping	codec	APIs:

This	codec	is	special	in	that	it	can	be	used	to	implement	many	different	codecs
(and	this	is	in	fact	what	was	done	to	obtain	most	of	the	standard	codecs	included
in	the	encodings	package).	The	codec	uses	mapping	to	encode	and	decode
characters.

Decoding	mappings	must	map	single	string	characters	to	single	Unicode
characters,	integers	(which	are	then	interpreted	as	Unicode	ordinals)	or	None
(meaning	"undefined	mapping"	and	causing	an	error).

Encoding	mappings	must	map	single	Unicode	characters	to	single	string
characters,	integers	(which	are	then	interpreted	as	Latin-1	ordinals)	or	None
(meaning	"undefined	mapping"	and	causing	an	error).

The	mapping	objects	provided	must	only	support	the	__getitem__	mapping
interface.

If	a	character	lookup	fails	with	a	LookupError,	the	character	is	copied	as-is
meaning	that	its	ordinal	value	will	be	interpreted	as	Unicode	or	Latin-1	ordinal
resp.	Because	of	this,	mappings	only	need	to	contain	those	mappings	which	map
characters	to	different	code	points.

PyObject*	PyUnicode_DecodeCharmap(const	char	*s,	int	size,	PyObject*mapping,	const	char	*errors)
Return	value:	New	reference.
Creates	a	Unicode	object	by	decoding	size	bytes	of	the	encoded	string	s
using	the	given	mapping	object.	Returns	NULL	if	an	exception	was	raised
by	the	codec.

PyObject*	PyUnicode_EncodeCharmap(
const	Py_UNICODE	*s,	int	size,
PyObject	*mapping,	const	char
*errors)

Return	value:	New	reference.
Encodes	the	Py_UNICODE	buffer	of	the	given	size	using	the	given
mapping	object	and	returns	a	Python	string	object.	Returns	NULL	if	an
exception	was	raised	by	the	codec.

PyObject*	PyUnicode_AsCharmapString(PyObject	*unicode,	PyObject*mapping)
Return	value:	New	reference.
Encodes	a	Unicode	objects	using	the	given	mapping	object	and	returns	the
result	as	Python	string	object.	Error	handling	is	``strict''.	Returns	NULL	if	an
exception	was	raised	by	the	codec.

The	following	codec	API	is	special	in	that	maps	Unicode	to	Unicode.

PyObject*	PyUnicode_TranslateCharmap(
const	Py_UNICODE	*s,	int
size,	PyObject	*table,	const
char	*errors)

Return	value:	New	reference.
Translates	a	Py_UNICODE	buffer	of	the	given	length	by	applying	a
character	mapping	table	to	it	and	returns	the	resulting	Unicode	object.
Returns	NULL	when	an	exception	was	raised	by	the	codec.

The	mapping	table	must	map	Unicode	ordinal	integers	to	Unicode	ordinal
integers	or	None	(causing	deletion	of	the	character).

Mapping	tables	need	only	provide	the	method__getitem__()	interface;
dictionaries	and	sequences	work	well.	Unmapped	character	ordinals	(ones
which	cause	a	LookupError)	are	left	untouched	and	are	copied	as-is.

These	are	the	MBCS	codec	APIs.	They	are	currently	only	available	on	Windows
and	use	the	Win32	MBCS	converters	to	implement	the	conversions.	Note	that
MBCS	(or	DBCS)	is	a	class	of	encodings,	not	just	one.	The	target	encoding	is
defined	by	the	user	settings	on	the	machine	running	the	codec.

const	char	*s,	int	size,	const	char

PyObject*	PyUnicode_DecodeMBCS(*errors)

Return	value:	New	reference.
Creates	a	Unicode	object	by	decoding	size	bytes	of	the	MBCS	encoded
string	s.	Returns	NULL	if	an	exception	was	raised	by	the	codec.

PyObject*	PyUnicode_EncodeMBCS(const	Py_UNICODE	*s,	int	size,const	char	*errors)
Return	value:	New	reference.
Encodes	the	Py_UNICODE	buffer	of	the	given	size	using	MBCS	and
returns	a	Python	string	object.	Returns	NULL	if	an	exception	was	raised	by
the	codec.

PyObject*	PyUnicode_AsMBCSString(PyObject	*unicode)
Return	value:	New	reference.
Encodes	a	Unicode	objects	using	MBCS	and	returns	the	result	as	Python
string	object.	Error	handling	is	``strict''.	Returns	NULL	if	an	exception	was
raised	by	the	codec.

Python/C	API	Reference	Manual
Previous:	7.3.2	Unicode	Objects	Up:	7.3.2	Unicode	Objects	Next:	7.3.2.2
Methods	and	Slot

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	7.3.2.1	Built-in	Codecs	Up:	7.3.2	Unicode	Objects	Next:	7.3.3	Buffer
Objects

7.3.2.2	Methods	and	Slot	Functions

The	following	APIs	are	capable	of	handling	Unicode	objects	and	strings	on	input
(we	refer	to	them	as	strings	in	the	descriptions)	and	return	Unicode	objects	or
integers	as	appropriate.

They	all	return	NULL	or	-1	if	an	exception	occurs.

PyObject*	PyUnicode_Concat(PyObject	*left,	PyObject	*right)
Return	value:	New	reference.
Concat	two	strings	giving	a	new	Unicode	string.

PyObject*	PyUnicode_Split(PyObject	*s,	PyObject	*sep,	int	maxsplit)
Return	value:	New	reference.
Split	a	string	giving	a	list	of	Unicode	strings.	If	sep	is	NULL,	splitting	will
be	done	at	all	whitespace	substrings.	Otherwise,	splits	occur	at	the	given
separator.	At	most	maxsplit	splits	will	be	done.	If	negative,	no	limit	is	set.
Separators	are	not	included	in	the	resulting	list.

PyObject*	PyUnicode_Splitlines(PyObject	*s,	int	keepend)
Return	value:	New	reference.
Split	a	Unicode	string	at	line	breaks,	returning	a	list	of	Unicode	strings.
CRLF	is	considered	to	be	one	line	break.	If	keepend	is	0,	the	Line	break
characters	are	not	included	in	the	resulting	strings.

PyObject*	PyUnicode_Translate(PyObject	*str,	PyObject	*table,	constchar	*errors)
Return	value:	New	reference.
Translate	a	string	by	applying	a	character	mapping	table	to	it	and	return	the
resulting	Unicode	object.

The	mapping	table	must	map	Unicode	ordinal	integers	to	Unicode	ordinal
integers	or	None	(causing	deletion	of	the	character).

Mapping	tables	need	only	provide	the	__getitem__()	interface;

dictionaries	and	sequences	work	well.	Unmapped	character	ordinals	(ones
which	cause	a	LookupError)	are	left	untouched	and	are	copied	as-is.

errors	has	the	usual	meaning	for	codecs.	It	may	be	NULL	which	indicates	to
use	the	default	error	handling.

PyObject*	PyUnicode_Join(PyObject	*separator,	PyObject	*seq)
Return	value:	New	reference.
Join	a	sequence	of	strings	using	the	given	separator	and	return	the	resulting
Unicode	string.

PyObject*	PyUnicode_Tailmatch(PyObject	*str,	PyObject	*substr,	intstart,	int	end,	int	direction)
Return	value:	New	reference.
Return	1	if	substr	matches	str[start:end]	at	the	given	tail	end	(direction	==
-1	means	to	do	a	prefix	match,	direction	==	1	a	suffix	match),	0	otherwise.

int	PyUnicode_Find(PyObject	*str,	PyObject	*substr,	int	start,	int	end,	intdirection)
Return	the	first	position	of	substr	in	str[start:end]	using	the	given	direction
(direction	==	1	means	to	do	a	forward	search,	direction	==	-1	a	backward
search).	The	return	value	is	the	index	of	the	first	match;	a	value	of	-1
indicates	that	no	match	was	found,	and	-2	indicates	that	an	error	occurred
and	an	exception	has	been	set.

int	PyUnicode_Count(PyObject	*str,	PyObject	*substr,	int	start,	int	end)
Return	the	number	of	non-overlapping	occurrences	of	substr	in
str[start:end].	Returns	-1	if	an	error	occurred.

PyObject*	PyUnicode_Replace(PyObject	*str,	PyObject	*substr,PyObject	*replstr,	int	maxcount)
Return	value:	New	reference.
Replace	at	most	maxcount	occurrences	of	substr	in	str	with	replstr	and
return	the	resulting	Unicode	object.	maxcount	==	-1	means	replace	all
occurrences.

int	PyUnicode_Compare(PyObject	*left,	PyObject	*right)
Compare	two	strings	and	return	-1,	0,	1	for	less	than,	equal,	and	greater

than,	respectively.

