@ Python » 3.7.0b1 Documentation » next | modules | index

https://www.python.org/

Python Documentation contents

e What's New in Python
o What's New In Python 3.7
= Summary — Release highlights
= New Features

PEP 538: Legacy C Locale Coercion

PEP 553: Built-in breakpoint()

PEP 539: A New C-API for Thread-Local Storage in
CPython

PEP 562: Customization of access to module
attributes

PEP 563: Postponed evaluation of annotations

PEP 564: Add new time functions with nanosecond
resolution

PEP 565: Show DeprecationWarning in __main___
PEP 540: Add a new UTF-8 mode

PEP 557: Data Classes

New Development Mode: -X dev

Hash-based pycs

= Other Language Changes
= New Modules

importlib.resources

= Improved Modules

argparse
binascii
calendar
cqi
contextlib
cProfile
crypt

dis
distutils

= http.client

= http.server

= hmac

= importlib

= |ocale

= math

= 0S

= pdb

= py _compile

= e

= Ss

m string

m subprocess

m SyS

= time

= unicodedata

= unittest

= unittest.mock

m urllib.parse

= uu

= warnings

= xml.etree

= xmlrpc.server

= zipapp
Optimizations
Build and C API Changes
Other CPython Implementation Changes
Deprecated

= Changes in the C API

= Windows Only
Removed

= Platform Support Removals

= API and Feature Removals
Porting to Python 3.7

Changes in Python behavior

Changes in the Python API

Changes in the C API

CPython bytecode changes

Other CPython implementation changes

» Documentation

m PEP 545:

Python Documentation Translations

o What's New In Python 3.6
= Summary — Release highlights

m New Features
= PEP 498:
= PEP 526:
= PEP 515:
s PEP 525:
= PEP 530:
= PEP 487:
= PEP 487:
= PEP 519:
= PEP 495:
= PEP 529:

UTF-8

Formatted string literals

Syntax for variable annotations
Underscores in Numeric Literals
Asynchronous Generators

Asynchronous Comprehensions

Simpler customization of class creation
Descriptor Protocol Enhancements
Adding a file system path protocol

Local Time Disambiguation

Change Windows filesystem encoding to

s PEP 528: Change Windows console encoding to

UTF-8

m PEP 520: Preserving Class Attribute Definition

Order

= PEP 468:

Preserving Keyword Argument Order

= New dict implementation

m PEP 523:

Adding a frame evaluation API to CPython

s PYTHONMALLOC environment variable
m DTrace and SystemTap probing support
= Other Language Changes

= New Modules
m secrets

= Improved Modules

array
ast

asyncio

binascii

cmath
collections
concurrent.futures
contextlib
datetime
decimal
distutils

email
encodings
enum
faulthandler
fileinput

hashlib
http.client
idlelib and IDLE
importlib
inspect

json

logging

math
multiprocessing
0S

pathlib

pdb

pickle
pickletools
pydoc

random

re

readline

= rlcompleter

= shlex

= Site

= sqlite3

m socket

m socketserver

= Ss

= statistics

m struct

= subprocess

m SyS

m telnetlib

= time

= timeit

m tkinter

m traceback

= tracemalloc

= typing

= unicodedata

= unittest.mock

= urllib.request

= urllib.robotparser

= venv

= warnings

= winreg

= winsound

= xmlirpc.client

m zipfile

m 7zIlib
Optimizations
Build and C API Changes
Other Improvements
Deprecated

= New Keywords

m Deprecated Python behavior
m Deprecated Python modules, functions and methods
= asynchat
= asyncore
= dbm
= distutils
= grp
= importlib
= 0S
= e
= Ss
m tkinter
= venv
m Deprecated functions and types of the C API
m Deprecated Build Options
= Removed
= APl and Feature Removals
= Porting to Python 3.6
Changes in ‘python’ Command Behavior
Changes in the Python API
Changes in the C API
CPython bytecode changes
o What's New In Python 3.5
m Summary — Release highlights
= New Features
= PEP 492 - Coroutines with async and await syntax
s PEP 465 - A dedicated infix operator for matrix
multiplication
= PEP 448 - Additional Unpacking Generalizations
m PEP 461 - percent formatting support for bytes and
bytearray
m PEP 484 - Type Hints
m PEP 471 - os.scandir() function — a better and faster
directory iterator

PEP 475: Retry system calls failing with EINTR

PEP 479: Change Stoplteration handling inside
generators

PEP 485: A function for testing approximate equality
PEP 486: Make the Python Launcher aware of
virtual environments

PEP 488: Elimination of PYO files

PEP 489: Multi-phase extension module initialization

m Other Language Changes
= New Modules

typing
Zipapp

= Improved Modules

argparse
asyncio

bz2

cqi

cmath

code
collections
collections.abc
compileall
concurrent.futures
configparser
contextlib

csV

curses

dbm

difflib

distutils
doctest

email

enum
faulthandler

functools
glob

gzip
heapq
http
http.client
idlelib and IDLE
Imaplib
imghdr
importlib
inspect

[o]
Ipaddress
json
linecache
locale
logging
lzma
math
multiprocessing
operator
0S

pathlib
pickle
poplib

re
readline
selectors
shutil
signal
smtpd
smtplib
sndhdr
socket

= Ss
= Memory BIO Support
= Application-Layer Protocol Negotiation Support
= Other Changes
m sqlite3
= subprocess
= SyS
= sysconfig
m tarfile
= threading
= time
= timeit
m tkinter
= traceback
= types
= unicodedata
= unittest
= unittest.mock
= urllib
m wsgiref
= xmlrpc
m xml.sax
m zipfile
Other module-level changes
Optimizations
Build and C API Changes
Deprecated
= New Keywords
m Deprecated Python Behavior
m Unsupported Operating Systems
m Deprecated Python modules, functions and methods
Removed
= API and Feature Removals
Porting to Python 3.5

m Changes in Python behavior
= Changes in the Python API
= Changes in the C API
o What's New In Python 3.4
m Summary — Release Highlights
= New Features
m PEP 453: Explicit Bootstrapping of PIP in Python
Installations
= Bootstrapping pip By Default
= Documentation Changes
m PEP 446: Newly Created File Descriptors Are Non-
Inheritable
= Improvements to Codec Handling
s PEP 451: A ModuleSpec Type for the Import System
= Other Language Changes
= New Modules
= asyncio
= ensurepip
= enum
= pathlib
= selectors
m statistics
m tracemalloc
= Improved Modules
= abc
= aifc
= argparse
= audioop
= base64
m collections
m colorsys
= contextlib
= dbm
m dis

doctest
email
filecmp
functools
gc

glob
hashlib
hmac
html

http
idlelib and IDLE
importlib
inspect
Ipaddress
logging
marshal
mmap
multiprocessing
operator
0S

pdb
pickle
plistlib
poplib
pprint
pty
pydoc

re
resource
select
shelve
shutil
smtpd
smtplib

socket
sqlite3

ssl

stat

struct
subprocess
sunau
Sys

tarfile
textwrap
threading
traceback
types
urllib
unittest
venv
wave
weakref
xml.etree
zipfile

= CPython Implementation Changes

PEP 445: Customization of CPython Memory
Allocators

PEP 442: Safe Object Finalization

PEP 456: Secure and Interchangeable Hash
Algorithm

PEP 436: Argument Clinic

Other Build and C API Changes

Other Improvements

Significant Optimizations

= Deprecated

Deprecations in the Python API
Deprecated Features

= Removed

m Operating Systems No Longer Supported
= APl and Feature Removals
m Code Cleanups
Porting to Python 3.4
= Changes in ‘python’ Command Behavior
= Changes in the Python API
= Changes in the C API
Changed in 3.4.3
m PEP 476: Enabling certificate verification by default
for stdlib http clients

o What's New In Python 3.3

Summary — Release highlights
PEP 405: Virtual Environments
PEP 420: Implicit Namespace Packages
PEP 3118: New memoryview implementation and buffer
protocol documentation
= Features
= API changes
PEP 393: Flexible String Representation
= Functionality
= Performance and resource usage
PEP 397: Python Launcher for Windows
PEP 3151: Reworking the OS and [0 exception
hierarchy
PEP 380: Syntax for Delegating to a Subgenerator
PEP 409: Suppressing exception context
PEP 414: Explicit Unicode literals
PEP 3155: Qualified name for classes and functions
PEP 412: Key-Sharing Dictionary
PEP 362: Function Signature Object
PEP 421: Adding sys.implementation
= SimpleNamespace
Using importlib as the Implementation of Import
= New APIs

» Visible Changes
Other Language Changes
A Finer-Grained Import Lock
Builtin functions and types
New Modules

= faulthandler

m jpaddress

= |zma
Improved Modules

= abc

= array

= base64

= binascii

m pz2

m codecs

m collections

= contextlib

= crypt

m CUISes

m datetime

= decimal

m Features
= API changes
= email
m Policy Framework
= Provisional Policy with New Header API
= Other API Changes

m ftplib

m functools

" gC

= hmac

= http

= html

= imaplib

inspect

[o]
itertools
logging
math
mmap
multiprocessing
nntplib
0S

pdb
pickle
pydoc

re

sched
select
shlex
shutil
signal
smtpd
smtplib
socket
socketserver
sqlite3
ssl

Stat
struct
subprocess
Sys
tarfile
tempfile
textwrap
threading
time
types

= unittest
= urllib
= webbrowser
= xml.etree.ElementTree
= 7Ilib
Optimizations
Build and C API Changes
Deprecated
m Unsupported Operating Systems
m Deprecated Python modules, functions and methods
= Deprecated functions and types of the C API
= Deprecated features
Porting to Python 3.3
Porting Python code
Porting C code
Building C extensions
m Command Line Switch Changes
o What's New In Python 3.2
m PEP 384: Defining a Stable ABI
= PEP 389: Argparse Command Line Parsing Module
m PEP 391: Dictionary Based Configuration for Logging
m PEP 3148: The concurrent.futures module
s PEP 3147: PYC Repository Directories
= PEP 3149: ABI Version Tagged .so Files
= PEP 3333: Python Web Server Gateway Interface v1.0.1
= Other Language Changes
= New, Improved, and Deprecated Modules
= emalil
= elementtree
= functools
m jtertools
= collections
= threading
= datetime and time

math

abc

0

reprlib
logging
csv
contextlib
decimal and fractions
ftp

popen
select
gzip and zipfile
tarfile
hashlib
ast

0S

shutil
sqlite3
html
socket
ssl

nntp
certificates
imaplib
http.client
unittest
random
poplib
asyncore
tempfile
inspect
pydoc
dis

dbm

= ctypes
= Site
m sysconfig
= pdb
m configparser
= urllib.parse
= mailbox
= turtledemo
= Multi-threading
= Optimizations
= Unicode
= Codecs
= Documentation
» |IDLE
m Code Repository
= Build and C API Changes
= Porting to Python 3.2
o What's New In Python 3.1
m PEP 372: Ordered Dictionaries
m PEP 378: Format Specifier for Thousands Separator
m Other Language Changes
= New, Improved, and Deprecated Modules
= Optimizations
» |IDLE
= Build and C API Changes
= Porting to Python 3.1
o What's New In Python 3.0
s Common Stumbling Blocks
Print Is A Function
Views And Iterators Instead Of Lists
Ordering Comparisons
Integers
Text Vs. Data Instead Of Unicode Vs. 8-bit
= Overview Of Syntax Changes

= New Syntax
= Changed Syntax
= Removed Syntax
= Changes Already Present In Python 2.6
m Library Changes
= PEP 3101: A New Approach To String Formatting
m Changes To Exceptions
= Miscellaneous Other Changes
m Operators And Special Methods
= Builtins
= Build and C API Changes
= Performance
= Porting To Python 3.0
o What's New in Python 2.7
= The Future for Python 2.x
= Changes to the Handling of Deprecation Warnings
= Python 3.1 Features
m PEP 372: Adding an Ordered Dictionary to collections
m PEP 378: Format Specifier for Thousands Separator
= PEP 389: The argparse Module for Parsing Command
Lines
= PEP 391: Dictionary-Based Configuration For Logging
m PEP 3106: Dictionary Views
m PEP 3137: The memoryview Object
m Other Language Changes
= Interpreter Changes
= Optimizations
= New and Improved Modules
New module: importlib
New module: sysconfig
ttk: Themed Widgets for Tk
Updated module: unittest
Updated module: ElementTree 1.3
= Build and C API Changes

Capsules

Port-Specific Changes: Windows

Port-Specific Changes: Mac OS X

Port-Specific Changes: FreeBSD

m Other Changes and Fixes

= Porting to Python 2.7

m New Features Added to Python 2.7 Maintenance

Releases
= PEP 434: IDLE Enhancement Exception for All
Branches
m PEP 466: Network Security Enhancements for
Python 2.7

= Acknowledgements
o What's New in Python 2.6
= Python 3.0
m Changes to the Development Process
= New Issue Tracker: Roundup
= New Documentation Format: reStructuredText Using
Sphinx
m PEP 343: The ‘with’ statement
= Writing Context Managers
= The contextlib module
m PEP 366: Explicit Relative Imports From a Main Module
m PEP 370: Per-user site-packages Directory
s PEP 371: The multiprocessing Package
= PEP 3101: Advanced String Formatting
m PEP 3105: print As a Function
= PEP 3110: Exception-Handling Changes
s PEP 3112: Byte Literals
= PEP 3116: New I/O Library
= PEP 3118: Revised Buffer Protocol
m PEP 3119: Abstract Base Classes
s PEP 3127: Integer Literal Support and Syntax
s PEP 3129: Class Decorators

PEP 3141: A Type Hierarchy for Numbers

The fractions Module

Other Language Changes

Optimizations
Interpreter Changes

New and Improved Modules

The ast module

The future_builtins module

The json module: JavaScript Object Notation
The plistlib module: A Property-List Parser
ctypes Enhancements

Improved SSL Support

Deprecations and Removals
Build and C API Changes

Port-Specific Changes: Windows
Port-Specific Changes: Mac OS X
Port-Specific Changes: IRIX

Porting to Python 2.6
Acknowledgements

o What's New in Python 2.5
s PEP 308: Conditional Expressions
= PEP 309: Partial Function Application
» PEP 314: Metadata for Python Software Packages v1.1
m PEP 328: Absolute and Relative Imports
= PEP 338: Executing Modules as Scripts
= PEP 341: Unified try/except/finally
= PEP 342: New Generator Features
m PEP 343: The ‘with’ statement
= Writing Context Managers

The contextlib module

m PEP 352: Exceptions as New-Style Classes
m PEP 353: Using ssize t as the index type

s PEP 357: The ' index 'method

= Other Language Changes

m Interactive Interpreter Changes
= Optimizations
= New, Improved, and Removed Modules
The ctypes package
The ElementTree package
The hashlib package
The sqlite3 package
The wsgiref package
= Build and C API Changes
m Port-Specific Changes
= Porting to Python 2.5
m Acknowledgements
o What's New in Python 2.4
s PEP 218: Built-In Set Objects
m PEP 237: Unifying Long Integers and Integers
m PEP 289: Generator Expressions
s PEP 292: Simpler String Substitutions
m PEP 318: Decorators for Functions and Methods
m PEP 322: Reverse lIteration
m PEP 324: New subprocess Module
m PEP 327: Decimal Data Type
= Why is Decimal needed?
m The Decimal type
s The Context type
= PEP 328: Multi-line Imports
m PEP 331: Locale-Independent Float/String Conversions
= Other Language Changes
= Optimizations
= New, Improved, and Deprecated Modules
m cookielib
m doctest
= Build and C API Changes
m Port-Specific Changes
= Porting to Python 2.4

» Acknowledgements
o What's New in Python 2.3

PEP 218

PEP 255:
PEP 263:
PEP 273:
PEP 277:
PEP 278:
PEP 279:
PEP 282:
PEP 285:
PEP 293:
PEP 301:
PEP 302:
PEP 305:
PEP 307:

. A Standard Set Datatype

Simple Generators

Source Code Encodings

Importing Modules from ZIP Archives
Unicode file name support for Windows NT
Universal Newline Support

enumerate()

The logging Package

A Boolean Type

Codec Error Handling Callbacks
Package Index and Metadata for Distutils
New Import Hooks

Comma-separated Files

Pickle Enhancements

Extended Slices

Other Language Changes
= String Changes
= Optimizations

New, Improved, and Deprecated Modules
m Date/Time Type

= The

optparse Module

Pymalloc: A Specialized Object Allocator
Build and C API Changes
m Port-Specific Changes

Other Changes and Fixes
Porting to Python 2.3
Acknowledgements
o What's New in Python 2.2

= |ntroduction

s PEPs 252 and 253: Type and Class Changes
= Old and New Classes
m Descriptors

= Multiple Inheritance: The Diamond Rule
= Attribute Access
= Related Links
m PEP 234: Iterators
m PEP 255: Simple Generators
s PEP 237: Unifying Long Integers and Integers
m PEP 238: Changing the Division Operator
= Unicode Changes
m PEP 227: Nested Scopes
= New and Improved Modules
= Interpreter Changes and Fixes
m Other Changes and Fixes
» Acknowledgements
o What's New in Python 2.1
= |ntroduction
m PEP 227: Nested Scopes
m PEP 236: future__ Directives
m PEP 207: Rich Comparisons
= PEP 230: Warning Framework
m PEP 229: New Build System
m PEP 205: Weak References
m PEP 232: Function Attributes
= PEP 235: Importing Modules on Case-Insensitive
Platforms
m PEP 217: Interactive Display Hook
= PEP 208: New Coercion Model
m PEP 241: Metadata in Python Packages
= New and Improved Modules
m Other Changes and Fixes
= Acknowledgements
o What's New in Python 2.0
= |ntroduction
= What About Python 1.67?
= New Development Process

= Unicode
m List Comprehensions
= Augmented Assignment
= String Methods
m Garbage Collection of Cycles
m Other Core Changes
= Minor Language Changes
= Changes to Built-in Functions
= Porting to 2.0
= Extending/Embedding Changes
m Distutils: Making Modules Easy to Install
» XML Modules
m SAX2 Support
= DOM Support
= Relationship to PyXML
= Module changes
= New modules
= |[DLE Improvements
m Deleted and Deprecated Modules
= Acknowledgements
o Changelog
= Python 3.7.0 beta 1
m Core and Builtins
= Library
= Documentation
= Tests
= Build
= Windows
= macOS
= C API
= Python 3.7.0 alpha 4
= Core and Builtins
= Library
= Documentation

Tests
Windows
Tools/Demos
s CAPI
= Python 3.7.0 alpha 3
= Core and Builtins
m Library
= Documentation
m Tests
= Build
= Windows
= macOS
= [IDLE
= Tools/Demos
= CAPI
= Python 3.7.0 alpha 2
= Core and Builtins
m Library
= Documentation
= Build
= [IDLE
= CAPI
= Python 3.7.0 alpha 1
= Security
= Core and Builtins
= Library
= Documentation
m Tests
= Build
= Windows
m [IDLE
= Tools/Demos
s CAPI
= Python 3.6.1 release candidate 1

Core and Builtins
Library
Windows
Documentation

m Tests

= Build
Python 3.6.0 final
Python 3.6.0 release candidate 2

= Core and Builtins

= Tools/Demos

= Windows

= Build
Python 3.6.0 release candidate 1
Core and Builtins
Library
C API
Documentation
Tools/Demos
Python 3.6.0 beta 4
Core and Builtins
Library
Documentation

m Tests

= Build
Python 3.6.0 beta 3

= Core and Builtins
Library
Windows
Build

m Tests
Python 3.6.0 beta 2

m Core and Builtins

m Library

= Windows

C API
Build
Tests

= Python 3.6.0 beta 1

Core and Builtins
Library

IDLE

C API

Tests

Build
Tools/Demos
Windows

= Python 3.6.0 alpha 4

Core and Builtins
Library

IDLE

Tests

Windows

Build

= Python 3.6.0 alpha 3

Core and Builtins
Library
Security
Library
Security
Library

IDLE

C API

Build
Tools/Demos
Documentation
Tests

= Python 3.6.0 alpha 2
= Core and Builtins

m Library
= Security
m Library
= Security
m Library
= |IDLE
= Documentation
m Jests
= Windows
= Build
= Windows
m CAPI
= Tools/Demos
= Python 3.6.0 alpha 1
= Core and Builtins
m Library
m Security
m Library
m Security
m Library
m Security
m Library
= |IDLE
= Documentation
m Jests
= Build
= Windows
= Tools/Demos
m CAPI
= Python 3.5.3 final
= Python 3.5.3 release candidate 1
= Core and Builtins
m Library
= Security

= Library
= Security
= Library
» [IDLE
= C API
= Documentation
m Tests
= Tools/Demos
= Windows
= Build
= Python 3.5.2 final
= Core and Builtins
m Tests
= [IDLE

= Python 3.5.2 release candidate 1

= Core and Builtins
m Security
= Library
m Security
= Library
m Security
m Library
m Security
m Library
= Security
= Library
= |[IDLE
= Documentation
m Tests
= Build
= Windows
= Tools/Demos
= Windows
= Python 3.5.1 final

m Core and Builtins
= Windows
m Python 3.5.1 release candidate 1
= Core and Builtins
m Library
» [DLE
= Documentation
m Jests
= Build
= Windows
= Tools/Demos
= Python 3.5.0 final
= Build
= Python 3.5.0 release candidate 4
m Library
= Build
m Python 3.5.0 release candidate 3
m Core and Builtins
m Library
m Python 3.5.0 release candidate 2
m Core and Builtins
m Library
m Python 3.5.0 release candidate 1
Core and Builtins
Library
IDLE
Documentation
m Tests
= Python 3.5.0 beta 4
= Core and Builtins
m Library
= Build
= Python 3.5.0 beta 3
= Core and Builtins

Library
Tests
Documentation
= Build
Python 3.5.0 beta 2
= Core and Builtins
m Library
Python 3.5.0 beta 1
= Core and Builtins
m Library
IDLE
Tests
Documentation
Tools/Demos
Python 3.5.0 alpha 4
Core and Builtins
Library
Build
Tests
Tools/Demos
= C API
Python 3.5.0 alpha 3
= Core and Builtins
Library
Build
Tests
Tools/Demos
Python 3.5.0 alpha 2
Core and Builtins
Library
Build
C API
Windows
Python 3.5.0 alpha 1

= Core and Builtins
= Library
= IDLE
= Build
= C API
= Documentation
m Tests
= Tools/Demos
= Windows
e The Python Tutorial
o 1. Whetting Your Appetite
o 2. Using the Python Interpreter
= 2.1. Invoking the Interpreter
= 2.1.1. Argument Passing
m 2.1.2. Interactive Mode
m 2.2. The Interpreter and Its Environment
m 2.2.1. Source Code Encoding
o 3. An Informal Introduction to Python
= 3.1. Using Python as a Calculator
= 3.1.1. Numbers
m 3.1.2. Strings
m 3.1.3. Lists
m 3.2. First Steps Towards Programming
o 4. More Control Flow Tools
4.1. if Statements
4.2. for Statements
4.3. The range() Function
4.4. break and continue Statements, and else
Clauses on Loops
4.5. pass Statements
4.6. Defining Functions
4.7. More on Defining Functions
m 4.7.1. Default Argument Values
m 4.7.2. Keyword Arguments

4.7.3. Arbitrary Argument Lists
4.7.4. Unpacking Argument Lists
4.7.5. Lambda Expressions
4.7.6. Documentation Strings
m 4.7.7. Function Annotations
= 4.8. Intermezzo: Coding Style
o 5. Data Structures
= 5.1. More on Lists
m 5.1.1. Using Lists as Stacks
m 5.1.2. Using Lists as Queues
m 5.1.3. List Comprehensions
m 5.1.4. Nested List Comprehensions
5.2. The del statement
5.3. Tuples and Sequences
5.4. Sets
5.5. Dictionaries
5.6. Looping Techniques
5.7. More on Conditions
5.8. Comparing Sequences and Other Types
o 6. Modules
= 6.1. More on Modules
= 6.1.1. Executing modules as scripts
m 6.1.2. The Module Search Path
= 6.1.3. “Compiled” Python files
= 6.2. Standard Modules
m 6.3. The dir () Function
= 6.4. Packages
= 6.4.1. Importing * From a Package
m 6.4.2. Intra-package References
m 6.4.3. Packages in Multiple Directories
o 7. Input and Output
m 7.1. Fancier Output Formatting
= 7.1.1. Old string formatting
m 7.2. Reading and Writing Files

m 7.2.1. Methods of File Objects
m 7.2.2. Saving structured data with json
o 8. Errors and Exceptions
= 8.1. Syntax Errors
8.2. Exceptions
8.3. Handling Exceptions
8.4. Raising Exceptions
8.5. User-defined Exceptions
8.6. Defining Clean-up Actions
8.7. Predefined Clean-up Actions
o 9. Classes
= 9.1. AWord About Names and Obijects
m 9.2. Python Scopes and Namespaces
m 9.2.1. Scopes and Namespaces Example
9.3. A First Look at Classes
m 9.3.1. Class Definition Syntax
m 9.3.2. Class Objects
m 9.3.3. Instance Objects
= 9.3.4. Method Obijects
m 9.3.5. Class and Instance Variables
9.4. Random Remarks
9.5. Inheritance
= 9.5.1. Multiple Inheritance
9.6. Private Variables
9.7. Odds and Ends
9.8. Iterators
9.9. Generators
9.10. Generator Expressions
o 10. Brief Tour of the Standard Library
10.1. Operating System Interface
10.2. File Wildcards
10.3. Command Line Arguments

10.5. String Pattern Matching

10.4. Error Output Redirection and Program Termination

= 10.6. Mathematics
= 10.7. Internet Access
= 10.8. Dates and Times
= 10.9. Data Compression
= 10.10. Performance Measurement
= 10.11. Quality Control
= 10.12. Batteries Included
o 11. Brief Tour of the Standard Library — Part I
= 11.1. Output Formatting
= 11.2. Templating
= 11.3. Working with Binary Data Record Layouts
= 11.4. Multi-threading
= 11.5. Logging
m 11.6. Weak References
m 11.7. Tools for Working with Lists
= 11.8. Decimal Floating Point Arithmetic
12. Virtual Environments and Packages
m 12.1. Introduction
m 12.2. Creating Virtual Environments
m 12.3. Managing Packages with pip
13. What Now?
14. Interactive Input Editing and History Substitution
m 14.1. Tab Completion and History Editing
m 14.2. Alternatives to the Interactive Interpreter
15. Floating Point Arithmetic: Issues and Limitations
= 15.1. Representation Error
16. Appendix
m 16.1. Interactive Mode
16.1.1. Error Handling
16.1.2. Executable Python Scripts
16.1.3. The Interactive Startup File
16.1.4. The Customization Modules
e Python Setup and Usage
o 1. Command line and environment

(¢]

(¢]

(¢]

(¢]

o

m 1.1

m 1.2,

o 2.Using
m 2.1,

]

]

2.2.
2.3.
2.4.
2.5.
o 3. Using

= 3.1.

Command line

1.1.1. Interface options

1.1.2. Generic options

1.1.3. Miscellaneous options

1.1.4. Options you shouldn’t use
Environment variables

1.2.1. Debug-mode variables

Python on Unix platforms

Getting and installing the latest version of Python
2.1.1. On Linux

2.1.2. On FreeBSD and OpenBSD
2.1.3. On OpenSolaris

Building Python

Python-related paths and files
Miscellaneous

Editors and IDEs

Python on Windows

Installing Python

3.1.1. Supported Versions

3.1.2. Installation Steps

3.1.3. Removing the MAX_PATH Limitation
3.1.4. Installing Without Ul

3.1.5. Installing Without Downloading
3.1.6. Modifying an install

3.1.7. Other Platforms

m 3.2. Alternative bundles

= 3.3.

m 3.4.

Configuring Python
3.3.1. Excursus: Setting environment variables
3.3.2. Finding the Python executable
Python Launcher for Windows
3.4.1. Getting started
m 3.4.1.1. From the command-line
= 3.4.1.2. Virtual environments
= 3.4.1.3. From a script

m 3.4.1.4. From file associations
3.4.2. Shebang Lines
3.4.3. Arguments in shebang lines
3.4.4. Customization
m 3.4.4.1. Customization via INI files
m 3.4.4.2. Customizing default Python versions
m 3.4.5. Diagnostics
3.5. Finding modules
3.6. Additional modules
= 3.6.1. PyWin32
m 3.6.2. cx_Freeze
= 3.6.3. WConio
3.7. Compiling Python on Windows
3.8. Embedded Distribution
= 3.8.1. Python Application
= 3.8.2. Embedding Python
= 3.9. Other resources
o 4, Using Python on a Macintosh
m 4.1. Getting and Installing MacPython
m 4.1.1. How to run a Python script
= 4.1.2. Running scripts with a GUI
m 4.1.3. Configuration
4.2. The IDE
4.3. Installing Additional Python Packages
4.4. GUI Programming on the Mac
4.5. Distributing Python Applications on the Mac
= 4.6. Other Resources
The Python Language Reference
o 1. Introduction
m 1.1. Alternate Implementations
= 1.2. Notation
o 2. Lexical analysis
m 2.1. Line structure
m 2.1.1. Logical lines

2.1.2. Physical lines
2.1.3. Comments
2.1.4. Encoding declarations
2.1.5. Explicit line joining
2.1.6. Implicit line joining
2.1.7. Blank lines
2.1.8. Indentation
2.1.9. Whitespace between tokens
m 2.2. Other tokens
= 2.3. Identifiers and keywords
2.3.1. Keywords
2.3.2. Reserved classes of identifiers
m 2.4, Literals
2.4.1. String and Bytes literals
2.4.2. String literal concatenation
2.4.3. Formatted string literals
2.4.4. Numeric literals
2.4.5. Integer literals
2.4.6. Floating point literals
m 2.4.7. Imaginary literals
m 2.5. Operators
m 2.6. Delimiters
o 3. Data model
= 3.1. Objects, values and types
m 3.2. The standard type hierarchy
= 3.3. Special method names
= 3.3.1. Basic customization
m 3.3.2. Customizing attribute access
3.3.2.1. Customizing module attribute access
3.3.2.2. Implementing Descriptors
3.3.2.3. Invoking Descriptors
3.3.2.4. _slots__
m 3.3.2.4.1. Notes on using __slots___
m 3.3.3. Customizing class creation

= 34

3.3.3.1. Metaclasses
3.3.3.2. Determining the appropriate metaclass
3.3.3.3. Preparing the class namespace
3.3.3.4. Executing the class body
3.3.3.5. Creating the class object
= 3.3.3.6. Metaclass example

3.3.4. Customizing instance and subclass checks

3.3.5. Emulating callable objects

3.3.6. Emulating container types

3.3.7. Emulating numeric types

3.3.8. With Statement Context Managers

3.3.9. Special method lookup
. Coroutines

3.4.1. Awaitable Objects

3.4.2. Coroutine Objects

3.4.3. Asynchronous lIterators

3.4.4. Asynchronous Context Managers

o 4. Execution model

m 41
m 42

m 4.3

. Structure of a program
. Naming and binding
4.2.1. Binding of names
4.2.2. Resolution of names
4.2.3. Builtins and restricted execution
4.2.4. Interaction with dynamic features
. Exceptions

o 5. The import system

= 51
m 52

= 5.3

. importlib

. Packages

5.2.1. Regular packages
5.2.2. Namespace packages
Searching

5.3.1. The module cache
5.3.2. Finders and loaders
5.3.3. Import hooks

|
o
IN

[
o1
a1

5.6.
5.7.

]
5.8.
5.9.

5.3.4. The meta path

. Loading

5.4.1. Loaders

5.4.2. Submodules

5.4.3. Module spec

5.4.4. Import-related module attributes
5.4.5. module.__path

5.4.6. Module reprs

5.4.7. Cached bytecode invalidation

. The Path Based Finder

5.5.1. Path entry finders

5.5.2. Path entry finder protocol
Replacing the standard import system
Special considerations for __main__
5.7.1. _main__. spec__

Open issues

References

o 6. Expressions
= 6.1. Arithmetic conversions
m 6.2. Atoms

6.2.1. Identifiers (Names)
6.2.2. Literals
6.2.3. Parenthesized forms
6.2.4. Displays for lists, sets and dictionaries
6.2.5. List displays
6.2.6. Set displays
6.2.7. Dictionary displays
6.2.8. Generator expressions
6.2.9. Yield expressions
m 6.2.9.1. Generator-iterator methods
m 6.2.9.2. Examples
m 6.2.9.3. Asynchronous generator functions
s 6.2.94. Asynchronous generator-iterator
methods

6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

. Primaries

6.3.1. Attribute references

6.3.2. Subscriptions

6.3.3. Slicings

6.3.4. Calls

Await expression

The power operator

Unary arithmetic and bitwise operations
Binary arithmetic operations

Shifting operations

Binary bitwise operations

6.10. Comparisons

6.10.1. Value comparisons
6.10.2. Membership test operations
6.10.3. Identity comparisons

6.11. Boolean operations
6.12. Conditional expressions
6.13. Lambdas

6.14. Expression lists

6.15. Evaluation order

6.16. Operator precedence

7.1.
7.2

7.3.
7.4.
7.5.
7.6.
7.7.
7.8.
7.9.

. Simple statements

Expression statements
Assignment statements
7.2.1. Augmented assignment statements
7.2.2. Annotated assignment statements
The assert statement

The pass statement
The del statement
The return statement
The yield statement
The raise statement
The break statement

7.10. The continue statement

m 7.11. The import statement
m /.11.1. Future statements
m 7.12. The global statement
m 7.13. The nonlocal statement
o 8. Compound statements
m 8.1. The if statement
m 8.2. The while statement
= 8.3. The for statement
m 8.4. The try statement
8.5. The with statement
8.6. Function definitions
8.7. Class definitions
8.8. Coroutines
= 8.8.1. Coroutine function definition
m 8.8.2. The async for statement
= 8.8.3. The async with statement
o 9. Top-level components
= 9.1. Complete Python programs
m 9.2. File input
= 9.3. Interactive input
= 9.4, Expression input
o 10. Full Grammar specification
e The Python Standard Library
o 1. Introduction
o 2. Built-in Functions
o 3. Built-in Constants
= 3.1. Constants added by the site module
o 4. Built-in Types
= 4.1. Truth Value Testing
m 4.2. Boolean Operations — and, or, not
= 4.3. Comparisons
= 4.4. Numeric Types — int, float, complex
m 4.4.1. Bitwise Operations on Integer Types

4.5. Iterator Types
m 4.5.1. Generator Types
4.6. Sequence Types — list, tuple, range
m 4.6.1. Common Sequence Operations
= 4.6.2. Immutable Sequence Types
m 4.6.3. Mutable Sequence Types
m 4.6.4. Lists
m 4.6.5. Tuples
= 4.6.6. Ranges
4.7. Text Sequence Type — str
m 4.7.1. String Methods
m 4.7.2. printf-style String Formatting
4.8. Binary Sequence Types — bytes, bytearray,
memoryview
= 4.8.1. Bytes Objects
m 4.8.2. Bytearray Objects
= 4.8.3. Bytes and Bytearray Operations
m 4.8.4. printf-style Bytes Formatting
= 4.8.5. Memory Views
4.9. Set Types — set, frozenset

4.4.2. Additional Methods on Integer Types
4.4.3. Additional Methods on Float
4.4.4. Hashing of numeric types

4.10. Mapping Types — dict

4.10.1. Dictionary view objects

4.11. Context Manager Types
4.12. Other Built-in Types

4.12.1. Modules

4.12.2. Classes and Class Instances
4.12.3. Functions

4.12.4. Methods

4.12.5. Code Objects

4.12.6. Type Objects

4.12.7. The Null Object

4.12.8. The Ellipsis Object
4.12.9. The Notimplemented Object
4.12.10. Boolean Values
4.12.11. Internal Objects
m 4.13. Special Attributes
o 5. Built-in Exceptions
m 5.1. Base classes
m 5.2. Concrete exceptions
m 5.2.1. OS exceptions
= 5.3. Warnings
= 5.4, Exception hierarchy
o 6. Text Processing Services
m 6.1. string — Common string operations
6.1.1. String constants
6.1.2. Custom String Formatting
6.1.3. Format String Syntax
m 6.1.3.1. Format Specification Mini-Language
m 6.1.3.2. Format examples
6.1.4. Template strings
6.1.5. Helper functions
m 6.2. re — Regular expression operations
6.2.1. Regular Expression Syntax
6.2.2. Module Contents
6.2.3. Regular Expression Objects
6.2.4. Match Objects
6.2.5. Regular Expression Examples
m 6.2.5.1. Checking for a Pair
6.2.5.2. Simulating scanf()
6.2.5.3. search() vs. match()
6.2.5.4. Making a Phonebook
6.2.5.5. Text Munging
6.2.5.6. Finding all Adverbs
6.2.5.7. Finding all Adverbs and their Positions
6.2.5.8. Raw String Notation

= 6.2.5.9. Writing a Tokenizer
m 6.3. difflib — Helpers for computing deltas
m 6.3.1. SequenceMatcher Objects
= 6.3.2. SequenceMatcher Examples
m 6.3.3. Differ Objects
= 6.3.4. Differ Example
= 6.3.5. Acommand-line interface to difflib
. textwrap — Text wrapping and filling
. unicodedata — Unicode Database
. stringprep — Internet String Preparation
. readline — GNU readline interface
m 6.7.1. Init file
m 6.7.2. Line buffer
m 6.7.3. History file
m 6.7.4. History list
m 6.7.5. Startup hooks
m 6.7.6. Completion
m 6.7.7. Example
6.8. rlcompleter — Completion function for GNU
readline
= 6.8.1. Completer Objects
o 7. Binary Data Services
m 7.1. struct — Interpret bytes as packed binary data
m 7.1.1. Functions and Exceptions
m 7.1.2. Format Strings
m 7.1.2.1. Byte Order, Size, and Alignment
m 7.1.2.2. Format Characters
m 7.1.2.3. Examples
m 7.1.3. Classes
m 7.2. codecs — Codec registry and base classes
m 7.2.1. Codec Base Classes
m 7.2.1.1. Error Handlers
m 7.2.1.2. Stateless Encoding and Decoding
m 7.2.1.3. Incremental Encoding and Decoding

H B B =&
o0 oo
N O O b

m 7.2.1.3.1. IncrementalEncoder Objects
m 7.2.1.3.2. IncrementalDecoder Objects
m 7.2.1.4. Stream Encoding and Decoding
m 7.2.1.4.1. StreamWriter Objects
m 7.2.1.4.2. StreamReader Objects
m 7.2.1.4.3. StreamReaderWriter Objects
m 7.2.1.4.4. StreamRecoder Objects
7.2.2. Encodings and Unicode
7.2.3. Standard Encodings
7.2.4. Python Specific Encodings
m 7.2.4.1. Text Encodings
m 7.2.4.2. Binary Transforms
m 7.2.4.3. Text Transforms

m 7.2.5. encodings.idna — Internationalized
Domain Names in Applications

m 7.2.6. encodings.mbcs — Windows ANSI
codepage

m 7.2.7. encodings.utf_8_sig — UTF-8 codec
with BOM signature
o 8. Data Types
m 8.1. datetime — Basic date and time types
8.1.1. Available Types
8.1.2. timedelta Objects
8.1.3. date Obijects
8.1.4. datetime Obijects
8.1.5. time Obijects
8.1.6. tzinfo Objects
8.1.7. timezone Objects
m 8.1.8. strftime() and strptime() Behavior
m 8.2. calendar — General calendar-related functions
m 8.3. collections — Container datatypes
= 8.3.1. ChainMap objects
m 8.3.1.1. ChainMap Examples and Recipes

8.4.

8.3.2. Counter objects
8.3.3. deque objects
m 8.3.3.1. deque Recipes
8.3.4. defaultdict objects
m 8.3.4.1. defaultdict Examples
8.3.5. namedtuple() Factory Function for Tuples
with Named Fields
8.3.6. OrderedDict objects
m 8.3.6.1. OrderedDict Examples and Recipes
8.3.7. UserDict objects
8.3.8. UserList objects
8.3.9. UserString objects
collections.abc — Abstract Base Classes for

Containers

8.5.
|
|
|

8.6.
|

8.7.
8.8.

8.9.

