@ Python » 3.6.3 Documentation » next | modules | index

https://www.python.org/

Python Documentation contents

e What's New in Python
o What's New In Python 3.6

= Summary — Release highlights

= New Features
= PEP 498: Formatted string literals
s PEP 526: Syntax for variable annotations
m PEP 515: Underscores in Numeric Literals
s PEP 525: Asynchronous Generators
m PEP 530: Asynchronous Comprehensions
m PEP 487: Simpler customization of class creation
m PEP 487: Descriptor Protocol Enhancements
= PEP 519: Adding a file system path protocol
s PEP 495: Local Time Disambiguation
s PEP 529: Change Windows filesystem encoding to

UTF-8

m PEP 528. Change Windows console encoding to
UTF-8

m PEP 520: Preserving Class Attribute Definition
Order

s PEP 468: Preserving Keyword Argument Order
= New dict implementation
s PEP 523: Adding a frame evaluation API to CPython
s PYTHONMALLOC environment variable
m DTrace and SystemTap probing support
= Other Language Changes
= New Modules
m secrets
= Improved Modules
= array
m ast
= asyncio

binascii
cmath
collections
concurrent.futures
contextlib
datetime
decimal
distutils
email
encodings
enum
faulthandler
fileinput
hashlib
http.client
idlelib and IDLE
importlib
Inspect
json

logging
math
multiprocessing
0S

pathlib

pdb

pickle
pickletools
pydoc
random

re

readline
rlcompleter
shlex

site

= sqlite3

m socket

m socketserver

= S

m statistics

= struct

m subprocess

m SYyS

m telnetlib

= time

= timeit

m tkinter

= traceback

= tracemalloc

= typing

= unicodedata

= unittest.mock

= urllib.request

= urllib.robotparser

= venv

= warnings

= winreg

= winsound

= xmlirpc.client

m zipfile

= 7Ilib
Optimizations
Build and C API Changes
Other Improvements
Deprecated

= New Keywords

m Deprecated Python behavior

m Deprecated Python modules, functions and methods

= asynchat

= asyncore
= dbm
= distutils
= grp
= importlib
m 0S
= re
= ssl
m tkinter
= venv
Deprecated functions and types of the C API
Deprecated Build Options

= Removed
= APl and Feature Removals
= Porting to Python 3.6
= Changes in ‘python’ Command Behavior
= Changes in the Python API
= Changes in the C API

CPython bytecode changes

= Notable changes in Python 3.6.2

New make regen-all build target
Removal of make touch build target

o What's New In Python 3.5
s Summary — Release highlights
= New Features

PEP 492 - Coroutines with async and await syntax
PEP 465 - A dedicated infix operator for matrix
multiplication

PEP 448 - Additional Unpacking Generalizations
PEP 461 - percent formatting support for bytes and
bytearray

PEP 484 - Type Hints

PEP 471 - os.scandir() function — a better and faster
directory iterator

PEP 475: Retry system calls failing with EINTR

PEP 479: Change Stoplteration handling inside
generators

PEP 485: A function for testing approximate equality
PEP 486: Make the Python Launcher aware of
virtual environments

PEP 488: Elimination of PYO files

PEP 489: Multi-phase extension module initialization

m Other Language Changes
= New Modules

typing
Zipapp

= Improved Modules

argparse
asyncio

bz2

cqi

cmath

code
collections
collections.abc
compileall
concurrent.futures
configparser
contextlib

csV

curses

dbm

difflib

distutils
doctest

email

enum
faulthandler

functools
glob

gzip
heapq
http
http.client
idlelib and IDLE
Imaplib
imghdr
importlib
inspect

[o]
Ipaddress
json
linecache
locale
logging
lzma
math
multiprocessing
operator
0S

pathlib
pickle
poplib

re
readline
selectors
shutil
signal
smtpd
smtplib
sndhdr
socket

= Ss
= Memory BIO Support
= Application-Layer Protocol Negotiation Support
= Other Changes
m sqlite3
= subprocess
m SyS
= sysconfig
m tarfile
= threading
= time
= timeit
m tkinter
= traceback
= types
= unicodedata
= unittest
= unittest.mock
= urllib
m wsgqiref
= xmlrpc
= xml.sax
m zipfile
Other module-level changes
Optimizations
Build and C API Changes
Deprecated
= New Keywords
m Deprecated Python Behavior
m Unsupported Operating Systems
m Deprecated Python modules, functions and methods
Removed
= APl and Feature Removals
Porting to Python 3.5

= Changes in Python behavior
= Changes in the Python API
= Changes in the C API
o What's New In Python 3.4
m Summary — Release Highlights
= New Features
s PEP 453: Explicit Bootstrapping of PIP in Python
Installations
= Bootstrapping pip By Default
= Documentation Changes
m PEP 446: Newly Created File Descriptors Are Non-
Inheritable
= |mprovements to Codec Handling
m PEP 451: A ModuleSpec Type for the Import System
= Other Language Changes
= New Modules
= asyncio
= ensurepip
= enum
= pathlib
= selectors
m statistics
= tracemalloc
= Improved Modules
= abc
= aifc
= argparse
= audioop
= base64
m collections
m colorsys
= contextlib
= dbm
m dis

doctest
email
filecmp
functools
gc

glob
hashlib
hmac
html

http
idlelib and IDLE
importlib
inspect
Ipaddress
logging
marshal
mmap
multiprocessing
operator
0S

pdb
pickle
plistlib
poplib
pprint
pty
pydoc

re
resource
select
shelve
shutil
smtpd
smtplib

socket
sqlite3

ssl

stat

struct
subprocess
sunau
Sys

tarfile
textwrap
threading
traceback
types
urllib
unittest
venv
wave
weakref
xml.etree
zipfile

= CPython Implementation Changes

PEP 445: Customization of CPython Memory
Allocators

PEP 442: Safe Object Finalization

PEP 456: Secure and Interchangeable Hash
Algorithm

PEP 436: Argument Clinic

Other Build and C API Changes

Other Improvements

Significant Optimizations

= Deprecated

Deprecations in the Python API
Deprecated Features

= Removed

m Operating Systems No Longer Supported
= APl and Feature Removals
= Code Cleanups
Porting to Python 3.4
= Changes in ‘python’ Command Behavior
= Changes in the Python API
= Changes in the C API
Changed in 3.4.3
m PEP 476: Enabling certificate verification by default
for stdlib http clients

o What's New In Python 3.3

Summary — Release highlights
PEP 405: Virtual Environments
PEP 420: Implicit Namespace Packages
PEP 3118: New memoryview implementation and buffer
protocol documentation
= Features
= API changes
PEP 393: Flexible String Representation
= Functionality
= Performance and resource usage
PEP 397: Python Launcher for Windows
PEP 3151: Reworking the OS and IO exception
hierarchy
PEP 380: Syntax for Delegating to a Subgenerator
PEP 409: Suppressing exception context
PEP 414: Explicit Unicode literals
PEP 3155: Qualified name for classes and functions
PEP 412: Key-Sharing Dictionary
PEP 362: Function Signature Object
PEP 421: Adding sys.implementation
= SimpleNamespace
Using importlib as the Implementation of Import
= New APIs

» Visible Changes
Other Language Changes
A Finer-Grained Import Lock
Builtin functions and types
New Modules

= faulthandler

m jpaddress

= |zma
Improved Modules

= abc

= array

= base64

= binascii

m pz2

m codecs

m collections

= contextlib

= crypt

m CUISes

m datetime

= decimal

m Features
= API changes
= email
m Policy Framework
= Provisional Policy with New Header API
= Other API Changes

m ftplib

m functools

" gC

= hmac

= http

= html

= imaplib

inspect

[o]
itertools
logging
math
mmap
multiprocessing
nntplib
0S

pdb
pickle
pydoc

re

sched
select
shlex
shutil
signal
smtpd
smtplib
socket
socketserver
sqlite3
ssl

stat
struct
subprocess
Sys
tarfile
tempfile
textwrap
threading
time
types

= unittest
m urllib
= webbrowser
= xml.etree.ElementTree
m zlib
Optimizations
Build and C API Changes
Deprecated
m Unsupported Operating Systems
m Deprecated Python modules, functions and methods
m Deprecated functions and types of the C API
m Deprecated features
Porting to Python 3.3
Porting Python code
Porting C code
Building C extensions
» Command Line Switch Changes
o What's New In Python 3.2
m PEP 384: Defining a Stable ABI
= PEP 389: Argparse Command Line Parsing Module
m PEP 391: Dictionary Based Configuration for Logging
s PEP 3148: The concurrent. futures module
m PEP 3147: PYC Repository Directories
= PEP 3149: ABI Version Tagged .so Files
= PEP 3333: Python Web Server Gateway Interface v1.0.1
= Other Language Changes
= New, Improved, and Deprecated Modules
= emalil
= elementtree
» functools
m jtertools
= collections
= threading
= datetime and time

math

abc

0

reprlib
logging
csv
contextlib
decimal and fractions
ftp

popen
select
gzip and zipfile
tarfile
hashlib
ast

0S

shutil
sqlite3
html
socket
ssl

nntp
certificates
imaplib
http.client
unittest
random
poplib
asyncore
tempfile
inspect
pydoc
dis

dbm

= ctypes
= Site
m sysconfig
= pdb
m configparser
= urllib.parse
= mailbox
= turtledemo
= Multi-threading
= Optimizations
= Unicode
= Codecs
= Documentation
» |IDLE
m Code Repository
= Build and C API Changes
= Porting to Python 3.2
o What's New In Python 3.1
m PEP 372: Ordered Dictionaries
m PEP 378: Format Specifier for Thousands Separator
m Other Language Changes
= New, Improved, and Deprecated Modules
= Optimizations
» |IDLE
= Build and C API Changes
= Porting to Python 3.1
o What's New In Python 3.0
s Common Stumbling Blocks
Print Is A Function
Views And Iterators Instead Of Lists
Ordering Comparisons
Integers
Text Vs. Data Instead Of Unicode Vs. 8-bit
= Overview Of Syntax Changes

= New Syntax
= Changed Syntax
» Removed Syntax
= Changes Already Present In Python 2.6
m Library Changes
= PEP 3101: A New Approach To String Formatting
= Changes To Exceptions
= Miscellaneous Other Changes
m Operators And Special Methods
= Builtins
= Build and C API Changes
= Performance
= Porting To Python 3.0
o What's New in Python 2.7
= The Future for Python 2.x
= Changes to the Handling of Deprecation Warnings
= Python 3.1 Features
s PEP 372: Adding an Ordered Dictionary to collections
m PEP 378: Format Specifier for Thousands Separator
m PEP 389: The argparse Module for Parsing Command
Lines
m PEP 391: Dictionary-Based Configuration For Logging
m PEP 3106: Dictionary Views
m PEP 3137: The memoryview Object
m Other Language Changes
= Interpreter Changes
= Optimizations
= New and Improved Modules
New module: importlib
New module: sysconfig
ttk: Themed Widgets for Tk
Updated module: unittest
Updated module: ElementTree 1.3
= Build and C API Changes

Capsules

Port-Specific Changes: Windows

Port-Specific Changes: Mac OS X

Port-Specific Changes: FreeBSD

m Other Changes and Fixes

= Porting to Python 2.7

» New Features Added to Python 2.7 Maintenance

Releases
m PEP 434: IDLE Enhancement Exception for All
Branches
m PEP 466: Network Security Enhancements for
Python 2.7

= Acknowledgements
o What's New in Python 2.6
= Python 3.0
= Changes to the Development Process
= New Issue Tracker: Roundup
= New Documentation Format: reStructuredText Using
Sphinx
s PEP 343: The ‘with’ statement
= Writing Context Managers
= The contextlib module
s PEP 366: Explicit Relative Imports From a Main Module
m PEP 370: Per-user site-packages Directory
s PEP 371: The multiprocessing Package
= PEP 3101: Advanced String Formatting
m PEP 3105: print As a Function
= PEP 3110: Exception-Handling Changes
s PEP 3112: Byte Literals
= PEP 3116: New I/O Library
= PEP 3118: Revised Buffer Protocol
s PEP 3119: Abstract Base Classes
s PEP 3127: Integer Literal Support and Syntax
s PEP 3129: Class Decorators

PEP 3141: A Type Hierarchy for Numbers

The fractions Module

Other Language Changes

Optimizations
Interpreter Changes

New and Improved Modules

The ast module

The future_builtins module

The json module: JavaScript Object Notation
The plistlib module: A Property-List Parser
ctypes Enhancements

Improved SSL Support

Deprecations and Removals
Build and C API Changes

Port-Specific Changes: Windows
Port-Specific Changes: Mac OS X
Port-Specific Changes: IRIX

Porting to Python 2.6
Acknowledgements

o What's New in Python 2.5
s PEP 308: Conditional Expressions
= PEP 309: Partial Function Application
m PEP 314: Metadata for Python Software Packages v1.1
m PEP 328: Absolute and Relative Imports
= PEP 338: Executing Modules as Scripts
= PEP 341: Unified try/except/finally
= PEP 342: New Generator Features
m PEP 343: The ‘with’ statement
= Writing Context Managers

The contextlib module

m PEP 352: Exceptions as New-Style Classes
m PEP 353: Using ssize t as the index type

s PEP 357: The ' index ' method

= Other Language Changes

m Interactive Interpreter Changes
= Optimizations
= New, Improved, and Removed Modules
The ctypes package
The ElementTree package
The hashlib package
The sqlite3 package
The wsgiref package
= Build and C API Changes
m Port-Specific Changes
= Porting to Python 2.5
m Acknowledgements
o What's New in Python 2.4
s PEP 218: Built-In Set Objects
s PEP 237: Unifying Long Integers and Integers
m PEP 289: Generator Expressions
s PEP 292: Simpler String Substitutions
m PEP 318: Decorators for Functions and Methods
m PEP 322: Reverse lIteration
m PEP 324: New subprocess Module
m PEP 327: Decimal Data Type
= Why is Decimal needed?
m The Decimal type
s The Context type
= PEP 328: Multi-line Imports
m PEP 331: Locale-Independent Float/String Conversions
= Other Language Changes
= Optimizations
= New, Improved, and Deprecated Modules
m cookielib
m doctest
= Build and C API Changes
m Port-Specific Changes
= Porting to Python 2.4

m Acknowledgements
o What's New in Python 2.3

PEP 218

PEP 255:
PEP 263:
PEP 273:
PEP 277:
PEP 278:
PEP 279:
PEP 282:
PEP 285:
PEP 293:
PEP 301:
PEP 302:
PEP 305:
PEP 307:

. A Standard Set Datatype

Simple Generators

Source Code Encodings

Importing Modules from ZIP Archives
Unicode file name support for Windows NT
Universal Newline Support

enumerate()

The logging Package

A Boolean Type

Codec Error Handling Callbacks
Package Index and Metadata for Distutils
New Import Hooks

Comma-separated Files

Pickle Enhancements

Extended Slices

Other Language Changes
= String Changes
= Optimizations

New, Improved, and Deprecated Modules
m Date/Time Type

= The

optparse Module

Pymalloc: A Specialized Object Allocator
Build and C API Changes
m Port-Specific Changes

Other Changes and Fixes
Porting to Python 2.3
Acknowledgements
o What's New in Python 2.2

= |ntroduction

s PEPs 252 and 253: Type and Class Changes
= Old and New Classes
m Descriptors

= Multiple Inheritance: The Diamond Rule
= Attribute Access
= Related Links
m PEP 234: Iterators
m PEP 255: Simple Generators
s PEP 237: Unifying Long Integers and Integers
m PEP 238: Changing the Division Operator
= Unicode Changes
m PEP 227: Nested Scopes
= New and Improved Modules
= Interpreter Changes and Fixes
m Other Changes and Fixes
m Acknowledgements
o What's New in Python 2.1
= |ntroduction
m PEP 227: Nested Scopes
m PEP 236: future__ Directives
m PEP 207: Rich Comparisons
m PEP 230: Warning Framework
m PEP 229: New Build System
m PEP 205: Weak References
s PEP 232: Function Attributes
= PEP 235: Importing Modules on Case-Insensitive
Platforms
m PEP 217: Interactive Display Hook
= PEP 208: New Coercion Model
m PEP 241: Metadata in Python Packages
= New and Improved Modules
m Other Changes and Fixes
m Acknowledgements
o What's New in Python 2.0
= |ntroduction
= What About Python 1.67?
= New Development Process

= Unicode
m List Comprehensions
= Augmented Assignment
= String Methods
m Garbage Collection of Cycles
m Other Core Changes
= Minor Language Changes
= Changes to Built-in Functions
= Porting to 2.0
= Extending/Embedding Changes
m Distutils: Making Modules Easy to Install
» XML Modules
m SAX2 Support
= DOM Support
m Relationship to PyXML
= Module changes
= New modules
= |[DLE Improvements
m Deleted and Deprecated Modules
m Acknowledgements
o Changelog
m Python 3.6.3 final?
= Library
= Build
m Python 3.6.3 release candidate 1?
= Security
= Core and Builtins
= Library
= Documentation
m Tests
= Build
= Windows
= IDLE
= Tools/Demos

m Python 3.6.2 final?
= Python 3.6.2 release candidate 2?
m Security
= Python 3.6.2 release candidate 1?
m Core and Builtins
m Library
= Security
m Library
m IDLE
= CAPI
= Build
= Documentation
m Tools/Demos
m Tests
= Windows
= Python 3.6.1 final?
m Core and Builtins
= Build
m Python 3.6.1 release candidate 1?
m Core and Builtins
m Library
m IDLE
= Windows
= C API
= Documentation
= Tests
= Build
= Python 3.6.0 final?
= Python 3.6.0 release candidate 2?
= Core and Builtins
= Tools/Demos
= Windows
= Build
= Python 3.6.0 release candidate 1?