PyObject*	PyUnicode_Format(PyObject	*format,	PyObject	*args)
Return	value:	New	reference.
Returns	a	new	string	object	from	format	and	args;	this	is	analogous	to
format	%	args.	The	args	argument	must	be	a	tuple.

int	PyUnicode_Contains(PyObject	*container,	PyObject	*element)
Checks	whether	element	is	contained	in	container	and	returns	true	or	false
accordingly.

element	has	to	coerce	to	a	one	element	Unicode	string.	-1	is	returned	if
there	was	an	error.

Python/C	API	Reference	Manual
Previous:	7.3.2.1	Built-in	Codecs	Up:	7.3.2	Unicode	Objects	Next:	7.3.3	Buffer
Objects

Release	2.4,	documentation	updated	on	29	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Documenting	Python	Up:	Documenting	Python	Next:	1	Introduction

Contents
1	Introduction
2	Directory	Structure
3	Style	Guide
4	LaTeX	Primer

4.1	Syntax
4.2	Hierarchical	Structure
4.3	Common	Environments

5	Document	Classes
6	Special	Markup	Constructs

6.1	Markup	for	the	Preamble
6.2	Meta-information	Markup
6.3	Information	Units
6.4	Showing	Code	Examples
6.5	Inline	Markup
6.6	Miscellaneous	Text	Markup
6.7	Module-specific	Markup
6.8	Library-level	Markup
6.9	Table	Markup
6.10	Reference	List	Markup
6.11	Index-generating	Markup
6.12	Grammar	Production	Displays
6.13	Graphical	Interface	Components

7	Processing	Tools
7.1	External	Tools
7.2	Internal	Tools
7.3	Working	on	Cygwin

8	Including	Graphics
9	Future	Directions

9.1	Structured	Documentation
9.2	Discussion	Forums

About	this	document	...

Documenting	Python
Previous:	Documenting	Python	Up:	Documenting	Python	Next:	1	Introduction

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	9.2	Discussion	Forums	Up:	Documenting	Python

About	this	document	...
Documenting	Python,	13	November	2004,	Release	2.4b2

This	document	was	generated	using	the	LaTeX2HTML	translator.

LaTeX2HTML	is	Copyright	©	1993,	1994,	1995,	1996,	1997,	Nikos	Drakos,
Computer	Based	Learning	Unit,	University	of	Leeds,	and	Copyright	©	1997,
1998,	Ross	Moore,	Mathematics	Department,	Macquarie	University,	Sydney.

The	application	of	LaTeX2HTML	to	the	Python	documentation	has	been	heavily
tailored	by	Fred	L.	Drake,	Jr.	Original	navigation	icons	were	contributed	by
Christopher	Petrilli.

http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://cbl.leeds.ac.uk/nikos/personal.html
http://www.maths.mq.edu.au/~ross/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/

Comments	and	Questions
General	comments	and	questions	regarding	this	document	should	be	sent	by
email	to	docs@python.org.	If	you	find	specific	errors	in	this	document,	either	in
the	content	or	the	presentation,	please	report	the	bug	at	the	Python	Bug	Tracker
at	SourceForge.	If	you	are	able	to	provide	suggested	text,	either	to	replace
existing	incorrect	or	unclear	material,	or	additional	text	to	supplement	what's
already	available,	we'd	appreciate	the	contribution.	There's	no	need	to	worry
about	text	markup;	our	documentation	team	will	gladly	take	care	of	that.

Questions	regarding	how	to	use	the	information	in	this	document	should	be	sent
to	the	Python	news	group,	comp.lang.python,	or	the	Python	mailing	list	(which
is	gated	to	the	newsgroup	and	carries	the	same	content).

For	any	of	these	channels,	please	be	sure	not	to	send	HTML	email.	Thanks.

Documenting	Python
Previous:	9.2	Discussion	Forums	Up:	Documenting	Python

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

mailto:docs@python.org
http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/
news:comp.lang.python
http://www.python.org/mailman/listinfo/python-list

Previous:	6	Building	Extensions:	Tips	Up:	Installing	Python	Modules

About	this	document	...
Installing	Python	Modules,	13	November	2004,	Release	2.4b2

This	document	was	generated	using	the	LaTeX2HTML	translator.

LaTeX2HTML	is	Copyright	©	1993,	1994,	1995,	1996,	1997,	Nikos	Drakos,
Computer	Based	Learning	Unit,	University	of	Leeds,	and	Copyright	©	1997,
1998,	Ross	Moore,	Mathematics	Department,	Macquarie	University,	Sydney.

The	application	of	LaTeX2HTML	to	the	Python	documentation	has	been	heavily
tailored	by	Fred	L.	Drake,	Jr.	Original	navigation	icons	were	contributed	by
Christopher	Petrilli.

http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://cbl.leeds.ac.uk/nikos/personal.html
http://www.maths.mq.edu.au/~ross/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/

Comments	and	Questions
General	comments	and	questions	regarding	this	document	should	be	sent	by
email	to	docs@python.org.	If	you	find	specific	errors	in	this	document,	either	in
the	content	or	the	presentation,	please	report	the	bug	at	the	Python	Bug	Tracker
at	SourceForge.	If	you	are	able	to	provide	suggested	text,	either	to	replace
existing	incorrect	or	unclear	material,	or	additional	text	to	supplement	what's
already	available,	we'd	appreciate	the	contribution.	There's	no	need	to	worry
about	text	markup;	our	documentation	team	will	gladly	take	care	of	that.

Questions	regarding	how	to	use	the	information	in	this	document	should	be	sent
to	the	Python	news	group,	comp.lang.python,	or	the	Python	mailing	list	(which
is	gated	to	the	newsgroup	and	carries	the	same	content).

For	any	of	these	channels,	please	be	sure	not	to	send	HTML	email.	Thanks.

Installing	Python	Modules
Previous:	6	Building	Extensions:	Tips	Up:	Installing	Python	Modules

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

mailto:docs@python.org
http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/
news:comp.lang.python
http://www.python.org/mailman/listinfo/python-list

Previous:	10.46	Creating	a	new	Up:	Distributing	Python	Modules	Next:	Index

Module	Index
This	index	only	lists	modules	documented	in	this	manual.	The	Global	Module
Index	lists	all	modules	that	are	documented	in	this	set	of	manuals.

distutils.archive_util

distutils.bcppcompiler

distutils.ccompiler

distutils.cmd

distutils.command.bdist

distutils.command.bdist_dumb

distutils.command.bdist_packager

distutils.command.bdist_rpm

distutils.command.bdist_wininst

distutils.command.build

distutils.command.build_clib

distutils.command.build_ext

distutils.command.build_py

distutils.command.build_scripts

distutils.command.clean

distutils.command.config

distutils.command.install

distutils.command.install_data

distutils.command.install_headers

distutils.command.install_lib

distutils.command.install_scripts

distutils.command.register

distutils.command.sdist

Distributing	Python	Modules
Previous:	10.46	Creating	a	new	Up:	Distributing	Python	Modules	Next:	Index

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

Previous:	Index	Up:	Distributing	Python	Modules

About	this	document	...
Distributing	Python	Modules,	13	November	2004,	Release	2.4b2

This	document	was	generated	using	the	LaTeX2HTML	translator.

LaTeX2HTML	is	Copyright	©	1993,	1994,	1995,	1996,	1997,	Nikos	Drakos,
Computer	Based	Learning	Unit,	University	of	Leeds,	and	Copyright	©	1997,
1998,	Ross	Moore,	Mathematics	Department,	Macquarie	University,	Sydney.

The	application	of	LaTeX2HTML	to	the	Python	documentation	has	been	heavily
tailored	by	Fred	L.	Drake,	Jr.	Original	navigation	icons	were	contributed	by
Christopher	Petrilli.

http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://cbl.leeds.ac.uk/nikos/personal.html
http://www.maths.mq.edu.au/~ross/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/

Comments	and	Questions
General	comments	and	questions	regarding	this	document	should	be	sent	by
email	to	docs@python.org.	If	you	find	specific	errors	in	this	document,	either	in
the	content	or	the	presentation,	please	report	the	bug	at	the	Python	Bug	Tracker
at	SourceForge.	If	you	are	able	to	provide	suggested	text,	either	to	replace
existing	incorrect	or	unclear	material,	or	additional	text	to	supplement	what's
already	available,	we'd	appreciate	the	contribution.	There's	no	need	to	worry
about	text	markup;	our	documentation	team	will	gladly	take	care	of	that.