8.4.1. Collections Abstract Base Classes

heapg — Heap queue algorithm

8.5.1. Basic Examples

8.5.2. Priority Queue Implementation Notes

8.5.3. Theory

bisect — Array bisection algorithm

8.6.1. Searching Sorted Lists

8.6.2. Other Examples

array — Efficient arrays of numeric values
weakref — Weak references

8.8.1. Weak Reference Objects

8.8.2. Example

8.8.3. Finalizer Objects

8.8.4. Comparing finalizers with __del__ ()
methods

types — Dynamic type creation and names for

built-in types

8.9.1. Dynamic Type Creation
8.9.2. Standard Interpreter Types

= 8.9.3. Additional Utility Classes and Functions
= 8.9.4. Coroutine Utility Functions
8.10. copy — Shallow and deep copy operations
8.11. pprint — Data pretty printer
m 8.11.1. PrettyPrinter Objects
= 8.11.2. Example
8.12. reprlib — Alternate repr () implementation
m 8.12.1. Repr Objects
m 8.12.2. Subclassing Repr Objects
8.13. enum — Support for enumerations
8.13.1. Module Contents
8.13.2. Creating an Enum

members and their attributes
8.13.4. Duplicating enum members and values
8.13.5. Ensuring unique enumeration values
8.13.6. Using automatic values
8.13.7. Iteration
8.13.8. Comparisons
8.13.9. Allowed members and attributes
enumerations
8.13.10. Restricted subclassing of enumerations
8.13.11. Pickling
8.13.12. Functional API
8.13.13. Derived Enumerations

= 8.13.13.1. IntEnum

= 8.13.13.2. IntFlag

= 8.13.13.3. Flag

m 8.13.13.4. Others
8.13.14. Interesting examples

= 8.13.14.1. Omitting values

m 8.13.14.1.1. Using auto
= 8.13.14.1.2. Using object

= 8.13.14.1.3. Using a descriptive string

8.13.3. Programmatic access to enumeration

of

m 8.13.14.1.4. Using a custom __new__ ()
8.13.14.2. OrderedEnum
8.13.14.3. DuplicateFreeEnum
8.13.14.4. Planet
8.13.14.5. TimePeriod
= 8.13.15. How are Enums different?
m 8.13.15.1. Enum Classes
= 8.13.15.2. Enum Members (aka instances)
m 8.13.15.3. Finer Points
m 8.13.15.3.1. Supported __dunder__
names
8.13.15.3.2. Supported _sunder_ names
8.13.15.3.3. Enum member type
8.13.15.3.4. Boolean value of Enum
classes and members
8.13.15.3.5. Enum classes with methods
8.13.15.3.6. Combining members of Flag
o 9. Numeric and Mathematical Modules
= 9.1. numbers — Numeric abstract base classes
= 9.1.1. The numeric tower
= 9.1.2. Notes for type implementors
m 9.1.2.1. Adding More Numeric ABCs
m 9.1.2.2. Implementing the arithmetic operations
= 9.2. math — Mathematical functions
m 9.2.1. Number-theoretic and representation
functions
m 9.2.2. Power and logarithmic functions
9.2.3. Trigonometric functions
= 9.2.4. Angular conversion
9.2.5. Hyperbolic functions
m 9.2.6. Special functions
m 0.2.7. Constants
= 9.3. cmath — Mathematical functions for complex

numbers

= 94,

9.3.1. Conversions to and from polar coordinates
9.3.2. Power and logarithmic functions

9.3.3. Trigonometric functions

9.3.4. Hyperbolic functions

9.3.5. Classification functions

9.3.6. Constants

decimal — Decimal fixed point and floating point

arithmetic

9.4.1. Quick-start Tutorial
9.4.2. Decimal objects

m 9.4.2.1. Logical operands
9.4.3. Context objects
9.4.4. Constants
9.4.5. Rounding modes
9.4.6. Signals
9.4.7. Floating Point Notes

m 9.4.7.1. Mitigating round-off error with increased

precision

m 9.4.7.2. Special values
9.4.8. Working with threads
9.4.9. Recipes
9.4.10. Decimal FAQ

. fractions — Rational numbers
. random — Generate pseudo-random numbers

9.6.1. Bookkeeping functions
9.6.2. Functions for integers
9.6.3. Functions for sequences
9.6.4. Real-valued distributions
9.6.5. Alternative Generator
9.6.6. Notes on Reproducibility
9.6.7. Examples and Recipes

. statistics — Mathematical statistics functions

9.7.1. Averages and measures of central location

m 9.7.2. Measures of spread
= 9.7.3. Function details
m 9.7.4. Exceptions
o 10. Functional Programming Modules
m 10.1. itertools — Functions creating iterators for
efficient looping
= 10.1.1. Itertool functions
m 10.1.2. Itertools Recipes
m 10.2. functools — Higher-order functions and
operations on callable objects
m 10.2.1. partial Objects
= 10.3. operator — Standard operators as functions
= 10.3.1. Mapping Operators to Functions
m 10.3.2. Inplace Operators
o 11. File and Directory Access
m 11.1. pathlib — Object-oriented filesystem paths
= 11.1.1. Basic use
m 11.1.2. Pure paths
m 11.1.2.1. General properties
m 11.1.2.2. Operators
m 11.1.2.3. Accessing individual parts
= 11.1.2.4. Methods and properties
= 11.1.3. Concrete paths
= 11.1.3.1. Methods
= 11.1.4. Correspondence to tools in the os module
m 11.2. 0s.path — Common pathname manipulations
m 11.3. fileinput — Iterate over lines from multiple
input streams
m 11.4. stat — Interpreting stat () results
m 11.5. filecmp — File and Directory Comparisons
m 11.5.1. The dircmp class
m 11.6. tempfile — Generate temporary files and
directories

m 11.6.1. Examples
= 11.6.2. Deprecated functions and variables
11.7. glob — Unix style pathname pattern expansion
11.8. fnmatch — Unix filename pattern matching
11.9. 1inecache — Random access to text lines
11.10. shutil — High-level file operations
= 11.10.1. Directory and files operations
= 11.10.1.1. copytree example
= 11.10.1.2. rmtree example
= 11.10.2. Archiving operations
m 11.10.2.1. Archiving example
= 11.10.3. Querying the size of the output terminal
11.11. macpath — Mac OS 9 path manipulation
functions
o 12. Data Persistence
m 12.1. pickle — Python object serialization
m 12.1.1. Relationship to other Python modules
m 12.1.1.1. Comparison with marshal
m 12.1.1.2. Comparison with json
12.1.2. Data stream format
12.1.3. Module Interface
12.1.4. What can be pickled and unpickled?
12.1.5. Pickling Class Instances
m 12.1.5.1. Persistence of External Objects
m 12.1.5.2. Dispatch Tables
m 12.1.5.3. Handling Stateful Objects
12.1.6. Restricting Globals
m 12.1.7. Performance
m 12.1.8. Examples
m 12.2. copyreg — Register pickle support functions
m 12.2.1. Example
m 12.3. shelve — Python object persistence
m 12.3.1. Restrictions

m 12.3.2. Example
m 12.4. marshal — Internal Python object serialization
m 12.5. dbm — Interfaces to Unix “databases”
m 12.5.1. dbm.gnu — GNU's reinterpretation of dom
m 12.5.2. dbm.ndbm — Interface based on ndbm
m 12.5.3. dbm.dumb — Portable DBM implementation
m 12.6. sqlite3 — DB-API 2.0 interface for SQLite
databases
12.6.1. Module functions and constants
12.6.2. Connection Obijects
12.6.3. Cursor Objects
12.6.4. Row Objects
12.6.5. Exceptions
12.6.6. SQLite and Python types
m 12.6.6.1. Introduction
m 12.6.6.2. Using adapters to store additional
Python types in SQLite databases
m 12.6.6.2.1. Letting your object adapt itself
m 12.6.6.2.2. Registering an adapter callable
m 12.6.6.3. Converting SQLite values to custom
Python types
m 12.6.6.4. Default adapters and converters
m 12.6.7. Controlling Transactions
m 12.6.8. Using sglite3 efficiently
m 12.6.8.1. Using shortcut methods
m 12.6.8.2. Accessing columns by name instead
of by index
m 12.6.8.3. Using the connection as a context
manager
m 12.6.9. Common issues
m 12.6.9.1. Multithreading
13. Data Compression and Archiving
m 13.1. z1ib — Compression compatible with gzip

13.2. gzip — Support for gzip files
m 13.2.1. Examples of usage
13.3. bz2 — Support for bzip2 compression
m 13.3.1. (De)compression of files
m 13.3.2. Incremental (de)compression
m 13.3.3. One-shot (de)compression
13.4. 1zma — Compression using the LZMA algorithm
= 13.4.1. Reading and writing compressed files
m 13.4.2. Compressing and decompressing data in
memory
m 13.4.3. Miscellaneous
m 13.4.4. Specifying custom filter chains
m 13.4.5. Examples
13.5. zipfile — Work with ZIP archives
13.5.1. ZipFile Objects
13.5.2. PyZipFile Objects
13.5.3. ZipInfo Objects
13.5.4. Command-Line Interface
m 13.5.4.1. Command-line options
13.6. tarfile — Read and write tar archive files
13.6.1. TarFile Objects
13.6.2. TarInfo Objects
13.6.3. Command-Line Interface
m 13.6.3.1. Command-line options
13.6.4. Examples
13.6.5. Supported tar formats
m 13.6.6. Unicode issues
o 14. File Formats
m 14.1. csv — CSV File Reading and Writing
14.1.1. Module Contents
14.1.2. Dialects and Formatting Parameters
14.1.3. Reader Objects
14.1.4. Writer Objects
14.1.5. Examples

m 14.2. configparser — Configuration file parser
m 14.2.1. Quick Start
m 14.2.2. Supported Datatypes
m 14.2.3. Fallback Values
m 14.2.4. Supported INI File Structure
m 14.2.5. Interpolation of values
m 14.2.6. Mapping Protocol Access
m 14.2.7. Customizing Parser Behaviour
m 14.2.8. Legacy APl Examples
m 14.2.9. ConfigParser Objects
m 14.2.10. RawConfigParser Objects
m 14.2.11. Exceptions
m 14.3. netrc — netrc file processing
m 14.3.1. netrc Objects
m 14.4. xdrlib — Encode and decode XDR data
m 14.4.1. Packer Objects
m 14.4.2. Unpacker Objects
m 14.4.3. Exceptions
m 145, plistlib — Generate and parse Mac OS X
.plist files
m 14.5.1. Examples
o 15. Cryptographic Services
= 15.1. hashlib — Secure hashes and message digests
m 15.1.1. Hash algorithms
m 15.1.2. SHAKE variable length digests
= 15.1.3. Key derivation
= 15.1.4. BLAKE2
= 15.1.4.1. Creating hash objects
m 15.1.4.2. Constants
m 15.1.4.3. Examples
15.1.4.3.1. Simple hashing
15.1.4.3.2. Using different digest sizes
15.1.4.3.3. Keyed hashing
15.1.4.3.4. Randomized hashing

m 15.1.4.3.5. Personalization
m 15.1.4.3.6. Tree mode
m 15.1.4.4. Credits

m 15.2. hmac — Keyed-Hashing for Message
Authentication
m 15.3. secrets — Generate secure random numbers for

managing secrets

15.3.1. Random numbers
15.3.2. Generating tokens
= 15.3.2.1. How many bytes should tokens use?
15.3.3. Other functions
15.3.4. Recipes and best practices

o 16. Generic Operating System Services
m 16.1. os — Miscellaneous operating system interfaces

16.1.1. File Names, Command Line Arguments, and
Environment Variables
16.1.2. Process Parameters
16.1.3. File Object Creation
16.1.4. File Descriptor Operations
m 16.1.4.1. Querying the size of a terminal
m 16.1.4.2. Inheritance of File Descriptors
16.1.5. Files and Directories
m 16.1.5.1. Linux extended attributes
16.1.6. Process Management
16.1.7. Interface to the scheduler
16.1.8. Miscellaneous System Information
16.1.9. Random numbers

m 16.2. 10 — Core tools for working with streams

16.2.1. Overview
m 16.2.1.1. Text I/O
= 16.2.1.2. Binary I/O
m 16.2.1.3. Raw I/O
16.2.2. High-level Module Interface
m 16.2.2.1. In-memory streams

m 16.2.3. Class hierarchy
m 16.2.3.1. I/O Base Classes
m 16.2.3.2. Raw File I/O
= 16.2.3.3. Buffered Streams
m 16.2.3.4. Text I/O
m 16.2.4. Performance
= 16.2.4.1. Binary I/O
m 16.2.4.2. Text I/O
m 16.2.4.3. Multi-threading
= 16.2.4.4. Reentrancy
m 16.3. time — Time access and conversions
m 16.3.1. Functions
m 16.3.2. Clock ID Constants
m 16.3.3. Timezone Constants
m 16.4. argparse — Parser for command-line options,
arguments and sub-commands
m 16.4.1. Example
m 16.4.1.1. Creating a parser
m 16.4.1.2. Adding arguments
m 16.4.1.3. Parsing arguments
m 16.4.2. ArgumentParser objects
m 16.4.2.1. prog
m 16.4.2.2. usage
m 16.4.2.3. description
m 16.4.2.4. epilog
m 16.4.2.5. parents
m 16.4.2.6. formatter_class
m 16.4.2.7. prefix_chars
m 16.4.2.8. fromfile_prefix_chars
m 16.4.2.9. argument_default
m 16.4.2.10. allow_abbrev
= 16.4.2.11. conflict_handler
m 16.4.2.12. add_help
m 16.4.3. The add_argument() method

16.4.3.1. name or flags
16.4.3.2. action
16.4.3.3. nargs
16.4.3.4. const
16.4.3.5. default
16.4.3.6. type

16.4.3.7. choices
16.4.3.8. required
16.4.3.9. help
16.4.3.10. metavar
16.4.3.11. dest
16.4.3.12. Action classes

m 16.4.4. The parse_args() method

16.4.4.1. Option value syntax

16.4.4.2. Invalid arguments

16.4.4.3. Arguments containing -
16.4.4.4. Argument abbreviations
matching)

16.4.4.5. Beyond sys.argv

16.4.4.6. The Namespace object

m 16.4.5. Other utilities

16.4.5.1. Sub-commands
16.4.5.2. FileType objects
16.4.5.3. Argument groups
16.4.5.4. Mutual exclusion
16.4.5.5. Parser defaults
16.4.5.6. Printing help

16.4.5.7. Partial parsing

16.4.5.8. Customizing file parsing
16.4.5.9. Exiting methods
16.4.5.10. Intermixed parsing

= 16.4.6. Upgrading optparse code
m 16.5. getopt — C-style parser for command line

options

(prefix

m 16.6. logging — Logging facility for Python
m 16.6.1. Logger Objects
m 16.6.2. Logging Levels
= 16.6.3. Handler Objects
m 16.6.4. Formatter Objects
m 16.6.5. Filter Objects
m 16.6.6. LogRecord Objects
= 16.6.7. LogRecord attributes
m 16.6.8. LoggerAdapter Objects
= 16.6.9. Thread Safety
m 16.6.10. Module-Level Functions
m 16.6.11. Module-Level Attributes
m 16.6.12. Integration with the warnings module
m 16.7. logging.config — Logging configuration
m 16.7.1. Configuration functions
m 16.7.2. Configuration dictionary schema
m 16.7.2.1. Dictionary Schema Details
m 16.7.2.2. Incremental Configuration
m 16.7.2.3. Object connections
m 16.7.2.4. User-defined objects
m 16.7.2.5. Access to external objects
m 16.7.2.6. Access to internal objects
m 16.7.2.7. Import resolution and custom
importers
m 16.7.3. Configuration file format
m 16.8. logging.handlers — Logging handlers
= 16.8.1. StreamHandler
= 16.8.2. FileHandler
= 16.8.3. Null[Handler
= 16.8.4. WatchedFileHandler
= 16.8.5. BaseRotatingHandler
= 16.8.6. RotatingFileHandler
= 16.8.7. TimedRotatingFileHandler
= 16.8.8. SocketHandler

= 16.8.9. DatagramHandler

= 16.8.10. SysLogHandler

= 16.8.11. NTEventLogHandler

= 16.8.12. SMTPHandler

= 16.8.13. MemoryHandler

= 16.8.14. HTTPHandler

= 16.8.15. QueueHandler

= 16.8.16. QueueListener
16.9. getpass — Portable password input
16.10. curses — Terminal handling for character-cell
displays

= 16.10.1. Functions

= 16.10.2. Window Obijects

= 16.10.3. Constants
16.11. curses. textpad — Text input widget for curses
programs

m 16.11.1. Textbox objects
16.12. curses.ascii — Utilities for ASCII characters
16.13. curses.panel — A panel stack extension for
curses

= 16.13.1. Functions

= 16.13.2. Panel Objects
16.14. platform — Access to underlying platform’s
identifying data

= 16.14.1. Cross Platform

= 16.14.2. Java Platform

= 16.14.3. Windows Platform

m 16.14.3.1. Win95/98 specific

= 16.14.4. Mac OS Platform

= 16.14.5. Unix Platforms
16.15. errno — Standard errno system symbols
16.16. ctypes — A foreign function library for Python

= 16.16.1. ctypes tutorial

m 16.16.1.1. Loading dynamic link libraries

m 16.16.1.2. Accessing functions from loaded dlls

= 16.16.1.3. Calling functions

= 16.16.1.4. Fundamental data types

= 16.16.1.5. Calling functions, continued

m 16.16.1.6. Calling functions with your own
custom data types

m 16.16.1.7. Specifying the required argument
types (function prototypes)

m 16.16.1.8. Return types

m 16.16.1.9. Passing pointers (or. passing
parameters by reference)

m 16.16.1.10. Structures and unions

m 16.16.1.11. Structure/union alignment and byte
order

m 16.16.1.12. Bit fields in structures and unions

m 16.16.1.13. Arrays

m 16.16.1.14. Pointers

= 16.16.1.15. Type conversions

m 16.16.1.16. Incomplete Types

m 16.16.1.17. Callback functions

m 16.16.1.18. Accessing values exported from dlls

m 16.16.1.19. Surprises

m 16.16.1.20. Variable-sized data types

m 16.16.2. ctypes reference

m 16.16.2.1. Finding shared libraries

m 16.16.2.2. Loading shared libraries

= 16.16.2.3. Foreign functions

= 16.16.2.4. Function prototypes

m 16.16.2.5. Utility functions

m 16.16.2.6. Data types

m 16.16.2.7. Fundamental data types

m 16.16.2.8. Structured data types

= 16.16.2.9. Arrays and pointers

o 17. Concurrent Execution

m 17.1. threading — Thread-based parallelism
m 17.1.1. Thread-Local Data
m 17.1.2. Thread Objects
m 17.1.3. Lock Objects
m 17.1.4. RLock Objects
m 17.1.5. Condition Objects
m 17.1.6. Semaphore Objects

17.1.6.1. Semaphore Example

m 17.1.7. Event Objects
m 17.1.8. Timer Objects
m 17.1.9. Barrier Objects
m 17.1.10. Using locks, conditions, and semaphores in
the with statement
m 17.2. multiprocessing — Process-based parallelism
m 17.2.1. Introduction

17.2.1.1. The Process class

17.2.1.2. Contexts and start methods

17.2.1.3. Exchanging objects between
processes

17.2.1.4. Synchronization between processes
17.2.1.5. Sharing state between processes
17.2.1.6. Using a pool of workers

m 17.2.2. Reference

17.2.2.1. Process and exceptions
17.2.2.2. Pipes and Queues
17.2.2.3. Miscellaneous
17.2.2.4. Connection Objects
17.2.2.5. Synchronization primitives
17.2.2.6. Shared ctypes Objects
m 17.2.2.6.1. The
multiprocessing.sharedctypes
module
17.2.2.7. Managers
m 17.2.2.7.1. Customized managers

m 17.2.2.7.2. Using a remote manager
m 17.2.2.8. Proxy Objects
m 17.2.2.8.1. Cleanup
m 17.2.2.9. Process Pools
m 17.2.2.10. Listeners and Clients
m 17.2.2.10.1. Address Formats
m 17.2.2.11. Authentication keys
m 17.2.2.12. Logging
m 17.2.2.13. The multiprocessing.dummy
module
m 17.2.3. Programming guidelines
m 17.2.3.1. All start methods
m 17.2.3.2. The spawn and forkserver start
methods
m 17.2.4. Examples
m 17.3. The concurrent package
m 17.4. concurrent.futures — Launching parallel
tasks
m 17.4.1. Executor Objects
m 17.4.2. ThreadPoolExecutor
m 17.4.2.1. ThreadPoolExecutor Example
m 17.4.3. ProcessPoolExecutor
m 17.4.3.1. ProcessPoolExecutor Example
m 17.4.4. Future Objects
m 17.4.5. Module Functions
m 17.4.6. Exception classes
m 17.5. subprocess — Subprocess management
m 17.5.1. Using the subprocess Module
m 17.5.1.1. Frequently Used Arguments
= 17.5.1.2. Popen Constructor
m 17.5.1.3. Exceptions
m 17.5.2. Security Considerations
m 17.5.3. Popen Objects
= 17.5.4. Windows Popen Helpers

m 17.5.4.1. Windows Constants
m 17.5.5. Older high-level API
m 17.5.6. Replacing Older Functions with the
subprocess Module
m 17.5.6.1. Replacing /bin/sh shell backquote
m 17.5.6.2. Replacing shell pipeline
m 17.5.6.3. Replacing os.system()
m 17.5.6.4. Replacing the os. spawn family
m 17.5.6.5. Replacing 0s.popen(),
0s.popen2(), os.popen3()
m 17.5.6.6. Replacing functions from the popen2
module
m 17.5.7. Legacy Shell Invocation Functions
m 17.5.8. Notes
m 17.5.8.1. Converting an argument sequence to
a string on Windows
m 17.6. sched — Event scheduler
m 17.6.1. Scheduler Objects
m 17.7. queue — A synchronized queue class
m 17.7.1. Queue Objects
m 17.7.2. SimpleQueue Objects
m 17.8. _thread — Low-level threading API
m 17.9. _dummy_thread — Drop-in replacement for the
_thread module
m 17.10. dummy_threading — Drop-in replacement for
the threading module
o 18. Interprocess Communication and Networking
m 18.1. socket — Low-level networking interface
m 18.1.1. Socket families
m 18.1.2. Module contents
m 18.1.2.1. Exceptions
m 18.1.2.2. Constants
m 18.1.2.3. Functions

m 18.1.2.3.1. Creating sockets
m 18.1.2.3.2. Other functions
m 18.1.3. Socket Objects
= 18.1.4. Notes on socket timeouts
= 18.1.4.1. Timeouts and the connect method
= 18.1.4.2. Timeouts and the accept method
m 18.1.5. Example
18.2. ss1 — TLS/SSL wrapper for socket objects
m 18.2.1. Functions, Constants, and Exceptions
m 18.2.1.1. Socket creation
18.2.1.2. Context creation
18.2.1.3. Random generation
18.2.1.4. Certificate handling
18.2.1.5. Constants
m 18.2.2. SSL Sockets
m 18.2.3. SSL Contexts
m 18.2.4. Certificates
m 18.2.4.1. Certificate chains
m 18.2.4.2. CA certificates
m 18.2.4.3. Combined key and certificate
m 18.2.4.4. Self-signed certificates
m 18.2.5. Examples
m 18.2.5.1. Testing for SSL support
m 18.2.5.2. Client-side operation
m 18.2.5.3. Server-side operation
m 18.2.6. Notes on non-blocking sockets
m 18.2.7. Memory BIO Support
m 18.2.8. SSL session
m 18.2.9. Security considerations
m 18.2.9.1. Best defaults
= 18.2.9.2. Manual settings
m 18.2.9.2.1. Verifying certificates
m 18.2.9.2.2. Protocol versions
m 18.2.9.2.3. Cipher selection

m 18.2.9.3. Multi-processing
m 18.3. select — Waiting for I/O completion
m 18.3.1. /dev/poll Polling Objects
m 18.3.2. Edge and Level Trigger Polling (epoll)
Objects
= 18.3.3. Polling Objects
= 18.3.4. Kqueue Objects
= 18.3.5. Kevent Objects
m 18.4. selectors — High-level I/O multiplexing
= 18.4.1. Introduction
m 18.4.2. Classes
= 18.4.3. Examples
m 185. asyncio — Asynchronous 1/O, event loop,
coroutines and tasks
m 18.5.1. Base Event Loop
= 18.5.1.1. Run an event loop
m 18.5.1.2. Calls
m 18.5.1.3. Delayed calls
m 18.5.1.4. Futures
m 18.5.1.5. Tasks
m 18.5.1.6. Creating connections
m 18.5.1.7. Creating listening connections
= 18.5.1.8. File Transferring
m 18.5.1.9. TLS Upgrade
m 18.5.1.10. Watch file descriptors
= 18.5.1.11. Low-level socket operations
m 18.5.1.12. Resolve host name
m 18.5.1.13. Connect pipes
= 18.5.1.14. UNIX signals
= 18.5.1.15. Executor
m 18.5.1.16. Error Handling API
m 18.5.1.17. Debug mode
m 18.5.1.18. Server
m 18.5.1.19. Handle

m 18.5.1.20. SendfileNotAvailableError
= 18.5.1.21. Event loop examples
m 18.5.1.21.1. Hello World with call_soon()
m 18.5.1.21.2. Display the current date with
call_later()
m 18.5.1.21.3. Watch a file descriptor for read
events
m 18.5.1.21.4. Set signal handlers for SIGINT
and SIGTERM
= 18.5.2. Event loops
= 18.5.2.1. Event loop functions
18.5.2.2. Available event loops
18.5.2.3. Platform support
m 18.5.2.3.1. Windows
m 18.5.2.3.2. Mac OS X
18.5.2.4. Event loop policies and the default
policy
18.5.2.5. Event loop policy interface
18.5.2.6. Access to the global loop policy
m 18.5.2.7. Customizing the event loop policy
m 18.5.3. Tasks and coroutines
m 18.5.3.1. Coroutines
= 18.5.3.1.1. Example: Hello World coroutine
m 18.5.3.1.2. Example: Coroutine displaying
the current date
= 18.5.3.1.3. Example: Chain coroutines
18.5.3.2. InvalidStateError
18.5.3.3. TimeoutError
18.5.3.4. Future
m 18.5.3.4.1. Example: Future with
run_until_complete()
m 18.5.3.4.2. Example: Future with
run_forever()
18.5.3.5. Task

18.5.3.5.1. Example: Parallel execution of
tasks

m 18.5.3.6. Task functions
m 18.5.4. Transports and protocols (callback based

API)

m 18.5.4.1. Transports

18.5.4.1.1. BaseTransport

18.5.4.1.2. ReadTransport

18.5.4.1.3. WriteTransport

18.5.4.1.4. DatagramTransport
18.5.4.1.5. BaseSubprocessTransport

m 18.5.4.2. Protocols

18.5.4.2.1. Protocol classes

18.5.4.2.2. Connection callbacks
18.5.4.2.3. Streaming protocols

18.5.4.2.4. Streaming protocols with
manual receive buffer control

18.5.4.2.5. Datagram protocols

18.5.4.2.6. Flow control callbacks
18.5.4.2.7. Coroutines and protocols

m 18.5.4.3. Protocol examples

18.5.4.3.1. TCP echo client protocol
18.5.4.3.2. TCP echo server protocol
18.5.4.3.3. UDP echo client protocol
18.5.4.3.4. UDP echo server protocol
18.5.4.3.5. Register an open socket to wait
for data using a protocol

m 18.5.5. Streams (coroutine based API)
m 18.5.5.1. Stream functions
m 18.5.5.2. StreamReader
m 18.5.5.3. StreamWriter
m 18.5.5.4. StreamReaderProtocol
= 18.5.5.5. IncompleteReadError
s 18.5.5.6. LimitOverrunError

m 18.5.5.7. Stream examples
m 18.5.5.7.1. TCP echo client using streams
m 18.5.5.7.2. TCP echo server using streams
m 18.5.5.7.3. Get HTTP headers
m 18.5.5.7.4. Register an open socket to wait
for data using streams
m 18.5.6. Subprocess
= 18.5.6.1. Windows event loop
m 18.5.6.2. Create a subprocess: high-level API
using Process
m 18.5.6.3. Create a subprocess: low-level API
using subprocess.Popen
= 18.5.6.4. Constants
m 18.5.6.5. Process
m 18.5.6.6. Subprocess and threads
m 18.5.6.7. Subprocess examples
m 18.5.6.7.1. Subprocess using transport and
protocol
m 18.5.6.7.2. Subprocess using streams
m 18.5.7. Synchronization primitives
m 18.5.7.1. Lock
m 18.5.7.2. Event
m 18.5.7.3. Condition
m 18.5.7.4. Semaphore
m 18.5.7.5. BoundedSemaphore
m 185.7.6. Using locks, conditions and
semaphores in the async with statement
m 18.5.8. Queues
m 18.5.8.1. Queue
m 18.5.8.2. PriorityQueue
m 18.5.8.3. LifoQueue
= 18.5.8.3.1. Exceptions
= 18.5.9. Develop with asyncio
= 18.5.9.1. Debug mode of asyncio

18.5.9.2. Cancellation

18.5.9.3. Concurrency and multithreading
18.5.9.4. Handle blocking functions correctly
18.5.9.5. Logging

18.5.9.6. Detect coroutine objects never
scheduled

18.5.9.7. Detect exceptions never consumed
18.5.9.8. Chain coroutines correctly

18.5.9.9. Pending task destroyed

18.5.9.10. Close transports and event loops

m 18.6. asyncore — Asynchronous socket handler

m 18.6.1. asyncore Example basic HTTP client
m 18.6.2. asyncore Example basic echo server

m 18.7.

asynchat — Asynchronous socket

command/response handler
m 18.7.1. asynchat Example
m 18.8. sighal — Set handlers for asynchronous events
m 18.8.1. General rules

18.8.1.1. Execution of Python signal handlers
18.8.1.2. Signals and threads

= 18.8.2. Module contents
= 18.8.3. Example

= 18.9. mmap — Memory-mapped file support

o 19. Internet Data Handling

= 19.1. email — An email and MIME handling package

m 19.1.1. email.message: Representing an emalil
message

m 19.1.2. email.parser: Parsing email messages

19.1.2.1. FeedParser API
19.1.2.2. Parser API
19.1.2.3. Additional notes

m 19.1.3. email.generator: Generating MIME
documents

19.1.4. email.policy: Policy Objects

19.1.5. email.errors: Exception and Defect
classes

19.1.6. email.headerregistry: Custom Header

Objects
19.1.7. email.contentmanager: Managing MIME
Content

= 19.1.7.1. Content Manager Instances
19.1.8. email: Examples
19.1.9. email.message.Message: Representing
an email message using the compat32 API
19.1.10. email.mime: Creating email and MIME
objects from scratch
19.1.11. email. header: Internationalized headers
19.1.12. email.charset: Representing character

sets
19.1.13. email.encoders: Encoders

19.1.14. email.utils: Miscellaneous utilities
19.1.15. email.iterators: lterators

m 19.2. json — JSON encoder and decoder

19.2.1. Basic Usage
19.2.2. Encoders and Decoders
19.2.3. Exceptions
19.2.4. Standard Compliance and Interoperability
19.2.4.1. Character Encodings
19.2.4.2. Infinite and NaN Number Values
19.2.4.3. Repeated Names Within an Object
19.2.4.4. Top-level Non-Object, Non-Array
Values

m 19.2.4.5. Implementation Limitations
19.2.5. Command Line Interface

m 19.2.5.1. Command line options

m 19.3. mailcap — Mailcap file handling

m 19.4. mailbox — Manipulate mailboxes in various

formats
m 19.4.1. Mailbox objects
m 19.4.1.1. Maildir
m 19.4.1.2. mbox
m 19.4.1.3. MH
= 19.4.1.4. Babyl
= 19.4.1.5. MMDF
m 19.4.2. Message objects
m 19.4.2.1. MaildirMessage
m 19.4.2.2. nboxMessage
m 19.4.2.3. MHMessage
m 19.4.2.4. BabylMessage
m 19.4.2.5. MMDFMessage
= 19.4.3. Exceptions
m 19.4.4. Examples
19.5. mimetypes — Map filenames to MIME types
m 19.5.1. MimeTypes Objects
19.6. base64 — Basel6, Base32, Base64, Base85
Data Encodings
19.7. binhex — Encode and decode binhex4 files
m 19.7.1. Notes
19.8. binascii — Convert between binary and ASCII
19.9. quopri — Encode and decode MIME quoted-
printable data
19.10. uu — Encode and decode uuencode files

o 20. Structured Markup Processing Tools

20.1. html — HyperText Markup Language support
20.2. html.parser — Simple HTML and XHTML
parser

= 20.2.1. Example HTML Parser Application

m 20.2.2. HTMLParser Methods

m 20.2.3. Examples
m 20.3. html.entities — Definitions of HTML general
entities
= 20.4. XML Processing Modules
= 20.4.1. XML vulnerabilities
m 20.4.2. The defusedxml and defusedexpat
Packages
m 20.5. xml.etree.ElementTree — The ElementTree
XML API
= 20.5.1. Tutorial
m 20.5.1.1. XML tree and elements
m 20.5.1.2. Parsing XML
m 20.5.1.3. Pull API for non-blocking parsing
m 20.5.1.4. Finding interesting elements
m 20.5.1.5. Modifying an XML File
= 20.5.1.6. Building XML documents
m 20.5.1.7. Parsing XML with Namespaces
= 20.5.1.8. Additional resources
m 20.5.2. XPath support
m 20.5.2.1. Example
m 20.5.2.2. Supported XPath syntax
m 20.5.3. Reference
m 20.5.3.1. Functions
m 20.5.3.2. Element Objects
m 20.5.3.3. ElementTree Objects
m 20.5.3.4. QName Objects
= 20.5.3.5. TreeBuilder Objects
m 20.5.3.6. XMLParser Objects
m 20.5.3.7. XMLPullParser Objects
= 20.5.3.8. Exceptions
= 20.6. xml.dom — The Document Object Model API
= 20.6.1. Module Contents
m 20.6.2. Objects in the DOM
= 20.6.2.1. DOMImplementation Objects

m 20.6.2.2. Node Objects
= 20.6.2.3. NodeList Objects
m 20.6.2.4. DocumentType Objects
m 20.6.2.5. Document Objects
= 20.6.2.6. Element Objects
m 20.6.2.7. Attr Objects
m 20.6.2.8. NamedNodeMap Objects
= 20.6.2.9. Comment Objects
m 20.6.2.10. Text and CDATASection Objects
m 20.6.2.11. Processinglnstruction Objects
= 20.6.2.12. Exceptions
= 20.6.3. Conformance
= 20.6.3.1. Type Mapping
m 20.6.3.2. Accessor Methods
20.7. xml.dom.minidom — Minimal DOM
implementation
m 20.7.1. DOM Objects
= 20.7.2. DOM Example
m 20.7.3. minidom and the DOM standard
20.8. xml.dom.pulldom — Support for building partial
DOM trees
= 20.8.1. DOMEventStream Objects
20.9. xml.sax — Support for SAX2 parsers
m 20.9.1. SAXException Objects
20.10. xml.sax.handler — Base classes for SAX
handlers
= 20.10.1. ContentHandler Objects
= 20.10.2. DTDHandler Objects
= 20.10.3. EntityResolver Objects
= 20.10.4. ErrorHandler Objects
20.11. xml.sax.saxutils — SAX Utilities
20.12. xml.sax.xmlreader — Interface for XML
parsers
m 20.12.1. XMLReader Objects

20.12.2. IncrementalParser Objects
20.12.3. Locator Objects

20.12.4. InputSource Objects
20.12.5. The Attributes Interface

20.12.6. The AttributesNS Interface

m 20.13. xml.parsers.expat — Fast XML parsing

using Expat

m 20.13.1. XMLParser Objects

20.13.2. ExpatError Exceptions
20.13.3. Example

20.13.4. Content Model Descriptions
20.13.5. Expat error constants

o 21. Internet Protocols and Support
m 21.1. webbrowser — Convenient Web-browser

controller
m 21.1.1.

Browser Controller Objects

m 21.2. cgi — Common Gateway Interface support

m 21.2.1.
m 21.2.2.
m 21.2.3.
m 21.2.4.
m 21.2.5.
m 21.2.6.
m 21.2.7.
s 21.2.8.
m 21.2.9.