Core and Builtins
Library

C API
Documentation
Tools/Demos

Python 3.6.0 beta 47?

Core and Builtins
Library
Documentation
Tests

Build

Python 3.6.0 beta 37?

Core and Builtins
Library

Windows

Build

Tests

Python 3.6.0 beta 27?

Core and Builtins
Library

Windows

C API

Build

Tests

Python 3.6.0 beta 17?

Core and Builtins
Library

IDLE

C API

Tests

Build
Tools/Demos
Windows

= Python 3.6.0 alpha 4?

Core and Builtins
Library

IDLE

Tests

Windows

Build

= Python 3.6.0 alpha 3?

Core and Builtins
Library
Security
Library
Security
Library

IDLE

C API

Build
Tools/Demos
Documentation
Tests

= Python 3.6.0 alpha 27?

Core and Builtins
Library
Security
Library
Security
Library

IDLE
Documentation
Tests
Windows

Build

Windows

C API
Tools/Demos

= Python 3.6.0 alpha 17?
= Core and Builtins
= Library
= Security
= Library
= Security
= Library
= Security
= Library
= |[DLE
= Documentation
m Tests
= Build
= Windows
= Tools/Demos
= C API

= Python 3.5.3 final?

m Python 3.5.3 release candidate 1?
= Core and Builtins
= Library
= Security
m Library
= Security
m Library
= |[DLE
= C API
= Documentation
m Tests
= Tools/Demos
= Windows
= Build

= Python 3.5.2 final?
= Core and Builtins
m Tests

= |[DLE
= Python 3.5.2 release candidate 1?
= Core and Builtins
= Security
m Library
= Security
m Library
= Security
m Library
= Security
m Library
m Security
m Library
= [DLE
= Documentation
m Jests
= Build
= Windows
= Tools/Demos
= Windows
= Python 3.5.1 final?
= Core and Builtins
= Windows
m Python 3.5.1 release candidate 1?
= Core and Builtins
= Library
s |[DLE
= Documentation
m Tests
= Build
= Windows
= Tools/Demos
= Python 3.5.0 final?
= Build

Python 3.5.0 release candidate 4?
m Library
= Build
Python 3.5.0 release candidate 37
= Core and Builtins
m Library
Python 3.5.0 release candidate 27?
= Core and Builtins
m Library
Python 3.5.0 release candidate 1?
Core and Builtins
Library
IDLE
Documentation
m Jests
Python 3.5.0 beta 47?
= Core and Builtins
m Library
= Build
Python 3.5.0 beta 37?
Core and Builtins
Library
Tests
Documentation
= Build
Python 3.5.0 beta 27?
= Core and Builtins
m Library
Python 3.5.0 beta 17?
Core and Builtins
Library
IDLE
Tests
Documentation

= Tools/Demos
Python 3.5.0 alpha 47
m Core and Builtins
m Library
= Build
m Jests
= Tools/Demos
x CAPI
Python 3.5.0 alpha 37
Core and Builtins
Library
Build
Tests
Tools/Demos
Python 3.5.0 alpha 27
Core and Builtins
Library
Build
C API
Windows
Python 3.5.0 alpha 17
m Core and Builtins
m Library
= IDLE
= Build
= CAPI
= Documentation
m Jests
= Tools/Demos
= Windows
e The Python Tutorial
o 1. Whetting Your Appetite
o 2. Using the Python Interpreter
= 2.1. Invoking the Interpreter

= 2.1.1. Argument Passing
m 2.1.2. Interactive Mode
m 2.2. The Interpreter and Its Environment
m 2.2.1. Source Code Encoding
o 3. An Informal Introduction to Python
= 3.1. Using Python as a Calculator
= 3.1.1. Numbers
m 3.1.2. Strings
m 3.1.3. Lists
m 3.2. First Steps Towards Programming
o 4. More Control Flow Tools
m 4.1. if Statements
m 4.2. for Statements
m 4.3. The range() Function
m 44. break and continue Statements, and else
Clauses on Loops
m 4.5. pass Statements
= 4.6. Defining Functions
m 4.7. More on Defining Functions
m 4.7.1. Default Argument Values
4.7.2. Keyword Arguments
4.7.3. Arbitrary Argument Lists
4.7.4. Unpacking Argument Lists
4.7.5. Lambda Expressions
4.7.6. Documentation Strings
m 4.7.7. Function Annotations
= 4.8. Intermezzo: Coding Style
o 5. Data Structures
= 5.1. More on Lists
5.1.1. Using Lists as Stacks
5.1.2. Using Lists as Queues
5.1.3. List Comprehensions
m 5.1.4. Nested List Comprehensions
m 52. The del statement

5.3. Tuples and Sequences
5.4. Sets
5.5. Dictionaries
5.6. Looping Techniques
5.7. More on Conditions
5.8. Comparing Sequences and Other Types
o 6. Modules
= 6.1. More on Modules
= 6.1.1. Executing modules as scripts
= 6.1.2. The Module Search Path
= 6.1.3. “Compiled” Python files
= 6.2. Standard Modules
m 6.3. The dir () Function
= 6.4. Packages
= 6.4.1. Importing * From a Package
m 6.4.2. Intra-package References
m 6.4.3. Packages in Multiple Directories
o 7. Input and Output
m 7.1. Fancier Output Formatting
m 7.1.1. Old string formatting
m 7.2. Reading and Writing Files
m 7.2.1. Methods of File Objects
m 7.2.2. Saving structured data with json
o 8. Errors and Exceptions
8.1. Syntax Errors
8.2. Exceptions
8.3. Handling Exceptions
8.4. Raising Exceptions
8.5. User-defined Exceptions
8.6. Defining Clean-up Actions
8.7. Predefined Clean-up Actions
o 9. Classes
= 9.1. AWord About Names and Obijects
= 9.2. Python Scopes and Namespaces

m 9.2.1. Scopes and Namespaces Example
9.3. AFirst Look at Classes
m 9.3.1. Class Definition Syntax
m 9.3.2. Class Objects
m 9.3.3. Instance Objects
= 9.3.4. Method Obijects
m 9.3.5. Class and Instance Variables
9.4. Random Remarks
9.5. Inheritance
= 9.5.1. Multiple Inheritance
9.6. Private Variables
9.7. Odds and Ends
9.8. Iterators
9.9. Generators
9.10. Generator Expressions

o 10. Brief Tour of the Standard Library

10.1. Operating System Interface
10.2. File Wildcards

10.3. Command Line Arguments
10.4. Error Output Redirection and Program Termination
10.5. String Pattern Matching
10.6. Mathematics

10.7. Internet Access

10.8. Dates and Times

10.9. Data Compression

10.10. Performance Measurement
10.11. Quality Control

10.12. Batteries Included

o 11. Brief Tour of the Standard Library — Part Il

11.1. Output Formatting

11.2. Templating

11.3. Working with Binary Data Record Layouts
11.4. Multi-threading

11.5. Logging

m 11.6. Weak References
m 11.7. Tools for Working with Lists
= 11.8. Decimal Floating Point Arithmetic
12. Virtual Environments and Packages
m 12.1. Introduction
m 12.2. Creating Virtual Environments
m 12.3. Managing Packages with pip
13. What Now?
14. Interactive Input Editing and History Substitution
= 14.1. Tab Completion and History Editing
m 14.2. Alternatives to the Interactive Interpreter
15. Floating Point Arithmetic: Issues and Limitations
= 15.1. Representation Error
16. Appendix
= 16.1. Interactive Mode
16.1.1. Error Handling
16.1.2. Executable Python Scripts
16.1.3. The Interactive Startup File
16.1.4. The Customization Modules
Python Setup and Usage
o 1. Command line and environment
m 1.1. Command line
1.1.1. Interface options
1.1.2. Generic options
1.1.3. Miscellaneous options
1.1.4. Options you shouldn’t use
= 1.2. Environment variables
1.2.1. Debug-mode variables
o 2. Using Python on Unix platforms
m 2.1. Getting and installing the latest version of Python
m 2.1.1. On Linux
m 2.1.2. On FreeBSD and OpenBSD
= 2.1.3. On OpenSolaris
= 2.2. Building Python

o

o

(¢]

(¢]

(¢]

m 2.3. Python-related paths and files
m 2.4, Miscellaneous
m 2.5, Editors and IDEs
o 3. Using Python on Windows
= 3.1. Installing Python
= 3.1.1. Supported Versions
m 3.1.2. Installation Steps
= 3.1.3. Removing the MAX_ PATH Limitation
= 3.1.4. Installing Without Ul
= 3.1.5. Installing Without Downloading
= 3.1.6. Modifying an install
m 3.1.7. Other Platforms
m 3.2. Alternative bundles
= 3.3. Configuring Python
m 3.3.1. Excursus: Setting environment variables
m 3.3.2. Finding the Python executable
m 3.4. Python Launcher for Windows
m 3.4.1. Getting started
m 3.4.1.1. From the command-line
m 3.4.1.2. Virtual environments
m 3.4.1.3. From a script
m 3.4.1.4. From file associations
m 3.4.2. Shebang Lines
= 3.4.3. Arguments in shebang lines
m 3.4.4. Customization
m 3.4.4.1. Customization via INI files
m 3.4.4.2. Customizing default Python versions
= 3.4.5. Diagnostics
= 3.5. Finding modules
= 3.6. Additional modules
s 3.6.1. PyWin32
m 3.6.2. cx_Freeze
= 3.6.3. WConio
= 3.7. Compiling Python on Windows

m 3.8. Embedded Distribution

3.8.1. Python Application
3.8.2. Embedding Python

m 3.9. Other resources
o 4. Using Python on a Macintosh

4.1.

4.2.
4.3.
4.4,
4.5.
4.6.

Getting and Installing MacPython

4.1.1. How to run a Python script

4.1.2. Running scripts with a GUI

4.1.3. Configuration

The IDE

Installing Additional Python Packages

GUI Programming on the Mac

Distributing Python Applications on the Mac
Other Resources

The Python Language Reference
o 1. Introduction
= 1.1. Alternate Implementations
= 1.2. Notation
o 2. Lexical analysis
m 2.1. Line structure

2.1.1. Logical lines

2.1.2. Physical lines

2.1.3. Comments

2.1.4. Encoding declarations
2.1.5. Explicit line joining

2.1.6. Implicit line joining

2.1.7. Blank lines

2.1.8. Indentation

2.1.9. Whitespace between tokens

m 2.2. Other tokens
m 2.3. Identifiers and keywords

2.3.1. Keywords
2.3.2. Reserved classes of identifiers

m 2.4, Literals

2.4.1. String and Bytes literals
2.4.2. String literal concatenation
2.4.3. Formatted string literals
2.4.4. Numeric literals
2.4.5. Integer literals
2.4.6. Floating point literals
m 2.4.7. Imaginary literals
m 2.5. Operators
m 2.6. Delimiters
o 3. Data model
= 3.1. Objects, values and types
m 3.2. The standard type hierarchy
= 3.3. Special method names
3.3.1. Basic customization
3.3.2. Customizing attribute access
= 3.3.2.1. Implementing Descriptors
m 3.3.2.2. Invoking Descriptors
m 3.3.2.3. _slots__
m 3.3.2.3.1. Notes on using __slots___
3.3.3. Customizing class creation
m 3.3.3.1. Metaclasses
3.3.3.2. Determining the appropriate metaclass
3.3.3.3. Preparing the class namespace
3.3.3.4. Executing the class body
3.3.3.5. Creating the class object
= 3.3.3.6. Metaclass example
3.3.4. Customizing instance and subclass checks
3.3.5. Emulating callable objects
3.3.6. Emulating container types
3.3.7. Emulating numeric types
3.3.8. With Statement Context Managers
3.3.9. Special method lookup
= 3.4. Coroutines
= 3.4.1. Awaitable Objects

m 3.4.2. Coroutine Objects
m 3.4.3. Asynchronous Iterators
m 3.4.4. Asynchronous Context Managers
o 4. Execution model
m 4.1. Structure of a program
= 4.2. Naming and binding
m 4.2.1. Binding of names
m 4.2.2. Resolution of names
m 4.2.3. Builtins and restricted execution
m 4.2.4. Interaction with dynamic features
= 4.3. Exceptions
o 5. The import system
m 5.1. importlib
m 5.2. Packages
m 5.2.1. Regular packages
m 5.2.2. Namespace packages
5.3. Searching
m 5.3.1. The module cache
m 5.3.2. Finders and loaders
= 5.3.3. Import hooks
m 5.3.4. The meta path
. Loading
m 54.1. Loaders
m 5.4.2. Submodules
= 5.4.3. Module spec
m 5.4.4. Import-related module attributes
= 5.4.5. module.__path__
= 5.4.6. Module reprs
. The Path Based Finder
m 5.5.1. Path entry finders
m 5.5.2. Path entry finder protocol
. Replacing the standard import system
. Special considerations for __main__
m 57.1. main__. spec

]
o
IN

[
o1
a1

| | | |
o o
~N O

m 5.8. Open issues
m 5.9, References
o 6. Expressions

6.1.
6.2.

6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

Arithmetic conversions
Atoms
6.2.1. Identifiers (Names)
6.2.2. Literals
6.2.3. Parenthesized forms
6.2.4. Displays for lists, sets and dictionaries
6.2.5. List displays
6.2.6. Set displays
6.2.7. Dictionary displays
6.2.8. Generator expressions
6.2.9. Yield expressions
m 6.2.9.1. Generator-iterator methods
= 6.2.9.2. Examples
m 6.2.9.3. Asynchronous generator functions
m 6.2.9.4. Asynchronous generator-iterator
methods

. Primaries

6.3.1. Attribute references

6.3.2. Subscriptions

6.3.3. Slicings

6.3.4. Calls

Await expression

The power operator

Unary arithmetic and bitwise operations
Binary arithmetic operations

Shifting operations

Binary bitwise operations

6.10. Comparisons

6.10.1. Value comparisons
6.10.2. Membership test operations
6.10.3. Identity comparisons

6.11. Boolean operations
6.12. Conditional expressions
6.13. Lambdas

6.14. Expression lists

6.15. Evaluation order

6.16. Operator precedence

7.1.
7.2

7.3.
7.4.
7.5.
7.6.
7.7.
7.8.
7.9.