Questions	regarding	how	to	use	the	information	in	this	document	should	be	sent
to	the	Python	news	group,	comp.lang.python,	or	the	Python	mailing	list	(which
is	gated	to	the	newsgroup	and	carries	the	same	content).

For	any	of	these	channels,	please	be	sure	not	to	send	HTML	email.	Thanks.

Distributing	Python	Modules
Previous:	Index	Up:	Distributing	Python	Modules

Release	2.4b2,	documentation	updated	on	13	November	2004.
See	About	this	document...	for	information	on	suggesting	changes.

mailto:docs@python.org
http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/
news:comp.lang.python
http://www.python.org/mailman/listinfo/python-list

	Main page
	Global Module Index
	What's New
	1 PEP 218: Built-In Set Objects
	2 PEP 237: Unifying Long Integers and Integers
	3 PEP 289: Generator Expressions
	4 PEP 292: Simpler String Substitutions
	5 PEP 318: Decorators for Functions and Methods
	6 PEP 322: Reverse Iteration
	7 PEP 324: New subprocess Module
	8 PEP 327: Decimal Data Type
	9 PEP 328: Multi-line Imports
	10 PEP 331: Locale-Independent Float/String Conversions
	11 Other Language Changes
	12 New, Improved, and Deprecated Modules
	13 Build and C API Changes
	14 Porting to Python 2.4
	15 Acknowledgements
	About this document ...

	Tutorial
	Front Matter
	1. Whetting Your Appetite
	2. Using the Python Interpreter
	3. An Informal Introduction to Python
	4. More Control Flow Tools
	5. Data Structures
	6. Modules
	7. Input and Output
	8. Errors and Exceptions
	9. Classes
	10. Brief Tour of the Standard Library
	11. Brief Tour of the Standard Library - Part II
	12. What Now?
	A. Interactive Input Editing and History Substitution
	B. Floating Point Arithmetic: Issues and Limitations
	C. History and License
	D. Glossary
	Index
	About this document ...

	Library Reference
	Front Matter
	1. Introduction
	2. Built-In Objects
	2.1 Built-in Functions
	2.2 Non-essential Built-in Functions
	2.3 Built-in Types
	2.3.1 Truth Value Testing
	2.3.2 Boolean Operations
	2.3.3 Comparisons
	2.3.4 Numeric Types
	2.3.5 Iterator Types
	2.3.6 Sequence Types
	2.3.7 Set Types
	2.3.8 Mapping Types
	2.3.9 File Objects
	2.3.10 Other Built-in Types
	2.3.11 Special Attributes

	2.4 Built-in Exceptions
	2.5 Built-in Constants

	3. Python Runtime Services
	3.1 sys -- System-specific parameters and functions
	3.2 gc -- Garbage Collector interface
	3.3 weakref -- Weak references
	3.3.1 Weak Reference Objects
	3.3.2 Example
	3.3.3 Weak References in Extension Types

	3.4 fpectl -- Floating point exception control
	3.4.1 Example
	3.4.2 Limitations and other considerations

	3.5 atexit -- Exit handlers
	3.5.1 atexit Example

	3.6 types -- Names for built-in types
	3.7 UserDict -- Class wrapper for dictionary objects
	3.8 UserList -- Class wrapper for list objects
	3.9 UserString -- Class wrapper for string objects
	3.10 operator -- Standard operators as functions.
	3.10.1 Mapping Operators to Functions

	3.11 inspect -- Inspect live objects
	3.11.1 Types and members
	3.11.2 Retrieving source code
	3.11.3 Classes and functions
	3.11.4 The interpreter stack

	3.12 traceback -- Print or retrieve a stack traceback
	3.12.1 Traceback Example

	3.13 linecache -- Random access to text lines
	3.14 pickle -- Python object serialization
	3.14.1 Relationship to other Python modules
	3.14.2 Data stream format
	3.14.3 Usage
	3.14.4 What can be pickled and unpickled?
	3.14.5 The pickle protocol
	3.14.6 Subclassing Unpicklers
	3.14.7 Example

	3.15 cPickle -- A faster pickle
	3.16 copy_reg -- Register pickle support functions
	3.17 shelve -- Python object persistence
	3.17.1 Restrictions
	3.17.2 Example

	3.18 copy -- Shallow and deep copy operations
	3.19 marshal -- Internal Python object serialization
	3.20 warnings -- Warning control
	3.20.1 Warning Categories
	3.20.2 The Warnings Filter
	3.20.3 Available Functions

	3.21 imp -- Access the import internals
	3.21.1 Examples

	3.22 pkgutil -- Package extension utility
	3.23 code -- Interpreter base classes
	3.23.1 Interactive Interpreter Objects
	3.23.2 Interactive Console Objects

	3.24 codeop -- Compile Python code
	3.25 pprint -- Data pretty printer
	3.25.1 PrettyPrinter Objects

	3.26 repr -- Alternate repr() implementation
	3.26.1 Repr Objects
	3.26.2 Subclassing Repr Objects

	3.27 new -- Creation of runtime internal objects
	3.28 site -- Site-specific configuration hook
	3.29 user -- User-specific configuration hook
	3.30 __builtin__ -- Built-in functions
	3.31 __main__ -- Top-level script environment
	3.32 __future__ -- Future statement definitions

	4. String Services
	4.1 string -- Common string operations
	4.1.1 String constants
	4.1.2 Template strings
	4.1.3 String functions
	4.1.4 Deprecated string functions

	4.2 re -- Regular expression operations
	4.2.1 Regular Expression Syntax
	4.2.2 Matching vs Searching
	4.2.3 Module Contents
	4.2.4 Regular Expression Objects
	4.2.5 Match Objects
	4.2.6 Examples

	4.3 struct -- Interpret strings as packed binary data
	4.4 difflib -- Helpers for computing deltas
	4.4.1 SequenceMatcher Objects
	4.4.2 SequenceMatcher Examples
	4.4.3 Differ Objects
	4.4.4 Differ Example

	4.5 fpformat -- Floating point conversions
	4.6 StringIO -- Read and write strings as files
	4.7 cStringIO -- Faster version of StringIO
	4.8 textwrap -- Text wrapping and filling
	4.9 codecs -- Codec registry and base classes
	4.9.1 Codec Base Classes
	4.9.2 Standard Encodings
	4.9.3 encodings.idna -- Internationalized Domain Names in Applications

	4.10 unicodedata -- Unicode Database
	4.11 stringprep -- Internet String Preparation

	5. Miscellaneous Services
	5.1 pydoc -- Documentation generator and online help system
	5.2 doctest -- Test interactive Python examples
	5.2.1 Simple Usage: Checking Examples in Docstrings
	5.2.2 Simple Usage: Checking Examples in a Text File
	5.2.3 How It Works
	5.2.4 Basic API
	5.2.5 Unittest API
	5.2.6 Advanced API
	5.2.7 Debugging
	5.2.8 Soapbox

	5.3 unittest -- Unit testing framework
	5.3.1 Basic example
	5.3.2 Organizing test code
	5.3.3 Re-using old test code
	5.3.4 Classes and functions
	5.3.5 TestCase Objects
	5.3.6 TestSuite Objects
	5.3.7 TestResult Objects
	5.3.8 TestLoader Objects

	5.4 test -- Regression tests package for Python
	5.4.1 Writing Unit Tests for the test package
	5.4.2 Running tests using test.regrtest

	5.5 test.test_support -- Utility functions for tests
	5.6 decimal -- Decimal floating point arithmetic
	5.6.1 Quick-start Tutorial
	5.6.2 Decimal objects
	5.6.3 Context objects
	5.6.4 Signals
	5.6.5 Floating Point Notes
	5.6.6 Working with threads
	5.6.7 Recipes

	5.7 math -- Mathematical functions
	5.8 cmath -- Mathematical functions for complex numbers
	5.9 random -- Generate pseudo-random numbers
	5.10 whrandom -- Pseudo-random number generator
	5.11 bisect -- Array bisection algorithm
	5.11.1 Examples

	5.12 collections -- High-performance container datatypes
	5.12.1 Recipes

	5.13 heapq -- Heap queue algorithm
	5.13.1 Theory

	5.14 array -- Efficient arrays of numeric values
	5.15 sets -- Unordered collections of unique elements
	5.15.1 Set Objects
	5.15.2 Example
	5.15.3 Protocol for automatic conversion to immutable