Introduction

Using the cgi module

Higher Level Interface

Functions

Caring about security

Installing your CGI script on a Unix system
Testing your CGI script

Debugging CGI scripts

Common problems and solutions

m 21.3. cgitb — Traceback manager for CGI scripts
m 21.4. wsgiref — WSGI Utilities and Reference
Implementation

m 21.4.1.
utilities
m 21.4.2.
header

wsgiref.util - WSGI environment
wsgiref.headers - WSGI response
tools

m 21.4.3. wsgiref.simple_server — a simple
WSGI HTTP server

m 21.4.4. wsgiref.validate — WSGI
conformance checker
m 21.45. wsgiref.handlers - server/gateway

base classes

m 21.4.6. Examples

m 21.5. urllib — URL handling modules

m 21.6. urllib.request — Extensible library for

opening URLs

m 21.6.1. Request Objects
m 21.6.2. OpenerDirector Objects
m 21.6.3. BaseHandler Objects
m 21.6.4. HTTPRedirectHandler Objects
m 21.6.5. HTTPCookieProcessor Objects
m 21.6.6. ProxyHandler Objects
m 21.6.7. HTTPPasswordMgr Objects
= 21.6.8. HTTPPasswordMgrWithPriorAuth Objects
= 21.6.9. AbstractBasicAuthHandler Objects
= 21.6.10. HTTPBasicAuthHandler Objects
= 21.6.11. ProxyBasicAuthHandler Objects
m 21.6.12. AbstractDigestAuthHandler Objects
m 21.6.13. HTTPDigestAuthHandler Objects
m 21.6.14. ProxyDigestAuthHandler Objects
= 21.6.15. HTTPHandler Objects
m 21.6.16. HTTPSHandler Objects
m 21.6.17. FileHandler Objects
= 21.6.18. DataHandler Objects
= 21.6.19. FTPHandler Objects
m 21.6.20. CacheFTPHandler Objects
m 21.6.21. UnknownHandler Objects
m 21.6.22. HTTPErrorProcessor Objects
m 21.6.23. Examples
m 21.6.24. Legacy interface

m 21.6.25. urllib.request Restrictions
21.7. urllib.response — Response classes used by
urllib
21.8. urllib.parse — Parse URLs into components
m 21.8.1. URL Parsing
m 21.8.2. Parsing ASCII Encoded Bytes
m 21.8.3. Structured Parse Results
= 21.8.4. URL Quoting
21.9. urllib.error — Exception classes raised by
urllib.request
21.10. urllib.robotparser — Parser for robots.txt
21.11. http — HTTP modules
m 21.11.1. HTTP status codes
21.12. http.client — HTTP protocol client
m 21.12.1. HTTPConnection Objects
m 21.12.2. HTTPResponse Objects
m 21.12.3. Examples
m 21.12.4. HTTPMessage Objects
21.13. ftplib — FTP protocol client
m 21.13.1. FTP Obijects
m 21.13.2. FTP_TLS Obijects
21.14. poplib — POP3 protocol client
m 21.14.1. POP3 Objects
m 21.14.2. POP3 Example
21.15. imaplib — IMAP4 protocol client
m 21.15.1. IMAP4 Objects
m 21.15.2. IMAP4 Example
21.16. nntplib — NNTP protocol client
m 21.16.1. NNTP Objects
m 21.16.1.1. Attributes
m 21.16.1.2. Methods
m 21.16.2. Utility functions
21.17. smtplib — SMTP protocol client

m 21.17.1. SMTP Obijects
m 21.17.2. SMTP Example
21.18. smtpd — SMTP Server
21.18.1. SMTPServer Objects
21.18.2. DebuggingServer Objects
21.18.3. PureProxy Objects
21.18.4. MailmanProxy Objects
21.18.5. SMTPChannel Objects
21.19. telnetlib — Telnet client
m 21.19.1. Telnet Objects
m 21.19.2. Telnet Example
21.20. uuid — UUID objects according to RFC 4122
m 21.20.1. Example
21.21. socketserver — A framework for network
servers
21.21.1. Server Creation Notes
21.21.2. Server Objects
21.21.3. Request Handler Objects
21.21.4. Examples

m 21.21.4.1. socketserver.TCPServer
Example

m 21.21.4.2. socketserver.UDPServer
Example

m 21.21.4.3. Asynchronous Mixins

21.22. http.server — HTTP servers
21.23. http.cookies — HTTP state management

m 21.23.1. Cookie Objects

m 21.23.2. Morsel Objects

m 21.23.3. Example
21.24. http.cookiejar — Cookie handling for HTTP
clients

m 21.24.1. CookieJar and FileCookieJar Objects

m 21.24.2. FileCookieJar subclasses and co-operation

with web browsers
m 21.24.3. CookiePolicy Objects
m 21.24.4. DefaultCookiePolicy Objects
m 21.24.5. Cookie Objects
m 21.24.6. Examples
m 21.25. xmlrpc — XMLRPC server and client modules
m 21.26. xmlrpc.client — XML-RPC client access
m 21.26.1. ServerProxy Objects
m 21.26.2. DateTime Objects
= 21.26.3. Binary Objects
m 21.26.4. Fault Objects
m 21.26.5. ProtocolError Objects
m 21.26.6. MultiCall Objects
m 21.26.7. Convenience Functions
m 21.26.8. Example of Client Usage
m 21.26.9. Example of Client and Server Usage
m 21.27. xmlrpc.server — Basic XML-RPC servers
m 21.27.1. SimpleXMLRPCServer Objects
m 21.27.1.1. SimpleXMLRPCServer Example
21.27.2. CGIXMLRPCRequestHandler
21.27.3. Documenting XMLRPC server
21.27.4. DocXMLRPCServer Objects
21.27.5. DocCGIXMLRPCRequestHandler
m 21.28. ipaddress — IPv4/IPv6 manipulation library
m 21.28.1. Convenience factory functions
m 21.28.2. IP Addresses
m 21.28.2.1. Address objects
m 21.28.2.2. Conversion to Strings and Integers
m 21.28.2.3. Operators
m 21.28.2.3.1. Comparison operators
m 21.28.2.3.2. Arithmetic operators
m 21.28.3. IP Network definitions
m 21.28.3.1. Prefix, net mask and host mask
m 21.28.3.2. Network objects

m 21.28.3.3. Operators
m 21.28.3.3.1. Logical operators
m 21.28.3.3.2. Iteration
m 21.28.3.3.3. Networks as containers of
addresses

m 21.28.4. Interface objects

m 21.28.5. Other Module Level Functions

m 21.28.6. Custom Exceptions

o 22. Multimedia Services

22.1. audioop — Manipulate raw audio data
22.2. aifc — Read and write AIFF and AIFC files
22.3. sunau — Read and write Sun AU files

m 22.3.1. AU_read Objects

m 22.3.2. AU_write Objects
22.4. wave — Read and write WAV files

m 22.4.1. Wave_read Objects

m 22.4.2. Wave_write Objects
22.5. chunk — Read IFF chunked data
22.6. colorsys — Conversions between color systems
22.7. imghdr — Determine the type of an image
22.8. sndhdr — Determine type of sound file
22.9. ossaudiodev — Access to OSS-compatible
audio devices

m 22.9.1. Audio Device Objects

m 22.9.2. Mixer Device Objects

o 23. Internationalization
m 23.1. gettext — Multilingual internationalization

services
= 23.1.1. GNU gettext API
m 23.1.2. Class-based API
m 23.1.2.1. The NullTranslations class
m 23.1.2.2. The GNUTranslations class

m 23.1.2.3. Solaris message catalog support

m 23.1.2.4. The Catalog constructor
m 23.1.3. Internationalizing your programs and
modules
m 23.1.3.1. Localizing your module
m 23.1.3.2. Localizing your application
= 23.1.3.3. Changing languages on the fly
m 23.1.3.4. Deferred translations
m 23.1.4. Acknowledgements
m 23.2. locale — Internationalization services
m 23.2.1. Background, details, hints, tips and caveats
m 23.2.2. For extension writers and programs that
embed Python
m 23.2.3. Access to message catalogs
o 24. Program Frameworks
m 24.1. turtle — Turtle graphics
m 24.1.1. Introduction
m 24.1.2. Overview of available Turtle and Screen
methods
m 24.1.2.1. Turtle methods
m 24.1.2.2. Methods of TurtleScreen/Screen
m 24.1.3. Methods of RawTurtle/Turtle and
corresponding functions
m 24.1.3.1. Turtle motion
m 24.1.3.2. Tell Turtle’s state
24.1.3.3. Settings for measurement
24.1.3.4. Pen control
m 24.1.3.4.1. Drawing state
m 24.1.3.4.2. Color control
m 24.1.3.4.3. Filling
m 24.1.3.4.4. More drawing control
24.1.3.5. Turtle state
m 24.1.3.5.1. Visibility
m 24.1.3.5.2. Appearance
24.1.3.6. Using events

m 24.1.3.7. Special Turtle methods
m 24.1.3.8. Compound shapes
m 24.1.4. Methods of TurtleScreen/Screen and
corresponding functions
m 24.1.4.1. Window control
m 24.1.4.2. Animation control
m 24.1.4.3. Using screen events
m 24.1.4.4. Input methods
m 24.1.4.5. Settings and special methods
m 24.1.4.6. Methods specific to Screen, not
inherited from TurtleScreen
m 24.1.5. Public classes
m 24.1.6. Help and configuration
m 24.1.6.1. How to use help
m 24.1.6.2. Translation of docstrings into different
languages
m 24.1.6.3. How to configure Screen and Turtles
m 24.1.7. turtledemo — Demo scripts
m 24.1.8. Changes since Python 2.6
m 24.1.9. Changes since Python 3.0
m 242, cmd — Support for line-oriented command
interpreters
m 24.2.1. Cmd Objects
m 24.2.2. Cmd Example
m 24.3. shlex — Simple lexical analysis
m 24.3.1. shlex Objects
m 24.3.2. Parsing Rules
m 24.3.3. Improved Compatibility with Shells
o 25. Graphical User Interfaces with Tk
m 25.1. tkinter — Python interface to Tcl/Tk
m 25.1.1. Tkinter Modules
m 25.1.2. Tkinter Life Preserver
m 25.1.2.1. How To Use This Section
m 25.1.2.2. A Simple Hello World Program

25.1.3. A (Very) Quick Look at Tcl/Tk
25.1.4. Mapping Basic Tk into Tkinter
25.1.5. How Tk and Tkinter are Related
25.1.6. Handy Reference
m 25.1.6.1. Setting Options
m 25.1.6.2. The Packer
m 25.1.6.3. Packer Options
m 25.1.6.4. Coupling Widget Variables
m 25.1.6.5. The Window Manager
m 25.1.6.6. Tk Option Data Types
m 25.1.6.7. Bindings and Events
m 25.1.6.8. The index Parameter
m 25.1.6.9. Images
m 25.1.7. File Handlers
m 25.2. tkinter.ttk — Tk themed widgets
m 25.2.1. Using Ttk
m 25.2.2. Ttk Widgets
m 25.2.3. Widget
m 25.2.3.1. Standard Options
m 25.2.3.2. Scrollable Widget Options
m 25.2.3.3. Label Options
m 25.2.3.4. Compatibility Options
m 25.2.3.5. Widget States
m 25.2.3.6. ttk.Widget
m 25.2.4. Combobox
m 25.2.4.1. Options
m 25.2.4.2. Virtual events
m 25.2.4.3. ttk. Combobox
m 25.2.5. Notebook
m 25.2.5.1. Options
25.2.5.2. Tab Options
25.2.5.3. Tab Identifiers
25.2.5.4. Virtual Events
25.2.5.5. ttk.Notebook

25.2.6. Progressbar
m 25.2.6.1. Options
m 25.2.6.2. ttk.Progressbar
25.2.7. Separator
m 25.2.7.1. Options
25.2.8. Sizegrip
m 25.2.8.1. Platform-specific notes
m 25.2.8.2. Bugs
25.2.9. Treeview
m 25.2.9.1. Options
m 25.2.9.2. Item Options
25.2.9.3. Tag Options
25.2.9.4. Column Identifiers
25.2.9.5. Virtual Events
25.2.9.6. ttk.Treeview
25.2.10. Ttk Styling
m 25.2.10.1. Layouts
m 25.3. tkinter.tix — Extension widgets for Tk
m 25.3.1. Using Tix
m 25.3.2. Tix Widgets
m 25.3.2.1. Basic Widgets
m 25.3.2.2. File Selectors
m 25.3.2.3. Hierarchical ListBox
m 25.3.2.4. Tabular ListBox
m 25.3.2.5. Manager Widgets
m 25.3.2.6. Image Types
m 25.3.2.7. Miscellaneous Widgets
m 25.3.2.8. Form Geometry Manager
m 25.3.3. Tix Commands
m 254, tkinter.scrolledtext — Scrolled Text Widget
m 25.5. IDLE
m 25.5.1. Menus
s 25.5.1.1. File menu (Shell and Editor)
m 25.5.1.2. Edit menu (Shell and Editor)

m 25.5.1.3. Format menu (Editor window only)
s 25.5.1.4. Run menu (Editor window only)
m 25.5.1.5. Shell menu (Shell window only)
m 25.5.1.6. Debug menu (Shell window only)
m 25.5.1.7. Options menu (Shell and Editor)
= 25.5.1.8. Window menu (Shell and Editor)
m 25.5.1.9. Help menu (Shell and Editor)
m 25.5.1.10. Context Menus

m 25.5.2. Editing and navigation
s 25.5.2.1. Automatic indentation
m 25.5.2.2. Completions
m 25.5.2.3. Calltips
m 25.5.2.4. Python Shell window
m 255.2.5. Text colors

m 25.,5.3. Startup and code execution
m 25.5.3.1. Command line usage
m 25.5.3.2. Startup failure
m 25.5.3.3. IDLE-console differences
m 25.5.3.4. Developing tkinter applications
m 25.5.3.5. Running without a subprocess

m 25.5.4. Help and preferences
m 25.5.4.1. Additional help sources
m 25.5.4.2. Setting preferences
m 25.5.4.3. Extensions

m 25.6. Other Graphical User Interface Packages
26. Development Tools
m 26.1. typing — Support for type hints

m 26.1.1. Type aliases

m 26.1.2. NewType

m 26.1.3. Callable

m 26.1.4. Generics

m 26.1.5. User-defined generic types

m 26.1.6. The Any type

m 26.1.7. Classes, functions, and decorators

m 26.2. pydoc — Documentation generator and online
help system
m 26.3. doctest — Test interactive Python examples
m 26.3.1. Simple Usage: Checking Examples in
Docstrings
m 26.3.2. Simple Usage: Checking Examples in a Text
File
m 26.3.3. How It Works
m 26.3.3.1. Which Docstrings Are Examined?
m 26.3.3.2. How are Docstring Examples
Recognized?
m 26.3.3.3. What's the Execution Context?
m 26.3.3.4. What About Exceptions?
= 26.3.3.5. Option Flags
m 26.3.3.6. Directives
m 26.3.3.7. Warnings
26.3.4. Basic API
26.3.5. Unittest API
26.3.6. Advanced API
26.3.6.1. DocTest Objects
26.3.6.2. Example Objects
26.3.6.3. DocTestFinder objects
26.3.6.4. DocTestParser objects
26.3.6.5. DocTestRunner objects
26.3.6.6. OutputChecker objects
26.3.7. Debugging
26.3.8. Soapbox
m 26.4. unittest — Unit testing framework
m 26.4.1. Basic example
26.4.2. Command-Line Interface
m 26.4.2.1. Command-line options
26.4.3. Test Discovery
26.4.4. Organizing test code
26.4.5. Re-using old test code

26.4.6. Skipping tests and expected failures
26.4.7. Distinguishing test iterations using subtests
26.4.8. Classes and functions
m 26.4.8.1. Test cases
m 26.4.8.1.1. Deprecated aliases
m 26.4.8.2. Grouping tests
m 26.4.8.3. Loading and running tests
= 26.4.8.3.1. load_tests Protocol
26.4.9. Class and Module Fixtures
m 26.4.9.1. setUpClass and tearDownClass
m 26.4.9.2. setUpModule and tearDownModule
= 26.4.10. Signal Handling
m 26.5. unittest.mock — mock object library
m 26.5.1. Quick Guide
m 26.5.2. The Mock Class
m 26.5.2.1. Calling
m 26.5.2.2. Deleting Attributes
m 26.5.2.3. Mock names and the name attribute
= 26.5.2.4. Attaching Mocks as Attributes
m 26.5.3. The patchers
m 26.5.3.1. patch
m 26.5.3.2. patch.object
m 26.5.3.3. patch.dict
m 26.5.3.4. patch.multiple
m 26.5.3.5. patch methods: start and stop
m 26.5.3.6. patch builtins
m 26.5.3.7. TEST_PREFIX
m 26.5.3.8. Nesting Patch Decorators
m 26.5.3.9. Where to patch
m 26.5.3.10. Patching Descriptors and Proxy
Objects
m 26.5.4. MagicMock and magic method support
m 26.5.4.1. Mocking Magic Methods
m 26.5.4.2. Magic Mock

m 26.5.5. Helpers

26.5.5.1.
26.5.5.2.
26.5.5.3.
26.5.5.4.
26.5.5.5.
26.5.5.6.
26.5.5.7.
26.5.5.8.
26.5.5.9.

sentinel
DEFAULT

call
create_autospec
ANY
FILTER_DIR
mock_open
Autospeccing
Sealing mocks

m 26.6. unittest.mock — getting started
m 26.6.1. Using Mock

26.6.1.1.
26.6.1.2.
26.6.1.3.
26.6.1.4.
26.6.1.5.
26.6.1.6.
26.6.1.7.
26.6.1.8.
26.6.1.9.
Object

Mock Patching Methods

Mock for Method Calls on an Object
Mocking Classes

Naming your mocks

Tracking all Calls

Setting Return Values and Attributes
Raising exceptions with mocks

Side effect functions and iterables
Creating a Mock from an EXxisting

m 26.6.2. Patch Decorators
m 26.6.3. Further Examples

26.6.3.1.
26.6.3.2.
26.6.3.3.
26.6.3.4.
method

26.6.3.5.
26.6.3.6.
26.6.3.7.
26.6.3.8.
26.6.3.9.

Mocking chained calls

Partial mocking

Mocking a Generator Method

Applying the same patch to every test

Mocking Unbound Methods
Checking multiple calls with mock
Coping with mutable arguments
Nesting Patches

Mocking a dictionary with MagicMock

m 26.6.3.10. Mock subclasses and their attributes
m 26.6.3.11. Mocking imports with patch.dict
m 26.6.3.12. Tracking order of calls and less
verbose call assertions
m 26.6.3.13. More complex argument matching
m 26.7. 2to3 - Automated Python 2 to 3 code translation
m 26.7.1. Using 2to3
m 26.7.2. Fixers
m 26.7.3. 11b2to3 - 2to3’s library
m 26.8. test — Regression tests package for Python
m 26.8.1. Writing Unit Tests for the test package
m 26.8.2. Running tests using the command-line
interface
m 26.9. test.support — Utilities for the Python test
suite
o 27. Debugging and Profiling
m 27.1. bdb — Debugger framework
m 27.2. faulthandler — Dump the Python traceback
m 27.2.1. Dumping the traceback
m 27.2.2. Fault handler state
m 27.2.3. Dumping the tracebacks after a timeout
m 27.2.4. Dumping the traceback on a user signal
m 27.2.5. Issue with file descriptors
m 27.2.6. Example
m 27.3. pdb — The Python Debugger
m 27.3.1. Debugger Commands
m 27.4. The Python Profilers
m 27.4.1. Introduction to the profilers
m 27.4.2. Instant User’s Manual
m 27.4.3. profile and cProfile Module Reference
m 27.4.4. The Stats Class
m 27.4.5. What Is Deterministic Profiling?
m 27.4.6. Limitations

m 27.4.7. Calibration
m 27.4.8. Using a custom timer
m 27.5. timeit — Measure execution time of small code
snippets
m 27.5.1. Basic Examples
m 27.5.2. Python Interface
m 27.5.3. Command-Line Interface
m 27.5.4. Examples
m 27.6. trace — Trace or track Python statement
execution
m 27.6.1. Command-Line Usage
m 27.6.1.1. Main options
m 27.6.1.2. Modifiers
m 27.6.1.3. Filters
m 27.6.2. Programmatic Interface
m 27.7. tracemalloc — Trace memory allocations
m 27.7.1. Examples
m 27.7.1.1. Display the top 10
m 27.7.1.2. Compute differences
m 27.7.1.3. Get the traceback of a memory block
m 27.7.1.4. Pretty top
m 27.7.2. API
m 27.7.2.1. Functions
m 27.7.2.2. DomainFilter
m 27.7.2.3. Filter
m 27.7.2.4. Frame
m 27.7.2.5. Snapshot
m 27.7.2.6. Statistic
m 27.7.2.7. StatisticDiff
m 27.7.2.8. Trace
m 27.7.2.9. Traceback
o 28. Software Packaging and Distribution
m 28.1. distutils — Building and installing Python
modules

m 28.2. ensurepip — Bootstrapping the pip installer
m 28.2.1. Command line interface
= 28.2.2. Module API

m 28.3. venv — Creation of virtual environments

m 28.3.1. Creating virtual environments

m 28.3.2. API
= 28.3.3. An example of extending EnvBuilder
m 28.4. zipapp — Manage executable python zip
archives

= 28.4.1. Basic Example
28.4.2. Command-Line Interface
28.4.3. Python API
28.4.4. Examples
28.4.5. The Python Zip Application Archive Format
o 29. Python Runtime Services
m 29.1. sys — System-specific parameters and functions
m 29.2. sysconfig — Provide access to Python’s
configuration information
m 29.2.1. Configuration variables
m 29.2.2. Installation paths
m 29.2.3. Other functions
m 29.2.4. Using sysconfig as a script
m 29.3. builtins — Built-in objects
m 29.4. _ _main__ — Top-level script environment
m 29.5. warnings — Warning control
29.5.1. Warning Categories
29.5.2. The Warnings Filter
m 29.5.2.1. Describing Warning Filters
m 29.5.2.2. Default Warning Filter
m 29.5.2.3. Overriding the default filter
29.5.3. Temporarily Suppressing Warnings
29.5.4. Testing Warnings
29.5.5. Updating Code For New Versions of

= 29.6.
contexts
m 29.6.1. Utilities
m 29.6.2. Examples and Recipes
m 29.6.2.1. Supporting a variable number of

Dependencies
= 29.5.6. Available Functions
m 29.5.7. Available Context Managers
contextlib — Utilities for with-statement

context managers

29.6.2.2. Catching exceptions from __enter___
methods

29.6.2.3. Cleaning up in an __enter__
implementation

29.6.2.4. Replacing any use of try-finally
and flag variables

29.6.2.5. Using a context manager as a function
decorator

m 29.6.3. Single use, reusable and reentrant context
managers
m 29.6.3.1. Reentrant context managers
m 29.6.3.2. Reusable context managers
29.7. abc — Abstract Base Classes

29.8. atexit — Exit handlers
m 29.8.1. atexit Example
29.9. traceback — Print or retrieve a stack traceback
m 29.9.1. TracebackException Objects
m 29.9.2. StackSummary Objects
m 29.9.3. FrameSummary Objects
m 29.9.4. Traceback Examples
29.10. ___future__ — Future statement definitions
29.11. gc — Garbage Collector interface
29.12. inspect — Inspect live objects
m 29.12.1. Types and members

29.12.2. Retrieving source code

29.12.3. Introspecting callables with the Signature
object

29.12.4. Classes and functions

29.12.5. The interpreter stack

29.12.6. Fetching attributes statically

29.12.7. Current State of Generators and Coroutines
29.12.8. Code Objects Bit Flags

29.12.9. Command Line Interface

m 29.13. site — Site-specific configuration hook

29.13.1. Readline configuration
29.13.2. Module contents

o 30. Custom Python Interpreters
m 30.1. code — Interpreter base classes

30.1.1. Interactive Interpreter Objects
30.1.2. Interactive Console Objects

m 30.2. codeop — Compile Python code

o 31. Importing Modules
m 31.1. zipimport — Import modules from Zip archives

31.1.1. zipimporter Objects
31.1.2. Examples

31.2. pkgutil — Package extension utility
31.3. modulefinder — Find modules used by a script

31.3.1. Example usage of ModuleFinder

31.4. runpy — Locating and executing Python modules
31.5. importlib — The implementation of import

31.5.1. Introduction

31.5.2. Functions

31.5.3. importlib.abc — Abstract base classes
related to import

31.5.4. importlib.resources — Resources
31.5.5. importlib.machinery — Importers and
path hooks

m 31.5.6. importlib.util - Utility code for
importers
m 31.5.7. Examples
m 31.5.7.1. Importing programmatically
m 31.5.7.2. Checking if a module can be imported
= 31.5.7.3. Importing a source file directly
m 31.5.7.4. Setting up an importer
m 31.5.7.5. Approximating
importlib.import_module()
o 32. Python Language Services
m 32.1. parser — Access Python parse trees
m 32.1.1. Creating ST Objects
32.1.2. Converting ST Objects
32.1.3. Queries on ST Objects
32.1.4. Exceptions and Error Handling
32.1.5. ST Objects
32.1.6. Example: Emulation of compile()
m 32.2. ast — Abstract Syntax Trees
m 32.2.1. Node classes
m 32.2.2. Abstract Grammar
m 32.2.3. ast Helpers
m 32.3. symtable — Access to the compiler's symbol
tables
m 32.3.1. Generating Symbol Tables
m 32.3.2. Examining Symbol Tables
m 32.4. symbol — Constants used with Python parse
trees
m 32.5. token — Constants used with Python parse trees
m 32.6. keyword — Testing for Python keywords
m 32.7. tokenize — Tokenizer for Python source
m 32.7.1. Tokenizing Input
m 32.7.2. Command-Line Usage
m 32.7.3. Examples

32.8. tabnanny — Detection of ambiguous indentation
32.9. pyclbr — Python class browser support
m 32.9.1. Function Objects
m 32.9.2. Class Objects
32.10. py_compile — Compile Python source files
32.11. compileall — Byte-compile Python libraries
= 32.11.1. Command-line use
m 32.11.2. Public functions
32.12. dis — Disassembler for Python bytecode
32.12.1. Bytecode analysis
32.12.2. Analysis functions
32.12.3. Python Bytecode Instructions
32.12.4. Opcode collections
32.13. pickletools — Tools for pickle developers
m 32.13.1. Command line usage
m 32.13.1.1. Command line options
m 32.13.2. Programmatic Interface
o 33. Miscellaneous Services
m 33.1. formatter — Generic output formatting
m 33.1.1. The Formatter Interface
= 33.1.2. Formatter Implementations
m 33.1.3. The Writer Interface
= 33.1.4. Writer Implementations
o 34. MS Windows Specific Services
m 34.1. msilib — Read and write Microsoft Installer files
m 34.1.1. Database Objects
m 34.1.2. View Objects
= 34.1.3. Summary Information Objects
m 34.1.4. Record Objects
m 34.1.5. Errors
m 34.1.6. CAB Objects
m 34.1.7. Directory Objects
m 34.1.8. Features
m 34.1.9. GUI classes

m 34.1.10. Precomputed tables
m 34.2. msvcrt — Useful routines from the MS VC++
runtime
m 34.2.1. File Operations
m 34.2.2. Console I/O
m 34.2.3. Other Functions
m 34.3. winreg — Windows registry access
= 34.3.1. Functions
m 34.3.2. Constants
m 34.3.2.1. HKEY_* Constants
m 34.3.2.2. Access Rights
m 34.3.2.2.1. 64-bit Specific
m 34.3.2.3. Value Types
m 34.3.3. Registry Handle Objects
m 34.4. winsound — Sound-playing interface for Windows
o 35. Unix Specific Services
m 35.1. posix — The most common POSIX system calls
m 35.1.1. Large File Support
= 35.1.2. Notable Module Contents
m 35.2. pwd — The password database
m 35.3. spwd — The shadow password database
m 35.4. grp — The group database
m 35.5. crypt — Function to check Unix passwords
= 35.5.1. Hashing Methods
= 35.5.2. Module Attributes
= 35.5.3. Module Functions
m 35.5.4. Examples
m 35.6. termios — POSIX style tty control
= 35.6.1. Example
m 35.7. tty — Terminal control functions
m 35.8. pty — Pseudo-terminal utilities
= 35.8.1. Example
m 35.9. fcntl — The fcntl and ioctl system calls

35.10. pipes — Interface to shell pipelines
s 35.10.1. Template Objects
35.11. resource — Resource usage information
m 35.11.1. Resource Limits
m 35.11.2. Resource Usage
35.12. nis — Interface to Sun’s NIS (Yellow Pages)
35.13. syslog — Unix syslog library routines
= 35.13.1. Examples
m 35.13.1.1. Simple example
o 36. Superseded Modules
m 36.1. optparse — Parser for command line options
m 36.1.1. Background
m 36.1.1.1. Terminology
= 36.1.1.2. What are options for?
= 36.1.1.3. What are positional arguments for?
m 36.1.2. Tutorial
= 36.1.2.1. Understanding option actions
m 36.1.2.2. The store action
= 36.1.2.3. Handling boolean (flag) options
= 36.1.2.4. Other actions
= 36.1.2.5. Default values
m 36.1.2.6. Generating help
= 36.1.2.6.1. Grouping Options
m 36.1.2.7. Printing a version string
m 36.1.2.8. How optparse handles errors
= 36.1.2.9. Putting it all together
= 36.1.3. Reference Guide
= 36.1.3.1. Creating the parser
m 36.1.3.2. Populating the parser
= 36.1.3.3. Defining options
= 36.1.3.4. Option attributes
= 36.1.3.5. Standard option actions
= 36.1.3.6. Standard option types
m 36.1.3.7. Parsing arguments

m 36.1.3.8. Querying and manipulating your
option parser

= 36.1.3.9. Conflicts between options

= 36.1.3.10. Cleanup

m 36.1.3.11. Other methods

= 36.1.4. Option Callbacks

m 36.1.4.1. Defining a callback option

m 36.1.4.2. How callbacks are called

m 36.1.4.3. Raising errors in a callback

m 36.1.4.4. Callback example 1: trivial callback

m 36.1.4.5. Callback example 2: check option
order

m 36.1.4.6. Callback example 3: check option
order (generalized)

m 36.1.4.7. Callback example 4: check arbitrary
condition

m 36.1.4.8. Callback example 5: fixed arguments

m 36.1.4.9. Callback example 6: variable
arguments

= 36.1.5. Extending optparse

m 36.1.5.1. Adding new types
m 36.1.5.2. Adding new actions

m 36.2. imp — Access the import internals
m 36.2.1. Examples

o 37. Undocumented Modules

m 37.1. Platform specific modules
Extending and Embedding the Python Interpreter

o Recommended third party tools

o Creating extensions without third party tools
= 1. Extending Python with C or C++

1.1. A Simple Example

1.2. Intermezzo: Errors and Exceptions

1.3. Back to the Example

1.4. The Module’s Method Table and Initialization

Function
1.5. Compilation and Linkage
1.6. Calling Python Functions from C
1.7. Extracting Parameters in Extension Functions
1.8. Keyword Parameters for Extension Functions
1.9. Building Arbitrary Values
1.10. Reference Counts
= 1.10.1. Reference Counting in Python
= 1.10.2. Ownership Rules
= 1.10.3. Thin Ice
= 1.10.4. NULL Pointers
m 1.11. Writing Extensions in C++
= 1.12. Providing a C API for an Extension Module
m 2. Defining New Types
m 2.1. The Basics
m 2.1.1. Adding data and methods to the Basic
example
2.1.2. Providing finer control over data attributes
2.1.3. Supporting cyclic garbage collection
2.1.4. Subclassing other types
m 2.2. Type Methods
2.2.1. Finalization and De-allocation
2.2.2. Object Presentation
2.2.3. Attribute Management
m 2.2.3.1. Generic Attribute Management
m 2.2.3.2. Type-specific Attribute
Management
2.2.4. Object Comparison
2.2.5. Abstract Protocol Support
2.2.6. Weak Reference Support
m 2.2.7. More Suggestions
= 3. Building C and C++ Extensions
= 3.1. Building C and C++ Extensions with distutils
= 3.2. Distributing your extension modules

= 4, Building C and C++ Extensions on Windows
= 4.1. A Cookbook Approach
m 4.2. Differences Between Unix and Windows
m 4.3. Using DLLs in Practice
o Embedding the CPython runtime in a larger application
= 1. Embedding Python in Another Application
1.1. Very High Level Embedding
1.2. Beyond Very High Level Embedding: An
overview
1.3. Pure Embedding
1.4. Extending Embedded Python
1.5. Embedding Python in C++
1.6. Compiling and Linking under Unix-like systems
e Python/C API Reference Manual
o Introduction
= Coding standards
= Include Files
m Useful macros
m Objects, Types and Reference Counts
= Reference Counts
m Reference Count Details
= Types
m Exceptions
= Embedding Python
= Debugging Builds
Stable Application Binary Interface
The Very High Level Layer
Reference Counting
Exception Handling
Printing and clearing
Raising exceptions
Issuing warnings
Querying the error indicator
Signal Handling

(e}

o

o

o

= Exception Classes
= Exception Objects
= Unicode Exception Objects
= Recursion Control
m Standard Exceptions
= Standard Warning Categories
o Ultilities
= Operating System Utilities
= System Functions
= Process Control
= |Importing Modules
m Data marshalling support
= Parsing arguments and building values
m Parsing arguments
m Strings and buffers
= Numbers
m Other objects
= API Functions
m Building values
m String conversion and formatting
m Reflection
m Codec registry and support functions
= Codec lookup API
m Registry API for Unicode encoding error handlers
o Abstract Objects Layer
= Object Protocol
= Number Protocol
= Sequence Protocol
= Mapping Protocol
= |terator Protocol
= Buffer Protocol
= Buffer structure
m Buffer request types
= request-independent fields

readonly, format
shape, strides, suboffsets
contiguity requests
compound requests
m Complex arrays
= NumPy-style: shape and strides
m PIL-style: shape, strides and suboffsets
= Buffer-related functions
= Old Buffer Protocol
Concrete Objects Layer
= Fundamental Objects
= Type Objects
= The None Object
= Numeric Objects
Integer Objects
Boolean Objects
Floating Point Objects
Complex Number Objects
= Complex Numbers as C Structures
= Complex Numbers as Python Objects
m Sequence Objects
= Bytes Objects
= Byte Array Objects
m Type check macros
= Direct API functions
= Macros
= Unicode Objects and Codecs
= Unicode Objects
= Unicode Type
= Unicode Character Properties
= Creating and accessing Unicode strings
m Deprecated Py _UNICODE APIs
m |Locale Encoding
= File System Encoding

= wchar_t Support
= Built-in Codecs
m Generic Codecs
» UTF-8 Codecs
m UTF-32 Codecs
m UTF-16 Codecs
m UTF-7 Codecs
= Unicode-Escape Codecs
= Raw-Unicode-Escape Codecs
= Latin-1 Codecs
m ASCII Codecs
m Character Map Codecs
m MBCS codecs for Windows
= Methods & Slots
m Methods and Slot Functions
= Tuple Objects
m Struct Sequence Objects
m List Objects
= Container Objects
m Dictionary Objects
m Set Objects
= Function Objects
= Function Objects
Instance Method Objects
Method Objects
Cell Objects
Code Objects
m Other Objects
= File Objects
= Module Objects
= |nitializing C modules
m Single-phase initialization
= Multi-phase initialization
= Low-level module creation functions

m Support functions
= Module lookup
m |terator Objects
m Descriptor Objects
m Slice Objects
= Ellipsis Object
= MemoryView objects
m Weak Reference Objects
m Capsules
= Generator Objects
m Coroutine Objects
= DateTime Objects
o |nitialization, Finalization, and Threads
= Before Python Initialization
m Global configuration variables
= |nitializing and finalizing the interpreter
m Process-wide parameters
m Thread State and the Global Interpreter Lock
m Releasing the GIL from extension code
= Non-Python created threads
= High-level API
= Low-level API
m Sub-interpreter support
= Bugs and caveats
= Asynchronous Notifications
= Profiling and Tracing
= Advanced Debugger Support
m Thread Local Storage Support
m Thread Specific Storage (TSS) API
= Dynamic Allocation
= Methods
m Thread Local Storage (TLS) API
o Memory Management
= Overview

= Raw Memory Interface
= Memory Interface
= Obiject allocators
m Default Memory Allocators
m Customize Memory Allocators
= The pymalloc allocator
m Customize pymalloc Arena Allocator
= tracemalloc C API
m Examples
o Object Implementation Support
= Allocating Objects on the Heap
m Common Object Structures
» Type Objects
= Number Object Structures
= Mapping Object Structures
m Sequence Object Structures
m Buffer Object Structures
= Async Object Structures
m Supporting Cyclic Garbage Collection
o APl and ABI Versioning
¢ Distributing Python Modules
Key terms
Open source licensing and collaboration
Installing the tools
Reading the guide
How do I...?
= ... choose a name for my project?
= ... create and distribute binary extensions?
¢ Installing Python Modules
o Key terms
o Basic usage
o Howdol...?
= ... install pip in versions of Python prior to Python 3.47?
= ... install packages just for the current user?

(e]

(e]

(e]

(e]

(e}

= ... install scientific Python packages?

work with multiple versions of Python installed in

parallel?
o Common installation issues
m |nstalling into the system Python on Linux

= Pip

not installed

m |nstalling binary extensions
e Python HOWTOs
o Porting Python 2 Code to Python 3
= The Short Explanation
= Details

o Porting

Drop support for Python 2.6 and older
Make sure you specify the proper version support in
your setup.py file
Have good test coverage
Learn the differences between Python 2 & 3
Update your code

= Division

= Text versus binary data

m Use feature detection instead of version

detection
Prevent compatibility regressions
Check which dependencies block your transition
Update your setup.py file to denote Python 3
compatibility
Use continuous integration to stay compatible
Consider using optional static type checking
Extension Modules to Python 3

= Conditional compilation
= Changes to Object APIs

str/unicode Unification
long/int Unification

= Module initialization and state
= CObject replaced with Capsule

m Other options
o Curses Programming with Python
m What is curses?
= The Python curses module
m Starting and ending a curses application
= Windows and Pads
m Displaying Text
= Attributes and Color
= User Input
= For More Information
o Descriptor HowTo Guide
= Abstract
m Definition and Introduction
m Descriptor Protocol
m |nvoking Descriptors
= Descriptor Example
= Properties
= Functions and Methods
m Static Methods and Class Methods
o Functional Programming HOWTO
= |ntroduction
= Formal provability
= Modularity
m Ease of debugging and testing
= Composability
lterators
m Data Types That Support Iterators
Generator expressions and list comprehensions
Generators
m Passing values into a generator
Built-in functions
The itertools module
= Creating new iterators
= Calling functions on elements

m Selecting elements
= Combinatoric functions
= Grouping elements
The functools module
= The operator module
Small functions and the lambda expression
Revision History and Acknowledgements
References
= General
= Python-specific
= Python documentation
o Logging HOWTO
m Basic Logging Tutorial
= When to use logging
= Asimple example
= Logging to a file
= Logging from multiple modules
= Logging variable data
m Changing the format of displayed messages
m Displaying the date/time in messages
= Next Steps
Advanced Logging Tutorial
= Logging Flow
= Loggers
= Handlers
= Formatters
= Configuring Logging
= What happens if no configuration is provided
m Configuring Logging for a Library
Logging Levels
m Custom Levels
Useful Handlers
Exceptions raised during logging
Using arbitrary objects as messages

= Optimization
o Logging Cookbook
m Using logging in multiple modules
= Logging from multiple threads
= Multiple handlers and formatters
= Logging to multiple destinations
m Configuration server example
= Dealing with handlers that block
= Sending and receiving logging events across a network
= Adding contextual information to your logging output
m Using LoggerAdapters to impart contextual
information
m Using objects other than dicts to pass
contextual information
m Using Filters to impart contextual information
m Logging to a single file from multiple processes
m Using file rotation
m Use of alternative formatting styles
m Customizing LogRecord
m Subclassing QueueHandler - a ZeroMQ example
m Subclassing QueuelListener - a ZeroMQ example
= An example dictionary-based configuration
m Using a rotator and namer to customize log rotation
processing
= A more elaborate multiprocessing example
= |nserting a BOM into messages sent to a SysLogHandler
= Implementing structured logging
m Customizing handlers with dictConfig()
m Using particular formatting styles throughout your
application
m Using LogRecord factories
= Using custom message objects
= Configuring filters with dictConfig()
m Customized exception formatting

m Speaking logging messages
m Buffering logging messages and outputting them
conditionally
= Formatting times using UTC (GMT) via configuration
= Using a context manager for selective logging
o Regular Expression HOWTO
= |ntroduction
= Simple Patterns
m Matching Characters
= Repeating Things
Using Regular Expressions
Compiling Regular Expressions
The Backslash Plague
Performing Matches
Module-Level Functions
Compilation Flags
More Pattern Power
= More Metacharacters
= Grouping
= Non-capturing and Named Groups
m L ookahead Assertions
Modifying Strings
m Splitting Strings
m Search and Replace
Common Problems
= Use String Methods
= match() versus search()
= Greedy versus Non-Greedy
= Using re.VERBOSE
m Feedback
o Socket Programming HOWTO
m Sockets
= History
= Creating a Socket

m |PC
= Using a Socket
= Binary Data
= Disconnecting
= When Sockets Die
= Non-blocking Sockets
o Sorting HOW TO
= Sorting Basics
= Key Functions
= Operator Module Functions
= Ascending and Descending
m Sort Stability and Complex Sorts
= The Old Way Using Decorate-Sort-Undecorate
= The Old Way Using the cmp Parameter
m Odd and Ends
o Unicode HOWTO
= |ntroduction to Unicode
m History of Character Codes
m Definitions
= Encodings
m References
= Python’s Unicode Support
= The String Type
= Converting to Bytes
= Unicode Literals in Python Source Code
= Unicode Properties
= Unicode Regular Expressions
m References
» Reading and Writing Unicode Data
= Unicode filenames
m Tips for Writing Unicode-aware Programs
= Converting Between File Encodings
= Files in an Unknown Encoding
m References

= Acknowledgements
o HOWTO Fetch Internet Resources Using The urllib Package
= |ntroduction
= Fetching URLs
= Data
= Headers
= Handling Exceptions
= URLError
s HTTPError
= Error Codes
= Wrapping it Up
= Number 1
= Number 2
= info and geturl
= Openers and Handlers
m Basic Authentication
m Proxies
m Sockets and Layers
= Footnotes
o Argparse Tutorial
= Concepts
= The basics
m |ntroducing Positional arguments
= Introducing Optional arguments
= Short options
= Combining Positional and Optional arguments
= Getting a little more advanced
= Conflicting options
= Conclusion
o An introduction to the ipaddress module
m Creating Address/Network/Interface objects
= A Note on IP Versions
= |P Host Addresses
= Defining Networks

Host Interfaces

Inspecting Address/Network/Interface Objects
Networks as lists of Addresses

Comparisons

Using IP Addresses with other modules

Getting more detail when instance creation fails
o Argument Clinic How-To

The Goals Of Argument Clinic

Basic Concepts And Usage

Converting Your First Function

Advanced Topics

Symbolic default values

Renaming the C functions and variables generated
by Argument Clinic

Converting functions using PyArg_UnpackTuple
Optional Groups

Using real Argument Clinic converters, instead of
“legacy converters”

Py _buffer

Advanced converters

Parameter default values

The NULL default value

Expressions specified as default values

Using a return converter

Cloning existing functions

Calling Python code

Using a “self converter”

Writing a custom converter

Writing a custom return converter

METH_O and METH_NOARGS

tp_new and tp_init functions

Changing and redirecting Clinic’s output

The #ifdef trick

Using Argument Clinic in Python files

o Instrumenting CPython with DTrace and SystemTap

Enabling the static markers
Static DTrace probes
Static SystemTap markers
Available static markers
SystemTap Tapsets
Examples

e Python Frequently Asked Questions
o General Python FAQ

General Information
Python in the real world

o Programming FAQ

General Questions

Core Language
Numbers and strings
Performance

Sequences (Tuples/Lists)
Dictionaries

Objects

Modules

o Design and History FAQ

Why does Python use indentation for grouping of
statements?

Why am | getting strange results with simple arithmetic
operations?

Why are floating-point calculations so inaccurate?

Why are Python strings immutable?

Why must ‘self’ be used explicitly in method definitions
and calls?

Why can’t | use an assignment in an expression?

Why does Python use methods for some functionality
(e.g. list.index()) but functions for other (e.g. len(list))?
Why is join() a string method instead of a list or tuple
method?

= How fast are exceptions?

= Why isn’t there a switch or case statement in Python?

= Can’t you emulate threads in the interpreter instead of
relying on an OS-specific thread implementation?

= Why can’t lambda expressions contain statements?

= Can Python be compiled to machine code, C or some
other language?

= How does Python manage memory?

= Why doesn’t CPython use a more traditional garbage
collection scheme?

m Why isn’t all memory freed when CPython exits?

= Why are there separate tuple and list data types?

= How are lists implemented?

= How are dictionaries implemented?

= Why must dictionary keys be immutable?

» Why doesn't list.sort() return the sorted list?

= How do you specify and enforce an interface spec in
Python?

= Why is there no goto?

= Why can’t raw strings (r-strings) end with a backslash?

= Why doesn’t Python have a “with” statement for attribute
assignments?

= Why are colons required for the if/iwhile/def/class
statements?

= Why does Python allow commas at the end of lists and
tuples?

o Library and Extension FAQ

m General Library Questions

s Common tasks

= Threads

= |nput and Output

= Network/Internet Programming

m Databases

= Mathematics and Numerics

o Extending/Embedding FAQ

= Can | create my own functions in C?

m Can | create my own functions in C++?

= Writing C is hard; are there any alternatives?

= How can | execute arbitrary Python statements from C?

= How can | evaluate an arbitrary Python expression from
C?

= How do | extract C values from a Python object?

= How do | use Py BuildValue() to create a tuple of
arbitrary length?

= How do | call an object’s method from C?

= How do | catch the output from PyErr_Print() (or anything
that prints to stdout/stderr)?

= How do | access a module written in Python from C?

= How do | interface to C++ objects from Python?

= | added a module using the Setup file and the make fails;
why?

= How do | debug an extension?

= | want to compile a Python module on my Linux system,
but some files are missing. Why?

= How do | tell “incomplete input” from “invalid input”?

m How do | find undefined g++ symbols __ builtin_new or
___pure_virtual?

m Can | create an object class with some methods
implemented in C and others in Python (e.g. through
inheritance)?

o Python on Windows FAQ

= How do | run a Python program under Windows?

= How do | make Python scripts executable?

= Why does Python sometimes take so long to start?

= How do | make an executable from a Python script?

m |sa *.pyd file the same as a DLL?

= How can | embed Python into a Windows application?