. Simple statements

Expression statements

Assignment statements

7.2.1. Augmented assignment statements
7.2.2. Annotated assignment statements
The assert statement

The pass statement
The del statement
The return statement
The yield statement
The raise statement
The break statement

7.10. The continue statement
7.11. The import statement

7.11.1. Future statements

7.12. The global statement
m 7.13. The nonlocal statement

8.1.
8.2.
8.3.
8.4.
8.5.

8.6.
8.7.
8.8.

. Compound statements

The if statement

The while statement

The for statement

The try statement

The with statement

Function definitions

Class definitions

Coroutines

8.8.1. Coroutine function definition

8.8.2. The async for statement
8.8.3. The async with statement

o 9. Top-level components
= 9.1. Complete Python programs
m 9.2. File input
= 9.3. Interactive input
m 9.4, Expression input
o 10. Full Grammar specification

e The Python Standard Library
1. Introduction
2. Built-in Functions
3. Built-in Constants

m 3.1. Constants added by the site module
4. Built-in Types

o

(¢]

(¢]

o

4.1.
4.2.
4.3.
4.4,

4.5.

4.6.

Truth Value Testing

Boolean Operations — and, or, not
Comparisons

Numeric Types — int, float, complex
4.4.1. Bitwise Operations on Integer Types
4.4.2. Additional Methods on Integer Types
4.4.3. Additional Methods on Float

4.4.4. Hashing of numeric types

Iterator Types

4.5.1. Generator Types

Sequence Types — list, tuple, range
4.6.1. Common Sequence Operations
4.6.2. Immutable Sequence Types

4.6.3. Mutable Sequence Types

4.6.4. Lists

4.6.5. Tuples

4.6.6. Ranges

. Text Sequence Type — str

4.7.1. String Methods
4.7.2. printf-style String Formatting

4.8. Binary Sequence Types — bytes, bytearray,
memoryview
4.8.1. Bytes Objects
4.8.2. Bytearray Objects
4.8.3. Bytes and Bytearray Operations
4.8.4. printf-style Bytes Formatting
= 4.8.5. Memory Views
4.9. Set Types — set, frozenset
4.10. Mapping Types — dict
= 4.10.1. Dictionary view objects
4.11. Context Manager Types
4.12. Other Built-in Types
m 4.12.1. Modules
4.12.2. Classes and Class Instances
4.12.3. Functions
4.12.4. Methods
4.12.5. Code Objects
4.12.6. Type Objects
4.12.7. The Null Object
4.12.8. The Ellipsis Object
4.12.9. The Notimplemented Object
4.12.10. Boolean Values
4.12.11. Internal Objects
m 4.13. Special Attributes
o 5. Built-in Exceptions
m 5.1. Base classes
m 5.2. Concrete exceptions
m 5.2.1. OS exceptions
= 5.3. Warnings
= 5.4, Exception hierarchy
o 6. Text Processing Services
m 6.1. string — Common string operations
= 6.1.1. String constants
m 6.1.2. Custom String Formatting

6.2

6.3

6.4
6.5
6.6
6.7

6.1.3. Format String Syntax
= 6.1.3.1. Format Specification Mini-Language
m 6.1.3.2. Format examples
6.1.4. Template strings
6.1.5. Helper functions
. re — Regular expression operations
6.2.1. Regular Expression Syntax
6.2.2. Module Contents
6.2.3. Regular Expression Objects
6.2.4. Match Objects
6.2.5. Regular Expression Examples
m 6.2.5.1. Checking for a Pair
m 6.2.5.2. Simulating scanf()
m 6.2.5.3. search() vs. match()
= 6.2.5.4. Making a Phonebook
m 6.2.5.5. Text Munging
m 6.2.5.6. Finding all Adverbs
m 6.2.5.7. Finding all Adverbs and their Positions
m 6.2.5.8. Raw String Notation
m 6.2.5.9. Writing a Tokenizer
. difflib — Helpers for computing deltas
6.3.1. SequenceMatcher Objects
6.3.2. SequenceMatcher Examples
6.3.3. Differ Objects
6.3.4. Differ Example
6.3.5. A command-line interface to difflib
. textwrap — Text wrapping and filling
. unicodedata — Unicode Database
. stringprep — Internet String Preparation
. readline — GNU readline interface
6.7.1. Init file
6.7.2. Line buffer
6.7.3. History file
6.7.4. History list

m 6.7.5. Startup hooks
m 6.7.6. Completion
m 6.7.7. Example
m 6.8. rlcompleter — Completion function for GNU
readline
= 6.8.1. Completer Objects
o 7. Binary Data Services
m 7.1. struct — Interpret bytes as packed binary data
m 7.1.1. Functions and Exceptions
m 7.1.2. Format Strings
m 7.1.2.1. Byte Order, Size, and Alignment
m 7.1.2.2. Format Characters
m 7.1.2.3. Examples
m 7.1.3. Classes
m 7.2. codecs — Codec registry and base classes
m 7.2.1. Codec Base Classes
m 7.2.1.1. Error Handlers
m 7.2.1.2. Stateless Encoding and Decoding
m 7.2.1.3. Incremental Encoding and Decoding
m 7.2.1.3.1. IncrementalEncoder Objects
m 7.2.1.3.2. IncrementalDecoder Objects
m 7.2.1.4. Stream Encoding and Decoding
7.2.1.4.1. StreamWriter Objects
7.2.1.4.2. StreamReader Objects
7.2.1.4.3. StreamReaderWriter Objects
7.2.1.4.4. StreamRecoder Objects
7.2.2. Encodings and Unicode
7.2.3. Standard Encodings
7.2.4. Python Specific Encodings
m 7.2.4.1. Text Encodings
m 7.2.4.2. Binary Transforms
m 7.2.4.3. Text Transforms
7.2.5. encodings.idna — Internationalized
Domain Names in Applications

m 7.2.6. encodings.mbcs — Windows ANSI
codepage
m 7.2.7. encodings.utf_8_sig — UTF-8 codec
with BOM signature
o 8. Data Types
= 8.1. datetime — Basic date and time types

8.1.1. Available Types
8.1.2. timedelta Objects

8.1.3. date Obijects
8.1.4. datetime Obijects
8.1.5. time Obijects
8.1.6. tzinfo Objects
8.1.7. timezone Objects
8.1.8. strftime() and strptime() Behavior
m 8.2. calendar — General calendar-related functions
m 8.3. collections — Container datatypes
8.3.1. ChainMap objects
m 8.3.1.1. ChainMap Examples and Recipes
8.3.2. Counter objects
8.3.3. deque objects
m 8.3.3.1. deque Recipes
8.3.4. defaultdict objects
m 8.3.4.1. defaultdict Examples
8.3.5. namedtuple() Factory Function for Tuples

with Named Fields
8.3.6. OrderedDict objects

m 8.3.6.1. OrderedDict Examples and Recipes
8.3.7. UserDict objects
8.3.8. UserList objects
= 8.3.9. UserString objects
m 84. collections.abc — Abstract Base Classes for
Containers

8.9.

8.4.1. Collections Abstract Base Classes

. heapg — Heap queue algorithm

8.5.1. Basic Examples
8.5.2. Priority Queue Implementation Notes
8.5.3. Theory

. bisect — Array bisection algorithm

8.6.1. Searching Sorted Lists
8.6.2. Other Examples

. array — Efficient arrays of numeric values
. weakref — Weak references

8.8.1. Weak Reference Objects
8.8.2. Example
8.8.3. Finalizer Objects

8.8.4. Comparing finalizers with __del__ ()

methods

types — Dynamic type creation and names for

built-in types
= 8.9.1. Dynamic Type Creation
= 8.9.2. Standard Interpreter Types

= 8.9.3. Additional Utility Classes and Functions

= 8.9.4. Coroutine Utility Functions
8.10. copy — Shallow and deep copy operations
8.11. pprint — Data pretty printer

= 8.11.1. PrettyPrinter Objects

= 8.11.2. Example

8.12. reprlib — Alternate repr () implementation

m 8.12.1. Repr Objects

m 8.12.2. Subclassing Repr Objects
8.13. enum — Support for enumerations

= 8.13.1. Module Contents

m 8.13.2. Creating an Enum

= 8.13.3. Programmatic access to enumeration

members and their attributes

8.13.4. Duplicating enum members and values
8.13.5. Ensuring unique enumeration values
8.13.6. Using automatic values
8.13.7. Iteration
8.13.8. Comparisons
8.13.9. Allowed members and attributes of
enumerations
8.13.10. Restricted subclassing of enumerations
8.13.11. Pickling
8.13.12. Functional API
8.13.13. Derived Enumerations
= 8.13.13.1. IntEnum
= 8.13.13.2. IntFlag
= 8.13.13.3. Flag
m 8.13.13.4. Others
8.13.14. Interesting examples
= 8.13.14.1. Omitting values
m 8.13.14.1.1. Using auto
m 8.13.14.1.2. Using object
m 8.13.14.1.3. Using a descriptive string
m 8.13.14.1.4. Using a custom _new__ ()
m 8.13.14.2. OrderedEnum
m 8.13.14.3. DuplicateFreeEnum
= 8.13.14.4. Planet
m 8.13.15. How are Enums different?
m 8.13.15.1. Enum Classes
= 8.13.15.2. Enum Members (aka instances)
= 8.13.15.3. Finer Points
s 8.13.15.3.1. Supported __dunder__
names
m 8.13.15.3.2. Supported _sunder_ names
m 8.13.15.3.3. Enum member type
m 8.13.15.3.4. Boolean value of Enum
classes and members

m 8.13.15.3.5. Enum classes with methods
m 8.13.15.3.6. Combining members of Flag
o 9. Numeric and Mathematical Modules
= 9.1. numbers — Numeric abstract base classes
= 9.1.1. The numeric tower
m 9.1.2. Notes for type implementors
m 9.1.2.1. Adding More Numeric ABCs
m 9.1.2.2. Implementing the arithmetic operations
m 9.2. math — Mathematical functions
9.2.1. Number-theoretic and representation
functions
9.2.2. Power and logarithmic functions
9.2.3. Trigonometric functions
9.2.4. Angular conversion
9.2.5. Hyperbolic functions
9.2.6. Special functions
m 0.2.7. Constants
m 9.3. cmath — Mathematical functions for complex
numbers
9.3.1. Conversions to and from polar coordinates
9.3.2. Power and logarithmic functions
9.3.3. Trigonometric functions
9.3.4. Hyperbolic functions
9.3.5. Classification functions
= 9.3.6. Constants
m 9.4, decimal — Decimal fixed point and floating point
arithmetic
= 9.4.1. Quick-start Tutorial
= 9.4.2. Decimal objects
m 9.4.2.1. Logical operands
9.4.3. Context objects
9.4.4. Constants
9.4.5. Rounding modes
9.4.6. Signals

9.4.7. Floating Point Notes
= 9.4.7.1. Mitigating round-off error with increased
precision
m 9.4.7.2. Special values
9.4.8. Working with threads
9.4.9. Recipes
9.4.10. Decimal FAQ

. fractions — Rational numbers
. random — Generate pseudo-random numbers

9.6.1. Bookkeeping functions
9.6.2. Functions for integers
9.6.3. Functions for sequences
9.6.4. Real-valued distributions
9.6.5. Alternative Generator
9.6.6. Notes on Reproducibility
9.6.7. Examples and Recipes

. statistics — Mathematical statistics functions

9.7.1. Averages and measures of central location
9.7.2. Measures of spread

9.7.3. Function details

9.7.4. Exceptions

o 10. Functional Programming Modules
m 10.1. itertools — Functions creating iterators for
efficient looping

10.1.1. Itertool functions
10.1.2. Itertools Recipes

m 10.2. functools — Higher-order functions and
operations on callable objects

10.2.1. partial Objects

m 10.3. operator — Standard operators as functions

10.3.1. Mapping Operators to Functions
10.3.2. Inplace Operators

o 11. File and Directory Access
= 11.1. pathlib — Object-oriented filesystem paths

= 11.1.1. Basic use
m 11.1.2. Pure paths
m 11.1.2.1. General properties
m 11.1.2.2. Operators
m 11.1.2.3. Accessing individual parts
= 11.1.2.4. Methods and properties
m 11.1.3. Concrete paths
= 11.1.3.1. Methods
m 11.2. 0s.path — Common pathname manipulations
m 11.3. fileinput — Iterate over lines from multiple
input streams
m 11.4. stat — Interpreting stat () results
m 11.5. filecmp — File and Directory Comparisons
m 11.5.1. The dircmp class
m 11.6. tempfile — Generate temporary files and
directories
= 11.6.1. Examples
= 11.6.2. Deprecated functions and variables
m 11.7. glob — Unix style pathname pattern expansion
= 11.8. fnmatch — Unix filename pattern matching
m 11.9. linecache — Random access to text lines
m 11.10. shutil — High-level file operations
= 11.10.1. Directory and files operations
= 11.10.1.1. copytree example
m 11.10.1.2. rmtree example
= 11.10.2. Archiving operations
m 11.10.2.1. Archiving example
= 11.10.3. Querying the size of the output terminal
m 11.11. macpath — Mac OS 9 path manipulation
functions
o 12. Data Persistence
m 12.1. pickle — Python object serialization
= 12.1.1. Relationship to other Python modules

m 12.1.1.1. Comparison with marshal
m 12.1.1.2. Comparison with json
12.1.2. Data stream format
12.1.3. Module Interface
12.1.4. What can be pickled and unpickled?
12.1.5. Pickling Class Instances
m 12.1.5.1. Persistence of External Objects
m 12.1.5.2. Dispatch Tables
m 12.1.5.3. Handling Stateful Objects
12.1.6. Restricting Globals
12.1.7. Performance
m 12.1.8. Examples
12.2. copyreg — Register pickle support functions
m 12.2.1. Example
12.3. shelve — Python object persistence
m 12.3.1. Restrictions
m 12.3.2. Example
12.4. marshal — Internal Python object serialization
12.5. dbm — Interfaces to Unix “databases”
m 12.5.1. dbm.gnu — GNU's reinterpretation of dom
m 12.5.2. dbm.ndbm — Interface based on ndbm
m 12.5.3. dbm.dumb — Portable DBM implementation
12.6. sqlite3 — DB-API 2.0 interface for SQLite
databases
m 12.6.1. Module functions and constants
m 12.6.2. Connection Objects
m 12.6.3. Cursor Objects
m 12.6.4. Row Objects
= 12.6.5. Exceptions
m 12.6.6. SQLite and Python types
m 12.6.6.1. Introduction
m 12.6.6.2. Using adapters to store additional
Python types in SQLite databases

m 12.6.6.2.1. Letting your object adapt itself
m 12.6.6.2.2. Registering an adapter callable
m 12.6.6.3. Converting SQLite values to custom
Python types
m 12.6.6.4. Default adapters and converters
12.6.7. Controlling Transactions
12.6.8. Using sgqlite3 efficiently
m 12.6.8.1. Using shortcut methods
m 12.6.8.2. Accessing columns by name instead
of by index
m 12.6.8.3. Using the connection as a context
manager
12.6.9. Common issues
m 12.6.9.1. Multithreading

o 13. Data Compression and Archiving
m 13.1. z1ib — Compression compatible with gzip
m 13.2. gzip — Support for gzip files