	5.16 itertools -- Functions creating iterators for efficient looping
	5.16.1 Itertool functions
	5.16.2 Examples
	5.16.3 Recipes

	5.17 ConfigParser -- Configuration file parser
	5.17.1 RawConfigParser Objects
	5.17.2 ConfigParser Objects
	5.17.3 SafeConfigParser Objects

	5.18 fileinput -- Iterate over lines from multiple input streams
	5.19 calendar -- General calendar-related functions
	5.20 cmd -- Support for line-oriented command interpreters
	5.20.1 Cmd Objects

	5.21 shlex -- Simple lexical analysis
	5.21.1 shlex Objects
	5.21.2 Parsing Rules

	6. Generic Operating System Services
	6.1 os -- Miscellaneous operating system interfaces
	6.1.1 Process Parameters
	6.1.2 File Object Creation
	6.1.3 File Descriptor Operations
	6.1.4 Files and Directories
	6.1.5 Process Management
	6.1.6 Miscellaneous System Information
	6.1.7 Miscellaneous Functions

	6.2 os.path -- Common pathname manipulations
	6.3 dircache -- Cached directory listings
	6.4 stat -- Interpreting stat() results
	6.5 statcache -- An optimization of os.stat()
	6.6 statvfs -- Constants used with os.statvfs()
	6.7 filecmp -- File and Directory Comparisons
	6.7.1 The dircmp class

	6.8 subprocess -- Subprocess management
	6.8.1 Using the subprocess Module
	6.8.2 Popen Objects
	6.8.3 Replacing Older Functions with the subprocess Module

	6.9 popen2 -- Subprocesses with accessible I/O streams
	6.9.1 Popen3 and Popen4 Objects
	6.9.2 Flow Control Issues

	6.10 datetime -- Basic date and time types
	6.10.1 Available Types
	6.10.2 timedelta Objects
	6.10.3 date Objects
	6.10.4 datetime Objects
	6.10.5 time Objects
	6.10.6 tzinfo Objects
	6.10.7 strftime() Behavior

	6.11 time -- Time access and conversions
	6.12 sched -- Event scheduler
	6.12.1 Scheduler Objects

	6.13 mutex -- Mutual exclusion support
	6.13.1 Mutex Objects

	6.14 getpass -- Portable password input
	6.15 curses -- Terminal handling for character-cell displays
	6.15.1 Functions
	6.15.2 Window Objects
	6.15.3 Constants

	6.16 curses.textpad -- Text input widget for curses programs
	6.16.1 Textbox objects

	6.17 curses.wrapper -- Terminal handler for curses programs
	6.18 curses.ascii -- Utilities for ASCII characters
	6.19 curses.panel -- A panel stack extension for curses.
	6.19.1 Functions
	6.19.2 Panel Objects

	6.20 getopt -- Parser for command line options
	6.21 optparse -- More powerful command line option parser
	6.21.1 Background
	6.21.2 Tutorial
	6.21.3 Reference Guide
	6.21.4 Option Callbacks

	6.22 tempfile -- Generate temporary files and directories
	6.23 errno -- Standard errno system symbols
	6.24 glob -- Unix style pathname pattern expansion
	6.25 fnmatch -- Unix filename pattern matching
	6.26 shutil -- High-level file operations
	6.26.1 Example

	6.27 locale -- Internationalization services
	6.27.1 Background, details, hints, tips and caveats
	6.27.2 For extension writers and programs that embed Python
	6.27.3 Access to message catalogs

	6.28 gettext -- Multilingual internationalization services
	6.28.1 GNU gettext API
	6.28.2 Class-based API
	6.28.3 Internationalizing your programs and modules
	6.28.4 Acknowledgements

	6.29 logging -- Logging facility for Python
	6.29.1 Logger Objects
	6.29.2 Basic example
	6.29.3 Logging to multiple destinations
	6.29.4 Sending and receiving logging events across a network
	6.29.5 Handler Objects
	6.29.6 Formatter Objects
	6.29.7 Filter Objects
	6.29.8 LogRecord Objects
	6.29.9 Thread Safety
	6.29.10 Configuration

	6.30 platform -- Access to underlying platform's identifying data.
	6.30.1 Cross Platform
	6.30.2 Java Platform
	6.30.3 Windows Platform
	6.30.4 Mac OS Platform
	6.30.5 Unix Platforms

	7. Optional Operating System Services
	7.1 signal -- Set handlers for asynchronous events
	7.1.1 Example

	7.2 socket -- Low-level networking interface
	7.2.1 Socket Objects
	7.2.2 SSL Objects
	7.2.3 Example

	7.3 select -- Waiting for I/O completion
	7.3.1 Polling Objects

	7.4 thread -- Multiple threads of control
	7.5 threading -- Higher-level threading interface
	7.5.1 Lock Objects
	7.5.2 RLock Objects
	7.5.3 Condition Objects
	7.5.4 Semaphore Objects
	7.5.5 Event Objects
	7.5.6 Thread Objects
	7.5.7 Timer Objects

	7.6 dummy_thread -- Drop-in replacement for the thread module
	7.7 dummy_threading -- Drop-in replacement for the threading module
	7.8 Queue -- A synchronized queue class
	7.8.1 Queue Objects

	7.9 mmap -- Memory-mapped file support
	7.10 anydbm -- Generic access to DBM-style databases
	7.11 dbhash -- DBM-style interface to the BSD database library
	7.11.1 Database Objects

	7.12 whichdb -- Guess which DBM module created a database
	7.13 bsddb -- Interface to Berkeley DB library
	7.13.1 Hash, BTree and Record Objects

	7.14 dumbdbm -- Portable DBM implementation
	7.14.1 Dumbdbm Objects

	7.15 zlib -- Compression compatible with gzip
	7.16 gzip -- Support for gzip files
	7.17 bz2 -- Compression compatible with bzip2
	7.17.1 (De)compression of files
	7.17.2 Sequential (de)compression
	7.17.3 One-shot (de)compression

	7.18 zipfile -- Work with ZIP archives
	7.18.1 ZipFile Objects
	7.18.2 PyZipFile Objects
	7.18.3 ZipInfo Objects

	7.19 tarfile -- Read and write tar archive files
	7.19.1 TarFile Objects
	7.19.2 TarInfo Objects
	7.19.3 Examples

	7.20 readline -- GNU readline interface
	7.20.1 Example

	7.21 rlcompleter -- Completion function for GNU readline
	7.21.1 Completer Objects

	8. Unix Specific Services
	8.1 posix -- The most common POSIX system calls
	8.1.1 Large File Support
	8.1.2 Module Contents

	8.2 pwd -- The password database
	8.3 grp -- The group database
	8.4 crypt -- Function to check Unix passwords
	8.5 dl -- Call C functions in shared objects
	8.5.1 Dl Objects

	8.6 dbm -- Simple ``database'' interface
	8.7 gdbm -- GNU's reinterpretation of dbm
	8.8 termios -- POSIX style tty control
	8.8.1 Example

	8.9 tty -- Terminal control functions
	8.10 pty -- Pseudo-terminal utilities
	8.11 fcntl -- The fcntl() and ioctl() system calls
	8.12 pipes -- Interface to shell pipelines
	8.12.1 Template Objects

	8.13 posixfile -- File-like objects with locking support
	8.14 resource -- Resource usage information
	8.14.1 Resource Limits
	8.14.2 Resource Usage

	8.15 nis -- Interface to Sun's NIS (Yellow Pages)
	8.16 syslog -- Unix syslog library routines
	8.17 commands -- Utilities for running commands

	9. The Python Debugger
	9.1 Debugger Commands
	9.2 How It Works

	10. The Python Profiler
	10.1 Introduction to the profiler
	10.2 How Is This Profiler Different From The Old Profiler?
	10.3 Instant Users Manual
	10.4 What Is Deterministic Profiling?
	10.5 Reference Manual
	10.5.1 The Stats Class

	10.6 Limitations
	10.7 Calibration
	10.8 Extensions -- Deriving Better Profilers
	10.9 hotshot -- High performance logging profiler
	10.9.1 Profile Objects
	10.9.2 Using hotshot data
	10.9.3 Example Usage

	10.10 timeit -- Measure execution time of small code snippets
	10.10.1 Command Line Interface
	10.10.2 Examples

	11. Internet Protocols and Support
	11.1 webbrowser -- Convenient Web-browser controller
	11.1.1 Browser Controller Objects