= How do | keep editors from inserting tabs into my Python

source?
= How do | check for a keypress without blocking?
= How do | emulate os.kill() in Windows?
= How do | extract the downloaded documentation on
Windows?
o Graphic User Interface FAQ
m General GUI Questions
= What platform-independent GUI toolkits exist for Python?
» What platform-specific GUI toolkits exist for Python?
m Tkinter questions
o “Why is Python Installed on my Computer?” FAQ
= What is Python?
= Why is Python installed on my machine?
= Can | delete Python?
Glossary
About these documents
o Contributors to the Python Documentation
Dealing with Bugs
o Documentation bugs
o Using the Python issue tracker
o Getting started contributing to Python yourself
Copyright
History and License
o History of the software
o Terms and conditions for accessing or otherwise using
Python
s PSF LICENSE AGREEMENT FOR PYTHON 3.7.0b1
= BEOPEN.COM LICENSE AGREEMENT FOR PYTHON
2.0
= CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
= CWI LICENSE AGREEMENT FOR PYTHON 0.9.0
THROUGH 1.2
o Licenses and Acknowledgements for Incorporated Software
= Mersenne Twister

m Sockets

= Asynchronous socket services
= Cookie management

= Execution tracing

m UUencode and UUdecode functions
= XML Remote Procedure Calls
= test_epoll

= Select kqueue

= SipHash24

= strtod and dtoa

m OpenSSL

= expat

m |ibffi

= 7zIlib

m cfuhash

= libmpdec

@ Python » 3.7.0b1 Documentation » next | modules | index

© Copyright 2001-2018, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.
Last updated on Jan 31, 2018. Found a bug?

Created using Sphinx 1.6.6.

https://www.python.org/
https://www.python.org/psf/donations/
http://sphinx.pocoo.org/

@ Python » 3.7.0b1 Documentation » modules | index

https://www.python.org/

Python Module Index

_lalbjc|d|el|flg|[h]i|j[k[I[m]|n|o|p|q|r|[s|tfu]v
lw|x]|z

___future___ Future statement
definitions

__main__ The environment where
the top-level script is
run.

_dummy_thread Drop-in replacement for
the _thread module.

_thread Low-level threading
API.

abc Abstract base classes
according to PEP 3119.

aifc Read and write audio
files in AIFF or AIFC
format.

argparse Command-line option
and argument parsing
library.

array Space efficient arrays
of uniformly typed
numeric values.

ast Abstract Syntax Tree
classes and
manipulation.

asynchat

asyncio

asyncore

atexit

audioop

base64

bdb
binascii

binhex

bisect

builtins

bz2

Support for
asynchronous
command/response
protocols.

Asynchronous I/0,
event loop, coroutines
and tasks.

A base class for
developing
asynchronous socket
handling services.

Register and execute
cleanup functions.

Manipulate raw audio
data.

RFC 3548: Basel6,
Base32, Base64 Data
Encodings; Base85 and
Ascii85

Debugger framework.

Tools for converting
between binary and
various ASCll-encoded
binary representations.

Encode and decode
files in binhex4 format.

Array bisection
algorithms for binary
searching.

The module that
provides the built-in
namespace.

Interfaces for bzip2

c
calendar

cgl

cgithb

chunk

cmath

cmd

code

codecs

codeop

collections
collections.abc

colorsys

compileall

compression and
decompression.

Functions for working
with calendars,
including some
emulation of the Unix
cal program.

Helpers for running
Python scripts via the
Common Gateway
Interface.

Configurable traceback
handler for CGI scripts.

Module to read IFF
chunks.

Mathematical functions
for complex numbers.

Build line-oriented
command interpreters.

Facilities to implement
read-eval-print loops.
Encode and decode
data and streams.
Compile (possibly
incomplete) Python
code.

Container datatypes
Abstract base classes
for containers

Conversion functions
between RGB and
other color systems.

Tools for byte-compiling

concurrent
concurrent.futures

configparser

contextlib

copy

copyreg

cProfile

crypt (Unix)

CSV

ctypes

curses (Unix)

curses.ascii

curses.panel

curses.textpad

all Python source files
in a directory tree.

Execute computations
concurrently using
threads or processes.

Configuration file
parser.

Utilities for with-
Statement contexts.

Shallow and deep copy
operations.

Register pickle support
functions.

The crypt() function
used to check Unix
passwords.

Write and read tabular
data to and from
delimited files.

A foreign function
library for Python.

An interface to the
curses library, providing
portable terminal
handling.

Constants and set-
membership functions
for ASCII characters.

A panel stack extension
that adds depth to
curses windows.
Emacs-like input editing
in a curses window.

d
datetime

dbm

dbm.dumb

dbm. gnu (Unix)

dbm.ndbm (Unix)

decimal

difflib

dis

distutils

distutils.

distutils.
distutils.

distutils.

archive_util

bcppcompiler
ccompiler

cmd

Basic date and time
types.
Interfaces to various

Unix "database"
formats.

Portable
implementation of the
simple DBM interface.

GNU's reinterpretation
of dbm.

The standard
"database" interface,
based on ndbm.

Implementation of the
General Decimal
Arithmetic Specification.

Helpers for computing
differences between
objects.

Disassembler for
Python bytecode.

Support for building and
installing Python
modules into an
existing Python
installation.

Utility functions for
creating archive files
(tarballs, zip files, ...)

Abstract CCompiler
class

This module provides

distutils.

distutils.

distutils.

distutils.

distutils.command.bdist_packager
distutils.
distutils.
distutils.
distutils.
distutils.
distutils.

distutils.

command

command.bdist

command.bdist dumb

command.bdist msi

command.bdist_rpm

command.
command.build
command.build_clib
command.build_ext
command.build_py

command.

bdist wininst

the abstract base class
Command. This class is
subclassed by the
moadules in the
distutils.command
subpackage.

This subpackage
contains one module for
each standard Distutils
command.

Build a binary installer
for a package

Build a "dumb" installer
- a simple archive of
files

Build a binary
distribution as a
Windows MSI file

Abstract base class for
packagers

Build a binary
distribution as a Redhat
RPM and SRPM

Build a Windows
installer

Build all files of a
package

Build any C libraries in
a package

Build any extensions in
a package

Build the .py/.pyc files
of a package

build_scripts Build the scripts of a

package

distutils.

distutils.

distutils.

distutils.
distutils.

command.

command.

command.

command.
command.

check
clean
config

install
install data

distutils.command.install headers

distutils.command.install 1ib

distutils.command.install_scripts

distutils.command.register

distutils.

distutils.

distutils.
distutils.

distutils.

distutils.

distutils.

command.
core

cygwincc
debug

dep_util

dir_util

dist

sdist

ompiler

Check the metadata of
a package

Clean a package build
area

Perform package
configuration

Install a package

Install data files from a
package

Install C/C++ header
files from a package

Install library files from
a package

Install script files from a
package

Register a module with
the Python Package
Index

Build a source
distribution

The core Distutils
functionality

Provides the debug flag
for distutils

Utility functions for
simple dependency
checking

Utility functions for
operating on directories
and directory trees

Provides the
Distribution class, which
represents the module
distribution being

distutils.

distutils.

distutils.

distutils.

distutils.

distutils.

distutils.
distutils.

distutils.

distutils.

distutils.
distutils.

distutils.

doctest

errors

extension

fancy_getopt
file_util

filelist

log

msvccompiler
spawn

sysconfig

text file

unixccompiler

util

version

built/installed/distributed

Provides standard
distutils exceptions

Provides the Extension
class, used to describe
C/C++ extension
modules in setup
scripts

Ad(ditional getopt
functionality

Utility functions for
operating on single files

The FileList class, used
for poking about the file
system and building
lists of files.

A simple logging
mechanism, 282-style

Microsoft Compiler

Provides the spawn()
function

Low-level access to
configuration
information of the
Python interpreter.

provides the TextFile
class, a simple interface
to text files

UNIX C Compiler

Miscellaneous other
utility functions

implements classes that
represent module
version numbers.

Test pieces of code

dummy_threading

email

email.

email

email

email.

email

email

email

email.

email

email.

email

charset

.contentmanager

.encoders

errors

.generator

.header

.headerregistry

iterators

.message

mime

.parser

within docstrings.

Drop-in replacement for
the threading module.

Package supporting the
parsing, manipulating,
and generating email
messages.

Character Sets

Storing and Retrieving
Content from MIME
Parts

Encoders for email
message payloads.

The exception classes
used by the email
package.

Generate flat text email
messages from a
message structure.

Representing non-
ASCII headers

Automatic Parsing of
headers based on the
field name

Iterate over a message
object tree.

The base class
representing email
messages.

Build MIME messages.

Parse flat text email
messages to produce a
message object

email.policy

email.utils
encodings
encodings.idna
encodings.mbcs
encodings.utf_8_sig

ensurepip

enum

errno

f
faulthandler

fentl (Unix)
filecmp
fileinput

fnmatch

Structure.

Controlling the parsing
and generating of
messages

Miscellaneous email
package utilities.

Internationalized
Domain Names
implementation

Windows ANSI
codepage

UTF-8 codec with BOM
signature
Bootstrapping the "pip"
installer into an existing

Python installation or
virtual environment.

Implementation of an
enumeration class.

Standard errno system
symbols.

Dump the Python
traceback.

The fentl() and ioctl()
system calls.

Compare files
efficiently.

Loop over standard
input or a list of files.

Unix shell style
filename pattern

formatter
fractions
ftplib

functools

gc

getopt

getpass

gettext

glob

grp (Unix)

gzip

matching.

Deprecated: Generic
output formatter and
device interface.

Rational numbers.

FTP protocol client
(requires sockets).

Higher-order functions
and operations on
callable objects.

Interface to the cycle-
detecting garbage
collector.

Portable parser for
command line options;
support both short and
long option names.

Portable reading of
passwords and retrieval
of the userid.

Multilingual
internationalization
services.

Unix shell style
pathname pattern
expansion.

The group database
(getgrnam() and
friends).

Interfaces for gzip
compression and
decompression using
file objects.

hashlib

heapq

hmac

html
html.entities

html.parser

http

http.client

http.cookiejar

http.cookies
http.server
I
imaplib

imghdr

Secure hash and
message digest
algorithms.

Heap queue algorithm
(a.k.a. priority queue).
Keyed-Hashing for
Message Authentication
(HMAC) implementation

Helpers for
manipulating HTML.

Definitions of HTML
general entities.

A simple parser that
can handle HTML and
XHTML.

HTTP status codes and
messages

HTTP and HTTPS
protocol client (requires
sockets).

Classes for automatic
handling of HTTP
cookies.

Support for HTTP state
management (cookies).

HTTP server and
request handlers.

IMAPA4 protocol client
(requires sockets).

Determine the type of

imp

importlib
importlib.abc
importlib.machinery

importlib.resources

importlib.util

inspect

i0
ipaddress

itertools

j
json

json.tool

image contained in a
file or byte stream.

Deprecated: Access
the implementation of
the import statement.

The implementation of
the import machinery.

Abstract base classes
related to import

Importers and path
hooks

Package resource
reading, opening, and
access

Utility code for
importers

Extract information and
source code from live
objects.

Core tools for working
with streams.

IPv4/IPv6 manipulation
library.

Functions creating
iterators for efficient
looping.

Encode and decode the
JSON format.

A command line to
validate and pretty-print
JSON.

k
keyword

|
1lib2to3
linecache

locale

logging
logging.config
logging.handlers

lzma

m
macpath

maillbox

mailcap
marshal

math

Test whether a string is
a keyword in Python.

the 2to3 library

This module provides
random access to
individual lines from text
files.

Internationalization
services.

Flexible event logging
system for applications.

Configuration of the
logging module.

Handlers for the logging
module.

A Python wrapper for
the liblzma
compression library.

Mac OS 9 path
manipulation functions.

Manipulate mailboxes
in various formats

Mailcap file handling.

Convert Python objects
to streams of bytes and
back (with different
constraints).

Mathematical functions
(sin() etc.).

mimetypes

mmap

modulefinder

msilib (Windows)

msvcrt (Windows)

multiprocessing
multiprocessing.
multiprocessing.

multiprocessing.

multiprocessing.

multiprocessing.

n
netrc

nis (Unix)

nntplib

connection
dummy

managers

pool

sharedctypes

Mapping of filename
extensions to MIME
types.

Interface to memory-
mapped files for Unix
and Windows.

Find modules used by a
script.

Creation of Microsoft
Installer files, and CAB
files.

Miscellaneous useful
routines from the MS
VC++ runtime.

Process-based
parallelism.

API for dealing with
sockets.

Dumb wrapper around
threading.

Share data between
process with shared
objects.

Create pools of
processes.

Allocate ctypes objects
from shared memory.

Loading of .netrc files.

Interface to Sun's NIS
(Yellow Pages) library.

NNTP protocol client
(requires sockets).

numbers

o
operator

optparse

0S

0s.path

ossaudiodev (Linux, FreeBSD)

p
parser

pathlib

pdb

pickle

pickletools

Numeric abstract base
classes (Complex,
Real, Integral, etc.).

Functions
corresponding to the
standard operators.

Deprecated:
Command-line option
parsing library.
Miscellaneous
operating system
interfaces.
Operations on
pathnames.

Access to OSS-
compatible audio
devices.

Access parse trees for
Python source code.

Object-oriented
filesystem paths

The Python debugger
for interactive
interpreters.

Convert Python objects
to streams of bytes and
back.

Contains extensive
comments about the
pickle protocols and
pickle-machine

pipes (Unix)
pkgutil

platform

plistlib
poplib

posix (Unix)

pprint
profile
pstats

pty (Linux)

pwd (Unix)

py_compile

pyclbr

pydoc

opcodes, as well as
some useful functions.

A Python interface to
Unix shell pipelines.

Utilities for the import
system.

Retrieves as much
platform identifying data
as possible.

Generate and parse
Mac OS X plist files.

POPS3 protocol client
(requires sockets).

The most common
POSIX system calls
(normally used via
module o0s).

Data pretty printer.
Python source profiler.

Statistics object for use
with the profiler.

Pseudo-Terminal
Handling for Linux.

The password database
(getpwnam() and
friends).

Generate byte-code
files from Python
source files.

Supports information
extraction for a Python
class browser.

Documentation
generator and online
help system.

q
queue

quopri

r
random

re

readline (Unix)

reprlib

resource (Unix)

rlcompleter

runpy

sched

A synchronized queue
class.

Encode and decode
files using the MIME
quoted-printable
encoding.

Generate pseudo-
random numbers with
various common
distributions.

Regular expression
operations.

GNU readline support
for Python.

Alternate repr()
implementation with
size limits.

An interface to provide
resource usage
information on the
current process.

Python identifier
completion, suitable for
the GNU readline
library.

Locate and run Python
modules without
importing them first.

General purpose event

secrets

select
selectors
shelve

shlex

shutil

signal

site

smtpd

smtplib
sndhdr

socket

socketserver

spwd (Unix)

scheduler.

Generate secure
random numbers for
managing secrets.

Wait for I/O completion
on multiple streams.

High-level I/O
multiplexing.

Python object
persistence.

Simple lexical analysis
for Unix shell-like
languages.

High-level file
operations, including
copying.

Set handlers for
asynchronous events.

Module responsible for
site-specific
configuration.

A SMTP server
implementation in
Python.

SMTP protocol client
(requires sockets).

Determine type of a
sound file.

Low-level networking
interface.

A framework for
network servers.

The shadow password
database (getspnam()
and friends).

sqglite3

ssl

stat

statistics
string
stringprep
struct
subprocess

sunau

symbol

symtable

sys

sysconfig

syslog (Unix)

A DB-API 2.0
implementation using
SQLite 3.x.

TLS/SSL wrapper for
socket objects

Utilities for interpreting
the results of os.stat(),
os.Istat() and os.fstat().

mathematical statistics
functions

Common string
operations.

String preparation, as
per RFC 3453

Interpret bytes as
packed binary data.

Subprocess
management.

Provide an interface to
the Sun AU sound
format.

Constants representing
internal nodes of the
parse tree.

Interface to the
compiler's internal
symbol tables.

Access system-specific
parameters and
functions.

Python's configuration
information

An interface to the Unix
syslog library routines.

t
tabnanny

tarfile

telnetlib
tempfile

termios (Unix)
test

test.support

textwrap
threading

time

timeit

tkinter

tkinter.scrolledtext (Tk)

tkinter.tix

tkinter.ttk
token

Tool for detecting white
space related problems
in Python source files in
a directory tree.

Read and write tar-
format archive files.

Telnet client class.

Generate temporary
files and directories.

POSIX style tty control.

Regression tests
package containing the
testing suite for Python.

Support for Python's
regression test suite.

Text wrapping and filling

Thread-based
parallelism.

Time access and
conversions.

Measure the execution
time of small code
snippets.

Interface to Tcl/Tk for
graphical user
interfaces

Text widget with a
vertical scroll bar.

Tk Extension Widgets
for Tkinter

Tk themed widget set

Constants representing
terminal nodes of the

tokenize
trace
traceback
tracemalloc

tty (Unix)

turtle

turtledemo
types
typing

u
unicodedata
unittest

unittest.mock
urllib
urllib.error

urllib.parse

parse tree.

Lexical scanner for
Python source code.

Trace or track Python
Statement execution.

Print or retrieve a stack
traceback.

Trace memory
allocations.

Utility functions that
perform common
terminal control
operations.

An educational
framework for simple
graphics applications

A viewer for example
turtle scripts

Names for built-in
types.

Support for type hints
(see PEP 484).

Access the Unicode
Database.

Unit testing framework
for Python.

Mock object library.

Exception classes
raised by urllib.request.

Parse URLSs into or
assemble them from

urllib.request

urllib.response

urllib.robotparser

uu

uuid

venv

w
warnings

wave

weakref

webbrowser

winreg (Windows)

components.

Extensible library for
opening URLSs.

Response classes used
by urllib.

Load a robots.txt file
and answer questions
about fetchability of
other URLs.

Encode and decode
files in uuencode
format.

UUID objects
(universally unique
identifiers) according to
RFC 4122

Creation of virtual
environments.

Issue warning
messages and control
their disposition.

Provide an interface to
the WAV sound format.

Support for weak
references and weak
dictionaries.

Easy-to-use controller
for Web browsers.

Routines and objects
for manipulating the
Windows registry.

winsound (Windows)

wsgiref

wsgi

wsgi

wsgi

wsgi

wsgi

X
xdrlib

xml

xml.

xml

xml.

xml

xml

ref.handlers
ref.headers
ref.simple_server
ref.util

ref.validate

dom

.dom.minidom

dom.pulldom

.etree.ElementTree

.parsers.expat

Access to the sound-
playing machinery for
Windows.

WSGI Utilities and
Reference
Implementation.

WSGI server/gateway
base classes.

WSGI response header
tools.

A simple WSGI HTTP
server.

WSGI environment
utilities.

WSGI conformance
checker.

Encoders and decoders
for the External Data
Representation (XDR).

Package containing
XML processing
modules

Document Object
Model API for Python.

Minimal Document
Object Model (DOM)
implementation.

Support for building
partial DOM trees from
SAX events.

Implementation of the
ElementTree API.

An interface to the

xml.
xml.
xml.

xml.

xml.

xml.

xmlrpc

parsers.expat.errors
parsers.expat.model
sax

sax.handler

sax.saxutils

sax.xmlreader

xmlrpc.client

xmlrpc.server

Y4

zipapp

zipfile

zipimport

z1lib

Expat non-validating
XML parser.

Package containing
SAX2 base classes and
convenience functions.

Base classes for SAX
event handlers.

Convenience functions
and classes for use with
SAX.

Interface which SAX-
compliant XML parsers
must implement.

XML-RPC client
access.

Basic XML-RPC server
implementations.

Manage executable
python zip archives

Read and write ZIP-
format archive files.

support for importing
Python modules from
ZIP archives.

Low-level interface to
compression and
decompression routines
compatible with gzip.

@ Python » 3.7.0b1 Documentation » modules | index

© Copyright 2001-2018, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.
Last updated on Jan 31, 2018. Found a bug?

Created using Sphinx 1.6.6.

https://www.python.org/
https://www.python.org/psf/donations/
http://sphinx.pocoo.org/

@ Python » 3.7.0b1 Documentation » modules | index

https://www.python.org/

Python 3.7.0b1 documentation

Welcome! This is the documentation for Python 3.7.0b1.

Parts of the documentation:

| | Installing Python
What's new in Python,,~ o

’) n I "
37 ¢ or all "Whats new" documents installing from the Python Package Index

since 2.0 & other sources
Tutorial Distributing Python
start here MOdUleS
|_| b rary R e fe rence publishing modules for installation by
keep this under your pillow others

Extending and

Language Reference

describes syntax and language elements E m b ed d In g
tutorial for C/C++ programmers

Python Setup and
Usage

how to use Python on different platforms

Python/C API

reference for C/C++ programmers

Python HOWTOs FAQS

frequentl asked uestions with
in-depth documents on specific topics q y q (

answers!)

Indices and tables:

Global Module Index
quick access to all modules Search page
search this documentation

General Index

all functions, classes, terms Com P lete Table of
Contents
G l 0S Sary lists all sections and subsections

the most important terms explained

Meta information:

Reporting bugs History and License
of Python
About the Y
documentation Copyright
@ Python » 3.7.0b1 Documentation » modules | index

© Copyright 2001-2018, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.
Last updated on Jan 31, 2018. Found a bug?

Created using Sphinx 1.6.6.

https://www.python.org/
https://www.python.org/psf/donations/
http://sphinx.pocoo.org/

@ Python » 3.7.0b1 Documentation » What's New in Python previous | next | modules | index

»

https://www.python.org/

What's New In Python 3.7

Release: 3.7.0bl
Date: January 31, 2018

This article explains the new features in Python 3.7, compared to 3.6.

For full details, see the changelog.

Note: Prerelease users should be aware that this document is
currently in draft form. It will be updated substantially as Python 3.7
moves towards release, so it's worth checking back even after
reading earlier versions.

Summary — Release highlights

New Features

PEP 538: Legacy C Locale Coercion

An ongoing challenge within the Python 3 series has been determining
a sensible default strategy for handling the “7-bit ASCII” text encoding
assumption currently implied by the use of the default C locale on non-
Windows platforms.

PEP 538 updates the default interpreter command line interface to
automatically coerce that locale to an available UTF-8 based locale as
described in the documentation of the new PYTHONCOERCECLOCALE

environment variable. Automatically setting LC_CTYPE this way

means that both the core interpreter and locale-aware C extensions
(such as readline) will assume the use of UTF-8 as the default text

encoding, rather than ASCII.

The platform support definition in PEP 11 has also been updated to
limit full text handling support to suitably configured non-ASCIl based
locales.

As part of this change, the default error handler for stdin and
stdout is now surrogateescape (rather than strict) when using
any of the defined coercion target locales (currently C.UTF-8,
C.utf8, and UTF-8). The default error handler for stderr continues
to be backslashreplace, regardless of locale.

Locale coercion is silent by default, but to assist in debugging
potentially locale related integration problems, explicit warnings
(emitted directly on stderr can be requested by setting
PYTHONCOERCECLOCALE=warn. This setting will also cause the

https://www.python.org/dev/peps/pep-0538
https://www.python.org/dev/peps/pep-0011

Python runtime to emit a warning if the legacy C locale remains active
when the core interpreter is initialized.

See also:

PEP 538 - Coercing the legacy C locale to a UTF-8 based locale
PEP written and implemented by Nick Coghlan.

PEP 553: Built-in breakpoint()

PEP 553 describes a new built-in called breakpoint () which makes
it easy and consistent to enter the Python debugger. Built-in
breakpoint () calls sys.breakpointhook(). By default, this
latter imports pdb and then calls pdb.set_trace(), but by binding
sys.breakpointhook() to the function of your choosing,
breakpoint () can enter any debugger. Or, the environment variable
PYTHONBREAKPOINT can be set to the callable of your debugger of
choice. Set PYTHONBREAKPOINT=0 to completely disable built-in
breakpoint().

See also:

PEP 553 - Built-in breakpoint()
PEP written and implemented by Barry Warsaw

PEP 539: A New C-API for Thread-Local Storage
iIn CPython

While Python provides a C API for thread-local storage support; the
existing Thread Local Storage (TLS) API has used int to represent

TLS keys across all platforms. This has not generally been a problem

https://www.python.org/dev/peps/pep-0538
https://www.python.org/dev/peps/pep-0553
https://www.python.org/dev/peps/pep-0553

for officially-support platforms, but that is neither POSIX-compliant, nor
portable in any practical sense.

PEP 539 changes this by providing a new Thread Specific Storage
(TSS) API to CPython which supersedes use of the existing TLS API
within the CPython interpreter, while deprecating the existing API. The
TSS API uses a new type Py_tss_t instead of int to represent TSS
keys—an opaque type the definition of which may depend on the
underlying TLS implementation. Therefore, this will allow to build
CPython on platforms where the native TLS key is defined in a way
that cannot be safely castto int.

Note that on platforms where the native TLS key is defined in a way
that cannot be safely cast to int, all functions of the existing TLS API
will be no-op and immediately return failure. This indicates clearly that
the old API is not supported on platforms where it cannot be used
reliably, and that no effort will be made to add such support.

See also:

PEP 539 - A New C-API for Thread-Local Storage in CPython
PEP written by Erik M. Bray; implementation by Masayuki
Yamamoto.

PEP 562: Customization of access to module
attributes

It is sometimes convenient to customize or otherwise have control
over access to module attributes. A typical example is managing
deprecation warnings. Typical workarounds are assigning __class___
of a module object to a custom subclass of types.ModuleType or
replacing the sys.modules item with a custom wrapper instance.

https://www.python.org/dev/peps/pep-0539
https://www.python.org/dev/peps/pep-0539

This procedure is now simplified by recognizing __getattr__
defined directly in a module that would act like a normal
__getattr__ method, except that it will be defined on module
instances.

See also:

PEP 562 - Module __getattr__and __dir___
PEP written and implemented by Ivan Levkivskyi

PEP 563: Postponed evaluation of annotations

The advent of type hints in Python uncovered two glaring usability
issues with the functionality of annotations added in PEP 3107 and
refined further in PEP 526:

e annotations could only use names which were already available in
the current scope, in other words they didn't support forward
references of any kind; and

e annotating source code had adverse effects on startup time of
Python programs.

Both of these issues are fixed by postponing the evaluation of
annotations. Instead of compiling code which executes expressions in
annotations at their definition time, the compiler stores the annotation
in a string form equivalent to the AST of the expression in question. If
needed, annotations can be resolved at runtime using
typing.get_type_hints(). In the common case where this is not
required, the annotations are cheaper to store (since short strings are
interned by the interpreter) and make startup time faster.

Usability-wise, annotations now support forward references, making
the following syntax valid:

https://www.python.org/dev/peps/pep-0562
https://www.python.org/dev/peps/pep-3107
https://www.python.org/dev/peps/pep-0526

class C:
@classmethod
def from_string(cls, source: str) -> C:

def validate_b(self, obj: B) -> bool:

class B:

Since this change breaks compatibility, the new behavior can be
enabled on a per-module basis in Python 3.7 using a __future__
import, like this:

from __ future__ import annotations

It will become the default in Python 4.0.

See also:

PEP 563 - Postponed evaluation of annotations
PEP written and implemented by tukasz Langa.

PEP 564: Add new time functions with
nanosecond resolution

Add six new “nanosecond” variants of existing functions to the time
module:

e time.clock_gettime_ns()
e time.clock_settime_ns()
e time.monotonic_ns()

https://www.python.org/dev/peps/pep-0563

e time.perf_counter_ns()
e time.process_time_ns()
e time.time_ns()

While similar to the existing functions without the _ns suffix, they

provide nanosecond resolution: they return a number of nanoseconds
as a Python int.

The time.time_ns() resolution is 3 times better than the
time.time() resolution on Linux and Windows.

See also:

PEP 564 - Add new time functions with nanosecond resolution
PEP written and implemented by Victor Stinner

PEP 565: Show DeprecationWarning in
__main__

The default handling of DeprecationWarning has been changed
such that these warnings are once more shown by default, but only
when the code triggering them is running directly in the __main___
module. As a result, developers of single file scripts and those using
Python interactively should once again start seeing deprecation
warnings for the APIs they use, but deprecation warnings triggered by
imported application, library and framework modules will continue to
be hidden by default.

As a result of this change, the standard library now allows developers
to choose between three different deprecation warning behaviours:

e FuturewWarning: always displayed by default, recommended for

https://www.python.org/dev/peps/pep-0564

warnings intended to be seen by application end users (e.g. for
deprecated application configuration settings).

e DeprecationwWarning: displayed by default only in __main___
and when running tests, recommended for warnings intended to
be seen by other Python developers where a version upgrade
may result in changed behaviour or an error.

e PendingDeprecationWarning: displayed by default only when
running tests, intended for cases where a future version upgrade
will change the warning category to DeprecationWarning or
FuturewWarning.

Previously both DeprecationWarning and
PendingDeprecationWarning were only visible when running
tests, which meant that developers primarily writing single file scripts

or using Python interactively could be surprised by breaking changes
in the APlIs they used.

See also:

PEP 565 - Show DeprecationWarning in __main___
PEP written and implemented by Nick Coghlan

PEP 540: Add a new UTF-8 mode

Add a new UTF-8 mode to ignore the locale, use the UTF-8 encoding,
and change sys.stdin and sys.stdout error handlers to
surrogateescape. This mode is enabled by default in the POSIX
locale, but otherwise disabled by default.

The new -X utf8 command line option and PYTHONUTF8
environment variable are added to control the UTF-8 mode.

https://www.python.org/dev/peps/pep-0565

See also:

PEP 540 - Add a new UTF-8 mode
PEP written and implemented by Victor Stinner

PEP 557: Data Classes

Adds a new module dataclasses. It provides a class decorator
dataclass which inspects the class’s variable annotations (see PEP
526) and using them, adds methods such as __init__, _ repr__,
and __eq___ to the class. It is similar to typing.NamedTuple, but
also works on classes with mutable instances, among other features.

For example:

@dataclass
class Point:
x: float
y: float
z: float = 0.0

p = Point(1.5, 2.5)
print(p) # produces "Point(x=1.5, y=2.5, z=0.0)"

See also:

PEP 557 - Data Classes
PEP written and implemented by Eric V. Smith

New Development Mode: -X dev

Add a new “development mode”: -X dev command line option and

https://www.python.org/dev/peps/pep-0540
https://www.python.org/dev/peps/pep-0526
https://www.python.org/dev/peps/pep-0557

PYTHONDEVMODE environment variable to enable CPython'’s
“development mode”, introducing additional runtime checks which are
too expensive to be enabled by default. See -X dev documentation
for the effects of the development mode.

Hash-based pycs

Python has traditionally checked the up-to-dateness of bytecode
cache files (i.e., .pyc files) by comparing the source metadata (last-
modified timestamp and size) with source metadata saved in the
cache file header when it was generated. While effective, this
invalidation method has its drawbacks. When filesystem timestamps
are too coarse, Python can miss source updates, leading to user
confusion. Additionally, having a timestamp in the cache file is
problematic for build reproduciblity and content-based build systems.

PEP 552 extends the pyc format to allow the hash of the source file to
be used for invalidation instead of the source timestamp. Such .pyc

files are called “hash-based”. By default, Python still uses timestamp-
based invalidation and does not generate hash-based .pyc files at

runtime. Hash-based .pyc files may be generated with py_compile
or compileall.

Hash-based . pyc files come in two variants: checked and unchecked.
Python validates checked hash-based .pyc files against the

corresponding source files at runtime but doesn’t do so for unchecked
hash-based pycs. Unchecked hash-based .pyc files are a useful

performance optimization for environments where a system external to
Python (e.g., the build system) is responsible for keeping .pyc files
up-to-date.

See Cached bytecode invalidation for more information.

https://reproducible-builds.org/
https://www.python.org/dev/peps/pep-0552

Other Language Changes

e More than 255 arguments can now be passed to a function, and a
function can now have more than 255 parameters. (Contributed
by Serhiy Storchaka in bpo-12844 and bpo-18896.)

e bytes.fromhex() and bytearray.fromhex() now ignore all
ASCII whitespace, not only spaces. (Contributed by Robert Xiao
in bpo-28927.)

e ImportError now displays module name and module
__file. path when from ... import ... fails.
(Contributed by Matthias Bussonnier in bpo-29546.)

e Circular imports involving absolute imports with binding a
submodule to a name are now supported. (Contributed by Serhiy
Storchaka in bpo-30024.)

e object.__format__(x, '') is now equivalent to str(x)
rather than format(str(self), ''). (Contributed by Serhiy
Storchaka in bpo-28974.)

https://bugs.python.org/issue12844
https://bugs.python.org/issue18896
https://bugs.python.org/issue28927
https://bugs.python.org/issue29546
https://bugs.python.org/issue30024
https://bugs.python.org/issue28974

New Modules

Importlib.resources

This module provides several new APIs and one new ABC for access
to, opening, and reading resources inside packages. Resources are
roughly akin to files inside of packages, but they needn’t be actual files
on the physical file system. Module loaders can provide a
get_resource_reader () function which returns a
importlib.abc.ResourceReader instance to support this new
API. Built-in file path loaders and zip file loaders both support this.
(see the PyPI package importlib_resources as a compatible back port
for older Python versions).

http://importlib-resources.readthedocs.io/en/latest/

Improved Modules

argparse

The parse_intermixed_args() supports letting the user intermix
options and positional arguments on the command line, as is possible
in many unix commands. It supports most but not all argparse
features. (Contributed by paul.j3 in bpo-14191.)

binascii

The b2a_uu() function now accepts an optional backtick keyword
argument. When it's true, zeros are represented by '~ ' instead of
spaces. (Contributed by Xiang Zhang in bpo-30103.)

calendar
The class HTMLCalendar has new class attributes which ease the

customisation of the CSS classes in the produced HTML calendar.
(Contributed by Oz Tiram in bpo-30095.)

ofo]
parse_multipart() returns the same results as FieldStorage :

for non-file fields, the value associated to a key is a list of strings, not
bytes. (Contributed by Pierre Quentel in bpo-29979.)

contextlib

asynccontextmanager () and AbstractAsyncContextManager

https://bugs.python.org/issue14191
https://bugs.python.org/issue30103
https://bugs.python.org/issue30095
https://bugs.python.org/issue29979

have been added. (Contributed by Jelle Zijlstra in bpo-29679 and bpo-
30241.)

contextlib.AsyncExitStack has been added. (Contributed by
Alexander Mohr and llya Kulakov in bpo-29302.)

cProfile

cProfile command line now accepts -m module_name as an
alternative to script path. (Contributed by Sanyam Khurana in bpo-
21862.)

crypt

Added support for the Blowfish method. (Contributed by Serhiy
Storchaka in bpo-31664.)

The mksalt() function now allows to specify the number of rounds
for hashing. (Contributed by Serhiy Storchaka in bpo-31702.)

dis

The dis() function now is able to disassemble nested code objects

(the code of comprehensions, generator expressions and nested
functions, and the code used for building nested classes). (Contributed
by Serhiy Storchaka in bpo-11822.)

distutils

README.rst is now included in the list of distutils standard READMEs
and therefore included in source distributions. (Contributed by Ryan

https://bugs.python.org/issue29679
https://bugs.python.org/issue30241
https://bugs.python.org/issue29302
https://bugs.python.org/issue21862
https://bugs.python.org/issue31664
https://bugs.python.org/issue31702
https://bugs.python.org/issue11822

Gonzalez in bpo-11913.)

distutils.core.setup now warns if the classifiers,
keywords and platforms fields are not specified as a list or a
string. (Contributed by Berker Peksag in bpo-19610.)

The upload command now longer tries to change CR end-of-line
characters to CRLF. This fixes a corruption issue with sdists that
ended with a byte equivalent to CR. (Contributed by Bo Bayles in bpo-
32304.)

http.client

Add Configurable blocksize to HTTPConnection and
HTTPSConnection for improved upload throughput. (Contributed by
Nir Soffer in bpo-31945.)

http.server

SimpleHTTPRequestHandler supports the HTTP If-Modified-Since

header. The server returns the 304 response status if the target file
was not modified after the time specified in the header. (Contributed by
Pierre Quentel in bpo-29654.)

Add the parameter directory to the
SimpleHTTPRequestHandler and the --directory to the
command line of the module server. With this parameter, the server
serves the specified directory, by default it uses the current working
directory. (Contributed by Stéphane Wirtel and Julien Palard in bpo-
28707.)

https://bugs.python.org/issue11913
https://bugs.python.org/issue19610
https://bugs.python.org/issue32304
https://bugs.python.org/issue31945
https://bugs.python.org/issue29654
https://bugs.python.org/issue28707

hmac

The hmac module now has an optimized one-shot digest()
function, which is up to three times faster than HMAC (). (Contributed
by Christian Heimes in bpo-32433.)

importlib

The importlib.abc.ResourceReader ABC was introduced to
support the loading of resource from packages.

locale

Added another argument monetary in format_string() of locale.

If monetary is true, the conversion uses monetary thousands separator
and grouping strings. (Contributed by Garvit in bpo-10379.)

The locale.getpreferredencoding() function now always
returns '"UTF-8" on Android or in the UTF-8 mode (-X utf8 option),
the locale and the do_setlocale argument are ignored.

math

New remainder() function, implementing the IEEE 754-style
remainder operation. (Contributed by Mark Dickinson in bpo-29962.)

0S

Added support for bytes paths in fwalk(). (Contributed by Serhiy
Storchaka in bpo-28682.)

https://bugs.python.org/issue32433
https://bugs.python.org/issue10379
https://bugs.python.org/issue29962
https://bugs.python.org/issue28682

Added support for file descriptors in scandir () on Unix. (Contributed
by Serhiy Storchaka in bpo-25996.)

New function os.register_at_fork() allows registering Python

callbacks to be executed on a process fork. (Contributed by Antoine
Pitrou in bpo-16500.)

pdb

set_trace() now takes an optional header keyword-only argument.
If given, this is printed to the console just before debugging begins.
(Contributed by Barry Warsaw in bpo-31389.)

pdb command line now accepts -m module_name as an alternative to
script file. (Contributed by Mario Corchero in bpo-32206.)

py_compile

py_compile.compile() — and by extension, compileall — now
respects the SOURCE_DATE_EPOCH environment variable by
unconditionally creating .pyc files for hash-based validation. This
allows for guaranteeing reproducible builds of .pyc files when they
are created eagerly. (Contributed by Bernhard M. Wiedemann in bpo-
29708.)

re

The flags re.ASCII, re.LOCALE and re.UNICODE can be set

within the scope of a group. (Contributed by Serhiy Storchaka in bpo-
31690.)

https://bugs.python.org/issue25996
https://bugs.python.org/issue16500
https://bugs.python.org/issue31389
https://bugs.python.org/issue32206
https://reproducible-builds.org/
https://bugs.python.org/issue29708
https://bugs.python.org/issue31690

re.split() now supports splitting on a pattern like r'\b"', 'A$"' or
(?=-) that matches an empty string. (Contributed by Serhiy
Storchaka in bpo-25054.)

ssl

The ssl module now uses OpenSSL's builtin APl instead of
match_hostname() to check host name or IP address. Values are
validated during TLS handshake. Any cert validation error including a
failing host name match now raises SSLCertVerificationError
and aborts the handshake with a proper TLS Alert message. The new
exception contains additional information. Host name validation can be
customized with host_flags. (Contributed by Christian Heimes in
bpo-31399.)

Note: The improved host name check requires an OpenSSL 1.0.2
or 1.1 compatible libssl. OpenSSL 0.9.8 and 1.0.1 are no longer
supported. LibreSSL is temporarily not supported until it gains the
necessary OpenSSL 1.0.2 APIs.

The ssl module no longer sends IP addresses in SNI TLS extension.
(Contributed by Christian Heimes in bpo-32185.)

match_hostname() no longer supports partial wildcards like
www* .example.org. host_flags has partial wildcard matching
disabled by default. (Contributed by Mandeep Singh in bpo-23033 and
Christian Heimes in bpo-31399.)

The default cipher suite selection of the ssl module now uses a
blacklist approach rather than a hard-coded whitelist. Python no longer
re-enables ciphers that have been blocked by OpenSSL security
update. Default cipher suite selection can be configured on compile

https://bugs.python.org/issue25054
https://bugs.python.org/issue31399
https://bugs.python.org/issue32185
https://bugs.python.org/issue23033
https://bugs.python.org/issue31399

time. (Contributed by Christian Heimes in bpo-31429.)

string

string.Template now lets you to optionally modify the regular
expression pattern for braced placeholders and non-braced
placeholders separately. (Contributed by Barry Warsaw in bpo-
1198569.)

subprocess

On Windows the default for close fds was changed from False to
True when redirecting the standard handles. It's now possible to set
close fds to True when redirecting the standard handles. See
subprocess.Popen.

This means that close fds now defaults to True on all supported
platforms.

Sys

Added sys.flags.dev_mode flag for the new development mode.

Deprecated sys.set_coroutine_wrapper() and
sys.get_coroutine_wrapper().

time

The PEP 564 added six new functions with nanosecond resolution:

e time.clock_gettime_ns()

https://bugs.python.org/issue31429
https://bugs.python.org/issue1198569
https://www.python.org/dev/peps/pep-0564

e time.clock_settime_ns()
e time.monotonic_ns()

e time.perf_counter_ns()
e time.process_time_ns()
e time.time_ns()

Add new clock identifiers:

e time.CLOCK_BOOTTIME (Linux): |dentical to
time.CLOCK_MONOTONIC, except it also includes any time that

the system is suspended.

e time.CLOCK_PROF (FreeBSD, NetBSD and OpenBSD): High-
resolution per-process timer from the CPU.

e time.CLOCK_UPTIME (FreeBSD, OpenBSD): Time whose
absolute value is the time the system has been running and not
suspended, providing accurate uptime measurement, both
absolute and interval.