13.2.1. Examples of usage

m 13.3. bz2 — Support for bzip2 compression

13.3.1. (De)compression of files
13.3.2. Incremental (de)compression
13.3.3. One-shot (de)compression

m 13.4. 1zma — Compression using the LZMA algorithm

13.4.1. Reading and writing compressed files

13.4.2. Compressing and decompressing data in
memory

13.4.3. Miscellaneous

13.4.4. Specifying custom filter chains

13.4.5. Examples

m 13.5. zipfile — Work with ZIP archives

13.5.1. ZipFile Objects

13.5.2. PyZipFile Objects
13.5.3. ZipInfo Objects

13.5.4. Command-Line Interface

m 13.5.4.1. Command-line options
m 13.6. tarfile — Read and write tar archive files
13.6.1. TarFile Objects
13.6.2. TarInfo Objects
13.6.3. Command-Line Interface
m 13.6.3.1. Command-line options
13.6.4. Examples
13.6.5. Supported tar formats
13.6.6. Unicode issues
o 14. File Formats
m 14.1. csv — CSV File Reading and Writing
= 14.1.1. Module Contents
14.1.2. Dialects and Formatting Parameters
14.1.3. Reader Objects
14.1.4. Writer Objects
14.1.5. Examples
m 14.2. configparser — Configuration file parser
m 14.2.1. Quick Start
m 14.2.2. Supported Datatypes
m 14.2.3. Fallback Values
m 14.2.4. Supported INI File Structure
m 14.2.5. Interpolation of values
m 14.2.6. Mapping Protocol Access
m 14.2.7. Customizing Parser Behaviour
m 14.2.8. Legacy APl Examples
m 14.2.9. ConfigParser Objects
= 14.2.10. RawConfigParser Objects
m 14.2.11. Exceptions
m 14.3. netrc — netrc file processing
m 14.3.1. netrc Objects
m 14.4. xdrlib — Encode and decode XDR data
m 14.4.1. Packer Objects
m 14.4.2. Unpacker Objects
m 14.4.3. Exceptions

m 145 plistlib — Generate and parse Mac OS X
.plist files
m 14.5.1. Examples
o 15. Cryptographic Services
m 15.1. hashlib — Secure hashes and message digests
m 15.1.1. Hash algorithms
m 15.1.2. SHAKE variable length digests
= 15.1.3. Key derivation
m 15.1.4. BLAKE2
m 15.1.4.1. Creating hash objects
m 15.1.4.2. Constants
m 15.1.4.3. Examples
m 15.1.4.3.1. Simple hashing
m 15.1.4.3.2. Using different digest sizes
m 15.1.4.3.3. Keyed hashing
m 15.1.4.3.4. Randomized hashing
m 15.1.4.3.5. Personalization
m 15.1.4.3.6. Tree mode
m 15.1.4.4. Credits
m 152. hmac — Keyed-Hashing for Message
Authentication
m 15.3. secrets — Generate secure random numbers for
managing secrets
= 15.3.1. Random numbers
= 15.3.2. Generating tokens
= 15.3.2.1. How many bytes should tokens use?
= 15.3.3. Other functions
= 15.3.4. Recipes and best practices
o 16. Generic Operating System Services
m 16.1. os — Miscellaneous operating system interfaces
m 16.1.1. File Names, Command Line Arguments, and
Environment Variables
m 16.1.2. Process Parameters
= 16.1.3. File Object Creation

16.1.4. File Descriptor Operations
m 16.1.4.1. Querying the size of a terminal
m 16.1.4.2. Inheritance of File Descriptors
16.1.5. Files and Directories
m 16.1.5.1. Linux extended attributes
16.1.6. Process Management
16.1.7. Interface to the scheduler
16.1.8. Miscellaneous System Information
16.1.9. Random numbers
m 16.2. i0 — Core tools for working with streams
m 16.2.1. Overview
m 16.2.1.1. Text I/O
m 16.2.1.2. Binary I/O
m 16.2.1.3. Raw I/O
= 16.2.2. High-level Module Interface
m 16.2.2.1. In-memory streams
m 16.2.3. Class hierarchy
m 16.2.3.1. I/O Base Classes
= 16.2.3.2. Raw File 1/0O
m 16.2.3.3. Buffered Streams
m 16.2.3.4. Text 1/O
= 16.2.4. Performance
m 16.2.4.1. Binary I/O
m 16.2.4.2. Text 1/O
= 16.2.4.3. Multi-threading
m 16.2.4.4. Reentrancy
m 16.3. time — Time access and conversions
m 16.4. argparse — Parser for command-line options,
arguments and sub-commands
= 16.4.1. Example
= 16.4.1.1. Creating a parser
= 16.4.1.2. Adding arguments
= 16.4.1.3. Parsing arguments
= 16.4.2. ArgumentParser objects

16.4.2.1. prog

16.4.2.2. usage

16.4.2.3. description
16.4.2.4. epilog

16.4.2.5. parents

16.4.2.6. formatter_class
16.4.2.7. prefix_chars
16.4.2.8. fromfile_prefix_chars
16.4.2.9. argument_default
16.4.2.10. allow_abbrev
16.4.2.11. conflict_handler
16.4.2.12. add_help

m 16.4.3. The add_argument() method

16.4.3.1. name or flags
16.4.3.2. action
16.4.3.3. nargs
16.4.3.4. const
16.4.3.5. default
16.4.3.6. type

16.4.3.7. choices
16.4.3.8. required
16.4.3.9. help
16.4.3.10. metavar
16.4.3.11. dest
16.4.3.12. Action classes

m 16.4.4. The parse_args() method

16.4.4.1. Option value syntax

16.4.4.2. Invalid arguments

16.4.4.3. Arguments containing -
16.4.4.4. Argument abbreviations
matching)

16.4.4.5. Beyond sys.argv

16.4.4.6. The Namespace object

m 16.4.5. Other utilities

(prefix

m 16.4.5.1. Sub-commands
m 16.4.5.2. FileType objects
= 16.4.5.3. Argument groups
= 16.4.5.4. Mutual exclusion
m 16.4.5.5. Parser defaults
= 16.4.5.6. Printing help
= 16.4.5.7. Partial parsing
= 16.4.5.8. Customizing file parsing
= 16.4.5.9. Exiting methods
= 16.4.6. Upgrading optparse code
m 16.5. getopt — C-style parser for command line
options
m 16.6. logging — Logging facility for Python
m 16.6.1. Logger Objects
m 16.6.2. Logging Levels
» 16.6.3. Handler Objects
m 16.6.4. Formatter Objects
m 16.6.5. Filter Objects
m 16.6.6. LogRecord Objects
m 16.6.7. LogRecord attributes
m 16.6.8. LoggerAdapter Objects
m 16.6.9. Thread Safety
m 16.6.10. Module-Level Functions
m 16.6.11. Module-Level Attributes
m 16.6.12. Integration with the warnings module
m 16.7. logging.config — Logging configuration
m 16.7.1. Configuration functions
m 16.7.2. Configuration dictionary schema
m 16.7.2.1. Dictionary Schema Details
m 16.7.2.2. Incremental Configuration
m 16.7.2.3. Object connections
m 16.7.2.4. User-defined objects
m 16.7.2.5. Access to external objects
m 16.7.2.6. Access to internal objects

m 16.7.2.7. Import resolution and custom
importers
m 16.7.3. Configuration file format
m 16.8. logging.handlers — Logging handlers
m 16.8.1. StreamHandler
= 16.8.2. FileHandler
= 16.8.3. Null[Handler
= 16.8.4. WatchedFileHandler
= 16.8.5. BaseRotatingHandler
= 16.8.6. RotatingFileHandler
» 16.8.7. TimedRotatingFileHandler
m 16.8.8. SocketHandler
= 16.8.9. DatagramHandler
= 16.8.10. SysLogHandler
= 16.8.11. NTEventLogHandler
m 16.8.12. SMTPHandler
= 16.8.13. MemoryHandler
= 16.8.14. HTTPHandler
= 16.8.15. QueueHandler
m 16.8.16. QueueListener
m 16.9. getpass — Portable password input
m 16.10. curses — Terminal handling for character-cell
displays
m 16.10.1. Functions
= 16.10.2. Window Obijects
m 16.10.3. Constants
m 16.11. curses. textpad — Text input widget for curses
programs
m 16.11.1. Textbox objects
m 16.12. curses.ascii — Utilities for ASCII characters
m 16.13. curses.panel — A panel stack extension for
curses
= 16.13.1. Functions
= 16.13.2. Panel Objects

m 16.14. platform — Access to underlying platform’s
identifying data
m 16.14.1. Cross Platform
= 16.14.2. Java Platform
m 16.14.3. Windows Platform
m 16.14.3.1. Win95/98 specific
m 16.14.4. Mac OS Platform
= 16.14.5. Unix Platforms
m 16.15. errno — Standard errno system symbols
m 16.16. ctypes — Aforeign function library for Python
= 16.16.1. ctypes tutorial
m 16.16.1.1. Loading dynamic link libraries
m 16.16.1.2. Accessing functions from loaded dlls
= 16.16.1.3. Calling functions
= 16.16.1.4. Fundamental data types
m 16.16.1.5. Calling functions, continued
m 16.16.1.6. Calling functions with your own
custom data types
m 16.16.1.7. Specifying the required argument
types (function prototypes)
m 16.16.1.8. Return types
m 16.16.1.9. Passing pointers (or. passing
parameters by reference)
m 16.16.1.10. Structures and unions
m 16.16.1.11. Structure/union alignment and byte
order
= 16.16.1.12. Bit fields in structures and unions
= 16.16.1.13. Arrays
= 16.16.1.14. Pointers
= 16.16.1.15. Type conversions
m 16.16.1.16. Incomplete Types
m 16.16.1.17. Callback functions
m 16.16.1.18. Accessing values exported from dlls
m 16.16.1.19. Surprises

m 16.16.1.20. Variable-sized data types
m 16.16.2. ctypes reference
m 16.16.2.1. Finding shared libraries
m 16.16.2.2. Loading shared libraries
m 16.16.2.3. Foreign functions
= 16.16.2.4. Function prototypes
m 16.16.2.5. Utility functions
= 16.16.2.6. Data types
m 16.16.2.7. Fundamental data types
m 16.16.2.8. Structured data types
m 16.16.2.9. Arrays and pointers
o 17. Concurrent Execution
m 17.1. threading — Thread-based parallelism
m 17.1.1. Thread-Local Data
m 17.1.2. Thread Objects
m 17.1.3. Lock Objects
m 17.1.4. RLock Objects
m 17.1.5. Condition Objects
m 17.1.6. Semaphore Objects
m 17.1.6.1. Semaphore Example
m 17.1.7. Event Objects
m 17.1.8. Timer Objects
m 17.1.9. Barrier Objects

m 17.1.10. Using locks, conditions, and semaphores in

the with statement

m 17.2. multiprocessing — Process-based parallelism

= 17.2.1. Introduction
m 17.2.1.1. The Process class
m 17.2.1.2. Contexts and start methods
m 17.2.1.3. Exchanging objects
processes

between

m 17.2.1.4. Synchronization between processes
m 17.2.1.5. Sharing state between processes

m 17.2.1.6. Using a pool of workers

m 17.2.2. Reference
m 17.2.2.1. Process and exceptions
m 17.2.2.2. Pipes and Queues
m 17.2.2.3. Miscellaneous
m 17.2.2.4. Connection Objects
m 17.2.2.5. Synchronization primitives
m 17.2.2.6. Shared ctypes Objects
m 17.2.2.6.1. The
multiprocessing.sharedctypes
module
m 17.2.2.7. Managers
m 17.2.2.7.1. Customized managers
m 17.2.2.7.2. Using a remote manager
m 17.2.2.8. Proxy Objects
m 17.2.2.8.1. Cleanup
m 17.2.2.9. Process Pools
m 17.2.2.10. Listeners and Clients
m 17.2.2.10.1. Address Formats
m 17.2.2.11. Authentication keys
m 17.2.2.12. Logging
m 17.2.2.13. The multiprocessing.dummy
module
m 17.2.3. Programming guidelines
m 17.2.3.1. All start methods
m 17.2.3.2. The spawn and forkserver start
methods
m 17.2.4. Examples
m 17.3. The concurrent package
m 17.4. concurrent.futures — Launching parallel
tasks
m 17.4.1. Executor Objects
m 17.4.2. ThreadPoolExecutor
m 17.4.2.1. ThreadPoolExecutor Example
m 17.4.3. ProcessPoolExecutor

m 17.4.3.1. ProcessPoolExecutor Example
m 17.4.4. Future Objects
m 17.4.5. Module Functions
m 17.4.6. Exception classes
m 17.5. subprocess — Subprocess management
m 17.5.1. Using the subprocess Module
m 17.5.1.1. Frequently Used Arguments
m 17.5.1.2. Popen Constructor
m 17.5.1.3. Exceptions
m 17.5.2. Security Considerations
m 17.5.3. Popen Objects
= 17.5.4. Windows Popen Helpers
m 17.5.4.1. Constants
m 17.5.5. Older high-level API
m 17.5.6. Replacing Older Functions with the
subprocess Module
m 17.5.6.1. Replacing /bin/sh shell backquote
m 17.5.6.2. Replacing shell pipeline
m 17.5.6.3. Replacing os.system()
m 17.5.6.4. Replacing the os. spawn family
m 17.5.6.5. Replacing 0s.popen(),
0s.popen2(), os.popen3()
m 17.5.6.6. Replacing functions from the popen2
module
m 17.5.7. Legacy Shell Invocation Functions
m 17.5.8. Notes
m 17.5.8.1. Converting an argument sequence to
a string on Windows
m 17.6. sched — Event scheduler
m 17.6.1. Scheduler Objects
m 17.7. queue — A synchronized queue class
m 17.7.1. Queue Objects
m 17.8. dummy_threading — Drop-in replacement for

the threading module
m 17.9. _thread — Low-level threading API
m 17.10. _dummy_thread — Drop-in replacement for the
_thread module
o 18. Interprocess Communication and Networking
m 18.1. socket — Low-level networking interface
m 18.1.1. Socket families
= 18.1.2. Module contents
m 18.1.2.1. Exceptions
= 18.1.2.2. Constants
m 18.1.2.3. Functions
m 18.1.2.3.1. Creating sockets
m 18.1.2.3.2. Other functions
m 18.1.3. Socket Objects
m 18.1.4. Notes on socket timeouts
= 18.1.4.1. Timeouts and the connect method
= 18.1.4.2. Timeouts and the accept method
= 18.1.5. Example
m 18.2. ss1 — TLS/SSL wrapper for socket objects
m 18.2.1. Functions, Constants, and Exceptions
m 18.2.1.1. Socket creation
18.2.1.2. Context creation
18.2.1.3. Random generation
18.2.1.4. Certificate handling
18.2.1.5. Constants
18.2.2. SSL Sockets
18.2.3. SSL Contexts
18.2.4. Certificates
m 18.2.4.1. Certificate chains
m 18.2.4.2. CA certificates
m 18.2.4.3. Combined key and certificate
m 18.2.4.4. Self-signed certificates
18.2.5. Examples
m 18.2.5.1. Testing for SSL support

m 18.2.5.2. Client-side operation
m 18.2.5.3. Server-side operation
18.2.6. Notes on non-blocking sockets
18.2.7. Memory BIO Support
18.2.8. SSL session
18.2.9. Security considerations
m 18.2.9.1. Best defaults
= 18.2.9.2. Manual settings
m 18.2.9.2.1. Verifying certificates
m 18.2.9.2.2. Protocol versions
m 18.2.9.2.3. Cipher selection
m 18.2.9.3. Multi-processing
18.3. select — Waiting for I/O completion
m 18.3.1. /dev/poll Polling Objects
18.3.2. Edge and Level Trigger Polling (epoll)
Objects
18.3.3. Polling Objects
18.3.4. Kqueue Objects
18.3.5. Kevent Objects
18.4. selectors — High-level I/O multiplexing
m 18.4.1. Introduction
m 18.4.2. Classes
m 18.4.3. Examples
18.5. asyncio — Asynchronous 1/O, event loop,
coroutines and tasks
= 18.5.1. Base Event Loop
= 18.5.1.1. Run an event loop
m 18.5.1.2. Calls
= 18.5.1.3. Delayed calls
= 18.5.1.4. Futures
m 18.5.1.5. Tasks
m 18.5.1.6. Creating connections
m 18.5.1.7. Creating listening connections
m 18.5.1.8. Watch file descriptors

m 18.5.1.9. Low-level socket operations

= 18.5.1.10.
= 18.5.1.11.
= 18.5.1.12.
= 18.5.1.13.
= 18.5.1.14.
= 18.5.1.15.
= 18.5.1.16.
= 18.5.1.17.
= 18.5.1.18.