	11.2 cgi -- Common Gateway Interface support.
	11.2.1 Introduction
	11.2.2 Using the cgi module
	11.2.3 Higher Level Interface
	11.2.4 Old classes
	11.2.5 Functions
	11.2.6 Caring about security
	11.2.7 Installing your CGI script on a Unix system
	11.2.8 Testing your CGI script
	11.2.9 Debugging CGI scripts
	11.2.10 Common problems and solutions

	11.3 cgitb -- Traceback manager for CGI scripts
	11.4 urllib -- Open arbitrary resources by URL
	11.4.1 URLopener Objects
	11.4.2 Examples

	11.5 urllib2 -- extensible library for opening URLs
	11.5.1 Request Objects
	11.5.2 OpenerDirector Objects
	11.5.3 BaseHandler Objects
	11.5.4 HTTPRedirectHandler Objects
	11.5.5 HTTPCookieProcessor Objects
	11.5.6 ProxyHandler Objects
	11.5.7 HTTPPasswordMgr Objects
	11.5.8 AbstractBasicAuthHandler Objects
	11.5.9 HTTPBasicAuthHandler Objects
	11.5.10 ProxyBasicAuthHandler Objects
	11.5.11 AbstractDigestAuthHandler Objects
	11.5.12 HTTPDigestAuthHandler Objects
	11.5.13 ProxyDigestAuthHandler Objects
	11.5.14 HTTPHandler Objects
	11.5.15 HTTPSHandler Objects
	11.5.16 FileHandler Objects
	11.5.17 FTPHandler Objects
	11.5.18 CacheFTPHandler Objects
	11.5.19 GopherHandler Objects
	11.5.20 UnknownHandler Objects
	11.5.21 HTTPErrorProcessor Objects
	11.5.22 Examples

	11.6 httplib -- HTTP protocol client
	11.6.1 HTTPConnection Objects
	11.6.2 HTTPResponse Objects
	11.6.3 Examples

	11.7 ftplib -- FTP protocol client
	11.7.1 FTP Objects

	11.8 gopherlib -- Gopher protocol client
	11.9 poplib -- POP3 protocol client
	11.9.1 POP3 Objects
	11.9.2 POP3 Example

	11.10 imaplib -- IMAP4 protocol client
	11.10.1 IMAP4 Objects
	11.10.2 IMAP4 Example

	11.11 nntplib -- NNTP protocol client
	11.11.1 NNTP Objects

	11.12 smtplib -- SMTP protocol client
	11.12.1 SMTP Objects
	11.12.2 SMTP Example

	11.13 smtpd -- SMTP Server
	11.13.1 SMTPServer Objects
	11.13.2 DebuggingServer Objects
	11.13.3 PureProxy Objects
	11.13.4 MailmanProxy Objects

	11.14 telnetlib -- Telnet client
	11.14.1 Telnet Objects
	11.14.2 Telnet Example

	11.15 urlparse -- Parse URLs into components
	11.16 SocketServer -- A framework for network servers
	11.17 BaseHTTPServer -- Basic HTTP server
	11.18 SimpleHTTPServer -- Simple HTTP request handler
	11.19 CGIHTTPServer -- CGI-capable HTTP request handler
	11.20 cookielib -- Cookie handling for HTTP clients
	11.20.1 CookieJar and FileCookieJar Objects
	11.20.2 FileCookieJar subclasses and co-operation with web browsers
	11.20.3 CookiePolicy Objects
	11.20.4 DefaultCookiePolicy Objects
	11.20.5 Cookie Objects
	11.20.6 Examples

	11.21 Cookie -- HTTP state management
	11.21.1 Cookie Objects
	11.21.2 Morsel Objects
	11.21.3 Example

	11.22 xmlrpclib -- XML-RPC client access
	11.22.1 ServerProxy Objects
	11.22.2 Boolean Objects
	11.22.3 DateTime Objects
	11.22.4 Binary Objects
	11.22.5 Fault Objects
	11.22.6 ProtocolError Objects
	11.22.7 MultiCall Objects
	11.22.8 Convenience Functions
	11.22.9 Example of Client Usage

	11.23 SimpleXMLRPCServer -- Basic XML-RPC server
	11.23.1 SimpleXMLRPCServer Objects
	11.23.2 CGIXMLRPCRequestHandler

	11.24 DocXMLRPCServer -- Self-documenting XML-RPC server
	11.24.1 DocXMLRPCServer Objects
	11.24.2 DocCGIXMLRPCRequestHandler

	11.25 asyncore -- Asynchronous socket handler
	11.25.1 asyncore Example basic HTTP client

	11.26 asynchat -- Asynchronous socket command/response handler
	11.26.1 asynchat - Auxiliary Classes and Functions
	11.26.2 asynchat Example

	12. Internet Data Handling
	12.1 formatter -- Generic output formatting
	12.1.1 The Formatter Interface
	12.1.2 Formatter Implementations
	12.1.3 The Writer Interface
	12.1.4 Writer Implementations

	12.2 email -- An email and MIME handling package
	12.2.1 Representing an email message
	12.2.2 Parsing email messages
	12.2.3 Generating MIME documents
	12.2.4 Creating email and MIME objects from scratch
	12.2.5 Internationalized headers
	12.2.6 Representing character sets
	12.2.7 Encoders
	12.2.8 Exception and Defect classes
	12.2.9 Miscellaneous utilities
	12.2.10 Iterators
	12.2.11 Package History
	12.2.12 Differences from mimelib
	12.2.13 Examples

	12.3 mailcap -- Mailcap file handling.
	12.4 mailbox -- Read various mailbox formats
	12.4.1 Mailbox Objects

	12.5 mhlib -- Access to MH mailboxes
	12.5.1 MH Objects
	12.5.2 Folder Objects
	12.5.3 Message Objects

	12.6 mimetools -- Tools for parsing MIME messages
	12.6.1 Additional Methods of Message Objects

	12.7 mimetypes -- Map filenames to MIME types
	12.7.1 MimeTypes Objects

	12.8 MimeWriter -- Generic MIME file writer
	12.8.1 MimeWriter Objects

	12.9 mimify -- MIME processing of mail messages
	12.10 multifile -- Support for files containing distinct parts
	12.10.1 MultiFile Objects
	12.10.2 MultiFile Example

	12.11 rfc822 -- Parse RFC 2822 mail headers
	12.11.1 Message Objects
	12.11.2 AddressList Objects

	12.12 base64 -- RFC 3548: Base16, Base32, Base64 Data Encodings
	12.13 binascii -- Convert between binary and ASCII
	12.14 binhex -- Encode and decode binhex4 files
	12.14.1 Notes

	12.15 quopri -- Encode and decode MIME quoted-printable data
	12.16 uu -- Encode and decode uuencode files
	12.17 xdrlib -- Encode and decode XDR data
	12.17.1 Packer Objects
	12.17.2 Unpacker Objects
	12.17.3 Exceptions

	12.18 netrc -- netrc file processing
	12.18.1 netrc Objects

	12.19 robotparser -- Parser for robots.txt
	12.20 csv -- CSV File Reading and Writing
	12.20.1 Module Contents
	12.20.2 Dialects and Formatting Parameters
	12.20.3 Reader Objects
	12.20.4 Writer Objects
	12.20.5 Examples

	13. Structured Markup Processing Tools
	13.1 HTMLParser -- Simple HTML and XHTML parser
	13.1.1 Example HTML Parser Application

	13.2 sgmllib -- Simple SGML parser
	13.3 htmllib -- A parser for HTML documents
	13.3.1 HTMLParser Objects

	13.4 htmlentitydefs -- Definitions of HTML general entities
	13.5 xml.parsers.expat -- Fast XML parsing using Expat
	13.5.1 XMLParser Objects
	13.5.2 ExpatError Exceptions
	13.5.3 Example
	13.5.4 Content Model Descriptions
	13.5.5 Expat error constants

	13.6 xml.dom -- The Document Object Model API
	13.6.1 Module Contents
	13.6.2 Objects in the DOM
	13.6.3 Conformance

	13.7 xml.dom.minidom -- Lightweight DOM implementation
	13.7.1 DOM Objects
	13.7.2 DOM Example
	13.7.3 minidom and the DOM standard

	13.8 xml.dom.pulldom -- Support for building partial DOM trees
	13.8.1 DOMEventStream Objects

	13.9 xml.sax -- Support for SAX2 parsers
	13.9.1 SAXException Objects

	13.10 xml.sax.handler -- Base classes for SAX handlers
	13.10.1 ContentHandler Objects
	13.10.2 DTDHandler Objects
	13.10.3 EntityResolver Objects
	13.10.4 ErrorHandler Objects