Added functions time.thread_time() and
time.thread_time_ns() to get per-thread CPU time
measurements. (Contributed by Antoine Pitrou in bpo-32025.)

unicodedata

The internal unicodedata database has been upgraded to use
Unicode 10. (Contributed by Benjamin Peterson.)

unittest

Added new command-line option -k to filter tests to run with a
substring or Unix shell-like pattern. For example, python -m
unittest -k foo runs the tests

https://bugs.python.org/issue32025
http://www.unicode.org/versions/Unicode10.0.0/

foo_tests.SomeTest.test_something,
bar_tests.SomeTest.test_foo, but not
bar_tests.FooTest.test_something.

unittest.mock

The sentinel attributes now preserve their identity when they are
copied or pickled. (Contributed by Serhiy Storchaka in bpo-
20804.)

New function seal will disable the creation of mock children by

preventing to get or set any new attribute on the sealed mock. The
sealing process is performed recursively. (Contributed by Mario
Corchero in bpo-30541.)

urllib.parse

urllib.parse.quote() has been updated from RFC 2396 to RFC

3986, adding ~ to the set of characters that is never quoted by default.
(Contributed by Christian Theune and Ratnhadeep Debnath in bpo-
16285.)

uu

Function encode() now accepts an optional backtick keyword
argument. When it's true, zeros are represented by '~ ' instead of
spaces. (Contributed by Xiang Zhang in bpo-30103.)

warnings

https://bugs.python.org/issue20804
https://bugs.python.org/issue30541
https://bugs.python.org/issue16285
https://bugs.python.org/issue30103

The initialization of the default warnings filters has changed as follows:

e warnings enabled via command line options (including those for -
b and the new CPython-specific -X dev option) are always
passed to the warnings machinery via the sys.warnoptions
attribute.

e warnings filters enabled via the command line or the environment
now have the following precedence order:

o

e}

o}

the BytesWarning filter for -b (or -bb)

any filters specified with -W

any filters specified with PYTHONWARNINGS

any other CPython specific filters (e.g. the default filter
added for the new -X dev mode)

any implicit filters defined directly by the warnings
machinery

e in CPython debug builds, all warnings are now displayed by
default (the implicit filter list is empty)

(Contributed by Nick Coghlan and Victor Stinner in bpo-20361, bpo-
32043, and bpo-32230)

xml.etree

ElementPath predicates in the find() methods can now compare
text of the current node with [. = "text"], not only text in children.

Predicates also allow adding spaces for better readability. (Contributed
by Stefan Behnel in bpo-31648.)

xmlrpc.server

https://bugs.python.org/issue20361
https://bugs.python.org/issue32043
https://bugs.python.org/issue32230
https://bugs.python.org/issue31648

register_function() of
xmlrpc.server.SimpleXMLRPCDispatcher and its subclasses

can be used as a decorator. (Contributed by Xiang Zhang in bpo-
7769.)

zipapp

Function zipapp.create_archive() now accepts an optional filter
argument to allow the user to select which files should be included in
the archive, and an optional compressed argument to generate a
compressed archive.

A command line option --compress has also been added to support
compression.

https://bugs.python.org/issue7769

Optimizations

e Added two new opcodes: LOAD_METHOD and CALL_METHOD to
avoid instantiation of bound method objects for method calls,
which results in method calls being faster up to 20%. (Contributed
by Yury Selivanov and INADA Naoki in bpo-26110.)

e Searching some unlucky Unicode characters (like Ukrainian
capital “€”) in a string was up to 25 times slower than searching
other characters. Now it is slower only by 3 times in the worst
case. (Contributed by Serhiy Storchaka in bpo-24821.)

e Fast implementation from standard C library is now used for
functions erf () and erfc() in the math module. (Contributed
by Serhiy Storchaka in bpo-26121.)

e The os.fwalk() function has been sped up by 2 times. This
was done using the os.scandir () function. (Contributed by
Serhiy Storchaka in bpo-25996.)

e The shutil.rmtree() function has been sped up to 20-40%.
This was done using the os.scandir () function. (Contributed
by Serhiy Storchaka in bpo-28564.)

e Optimized case-insensitive matching and searching of regular
expressions. Searching some patterns can now be up to 20
times faster. (Contributed by Serhiy Storchaka in bpo-30285.)

e re.compile() now converts flags parameter to int object if it
is RegexFlag. It is now as fast as Python 3.5, and faster than

Python 3.6 by about 10% depending on the pattern. (Contributed
by INADA Naoki in bpo-31671.)
e selectors.EpollSelector.modify(),

selectors.PollSelector.modify() and
selectors.DevpollSelector.modify() may be around

10% faster under heavy loads. (Contributed by Giampaolo
Rodola’ in bpo-30014)
¢ Constant folding is moved from peephole optimizer to new AST

https://bugs.python.org/issue26110
https://bugs.python.org/issue24821
https://bugs.python.org/issue26121
https://bugs.python.org/issue25996
https://bugs.python.org/issue28564
https://bugs.python.org/issue30285
https://bugs.python.org/issue31671
https://bugs.python.org/issue30014

optimizer. (Contributed by Eugene Toder and INADA Naoki in bpo-
29469)

https://bugs.python.org/issue29469

Build and C API Changes

py_compile and compileall now support the
SOURCE_DATE_EPOCH environment variable by unconditionally
building .pyc files for hash verification instead of potentially
timestamp-based .pyc files. See the notes for the py compile
improvement notes for more details.

A full copy of libffi is no longer bundled for use when building the
_ctypes module on non-OSX UNIX platforms. An installed copy
of libffi is now required when building _ctypes on such
platforms. (Contributed by Zachary Ware in bpo-27979.)

The fields name and doc of structures PyMemberDef,
PyGetSetDef, PyStructSequence_Field,
PyStructSequence_Desc, and wrapperbase are now of type
const char * rather of char *. (Contributed by Serhiy
Storchaka in bpo-28761.)

The result of PyUnicode_AsUTF8AndSize() and
PyUnicode_AsUTF8() is now of type const char * rather of
char *.(Contributed by Serhiy Storchaka in bpo-28769.)

The result of PyMapping_Keys(), PyMapping_Values() and
PyMapping_Items() is now always a list, rather than a list or a
tuple. (Contributed by Oren Milman in bpo-28280.)

Added functions PySlice_Unpack() and
PySlice_AdjustIndices(). (Contributed by Serhiy Storchaka
in bpo-27867.)

PyOS_AfterFork() is deprecated in favour of the new functions
Py0OS_BeforeFork(), PyOS_AfterFork_Parent() and
PyOS_AfterFork_Child(). (Contributed by Antoine Pitrou in
bpo-16500.)

The Windows build process no longer depends on Subversion to
pull in external sources, a Python script is used to download
zipfiles from GitHub instead. If Python 3.6 is not found on the

https://bugs.python.org/issue27979
https://bugs.python.org/issue28761
https://bugs.python.org/issue28769
https://bugs.python.org/issue28280
https://bugs.python.org/issue27867
https://bugs.python.org/issue16500

system (via py -3.6), NuGet is used to download a copy of 32-
bit Python for this purpose. (Contributed by Zachary Ware in bpo-
30450.)

e The PyExc_RecursionErrorInst singleton that was part of
the public APl has been removed as its members being never
cleared may cause a segfault during finalization of the interpreter.
Contributed by Xavier de Gaye in bpo-22898 and bpo-30697.

e Support for building --without-threads is removed.
(Contributed by Antoine Pitrou in bpo-31370.).

https://bugs.python.org/issue30450
https://bugs.python.org/issue22898
https://bugs.python.org/issue30697
https://bugs.python.org/issue31370

Other CPython Implementation Changes

e Trace hooks may now opt out of receiving 1ine events from the
interpreter by setting the new f_trace_lines attribute to
False on the frame being traced. (Contributed by Nick Coghlan
in bpo-31344.)

e Trace hooks may now opt in to receiving opcode events from the
interpreter by setting the new f_trace_opcodes attribute to
True on the frame being traced. (Contributed by Nick Coghlan in
bpo-31344.)

https://bugs.python.org/issue31344
https://bugs.python.org/issue31344

Deprecated

e In Python 3.8, the abstract base classes in collections.abc
will no longer be exposed in the regular collections module.

This will help create a clearer distinction between the concrete
classes and the abstract base classes.

¢ Yield expressions (both yield and yield from clauses) are
now deprecated in comprehensions and generator expressions
(aside from the iterable expression in the leftmost for clause).
This ensures that comprehensions always immediately return a
container of the appropriate type (rather than potentially returning
a generator iterator object), while generator expressions won't
attempt to interleave their implicit output with the output from any
explicit yield expressions.

In Python 3.7, such expressions emit DeprecationWarning
when compiled, in Python 3.8+ they will emit SyntaxError.
(Contributed by Serhiy Storchaka in bpo-10544.)

e Function PySlice_GetIndiceskx() is deprecated and
replaced with a macro if Py_LIMITED_API is not set or set to the
value between 0x03050400 and 0x03060000 (not including) or
Ox03060100 or higher. (Contributed by Serhiy Storchaka in bpo-

27867.)

e Deprecated format () from locale, use the
format_string() instead. (Contributed by Garvit in bpo-
10379.)

e Methods MetaPathFinder.find_module() (replaced by
MetaPathFinder.find_spec()) and

PathEntryFinder.find_loader () (replaced by

https://bugs.python.org/issue10544
https://bugs.python.org/issue27867
https://bugs.python.org/issue10379

PathEntryFinder.find_spec()) both deprecated in Python
3.4 now emit DeprecationWarning. (Contributed by Matthias
Bussonnier in bpo-29576)

e Using non-integer value for selecting a plural form in gettext is
now deprecated. It never correctly worked. (Contributed by Serhiy
Storchaka in bpo-28692.)

e The macpath is now deprecated and will be removed in Python
3.8.

e The importlib.abc.ResourceLoader ABC has been
deprecated in favour of importlib.abc.ResourceReader.

Changes in the C API

e The type of results of PyThread_start_new_thread() and
PyThread_get_thread_ident(), and the id parameter of
PyThreadState_SetAsyncExc() changed from long to
unsigned long. (Contributed by Serhiy Storchaka in bpo-
6532.)

e PyUnicode_AsWideCharString() now raises a ValueError
if the second argument is NULL and the wchar_t* string
contains null characters. (Contributed by Serhiy Storchaka in bpo-
30708.)

Windows Only

e The python launcher, (py.exe), can accept 32 & 64 bit specifiers
without having to specify a minor version as well. So py -3-32
and py -3-64 become valid as well as py -3.7-32, also the -
m-64 and -m.n-64 forms are now accepted to force 64 bit python
even if 32 bit would have otherwise been used. If the specified
version is not available py.exe will error exit. (Contributed by
Steve Barnes in bpo-30291.)

https://bugs.python.org/issue29576
https://bugs.python.org/issue28692
https://bugs.python.org/issue6532
https://bugs.python.org/issue30708
https://bugs.python.org/issue30291

e The launcher can be run as py -0 to produce a list of the
installed pythons, with default marked with an asterisk. Running
py -0p will include the paths. If py is run with a version specifier
that cannot be matched it will also print the short form list of
available specifiers. (Contributed by Steve Barnes in bpo-30362.)

https://bugs.python.org/issue30362

Removed

Platform Support Removals

e FreeBSD 9 and older are no longer supported.

API| and Feature Removals

e The os.stat_float_times() function has been removed. It
was introduced in Python 2.3 for backward compatibility with
Python 2.2, and was deprecated since Python 3.1.

e Unknown escapes consisting of '\' and an ASCIl letter in
replacement templates for re.sub() were deprecated in Python
3.5, and will now cause an error.

e Removed support of the exclude argument in
tarfile.TarFile.add(). It was deprecated in Python 2.7 and
3.2. Use the filter argument instead.

e The splitunc() function in the ntpath module was
deprecated in Python 3.1, and has now been removed. Use the
splitdrive() function instead.

e collections.namedtuple() no longer supports the verbose
parameter or _source attribute which showed the generated
source code for the named tuple class. This was part of an
optimization designed to speed-up class creation. (Contributed by
Jelle Zijlstra with further improvements by INADA Naoki, Serhiy
Storchaka, and Raymond Hettinger in bpo-28638.)

e Functions bool(), float(), 1list() and tuple() no longer
take keyword arguments. The first argument of int() can now
be passed only as positional argument.

e Removed previously deprecated in Python 2.4 classes Plist,
Dict and _InternalDict in the plistlib module. Dict
values in the result of functions readPlist() and

https://bugs.python.org/issue28638

readPlistFromBytes() are now normal dicts. You no longer
can use attribute access to access items of these dictionaries.

Porting to Python 3.7

This section lists previously described changes and other bugfixes that
may require changes to your code.

Changes in Python behavior

e PEP 479 is enabled for all code in Python 3.7, meaning that
StopIteration exceptions raised directly or indirectly in
coroutines and generators are transformed into RuntimeError
exceptions. (Contributed by Yury Selivanov in bpo-32670.)

e Due to an oversight, earlier Python versions erroneously accepted
the following syntax:

f(1 for x in [1],)

class C(1 for x in [1]):
pass

Python 3.7 now correctly raises a SyntaxError, as a generator

expression always needs to be directly inside a set of
parentheses and cannot have a comma on either side, and the
duplication of the parentheses can be omitted only on calls.
(Contributed by Serhiy Storchaka in bpo-32012 and bpo-32023.)

Changes in the Python API

e socketserver.ThreadingMixIn.server_close() now

waits until all non-daemon threads complete. Use daemonic
threads by setting ThreadingMixIn.daemon_threads to

https://www.python.org/dev/peps/pep-0479
https://bugs.python.org/issue32670
https://bugs.python.org/issue32012
https://bugs.python.org/issue32023

True to not wait until threads complete. (Contributed by Victor
Stinner in bpo-31233.)

socketserver.ForkingMixIn.server_close() now waits
until all child processes complete. (Contributed by Victor Stinner in
bpo-31151.)

The locale.localeconv() function now sets temporarily the
LC_CTYPE locale to the LC_NUMERIC locale in some cases.

The asyncio.windows_utils.socketpair() function has
been removed: use directly socket.socketpair() which is
available on all platforms since Python 3.5 (before, it wasn't
available on Windows).
asyncio.windows_utils.socketpair () was just an alias to
socket.socketpair on Python 3.5 and newer.

asyncio: The module doesn't export selectors and
_overlapped modules as asyncio.selectors and
asyncio._overlapped. Replace from asyncio import
selectors with import selectors for example.

pkgutil.walk_packages() now raises ValueError if path is a
string. Previously an empty list was returned. (Contributed by
Sanyam Khurana in bpo-24744.)

A format string argument for string.Formatter.format() is
now positional-only. Passing it as a keyword argument was
deprecated in Python 3.5. (Contributed by Serhiy Storchaka in
bpo-29193.)

Attributes key, value and coded_value of class
http.cookies.Morsel are now read-only. Assigning to them

https://bugs.python.org/issue31233
https://bugs.python.org/issue31151
https://bugs.python.org/issue24744
https://bugs.python.org/issue29193

was deprecated in Python 3.5. Use the set () method for setting
them. (Contributed by Serhiy Storchaka in bpo-29192.)

Module, FunctionDef, AsyncFunctionDef, and ClassDef
AST nodes now have a new docstring field. The first statement

in their body is not considered as a docstring anymore.
co_firstlineno and co_lnotab of code object for class and

module are affected by this change. (Contributed by INADA Naoki
and Eugene Toder in bpo-29463.)

The mode argument of os.makedirs() no longer affects the file
permission bits of newly-created intermediate-level directories. To
set their file permission bits you can set the umask before
invoking makedirs(). (Contributed by Serhiy Storchaka in bpo-
19930.)

The struct.Struct.format type is now str instead of
bytes. (Contributed by Victor Stinner in bpo-21071.)

Due to internal changes in socket you won't be able to
socket.fromshare() a socket share()-ed in older Python
versions.

repr for datetime.timedelta has changed to include

keyword arguments in the output. (Contributed by Utkarsh
Upadhyay in bpo-30302.)

Because shutil.rmtree() is now implemented using the
os.scandir () function, the user specified handler onerror is
now called with the first argument os.scandir instead of
0s.listdir when listing the direcory is failed.

Support of nested sets and set operations in regular expressions

https://bugs.python.org/issue29192
https://bugs.python.org/issue29463
https://bugs.python.org/issue19930
https://bugs.python.org/issue21071
https://bugs.python.org/issue30302

as in Unicode Technical Standard #18 might be added in the
future. This would change the syntax, so to facilitate this change a
FutureWarning will be raised in ambiguous cases for the time
being. That include sets starting with a literal '[' or containing
literal character sequences '--', '&&', '~~', and '|]|'. To
avoid a warning escape them with a backslash. (Contributed by
Serhiy Storchaka in bpo-30349.)

e The result of splitting a string on a regular expression that
could match an empty string has been changed. For example
splitting on r '\s* " will now split not only on whitespaces as it did
previously, but also on empty strings before all non-whitespace
characters and just before the end of the string. The previous
behavior can be restored by changing the pattern to r'\s+'. A
FutureWarning was emitted for such patterns since Python 3.5.

For patterns that match both empty and non-empty strings, the
result of searching for all matches may also be changed in other
cases. For example in the string 'a\n\n', the pattern r'(?
m)A\s*?$"' will not only match empty strings at positions 2 and
3, but also the string '\n' at positions 2—3. To match only blank
lines, the pattern should be rewritten as r' (?m)A[A\S\n]*$"'.

re.sub() now replaces empty matches adjacent to a previous
non-empty match. For example re.sub('x*', '-', 'abxd')
returns now '-a-b--d-' instead of '-a-b--d-' (the first
minus between ‘b’ and ‘d’ replaces ‘x’, and the second minus
replaces an empty string between ‘x’ and ‘d’).

(Contributed by Serhiy Storchaka in bpo-25054 and bpo-32308.)

e tracemalloc.Traceback frames are now sorted from oldest to

https://unicode.org/reports/tr18/
https://bugs.python.org/issue30349
https://bugs.python.org/issue25054
https://bugs.python.org/issue32308

most recent to be more consistent with traceback. (Contributed
by Jesse Bakker in bpo-32121.)

e On OSes that support socket.SOCK_NONBLOCK or
socket.SOCK_CLOEXEC bit flags, the socket.type no longer
has them applied. Therefore, checks like if sock.type ==
socket.SOCK_STREAM work as expected on all platforms.
(Contributed by Yury Selivanov in bpo-32331.)

e On Windows the default for the close fds argument of
subprocess.Popen was changed from False to True when
redirecting the standard handles. If you previously depended on
handles being inherited when using subprocess.Popen with
standard io redirection, you will have to pass close_fds=False
to preserve the previous behaviour, or use
STARTUPINFO.1lpAttributelList.

Changes in the C API

e The function PySlice_GetIndicesEx() is considered not safe
for resizable sequences. If the slice indices are not instances of
int, but objects that implement the __index__ () method, the
sequence can be resized after passing its length to
PySlice_GetIndicesEx(). This can lead to returning indices
out of the length of the sequence. For avoiding possible problems
use new functions PySlice_Unpack() and
PySlice_AdjustIndices(). (Contributed by Serhiy Storchaka
in bpo-27867.)

CPython bytecode changes

e Added two new opcodes: LOAD_METHOD and CALL_METHOD.

https://bugs.python.org/issue32121
https://bugs.python.org/issue32331
https://bugs.python.org/issue27867

(Contributed by Yury Selivanov and INADA Naoki in bpo-26110.)
e Removed the STORE_ANNOTATION opcode.

Other CPython implementation changes

e In preparation for potential future changes to the public CPython
runtime initialization API (see PEP 432 for details), CPython’s
internal startup and configuration management logic has been
significantly refactored. While these updates are intended to be
entirely transparent to both embedding applications and users of
the regular CPython CLI, they’re being mentioned here as the
refactoring changes the internal order of various operations during
interpreter startup, and hence may uncover previously latent
defects, either in embedding applications, or in CPython itself.
(Contributed by Nick Coghlan and Eric Snow as part of bpo-
22257.)

e Due to changes in the way the default warnings filters are
configured, setting Py_BytesWarningFlag to a value greater
than one is no longer sufficient to both emit BytesWarning
messages and have them converted to exceptions. Instead, the
flag must be set (to cause the warnings to be emitted in the first
place), and an explicit error: :BytesWarning warnings filter
added to convert them to exceptions.

e CPython’ ss1 module requires OpenSSL 1.0.2 or 1.1 compatible
libssl. OpenSSL 1.0.1 has reached end of lifetime on 2016-12-31
and is no longer supported. LibreSSL is temporarily not supported
as well. LibreSSL releases up to version 2.6.4 are missing
required OpenSSL 1.0.2 APIs.

https://bugs.python.org/issue26110
https://www.python.org/dev/peps/pep-0432
https://bugs.python.org/issue22257

Documentation

PEP 545: Python Documentation Translations

PEP 545 describes the process to translate Python documentation,
and two translations have been added:

e Japanese: https://docs.python.org/ja/ and associated GitHub
repository: https://github.com/python/python-docs-ja

e French: https://docs.python.org/fr/ and associated GitHub
repository: https://github.com/python/python-docs-fr

(Contributed by Julien Palard, Inada Naoki, and Victor Stinner in bpo-
26546.)

@ Python » 3.7.0b1 Documentation » What's New in Python previous | next | modules | index

»

© Copyright 2001-2018, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.
Last updated on Jan 31, 2018. Found a bug?

Created using Sphinx 1.6.6.

https://www.python.org/dev/peps/pep-0545
https://docs.python.org/ja/
https://github.com/python/python-docs-ja
https://docs.python.org/fr/
https://github.com/python/python-docs-fr
https://bugs.python.org/issue26546
https://www.python.org/
https://www.python.org/psf/donations/
http://sphinx.pocoo.org/

@ Python » 3.7.0b1 Documentation » What's New in Python previous | next | modules | index

»

https://www.python.org/

What's New In Python 3.6

Elvis Pranskevichus <elvis@magic.io>, Yury Selivanov

Editors: <yury@magic.io>

This article explains the new features in Python 3.6, compared to 3.5.
Python 3.6 was released on December 23, 2016. See the changelog
for a full list of changes.

See also: PEP 494 - Python 3.6 Release Schedule

mailto:elvis%40magic.io
mailto:yury%40magic.io
https://docs.python.org/3.6/whatsnew/changelog.html
https://www.python.org/dev/peps/pep-0494

Summary — Release highlights

New syntax features:

PEP 498, formatted string literals.

PEP 515, underscores in numeric literals.
PEP 526, syntax for variable annotations.
PEP 525, asynchronous generators.

PEP 530: asynchronous comprehensions.

New library modules:

secrets: PEP 506 — Adding A Secrets Module To The Standard
Library.

CPython implementation improvements:

The dict type has been reimplemented to use a more compact
representation based on a proposal by Raymond Hettinger and
similar to the PyPy dict implementation. This resulted in
dictionaries using 20% to 25% less memory when compared to
Python 3.5.

Customization of class creation has been simplified with the new
protocol.

The class attribute definition order is now preserved.

The order of elements in **kwargs now corresponds to the order
in which keyword arguments were passed to the function.

DTrace and SystemTap probing support has been added.

The new PYTHONMALLOC environment variable can now be
used to debug the interpreter memory allocation and access
errors.

Significant improvements in the standard library:

https://mail.python.org/pipermail/python-dev/2012-December/123028.html
https://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html

The asyncio module has received new features, significant
usability and performance improvements, and a fair amount of
bug fixes. Starting with Python 3.6 the asyncio module is no
longer provisional and its APl is considered stable.

A new file system path protocol has been implemented to support
path-like objects. All standard library functions operating on paths
have been updated to work with the new protocol.

The datetime module has gained support for Local Time
Disambiguation.

The typing module received a number of improvements.

The tracemalloc module has been significantly reworked and
is now used to provide better output for ResourceWarning as
well as provide better diagnostics for memory allocation errors.
See the PYTHONMALLOC section for more information.

Security improvements:

The new secrets module has been added to simplify the
generation of cryptographically strong pseudo-random numbers
suitable for managing secrets such as account authentication,
tokens, and similar.

On Linux, os.urandom() now blocks until the system urandom

entropy pool is initialized to increase the security. See the PEP
524 for the rationale.
The hashlib and ss1 modules now support OpenSSL 1.1.0.

The default settings and feature set of the ss1 module have been
improved.

The hashlib module received support for the BLAKE2, SHA-3
and SHAKE hash algorithms and the scrypt() key derivation
function.

Windows improvements:

PEP 528 and PEP 529, Windows filesystem and console

https://www.python.org/dev/peps/pep-0524

encoding changed to UTF-8.

The py.exe launcher, when used interactively, no longer prefers
Python 2 over Python 3 when the user doesn’t specify a version
(via command line arguments or a config file). Handling of
shebang lines remains unchanged - “python” refers to Python 2 in
that case.

python.exe and pythonw.exe have been marked as long-
path aware, which means that the 260 character path limit may no
longer apply. See removing the MAX_PATH limitation for details.
A ._pth file can be added to force isolated mode and fully
specify all search paths to avoid registry and environment lookup.
See the documentation for more information.

A python36.zip file now works as a landmark to infer
PYTHONHOME. See the documentation for more information.

New Features
PEP 498: Formatted string literals

PEP 498 introduces a new kind of string literals: f-strings, or formatted
string literals.

Formatted string literals are prefixed with 'f' and are similar to the
format strings accepted by str.format(). They contain

replacement fields surrounded by curly braces. The replacement fields
are expressions, which are evaluated at run time, and then formatted
using the format () protocol:

>>> name = "Fred"

>>> f"He said his name is {name}."

'"He said his name is Fred.'

>>> width = 10

>>> precision = 4

>>> value = decimal.Decimal("12.34567")

>>> f'result: {value:{width}.{precision}}" # nestec
'result: 12.35"

d 1 i

See also:

PEP 498 - Literal String Interpolation.
PEP written and implemented by Eric V. Smith.

Feature documentation.

PEP 526: Syntax for variable annotations

PEP 484 introduced the standard for type annotations of function

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0484

parameters, a.k.a. type hints. This PEP adds syntax to Python for
annotating the types of variables including class variables and
instance variables:

primes: List[int] = []
captain: str # Note: no initial value!

class Starship:
stats: Dict[str, int] = {}

Just as for function annotations, the Python interpreter does not attach
any particular meaning to variable annotations and only stores them in
the __annotations___ attribute of a class or module.

In contrast to variable declarations in statically typed languages, the
goal of annotation syntax is to provide an easy way to specify
structured type metadata for third party tools and libraries via the
abstract syntax tree and the __annotations___ attribute.

See also:

PEP 526 - Syntax for variable annotations.

PEP written by Ryan Gonzalez, Philip House, Ivan Levkivskyi,
Lisa Roach, and Guido van Rossum. Implemented by Ivan
Levkivskyi.

Tools that use or will use the new syntax: mypy, pytype, PyCharm,
etc.

PEP 515: Underscores in Numeric Literals

PEP 515 adds the ability to use underscores in numeric literals for

https://www.python.org/dev/peps/pep-0526
http://www.mypy-lang.org/
https://github.com/google/pytype
https://www.python.org/dev/peps/pep-0515

improved readability. For example:

>>> 1_000_000_000_000_000
1000000000000000

>>> Ox_FF_FF_FF_FF
4294967295

Single underscores are allowed between digits and after any base
specifier. Leading, trailing, or multiple underscores in a row are not
allowed.

The string formatting language also now has support for the '_
option to signal the use of an underscore for a thousands separator for
floating point presentation types and for integer presentation type 'd'.
For integer presentation types 'b', 'o', 'x', and 'X', underscores
will be inserted every 4 digits:

>>> '{:_}'.format(1000000)

'l 000_000"

>>> '{:_x}'.format(OXFFFFFFFF)
'TRff_ffff'

See also:

PEP 515 - Underscores in Numeric Literals
PEP written by Georg Brandl and Serhiy Storchaka.

PEP 525: Asynchronous Generators

PEP 492 introduced support for native coroutines and async / await
syntax to Python 3.5. A notable limitation of the Python 3.5
implementation is that it was not possible to use await and yield in
the same function body. In Python 3.6 this restriction has been lifted,

https://www.python.org/dev/peps/pep-0515
https://www.python.org/dev/peps/pep-0492

making it possible to define asynchronous generators:

async def ticker(delay, to):
"""yield numbers from 0@ to *to* every *delay* Se
for 1 in range(to):
yield i
await asyncio.sleep(delay)
J 1 2

The new syntax allows for faster and more concise code.

See also:

PEP 525 - Asynchronous Generators
PEP written and implemented by Yury Selivanov.

PEP 530: Asynchronous Comprehensions

PEP 530 adds support for using async for in list, set, dict
comprehensions and generator expressions:

result = [1 async for i in aiter() if 1 % 2]

Additionally, await expressions are supported in all kinds of
comprehensions:

result = [await fun() for fun in funcs if await conc
d 1 i

See also:

PEP 530 - Asynchronous Comprehensions
PEP written and implemented by Yury Selivanov.

https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0530
https://www.python.org/dev/peps/pep-0530

PEP 487: Simpler customization of class creation

It is now possible to customize subclass creation without using a
metaclass. The new __init_subclass__ classmethod will be called

on the base class whenever a new subclass is created:

class PluginBase:
subclasses = []

def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
cls.subclasses.append(cls)

class Pluginli(PluginBase):
pass

class Plugin2(PluginBase):
pass

In order to allow zero-argument super () calls to work correctly from
__init_subclass__ () implementations, custom metaclasses must
ensure that the new __classcell__ namespace entry is propagated
to type.__new__ (as described in Creating the class object).

See also:

PEP 487 - Simpler customization of class creation
PEP written and implemented by Martin Teichmann.

Feature documentation

PEP 487: Descriptor Protocol Enhancements

https://www.python.org/dev/peps/pep-0487

PEP 487 extends the descriptor protocol to include the new optional
__set_name__ () method. Whenever a new class is defined, the

new method will be called on all descriptors included in the definition,
providing them with a reference to the class being defined and the
name given to the descriptor within the class namespace. In other
words, instances of descriptors can now know the attribute name of
the descriptor in the owner class:

class IntField:
def __get_ (self, instance, owner):
return instance. dict [self.name]

def __set_ (self, instance, value):
if not isinstance(value, int):
raise ValueError(f'expecting integer in
instance. dict_[self.name] = value

this 1s the new initializer:
def __ _set_name__ (self, owner, name):
self.name = name

class Model:
int_field = IntField()
1] 1 i

See also:

PEP 487 - Simpler customization of class creation
PEP written and implemented by Martin Teichmann.

Feature documentation

PEP 519: Adding a file system path protocol

https://www.python.org/dev/peps/pep-0487
https://www.python.org/dev/peps/pep-0487

File system paths have historically been represented as str or
bytes objects. This has led to people who write code which operate

on file system paths to assume that such objects are only one of those
two types (an int representing a file descriptor does not count as that
is not a file path). Unfortunately that assumption prevents alternative
object representations of file system paths like pathlib from working
with pre-existing code, including Python’s standard library.

To fix this situation, a new interface represented by os.PathLike has
been defined. By implementing the __fspath__ () method, an object
signals that it represents a path. An object can then provide a low-level
representation of a file system path as a str or bytes object. This
means an object is considered path-like if it implements
os.PathLike or is a str or bytes object which represents a file
system path. Code can use os.fspath(), os.fsdecode(), or
os.fsencode() to explicitly get a str and/or bytes representation
of a path-like object.

The built-in open() function has been updated to accept
os.PathLike objects, as have all relevant functions in the os and
os.path modules, and most other functions and classes in the
standard library. The os.DirEntry class and relevant classes in
pathlib have also been updated to implement os.PathLike.

The hope is that updating the fundamental functions for operating on
file system paths will lead to third-party code to implicitly support all
path-like objects without any code changes, or at least very minimal
ones (e.g. calling os.fspath() at the beginning of code before
operating on a path-like object).

Here are some examples of how the new interface allows for
pathlib.Path to be used more easily and transparently with pre-

existing code:

>>> import pathlib
>>> with open(pathlib.Path("README")) as f:
contents = f.read()

>>> import os.path

>>> os.path.splitext(pathlib.Path("some_file.txt"))
('some_file', '.txt'")

>>> os.path.join("/a/b", pathlib.Path("c"))
'/a/b/c'

>>> import os

>>> os.fspath(pathlib.Path("some_file.txt"))
'some_file.txt'

(Implemented by Brett Cannon, Ethan Furman, Dusty Phillips, and
Jelle Zijlstra.)

See also:

PEP 519 - Adding a file system path protocol
PEP written by Brett Cannon and Koos Zevenhoven.

PEP 495: Local Time Disambiguation

In most world locations, there have been and will be times when local
clocks are moved back. In those times, intervals are introduced in
which local clocks show the same time twice in the same day. In these
situations, the information displayed on a local clock (or stored in a
Python datetime instance) is insufficient to identify a particular moment
in time.

PEP 495 adds the new fold attribute to instances of
datetime.datetime and datetime.time classes to differentiate

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0495

between two moments in time for which local times are the same:

>>> u@ = datetime(2016, 11, 6, 4, tzinfo=timezone.ut
>>> for i1 in range(4):

u = ud + i*HOUR

t = u.astimezone(Eastern)

print(u.time(), 'UTC =', t.time(), t.tzname(

04:00:00 UTC = 00:00:00 EDT 0
05:00:00 UTC = 01:00:00 EDT 0
06:00:00 UTC = 01:00:00 EST 1
07:00:00 UTC = 02:00:00 EST 0
{ E— >

The values of the fold attribute have the value © for all instances

except those that represent the second (chronologically) moment in
time in an ambiguous case.

See also:

PEP 495 - Local Time Disambiguation
PEP written by Alexander Belopolsky and Tim Peters,
implementation by Alexander Belopolsky.

PEP 529: Change Windows filesystem encoding
to UTF-8

Representing filesystem paths is best performed with str (Unicode)
rather than bytes. However, there are some situations where using
bytes is sufficient and correct.

Prior to Python 3.6, data loss could result when using bytes paths on
Windows. With this change, using bytes to represent paths is now
supported on Windows, provided those bytes are encoded with the

https://www.python.org/dev/peps/pep-0495

encoding returned by sys.getfilesystemencoding(), which now
defaultsto 'utf-8".

Applications that do not use str to represent paths should use
os.fsencode() and os.fsdecode() to ensure their bytes are

correctly encoded. To revert to the previous behaviour, set
PYTHONLEGACYWINDOWSFSENCODING or call

sys._enablelegacywindowsfsencoding().

See PEP 529 for more information and discussion of code
modifications that may be required.

PEP 528: Change Windows console encoding to
UTF-8

The default console on Windows will now accept all Unicode
characters and provide correctly read str objects to Python code.
sys.stdin, sys.stdout and sys.stderr now default to utf-8

encoding.

This change only applies when using an interactive console, and not
when redirecting files or pipes. To revert to the previous behaviour for
interactive console use, set PYTHONLEGACYWINDOWSSTDIO.

See also:

PEP 528 - Change Windows console encoding to UTF-8
PEP written and implemented by Steve Dower.

PEP 520: Preserving Class Attribute Definition
Order

https://www.python.org/dev/peps/pep-0529
https://www.python.org/dev/peps/pep-0528

Attributes in a class definition body have a natural ordering: the same
order in which the names appear in the source. This order is now
preserved in the new class’s __dict__ attribute.

Also, the effective default class execution nhamespace (returned from
type. prepare__ ()) is now an insertion-order-preserving mapping.

See also:

PEP 520 - Preserving Class Attribute Definition Order
PEP written and implemented by Eric Snow.

PEP 468: Preserving Keyword Argument Order

**kwargs in a function signature is now guaranteed to be an
insertion-order-preserving mapping.

See also:

PEP 468 - Preserving Keyword Argument Order
PEP written and implemented by Eric Snow.

New dict implementation

The dict type now uses a “compact” representation based on a
proposal by Raymond Hettinger which was first implemented by PyPy.
The memory usage of the new dict() is between 20% and 25%
smaller compared to Python 3.5.

The order-preserving aspect of this new implementation is considered
an implementation detail and should not be relied upon (this may
change in the future, but it is desired to have this new dict

https://www.python.org/dev/peps/pep-0520
https://www.python.org/dev/peps/pep-0468
https://mail.python.org/pipermail/python-dev/2012-December/123028.html
https://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html

implementation in the language for a few releases before changing the
language spec to mandate order-preserving semantics for all current
and future Python implementations; this also helps preserve
backwards-compatibility with older versions of the language where
random iteration order is still in effect, e.g. Python 3.5).

(Contributed by INADA Naoki in bpo-27350. Idea originally suggested
by Raymond Hettinger.)

PEP 523: Adding a frame evaluation API to
CPython

While Python provides extensive support to customize how code
executes, one place it has not done so is in the evaluation of frame
objects. If you wanted some way to intercept frame evaluation in
Python there really wasn't any way without directly manipulating
function pointers for defined functions.

PEP 523 changes this by providing an API to make frame evaluation
pluggable at the C level. This will allow for tools such as debuggers
and JITs to intercept frame evaluation before the execution of Python
code begins. This enables the use of alternative evaluation
implementations for Python code, tracking frame evaluation, etc.

This API is not part of the limited C API and is marked as private to
signal that usage of this API is expected to be limited and only
applicable to very select, low-level use-cases. Semantics of the API
will change with Python as necessary.

See also:

PEP 523 - Adding a frame evaluation APl to CPython
PEP written by Brett Cannon and Dino Viehland.

https://bugs.python.org/issue27350
https://mail.python.org/pipermail/python-dev/2012-December/123028.html
https://www.python.org/dev/peps/pep-0523
https://www.python.org/dev/peps/pep-0523

PYTHONMALLOC environment variable

The new PYTHONMALLOC environment variable allows setting the
Python memory allocators and installing debug hooks.

It is now possible to install debug hooks on Python memory allocators
on Python compiled in release mode using PYTHONMALLOC=debug.

Effects of debug hooks:

e Newly allocated memory is filled with the byte ©xCB

e Freed memory is filled with the byte ©xDB

e Detect violations of the Python memory allocator API. For
example, PyObject_Free() called on a memory block
allocated by PyMem_Malloc().

e Detect writes before the start of a buffer (buffer underflows)

e Detect writes after the end of a buffer (buffer overflows)

e Check that the GIL is held when allocator functions of
PYMEM_DOMAIN_OBJ (ex: PyObject_Malloc()) and

PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) domains are
called.

Checking if the GIL is held is also a new feature of Python 3.6.

See the PyMem_SetupDebugHooks () function for debug hooks on
Python memory allocators.

It is now also possible to force the usage of the malloc() allocator of
the C library for all Python memory allocations using
PYTHONMALLOC=malloc. This is helpful when using external memory
debuggers like Valgrind on a Python compiled in release mode.

On error, the debug hooks on Python memory allocators now use the

tracemalloc module to get the traceback where a memory block
was allocated.

Example

of fatal error on buffer overflow using python3.6 -X

tracemalloc=5 (store 5 frames in traces):

Debug memory block at address p=0x7fbcd41666f8: API
4 bytes originally requested
The 7 pad bytes at p-7 are FORBIDDENBYTE, as exf
The 8 pad bytes at tail=0x7fbcd41666fc are not ¢

at tail+0: Ox02 *** OUCH
at tail+1: Oxfb
at tail+2: 0Oxfb
at tail+3: Oxfb
at tail+4: 0Oxfb
at tail+5: Oxfb
at tail+6: Oxfb
at tail+7: Oxfb

The block was made by call #1233329 to debug mal
Data at p: la 2b 30 00

Memory
File
File
File
File
File

block allocated at (most recent call first):
"test/test_bytes.py", line 323
"unittest/case.py", line 600
"unittest/case.py", line 648
"unittest/suite.py", line 122
"unittest/suite.py", line 84

Fatal Python error: bad trailing pad byte

Current thread 0x00007fbcdbd32700 (most recent call

File
File
File
File
File

"test/test_bytes.py", line 323 in test_hex
"unittest/case.py", line 600 in run
"unittest/case.py", line 648 in _ call_
"unittest/suite.py", line 122 in run
"unittest/suite.py", line 84 in __call__

File "unittest/suite.py", line 122 in run
File "unittest/suite.py", line 84 in __call__

j E— 2

(Contributed by Victor Stinner in bpo-26516 and bpo-26564.)

DTrace and SystemTap probing support

Python can now be built --with-dtrace which enables static
markers for the following events in the interpreter:

e function call/return
e garbage collection started/finished
¢ line of code executed.

This can be used to instrument running interpreters in production,
without the need to recompile specific debug builds or providing
application-specific profiling/debugging code.

More details in Instrumenting CPython with DTrace and SystemTap.

The current implementation is tested on Linux and macOS. Additional
markers may be added in the future.