m 18.5.1.18.1. Hello World with call_soon()

m 18.5.1.18.2. Display the current date with

Resolve host name
Connect pipes

UNIX signals
Executor

Error Handling API
Debug mode

Server

Handle

Event loop examples

call_later()

m 18.5.1.18.3. Watch a file descriptor for read

events

m 18.5.1.18.4. Set signal handlers for SIGINT

and SIGTERM
m 18.5.2. Event loops
= 18.5.2.1. Event loop functions

18.5.2.2. Available event loops
18.5.2.3. Platform support

m 18.5.2.3.1. Windows
m 185.2.3.2. Mac OS X

policy

18.5.2.4. Event loop policies and the default

18.5.2.5. Event loop policy interface
m 18.5.2.6. Access to the global loop policy

m 18.5.3. Tasks and coroutines
m 18.5.3.1. Coroutines

= 18.5.3.1.1. Example: Hello World coroutine
m 18.5.3.1.2. Example: Coroutine displaying

the current date

= 18.5.3.1.3. Example: Chain coroutines

m 18.5.3.2. InvalidStateError

m 18.5.3.3. TimeoutError
= 18.5.3.4. Future
= 18.5.3.4.1. Example: Future with
run_until_complete()
= 18.5.3.4.2. Example: Future with
run_forever()
m 18.5.3.5. Task
= 18.5.3.5.1. Example: Parallel execution of
tasks
m 18.5.3.6. Task functions
m 18.5.4. Transports and protocols (callback based
API)
m 18.5.4.1. Transports
18.5.4.1.1. BaseTransport
18.5.4.1.2. ReadTransport
18.5.4.1.3. WriteTransport
18.5.4.1.4. DatagramTransport
18.5.4.1.5. BaseSubprocessTransport
m 18.5.4.2. Protocols
m 18.5.4.2.1. Protocol classes
m 18.5.4.2.2. Connection callbacks
m 18.5.4.2.3. Streaming protocols
m 18.5.4.2.4. Datagram protocols
m 18.5.4.2.5. Flow control callbacks
m 18.5.4.2.6. Coroutines and protocols
= 18.5.4.3. Protocol examples
m 18.5.4.3.1. TCP echo client protocol
m 18.5.4.3.2. TCP echo server protocol
m 18.5.4.3.3. UDP echo client protocol
m 18.5.4.3.4. UDP echo server protocol
m 18.5.4.3.5. Register an open socket to wait
for data using a protocol
= 18.5.5. Streams (coroutine based API)
m 18.5.5.1. Stream functions

18.5.5.2. StreamReader

18.5.5.3. StreamWriter

18.5.5.4. StreamReaderProtocol

18.5.5.5. IncompleteReadError

18.5.5.6. LimitOverrunError

18.5.5.7. Stream examples
m 18.5.5.7.1. TCP echo client using streams
m 18.5.5.7.2. TCP echo server using streams
m 18.5.5.7.3. Get HTTP headers
m 18.5.5.7.4. Register an open socket to wait

for data using streams

m 18.5.6. Subprocess

18.5.6.1. Windows event loop
18.5.6.2. Create a subprocess: high-level API
using Process
18.5.6.3. Create a subprocess: low-level API
using subprocess.Popen
18.5.6.4. Constants
18.5.6.5. Process
18.5.6.6. Subprocess and threads
18.5.6.7. Subprocess examples
m 18.5.6.7.1. Subprocess using transport and
protocol
m 18.5.6.7.2. Subprocess using streams

m 18.5.7. Synchronization primitives

18.5.7.1. Locks
m 18.5.7.1.1. Lock
m 18.5.7.1.2. Event
m 18.5.7.1.3. Condition
18.5.7.2. Semaphores
m 18.5.7.2.1. Semaphore
m 18.5.7.2.2. BoundedSemaphore

= 18.5.8. Queues

18.5.8.1. Queue

m 18.5.8.2. PriorityQueue
= 18.5.8.3. LifoQueue
= 18.5.8.3.1. Exceptions
= 18.5.9. Develop with asyncio
= 18.5.9.1. Debug mode of asyncio
m 18.5.9.2. Cancellation
m 18.5.9.3. Concurrency and multithreading
= 18.5.9.4. Handle blocking functions correctly
m 18.5.9.5. Logging
m 18.5.9.6. Detect coroutine objects never
scheduled
m 18.5.9.7. Detect exceptions never consumed
m 18.5.9.8. Chain coroutines correctly
m 18.5.9.9. Pending task destroyed
m 18.5.9.10. Close transports and event loops
m 18.6. asyncore — Asynchronous socket handler
m 18.6.1. asyncore Example basic HTTP client
m 18.6.2. asyncore Example basic echo server
m 18.7. asynchat — Asynchronous socket
command/response handler
m 18.7.1. asynchat Example
m 18.8. signhal — Set handlers for asynchronous events
m 18.8.1. General rules
= 18.8.1.1. Execution of Python signal handlers
m 18.8.1.2. Signals and threads
= 18.8.2. Module contents
= 18.8.3. Example
= 18.9. mmap — Memory-mapped file support
19. Internet Data Handling
= 19.1. email — An email and MIME handling package
m 19.1.1. email.message: Representing an emalil
message
m 19.1.2. email.parser: Parsing email messages
m 19.1.2.1. FeedParser API

m 19.1.2.2. Parser API

= 19.1.2.3. Additional notes
19.1.3. email.generator: Generating MIME
documents
19.1.4. email.policy: Policy Objects
19.1.5. email.errors: Exception and Defect
classes
19.1.6. email.headerregistry: Custom Header

Objects
19.1.7. email.contentmanager: Managing MIME
Content

= 19.1.7.1. Content Manager Instances
19.1.8. email: Examples
19.1.9. email.message.Message: Representing
an email message using the compat32 API
19.1.10. email.mime: Creating email and MIME
objects from scratch
19.1.11. email. header: Internationalized headers
19.1.12. email.charset: Representing character

sets
19.1.13. email.encoders: Encoders

19.1.14. email.utils: Miscellaneous utilities
19.1.15. email.iterators: Iterators

m 19.2. json — JSON encoder and decoder

19.2.1. Basic Usage
19.2.2. Encoders and Decoders
19.2.3. Exceptions
19.2.4. Standard Compliance and Interoperability
m 19.2.4.1. Character Encodings
m 19.2.4.2. Infinite and NaN Number Values
= 19.2.4.3. Repeated Names Within an Object
m 19.2.4.4. Top-level Non-Object, Non-Array
Values

m 19.2.4.5. Implementation Limitations
m 19.2.5. Command Line Interface
m 19.2.5.1. Command line options

= 19.3. mailcap — Mailcap file handling
m 19.4. mailbox — Manipulate mailboxes in various

formats
m 19.4.1. Mailbox objects
m 19.4.1.1. Maildir
m 19.4.1.2. mbox
= 19.4.1.3. MH
= 19.4.1.4. Babyl
m 19.4.1.5. MMDF
m 19.4.2. Message objects
m 19.4.2.1. MaildirMessage
m 19.4.2.2. mboxMessage
m 19.4.2.3. MHMessage
m 19.4.2.4. BabylMessage
m 19.4.2.5. MMDFMessage
= 19.4.3. Exceptions
m 19.4.4. Examples
19.5. mimetypes — Map filenames to MIME types
m 19.5.1. MimeTypes Objects
19.6. base64 — Basel6, Base32, Base64, Base85
Data Encodings
19.7. binhex — Encode and decode binhex4 files
m 19.7.1. Notes
19.8. binascii — Convert between binary and ASCII
19.9. quopri — Encode and decode MIME quoted-
printable data
19.10. uu — Encode and decode uuencode files

o 20. Structured Markup Processing Tools

20.1. html — HyperText Markup Language support

20.2. html.parser — Simple HTML and XHTML
parser
m 20.2.1. Example HTML Parser Application
m 20.2.2. HTMLParser Methods
m 20.2.3. Examples
20.3. html.entities — Definitions of HTML general
entities
20.4. XML Processing Modules
= 20.4.1. XML vulnerabilities
m 20.4.2. The defusedxml and defusedexpat
Packages
20.5. xml.etree.ElementTree — The ElementTree
XML API
= 20.5.1. Tutorial
m 20.5.1.1. XML tree and elements
m 20.5.1.2. Parsing XML
m 20.5.1.3. Pull API for non-blocking parsing
= 20.5.1.4. Finding interesting elements
= 20.5.1.5. Modifying an XML File
= 20.5.1.6. Building XML documents
m 20.5.1.7. Parsing XML with Namespaces
= 20.5.1.8. Additional resources
m 20.5.2. XPath support
= 20.5.2.1. Example
m 20.5.2.2. Supported XPath syntax
= 20.5.3. Reference
= 20.5.3.1. Functions
= 20.5.3.2. Element Objects
= 20.5.3.3. ElementTree Objects
= 20.5.3.4. QName Obijects
= 20.5.3.5. TreeBuilder Objects
m 20.5.3.6. XMLParser Objects
= 20.5.3.7. XMLPullParser Objects
= 20.5.3.8. Exceptions

m 20.6. xml.dom — The Document Object Model API
= 20.6.1. Module Contents
m 20.6.2. Objects in the DOM
= 20.6.2.1. DOMImplementation Objects
m 20.6.2.2. Node Objects
= 20.6.2.3. NodeList Objects
m 20.6.2.4. DocumentType Objects
m 20.6.2.5. Document Objects
= 20.6.2.6. Element Objects
m 20.6.2.7. Attr Objects
m 20.6.2.8. NamedNodeMap Objects
= 20.6.2.9. Comment Objects
m 20.6.2.10. Text and CDATASection Objects
m 20.6.2.11. Processinglnstruction Objects
= 20.6.2.12. Exceptions
= 20.6.3. Conformance
= 20.6.3.1. Type Mapping
m 20.6.3.2. Accessor Methods
m 20.7. xml.dom.minidom — Minimal DOM
implementation
m 20.7.1. DOM Objects
= 20.7.2. DOM Example
m 20.7.3. minidom and the DOM standard
m 20.8. xml.dom.pulldom — Support for building partial
DOM trees
= 20.8.1. DOMEventStream Objects
m 20.9. xml.sax — Support for SAX2 parsers
= 20.9.1. SAXException Objects
m 20.10. xml.sax.handler — Base classes for SAX
handlers
= 20.10.1. ContentHandler Objects
m 20.10.2. DTDHandler Objects
= 20.10.3. EntityResolver Objects
= 20.10.4. ErrorHandler Objects

m 20.11. xml.sax.saxutils — SAX Utilities
m 20.12. xml.sax.xmlreader — Interface for XML
parsers

m 20.12.1. XMLReader Objects

m 20.12.2. IncrementalParser Objects

m 20.12.3. Locator Objects

m 20.12.4. InputSource Objects

m 20.12.5. The Attributes Interface

m 20.12.6. The AttributesNS Interface

m 20.13. xml.parsers.expat — Fast XML parsing

using Expat

20.13.1. XMLParser Objects
20.13.2. ExpatError Exceptions
20.13.3. Example

20.13.4. Content Model Descriptions
20.13.5. Expat error constants

o 21. Internet Protocols and Support

m 21.1. web

controller
m 21.1.1.

browser — Convenient Web-browser

Browser Controller Objects

m 21.2. cgi — Common Gateway Interface support

m 21.2.1.
m 21.2.2.
m 21.2.3.
m 21.2.4.
m 21.2.5.
m 21.2.6.
m 21.2.7.
m 21.2.8.
m 21.2.9.

Introduction

Using the cgi module

Higher Level Interface

Functions

Caring about security

Installing your CGI script on a Unix system
Testing your CGI script

Debugging CGI scripts

Common problems and solutions

m 21.3. cgitb — Traceback manager for CGI scripts
m 21.4. wsgiref — WSGI Utilities and Reference
Implementation

21.4.1. wsgiref.util - WSGI environment
utilities

21.4.2. wsgiref.headers - WSGI response
header tools

21.4.3. wsgiref.simple_server — a simple
WSGI HTTP server

21.4.4. wsgiref.validate — WSGI
conformance checker

21.4.5. wsgiref.handlers - server/gateway

base classes
21.4.6. Examples

m 21.5. urllib — URL handling modules
m 21.6. urllib.request — Extensible library for
opening URLs

21.6.1. Request Objects

21.6.2. OpenerDirector Objects

21.6.3. BaseHandler Objects

21.6.4. HTTPRedirectHandler Objects
21.6.5. HTTPCookieProcessor Objects
21.6.6. ProxyHandler Objects

21.6.7. HTTPPasswordMgr Objects

21.6.8. HTTPPasswordMgrWithPriorAuth Objects
21.6.9. AbstractBasicAuthHandler Objects
21.6.10. HTTPBasicAuthHandler Objects
21.6.11. ProxyBasicAuthHandler Objects
21.6.12. AbstractDigestAuthHandler Objects
21.6.13. HTTPDigestAuthHandler Objects
21.6.14. ProxyDigestAuthHandler Objects
21.6.15. HTTPHandler Objects

21.6.16. HTTPSHandler Objects

21.6.17. FileHandler Objects

21.6.18. DataHandler Objects

21.6.19. FTPHandler Objects

21.6.20. CacheFTPHandler Objects

21.6.21. UnknownHandler Objects
21.6.22. HTTPErrorProcessor Objects
21.6.23. Examples
21.6.24. Legacy interface
21.6.25. urllib.request Restrictions
21.7. urllib.response — Response classes used by
urllib
21.8. urllib.parse — Parse URLs into components
m 21.8.1. URL Parsing
m 21.8.2. Parsing ASCII Encoded Bytes
m 21.8.3. Structured Parse Results
= 21.8.4. URL Quoting
21.9. urllib.error — Exception classes raised by
urllib.request
21.10. urllib.robotparser — Parser for robots.txt
21.11. http — HTTP modules
m 21.11.1. HTTP status codes
21.12. http.client — HTTP protocol client
m 21.12.1. HTTPConnection Objects
m 21.12.2. HTTPResponse Objects
m 21.12.3. Examples
m 21.12.4. HTTPMessage Objects
21.13. ftplib — FTP protocol client
m 21.13.1. FTP Obijects
m 21.13.2. FTP_TLS Obijects
21.14. poplib — POP3 protocol client
m 21.14.1. POP3 Objects
m 21.14.2. POP3 Example
21.15. imaplib — IMAP4 protocol client
m 21.15.1. IMAP4 Obijects
m 21.15.2. IMAP4 Example
21.16. nntplib — NNTP protocol client
m 21.16.1. NNTP Objects

m 21.16.1.1. Attributes
m 21.16.1.2. Methods

m 21.16.2. Utility functions
m 21.17. smtplib — SMTP protocol client

m 21.17.1. SMTP Obijects

m 21.17.2. SMTP Example
m 21.18. smtpd — SMTP Server

m 21.18.1. SMTPServer Objects
21.18.2. DebuggingServer Objects
21.18.3. PureProxy Objects
21.18.4. MailmanProxy Objects
21.18.5. SMTPChannel Objects
m 21.19. telnetlib — Telnet client

m 21.19.1. Telnet Objects

m 21.19.2. Telnet Example
m 21.20. uuid — UUID objects according to RFC 4122

m 21.20.1. Example
m 21.21. socketserver — A framework for network

servers

21.21.1. Server Creation Notes
21.21.2. Server Objects
21.21.3. Request Handler Objects
21.21.4. Examples

m 21.21.4.1. socketserver.TCPServer
Example

m 21.21.4.2. socketserver.UDPServer
Example

m 21.21.4.3. Asynchronous Mixins
m 21.22. http.server — HTTP servers
m 21.23. http.cookies — HTTP state management
m 21.23.1. Cookie Objects
m 21.23.2. Morsel Objects
m 21.23.3. Example

m 21.24. http.cookiejar — Cookie handling for HTTP
clients

21.24.1. CookieJar and FileCookieJar Objects
21.24.2. FileCookieJar subclasses and co-operation
with web browsers

21.24.3. CookiePolicy Objects

21.24.4. DefaultCookiePolicy Objects

21.24.5. Cookie Objects

21.24.6. Examples

m 21.25. xmlrpc — XMLRPC server and client modules
m 21.26. xmlrpc.client — XML-RPC client access