	13.11 xml.sax.saxutils -- SAX Utilities
	13.12 xml.sax.xmlreader -- Interface for XML parsers
	13.12.1 XMLReader Objects
	13.12.2 IncrementalParser Objects
	13.12.3 Locator Objects
	13.12.4 InputSource Objects
	13.12.5 The Attributes Interface
	13.12.6 The AttributesNS Interface

	13.13 xmllib -- A parser for XML documents
	13.13.1 XML Namespaces

	14. Multimedia Services
	14.1 audioop -- Manipulate raw audio data
	14.2 imageop -- Manipulate raw image data
	14.3 aifc -- Read and write AIFF and AIFC files
	14.4 sunau -- Read and write Sun AU files
	14.4.1 AU_read Objects
	14.4.2 AU_write Objects

	14.5 wave -- Read and write WAV files
	14.5.1 Wave_read Objects
	14.5.2 Wave_write Objects

	14.6 chunk -- Read IFF chunked data
	14.7 colorsys -- Conversions between color systems
	14.8 rgbimg -- Read and write ``SGI RGB'' files
	14.9 imghdr -- Determine the type of an image
	14.10 sndhdr -- Determine type of sound file
	14.11 ossaudiodev -- Access to OSS-compatible audio devices
	14.11.1 Audio Device Objects
	14.11.2 Mixer Device Objects

	15. Cryptographic Services
	15.1 hmac -- Keyed-Hashing for Message Authentication
	15.2 md5 -- MD5 message digest algorithm
	15.3 sha -- SHA-1 message digest algorithm

	16. Graphical User Interfaces with Tk
	16.1 Tkinter -- Python interface to Tcl/Tk
	16.1.1 Tkinter Modules
	16.1.2 Tkinter Life Preserver
	16.1.3 A (Very) Quick Look at Tcl/Tk
	16.1.4 Mapping Basic Tk into Tkinter
	16.1.5 How Tk and Tkinter are Related
	16.1.6 Handy Reference

	16.2 Tix -- Extension widgets for Tk
	16.2.1 Using Tix
	16.2.2 Tix Widgets
	16.2.3 Tix Commands

	16.3 ScrolledText -- Scrolled Text Widget
	16.4 turtle -- Turtle graphics for Tk
	16.4.1 Pen and RawPen Objects

	16.5 Idle
	16.5.1 Menus
	16.5.2 Basic editing and navigation
	16.5.3 Syntax colors

	16.6 Other Graphical User Interface Packages

	17. Restricted Execution
	17.1 rexec -- Restricted execution framework
	17.1.1 RExec Objects
	17.1.2 Defining restricted environments
	17.1.3 An example

	17.2 Bastion -- Restricting access to objects

	18. Python Language Services
	18.1 parser -- Access Python parse trees
	18.1.1 Creating AST Objects
	18.1.2 Converting AST Objects
	18.1.3 Queries on AST Objects
	18.1.4 Exceptions and Error Handling
	18.1.5 AST Objects
	18.1.6 Examples

	18.2 symbol -- Constants used with Python parse trees
	18.3 token -- Constants used with Python parse trees
	18.4 keyword -- Testing for Python keywords
	18.5 tokenize -- Tokenizer for Python source
	18.6 tabnanny -- Detection of ambiguous indentation
	18.7 pyclbr -- Python class browser support
	18.7.1 Class Descriptor Objects
	18.7.2 Function Descriptor Objects

	18.8 py_compile -- Compile Python source files
	18.9 compileall -- Byte-compile Python libraries
	18.10 dis -- Disassembler for Python byte code
	18.10.1 Python Byte Code Instructions

	18.11 pickletools -- Tools for pickle developers.
	18.12 distutils -- Building and installing Python modules

	19. Python compiler package
	19.1 The basic interface
	19.2 Limitations
	19.3 Python Abstract Syntax
	19.3.1 AST Nodes
	19.3.2 Assignment nodes
	19.3.3 Examples

	19.4 Using Visitors to Walk ASTs
	19.5 Bytecode Generation

	20. SGI IRIX Specific Services
	20.1 al -- Audio functions on the SGI
	20.1.1 Configuration Objects
	20.1.2 Port Objects

	20.2 AL -- Constants used with the al module
	20.3 cd -- CD-ROM access on SGI systems
	20.3.1 Player Objects
	20.3.2 Parser Objects

	20.4 fl -- FORMS library for graphical user interfaces
	20.4.1 Functions Defined in Module fl
	20.4.2 Form Objects
	20.4.3 FORMS Objects

	20.5 FL -- Constants used with the fl module
	20.6 flp -- Functions for loading stored FORMS designs
	20.7 fm -- Font Manager interface
	20.8 gl -- Graphics Library interface
	20.9 DEVICE -- Constants used with the gl module
	20.10 GL -- Constants used with the gl module
	20.11 imgfile -- Support for SGI imglib files
	20.12 jpeg -- Read and write JPEG files

	21. SunOS Specific Services
	21.1 sunaudiodev -- Access to Sun audio hardware
	21.1.1 Audio Device Objects

	21.2 SUNAUDIODEV -- Constants used with sunaudiodev

	22. MS Windows Specific Services
	22.1 msvcrt - Useful routines from the MS VC++ runtime
	22.1.1 File Operations
	22.1.2 Console I/O
	22.1.3 Other Functions

	22.2 _winreg - Windows registry access
	22.2.1 Registry Handle Objects

	22.3 winsound -- Sound-playing interface for Windows

	A. Undocumented Modules
	A.1 Frameworks
	A.2 Miscellaneous useful utilities
	A.3 Platform specific modules
	A.4 Multimedia
	A.5 Obsolete
	A.6 SGI-specific Extension modules

	B. Reporting Bugs
	C. History and License
	C.1 History of the software
	C.2 Terms and conditions for accessing or otherwise using Python
	C.3 Licenses and Acknowledgements for Incorporated Software
	C.3.1 Mersenne Twister
	C.3.2 Sockets
	C.3.3 Floating point exception control
	C.3.4 MD5 message digest algorithm
	C.3.5 Asynchronous socket services
	C.3.6 Cookie management
	C.3.7 Profiling
	C.3.8 Execution tracing
	C.3.9 UUencode and UUdecode functions
	C.3.10 XML Remote Procedure Calls

	Module Index
	Index
	About this document ...

	Language Reference
	Front Matter
	1. Introduction
	1.1 Notation

	2. Lexical analysis
	2.1 Line structure
	2.1.1 Logical lines
	2.1.2 Physical lines
	2.1.3 Comments
	2.1.4 Encoding declarations
	2.1.5 Explicit line joining
	2.1.6 Implicit line joining
	2.1.7 Blank lines
	2.1.8 Indentation
	2.1.9 Whitespace between tokens

	2.2 Other tokens
	2.3 Identifiers and keywords
	2.3.1 Keywords
	2.3.2 Reserved classes of identifiers

	2.4 Literals
	2.4.1 String literals
	2.4.2 String literal concatenation
	2.4.3 Numeric literals
	2.4.4 Integer and long integer literals
	2.4.5 Floating point literals
	2.4.6 Imaginary literals

	2.5 Operators
	2.6 Delimiters

	3. Data model
	3.1 Objects, values and types
	3.2 The standard type hierarchy
	3.3 Special method names
	3.3.1 Basic customization
	3.3.2 Customizing attribute access
	3.3.3 Customizing class creation
	3.3.4 Emulating callable objects
	3.3.5 Emulating container types
	3.3.6 Additional methods for emulation of sequence types
	3.3.7 Emulating numeric types
	3.3.8 Coercion rules

	4. Execution model
	4.1 Naming and binding
	4.1.1 Interaction with dynamic features

	4.2 Exceptions

	5. Expressions
	5.1 Arithmetic conversions
	5.2 Atoms
	5.2.1 Identifiers (Names)
	5.2.2 Literals
	5.2.3 Parenthesized forms
	5.2.4 List displays
	5.2.5 Generator expressions
	5.2.6 Dictionary displays
	5.2.7 String conversions

	5.3 Primaries
	5.3.1 Attribute references
	5.3.2 Subscriptions
	5.3.3 Slicings
	5.3.4 Calls

	5.4 The power operator
	5.5 Unary arithmetic operations
	5.6 Binary arithmetic operations
	5.7 Shifting operations
	5.8 Binary bit-wise operations
	5.9 Comparisons
	5.10 Boolean operations
	5.11 Lambdas
	5.12 Expression lists
	5.13 Evaluation order
	5.14 Summary