(Contributed by tukasz Langa in bpo-21590, based on patches by
Jesus Cea Avion, David Malcolm, and Nikhil Benesch.)

https://bugs.python.org/issue26516
https://bugs.python.org/issue26564
https://bugs.python.org/issue21590

Other Language Changes

Some smaller changes made to the core Python language are:

e A global or nonlocal statement must now textually appear
before the first use of the affected name in the same scope.
Previously this was a SyntaxWarning.

e Itis now possible to set a special method to None to indicate that
the corresponding operation is not available. For example, if a
class sets _ iter_ () to None, the class is not iterable.
(Contributed by Andrew Barnert and lIvan Levkivskyi in bpo-
25958.)

e Long sequences of repeated traceback lines are now abbreviated
as "[Previous line repeated {count} more times]"
(see traceback for an example). (Contributed by Emanuel Barry in
bpo-26823.)

e Import now raises the new exception ModuleNotFoundError
(subclass of ImportError) when it cannot find a module. Code
that currently checks for ImportError (in try-except) will still work.
(Contributed by Eric Snow in bpo-15767.)

e Class methods relying on zero-argument super () will now work
correctly when called from metaclass methods during class
creation. (Contributed by Martin Teichmann in bpo-23722.)

https://bugs.python.org/issue25958
https://bugs.python.org/issue26823
https://bugs.python.org/issue15767
https://bugs.python.org/issue23722

New Modules
secrets

The main purpose of the new secrets module is to provide an
obvious way to reliably generate cryptographically strong pseudo-
random values suitable for managing secrets, such as account
authentication, tokens, and similar.

Warning: Note that the pseudo-random generators in the random
module should NOT be used for security purposes. Use secrets
on Python 3.6+ and os.urandom() on Python 3.5 and earlier.

See also:

PEP 506 — Adding A Secrets Module To The Standard Library
PEP written and implemented by Steven D’Aprano.

https://www.python.org/dev/peps/pep-0506

Improved Modules
array

Exhausted iterators of array.array will now stay exhausted even if
the iterated array is extended. This is consistent with the behavior of
other mutable sequences.

Contributed by Serhiy Storchaka in bpo-26492.

ast

The new ast.Constant AST node has been added. It can be used
by external AST optimizers for the purposes of constant folding.

Contributed by Victor Stinner in bpo-26146.

asyncio

Starting with Python 3.6 the asyncio module is no longer provisional
and its APl is considered stable.

Notable changes in the asyncio module since Python 3.5.0 (all
backported to 3.5.x due to the provisional status):

e The get_event_loop() function has been changed to always
return the currently running loop when called from couroutines
and callbacks. (Contributed by Yury Selivanov in bpo-28613.)

e The ensure_future() function and all functions that use it,

such as loop.run_until_complete(), now accept all kinds
of awaitable objects. (Contributed by Yury Selivanov.)
e New run_coroutine_threadsafe() function to submit

https://bugs.python.org/issue26492
https://bugs.python.org/issue26146
https://bugs.python.org/issue28613

coroutines to event loops from other threads. (Contributed by
Vincent Michel.)

New Transport.is_closing() method to check if the
transport is closing or closed. (Contributed by Yury Selivanov.)
The loop.create_server () method can now accept a list of
hosts. (Contributed by Yann Sionneau.)

New loop.create_future() method to create Future objects.
This allows alternative event loop implementations, such as
uvioop, to provide a faster asyncio.Future implementation.
(Contributed by Yury Selivanov in bpo-27041.)

New loop.get_exception_handler() method to get the
current exception handler. (Contributed by Yury Selivanov in bpo-
27040.)

New StreamReader.readuntil() method to read data from
the stream until a separator bytes sequence appears.
(Contributed by Mark Korenberg.)

The performance of StreamReader .readexactly() has been
improved. (Contributed by Mark Korenberg in bpo-28370.)

The loop.getaddrinfo() method is optimized to avoid calling
the system getaddrinfo function if the address is already
resolved. (Contributed by A. Jesse Jiryu Davis.)

The loop.stop() method has been changed to stop the loop
immediately after the current iteration. Any new callbacks
scheduled as a result of the last iteration will be discarded.
(Contributed by Guido van Rossum in bpo-25593.)
Future.set_exception will now raise TypeError when
passed an instance of the StopIteration exception.
(Contributed by Chris Angelico in bpo-26221.)

New loop.connect_accepted_socket () method to be used
by servers that accept connections outside of asyncio, but that
use asyncio to handle them. (Contributed by Jim Fulton in bpo-
27392.)

TCP_NODELAY flag is now set for all TCP transports by default.

https://github.com/MagicStack/uvloop
https://bugs.python.org/issue27041
https://bugs.python.org/issue27040
https://bugs.python.org/issue28370
https://bugs.python.org/issue25593
https://bugs.python.org/issue26221
https://bugs.python.org/issue27392

(Contributed by Yury Selivanov in bpo-27456.)

e New loop.shutdown_asyncgens() to properly close pending
asynchronous generators before closing the loop. (Contributed by
Yury Selivanov in bpo-28003.)

e Future and Task classes now have an optimized C

implementation which makes asyncio code up to 30% faster.
(Contributed by Yury Selivanov and INADA Naoki in bpo-26081
and bpo-28544.)

binascii

The b2a_base64() function now accepts an optional newline
keyword argument to control whether the newline character is
appended to the return value. (Contributed by Victor Stinner in bpo-
25357.)

cmath

The new cmath.tau (1) constant has been added. (Contributed by
Lisa Roach in bpo-12345, see PEP 628 for details.)

New constants: cmath.inf and cmath.nan to match math.inf
and math.nan, and also cmath.infj and cmath.nanj to match

the format used by complex repr. (Contributed by Mark Dickinson in
bpo-23229.)

collections

The new Collection abstract base class has been added to

represent sized iterable container classes. (Contributed by Ivan
Levkivskyi, docs by Neil Girdhar in bpo-27598.)

https://bugs.python.org/issue27456
https://bugs.python.org/issue28003
https://bugs.python.org/issue26081
https://bugs.python.org/issue28544
https://bugs.python.org/issue25357
https://bugs.python.org/issue12345
https://www.python.org/dev/peps/pep-0628
https://bugs.python.org/issue23229
https://bugs.python.org/issue27598

The new Reversible abstract base class represents iterable classes
that also provide the __reversed__ () method. (Contributed by Ivan
Levkivskyi in bpo-25987.)

The new AsyncGenerator abstract base class represents

asynchronous generators. (Contributed by Yury Selivanov in bpo-
28720.)

The namedtuple() function now accepts an optional keyword
argument module, which, when specified, is used for the __module_

attribute of the returned named tuple class. (Contributed by Raymond
Hettinger in bpo-17941.)

The verbose and rename arguments for namedtuple() are now
keyword-only. (Contributed by Raymond Hettinger in bpo-25628.)

Recursive collections.deque instances can now be pickled.
(Contributed by Serhiy Storchaka in bpo-26482.)

concurrent.futures

The ThreadPoolExecutor class constructor now accepts an

optional thread_name_prefix argument to make it possible to
customize the names of the threads created by the pool. (Contributed
by Gregory P. Smith in bpo-27664.)

contextlib

The contextlib.AbstractContextManager class has been
added to provide an abstract base class for context managers. It
provides a sensible default implementation for __ enter () which
returns self and leaves _ exit () an abstract method. A matching

https://bugs.python.org/issue25987
https://bugs.python.org/issue28720
https://bugs.python.org/issue17941
https://bugs.python.org/issue25628
https://bugs.python.org/issue26482
https://bugs.python.org/issue27664

class has been added to the typing module as
typing.ContextManager. (Contributed by Brett Cannon in bpo-
25609.)

datetime

The datetime and time classes have the new fold attribute used

to disambiguate local time when necessary. Many functions in the
datetime have been updated to support local time disambiguation.

See Local Time Disambiguation section for more information.
(Contributed by Alexander Belopolsky in bpo-24773.)

The datetime.strftime() and date.strftime() methods now
support ISO 8601 date directives %G, %u and %V. (Contributed by
Ashley Anderson in bpo-12006.)

The datetime.isoformat() function now accepts an optional
timespec argument that specifies the number of additional
components of the time value to include. (Contributed by Alessandro
Cucci and Alexander Belopolsky in bpo-19475.)

The datetime.combine() now accepts an optional tzinfo
argument. (Contributed by Alexander Belopolsky in bpo-27661.)

decimal

New Decimal.as_integer_ratio() method that returns a pair
(n, d) of integers that represent the given Decimal instance as a
fraction, in lowest terms and with a positive denominator:

>>> Decimal('-3.14").as_integer_ratio()
(-157, 50)

https://bugs.python.org/issue25609
https://bugs.python.org/issue24773
https://bugs.python.org/issue12006
https://bugs.python.org/issue19475
https://bugs.python.org/issue27661

(Contributed by Stefan Krah amd Mark Dickinson in bpo-25928.)

distutils

The default_format attribute has been removed from
distutils.command.sdist.sdist and the formats attribute
defaults to ['gztar']. Although not anticipated, any code relying on
the presence of default_format may need to be adapted. See
bpo-27819 for more details.

email

The new email API, enabled via the policy keyword to various
constructors, is no longer provisional. The email documentation has

been reorganized and rewritten to focus on the new API, while
retaining the old documentation for the legacy API. (Contributed by R.
David Murray in bpo-24277.)

The email.mime classes now all accept an optional policy keyword.
(Contributed by Berker Peksag in bpo-27331.)

The DecodedGenerator now supports the policy keyword.

There is a new policy attribute, message_factory, that controls
what class is used by default when the parser creates new message
objects. For the email.policy.compat32 policy this is Message,
for the new policies it is EmailMessage. (Contributed by R. David
Murray in bpo-20476.)

encodings

https://bugs.python.org/issue25928
https://bugs.python.org/issue27819
https://bugs.python.org/issue24277
https://bugs.python.org/issue27331
https://bugs.python.org/issue20476

On Windows, added the 'oem' encoding to use CP_OEMCP, and the
'ansi' alias for the existing 'mbcs' encoding, which uses the
CP_ACP code page. (Contributed by Steve Dower in bpo-27959.)

enum

Two new enumeration base classes have been added to the enum
module: Flag and IntFlags. Both are used to define constants that

can be combined using the bitwise operators. (Contributed by Ethan
Furman in bpo-23591.)

Many standard library modules have been updated to use the
IntFlags class for their constants.

The new enum.auto value can be used to assign values to enum
members automatically:

>>> from enum import Enum, auto
>>> class Color(Enum):

red = auto()

blue = auto()

green = auto()

>>> list(Color)

[<Color.red: 1>, <Color.blue: 2>, <Color.green: 3>]

faulthandler

On Windows, the faulthandler module now installs a handler for
Windows exceptions: see faulthandler.enable(). (Contributed
by Victor Stinner in bpo-23848.)

https://bugs.python.org/issue27959
https://bugs.python.org/issue23591
https://bugs.python.org/issue23848

fileinput

hook_encoded () now supports the errors argument. (Contributed by
Joseph Hackman in bpo-25788.)

hashlib

hashlib supports OpenSSL 1.1.0. The minimum recommend version
is 1.0.2. (Contributed by Christian Heimes in bpo-26470.)

BLAKE2 hash functions were added to the module. blake2b() and
blake2s() are always available and support the full feature set of

BLAKEZ2. (Contributed by Christian Heimes in bpo-26798 based on
code by Dmitry Chestnykh and Samuel Neves. Documentation written
by Dmitry Chestnykh.)

The SHA-3 hash functions sha3_224(), sha3_256(),
sha3_384(), sha3_512(), and SHAKE hash functions
shake_128() and shake_256() were added. (Contributed by
Christian Heimes in bpo-16113. Keccak Code Package by Guido

Bertoni, Joan Daemen, Michaél Peeters, Gilles Van Assche, and
Ronny Van Keer.)

The password-based key derivation function scrypt() is now

available with OpenSSL 1.1.0 and newer. (Contributed by Christian
Heimes in bpo-27928.)

http.client

HTTPConnection.request() and endheaders() both now
support chunked encoding request bodies. (Contributed by Demian

https://bugs.python.org/issue25788
https://bugs.python.org/issue26470
https://bugs.python.org/issue26798
https://bugs.python.org/issue16113
https://bugs.python.org/issue27928

Brecht and Rolf Krahl in bpo-12319.)

idlelib and IDLE

The idlelib package is being modernized and refactored to make IDLE
look and work better and to make the code easier to understand, test,
and improve. Part of making IDLE look better, especially on Linux and
Mac, is using ttk widgets, mostly in the dialogs. As a result, IDLE no
longer runs with tcl/tk 8.4. It now requires tcl/tk 8.5 or 8.6. We
recommend running the latest release of either.

‘Modernizing’ includes renaming and consolidation of idlelib modules.
The renaming of files with partial uppercase names is similar to the
renaming of, for instance, Tkinter and TkFont to tkinter and tkinter.font
in 3.0. As a result, imports of idlelib files that worked in 3.5 will usually
not work in 3.6. At least a module name change will be needed (see
idlelib/README.txt), sometimes more. (Name changes contributed by
Al Swiegart and Terry Reedy in bpo-24225. Most idlelib patches since
have been and will be part of the process.)

In compensation, the eventual result with be that some idlelib classes
will be easier to use, with better APIs and docstrings explaining them.
Additional useful information will be added to idlelib when available.

importlib

Import now raises the new exception ModuleNotFoundError
(subclass of ImportError) when it cannot find a module. Code that
current checks for ImportError (in try-except) will still work.
(Contributed by Eric Snow in bpo-15767.)

importlib.util.LazyLoader now calls create_module() on

https://bugs.python.org/issue12319
https://bugs.python.org/issue24225
https://bugs.python.org/issue15767

the wrapped loader, removing the restriction that
importlib.machinery.BuiltinImporter and
importlib.machinery.ExtensionFilelLoader couldn’t be used
with importlib.util.LazylLoader.

importlib.util.cache_from_source(),
importlib.util.source_from_cache(), and
importlib.util.spec_from_file_location() now accept a
path-like object.

Inspect

The inspect.signature() function now reports the implicit .0
parameters generated by the compiler for comprehension and
generator expression scopes as if they were positional-only
parameters called implicit®. (Contributed by Jelle Zijlstra in bpo-
19611.)

To reduce code churn when upgrading from Python 2.7 and the legacy
inspect.getargspec() APIl, the previously documented
deprecation of inspect.getfullargspec() has been reversed.
While this function is convenient for single/source Python 2/3 code
bases, the richer inspect.signature() interface remains the

recommended approach for new code. (Contributed by Nick Coghlan
in bpo-27172)

json
json.load() and json.loads() now support binary input.

Encoded JSON should be represented using either UTF-8, UTF-16, or
UTF-32. (Contributed by Serhiy Storchaka in bpo-17909.)

https://bugs.python.org/issue19611
https://bugs.python.org/issue27172
https://bugs.python.org/issue17909

logging

The new WatchedFileHandler.reopenIfNeeded() method has

been added to add the ability to check if the log file needs to be
reopened. (Contributed by Marian Horban in bpo-24884.)

math

The tau (1) constant has been added to the math and cmath

modules. (Contributed by Lisa Roach in bpo-12345, see PEP 628 for
details.)

multiprocessing

Proxy Objects returned by multiprocessing.Manager () can now
be nested. (Contributed by Davin Potts in bpo-6766.)

0S

See the summary of PEP 519 for details on how the os and os. path
modules now support path-like objects.

scandir () now supports bytes paths on Windows.

A new close() method allows explicitly closing a scandir()
iterator. The scandir () iterator now supports the context manager
protocol. If a scandir () iterator is neither exhausted nor explicitly
closed a ResourcewWarning will be emitted in its destructor.
(Contributed by Serhiy Storchaka in bpo-25994.)

On Linux, os.urandom() now blocks until the system urandom

https://bugs.python.org/issue24884
https://bugs.python.org/issue12345
https://www.python.org/dev/peps/pep-0628
https://bugs.python.org/issue6766
https://bugs.python.org/issue25994

entropy pool is initialized to increase the security. See the PEP 524 for
the rationale.

The Linux getrandom() syscall (get random bytes) is now exposed
as the new os.getrandom() function. (Contributed by Victor Stinner,
part of the PEP 524)

pathlib

pathlib now supports path-like objects. (Contributed by Brett
Cannon in bpo-27186.)

See the summary of PEP 519 for details.

pdb

The Pdb class constructor has a new optional readrc argument to
control whether . pdbrc files should be read.

pickle

Objects that need __new___ called with keyword arguments can now
be pickled using pickle protocols older than protocol version 4.
Protocol version 4 already supports this case. (Contributed by Serhiy
Storchaka in bpo-24164.)

pickletools

pickletools.dis() now outputs the implicit memo index for the
MEMOIZE opcode. (Contributed by Serhiy Storchaka in bpo-25382.)

https://www.python.org/dev/peps/pep-0524
https://www.python.org/dev/peps/pep-0524
https://bugs.python.org/issue27186
https://bugs.python.org/issue24164
https://bugs.python.org/issue25382

pydoc

The pydoc module has learned to respect the MANPAGER
environment variable. (Contributed by Matthias Klose in bpo-8637.)

help() and pydoc can now list named tuple fields in the order they

were defined rather than alphabetically. (Contributed by Raymond
Hettinger in bpo-24879.)

random

The new choices() function returns a list of elements of specified

size from the given population with optional weights. (Contributed by
Raymond Hettinger in bpo-18844.)

re

Added support of modifier spans in regular expressions. Examples:
"(?1:p)ython' matches 'python' and 'Python', but not
'"PYTHON'; '(?1)g(?-1:v)r' matches 'GvR' and 'gvr', but not
'GVR'. (Contributed by Serhiy Storchaka in bpo-433028.)

Match object groups can be accessed by __getitem__, which is
equivalent to group(). So mo['name'] is now equivalent to
mo.group("'name'). (Contributed by Eric Smith in bpo-24454.)

Match objects now support index-1like objects as group indices.
(Contributed by Jeroen Demeyer and Xiang Zhang in bpo-27177.)

readline

https://bugs.python.org/issue8637
https://bugs.python.org/issue24879
https://bugs.python.org/issue18844
https://bugs.python.org/issue433028
https://bugs.python.org/issue24454
https://bugs.python.org/issue27177

Added set_auto_history() to enable or disable automatic
addition of input to the history list. (Contributed by Tyler Crompton in
bpo-26870.)

rlcompleter
Private and special attribute names now are omitted unless the prefix
starts with underscores. A space or a colon is added after some

completed keywords. (Contributed by Serhiy Storchaka in bpo-25011
and bpo-25209.)

shlex
The shlex has much improved shell compatibility through the new

punctuation_chars argument to control which characters are treated as
punctuation. (Contributed by Vinay Sajip in bpo-1521950.)

site
When specifying paths to add to sys.path in a.pth file, you may now

specify file paths on top of directories (e.g. zip files). (Contributed by
Wolfgang Langner in bpo-26587).

sglite3

sgqlite3.Cursor.lastrowid now supports the REPLACE
statement. (Contributed by Alex LordThorsen in bpo-16864.)

socket

https://bugs.python.org/issue26870
https://bugs.python.org/issue25011
https://bugs.python.org/issue25209
https://bugs.python.org/issue1521950
https://bugs.python.org/issue26587
https://bugs.python.org/issue16864

The ioctl() function now supports the
SIO_LOOPBACK_FAST_PATH control code. (Contributed by Daniel
Stokes in bpo-26536.)

The getsockopt() constants SO_DOMAIN, SO_PROTOCOL,
SO_PEERSEC, and SO_PASSSEC are now supported. (Contributed by
Christian Heimes in bpo-26907.)

The setsockopt() now supports the setsockopt(level,
optname, None, optlen: int) form. (Contributed by Christian
Heimes in bpo-27744.)

The socket module now supports the address family AF_ALG to
interface with Linux Kernel crypto APl. ALG_*, SOL_ALG and
sendmsg_afalg() were added. (Contributed by Christian Heimes in
bpo-27744 with support from Victor Stinner.)

New Linux constants TCP_USER_TIMEOUT and TCP_CONGESTION
were added. (Contributed by Omar Sandoval, issue:26273).

socketserver

Servers based on the socketserver module, including those
defined in http.server, xmlrpc.server and
wsgiref.simple_server, now support the context manager
protocol. (Contributed by Aviv Palivoda in bpo-26404.)

The wfile attribute of StreamRequestHandler classes now
implements the i0.BufferedIOBase writable interface. In particular,
calling write() is now guaranteed to send the data in full.
(Contributed by Martin Panter in bpo-26721.)

https://bugs.python.org/issue26536
https://bugs.python.org/issue26907
https://bugs.python.org/issue27744
https://bugs.python.org/issue27744
https://bugs.python.org/issue26404
https://bugs.python.org/issue26721

ssl

ss1 supports OpenSSL 1.1.0. The minimum recommend version is
1.0.2. (Contributed by Christian Heimes in bpo-26470.)

3DES has been removed from the default cipher suites and ChaCha20
Poly1305 cipher suites have been added. (Contributed by Christian
Heimes in bpo-27850 and bpo-27766.)

SSLContext has better default configuration for options and ciphers.
(Contributed by Christian Heimes in bpo-28043.)

SSL session can be copied from one client-side connection to another
with the new SSLSession class. TLS session resumption can speed
up the initial handshake, reduce latency and improve performance
(Contributed by Christian Heimes in bpo-19500 based on a draft by
Alex Warhawk.)

The new get_ciphers() method can be used to get a list of
enabled ciphers in order of cipher priority.

All constants and flags have been converted to IntEnum and
IntFlags. (Contributed by Christian Heimes in bpo-28025.)

Server and client-side specific TLS protocols for SSLContext were
added. (Contributed by Christian Heimes in bpo-28085.)

statistics

A new harmonic_mean() function has been added. (Contributed by
Steven D’Aprano in bpo-27181.)

https://bugs.python.org/issue26470
https://bugs.python.org/issue27850
https://bugs.python.org/issue27766
https://bugs.python.org/issue28043
https://bugs.python.org/issue19500
https://bugs.python.org/issue28025
https://bugs.python.org/issue28085
https://bugs.python.org/issue27181

struct

struct now supports IEEE 754 half-precision floats via the 'e'

format specifier. (Contributed by Eli Stevens, Mark Dickinson in bpo-
11734.)

subprocess

subprocess.Popen destructor now emits a ResourceWarning
warning if the child process is still running. Use the context manager
protocol (with proc: ...) or explicitly call the wait() method to

read the exit status of the child process. (Contributed by Victor Stinner
in bpo-26741.)

The subprocess.Popen constructor and all functions that pass

arguments through to it now accept encoding and errors arguments.
Specifying either of these will enable text mode for the stdin, stdout
and stderr streams. (Contributed by Steve Dower in bpo-6135.)

Sys

The new getfilesystemencodeerrors() function returns the

name of the error mode used to convert between Unicode filenames
and bytes filenames. (Contributed by Steve Dower in bpo-27781.)

On Windows the return value of the getwindowsversion() function
now includes the platform_version field which contains the accurate
major version, minor version and build number of the current operating
system, rather than the version that is being emulated for the process
(Contributed by Steve Dower in bpo-27932.)

https://bugs.python.org/issue11734
https://bugs.python.org/issue26741
https://bugs.python.org/issue6135
https://bugs.python.org/issue27781
https://bugs.python.org/issue27932

telnetlib

Telnet is now a context manager (contributed by Stéphane Wirtel in
bpo-25485).

time

The struct_time attributes tm_gmtoff and tm_zone are now
available on all platforms.

timeit

The new Timer.autorange() convenience method has been
added to call Timer.timeit () repeatedly so that the total run time

is greater or equal to 200 milliseconds. (Contributed by Steven
D’Aprano in bpo-6422.)

timeit now warns when there is substantial (4x) variance between
best and worst times. (Contributed by Serhiy Storchaka in bpo-23552.)

tkinter

Added methods trace_add(), trace_remove() and
trace_info() in the tkinter.Variable class. They replace old
methods trace_variable(), trace(), trace_vdelete() and
trace_vinfo() that use obsolete Tcl commands and might not work

in future versions of Tcl. (Contributed by Serhiy Storchaka in bpo-
22115).

traceback

https://bugs.python.org/issue25485
https://bugs.python.org/issue6422
https://bugs.python.org/issue23552
https://bugs.python.org/issue22115

Both the traceback module and the interpreter’s builtin exception
display now abbreviate long sequences of repeated lines in tracebacks
as shown in the following example:

>>> def f(): f()
>>> ()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 1, in f
File "<stdin>", line 1, in f
File "<stdin>", line 1, in f
[Previous line repeated 995 more times]
RecursionError: maximum recursion depth exceeded

(Contributed by Emanuel Barry in bpo-26823.)

tracemalloc

The tracemalloc module now supports tracing memory allocations
in multiple different address spaces.

The new DomainFilter filter class has been added to filter block
traces by their address space (domain).

(Contributed by Victor Stinner in bpo-26588.)

typing

Since the typing module is provisional, all changes introduced in
Python 3.6 have also been backported to Python 3.5.x.

The typing module has a much improved support for generic type

https://bugs.python.org/issue26823
https://bugs.python.org/issue26588

aliases. For example Dict[str, Tuple[S, T]] is now a valid type
annotation. (Contributed by Guido van Rossum in Github #195.)

The typing.ContextManager class has been added for
representing contextlib.AbstractContextManager.
(Contributed by Brett Cannon in bpo-25609.)

The typing.Collection class has been added for representing
collections.abc.Collection. (Contributed by Ivan Levkivskyi in
bpo-27598.)

The typing.ClassVar type construct has been added to mark class

variables. As introduced in PEP 526, a variable annotation wrapped in
ClassVar indicates that a given attribute is intended to be used as a
class variable and should not be set on instances of that class.
(Contributed by Ivan Levkivskyi in Github #280.)

A new TYPE_CHECKING constant that is assumed to be True by the
static type chekers, but is False at runtime. (Contributed by Guido
van Rossum in Github #230.)

A new NewType() helper function has been added to create
lightweight distinct types for annotations:

from typing import NewType

UserId = NewType('UserId', int)
some_id = UserId(524313)

The static type checker will treat the new type as if it were a subclass
of the original type. (Contributed by Ivan Levkivskyi in Github #189.)

unicodedata

https://github.com/python/typing/pull/195
https://bugs.python.org/issue25609
https://bugs.python.org/issue27598
https://www.python.org/dev/peps/pep-0526
https://github.com/python/typing/pull/280
https://github.com/python/typing/issues/230
https://github.com/python/typing/issues/189

The unicodedata module now uses data from Unicode 9.0.0.
(Contributed by Benjamin Peterson.)

unittest.mock

The Mock class has the following improvements:

e Two new methods, Mock.assert_called() and
Mock.assert_called_once() to check if the mock object was

called. (Contributed by Amit Saha in bpo-26323.)
e The Mock.reset_mock() method now has two optional

keyword only arguments: return_value and side_effect.
(Contributed by Kushal Das in bpo-21271.)

urllib.request

If a HTTP request has a file or iterable body (other than a bytes object)
but no Content-Length header, rather than throwing an error,

AbstractHTTPHandler now falls back to use chunked transfer

encoding. (Contributed by Demian Brecht and Rolf Krahl in bpo-
12319.)

urllib.robotparser

RobotFileParser now supports the Crawl-delay and Request-
rate extensions. (Contributed by Nikolay Bogoychev in bpo-16099.)

venv

venv accepts a new parameter - -prompt. This parameter provides
an alternative prefix for the virtual environment. (Proposed by tukasz

http://unicode.org/versions/Unicode9.0.0/
https://bugs.python.org/issue26323
https://bugs.python.org/issue21271
https://bugs.python.org/issue12319
https://bugs.python.org/issue16099

Balcerzak and ported to 3.6 by Stéphane Wirtel in bpo-22829.)
warnings

A new optional source parameter has been added to the
warnings.warn_explicit() function: the destroyed object which
emitted a ResourceWarning. A source attribute has also been
added to warnings.WarningMessage (contributed by Victor Stinner
in bpo-26568 and bpo-26567).

When a ResourceWarning warning is logged, the tracemalloc

module is now used to try to retrieve the traceback where the
destroyed object was allocated.

Example with the script example.py:

import warnings

def func():

return open(_ file)
f = func()
f = None

Output of the command python3.6 -Wd -X tracemalloc=5
example.py:

example.py:7: ResourceWarning: unclosed file <_io.Te
f = None
Object allocated at (most recent call first):
File "example.py", lineno 4
return open(_ file)
File "example.py", lineno 6
f = func()
Kl — 1 i

https://bugs.python.org/issue22829
https://bugs.python.org/issue26568
https://bugs.python.org/issue26567

{] »]

The “Object allocated at” traceback is new and is only displayed if
tracemalloc is tracing Python memory allocations and if the

warnings module was already imported.

winreg

Added the 64-bit integer type REG_QWORD. (Contributed by Clement
Rouault in bpo-23026.)

winsound

Allowed keyword arguments to be passed to Beep, MessageBeep,
and PlaySound (bpo-27982).

xmlrpc.client

The xmlrpc.client module now supports unmarshalling additional

data types used by the Apache XML-RPC implementation for
numerics and None. (Contributed by Serhiy Storchaka in bpo-26885.)

zipfile

A new ZipInfo.from_file() class method allows making a
ZipInfo instance from a filesystem file. Anew ZipInfo.is_dir ()
method can be used to check if the ZipInfo instance represents a
directory. (Contributed by Thomas Kluyver in bpo-26039.)

The ZipFile.open() method can now be used to write data into a
ZIP file, as well as for extracting data. (Contributed by Thomas Kluyver

https://bugs.python.org/issue23026
https://bugs.python.org/issue27982
https://bugs.python.org/issue26885
https://bugs.python.org/issue26039

in bpo-26039.)
zlib

The compress() and decompress() functions now accept keyword
arguments. (Contributed by Aviv Palivoda in bpo-26243 and Xiang
Zhang in bpo-16764 respectively.)

https://bugs.python.org/issue26039
https://bugs.python.org/issue26243
https://bugs.python.org/issue16764

Optimizations

e The Python interpreter now uses a 16-bit wordcode instead of
bytecode which made a number of opcode optimizations possible.
(Contributed by Demur Rumed with input and reviews from Serhiy
Storchaka and Victor Stinner in bpo-26647 and bpo-28050.)

e The asyncio.Future class now has an optimized C
implementation. (Contributed by Yury Selivanov and INADA Naoki
in bpo-26081.)

e The asyncio.Task class now has an optimized C
implementation. (Contributed by Yury Selivanov in bpo-28544.)

e Various implementation improvements in the typing module
(such as caching of generic types) allow up to 30 times
performance improvements and reduced memory footprint.

e The ASCII decoder is now up to 60 times as fast for error
handlers surrogateescape, ignore and replace
(Contributed by Victor Stinner in bpo-24870).

e The ASCII and the Latinl encoders are now up to 3 times as fast
for the error handler surrogateescape (Contributed by Victor
Stinner in bpo-25227).

e The UTF-8 encoder is now up to 75 times as fast for error
handlers ignore, replace, surrogateescape,
surrogatepass (Contributed by Victor Stinner in bpo-25267).

e The UTF-8 decoder is now up to 15 times as fast for error
handlers ignore, replace and surrogateescape
(Contributed by Victor Stinner in bpo-25301).

e bytes % args is now up to 2 times faster. (Contributed by
Victor Stinner in bpo-25349).

e bytearray % args is now between 2.5 and 5 times faster.
(Contributed by Victor Stinner in bpo-25399).

e Optimize bytes.fromhex() and bytearray.fromhex():
they are now between 2x and 3.5x faster. (Contributed by Victor

https://bugs.python.org/issue26647
https://bugs.python.org/issue28050
https://bugs.python.org/issue26081
https://bugs.python.org/issue28544
https://bugs.python.org/issue24870
https://bugs.python.org/issue25227
https://bugs.python.org/issue25267
https://bugs.python.org/issue25301
https://bugs.python.org/issue25349
https://bugs.python.org/issue25399

Stinner in bpo-25401).

Optimize bytes.replace(b'', b'.") and
bytearray.replace(b'', b'."'"): up to 80% faster.
(Contributed by Josh Snider in bpo-26574).

Allocator functions of the PyMem_Malloc() domain
(PYMEM_DOMAIN_MEM) now use the pymalloc memory allocator
instead of malloc() function of the C library. The pymalloc
allocator is optimized for objects smaller or equal to 512 bytes
with a short lifetime, and use malloc() for larger memory
blocks. (Contributed by Victor Stinner in bpo-26249).
pickle.load() and pickle.loads() are now up to 10%
faster when deserializing many small objects (Contributed by
Victor Stinner in bpo-27056).

Passing keyword arguments to a function has an overhead in
comparison with passing positional arguments. Now in extension
functions implemented with using Argument Clinic this overhead
is significantly decreased. (Contributed by Serhiy Storchaka in
bpo-27574).

Optimized glob() and iglob() functions in the glob module;
they are now about 3-6 times faster. (Contributed by Serhiy
Storchaka in bpo-25596).

Optimized globbing in pathlib by using os.scandir(); it is
now about 1.5-4 times faster. (Contributed by Serhiy Storchaka in
bpo-26032).

xml.etree.ElementTree parsing, iteration and deepcopy
performance has been significantly improved. (Contributed by
Serhiy Storchaka in bpo-25638, bpo-25873, and bpo-25869.)
Creation of fractions.Fraction instances from floats and
decimals is now 2 to 3 times faster. (Contributed by Serhiy
Storchaka in bpo-25971.)

https://bugs.python.org/issue25401
https://bugs.python.org/issue26574
https://bugs.python.org/issue26249
https://bugs.python.org/issue27056
https://bugs.python.org/issue27574
https://bugs.python.org/issue25596
https://bugs.python.org/issue26032
https://bugs.python.org/issue25638
https://bugs.python.org/issue25873
https://bugs.python.org/issue25869
https://bugs.python.org/issue25971

Build and C API Changes

e Python now requires some C99 support in the toolchain to build.
Most notably, Python now uses standard integer types and
macros in place of custom macros like PY_LONG_LONG. For more
information, see PEP 7 and bpo-17884.

e Cross-compiling CPython with the Android NDK and the Android
APl level set to 21 (Android 5.0 Lollilop) or greater runs
successfully. While Android is not yet a supported platform, the
Python test suite runs on the Android emulator with only about 16
tests failures. See the Android meta-issue bpo-26865.

e The --enable-optimizations configure flag has been added.
Turning it on will activate expensive optimizations like PGO.
(Original patch by Alecsandru Patrascu of Intel in bpo-26359.)

e The GIL must now be held when allocator functions of
PYMEM_DOMAIN_OBJ (ex: PyObject_Malloc()) and
PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) domains are
called.

e New Py_FinalizeEx() API which indicates if flushing buffered
data failed. (Contributed by Martin Panter in bpo-5319.)

e PyArg_ParseTupleAndKeywords() now supports positional-
only parameters. Positional-only parameters are defined by empty
names. (Contributed by Serhiy Storchaka in bpo-26282).

e PyTraceback_Print method now abbreviates long sequences
of repeated lines as "[Previous line repeated {count}
more times]". (Contributed by Emanuel Barry in bpo-26823.)

e The new PyErr_SetImportErrorSubclass() function allows
for specifying a subclass of ImportError to raise. (Contributed
by Eric Snow in bpo-15767.)

e The new PyErr_ResourceWarning() function can be used to
generate a ResourceWarning providing the source of the
resource allocation. (Contributed by Victor Stinner in bpo-26567.)

https://www.python.org/dev/peps/pep-0007
https://bugs.python.org/issue17884
https://bugs.python.org/issue26865
https://bugs.python.org/issue26359
https://bugs.python.org/issue5319
https://bugs.python.org/issue26282
https://bugs.python.org/issue26823
https://bugs.python.org/issue15767
https://bugs.python.org/issue26567

e The new PyOS_FSPath() function returns the file system
representation of a path-like object. (Contributed by Brett Cannon
in bpo-27186.)

e The PyUnicode_FSConverter() and
PyUnicode_FSDecoder () functions will now accept path-like
objects.

https://bugs.python.org/issue27186

Other Improvements

e When --version (short form: -V) is supplied twice, Python
prints sys.version for detailed information.

$./python -wV

Python 3.6.0b4+ (3.6:223967b49e49+, Nov 21 2016,
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-80
gl 1 2

Deprecated
New Keywords

async and await are not recommended to be used as variable,
class, function or module names. Introduced by PEP 492 in Python
3.5, they will become proper keywords in Python 3.7. Starting in
Python 3.6, the use of async or await as names will generate a
DeprecationWarning.

Deprecated Python behavior

Raising the StopIteration exception inside a generator will now
generate a DeprecationWarning, and will trigger a
RuntimeError in Python 3.7. See PEP 479: Change Stoplteration
handling inside generators for details.

The __aiter__() method is now expected to return an
asynchronous iterator directly instead of returning an awaitable as
previously. Doing the former will trigger a DeprecationWarning.
Backward compatibility will be removed in Python 3.7. (Contributed by
Yury Selivanov in bpo-27243.)

A backslash-character pair that is not a valid escape sequence now
generates a DeprecationWarning. Although this will eventually
become a SyntaxError, that will not be for several Python releases.
(Contributed by Emanuel Barry in bpo-27364.)

When performing a relative import, falling back on __name__ and
__path__ from the «calling module when __spec__ or
__package__ are not defined now raises an ImportWarning.

https://www.python.org/dev/peps/pep-0492
https://bugs.python.org/issue27243
https://bugs.python.org/issue27364

(Contributed by Rose Ames in bpo-25791.)

Deprecated Python modules, functions and
methods

asynchat

The asynchat has been deprecated in favor of asyncio.
(Contributed by Mariatta in bpo-25002.)

asyncore

The asyncore has been deprecated in favor of asyncio.
(Contributed by Mariatta in bpo-25002.)

dbm

Unlike other dbm implementations, the dbm.dumb module creates
databases with the 'rw' mode and allows modifying the database
opened with the 'r' mode. This behavior is now deprecated and will
be removed in 3.8. (Contributed by Serhiy Storchaka in bpo-21708.)

distutils

The undocumented extra_path argument to the Distribution

constructor is now considered deprecated and will raise a warning if
set. Support for this parameter will be removed in a future Python
release. See bpo-27919 for details.

grp

The support of non-integer arguments in getgrgid() has been

https://bugs.python.org/issue25791
https://bugs.python.org/issue25002
https://bugs.python.org/issue25002
https://bugs.python.org/issue21708
https://bugs.python.org/issue27919

deprecated. (Contributed by Serhiy Storchaka in bpo-26129.)
importlib

The
importlib.machinery.SourceFileLoader.load_module()

and
importlib.machinery.SourcelessFilelLoader.load_module

methods are now deprecated. They were the only remaining
implementations of importlib.abc.Loader.load_module() in

importlib that had not been deprecated in previous versions of
Python in favour of importlib.abc.Loader.exec_module().

The importlib.machinery.WindowsRegistryFinder class is
now deprecated. As of 3.6.0, it is still added to sys.meta_path by
default (on Windows), but this may change in future releases.

0S

Undocumented support of general bytes-like objects as paths in os
functions, compile() and similar functions is now deprecated.
(Contributed by Serhiy Storchaka in bpo-25791 and bpo-26754.)

re

Support for inline flags (?letters) in the middle of the regular
expression has been deprecated and will be removed in a future
Python version. Flags at the start of a regular expression are still
allowed. (Contributed by Serhiy Storchaka in bpo-22493.)

ssl

https://bugs.python.org/issue26129
https://bugs.python.org/issue25791
https://bugs.python.org/issue26754
https://bugs.python.org/issue22493

OpenSSL 0.9.8, 1.0.0 and 1.0.1 are deprecated and no longer
supported. In the future the ss1 module will require at least OpenSSL

1.0.2 0r 1.1.0.

SSL-related arguments like certfile, keyfile and
check_hostname in ftplib, http.client, imaplib, poplib,
and smtplib have been deprecated in favor of context.
(Contributed by Christian Heimes in bpo-28022.)

A couple of protocols and functions of the ssl module are now

deprecated. Some features will no longer be available in future
versions of OpenSSL. Other features are deprecated in favor of a
different API. (Contributed by Christian Heimes in bpo-28022 and bpo-
26470.)

tkinter

The tkinter.tix module is now deprecated. tkinter users
should use tkinter . ttk instead.

venv

The pyvenv script has been deprecated in favour of python3 -m
venv. This prevents confusion as to what Python interpreter pyvenv

is connected to and thus what Python interpreter will be used by the
virtual environment. (Contributed by Brett Cannon in bpo-25154.)

Deprecated functions and types of the C API

Undocumented functions PyUnicode_AsEncodedObject(),
PyUnicode_AsDecodedObject(),

https://bugs.python.org/issue28022
https://bugs.python.org/issue28022
https://bugs.python.org/issue26470
https://bugs.python.org/issue25154

PyUnicode_AsEncodedUnicode() and
PyUnicode_AsDecodedUnicode() are deprecated now. Use the
generic codec based API instead.

Deprecated Build Options

The --with-system-ffi configure flag is now on by default on
non-macOS UNIX platforms. It may be disabled by using --
without-system-ffi, but using the flag is deprecated and will not
be accepted in Python 3.7. macOS is unaffected by this change. Note
that many OS distributors already use the --with-system-ffi flag
when building their system Python.

Removed

API| and Feature Removals

e Unknown escapes consisting of '\' and an ASCIl letter in

regular expressions will now cause an error. In replacement
templates for re.sub() they are still allowed, but deprecated.