21.26.1. ServerProxy Objects

21.26.2. DateTime Objects

21.26.3. Binary Objects

21.26.4. Fault Objects

21.26.5. ProtocolError Objects

21.26.6. MultiCall Objects

21.26.7. Convenience Functions

21.26.8. Example of Client Usage

21.26.9. Example of Client and Server Usage

m 21.27. xmlrpc.server — Basic XML-RPC servers

21.27.1. SimpleXMLRPCServer Objects

m 21.27.1.1. SimpleXMLRPCServer Example
21.27.2. CGIXMLRPCRequestHandler
21.27.3. Documenting XMLRPC server
21.27.4. DocXMLRPCServer Objects
21.27.5. DocCGIXMLRPCRequestHandler

m 21.28. ipaddress — IPv4/IPv6 manipulation library

21.28.1. Convenience factory functions
21.28.2. IP Addresses
m 21.28.2.1. Address objects
m 21.28.2.2. Conversion to Strings and Integers
m 21.28.2.3. Operators
m 21.28.2.3.1. Comparison operators

m 21.28.2.3.2. Arithmetic operators
21.28.3. IP Network definitions
m 21.28.3.1. Prefix, net mask and host mask
m 21.28.3.2. Network objects
m 21.28.3.3. Operators
m 21.28.3.3.1. Logical operators
m 21.28.3.3.2. Iteration
m 21.28.3.3.3. Networks as containers of
addresses
21.28.4. Interface objects
21.28.5. Other Module Level Functions
21.28.6. Custom Exceptions

o 22. Multimedia Services

22.1. audioop — Manipulate raw audio data
22.2. aifc — Read and write AIFF and AIFC files
22.3. sunau — Read and write Sun AU files

m 22.3.1. AU_read Objects

m 22.3.2. AU_write Objects
22.4. wave — Read and write WAV files

m 22.4.1. Wave_read Objects
m 22.4.2. Wave_write Objects
22.5. chunk — Read IFF chunked data

22.6. colorsys — Conversions between color systems
22.7. imghdr — Determine the type of an image

22.8. sndhdr — Determine type of sound file

22.9. ossaudiodev — Access to OSS-compatible

audio devices
m 22.9.1. Audio Device Objects
m 22.9.2. Mixer Device Objects

o 23. Internationalization
m 23.1. gettext — Multilingual internationalization

services
m 23.1.1. GNU gettext API

m 23.1.2. Class-based API
m 23.1.2.1. The NullTranslations class
m 23.1.2.2. The GNUTranslations class
m 23.1.2.3. Solaris message catalog support
m 23.1.2.4. The Catalog constructor
m 23.1.3. Internationalizing your programs and
modules
m 23.1.3.1. Localizing your module
m 23.1.3.2. Localizing your application
= 23.1.3.3. Changing languages on the fly
m 23.1.3.4. Deferred translations
m 23.1.4. Acknowledgements
m 23.2. locale — Internationalization services
m 23.2.1. Background, details, hints, tips and caveats
m 23.2.2. For extension writers and programs that
embed Python
m 23.2.3. Access to message catalogs
o 24. Program Frameworks
m 24.1. turtle — Turtle graphics
m 24.1.1. Introduction
m 24.1.2. Overview of available Turtle and Screen
methods
m 24.1.2.1. Turtle methods
m 24.1.2.2. Methods of TurtleScreen/Screen
m 24.1.3. Methods of RawTurtle/Turtle and
corresponding functions
m 24.1.3.1. Turtle motion
m 24.1.3.2. Tell Turtle’s state
m 24.1.3.3. Settings for measurement
= 24.1.3.4. Pen control
m 24.1.3.4.1. Drawing state
m 24.1.3.4.2. Color control
m 24.1.3.4.3. Filling
m 24.1.3.4.4. More drawing control

m 24.1.3.5. Turtle state
= 24.1.3.5.1. Visibility
m 24.1.3.5.2. Appearance
m 24.1.3.6. Using events
m 24.1.3.7. Special Turtle methods
m 24.1.3.8. Compound shapes
m 24.1.4. Methods of TurtleScreen/Screen and
corresponding functions
m 24.1.4.1. Window control
m 24.1.4.2. Animation control
m 24.1.4.3. Using screen events
m 24.1.4.4. Input methods
m 24.1.4.5. Settings and special methods
m 24.1.4.6. Methods specific to Screen, not
inherited from TurtleScreen
24.1.5. Public classes
24.1.6. Help and configuration
m 24.1.6.1. How to use help
m 24.1.6.2. Translation of docstrings into different
languages
m 24.1.6.3. How to configure Screen and Turtles
24.1.7. turtledemo — Demo scripts
24.1.8. Changes since Python 2.6
m 24.1.9. Changes since Python 3.0
m 242, cmd — Support for line-oriented command
interpreters
m 24.2.1. Cmd Objects
m 24.2.2. Cmd Example
m 24.3. shlex — Simple lexical analysis
m 24.3.1. shlex Objects
m 24.3.2. Parsing Rules
m 24.3.3. Improved Compatibility with Shells
25. Graphical User Interfaces with Tk
m 25.1. tkinter — Python interface to Tcl/Tk

m 25.1.1. Tkinter Modules
m 25.1.2. Tkinter Life Preserver
m 25.1.2.1. How To Use This Section
m 25.1.2.2. A Simple Hello World Program
m 25.1.3. A (Very) Quick Look at Tcl/Tk
m 25.1.4. Mapping Basic Tk into Tkinter
m 25.1.5. How Tk and Tkinter are Related
= 25.1.6. Handy Reference
m 25.1.6.1. Setting Options
m 25.1.6.2. The Packer
m 25.1.6.3. Packer Options
= 25.1.6.4. Coupling Widget Variables
m 25.1.6.5. The Window Manager
m 25.1.6.6. Tk Option Data Types
m 25.1.6.7. Bindings and Events
m 25.1.6.8. The index Parameter
m 25.1.6.9. Images
m 25.1.7. File Handlers
m 25.2. tkinter.ttk — Tk themed widgets
25.2.1. Using Ttk
25.2.2. Ttk Widgets
25.2.3. Widget
m 25.2.3.1. Standard Options
m 25.2.3.2. Scrollable Widget Options
m 25.2.3.3. Label Options
m 25.2.3.4. Compatibility Options
m 25.2.3.5. Widget States
m 25.2.3.6. ttk.Widget
25.2.4. Combobox
m 25.2.4.1. Options
m 25.2.4.2. Virtual events
m 25.2.4.3. ttk. Combobox
25.2.5. Notebook
m 25.2.5.1. Options

m 25.2.5.2. Tab Options
m 25.2.5.3. Tab Identifiers
m 25.2.5.4. Virtual Events
m 25.2.5.5. ttk.Notebook
25.2.6. Progressbar
m 25.2.6.1. Options
m 25.2.6.2. ttk.Progressbar
25.2.7. Separator
m 25.2.7.1. Options
25.2.8. Sizegrip
m 25.2.8.1. Platform-specific notes
m 25.2.8.2. Bugs
25.2.9. Treeview
m 25.2.9.1. Options
m 25.2.9.2. Item Options
m 25.2.9.3. Tag Options
m 25.2.9.4. Column Identifiers
m 25.2.9.5. Virtual Events
m 25.2.9.6. ttk. Treeview
25.2.10. Ttk Styling
m 25.2.10.1. Layouts
m 25.3. tkinter.tix — Extension widgets for Tk
m 25.3.1. Using Tix
m 25.3.2. Tix Widgets
m 25.3.2.1. Basic Widgets
m 25.3.2.2. File Selectors
m 25.3.2.3. Hierarchical ListBox
m 25.3.2.4. Tabular ListBox
m 25.3.2.5. Manager Widgets
m 25.3.2.6. Image Types
m 25.3.2.7. Miscellaneous Widgets
m 25.3.2.8. Form Geometry Manager
m 25.3.3. Tix Commands
m 254, tkinter.scrolledtext — Scrolled Text Widget

m 25.5. IDLE
m 25.5.1. Menus
m 25.5.1.1. File menu (Shell and Editor)
m 25.5.1.2. Edit menu (Shell and Editor)
m 25.5.1.3. Format menu (Editor window only)
s 25.5.1.4. Run menu (Editor window only)
m 25.5.1.5. Shell menu (Shell window only)
m 25.5.1.6. Debug menu (Shell window only)
m 25.5.1.7. Options menu (Shell and Editor)
= 25.5.1.8. Window menu (Shell and Editor)
m 25.5.1.9. Help menu (Shell and Editor)
m 25.5.1.10. Context Menus
m 25.5.2. Editing and navigation
m 25.5.2.1. Automatic indentation
m 25.5.2.2. Completions
m 25.5.2.3. Calltips
m 25.5.2.4. Python Shell window
m 25.5.2.5. Text colors
m 25.,5.3. Startup and code execution
m 25.5.3.1. Command line usage
m 25.5.3.2. Startup failure
m 25.5.3.3. IDLE-console differences
= 25.5.3.4. Developing tkinter applications
m 25.5.3.5. Running without a subprocess
m 25.5.4. Help and preferences
m 25.5.4.1. Additional help sources
m 25.5.4.2. Setting preferences
m 25.5.4.3. Extensions
m 25.6. Other Graphical User Interface Packages
o 26. Development Tools
m 26.1. typing — Support for type hints
m 26.1.1. Type aliases
m 26.1.2. NewType
= 26.1.3. Callable

26.1.4. Generics
26.1.5. User-defined generic types
26.1.6. The Any type
26.1.7. Classes, functions, and decorators
m 26.2. pydoc — Documentation generator and online
help system
m 26.3. doctest — Test interactive Python examples
m 26.3.1. Simple Usage: Checking Examples in
Docstrings
m 26.3.2. Simple Usage: Checking Examples in a Text
File
m 26.3.3. How It Works
m 26.3.3.1. Which Docstrings Are Examined?
m 26.3.3.2. How are Docstring Examples
Recognized?
m 26.3.3.3. What's the Execution Context?
m 26.3.3.4. What About Exceptions?
m 26.3.3.5. Option Flags
m 26.3.3.6. Directives
m 26.3.3.7. Warnings
26.3.4. Basic API
26.3.5. Unittest API
26.3.6. Advanced API
26.3.6.1. DocTest Objects
26.3.6.2. Example Objects
26.3.6.3. DocTestFinder objects
26.3.6.4. DocTestParser objects
26.3.6.5. DocTestRunner objects
26.3.6.6. OutputChecker objects
26.3.7. Debugging
m 26.3.8. Soapbox
m 26.4. unittest — Unit testing framework
m 26.4.1. Basic example
m 26.4.2. Command-Line Interface

m 26.4.2.1. Command-line options
m 26.4.3. Test Discovery
m 26.4.4. Organizing test code
m 26.4.5. Re-using old test code
m 26.4.6. Skipping tests and expected failures
m 26.4.7. Distinguishing test iterations using subtests
m 26.4.8. Classes and functions
m 26.4.8.1. Test cases
m 26.4.8.1.1. Deprecated aliases
m 26.4.8.2. Grouping tests
m 26.4.8.3. Loading and running tests
m 26.4.8.3.1. load_tests Protocol
m 26.4.9. Class and Module Fixtures
m 26.4.9.1. setUpClass and tearDownClass
m 26.4.9.2. setUpModule and tearDownModule
= 26.4.10. Signal Handling
m 26.5. unittest.mock — mock object library
m 26.5.1. Quick Guide
m 26.5.2. The Mock Class
m 26.5.2.1. Calling
m 26.5.2.2. Deleting Attributes
m 26.5.2.3. Mock names and the name attribute
m 26.5.2.4. Attaching Mocks as Attributes
m 26.5.3. The patchers
m 26.5.3.1. patch
m 26.5.3.2. patch.object
m 26.5.3.3. patch.dict
m 26.5.3.4. patch.multiple
m 26.5.3.5. patch methods: start and stop
m 26.5.3.6. patch builtins
m 26.5.3.7. TEST_PREFIX
m 26.5.3.8. Nesting Patch Decorators
m 26.5.3.9. Where to patch
m 26.5.3.10. Patching Descriptors and Proxy

Objects
m 26.5.4. MagicMock and magic method support
m 26.5.4.1. Mocking Magic Methods
m 26.5.4.2. Magic Mock
m 26.5.5. Helpers
m 26.5.5.1. sentinel
m 26.5.5.2. DEFAULT
m 26.5.5.3. call
m 26.5.5.4. create_autospec
m 26.5.5.5. ANY
m 26.5.5.6. FILTER_DIR
m 26.5.5.7. mock_open
m 26.5.5.8. Autospeccing
m 26.6. unittest.mock — getting started
m 26.6.1. Using Mock
m 26.6.1.1. Mock Patching Methods
m 26.6.1.2. Mock for Method Calls on an Object
m 26.6.1.3. Mocking Classes
m 26.6.1.4. Naming your mocks
m 26.6.1.5. Tracking all Calls
m 26.6.1.6. Setting Return Values and Attributes
m 26.6.1.7. Raising exceptions with mocks
m 26.6.1.8. Side effect functions and iterables
m 26.6.1.9. Creating a Mock from an Existing
Object
m 26.6.2. Patch Decorators
m 26.6.3. Further Examples
m 26.6.3.1. Mocking chained calls
m 26.6.3.2. Partial mocking
m 26.6.3.3. Mocking a Generator Method
m 26.6.3.4. Applying the same patch to every test
method
m 26.6.3.5. Mocking Unbound Methods
m 26.6.3.6. Checking multiple calls with mock

26.6.3.7. Coping with mutable arguments
26.6.3.8. Nesting Patches

26.6.3.9. Mocking a dictionary with MagicMock
26.6.3.10. Mock subclasses and their attributes
26.6.3.11. Mocking imports with patch.dict
26.6.3.12. Tracking order of calls and less
verbose call assertions

26.6.3.13. More complex argument matching

m 26.7. 2to3 - Automated Python 2 to 3 code translation
m 26.7.1. Using 2to3
m 26.7.2. Fixers
m 26.7.3. 11b2to3 - 2to3’s library
m 26.8. test — Regression tests package for Python
m 26.8.1. Writing Unit Tests for the test package
m 26.8.2. Running tests using the command-line
interface
m 26.9. test.support — Utilities for the Python test

suite

o 27. Debugging and Profiling

m 27.1. bdb — Debugger framework

m 27.2. faulthandler — Dump the Python traceback
m 27.2.1. Dumping the traceback
m 27.2.2. Fault handler state
m 27.2.3. Dumping the tracebacks after a timeout
m 27.2.4. Dumping the traceback on a user signal
m 27.2.5. Issue with file descriptors
m 27.2.6. Example

m 27.3. pdb — The Python Debugger
m 27.3.1. Debugger Commands

m 27.4. The Python Profilers
m 27.4.1. Introduction to the profilers
m 27.4.2. Instant User’s Manual
m 27.4.3. profile and cProfile Module Reference

27.4.8. Using

27.4.4. The Stats Class

27.4.5. What Is Deterministic Profiling?
27.4.6. Limitations

27.4.7. Calibration

a custom timer

m 27.5. timeit — Measure execution time of small code

shippets

m 27.5.1. Basic Examples
m 27.5.2. Python Interface
m 27.5.3. Command-Line Interface
m 27.5.4. Examples
m 27.6. trace — Trace or track Python statement

execution

m 27.6.1. Command-Line Usage

m 27.6.1.1.
m 27.6.1.2.
m 27.6.1.3.