	6. Simple statements
	6.1 Expression statements
	6.2 Assert statements
	6.3 Assignment statements
	6.3.1 Augmented assignment statements

	6.4 The pass statement
	6.5 The del statement
	6.6 The print statement
	6.7 The return statement
	6.8 The yield statement
	6.9 The raise statement
	6.10 The break statement
	6.11 The continue statement
	6.12 The import statement
	6.12.1 Future statements

	6.13 The global statement
	6.14 The exec statement

	7. Compound statements
	7.1 The if statement
	7.2 The while statement
	7.3 The for statement
	7.4 The try statement
	7.5 Function definitions
	7.6 Class definitions

	8. Top-level components
	8.1 Complete Python programs
	8.2 File input
	8.3 Interactive input
	8.4 Expression input

	A. History and License
	A.1 History of the software
	A.2 Terms and conditions for accessing or otherwise using Python
	A.3 Licenses and Acknowledgements for Incorporated Software
	A.3.1 Mersenne Twister
	A.3.2 Sockets
	A.3.3 Floating point exception control
	A.3.4 MD5 message digest algorithm
	A.3.5 Asynchronous socket services
	A.3.6 Cookie management
	A.3.7 Profiling
	A.3.8 Execution tracing
	A.3.9 UUencode and UUdecode functions
	A.3.10 XML Remote Procedure Calls

	Index
	About this document ...

	Macintosh Reference
	Front Matter
	1. Using Python on a Mac OS 9 Macintosh
	1.1 Getting and Installing MacPython-OSX
	1.1.1 How to run a Python script
	1.1.2 Running scripts with a GUI
	1.1.3 configuration

	1.2 Getting and Installing MacPython-OS9
	1.2.1 Entering the interactive Interpreter
	1.2.2 How to run a Python script
	1.2.3 Simulating command line arguments
	1.2.4 Creating a Python script
	1.2.5 Configuration

	1.3 The IDE
	1.3.1 Using the ``Python Interactive'' window
	1.3.2 Writing a Python Script
	1.3.3 Executing a script from within the IDE
	1.3.4 ``Save as'' versus ``Save as Applet''

	2. MacPython Modules
	2.1 mac -- Implementations for the os module
	2.2 macpath -- MacOS path manipulation functions
	2.3 macfs -- Various file system services
	2.3.1 FSSpec Objects
	2.3.2 Alias Objects
	2.3.3 FInfo Objects

	2.4 ic -- Access to Internet Config
	2.4.1 IC Objects

	2.5 MacOS -- Access to Mac OS interpreter features
	2.6 macostools -- Convenience routines for file manipulation
	2.7 findertools -- The finder's Apple Events interface
	2.8 EasyDialogs -- Basic Macintosh dialogs
	2.8.1 ProgressBar Objects

	2.9 FrameWork -- Interactive application framework
	2.9.1 Application Objects
	2.9.2 Window Objects
	2.9.3 ControlsWindow Object
	2.9.4 ScrolledWindow Object
	2.9.5 DialogWindow Objects

	2.10 autoGIL -- Global Interpreter Lock handling in event loops

	3. MacPython OSA Modules
	3.1 gensuitemodule -- Generate OSA stub packages
	3.2 aetools -- OSA client support
	3.3 aepack -- Conversion between Python variables and AppleEvent data containers
	3.4 aetypes -- AppleEvent objects
	3.5 MiniAEFrame -- Open Scripting Architecture server support
	3.5.1 AEServer Objects

	4. MacOS Toolbox Modules
	4.1 Carbon.AE -- Apple Events
	4.2 Carbon.AH -- Apple Help
	4.3 Carbon.App -- Appearance Manager
	4.4 Carbon.CF -- Core Foundation
	4.5 Carbon.CG -- Core Graphics
	4.6 Carbon.CarbonEvt -- Carbon Event Manager
	4.7 Carbon.Cm -- Component Manager
	4.8 Carbon.Ctl -- Control Manager
	4.9 Carbon.Dlg -- Dialog Manager
	4.10 Carbon.Evt -- Event Manager
	4.11 Carbon.Fm -- Font Manager
	4.12 Carbon.Folder -- Folder Manager
	4.13 Carbon.Help -- Help Manager
	4.14 Carbon.List -- List Manager
	4.15 Carbon.Menu -- Menu Manager
	4.16 Carbon.Mlte -- MultiLingual Text Editor
	4.17 Carbon.Qd -- QuickDraw
	4.18 Carbon.Qdoffs -- QuickDraw Offscreen
	4.19 Carbon.Qt -- QuickTime
	4.20 Carbon.Res -- Resource Manager and Handles
	4.21 Carbon.Scrap -- Scrap Manager
	4.22 Carbon.Snd -- Sound Manager
	4.23 Carbon.TE -- TextEdit
	4.24 Carbon.Win -- Window Manager
	4.25 ColorPicker -- Color selection dialog

	5. Undocumented Modules
	5.1 applesingle -- AppleSingle decoder
	5.2 buildtools -- Helper module for BuildApplet and Friends
	5.3 py_resource -- Resources from Python code
	5.4 cfmfile -- Code Fragment Resource module
	5.5 icopen -- Internet Config replacement for open()
	5.6 macerrors -- Mac OS Errors
	5.7 macresource -- Locate script resources
	5.8 Nav -- NavServices calls
	5.9 mkcwproject -- Create CodeWarrior projects
	5.10 nsremote -- Wrapper around Netscape OSA modules
	5.11 PixMapWrapper -- Wrapper for PixMap objects
	5.12 preferences -- Application preferences manager
	5.13 pythonprefs -- Preferences manager for Python
	5.14 quietconsole -- Non-visible standard output
	5.15 videoreader -- Read QuickTime movies
	5.16 W -- Widgets built on FrameWork
	5.17 waste -- non-Apple TextEdit replacement

	A. History and License
	A.1 History of the software
	A.2 Terms and conditions for accessing or otherwise using Python
	A.3 Licenses and Acknowledgements for Incorporated Software
	A.3.1 Mersenne Twister
	A.3.2 Sockets
	A.3.3 Floating point exception control
	A.3.4 MD5 message digest algorithm
	A.3.5 Asynchronous socket services
	A.3.6 Cookie management
	A.3.7 Profiling
	A.3.8 Execution tracing
	A.3.9 UUencode and UUdecode functions
	A.3.10 XML Remote Procedure Calls

	Module Index
	Index
	About this document ...

	Extending and Embedding
	Front Matter
	1. Extending Python with C or C++
	1.1 A Simple Example
	1.2 Intermezzo: Errors and Exceptions
	1.3 Back to the Example
	1.4 The Module's Method Table and Initialization Function
	1.5 Compilation and Linkage
	1.6 Calling Python Functions from C
	1.7 Extracting Parameters in Extension Functions
	1.8 Keyword Parameters for Extension Functions
	1.9 Building Arbitrary Values
	1.10 Reference Counts
	1.10.1 Reference Counting in Python
	1.10.2 Ownership Rules
	1.10.3 Thin Ice
	1.10.4 NULL Pointers

	1.11 Writing Extensions in C++
	1.12 Providing a C API for an Extension Module

	2. Defining New Types
	2.1 The Basics
	2.1.1 Adding data and methods to the Basic example
	2.1.2 Providing finer control over data attributes
	2.1.3 Supporting cyclic garbage collection

	2.2 Type Methods
	2.2.1 Finalization and De-allocation
	2.2.2 Object Presentation
	2.2.3 Attribute Management
	2.2.4 Object Comparison
	2.2.5 Abstract Protocol Support
	2.2.6 More Suggestions

	3. Building C and C++ Extensions with distutils
	3.1 Distributing your extension modules

	4. Building C and C++ Extensions on Windows
	4.1 A Cookbook Approach
	4.2 Differences Between Unix and Windows
	4.3 Using DLLs in Practice

	5. Embedding Python in Another Application
	5.1 Very High Level Embedding
	5.2 Beyond Very High Level Embedding: An overview
	5.3 Pure Embedding
	5.4 Extending Embedded Python
	5.5 Embedding Python in C++
	5.6 Linking Requirements

	A. Reporting Bugs
	B. History and License
	B.1 History of the software
	B.2 Terms and conditions for accessing or otherwise using Python
	B.3 Licenses and Acknowledgements for Incorporated Software
	B.3.1 Mersenne Twister
	B.3.2 Sockets
	B.3.3 Floating point exception control
	B.3.4 MD5 message digest algorithm
	B.3.5 Asynchronous socket services
	B.3.6 Cookie management
	B.3.7 Profiling
	B.3.8 Execution tracing
	B.3.9 UUencode and UUdecode functions
	B.3.10 XML Remote Procedure Calls

	About this document ...