The re.LOCALE flag can now only be used with binary patterns.

e inspect.getmoduleinfo() was removed (was deprecated
since CPython 3.3). inspect.getmodulename() should be
used for obtaining the module name for a given path. (Contributed
by Yury Selivanov in bpo-13248.)

e traceback.Ignore class and traceback.usage,
traceback.modname, traceback.fullmodname,
traceback.find_lines_from_code,
traceback.find_1lines, traceback.find_strings,
traceback.find_executable_lines methods were
removed from the traceback module. They were undocumented
methods deprecated since Python 3.2 and equivalent functionality
Is available from private methods.

e The tk_menuBar() and tk_bindForTraversal() dummy
methods in tkinter widget classes were removed
(corresponding Tk commands were obsolete since Tk 4.0).

e The open() method of the zipfile.ZipFile class no longer
supports the 'U' mode (was deprecated since Python 3.4). Use
i0.TextIOWrapper for reading compressed text files in

universal newlines mode.
e The undocumented IN, CDROM, DLFCN, TYPES, CDIO, and

STROPTS modules have been removed. They had been available
in the platform specific Lib/plat-*/ directories, but were
chronically out of date, inconsistently available across platforms,
and unmaintained. The script that created these modules is still

https://bugs.python.org/issue13248

available in the source distribution at Tools/scripts/h2py.py.
e The deprecated asynchat.fifo class has been removed.

https://github.com/python/cpython/tree/master/Tools/scripts/h2py.py

Porting to Python 3.6

This section lists previously described changes and other bugfixes that
may require changes to your code.

Changes in ‘python’ Command Behavior

e The output of a special Python build with defined
COUNT_ALLOCS, SHOW_ALLOC_COUNT or SHOW_TRACK_COUNT

macros is now off by default. It can be re-enabled using the -X
showalloccount option. It now outputs to stderr instead of
stdout. (Contributed by Serhiy Storchaka in bpo-23034.)

Changes in the Python API

e open() will no longer allow combining the 'U' mode flag with
'+'. (Contributed by Jeff Balogh and John O’Connor in bpo-
2091.)

e sglite3 no longer implicitly commits an open transaction before
DDL statements.

e On Linux, os.urandom() now blocks until the system urandom
entropy pool is initialized to increase the security.

e When importlib.abc.Loader.exec_module() is defined,
importlib.abc.Loader.create_module() must also be
defined.

e PyErr_SetImportError() now sets TypeError when its
msg argument is not set. Previously only NULL was returned.

https://bugs.python.org/issue23034
https://bugs.python.org/issue2091

e The format of the co_lnotab attribute of code objects changed
to support a negative line number delta. By default, Python does
not emit bytecode with a negative line number delta. Functions
using frame.f_lineno, PyFrame_GetLineNumber() or
PyCode_Addr2Line() are not affected. Functions directly
decoding co_lnotab should be updated to use a signed 8-bit
integer type for the line number delta, but this is only required to
support applications using a negative line number delta. See
Objects/lnotab_notes. txt for the co_lnotab format and

how to decode it, and see the PEP 511 for the rationale.

e The functions in the compileall module now return booleans
instead of 1 or @ to represent success or failure, respectively.

Thanks to booleans being a subclass of integers, this should only
be an issue if you were doing identity checks for 1 or 0. See bpo-
25768.

e Reading the port attribute of urllib.parse.urlsplit() and
urlparse() results now raises ValueError for out-of-range
values, rather than returning None. See bpo-20059.

e The imp module now raises a DeprecationWarning instead of
PendingDeprecationwWarning.

e The following modules have had missing APIs added to their
__all attributes to match the documented APIs: calendar,

cgi, csv, ElementTree, enum, fileinput, ftplib,
logging, mailbox, mimetypes, optparse, plistlib,
smtpd, subprocess, tarfile, threading and wave. This
means they will export new symbols when import * is used.
(Contributed by Joel Taddei and Jacek Kotodziej in bpo-23883.)

https://www.python.org/dev/peps/pep-0511
https://bugs.python.org/issue25768
https://bugs.python.org/issue20059
https://bugs.python.org/issue23883

e When performing a relative import, if __package__ does not
compare equal to __spec___.parent then ImportWarning is
raised. (Contributed by Brett Cannon in bpo-25791.)

e When a relative import is performed and no parent package is
known, then ImportError will be raised. Previously,
SystemError could be raised. (Contributed by Brett Cannon in
bpo-18018.)

e Servers based on the socketserver module, including those
defined in http.server, xmlrpc.server and
wsgiref.simple_server, now only catch exceptions derived
from Exception. Therefore if a request handler raises an
exception like SystemExit or KeyboardInterrupt,
handle_error () is no longer called, and the exception will stop

a single-threaded server. (Contributed by Martin Panter in bpo-
23430.)

e spwd.getspnam() now raises a PermissionError instead of
KeyError if the user doesn’t have privileges.

e The socket.socket.close() method now raises an
exception if an error (e.g. EBADF) was reported by the underlying
system call. (Contributed by Martin Panter in bpo-26685.)

e The decode data argument for the smtpd.SMTPChannel and
smtpd.SMTPServer constructors is now False by default. This
means that the argument passed to process_message() is
now a bytes object by default, and process_message() will be
passed keyword arguments. Code that has already been updated
in accordance with the deprecation warning generated by 3.5 will
not be affected.

https://bugs.python.org/issue25791
https://bugs.python.org/issue18018
https://bugs.python.org/issue23430
https://bugs.python.org/issue26685

e All optional arguments of the dump(), dumps(), load() and
loads() functions and JSONEncoder and JSONDecoder class
constructors in the json module are now keyword-only.
(Contributed by Serhiy Storchaka in bpo-18726.)

e Subclasses of type which don’t override type.__new__ may no
longer use the one-argument form to get the type of an object.

e As part of PEP 487, the handling of keyword arguments passed to
type (other than the metaclass hint, metaclass) is now
consistently delegated to object.__init_subclass__ ().
This means that type.__new_ () and type.__init_ ()
both now accept arbitrary keyword arguments, but
object.__init_subclass__ () (which is called from
type._new__()) wil reject them by default. Custom
metaclasses accepting additional keyword arguments will need to
adjust their calls to type.__new__ () (whether direct or via
super) accordingly.

e In distutils.command.sdist.sdist, the
default_format attribute has been removed and is no longer

honored. Instead, the gzipped tarfile format is the default on all
platforms and no platform-specific selection is made. In
environments where distributions are built on Windows and zip
distributions are required, configure the project with a setup.cfg
file containing the following:

[sdist]
formats=zip

This behavior has also been backported to earlier Python versions
by Setuptools 26.0.0.

https://bugs.python.org/issue18726
https://www.python.org/dev/peps/pep-0487

In the urllib.request module and the
http.client.HTTPConnection.request() method, if no

Content-Length header field has been specified and the request
body is a file object, it is now sent with HTTP 1.1 chunked
encoding. If a file object has to be sent to a HTTP 1.0 server, the
Content-Length value now has to be specified by the caller.
(Contributed by Demian Brecht and Rolf Krahl with tweaks from
Martin Panter in bpo-12319.)

The DictReader now returns rows of type OrderedDict.
(Contributed by Steve Holden in bpo-27842.)

The crypt.METHOD_CRYPT will no longer be added to
crypt.methods if unsupported by the platform. (Contributed by
Victor Stinner in bpo-25287.)

The verbose and rename arguments for namedtuple() are now
keyword-only. (Contributed by Raymond Hettinger in bpo-25628.)

On Linux, ctypes.util.find_library() now looks in
LD_LIBRARY_PATH for shared libraries. (Contributed by Vinay
Sajip in bpo-9998.)

The imaplib.IMAP4 class now handles flags containing the
"]' character in messages sent from the server to improve real-
world compatibility. (Contributed by Lita Cho in bpo-21815.)

The mmap.write() function now returns the number of bytes
written like other write methods. (Contributed by Jakub Stasiak in
bpo-26335.)

The pkgutil.iter_modules() and
pkgutil.walk_packages() functions now return

https://bugs.python.org/issue12319
https://bugs.python.org/issue27842
https://bugs.python.org/issue25287
https://bugs.python.org/issue25628
https://bugs.python.org/issue9998
https://bugs.python.org/issue21815
https://bugs.python.org/issue26335

ModuleInfo named tuples. (Contributed by Ramchandra Apte in
bpo-17211.)

e re.sub() now raises an error for invalid numerical group

references in replacement templates even if the pattern is not
found in the string. The error message for invalid group
references now includes the group index and the position of the
reference. (Contributed by SilentGhost, Serhiy Storchaka in bpo-
25953.)

e zipfile.ZipFile will now raise NotImplementedError for
unrecognized compression values. Previously a plain
RuntimeError was raised. Additionally, calling ZipFile
methods on a closed ZipFile or calling the write() method on a
ZipFile created with mode 'r' will raise a ValueError.
Previously, a RuntimeError was raised in those scenarios.

e when custom metaclasses are combined with zero-argument
super () or direct references from methods to the implicit
__class__ closure variable, the implicit __classcell _
namespace entry must now be passed up to type.__new__ for
initialisation. Failing to do so will result in a
DeprecationWarning in 3.6 and a RuntimewWarning in the
future.

Changes in the C API

e The PyMem_Malloc() allocator family now uses the pymalloc
allocator rather than the system malloc(). Applications calling
PyMem_Malloc() without holding the GIL can now crash. Set
the PYTHONMALLOC environment variable to debug to validate
the usage of memory allocators in your application. See bpo-

https://bugs.python.org/issue17211
https://bugs.python.org/issue25953
https://bugs.python.org/issue26249

26249.
e Py Exit() (and the main interpreter) now override the exit
status with 120 if flushing buffered data failed. See bpo-5319.

CPython bytecode changes

There have been several major changes to the bytecode in Python
3.6.

e The Python interpreter now uses a 16-bit wordcode instead of
bytecode. (Contributed by Demur Rumed with input and reviews
from Serhiy Storchaka and Victor Stinner in bpo-26647 and bpo-
28050.)

e The new FORMAT_VALUE and BUILD_STRING opcodes as part
of the formatted string literal implementation. (Contributed by Eric
Smith in bpo-25483 and Serhiy Storchaka in bpo-27078.)

e The new BUILD_CONST_KEY_MAP opcode to optimize the
creation of dictionaries with constant keys. (Contributed by Serhiy
Storchaka in bpo-27140.)

e The function call opcodes have been heavily reworked for better
performance and simpler implementation. The MAKE_FUNCTION,
CALL_FUNCTION, CALL_FUNCTION_KW and
BUILD_MAP_UNPACK_WITH_CALL opcodes have been modified,
the new CALL_FUNCTION_EX and
BUILD_TUPLE_UNPACK_WITH_CALL have been added, and
CALL_FUNCTION_VAR, CALL_FUNCTION_VAR_KW and
MAKE_CLOSURE opcodes have been removed. (Contributed by
Demur Rumed in bpo-27095, and Serhiy Storchaka in bpo-27213,
bpo-28257.)

e The new SETUP_ANNOTATIONS and STORE_ANNOTATION
opcodes have been added to support the new variable annotation
syntax. (Contributed by Ivan Levkivskyi in bpo-27985.)

https://bugs.python.org/issue5319
https://bugs.python.org/issue26647
https://bugs.python.org/issue28050
https://bugs.python.org/issue25483
https://bugs.python.org/issue27078
https://bugs.python.org/issue27140
https://bugs.python.org/issue27095
https://bugs.python.org/issue27213
https://bugs.python.org/issue28257
https://bugs.python.org/issue27985

@ Python » 3.7.0b1 Documentation » What's New in Python previous | next | modules | index

»

© Copyright 2001-2018, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.
Last updated on Jan 31, 2018. Found a bug?

Created using Sphinx 1.6.6.

https://www.python.org/
https://www.python.org/psf/donations/
http://sphinx.pocoo.org/

@ Python » 3.7.0b1 Documentation » What's New in Python previous | next | modules | index

»

https://www.python.org/

What's New In Python 3.5

Elvis Pranskevichus <elvis@magic.io>, Yury Selivanov

Editors: <yury@magic.io>

This article explains the new features in Python 3.5, compared to 3.4.
Python 3.5 was released on September 13, 2015. See the changelog
for a full list of changes.

See also: PEP 478 - Python 3.5 Release Schedule

mailto:elvis%40magic.io
mailto:yury%40magic.io
https://docs.python.org/3.5/whatsnew/changelog.html
https://www.python.org/dev/peps/pep-0478

Summary — Release highlights

New syntax features:

e PEP 492, coroutines with async and await syntax.
e PEP 465, a new matrix multiplication operator: a @ b.
e PEP 448, additional unpacking generalizations.

New library modules:

e typing: PEP 484 — Type Hints.
e zipapp: PEP 441 Improving Python ZIP Application Support.

New built-in features:

e bytes % args, bytearray % args: PEP 461 — Adding %
formatting to bytes and bytearray.

e New bytes.hex(), bytearray.hex() and
memoryview.hex() methods. (Contributed by Arnon Yaari in
bpo-9951.)

e memoryview now supports tuple indexing (including multi-
dimensional). (Contributed by Antoine Pitrou in bpo-23632.)

e Generators have a new gi_yieldfrom attribute, which returns
the object being iterated by yield from expressions.
(Contributed by Benno Leslie and Yury Selivanov in bpo-24450.)

e A new RecursionError exception is now raised when
maximum recursion depth is reached. (Contributed by Georg
Brandl in bpo-19235.)

CPython implementation improvements:

e When the LC_TYPE locale is the POSIX locale (C locale),
sys.stdin and sys.stdout now use the surrogateescape

https://bugs.python.org/issue9951
https://bugs.python.org/issue23632
https://bugs.python.org/issue24450
https://bugs.python.org/issue19235

error handler, instead of the strict error handler. (Contributed
by Victor Stinner in bpo-19977.)

.pyo files are no longer used and have been replaced by a more
flexible scheme that includes the optimization level explicitly in
.pyc name. (See PEP 488 overview.)

Builtin and extension modules are now initialized in a multi-phase
process, which is similar to how Python modules are loaded. (See
PEP 489 overview.)

Significant improvements in the standard library:

collections.OrderedDict is now implemented in C, which
makes it 4 to 100 times faster.
The ssl module gained support for Memory BIO, which

decouples SSL protocol handling from network 10.

The new os.scandir() function provides a better and
significantly faster way of directory traversal.
functools.lru_cache() has been mostly reimplemented in
C, yielding much better performance.

The new subprocess.run() function provides a streamlined

way to run subprocesses.
The traceback module has been significantly enhanced for

improved performance and developer convenience.

Security improvements:

SSLv3 is now disabled throughout the standard library. It can still
be enabled by instantiating a ss1.SSLContext manually. (See
bpo-22638 for more details; this change was backported to
CPython 3.4 and 2.7.)

HTTP cookie parsing is now stricter, in order to protect against
potential injection attacks. (Contributed by Antoine Pitrou in bpo-
22796.)

https://bugs.python.org/issue19977
https://bugs.python.org/issue22638
https://bugs.python.org/issue22796

Windows improvements:

e A new installer for Windows has replaced the old MSI. See Using
Python on Windows for more information.

e Windows builds now use Microsoft Visual C++ 14.0, and
extension modules should use the same.

Please read on for a comprehensive list of user-facing changes,
including many other smaller improvements, CPython optimizations,
deprecations, and potential porting issues.

New Features

PEP 492 - Coroutines with async and await syntax

PEP 492 greatly improves support for asynchronous programming in
Python by adding awaitable objects, coroutine functions,
asynchronous iteration, and asynchronous context managers.

Coroutine functions are declared using the new async def syntax:

>>> async def coro():
return 'spam'

Inside a coroutine function, the new await expression can be used to
suspend coroutine execution until the result is available. Any object
can be awaited, as long as it implements the awaitable protocol by
defining the __await__ () method.

PEP 492 also adds async for statement for convenient iteration
over asynchronous iterables.

An example of a rudimentary HTTP client written using the new
syntax:

import asyncio

async def http_get(domain):
reader, writer = await asyncio.open_connection(c

writer.write(b'\r\n'.join([
b'GET / HTTP/1.1"',
b'Host: %b' % domain.encode('latin-1'),
b'Connection: close’,
b", b!l

https://www.python.org/dev/peps/pep-0492

1))

async for line in reader:
print('>>>"', line)

writer.close()

loop = asyncio.get_event_loop()
try:
loop.run_until_complete(http_get('example.com'))
finally:
loop.close()
A e o

Similarly to asynchronous iteration, there is a new syntax for
asynchronous context managers. The following script:

import asyncio

async def coro(name, lock):
print('coro {}: waiting for lock'.format(name))
async with lock:
print('coro {}: holding the lock'.format(nan
await asyncio.sleep(1)
print('coro {}: releasing the lock'.format(n

loop asyncio.get_event_loop()
lock = asyncio.Lock()
coros = asyncio.gather(coro(1, lock), coro(2, lock))
try:
loop.run_until_complete(coros)
finally:
loop.close()
Rl] 2

will output:

coro 2: waiting for lock
coro 2: holding the lock
coro 1: waiting for lock
coro 2: releasing the lock
coro 1: holding the lock
coro 1: releasing the lock

Note that both async for and async with can only be used inside
a coroutine function declared with async def.

Coroutine functions are intended to be run inside a compatible event
loop, such as the asyncio loop.

Note:

Changed in version 3.5.2: Starting with CPython 3.5.2, __aiter___
can directly return asynchronous iterators. Returning an awaitable
object will result in a PendingDeprecationWarning.

See more details in the Asynchronous Iterators documentation
section.

See also:

PEP 492 - Coroutines with async and await syntax
PEP written and implemented by Yury Selivanov.

PEP 465 - A dedicated infix operator for matrix
multiplication

PEP 465 adds the @ infix operator for matrix multiplication. Currently,
no builtin Python types implement the new operator, however, it can be

https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0465

implemented by defining _ _matmul__ (), __rmatmul__ (), and
__imatmul__ () for reqgular, reflected, and in-place matrix
multiplication. The semantics of these methods is similar to that of
methods defining other infix arithmetic operators.

Matrix multiplication is a notably common operation in many fields of
mathematics, science, engineering, and the addition of @ allows
writing cleaner code:

S=(H@beta - r). T @ inv(H @ V@ H.T) @ (H @ beta
Rl 1 2

instead of:

S = dot((dot(H, beta) - r).T,
dot(inv(dot(dot(H, V), H.T)), dot(H, beta) -
Rl _ 1 i

NumPy 1.10 has support for the new operator:

>>> import numpy

>>> X = numpy.ones(3)
>>> X

array([1., 1., 1.])

>>> m = numpy.eye(3)

>>>

array([[1., 0., 0.],
[0'/ 1'/ O]/
[0., 0., 1.1])

>>> X @ m

array([1., 1., 1.])

See also:

PEP 465 - A dedicated infix operator for matrix multiplication
PEP written by Nathaniel J. Smith; implemented by Benjamin
Peterson.

PEP 448 - Additional Unpacking Generalizations

PEP 448 extends the allowed uses of the * iterable unpacking
operator and ** dictionary unpacking operator. It is now possible to
use an arbitrary number of unpackings in function calls:

>>> print(*[1], *[2], 3, *[4, 5])
12345

>>> def fn(a, b, c, d):
print(a, b, c, d)

>>> fn(**{'a': 1, 'c': 3}, **{'b': 2, 'd': 4})
12 34

Similarly, tuple, list, set, and dictionary displays allow multiple
unpackings (see Expression lists and Dictionary displays):

>>> *range(4), 4
(0, 1, 2, 3, 4)

>>> [*range(4), 4]
[0, 1, 2, 3, 4]

>>> {*range(4), 4, *(5, 6, 7)}
{6, 1, 2, 3, 4, 5, 6, 7}

https://www.python.org/dev/peps/pep-0465
https://www.python.org/dev/peps/pep-0448

>>> {lxl: 1’ **{lyl: 2}}
{'x': 1, 'y': 2}

See also:

PEP 448 - Additional Unpacking Generalizations
PEP written by Joshua Landau; implemented by Neil Girdhar,
Thomas Wouters, and Joshua Landau.

PEP 461 - percent formatting support for bytes
and bytearray

PEP 461 adds support for the % interpolation operator to bytes and
bytearray.

While interpolation is usually thought of as a string operation, there are
cases where interpolation on bytes or bytearrays makes sense,

and the work needed to make up for this missing functionality detracts
from the overall readability of the code. This issue is particularly
important when dealing with wire format protocols, which are often a
mixture of binary and ASCII compatible text.

Examples:

>>> b'Hello %b!' % b'World'
b'Hello world!'

>>> b'x=%1i y=%f"' % (1, 2.5)
b'x=1 y=2.500000'

Unicode is not allowed for %b, but it is accepted by %a (equivalent of
repr(obj).encode('ascii', 'backslashreplace')):

https://www.python.org/dev/peps/pep-0448
https://www.python.org/dev/peps/pep-0461

>>> p'Hello %b!'"' % 'World'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: %b requires bytes, or an object that impl

>>> pb'price: %a' % '10€'
b"price: '10\\u20ac'"
1 1 i

Note that %s and %r conversion types, although supported, should
only be used in codebases that need compatibility with Python 2.

See also:

PEP 461 - Adding % formatting to bytes and bytearray
PEP written by Ethan Furman; implemented by Neil
Schemenauer and Ethan Furman.

PEP 484 - Type Hints

Function annotation syntax has been a Python feature since version
3.0 (PEP 3107), however the semantics of annotations has been left
undefined.

Experience has shown that the majority of function annotation uses
were to provide type hints to function parameters and return values. It
became evident that it would be beneficial for Python users, if the
standard library included the base definitions and tools for type
annotations.

PEP 484 introduces a provisional module to provide these standard
definitions and tools, along with some conventions for situations where
annotations are not available.

https://www.python.org/dev/peps/pep-0461
https://www.python.org/dev/peps/pep-3107
https://www.python.org/dev/peps/pep-0484

For example, here is a simple function whose argument and return
type are declared in the annotations:

def greeting(name: str) -> str:
return 'Hello ' + name

While these annotations are available at runtime through the usual
__annotations___ attribute, no automatic type checking happens at
runtime. Instead, it is assumed that a separate off-line type checker
(e.g. mypy) will be used for on-demand source code analysis.

The type system supports unions, generic types, and a special type
named Any which is consistent with (i.e. assignable to and from) all

types.

See also:

e typing module documentation

e PEP 484 - Type Hints
PEP written by Guido van Rossum, Jukka Lehtosalo, and
t ukasz Langa; implemented by Guido van Rossum.

e PEP 483 - The Theory of Type Hints
PEP written by Guido van Rossum

PEP 471 - os.scandir() function — a better and
faster directory iterator

PEP 471 adds a new directory iteration function, os.scandir (), to
the standard library. Additionally, os.walk() is now implemented
using scandir, which makes it 3 to 5 times faster on POSIX systems
and 7 to 20 times faster on Windows systems. This is largely achieved

http://mypy-lang.org
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0483
https://www.python.org/dev/peps/pep-0471

by greatly reducing the number of calls to os.stat() required to
walk a directory tree.

Additionally, scandir returns an iterator, as opposed to returning a
list of file names, which improves memory efficiency when iterating
over very large directories.

The following example shows a simple use of os.scandir() to
display all the files (excluding directories) in the given path that don’t
start with '."'. The entry.is_file() call will generally not make
an additional system call:

for entry in os.scandir(path):
if not entry.name.startswith('.') and entry.is_f
print(entry.name)

j — o

See also:

PEP 471 - os.scandir() function — a better and faster directory
iterator

PEP written and implemented by Ben Hoyt with the help of Victor
Stinner.

PEP 475: Retry system calls failing with EINTR

An errno.EINTR error code is returned whenever a system call, that

is waiting for 1/O, is interrupted by a signal. Previously, Python would
raise InterruptedError in such cases. This meant that, when

writing a Python application, the developer had two choices:

1. Ignore the InterruptedError.
2. Handle the InterruptedError and attempt to restart the

https://www.python.org/dev/peps/pep-0471

interrupted system call at every call site.

The first option makes an application fail intermittently. The second
option adds a large amount of boilerplate that makes the code nearly
unreadable. Compare:

print("Hello World")

and:

while True:
try:
print("Hello World")
break
except InterruptedError:
continue

PEP 475 implements automatic retry of system calls on EINTR. This
removes the burden of dealing with EINTR or InterruptedError in
user code in most situations and makes Python programs, including
the standard library, more robust. Note that the system call is only
retried if the signal handler does not raise an exception.

Below is a list of functions which are now retried when interrupted by a
signal:

e open() and io.open();
e functions of the faulthandler module;

e 0S functions: fchdir (), fchmod (), fchown(),
fdatasync(), fstat(), fstatvfs(), fsync(),
ftruncate(), mkfifo(), mknod(), open(),
posix_fadvise(), posix_fallocate(), pread(),

pwrite(), read(), readv(), sendfile(), wait3(),
wait4(), wait(), waitid(), waitpid(), write(),

https://www.python.org/dev/peps/pep-0475

writev();

e special cases: os.close() and os.dup2() now ignore EINTR
errors; the syscall is not retried (see the PEP for the rationale);

e select functions: devpoll.poll(), epoll.poll(),
kqueue.control(), poll.poll(), select();

e methods of the socket class: accept(), connect() (except
for non-blocking sockets), recv(), recvfrom(), recvmsg(),
send(), sendall(), sendmsg(), sendto();

e signal.sigtimedwait() and signal.sigwaitinfo();

e time.sleep().

See also:

PEP 475 - Retry system calls failing with EINTR
PEP and implementation written by Charles-Francois Natali and
Victor Stinner, with the help of Antoine Pitrou (the French
connection).

PEP 479: Change Stoplteration handling inside
generators

The interaction of generators and StopIteration in Python 3.4 and
earlier was sometimes surprising, and could conceal obscure bugs.
Previously, StopIteration raised accidentally inside a generator

function was interpreted as the end of the iteration by the loop
construct driving the generator.

PEP 479 changes the behavior of generators: when a
StopIteration exception is raised inside a generator, it is replaced
with a RuntimeError before it exits the generator frame. The main
goal of this change is to ease debugging in the situation where an
unguarded next() call raises StopIteration and causes the

https://www.python.org/dev/peps/pep-0475
https://www.python.org/dev/peps/pep-0479

iteration controlled by the generator to terminate silently. This is
particularly pernicious in combination with the yield from construct.

This is a backwards incompatible change, so to enable the new
behavior, a _ future__ import is necessary:

>>> from __ future__ import generator_stop

>>> def gen():
next(iter([]))
yield

>>> next(gen())

Traceback (most recent call last):
File "<stdin>", line 2, in gen

StopIteration

The above exception was the direct cause of the foll

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: generator raised StopIteration
« 1]

Without a ___future__ import, a PendingDeprecationWarning
will be raised whenever a StopIteration exception is raised inside
a generator.

See also:

PEP 479 - Change Stoplteration handling inside generators
PEP written by Chris Angelico and Guido van Rossum.
Implemented by Chris Angelico, Yury Selivanov and Nick
Coghlan.

https://www.python.org/dev/peps/pep-0479

PEP 485: A function for testing approximate
equality

PEP 485 adds the math.isclose() and cmath.isclose()

functions which tell whether two values are approximately equal or
“close” to each other. Whether or not two values are considered close
is determined according to given absolute and relative tolerances.
Relative tolerance is the maximum allowed difference between
isclose arguments, relative to the larger absolute value:

>>> import math

>>> a = 5.0

>>> b = 4.99998

>>> math.isclose(a, b, rel_tol=1le-5)
True

>>> math.isclose(a, b, rel_tol=1e-6)
False

It is also possible to compare two values using absolute tolerance,
which must be a non-negative value:

>>> import math

>>> a = 5.0

>>> b = 4.99998

>>> math.isclose(a, b, abs_tol=0.00003)
True

>>> math.isclose(a, b, abs_tol=0.00001)
False

See also:

PEP 485 - A function for testing approximate equality
PEP written by Christopher Barker; implemented by Chris Barker

https://www.python.org/dev/peps/pep-0485
https://www.python.org/dev/peps/pep-0485

and Tal Einat.

PEP 486: Make the Python Launcher aware of
virtual environments

PEP 486 makes the Windows launcher (see PEP 397) aware of an
active virtual environment. When the default interpreter would be used
and the VIRTUAL_ENV environment variable is set, the interpreter in

the virtual environment will be used.

See also:

PEP 486 — Make the Python Launcher aware of virtual
environments

PEP written and implemented by Paul Moore.

PEP 488: Elimination of PYO files

PEP 488 does away with the concept of .pyo files. This means that
.pyc files represent both unoptimized and optimized bytecode. To
prevent the need to constantly regenerate bytecode files, .pyc files
now have an optional opt- tag in their name when the bytecode is
optimized. This has the side-effect of no more bytecode file name
clashes when running under either -0 or -00. Consequently,

bytecode files generated from -0, and -00 may now exist
simultaneously. importlib.util.cache_from_source() has an
updated API to help with this change.

See also:

PEP 488 - Elimination of PYO files

https://www.python.org/dev/peps/pep-0486
https://www.python.org/dev/peps/pep-0397
https://www.python.org/dev/peps/pep-0486
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488

PEP written and implemented by Brett Cannon.

PEP 489: Multi-phase extension module
Initialization

PEP 489 updates extension module initialization to take advantage of
the two step module loading mechanism introduced by PEP 451 in
Python 3.4.

This change brings the import semantics of extension modules that
opt-in to using the new mechanism much closer to those of Python
source and bytecode modules, including the ability to use any valid
identifier as a module name, rather than being restricted to ASCII.

See also:

PEP 489 - Multi-phase extension module initialization
PEP written by Petr Viktorin, Stefan Behnel, and Nick Coghlan;
implemented by Petr Viktorin.

https://www.python.org/dev/peps/pep-0489
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0489

Other Language Changes

Some smaller changes made to the core Python language are:

Added the "namereplace" error handlers. The
"backslashreplace" error handlers now work with decoding
and translating. (Contributed by Serhiy Storchaka in bpo-19676
and bpo-22286.)

The -b option now affects comparisons of bytes with int.
(Contributed by Serhiy Storchaka in bpo-23681.)

New Kazakh kz1048 and Tajik koi8_t codecs. (Contributed by
Serhiy Storchaka in bpo-22682 and bpo-22681.)

Property docstrings are now writable. This is especially useful for
collections.namedtuple() docstrings. (Contributed by
Berker Peksag in bpo-24064.)

Circular imports involving relative imports are now supported.
(Contributed by Brett Cannon and Antoine Pitrou in bpo-17636.)

https://bugs.python.org/issue19676
https://bugs.python.org/issue22286
https://bugs.python.org/issue23681
https://bugs.python.org/issue22682
https://bugs.python.org/issue22681
https://bugs.python.org/issue24064
https://bugs.python.org/issue17636

New Modules
typing

The new typing provisional module provides standard definitions

and tools for function type annotations. See Type Hints for more
information.

zipapp

The new zipapp module (specified in PEP 441) provides an API and
command line tool for creating executable Python Zip Applications,
which were introduced in Python 2.6 in bpo-1739468, but which were
not well publicized, either at the time or since.

With the new module, bundling your application is as simple as putting
all the files, including a __main___.py file, into a directory myapp and
running:

$ python -m zipapp myapp
$ python myapp.pyz

The module implementation has been contributed by Paul Moore in
bpo-23491.

See also: PEP 441 — Improving Python ZIP Application Support

https://www.python.org/dev/peps/pep-0441
https://bugs.python.org/issue1739468
https://bugs.python.org/issue23491
https://www.python.org/dev/peps/pep-0441

Improved Modules

argparse

The ArgumentParser class now allows disabling abbreviated usage
of long options by setting allow_abbrev to False. (Contributed by
Jonathan Paugh, Steven Bethard, paul j3 and Daniel Eriksson in bpo-
14910.)

asyncio

Since the asyncio module is provisional, all changes introduced in
Python 3.5 have also been backported to Python 3.4.x.

Notable changes in the asyncio module since Python 3.4.0:

New debugging APIs: loop.set_debug() and
loop.get_debug() methods. (Contributed by Victor Stinner.)
The proactor event loop now supports SSL. (Contributed by
Antoine Pitrou and Victor Stinner in bpo-22560.)

Anew loop.is_closed() method to check if the event loop is
closed. (Contributed by Victor Stinner in bpo-21326.)

A new loop.create_task() to conveniently create and
schedule a new Task for a coroutine. The create_task method
is also used by all asyncio functions that wrap coroutines into
tasks, such as asyncio.wait(), asyncio.gather (), etc.

(Contributed by Victor Stinner.)
A new transport.get_write_buffer_limits() method to

inquire for high- and low- water limits of the flow control.
(Contributed by Victor Stinner.)
The async() function is deprecated in favor of

ensure_future(). (Contributed by Yury Selivanov.)

https://bugs.python.org/issue14910
https://bugs.python.org/issue22560
https://bugs.python.org/issue21326

e New loop.set_task_factory() and
loop.get_task_factory() methods to customize the task
factory that loop.create_task() method uses. (Contributed
by Yury Selivanov.)

e New Queue.join() and Queue.task_done() queue
methods. (Contributed by Victor Stinner.)

e The JoinableQueue class was removed, in favor of the
asyncio.Queue class. (Contributed by Victor Stinner.)

Updates in 3.5.1:

e The ensure_future() function and all functions that use it,
such as loop.run_until_complete(), now accept all kinds
of awaitable objects. (Contributed by Yury Selivanov.)

e New run_coroutine_threadsafe() function to submit
coroutines to event loops from other threads. (Contributed by
Vincent Michel.)

e New Transport.is_closing() method to check if the
transport is closing or closed. (Contributed by Yury Selivanov.)

e The loop.create_server () method can now accept a list of
hosts. (Contributed by Yann Sionneau.)

Updates in 3.5.2:

e New loop.create_future() method to create Future objects.
This allows alternative event loop implementations, such as
uvloop, to provide a faster asyncio.Future implementation.
(Contributed by Yury Selivanov.)

e New loop.get_exception_handler() method to get the
current exception handler. (Contributed by Yury Selivanov.)

e New StreamReader.readuntil() method to read data from
the stream until a separator bytes sequence appears.
(Contributed by Mark Korenberg.)

e The loop.create_connection() and

https://github.com/MagicStack/uvloop

loop.create_server() methods are optimized to avoid
calling the system getaddrinfo function if the address is
already resolved. (Contributed by A. Jesse Jiryu Davis.)

e The loop.sock_connect(sock, address) no longer

requires the address to be resolved prior to the call. (Contributed
by A. Jesse Jiryu Davis.)

bz2

The BZzZ2Decompressor.decompress method now accepts an
optional max_length argument to limit the maximum size of
decompressed data. (Contributed by Nikolaus Rath in bpo-15955.)

ofo]

The FieldStorage class now supports the context manager
protocol. (Contributed by Berker Peksag in bpo-20289.)

cmath

A new function isclose() provides a way to test for approximate
equality. (Contributed by Chris Barker and Tal Einat in bpo-24270.)

code

The Interactivelnterpreter.showtraceback() method now

prints the full chained traceback, just like the interactive interpreter.
(Contributed by Claudiu Popa in bpo-17442.)

collections

https://bugs.python.org/issue15955
https://bugs.python.org/issue20289
https://bugs.python.org/issue24270
https://bugs.python.org/issue17442

The OrderedDict class is now implemented in C, which makes it 4
to 100 times faster. (Contributed by Eric Snow in bpo-16991.)

OrderedDict.items(), OrderedDict.keys(),
OrderedDict.values() views now support reversed() iteration.
(Contributed by Serhiy Storchaka in bpo-19505.)

The deque class now defines index(), insert(), and copy(),
and supports the + and * operators. This allows deques to be
recognized as a MutableSequence and improves their

substitutability for lists. (Contributed by Raymond Hettinger in bpo-
23704.)

Docstrings produced by namedtuple() can now be updated:

Point = namedtuple('Point', ['x', 'y'])
Point._ doc__ += ': Cartesian coodinate'
Point.x. doc_ 'abscissa'
Point.y._ doc_ 'ordinate'

(Contributed by Berker Peksag in bpo-24064.)

The UserString class now implements the __getnewargs__ (),
__rmod__ (), casefold(), format_map(), isprintable(), and
maketrans() methods to match the corresponding methods of str.
(Contributed by Joe Jevnik in bpo-22189.)

collections.abc

The Sequence.index() method now accepts start and stop
arguments to match the corresponding methods of tuple, 1ist, etc.
(Contributed by Devin Jeanpierre in bpo-23086.)

https://bugs.python.org/issue16991
https://bugs.python.org/issue19505
https://bugs.python.org/issue23704
https://bugs.python.org/issue24064
https://bugs.python.org/issue22189
https://bugs.python.org/issue23086

Anew Generator abstract base class. (Contributed by Stefan Behnel
in bpo-24018.)

New Awaitable, Coroutine, AsyncIterator, and
AsyncIterable abstract base classes. (Contributed by Yury
Selivanov in bpo-24184.)

For earlier Python versions, a backport of the new ABCs is available in
an external PyPI package.

compileall

A new compileall option, -j N, allows running N workers
simultaneously to perform parallel bytecode compilation. The
compile_dir () function has a corresponding workers parameter.
(Contributed by Claudiu Popa in bpo-16104.)

Another new option, -r, allows controlling the maximum recursion
level for subdirectories. (Contributed by Claudiu Popa in bpo-19628.)

The -q command line option can now be specified more than once, in
which case all output, including errors, will be suppressed. The
corresponding guiet parameter in compile_dir(),
compile_file(), and compile_path() can now accept an
integer value indicating the level of output suppression. (Contributed
by Thomas Kluyver in bpo-21338.)

concurrent.futures

The Executor.map() method now accepts a chunksize argument to

allow batching of tasks to improve performance when
ProcessPoolExecutor () is used. (Contributed by Dan O'Reilly in

https://bugs.python.org/issue24018
https://bugs.python.org/issue24184
https://pypi.python.org/pypi/backports_abc
https://bugs.python.org/issue16104
https://bugs.python.org/issue19628
https://bugs.python.org/issue21338

bpo-11271.)

The number of workers in the ThreadPoolExecutor constructor is

optional now. The default value is 5 times the number of CPUs.
(Contributed by Claudiu Popa in bpo-21527.)

configparser

configparser now provides a way to customize the conversion of
values by specifying a dictionary of converters in the ConfigParser
constructor, or by defining them as methods in ConfigParser

subclasses. Converters defined in a parser instance are inherited by
its section proxies.

Example:

>>> import configparser
>>> conv = {}
>>> conv['list'] = lambda v: [e.strip() for e in v.s
>>> cfg = configparser.ConfigParser(converters=conv)
>>> cfg.read_string("""
.. [s]
. list =abcdefg
L. llllll)
>>> cfg.get('s', 'list')
'abcdefqg'
>>> cfg.getlist('s', 'list')
[Iall 'b', 'C', 'd', |e|’ 'f', |g|]
>>> section = cfg['s']
>>> section.getlist('list')
[Iall 'b', 'C', 'd', |e|’ 'f', |g|]
Rl — 1 i

(Contributed by tukasz Langa in bpo-18159.)

https://bugs.python.org/issue11271
https://bugs.python.org/issue21527
https://bugs.python.org/issue18159

contextlib

The new redirect_stderr() context manager (similar to

redirect_stdout()) makes it easier for utility scripts to handle

inflexible APIs that write their output to sys.stderr and don't

provide any options to redirect it:

>>> import contextlib, io, logging

>>> f = 10.StringIO()

>>> with contextlib.redirect_stderr(f):
logging.warning('warning')

>>> f.getvalue()
'"WARNING: root:warning\n'

(Contributed by Berker Peksag in bpo-22389.)

CSV

The writerow() method now supports arbitrary iterables, not just
sequences. (Contributed by Serhiy Storchaka in bpo-23171.)

curses

The new update_lines_cols() function updates the LINES and
COLS environment variables. This is useful for detecting manual
screen resizing. (Contributed by Arnon Yaari in bpo-4254.)

dbm

dumb.open always creates a new database when the flag has the

https://bugs.python.org/issue22389
https://bugs.python.org/issue23171
https://bugs.python.org/issue4254

value "n". (Contributed by Claudiu Popa in bpo-18039.)

difflib

The charset of HTML documents generated by
HtmlDiff.make_file() can now be customized by using a new

charset keyword-only argument. The default charset of HTML
document changed from "IS0-8859-1" to "utf-8". (Contributed
by Berker Peksag in bpo-2052.)

The diff_bytes() function can now compare lists of byte strings.

This fixes a regression from Python 2. (Contributed by Terry J. Reedy
and Greg Ward in bpo-17445.)

distutils

Both the build and build_ext commands now accept a -j option

to enable parallel building of extension modules. (Contributed by
Antoine Pitrou in bpo-5309.)

The distutils module now supports Xz compression, and can be
enabled by passing xztar as an argument to bdist --format.
(Contributed by Serhiy Storchaka in bpo-16314.)

doctest

The DocTestSuite() function returns an empty
unittest.TestSuite if module contains no docstrings, instead of
raising ValueError. (Contributed by Glenn Jones in bpo-15916.)

email

https://bugs.python.org/issue18039
https://bugs.python.org/issue2052
https://bugs.python.org/issue17445
https://bugs.python.org/issue5309
https://bugs.python.org/issue16314
https://bugs.python.org/issue15916

A new policy option Policy.mangle_from_ controls whether or not
lines that start with "From " in email bodies are prefixed with a ">"
character by generators. The default is True for compat32 and
False for all other policies. (Contributed by Milan Oberkirch in bpo-
20098.)

A new Message.get_content_disposition() method provides

easy access to a canonical value for the Content-Disposition header.
(Contributed by Abhilash Raj in bpo-21083.)