Main options
Modifiers
Filters

m 27.6.2. Programmatic Interface
m 27.7. tracemalloc — Trace memory allocations

m 27.7.1. Examples

m 27.7.1.1.
m 27.7.1.2.
m 27.7.1.3.
m 27.7.14.
m 27.7.2. API
m 27.7.2.1.
m 27.7.2.2.
m 27.7.2.3.
m 27.7.2.4.
m 27.7.2.5.
m 27.7.2.6.
m 27.7.2.7.
m 27.7.2.8.
m 27.7.2.9.

Display the top 10

Compute differences

Get the traceback of a memory block
Pretty top

Functions
DomainFilter
Filter

Frame
Snapshot
Statistic
StatisticDiff
Trace
Traceback

o 28. Software Packaging and Distribution
m 28.1. distutils — Building and installing Python

modules
m 28.2. ensurepip — Bootstrapping the pip installer
= 28.2.1. Command line interface
s 28.2.2. Module API
= 28.3. venv — Creation of virtual environments

m 28.3.1. Creating virtual environments

m 28.3.2. API
= 28.3.3. An example of extending EnvBuilder
m 28.4. zipapp — Manage executable python zip
archives

28.4.1. Basic Example
28.4.2. Command-Line Interface
28.4.3. Python API
28.4.4. Examples
28.4.5. The Python Zip Application Archive Format
o 29. Python Runtime Services
m 29.1. sys — System-specific parameters and functions
m 29.2. sysconfig — Provide access to Python’s
configuration information
m 29.2.1. Configuration variables
m 29.2.2. Installation paths
m 29.2.3. Other functions
m 29.2.4. Using sysconfig as a script
m 29.3. builtins — Built-in objects
m 29.4. _ _main__ — Top-level script environment
m 29.5. warnings — Warning control
= 29.5.1. Warning Categories
m 29.5.2. The Warnings Filter
m 29.5.2.1. Default Warning Filters
m 29.5.3. Temporarily Suppressing Warnings
m 29.5.4. Testing Warnings

= 29.6.
contexts

m 29.5.5. Updating Code For New Versions of Python
= 29.5.6. Available Functions

m 29.5.7. Available Context Managers

contextlib — Utilities for with-statement

m 29.6.1. Utilities
m 29.6.2. Examples and Recipes

29.6.2.1. Supporting a variable number of
context managers

29.6.2.2. Simplifying support for single optional
context managers

29.6.2.3. Catching exceptions from __enter__
methods

29.6.2.4. Cleaning up in an __enter__
implementation

29.6.2.5. Replacing any use of try-finally
and flag variables

29.6.2.6. Using a context manager as a function
decorator

m 29.6.3. Single use, reusable and reentrant context

managers

29.6.3.1. Reentrant context managers
29.6.3.2. Reusable context managers

29.7. abc — Abstract Base Classes
29.8. atexit — Exit handlers
m 29.8.1. atexit Example
29.9. traceback — Print or retrieve a stack traceback

29.9.1. TracebackException Objects
29.9.2. StackSummary Objects

29.9.3. FrameSummary Objects

29.9.4. Traceback Examples

29.10. ___future__ — Future statement definitions
29.11. gc — Garbage Collector interface

m 29.12. inspect — Inspect live objects

29.12.1. Types and members

29.12.2. Retrieving source code

29.12.3. Introspecting callables with the Signature
object

29.12.4. Classes and functions

29.12.5. The interpreter stack

29.12.6. Fetching attributes statically

29.12.7. Current State of Generators and Coroutines
29.12.8. Code Objects Bit Flags

29.12.9. Command Line Interface

m 29.13. site — Site-specific configuration hook

29.13.1. Readline configuration
29.13.2. Module contents

m 29.14. fpectl — Floating point exception control

29.14.1. Example
29.14.2. Limitations and other considerations

o 30. Custom Python Interpreters
m 30.1. code — Interpreter base classes

30.1.1. Interactive Interpreter Objects
30.1.2. Interactive Console Objects

m 30.2. codeop — Compile Python code

o 31. Importing Modules
m 31.1. zipimport — Import modules from Zip archives

31.1.1. zipimporter Objects
31.1.2. Examples

31.2. pkgutil — Package extension utility
31.3. modulefinder — Find modules used by a script
= 31.3.1. Example usage of ModuleFinder
31.4. runpy — Locating and executing Python modules
31.5. importlib — The implementation of import
m 31.5.1. Introduction
m 31.5.2. Functions

m 31.5.3. importlib.abc — Abstract base classes
related to import
m 31.5.4. importlib.machinery — Importers and
path hooks
m 31.5.5. importlib.util - Utility code for
importers
m 31.5.6. Examples
= 31.5.6.1. Importing programmatically
m 31.5.6.2. Checking if a module can be imported
= 31.5.6.3. Importing a source file directly
m 31.5.6.4. Setting up an importer
m 31.5.6.5. Approximating
importlib.import_module()
o 32. Python Language Services
m 32.1. parser — Access Python parse trees
32.1.1. Creating ST Obijects
32.1.2. Converting ST Objects
32.1.3. Queries on ST Objects
32.1.4. Exceptions and Error Handling
32.1.5. ST Objects
m 32.1.6. Example: Emulation of compile()
m 32.2. ast — Abstract Syntax Trees
m 32.2.1. Node classes
m 32.2.2. Abstract Grammar
m 32.2.3. ast Helpers
m 32.3. symtable — Access to the compiler's symbol
tables
m 32.3.1. Generating Symbol Tables
m 32.3.2. Examining Symbol Tables
m 32.4. symbol — Constants used with Python parse
trees
m 32.5. token — Constants used with Python parse trees
m 32.6. keyword — Testing for Python keywords

m 32.7. tokenize — Tokenizer for Python source
m 32.7.1. Tokenizing Input
m 32.7.2. Command-Line Usage
m 32.7.3. Examples
m 32.8. tabnanny — Detection of ambiguous indentation
m 32.9. pyclbr — Python class browser support
m 32.9.1. Class Objects
= 32.9.2. Function Objects
m 32.10. py_compile — Compile Python source files
m 32.11. compileall — Byte-compile Python libraries
m 32.11.1. Command-line use
m 32.11.2. Public functions
m 32.12. dis — Disassembler for Python bytecode
32.12.1. Bytecode analysis
32.12.2. Analysis functions
32.12.3. Python Bytecode Instructions
32.12.4. Opcode collections
m 32.13. pickletools — Tools for pickle developers
m 32.13.1. Command line usage
m 32.13.1.1. Command line options
m 32.13.2. Programmatic Interface
o 33. Miscellaneous Services
m 33.1. formatter — Generic output formatting
m 33.1.1. The Formatter Interface
m 33.1.2. Formatter Implementations
m 33.1.3. The Writer Interface
m 33.1.4. Writer Implementations
o 34. MS Windows Specific Services
m 34.1. msilib — Read and write Microsoft Installer files
= 34.1.1. Database Objects
m 34.1.2. View Objects
= 34.1.3. Summary Information Objects
m 34.1.4. Record Objects

34.1.5. Errors
34.1.6. CAB Objects
34.1.7. Directory Objects
34.1.8. Features
34.1.9. GUI classes
34.1.10. Precomputed tables
m 34.2. msvcrt — Useful routines from the MS VC++
runtime
m 34.2.1. File Operations
m 34.2.2. Console I/O
m 34.2.3. Other Functions
m 34.3. winreg — Windows registry access
m 34.3.1. Functions
m 34.3.2. Constants
m 34.3.2.1. HKEY_* Constants
m 34.3.2.2. Access Rights
m 34.3.2.2.1. 64-bit Specific
m 34.3.2.3. Value Types
m 34.3.3. Registry Handle Objects
m 34.4. winsound — Sound-playing interface for Windows
o 35. Unix Specific Services
m 35.1. posix — The most common POSIX system calls
m 35.1.1. Large File Support
= 35.1.2. Notable Module Contents
35.2. pwd — The password database
35.3. spwd — The shadow password database
35.4. grp — The group database
35.5. crypt — Function to check Unix passwords
35.5.1. Hashing Methods
35.5.2. Module Attributes
35.5.3. Module Functions
35.5.4. Examples
35.6. termios — POSIX style tty control

= 35.6.1. Example
35.7. tty — Terminal control functions
35.8. pty — Pseudo-terminal utilities

= 35.8.1. Example
35.9. fcntl — The fcntl and ioctl system calls
35.10. pipes — Interface to shell pipelines

m 35.10.1. Template Objects
35.11. resource — Resource usage information

m 35.11.1. Resource Limits

m 35.11.2. Resource Usage
35.12. nis — Interface to Sun’s NIS (Yellow Pages)
35.13. syslog — Unix syslog library routines

= 35.13.1. Examples

m 35.13.1.1. Simple example

36. Superseded Modules
m 36.1. optparse — Parser for command line options

= 36.1.1. Background
= 36.1.1.1. Terminology
= 36.1.1.2. What are options for?
= 36.1.1.3. What are positional arguments for?
= 36.1.2. Tutorial
= 36.1.2.1. Understanding option actions
m 36.1.2.2. The store action
= 36.1.2.3. Handling boolean (flag) options
m 36.1.2.4. Other actions
m 36.1.2.5. Default values
m 36.1.2.6. Generating help
m 36.1.2.6.1. Grouping Options
m 36.1.2.7. Printing a version string
m 36.1.2.8. How optparse handles errors
= 36.1.2.9. Putting it all together
= 36.1.3. Reference Guide
m 36.1.3.1. Creating the parser

36.1.3.2. Populating the parser
36.1.3.3. Defining options

36.1.3.4. Option attributes
36.1.3.5. Standard option actions
36.1.3.6. Standard option types
36.1.3.7. Parsing arguments
36.1.3.8. Querying and manipulating your
option parser

36.1.3.9. Conflicts between options
36.1.3.10. Cleanup

36.1.3.11. Other methods

= 36.1.4. Option Callbacks

36.1.4.1. Defining a callback option

36.1.4.2. How callbacks are called

36.1.4.3. Raising errors in a callback

36.1.4.4. Callback example 1: trivial callback
36.1.4.5. Callback example 2: check option
order

36.1.4.6. Callback example 3: check option
order (generalized)

36.1.4.7. Callback example 4: check arbitrary
condition

36.1.4.8. Callback example 5: fixed arguments
36.1.4.9. Callback example 6: variable
arguments

= 36.1.5. Extending optparse

36.1.5.1. Adding new types
36.1.5.2. Adding new actions

m 36.2. imp — Access the import internals
m 36.2.1. Examples
o 37. Undocumented Modules
m 37.1. Platform specific modules
e Extending and Embedding the Python Interpreter
o Recommended third party tools

o Creating extensions without third party tools
= 1. Extending Python with C or C++
1.1. A Simple Example
1.2. Intermezzo: Errors and Exceptions
1.3. Back to the Example
1.4. The Module’s Method Table and Initialization
Function
1.5. Compilation and Linkage
1.6. Calling Python Functions from C
1.7. Extracting Parameters in Extension Functions
1.8. Keyword Parameters for Extension Functions
1.9. Building Arbitrary Values
1.10. Reference Counts
= 1.10.1. Reference Counting in Python
= 1.10.2. Ownership Rules
m 1.10.3. Thin Ice
= 1.10.4. NULL Pointers
m 1.11. Writing Extensions in C++
= 1.12. Providing a C API for an Extension Module
m 2. Defining New Types
m 2.1. The Basics
m 2.1.1. Adding data and methods to the Basic
example
2.1.2. Providing finer control over data attributes
2.1.3. Supporting cyclic garbage collection
2.1.4. Subclassing other types
m 2.2. Type Methods
2.2.1. Finalization and De-allocation
2.2.2. Object Presentation
2.2.3. Attribute Management
m 2.2.3.1. Generic Attribute Management
m 2.2.3.2. Type-specific Attribute
Management
2.2.4. Object Comparison

m 2.2.5. Abstract Protocol Support
m 2.2.6. Weak Reference Support
m 2.2.7. More Suggestions
= 3. Building C and C++ Extensions
= 3.1. Building C and C++ Extensions with distutils
= 3.2. Distributing your extension modules
= 4, Building C and C++ Extensions on Windows
= 4.1. A Cookbook Approach
m 4.2. Differences Between Unix and Windows
m 4.3. Using DLLs in Practice
o Embedding the CPython runtime in a larger application
= 1. Embedding Python in Another Application
m 1.1. Very High Level Embedding
1.2. Beyond Very High Level Embedding: An
overview
1.3. Pure Embedding
1.4. Extending Embedded Python
1.5. Embedding Python in C++
1.6. Compiling and Linking under Unix-like systems
e Python/C API Reference Manual
o Introduction
= Include Files
m Objects, Types and Reference Counts
= Reference Counts
m Reference Count Details
= Types
= Exceptions
s Embedding Python
= Debugging Builds
Stable Application Binary Interface
The Very High Level Layer
Reference Counting
Exception Handling
= Printing and clearing

o

o

o

o

= Raising exceptions
= |Ssuing warnings
= Querying the error indicator
= Signal Handling
= Exception Classes
= Exception Objects
= Unicode Exception Objects
= Recursion Control
m Standard Exceptions
= Standard Warning Categories
o Ultilities
m Operating System Utilities
= System Functions
= Process Control
= |Importing Modules
m Data marshalling support
= Parsing arguments and building values
m Parsing arguments
m Strings and buffers
= Numbers
m Other objects
= API Functions
= Building values
m String conversion and formatting
m Reflection
m Codec registry and support functions
= Codec lookup API
= Registry API for Unicode encoding error handlers
o Abstract Objects Layer
Object Protocol
Number Protocol
Sequence Protocol
Mapping Protocol
lterator Protocol

= Buffer Protocol
m Buffer structure
= Buffer request types
= request-independent fields
= readonly, format
= shape, strides, suboffsets
= contiguity requests
= compound requests
m Complex arrays
= NumPy-style: shape and strides
m PIL-style: shape, strides and suboffsets
m Buffer-related functions
= Old Buffer Protocol
o Concrete Objects Layer
= Fundamental Objects
= Type Objects
= The None Object
= Numeric Objects
Integer Objects
Boolean Objects
Floating Point Objects
Complex Number Objects
s Complex Numbers as C Structures
s Complex Numbers as Python Objects
m Sequence Objects
= Bytes Objects
= Byte Array Objects
m Type check macros
= Direct API functions
= Macros
= Unicode Objects and Codecs
= Unicode Objects
= Unicode Type
= Unicode Character Properties

Creating and accessing Unicode strings
Deprecated Py _UNICODE APIs
Locale Encoding
File System Encoding
= wchar_t Support
= Built-in Codecs
m Generic Codecs
» UTF-8 Codecs
m UTF-32 Codecs
m UTF-16 Codecs
m UTF-7 Codecs
m Unicode-Escape Codecs
= Raw-Unicode-Escape Codecs
m Latin-1 Codecs
m ASCII Codecs
m Character Map Codecs
m MBCS codecs for Windows
= Methods & Slots
m Methods and Slot Functions
= Tuple Objects
m Struct Sequence Objects
m List Objects
= Container Objects
= Dictionary Objects
= Set Objects
= Function Objects
= Function Objects
Instance Method Objects
Method Objects
Cell Objects
Code Objects
m Other Objects
= File Objects
= Module Objects

= |nitializing C modules
m Single-phase initialization
= Multi-phase initialization
= Low-level module creation functions
m Support functions
= Module lookup
m |terator Objects
m Descriptor Objects
m Slice Objects
= Ellipsis Object
= MemoryView objects
» Weak Reference Objects
m Capsules
m Generator Objects
= Coroutine Objects
= DateTime Objects
o |nitialization, Finalization, and Threads
= |nitializing and finalizing the interpreter
m Process-wide parameters
Thread State and the Global Interpreter Lock
Releasing the GIL from extension code
Non-Python created threads
High-level API
Low-level API
Sub-interpreter support
= Bugs and caveats
Asynchronous Notifications
Profiling and Tracing
Advanced Debugger Support
o Memory Management
= Overview
= Raw Memory Interface
= Memory Interface
= Customize Memory Allocators