	Python/C API
	Front Matter
	1. Introduction
	1.1 Include Files
	1.2 Objects, Types and Reference Counts
	1.2.1 Reference Counts
	1.2.2 Types

	1.3 Exceptions
	1.4 Embedding Python

	2. The Very High Level Layer
	3. Reference Counting
	4. Exception Handling
	4.1 Standard Exceptions
	4.2 Deprecation of String Exceptions

	5. Utilities
	5.1 Operating System Utilities
	5.2 Process Control
	5.3 Importing Modules
	5.4 Data marshalling support
	5.5 Parsing arguments and building values

	6. Abstract Objects Layer
	6.1 Object Protocol
	6.2 Number Protocol
	6.3 Sequence Protocol
	6.4 Mapping Protocol
	6.5 Iterator Protocol
	6.6 Buffer Protocol

	7. Concrete Objects Layer
	7.1 Fundamental Objects
	7.1.1 Type Objects
	7.1.2 The None Object

	7.2 Numeric Objects
	7.2.1 Plain Integer Objects
	7.2.2 Boolean Objects
	7.2.3 Long Integer Objects
	7.2.4 Floating Point Objects
	7.2.5 Complex Number Objects

	7.3 Sequence Objects
	7.3.1 String Objects
	7.3.2 Unicode Objects
	7.3.3 Buffer Objects
	7.3.4 Tuple Objects
	7.3.5 List Objects

	7.4 Mapping Objects
	7.4.1 Dictionary Objects

	7.5 Other Objects
	7.5.1 File Objects
	7.5.2 Instance Objects
	7.5.3 Method Objects
	7.5.4 Module Objects
	7.5.5 Iterator Objects
	7.5.6 Descriptor Objects
	7.5.7 Slice Objects
	7.5.8 Weak Reference Objects
	7.5.9 CObjects
	7.5.10 Cell Objects
	7.5.11 Generator Objects
	7.5.12 DateTime Objects

	8. Initialization, Finalization, and Threads
	8.1 Thread State and the Global Interpreter Lock
	8.2 Profiling and Tracing
	8.3 Advanced Debugger Support

	9. Memory Management
	9.1 Overview
	9.2 Memory Interface
	9.3 Examples

	10. Object Implementation Support
	10.1 Allocating Objects on the Heap
	10.2 Common Object Structures
	10.3 Type Objects
	10.4 Mapping Object Structures
	10.5 Number Object Structures
	10.6 Sequence Object Structures
	10.7 Buffer Object Structures
	10.8 Supporting the Iterator Protocol
	10.9 Supporting Cyclic Garbage Collection

	A. Reporting Bugs
	B. History and License
	B.1 History of the software
	B.2 Terms and conditions for accessing or otherwise using Python
	B.3 Licenses and Acknowledgements for Incorporated Software
	B.3.1 Mersenne Twister
	B.3.2 Sockets
	B.3.3 Floating point exception control
	B.3.4 MD5 message digest algorithm
	B.3.5 Asynchronous socket services
	B.3.6 Cookie management
	B.3.7 Profiling
	B.3.8 Execution tracing
	B.3.9 UUencode and UUdecode functions
	B.3.10 XML Remote Procedure Calls

	Index
	About this document ...

	Documenting Python
	1 Introduction
	2 Directory Structure
	3 Style Guide
	4 LaTeX Primer
	4.1 Syntax
	4.2 Hierarchical Structure
	4.3 Common Environments

	5 Document Classes
	6 Special Markup Constructs
	6.1 Markup for the Preamble
	6.2 Meta-information Markup
	6.3 Information Units
	6.4 Showing Code Examples
	6.5 Inline Markup
	6.6 Miscellaneous Text Markup
	6.7 Module-specific Markup
	6.8 Library-level Markup
	6.9 Table Markup
	6.10 Reference List Markup
	6.11 Index-generating Markup
	6.12 Grammar Production Displays
	6.13 Graphical Interface Components

	7 Processing Tools
	7.1 External Tools
	7.2 Internal Tools
	7.3 Working on Cygwin

	8 Including Graphics
	9 Future Directions
	9.1 Structured Documentation
	9.2 Discussion Forums

	About this document ...

	Installing Python Modules
	1 Introduction
	2 Standard Build and Install
	3 Alternate Installation
	4 Custom Installation
	5 Distutils Configuration Files
	6 Building Extensions: Tips and Tricks
	About this document ...

	Distributing Python Modules
	1. An Introduction to Distutils
	1.1 Concepts & Terminology
	1.2 A Simple Example
	1.3 General Python terminology
	1.4 Distutils-specific terminology

	2. Writing the Setup Script
	2.1 Listing whole packages
	2.2 Listing individual modules
	2.3 Describing extension modules
	2.4 Installing Scripts
	2.5 Installing Package Data
	2.6 Installing Additional Files
	2.7 Additional meta-data
	2.8 Debugging the setup script

	3. Writing the Setup Configuration File
	4. Creating a Source Distribution
	4.1 Specifying the files to distribute
	4.2 Manifest-related options

	5. Creating Built Distributions
	5.1 Creating dumb built distributions
	5.2 Creating RPM packages
	5.3 Creating Windows Installers

	6. Registering with the Package Index
	7. Examples
	7.1 Pure Python distribution (by module)
	7.2 Pure Python distribution (by package)
	7.3 Single extension module

	8. Extending Distutils
	8.1 Integrating new commands

	9. Command Reference
	9.1 Installing modules: the install command family
	9.2 Creating a source distribution: the sdist command

	10. API Reference
	10.1 distutils.core -- Core Distutils functionality
	10.2 distutils.ccompiler -- CCompiler base class
	10.3 distutils.unixccompiler -- Unix C Compiler
	10.4 distutils.msvccompiler -- Microsoft Compiler
	10.5 distutils.bcppcompiler -- Borland Compiler
	10.6 distutils.cygwincompiler -- Cygwin Compiler
	10.7 distutils.emxccompiler -- OS/2 EMX Compiler
	10.8 distutils.mwerkscompiler -- Metrowerks CodeWarrior support
	10.9 distutils.archive_util -- Archiving utilities
	10.10 distutils.dep_util -- Dependency checking
	10.11 distutils.dir_util -- Directory tree operations
	10.12 distutils.file_util -- Single file operations
	10.13 distutils.util -- Miscellaneous other utility functions
	10.14 distutils.dist -- The Distribution class
	10.15 distutils.extension -- The Extension class
	10.16 distutils.debug -- Distutils debug mode
	10.17 distutils.errors -- Distutils exceptions
	10.18 distutils.fancy_getopt -- Wrapper around the standard getopt module
	10.19 distutils.filelist -- The FileList class
	10.20 distutils.log -- Simple PEP 282-style logging
	10.21 distutils.spawn -- Spawn a sub-process
	10.22 distutils.sysconfig -- System configuration information
	10.23 distutils.text_file -- The TextFile class
	10.24 distutils.version -- Version number classes
	10.25 distutils.cmd -- Abstract base class for Distutils commands
	10.26 distutils.command -- Individual Distutils commands
	10.27 distutils.command.bdist -- Build a binary installer
	10.28 distutils.command.bdist_packager -- Abstract base class for packagers
	10.29 distutils.command.bdist_dumb -- Build a ``dumb'' installer
	10.30 distutils.command.bdist_rpm -- Build a binary distribution as a Redhat RPM and SRPM
	10.31 distutils.command.bdist_wininst -- Build a Windows installer
	10.32 distutils.command.sdist -- Build a source distribution
	10.33 distutils.command.build -- Build all files of a package
	10.34 distutils.command.build_clib -- Build any C libraries in a package
	10.35 distutils.command.build_ext -- Build any extensions in a package
	10.36 distutils.command.build_py -- Build the .py/.pyc files of a package
	10.37 distutils.command.build_scripts -- Build the scripts of a package
	10.38 distutils.command.clean -- Clean a package build area
	10.39 distutils.command.config -- Perform package configuration
	10.40 distutils.command.install -- Install a package
	10.41 distutils.command.install_data -- Install data files from a package
	10.42 distutils.command.install_headers -- Install C/C++ header files from a package
	10.43 distutils.command.install_lib -- Install library files from a package
	10.44 distutils.command.install_scripts -- Install script files from a package
	10.45 distutils.command.register -- Register a module with the Python Package Index
	10.46 Creating a new Distutils command

	Module Index
	Index
	About this document ...