A new policy option EmailPolicy.utf8 can be set to True to
encode email headers using the UTF-8 charset instead of using
encoded words. This allows Messages to be formatted according to
RFC 6532 and used with an SMTP server that supports the RFC 6531
SMTPUTF8 extension. (Contributed by R. David Murray in bpo-24211.)

The mime.text.MIMEText constructor now accepts a
charset.Charset instance. (Contributed by Claude Paroz and
Berker Peksag in bpo-16324.)

enum

The Enum callable has a new parameter start to specify the initial
number of enum values if only names are provided:

>>> Animal = enum.Enum('Animal', 'cat dog', start=1¢
>>> Animal.cat

<Animal.cat: 10>

>>> Animal.dog

<Animal.dog: 11>

{ S—

https://bugs.python.org/issue20098
https://bugs.python.org/issue21083
https://tools.ietf.org/html/rfc6532.html
https://tools.ietf.org/html/rfc6531.html
https://bugs.python.org/issue24211
https://bugs.python.org/issue16324

(Contributed by Ethan Furman in bpo-21706.)

faulthandler

The enable(), register(), dump_traceback() and
dump_traceback_later () functions now accept file descriptors in
addition to file-like objects. (Contributed by Wei Wu in bpo-23566.)

functools

Most of the lru_cache() machinery is now implemented in C,
making it significantly faster. (Contributed by Matt Joiner, Alexey
Kachayev, and Serhiy Storchaka in bpo-14373.)

glob

The iglob() and glob() functions now support recursive search in
subdirectories, using the "**'" pattern. (Contributed by Serhiy
Storchaka in bpo-13968.)

gzip

The mode argument of the GzipFile constructor now accepts "x" to
request exclusive creation. (Contributed by Tim Heaney in bpo-19222.)

heapq

Element comparison in merge() can now be customized by passing
a key function in a new optional key keyword argument, and a new
optional reverse keyword argument can be used to reverse element

https://bugs.python.org/issue21706
https://bugs.python.org/issue23566
https://bugs.python.org/issue14373
https://bugs.python.org/issue13968
https://bugs.python.org/issue19222

comparison:

>>> import heapq

>>> g = ['9', '777', '55555']

>>> b = ['88', '6666']

>>> list(heapqg.merge(a, b, key=len))

['9', '88', '777', '6666', '55555']

>>> list(heapq.merge(reversed(a), reversed(b), key=]
['55555', 'ee666', '777', '88', '9']

Rl 1 2

(Contributed by Raymond Hettinger in bpo-13742.)

http

A new HTTPStatus enum that defines a set of HTTP status codes,

reason phrases and long descriptions written in English. (Contributed
by Demian Brecht in bpo-21793.)

http.client

HTTPConnection.getresponse() now raises a
RemoteDisconnected exception when a remote server connection
Is closed unexpectedly. Additionally, if a ConnectionError (of which
RemoteDisconnected is a subclass) is raised, the client socket is
now closed automatically, and will reconnect on the next request:

import http.client
conn = http.client.HTTPConnection('www.python.org')
for retries in range(3):
try:
conn.request('GET"', '/")
resp = conn.getresponse()
except http.client.RemoteDisconnected:

https://bugs.python.org/issue13742
https://bugs.python.org/issue21793

pass

(Contributed by Martin Panter in bpo-3566.)

idlelib and IDLE

Since idlelib implements the IDLE shell and editor and is not intended
for import by other programs, it gets improvements with every release.
See Lib/idlelib/NEWS. txt for a cumulative list of changes since

3.4.0, as well as changes made in future 3.5.x releases. This file is
also available from the IDLE Help » About IDLE dialog.

imaplib

The IMAP4 class now supports the context manager protocol. When
used in a with statement, the IMAP4 LOGOUT command will be called

automatically at the end of the block. (Contributed by Tarek Ziadé and
Serhiy Storchaka in bpo-4972.)

The imaplib module now supports RFC 5161 (ENABLE Extension)
and RFC 6855 (UTF-8 Support) via the IMAP4.enable() method. A
new IMAP4.utf8_enabled attribute tracks whether or not RFC

6855 support is enabled. (Contributed by Milan Oberkirch, R. David
Murray, and Maciej Szulik in bpo-21800.)

The imaplib module now automatically encodes non-ASCIl string

usernames and passwords using UTF-8, as recommended by the
RFCs. (Contributed by Milan Oberkirch in bpo-21800.)

imghdr

https://bugs.python.org/issue3566
https://bugs.python.org/issue4972
https://tools.ietf.org/html/rfc5161.html
https://tools.ietf.org/html/rfc6855.html
https://tools.ietf.org/html/rfc6855.html
https://bugs.python.org/issue21800
https://bugs.python.org/issue21800

The what() function now recognizes the OpenEXR format

(contributed by Martin Vignali and Claudiu Popa in bpo-20295), and
the WebP format (contributed by Fabrice Aneche and Claudiu Popa in
bpo-20197.)

importlib

The util.LazylLoader class allows for lazy loading of modules in

applications where startup time is important. (Contributed by Brett
Cannon in bpo-17621.)

The abc.InspectLoader.source_to_code() method is now a
static method. This makes it easier to initialize a module object with
code compiled from a string by running exec(code,
module.__dict__). (Contributed by Brett Cannon in bpo-21156.)

The new util.module_from_spec() function is now the preferred

way to create a new module. As opposed to creating a
types.ModuleType instance directly, this new function will set the

various import-controlled attributes based on the passed-in spec
object. (Contributed by Brett Cannon in bpo-20383.)

Inspect

Both the Signature and Parameter classes are now picklable and

hashable. (Contributed by Yury Selivanov in bpo-20726 and bpo-
20334.)

A new BoundArguments.apply_defaults() method provides a
way to set default values for missing arguments:

>>> def foo(a, b='ham', *args): pass

http://www.openexr.com
https://bugs.python.org/issue20295
https://en.wikipedia.org/wiki/WebP
https://bugs.python.org/issue20197
https://bugs.python.org/issue17621
https://bugs.python.org/issue21156
https://bugs.python.org/issue20383
https://bugs.python.org/issue20726
https://bugs.python.org/issue20334

>>> ba = inspect.signature(foo).bind('spam')

>>> ba.apply_defaults()

>>> ba.arguments

OrderedDict([('a', 'spam'), ('b', 'ham'), ('args', (
I N .ﬂ

(Contributed by Yury Selivanov in bpo-24190.)

A new class method Signature.from_callable() makes
subclassing of Signature easier. (Contributed by Yury Selivanov and
Eric Snow in bpo-17373.)

The signature() function now accepts a follow_wrapped optional
keyword argument, which, when set to False, disables automatic

following of __wrapped___ links. (Contributed by Yury Selivanov in
bpo-20691.)

A set of new functions to inspect coroutine functions and coroutine
objects has been added: iscoroutine(),
iscoroutinefunction(), isawaitable(),
getcoroutinelocals(), and getcoroutinestate().

(Contributed by Yury Selivanov in bpo-24017 and bpo-24400.)

The stack(), trace(), getouterframes(), and
getinnerframes() functions now return a list of named tuples.
(Contributed by Daniel Shahaf in bpo-16808.)

0

A new BufferedIOBase.readintol() method, that uses at most
one call to the underlying raw stream’s RawIOBase.read() or
RawIOBase.readinto() methods. (Contributed by Nikolaus Rath in
bpo-20578.)

https://bugs.python.org/issue24190
https://bugs.python.org/issue17373
https://bugs.python.org/issue20691
https://bugs.python.org/issue24017
https://bugs.python.org/issue24400
https://bugs.python.org/issue16808
https://bugs.python.org/issue20578

Ipaddress

Both the IPv4Network and IPv6Network classes now accept an
(address, netmask) tuple argument, so as to easily construct
network objects from existing addresses:

>>> import ipaddress

>>> jpaddress.IPv4Network(('127.0.0.0', 8))
IPv4Network('127.0.0.0/8")

>>> jpaddress.IPv4Network(('127.0.0.0', '255.0.0.0"')
IPv4Network('127.0.0.0/8")

4 o gD

(Contributed by Peter Moody and Antoine Pitrou in bpo-16531.)

A new reverse_pointer attribute for the IPv4Network and
IPv6Network classes returns the name of the reverse DNS PTR
record:

>>> import ipaddress

>>> addr = ipaddress.IPv4Address('127.0.0.1")

>>> addr.reverse_pointer

'1.0.0.127.1in-addr.arpa'

>>> addr6 = ipaddress.IPv6Address('::1")

>>> addr6.reverse_pointer
'1.0.¢
Rl 1 2

(Contributed by Leon Weber in bpo-20480.)
json

The json.tool command line interface now preserves the order of
keys in JISON objects passed in input. The new - -sort-keys option

https://bugs.python.org/issue16531
https://bugs.python.org/issue20480

can be used to sort the keys alphabetically. (Contributed by Berker
Peksag in bpo-21650.)

JSON decoder now raises JSONDecodeError instead of
ValueError to provide better context information about the error.
(Contributed by Serhiy Storchaka in bpo-19361.)

linecache

A new lazycache() function can be used to capture information
about a non-file-based module to permit getting its lines later via
getline(). This avoids doing I/O until a line is actually needed,
without having to carry the module globals around indefinitely.
(Contributed by Robert Collins in bpo-17911.)

locale

Anew delocalize() function can be used to convert a string into a
normalized number string, taking the LC_NUMERIC settings into
account:

>>> import locale

>>> locale.setlocale(locale.LC_NUMERIC, 'de DE.UTF-&
'de_DE.UTF-8'

>>> locale.delocalize('1.234,56")

'1234.56"

>>> locale.setlocale(locale.LC_NUMERIC, 'en_ US.UTF-&
'en_US.UTF-8'

>>> locale.delocalize('1,234.56")

'1234.56"

{ S}

(Contributed by Cédric Krier in bpo-13918.)

https://bugs.python.org/issue21650
https://bugs.python.org/issue19361
https://bugs.python.org/issue17911
https://bugs.python.org/issue13918

logging

All logging methods (Logger log(), exception(), critical(),
debug(), etc.), now accept exception instances as an exc_info
argument, in addition to boolean values and exception tuples:

>>> import logging
>>> try:
1/0
except ZeroDivisionError as ex:
logging.error('exception', exc_info=ex)
ERROR: root:exception

(Contributed by Yury Selivanov in bpo-20537.)

The handlers.HTTPHandler class now accepts an optional
ssl.SSLContext instance to configure SSL settings used in an
HTTP connection. (Contributed by Alex Gaynor in bpo-22788.)

The handlers.QueuelListener class now takes a
respect_handler_level keyword argument which, if set to True, will
pass messages to handlers taking handler levels into account.
(Contributed by Vinay Sajip.)

lzma
The LZMADecompressor.decompress() method now accepts an

optional max_length argument to limit the maximum size of
decompressed data. (Contributed by Martin Panter in bpo-15955.)

math

https://bugs.python.org/issue20537
https://bugs.python.org/issue22788
https://bugs.python.org/issue15955

Two new constants have been added to the math module: inf and
nan. (Contributed by Mark Dickinson in bpo-23185.)

A new function isclose() provides a way to test for approximate
equality. (Contributed by Chris Barker and Tal Einat in bpo-24270.)

A new gcd() function has been added. The fractions.gcd()

function is now deprecated. (Contributed by Mark Dickinson and
Serhiy Storchaka in bpo-22486.)

multiprocessing

sharedctypes.synchronized() objects now support the context

manager protocol. (Contributed by Charles-Frangois Natali in bpo-
21565.)

operator

attrgetter(), itemgetter(), and methodcaller() objects

now support pickling. (Contributed by Josh Rosenberg and Serhiy
Storchaka in bpo-22955.)

New matmul() and dimatmul() functions to perform matrix
multiplication. (Contributed by Benjamin Peterson in bpo-21176.)

0S

The new scandir () function returning an iterator of DirEntry
objects has been added. If possible, scandir() extracts file

attributes while scanning a directory, removing the need to perform
subsequent system calls to determine file type or attributes, which may

https://bugs.python.org/issue23185
https://bugs.python.org/issue24270
https://bugs.python.org/issue22486
https://bugs.python.org/issue21565
https://bugs.python.org/issue22955
https://bugs.python.org/issue21176

significantly improve performance. (Contributed by Ben Hoyt with the
help of Victor Stinner in bpo-22524.)

On Windows, a new stat_result.st_file_attributes attribute
IS now available. It corresponds to the dwFileAttributes member
of the BY_HANDLE_FILE_INFORMATION structure returned by
GetFileInformationByHandle(). (Contributed by Ben Hoyt in
bpo-21719.)

The urandom() function now uses the getrandom() syscall on
Linux 3.17 or newer, and getentropy() on OpenBSD 5.6 and
newer, removing the need to use /dev/urandom and avoiding

failures due to potential file descriptor exhaustion. (Contributed by
Victor Stinner in bpo-22181.)

New get_blocking() and set_blocking() functions allow
getting and setting a file descriptor’s blocking mode (O_NONBLOCK.)
(Contributed by Victor Stinner in bpo-22054.)

The truncate() and ftruncate() functions are now supported on
Windows. (Contributed by Steve Dower in bpo-23668.)

There is a new os.path.commonpath() function returning the

longest common sub-path of each passed pathname. Unlike the
os.path.commonprefix() function, it always returns a valid path:

>>> os.path.commonprefix(['/usr/1lib', '/usr/local/l]
"/usr/1'

>>> os.path.commonpath(['/usr/1lib', '/usr/local/lib'
"/usr’

{ S 2]

(Contributed by Rafik Draoui and Serhiy Storchaka in bpo-10395.)

https://bugs.python.org/issue22524
https://bugs.python.org/issue21719
https://bugs.python.org/issue22181
https://bugs.python.org/issue22054
https://bugs.python.org/issue23668
https://bugs.python.org/issue10395

pathlib

The new Path.samefile() method can be used to check whether

the path points to the same file as another path, which can be either
another Path object, or a string:

>>> import pathlib

>>> pl = pathlib.Path('/etc/hosts')

>>> p2 = pathlib.Path('/etc/../etc/hosts')
>>> pl.samefile(p2)

True

(Contributed by Vajrasky Kok and Antoine Pitrou in bpo-19775.)

The Path.mkdir () method now accepts a new optional exist ok
argument to match mkdir -p and os.makedirs() functionality.
(Contributed by Berker Peksag in bpo-21539.)

There is a new Path.expanduser() method to expand ~ and
~user prefixes. (Contributed by Serhiy Storchaka and Claudiu Popa
in bpo-19776.)

A new Path.home() class method can be used to get a Path

instance representing the user’s home directory. (Contributed by Victor
Salgado and Mayank Tripathi in bpo-19777.)

New Path.write_text(), Path.read_text(),
Path.write_bytes(), Path.read_bytes() methods to simplify
read/write operations on files.

The following code snippet will create or rewrite existing file
~/spam42:;

https://bugs.python.org/issue19775
https://bugs.python.org/issue21539
https://bugs.python.org/issue19776
https://bugs.python.org/issue19777

>>> import pathlib

>>> p = pathlib.Path('~/spam42')

>>> p.expanduser().write_text('ham')
3

(Contributed by Christopher Welborn in bpo-20218.)

pickle

Nested objects, such as unbound methods or nested classes, can now
be pickled using pickle protocols older than protocol version 4.
Protocol version 4 already supports these cases. (Contributed by
Serhiy Storchaka in bpo-23611.)

poplib

A new POP3.utf8() command enables RFC 6856 (Internationalized

Email) support, if a POP server supports it. (Contributed by Milan
OberKirch in bpo-21804.)

re

References and conditional references to groups with fixed length are
now allowed in lookbehind assertions:

>>> import re

>>> pat = re.compile(r'(alb).(?<=\1)c'")

>>> pat.match('aac')

<_sre.SRE_Match object; span=(0, 3), match='aac'>
>>> pat.match('bbc')

<_sre.SRE_Match object; span=(0, 3), match="bbc'>

https://bugs.python.org/issue20218
https://bugs.python.org/issue23611
https://tools.ietf.org/html/rfc6856.html
https://bugs.python.org/issue21804

(Contributed by Serhiy Storchaka in bpo-9179.)

The number of capturing groups in regular expressions is no longer
limited to 100. (Contributed by Serhiy Storchaka in bpo-22437.)

The sub() and subn() functions now replace unmatched groups
with empty strings instead of raising an exception. (Contributed by
Serhiy Storchaka in bpo-1519638.)

The re.error exceptions have new attributes, msg, pattern, pos,
lineno, and colno, that provide better context information about the
error:

>>> re.compile("""
(?x)
.+

)

Traceback (most recent call last):

sre_constants.error: multiple repeat at position 16
« 1] 2

(Contributed by Serhiy Storchaka in bpo-22578.)

readline
A new append_history_file() function can be used to append

the specified number of trailing elements in history to the given file.
(Contributed by Bruno Cauet in bpo-22940.)

selectors

The new DevpollSelector supports efficient /dev/poll polling

https://bugs.python.org/issue9179
https://bugs.python.org/issue22437
https://bugs.python.org/issue1519638
https://bugs.python.org/issue22578
https://bugs.python.org/issue22940

on Solaris. (Contributed by Giampaolo Rodola’ in bpo-18931.)

shutil

The move() function now accepts a copy_ function argument,
allowing, for example, the copy() function to be used instead of the
default copy2() if there is a need to ignore file metadata when
moving. (Contributed by Claudiu Popa in bpo-19840.)

The make_archive() function now supports the xztar format.
(Contributed by Serhiy Storchaka in bpo-5411.)

signal

On Windows, the set_wakeup_fd() function now also supports
socket handles. (Contributed by Victor Stinner in bpo-22018.)

Various SIG* constants in the signal module have been converted
into Enums. This allows meaningful names to be printed during

debugging, instead of integer “magic numbers”. (Contributed by
Giampaolo Rodola’ in bpo-21076.)

smtpd

Both the SMTPServer and SMTPChannel classes now accept a
decode_data keyword argument to determine if the DATA portion of
the SMTP transaction is decoded using the "utf-8" codec or is
instead provided to the SMTPServer .process_message() method
as a byte string. The default is True for backward compatibility
reasons, but will change to False in Python 3.6. If decode_data is set
to False, the process_message method must be prepared to

https://bugs.python.org/issue18931
https://bugs.python.org/issue19840
https://bugs.python.org/issue5411
https://bugs.python.org/issue22018
https://bugs.python.org/issue21076

accept keyword arguments. (Contributed by Maciej Szulik in bpo-
19662.)

The SMTPServer class now advertises the 8BITMIME extension
(RFC 6152) if decode_data has been set True. If the client specifies
BODY=8BITMIME on the MAIL command, it is passed to
SMTPServer .process_message() via the mail_options keyword.
(Contributed by Milan Oberkirch and R. David Murray in bpo-21795.)

The SMTPServer class now also supports the SMTPUTF8 extension
(RFC 6531: Internationalized Email). If the client specified SMTPUTF8
BODY=8BITMIME on the MAIL command, they are passed to
SMTPServer .process_message () via the mail_options keyword. It
is the responsibility of the process_message method to correctly
handle the SMTPUTF8 data. (Contributed by Milan Oberkirch in bpo-
21725.)

It is now possible to provide, directly or via name resolution, IPv6
addresses in the SMTPServer constructor, and have it successfully
connect. (Contributed by Milan Oberkirch in bpo-14758.)

smtplib

A new SMTP.auth() method provides a convenient way to
implement custom authentication mechanisms. (Contributed by Milan
Oberkirch in bpo-15014.)

The SMTP.set_debuglevel() method now accepts an additional
debuglevel (2), which enables timestamps in debug messages.
(Contributed by Gavin Chappell and Maciej Szulik in bpo-16914.)

Both the SMTP.sendmail() and SMTP.send_message() methods

https://bugs.python.org/issue19662
https://tools.ietf.org/html/rfc6152.html
https://bugs.python.org/issue21795
https://tools.ietf.org/html/rfc6531.html
https://bugs.python.org/issue21725
https://bugs.python.org/issue14758
https://bugs.python.org/issue15014
https://bugs.python.org/issue16914

now support RFC 6531 (SMTPUTFS8). (Contributed by Milan Oberkirch
and R. David Murray in bpo-22027.)

sndhdr

The what() and whathdr() functions now return a
namedtuple (). (Contributed by Claudiu Popa in bpo-18615.)

socket

Functions with timeouts now use a monotonic clock, instead of a
system clock. (Contributed by Victor Stinner in bpo-22043.)

A new socket.sendfile() method allows sending a file over a
socket by using the high-performance os.sendfile() function on
UNIX, resulting in uploads being from 2 to 3 times faster than when
using plain socket.send(). (Contributed by Giampaolo Rodola’ in
bpo-17552.)

The socket.sendall() method no longer resets the socket timeout

every time bytes are received or sent. The socket timeout is now the
maximum total duration to send all data. (Contributed by Victor Stinner
in bpo-23853.)

The backlog argument of the socket.listen() method is now
optional. By default it is set to SOMAXCONN or to 128, whichever is
less. (Contributed by Charles-Francois Natali in bpo-21455.)

ssl
Memory BIO Support

https://tools.ietf.org/html/rfc6531.html
https://bugs.python.org/issue22027
https://bugs.python.org/issue18615
https://bugs.python.org/issue22043
https://bugs.python.org/issue17552
https://bugs.python.org/issue23853
https://bugs.python.org/issue21455

(Contributed by Geert Jansen in bpo-21965.)

The new SSLObject class has been added to provide SSL protocol
support for cases when the network 1/0 capabilities of SSLSocket are
not necessary or are suboptimal. SSLObject represents an SSL

protocol instance, but does not implement any network 1/O methods,
and instead provides a memory buffer interface. The new MemoryBIO

class can be used to pass data between Python and an SSL protocol
instance.

The memory BIO SSL support is primarily intended to be used in
frameworks implementing asynchronous 1/O for which SSLSocket'’s

readiness model (“select/poll”) is inefficient.

A new SSLContext.wrap_bio() method can be used to create a
new SSLObject instance.

Application-Layer Protocol Negotiation Support

(Contributed by Benjamin Peterson in bpo-20188.)

Where OpenSSL support is present, the ss1 module now implements
the Application-Layer Protocol Negotiation TLS extension as described
in RFC 7301.

The new SSLContext.set_alpn_protocols() can be used to

specify which protocols a socket should advertise during the TLS
handshake.

The new SSLSocket.selected_alpn_protocol() returns the
protocol that was selected during the TLS handshake. The HAS_ALPN
flag indicates whether ALPN support is present.

https://bugs.python.org/issue21965
https://bugs.python.org/issue20188
https://tools.ietf.org/html/rfc7301.html

Other Changes

There is a new SSLSocket.version() method to query the actual
protocol version in use. (Contributed by Antoine Pitrou in bpo-20421.)

The SSLSocket class now implements a SSLSocket.sendfile()
method. (Contributed by Giampaolo Rodola’ in bpo-17552.)

The SSLSocket.send() method now raises either the
ssl.SSLWantReadError or ssl.SSLWantWriteError exception
on a non-blocking socket if the operation would block. Previously, it
would return 0. (Contributed by Nikolaus Rath in bpo-20951.)

The cert_time_to_seconds() function now interprets the input
time as UTC and not as local time, per RFC 5280. Additionally, the
return value is always an int. (Contributed by Akira Li in bpo-19940.)

New SSLObject.shared_ciphers() and
SSLSocket.shared_ciphers() methods return the list of ciphers
sent by the client during the handshake. (Contributed by Benjamin
Peterson in bpo-23186.)

The SSLSocket .do_handshake(), SSLSocket.read(),
SSLSocket.shutdown(), and SSLSocket.write() methods of
the SSLSocket class no longer reset the socket timeout every time

bytes are received or sent. The socket timeout is now the maximum
total duration of the method. (Contributed by Victor Stinner in bpo-
23853.)

The match_hostname() function now supports matching of IP
addresses. (Contributed by Antoine Pitrou in bpo-23239.)

https://bugs.python.org/issue20421
https://bugs.python.org/issue17552
https://bugs.python.org/issue20951
https://tools.ietf.org/html/rfc5280.html
https://bugs.python.org/issue19940
https://bugs.python.org/issue23186
https://bugs.python.org/issue23853
https://bugs.python.org/issue23239

sglite3

The Row class now fully supports the sequence protocol, in particular
reversed() iteration and slice indexing. (Contributed by Claudiu

Popa in bpo-10203; by Lucas Sinclair, Jessica McKellar, and Serhiy
Storchaka in bpo-13583.)

subprocess

The new run() function has been added. It runs the specified
command and returns a CompletedProcess object, which describes
a finished process. The new API is more consistent and is the
recommended approach to invoking subprocesses in Python code that
does not need to maintain compatibility with earlier Python versions.
(Contributed by Thomas Kluyver in bpo-23342.)

Examples:

>>> subprocess.run(["1ls", "-1"]) # doesn't capture
CompletedProcess(args=['ls', '-1'], returncode=0)

>>> subprocess.run("exit 1", shell=True, check=True)
Traceback (most recent call last):

subprocess.CalledProcessError: Command 'exit 1' rett

>>> subprocess.run(["1ls", "-1", "/dev/null"], stdout
CompletedProcess(args=['ls', '-1', '/dev/null'], ret
stdout=b'crw-rw-rw- 1 root root 1, 3 Jan 23 16:23 /c
A] 2

Sys

https://bugs.python.org/issue10203
https://bugs.python.org/issue13583
https://bugs.python.org/issue23342

A new set_coroutine_wrapper () function allows setting a global
hook that will be called whenever a coroutine object is created by an
async def function. A corresponding get_coroutine_wrapper ()

can be used to obtain a currently set wrapper. Both functions are
provisional, and are intended for debugging purposes only.
(Contributed by Yury Selivanov in bpo-24017.)

A new is_finalizing() function can be used to check if the

Python interpreter is shutting down. (Contributed by Antoine Pitrou in
bpo-22696.)

sysconfig

The name of the user scripts directory on Windows now includes the
first two components of the Python version. (Contributed by Paul
Moore in bpo-23437.)

tarfile

The mode argument of the open() function now accepts "x" to

request exclusive creation. (Contributed by Berker Peksag in bpo-
21717.)

The TarFile.extractall() and TarFile.extract() methods
now take a keyword argument numeric_owner. If set to True, the
extracted files and directories will be owned by the numeric uid and
gid from the tarfile. If set to False (the default, and the behavior in
versions prior to 3.5), they will be owned by the named user and group

in the tarfile. (Contributed by Michael Vogt and Eric Smith in bpo-
23193.)

https://bugs.python.org/issue24017
https://bugs.python.org/issue22696
https://bugs.python.org/issue23437
https://bugs.python.org/issue21717
https://bugs.python.org/issue23193

The TarFile.list() now accepts an optional members keyword

argument that can be set to a subset of the list returned by
TarFile.getmembers(). (Contributed by Serhiy Storchaka in bpo-
21549.)

threading

Both the Lock.acquire() and RLock.acquire() methods now

use a monotonic clock for timeout management. (Contributed by Victor
Stinner in bpo-22043.)

time

The monotonic() function is now always available. (Contributed by
Victor Stinner in bpo-22043.)

timeit

A new command line option -u or - -unit=U can be used to specify
the time unit for the timer output. Supported options are usec, msec,
or sec. (Contributed by Julian Gindi in bpo-18983.)

The timeit () function has a new globals parameter for specifying

the namespace in which the code will be running. (Contributed by Ben
Roberts in bpo-2527.)

tkinter

The tkinter._fix module used for setting up the Tcl/Tk
environment on Windows has been replaced by a private function in

https://bugs.python.org/issue21549
https://bugs.python.org/issue22043
https://bugs.python.org/issue22043
https://bugs.python.org/issue18983
https://bugs.python.org/issue2527

the _tkinter module which makes no permanent changes to
environment variables. (Contributed by Zachary Ware in bpo-20035.)

traceback

New walk_stack() and walk_tb() functions to conveniently

traverse frame and traceback objects. (Contributed by Robert Collins
in bpo-17911.)

New lightweight classes: TracebackException, StackSummary,
and FrameSummary. (Contributed by Robert Collins in bpo-17911.)

Both the print_tb() and print_stack() functions now support

negative values for the limit argument. (Contributed by Dmitry Kazakov
in bpo-22619.)

types

A new coroutine() function to transform generator and
generator-1like objects into awaitables. (Contributed by Yury
Selivanov in bpo-24017.)

A new type called CoroutineType, which is used for coroutine
objects created by async def functions. (Contributed by Yury
Selivanov in bpo-24400.)

unicodedata

The unicodedata module now uses data from Unicode 8.0.0.

unittest

https://bugs.python.org/issue20035
https://bugs.python.org/issue17911
https://bugs.python.org/issue17911
https://bugs.python.org/issue22619
https://bugs.python.org/issue24017
https://bugs.python.org/issue24400
http://unicode.org/versions/Unicode8.0.0/

The TestLoader.loadTestsFromModule() method now accepts
a keyword-only argument pattern which is passed to load_tests as
the third argument. Found packages are now checked for
load_tests regardless of whether their path matches pattern,
because it is impossible for a package name to match the default
pattern. (Contributed by Robert Collins and Barry A. Warsaw in bpo-
16662.)

Unittest discovery errors now are exposed in the
TestLoader.errors attribute of the TestLoader instance.

(Contributed by Robert Collins in bpo-19746.)

A new command line option --locals to show local variables in
tracebacks. (Contributed by Robert Collins in bpo-22936.)

unittest.mock

The Mock class has the following improvements:

e The class constructor has a new unsafe parameter, which causes
mock objects to raise AttributeError on attribute names
starting with "assert". (Contributed by Kushal Das in bpo-
21238.)

e A new Mock.assert_not_called() method to check if the

mock object was called. (Contributed by Kushal Das in bpo-
21262.)

The MagicMock class now supports __ truediv__ (),
__divmod__() and __matmul__ () operators. (Contributed by

Johannes Baiter in bpo-20968, and Hakan Lovdahl in bpo-23581 and
bpo-23568.)

It is no longer necessary to explicitly pass create=True to the

https://bugs.python.org/issue16662
https://bugs.python.org/issue19746
https://bugs.python.org/issue22936
https://bugs.python.org/issue21238
https://bugs.python.org/issue21262
https://bugs.python.org/issue20968
https://bugs.python.org/issue23581
https://bugs.python.org/issue23568

patch() function when patching builtin names. (Contributed by
Kushal Das in bpo-17660.)

urllib

A new request.HTTPPasswordMgrwithPriorAuth class allows

HTTP Basic Authentication credentials to be managed so as to
eliminate unnecessary 401 response handling, or to unconditionally

send credentials on the first request in order to communicate with
servers that return a 404 response instead of a 401 if the

Authorization header is not sent. (Contributed by Matej Cepl in
bpo-19494 and Akshit Khurana in bpo-7159.)

A new quote_via argument for the parse.urlencode() function
provides a way to control the encoding of query parts if needed.
(Contributed by Samwyse and Arnon Yaari in bpo-13866.)

The request.urlopen() function accepts an ssl.SSLContext

object as a context argument, which will be used for the HTTPS
connection. (Contributed by Alex Gaynor in bpo-22366.)

The parse.urljoin() was updated to use the RFC 3986

semantics for the resolution of relative URLS, rather than RFC 1808
and RFC 2396. (Contributed by Demian Brecht and Senthil Kumaran
in bpo-22118.)

wsgiref
The headers argument of the headers.Headers class constructor is

now optional. (Contributed by Pablo Torres Navarrete and SilentGhost
in bpo-5800.)

https://bugs.python.org/issue17660
https://bugs.python.org/issue19494
https://bugs.python.org/issue7159
https://bugs.python.org/issue13866
https://bugs.python.org/issue22366
https://tools.ietf.org/html/rfc3986.html
https://tools.ietf.org/html/rfc1808.html
https://tools.ietf.org/html/rfc2396.html
https://bugs.python.org/issue22118
https://bugs.python.org/issue5800

xmlrpc

The client.ServerProxy class now supports the context manager
protocol. (Contributed by Claudiu Popa in bpo-20627.)

The client.ServerProxy constructor now accepts an optional
ssl.SSLContext instance. (Contributed by Alex Gaynor in bpo-
22960.)

xml.sax

SAX parsers now support a character stream of the
xmlreader.InputSource object. (Contributed by Serhiy Storchaka
in bpo-2175.)

parseString() now accepts a str instance. (Contributed by Serhiy
Storchaka in bpo-10590.)

zipfile

ZIP output can now be written to unseekable streams. (Contributed by
Serhiy Storchaka in bpo-23252.)

The mode argument of ZipFile.open() method now accepts "x"

to request exclusive creation. (Contributed by Serhiy Storchaka in bpo-
21717.)

https://bugs.python.org/issue20627
https://bugs.python.org/issue22960
https://bugs.python.org/issue2175
https://bugs.python.org/issue10590
https://bugs.python.org/issue23252
https://bugs.python.org/issue21717

Other module-level changes

Many functions in the mmap, ossaudiodev, socket, ssl, and
codecs modules now accept writable bytes-like objects. (Contributed
by Serhiy Storchaka in bpo-23001.)

https://bugs.python.org/issue23001

Optimizations

The os.walk() function has been sped up by 3 to 5 times on POSIX
systems, and by 7 to 20 times on Windows. This was done using the
new os.scandir () function, which exposes file information from the
underlying readdir or FindFirstFile/FindNextFile system
calls. (Contributed by Ben Hoyt with help from Victor Stinner in bpo-
23605.)

Construction of bytes(int) (filled by zero bytes) is faster and uses
less memory for large objects. calloc() is used instead of
malloc() to allocate memory for these objects. (Contributed by
Victor Stinner in bpo-21233.)

Some operations on ipaddress IPv4Network and IPv6Network
have been massively sped up, such as subnets(), supernet(),
summarize_address_range(), collapse_addresses(). The
speed up can range from 3 to 15 times. (Contributed by Antoine
Pitrou, Michel Albert, and Markus in bpo-21486, bpo-21487, bpo-
20826, bpo-23266.)

Pickling of ipaddress objects was optimized to produce significantly
smaller output. (Contributed by Serhiy Storchaka in bpo-23133.)

Many operations on io.BytesIO are now 50% to 100% faster.
(Contributed by Serhiy Storchaka in bpo-15381 and David Wilson in
bpo-22003.)

The marshal.dumps() function is now faster: 65-85% with versions
3 and 4, 20-25% with versions 0 to 2 on typical data, and up to 5
times in best cases. (Contributed by Serhiy Storchaka in bpo-20416

https://bugs.python.org/issue23605
https://bugs.python.org/issue21233
https://bugs.python.org/issue21486
https://bugs.python.org/issue21487
https://bugs.python.org/issue20826
https://bugs.python.org/issue23266
https://bugs.python.org/issue23133
https://bugs.python.org/issue15381
https://bugs.python.org/issue22003
https://bugs.python.org/issue20416

and bpo-23344.)

The UTF-32 encoder is now 3 to 7 times faster. (Contributed by Serhiy
Storchaka in bpo-15027.)

Regular expressions are now parsed up to 10% faster. (Contributed by
Serhiy Storchaka in bpo-19380.)

The json.dumps() function was optimized to run with
ensure_ascii=False as fast as with ensure_ascii=True.
(Contributed by Naoki Inada in bpo-23206.)

The PyObject_IsInstance() and PyObject_IsSubclass()
functions have been sped up in the common case that the second
argument has type as its metaclass. (Contributed Georg Brandl by in

bpo-22540.)

Method caching was slightly improved, yielding up to 5% performance
improvement in some benchmarks. (Contributed by Antoine Pitrou in
bpo-22847.)

Objects from the random module now use 50% less memory on 64-bit
builds. (Contributed by Serhiy Storchaka in bpo-23488.)

The property() getter calls are up to 25% faster. (Contributed by
Joe Jevnik in bpo-23910.)

Instantiation of fractions.Fraction is now up to 30% faster.
(Contributed by Stefan Behnel in bpo-22464.)

String methods find(), rfind(), split(), partition() and the
in string operator are now significantly faster for searching 1-
character substrings. (Contributed by Serhiy Storchaka in bpo-23573.)

https://bugs.python.org/issue23344
https://bugs.python.org/issue15027
https://bugs.python.org/issue19380
https://bugs.python.org/issue23206
https://bugs.python.org/issue22540
https://bugs.python.org/issue22847
https://bugs.python.org/issue23488
https://bugs.python.org/issue23910
https://bugs.python.org/issue22464
https://bugs.python.org/issue23573

Build and C API Changes

New calloc functions were added:

e PyMem_RawCalloc(),
e PyMem_Calloc(),
e PyObject_Calloc().

(Contributed by Victor Stinner in bpo-21233.)
New encoding/decoding helper functions:

e Py DecodelLocale() (replaced _Py_char2wchar()),
e Py EncodelLocale() (replaced _Py_wchar2char()).

(Contributed by Victor Stinner in bpo-18395.)

A new PyCodec_NameReplaceErrors() function to replace the
unicode encode error with \N{. ..} escapes. (Contributed by Serhiy
Storchaka in bpo-19676.)

A new PyErr_FormatV() function similar to PyErr_Format (), but
accepts a va_list argument. (Contributed by Antoine Pitrou in bpo-
18711.)

A new PyExc_RecursionError exception. (Contributed by Georg
Brandl in bpo-19235.)

New PyModule_FromDefAndSpec(),
PyModule_FromDefAndSpec2(), and PyModule_ExecDef ()
functions introduced by PEP 489 — multi-phase extension module
initialization. (Contributed by Petr Viktorin in bpo-24268.)

https://bugs.python.org/issue21233
https://bugs.python.org/issue18395
https://bugs.python.org/issue19676
https://bugs.python.org/issue18711
https://bugs.python.org/issue19235
https://www.python.org/dev/peps/pep-0489
https://bugs.python.org/issue24268

New PyNumber_MatrixMultiply() and
PyNumber_InPlaceMatrixMultiply() functions to perform

matrix multiplication. (Contributed by Benjamin Peterson in bpo-21176.
See also PEP 465 for details.)

The PyTypeObject.tp_finalize slot is now part of the stable
ABI.

Windows builds now require Microsoft Visual C++ 14.0, which is
available as part of Visual Studio 2015.

Extension modules now include a platform information tag in their
flename on some platforms (the tag is optional, and CPython will
import extensions without it, although if the tag is present and
mismatched, the extension won'’t be loaded):

e On Linux, extension module filenames end with .cpython-
<major><minor>m-<architecture>-<o0s>.pyd:

o <major> is the major number of the Python version; for
Python 3.5 this is 3.

o <minor> is the minor number of the Python version; for
Python 3.5 this is 5.

o <architecture> is the hardware architecture the
extension module was built to run on. It's most commonly
either 1386 for 32-bit Intel platforms or x86_64 for 64-bit
Intel (and AMD) platforms.

o <0s> is always linux-gnu, except for extensions built to
talk to the 32-bit ABI on 64-bit platforms, in which case it is
linux-gnu32 (and <architecture> will be x86_64).

e On Windows, extension module filenames end with
<debug>.cp<major><minor>-<platform>.pyd:

o <major> is the major number of the Python version; for
Python 3.5 this is 3.

https://bugs.python.org/issue21176
https://www.python.org/dev/peps/pep-0465
https://www.visualstudio.com/

o <minor> is the minor number of the Python version; for
Python 3.5 this is 5.

o <platform> is the platform the extension module was built
for, either win32 for Win32, win_amd64 for Win64,
win_ia64 for Windows Itanium 64, and win_arm for
Windows on ARM.

o If built in debug mode, <debug> will be _d, otherwise it will
be blank.

e On OS X platforms, extension module filenames now end with -
darwin.so.

e On all other platforms, extension module filenames are the same
as they were with Python 3.4.

Deprecated

New Keywords

async and await are not recommended to be used as variable,
class, function or module names. Introduced by PEP 492 in Python
3.5, they will become proper keywords in Python 3.7.

Deprecated Python Behavior

Raising the StopIteration exception inside a generator will now
generate a silent PendingDeprecationWarning, which will

become a non-silent deprecation warning in Python 3.6 and will trigger
a RuntimeError in Python 3.7. See PEP 479: Change Stoplteration

handling inside generators for details.

Unsupported Operating Systems

Windows XP is no longer supported by Microsoft, thus, per PEP 11,
CPython 3.5 is no longer officially supported on this OS.

Deprecated Python modules, functions and
methods

The formatter module has now graduated to full deprecation and is
still slated for removal in Python 3.6.

The asyncio.async() function is deprecated in favor of
ensure_future().

https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0011

The smtpd module has in the past always decoded the DATA portion
of email messages using the utf-8 codec. This can now be
controlled by the new decode data keyword to SMTPServer. The
default value is True, but this default is deprecated. Specify the

decode _data keyword with an appropriate value to avoid the
deprecation warning.

Directly assigning values to the key, value and coded_value of
http.cookies.Morsel objects is deprecated. Use the set()

method instead. In addition, the undocumented LegalChars parameter
of set () is deprecated, and is now ignored.

Passing a format string as keyword argument format_string to the
format() method of the string.Formatter class has been
deprecated. (Contributed by Serhiy Storchaka in bpo-23671.)

The platform.dist() and platform.linux_distribution()
functions are now deprecated. Linux distributions use too many
different ways of describing themselves, so the functionality is left to a
package. (Contributed by Vajrasky Kok and Berker