= The pymalloc allocator
m Customize pymalloc Arena Allocator
m Examples
o Object Implementation Support
m Allocating Objects on the Heap
= Common Object Structures
= Type Objects
= Number Object Structures
= Mapping Object Structures
m Sequence Object Structures
m Buffer Object Structures
m Async Object Structures
m Supporting Cyclic Garbage Collection
o APl and ABI Versioning
¢ Distributing Python Modules
Key terms
Open source licensing and collaboration
Installing the tools
Reading the guide
How do I...?
m ... choose a name for my project?
= ... create and distribute binary extensions?
e Installing Python Modules
o Key terms
o Basic usage
o Howdol...?
= ... install pip in versions of Python prior to Python 3.47?
m ... install packages just for the current user?
= ... install scientific Python packages?
m ... work with multiple versions of Python installed in
parallel?
o Common installation issues
m |nstalling into the system Python on Linux
= Pip not installed

(e]

(e]

(e]

(e]

(e]

» |nstalling binary extensions
Python HOWTOs
o Porting Python 2 Code to Python 3
= The Short Explanation
= Details

Drop support for Python 2.6 and older
Make sure you specify the proper version support in
your setup.py file
Have good test coverage
Learn the differences between Python 2 & 3
Update your code

= Division

= Text versus binary data

m Use feature detection instead of version

detection

Prevent compatibility regressions
Check which dependencies block your transition
Update your setup.py file to denote Python 3
compatibility
Use continuous integration to stay compatible
Consider using optional static type checking

o Porting Extension Modules to Python 3
= Conditional compilation
= Changes to Object APIs

str/unicode Unification
long/int Unification

= Module initialization and state
m CObiject replaced with Capsule
= Other options
o Curses Programming with Python
= What is curses?
= The Python curses module
m Starting and ending a curses application
= Windows and Pads

m Displaying Text
= Attributes and Color
= User Input
= For More Information
o Descriptor HowTo Guide
= Abstract
m Definition and Introduction
= Descriptor Protocol
= Invoking Descriptors
m Descriptor Example
= Properties
= Functions and Methods
m Static Methods and Class Methods
o Functional Programming HOWTO
= |ntroduction
= Formal provability
= Modularity
m Ease of debugging and testing
= Composability
= [terators
m Data Types That Support Iterators
= Generator expressions and list comprehensions
= Generators
m Passing values into a generator
= Built-in functions
= The itertools module
Creating new iterators
Calling functions on elements
Selecting elements
Combinatoric functions
Grouping elements
= The functools module
= The operator module
= Small functions and the lambda expression

= Revision History and Acknowledgements
= References

= General
= Python-specific
= Python documentation

o Logging HOWTO
= Basic Logging Tutorial

= When to use logging
= Asimple example
= Logging to a file
= Logging from multiple modules
= Logging variable data
m Changing the format of displayed messages
m Displaying the date/time in messages
= Next Steps
Advanced Logging Tutorial
Logging Flow
Loggers
Handlers
Formatters
Configuring Logging
What happens if no configuration is provided
m Configuring Logging for a Library
Logging Levels
m Custom Levels
Useful Handlers
Exceptions raised during logging
Using arbitrary objects as messages
Optimization

o Logging Cookbook

Using logging in multiple modules
Logging from multiple threads
Multiple handlers and formatters
Logging to multiple destinations

Configuration server example
Dealing with handlers that block
Sending and receiving logging events across a network
Adding contextual information to your logging output

m Using LoggerAdapters to impart contextual

information
m Using objects other than dicts to pass
contextual information

m Using Filters to impart contextual information
Logging to a single file from multiple processes
Using file rotation
Use of alternative formatting styles
Customizing LogRecord
Subclassing QueueHandler - a ZeroMQ example
Subclassing QueueListener - a ZeroMQ example
An example dictionary-based configuration
Using a rotator and namer to customize log rotation
processing
A more elaborate multiprocessing example
Inserting a BOM into messages sent to a SysLogHandler
Implementing structured logging
Customizing handlers with dictConfig()
Using particular formatting styles throughout your
application

m Using LogRecord factories

m Using custom message objects
Configuring filters with dictConfig()
Customized exception formatting
Speaking logging messages
Buffering logging messages and outputting them
conditionally
Formatting times using UTC (GMT) via configuration
Using a context manager for selective logging

o Regular Expression HOWTO

Introduction
Simple Patterns

m Matching Characters

= Repeating Things
Using Regular Expressions
Compiling Regular Expressions
The Backslash Plague
Performing Matches
Module-Level Functions
Compilation Flags
More Pattern Power

= More Metacharacters

= Grouping

= Non-capturing and Named Groups

m Lookahead Assertions
Modifying Strings

m Splitting Strings

m Search and Replace
Common Problems

= Use String Methods

= match() versus search()

m Greedy versus Non-Greedy

» Using re.VERBOSE
Feedback

Socket Programming HOWTO

Sockets

= History
Creating a Socket

m |[PC
Using a Socket

= Binary Data
Disconnecting

= When Sockets Die
Non-blocking Sockets

o Sorting HOW TO
= Sorting Basics
= Key Functions
= Operator Module Functions
= Ascending and Descending
= Sort Stability and Complex Sorts
= The Old Way Using Decorate-Sort-Undecorate
= The Old Way Using the cmp Parameter
m Odd and Ends
o Unicode HOWTO
= |ntroduction to Unicode
m History of Character Codes
m Definitions
= Encodings
m References
= Python’s Unicode Support
= The String Type
= Converting to Bytes
= Unicode Literals in Python Source Code
= Unicode Properties
m Unicode Regular Expressions
m References
m Reading and Writing Unicode Data
= Unicode filenames
m Tips for Writing Unicode-aware Programs
= Converting Between File Encodings
= Files in an Unknown Encoding
m References
= Acknowledgements
o HOWTO Fetch Internet Resources Using The urllib Package
= |ntroduction
m Fetching URLs
= Data
= Headers

= Handling Exceptions
= URLError
s HTTPError
= Error Codes
= Wrapping it Up
= Number 1
= Number 2
= info and geturl
= Openers and Handlers
= Basic Authentication
m Proxies
m Sockets and Layers
= Footnotes
o Argparse Tutorial
= Concepts
= The basics
m |ntroducing Positional arguments
= |ntroducing Optional arguments
= Short options
= Combining Positional and Optional arguments
m Getting a little more advanced
= Conflicting options
m Conclusion
o An introduction to the ipaddress module
m Creating Address/Network/Interface objects
= A Note on IP Versions
= |P Host Addresses
m Defining Networks
m Host Interfaces
Inspecting Address/Network/Interface Objects
Networks as lists of Addresses
Comparisons
Using IP Addresses with other modules
Getting more detail when instance creation fails

o Argument Clinic How-To

The Goals Of Argument Clinic
Basic Concepts And Usage
Converting Your First Function
Advanced Topics

Symbolic default values

Renaming the C functions and variables generated
by Argument Clinic

Converting functions using PyArg_UnpackTuple
Optional Groups

Using real Argument Clinic converters, instead of
“legacy converters”

Py _buffer

Advanced converters

Parameter default values

The NULL default value

Expressions specified as default values

Using a return converter

Cloning existing functions

Calling Python code

Using a “self converter”

Writing a custom converter

Writing a custom return converter

METH_O and METH_NOARGS

tp_new and tp_init functions

Changing and redirecting Clinic’s output

The #ifdef trick

Using Argument Clinic in Python files

o Instrumenting CPython with DTrace and SystemTap
Enabling the static markers

Static DTrace probes

Static SystemTap markers

Available static markers

SystemTap Tapsets

Examples

e Python Frequently Asked Questions
o General Python FAQ

General Information
Python in the real world

o Programming FAQ

General Questions

Core Language
Numbers and strings
Performance

Sequences (Tuples/Lists)
Dictionaries

Objects

Modules

o Design and History FAQ

Why does Python use indentation for grouping of
statements?

Why am | getting strange results with simple arithmetic
operations?

Why are floating-point calculations so inaccurate?

Why are Python strings immutable?

Why must ‘self’ be used explicitly in method definitions
and calls?

Why can’t | use an assignment in an expression?

Why does Python use methods for some functionality
(e.g. list.index()) but functions for other (e.g. len(list))?
Why is join() a string method instead of a list or tuple
method?

How fast are exceptions?

Why isn’t there a switch or case statement in Python?
Can’'t you emulate threads in the interpreter instead of
relying on an OS-specific thread implementation?

Why can’t lambda expressions contain statements?

Can Python be compiled to machine code, C or some

other language?

How does Python manage memory?

Why doesn’'t CPython use a more traditional garbage
collection scheme?

Why isn’t all memory freed when CPython exits?

Why are there separate tuple and list data types?

How are lists implemented?

How are dictionaries implemented?

Why must dictionary keys be immutable?

Why doesn't list.sort() return the sorted list?

How do you specify and enforce an interface spec in
Python?

Why is there no goto?

Why can’t raw strings (r-strings) end with a backslash?
Why doesn’'t Python have a “with” statement for attribute
assignments?

Why are colons required for the if/while/def/class
statements?

Why does Python allow commas at the end of lists and
tuples?

o Library and Extension FAQ

General Library Questions
Common tasks

Threads

Input and Output
Network/Internet Programming
Databases

Mathematics and Numerics

o Extending/Embedding FAQ

Can | create my own functions in C?

Can | create my own functions in C++?

Writing C is hard; are there any alternatives?

How can | execute arbitrary Python statements from C?
How can | evaluate an arbitrary Python expression from

C?

= How do | extract C values from a Python object?

= How do | use Py BuildValue() to create a tuple of
arbitrary length?

= How do | call an object’s method from C?

= How do | catch the output from PyErr_Print() (or anything
that prints to stdout/stderr)?

= How do | access a module written in Python from C?

= How do | interface to C++ objects from Python?

= | added a module using the Setup file and the make fails;
why?

= How do | debug an extension?

= | want to compile a Python module on my Linux system,
but some files are missing. Why?

= How do | tell “incomplete input” from “invalid input”?

» How do | find undefined g++ symbols __ builtin_new or
___pure_virtual?

m Can | create an object class with some methods
implemented in C and others in Python (e.g. through
inheritance)?

o Python on Windows FAQ

= How do | run a Python program under Windows?

= How do | make Python scripts executable?

= Why does Python sometimes take so long to start?

= How do | make an executable from a Python script?

m |sa *.pyd file the same as a DLL?

= How can | embed Python into a Windows application?

m How do | keep editors from inserting tabs into my Python
source?

= How do | check for a keypress without blocking?

= How do | emulate os.kill() in Windows?

= How do | extract the downloaded documentation on
Windows?

o Graphic User Interface FAQ

General GUI Questions

What platform-independent GUI toolkits exist for Python?
What platform-specific GUI toolkits exist for Python?
Tkinter questions

o “Why is Python Installed on my Computer?” FAQ

Glossary

What is Python?
Why is Python installed on my machine?
Can | delete Python?

About these documents

o Contributors to the Python Documentation
Dealing with Bugs

o Documentation bugs

o Using the Python issue tracker

o Getting started contributing to Python yourself
Copyright
History and License

o History of the software

o Terms and conditions for accessing or otherwise using

Python

PSF LICENSE AGREEMENT FOR PYTHON 3.6.3
BEOPEN.COM LICENSE AGREEMENT FOR PYTHON
2.0

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0
THROUGH 1.2

o Licenses and Acknowledgements for Incorporated Software

Mersenne Twister

Sockets

Floating point exception control
Asynchronous socket services
Cookie management

Execution tracing

UUencode and UUdecode functions

= XML Remote Procedure Calls
= test_epoll

m Select kqueue
= SipHash24

= strtod and dtoa
m OpenSSL

= expat

m |ibffi

= Zlib

= cfuhash

= libmpdec

@ Python » 3.6.3 Documentation » next | modules | index

© Copyright 2001-2017, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.
Last updated on Oct 03, 2017. Found a bug?

Created using Sphinx 1.6.3.

https://www.python.org/
https://www.python.org/psf/donations/
http://sphinx.pocoo.org/

@ Python » 3.6.3 Documentation » modules | index

https://www.python.org/

Python Module Index

_lalbjc|d|el|flg|[h]i|j[k[I[m]|n|o|p|q|r|[s|tfu]v
lw|x]|z

___future___ Future statement
definitions

__main__ The environment where
the top-level script is
run.

_dummy_thread Drop-in replacement for
the _thread module.

_thread Low-level threading
API.

abc Abstract base classes
according to PEP 3119.

aifc Read and write audio
files in AIFF or AIFC
format.

argparse Command-line option
and argument parsing
library.

array Space efficient arrays
of uniformly typed
numeric values.

ast Abstract Syntax Tree
classes and
manipulation.

asynchat

asyncio

asyncore

atexit

audioop

base64

bdb
binascii

binhex

bisect

builtins

bz2

Support for
asynchronous
command/response
protocols.

Asynchronous I/0,
event loop, coroutines
and tasks.

A base class for
developing
asynchronous socket
handling services.

Register and execute
cleanup functions.

Manipulate raw audio
data.

RFC 3548: Basel6,
Base32, Base64 Data
Encodings; Base85 and
Ascii85

Debugger framework.

Tools for converting
between binary and
various ASCll-encoded
binary representations.

Encode and decode
files in binhex4 format.

Array bisection
algorithms for binary
searching.

The module that
provides the built-in
namespace.

Interfaces for bzip2

c
calendar

cgl

cgithb

chunk

cmath

cmd

code

codecs

codeop

collections
collections.abc

colorsys

compileall

compression and
decompression.

Functions for working
with calendars,
including some
emulation of the Unix
cal program.

Helpers for running
Python scripts via the
Common Gateway
Interface.

Configurable traceback
handler for CGI scripts.

Module to read IFF
chunks.

Mathematical functions
for complex numbers.

Build line-oriented
command interpreters.

Facilities to implement
read-eval-print loops.
Encode and decode
data and streams.
Compile (possibly
incomplete) Python
code.

Container datatypes
Abstract base classes
for containers

Conversion functions
between RGB and
other color systems.

Tools for byte-compiling

concurrent
concurrent.futures

configparser

contextlib

copy

copyreg

cProfile

crypt (Unix)

CSV

ctypes

curses (Unix)

curses.ascii

curses.panel

curses.textpad

all Python source files
in a directory tree.

Execute computations
concurrently using
threads or processes.

Configuration file
parser.

Utilities for with-
Statement contexts.

Shallow and deep copy
operations.

Register pickle support
functions.

The crypt() function
used to check Unix
passwords.

Write and read tabular
data to and from
delimited files.

A foreign function
library for Python.

An interface to the
curses library, providing
portable terminal
handling.

Constants and set-
membership functions
for ASCII characters.

A panel stack extension
that adds depth to
curses windows.
Emacs-like input editing
in a curses window.

d
datetime

dbm

dbm.dumb

dbm. gnu (Unix)

dbm.ndbm (Unix)

decimal

difflib

dis

distutils

distutils.

distutils.
distutils.

distutils.

archive_util

bcppcompiler
ccompiler

cmd

Basic date and time
types.
Interfaces to various

Unix "database"
formats.

Portable
implementation of the
simple DBM interface.

GNU's reinterpretation
of dbm.

The standard
"database" interface,
based on ndbm.

Implementation of the
General Decimal
Arithmetic Specification.

Helpers for computing
differences between
objects.

Disassembler for
Python bytecode.

Support for building and
installing Python
modules into an
existing Python
installation.

Utility functions for
creating archive files
(tarballs, zip files, ...)

Abstract CCompiler
class

This module provides

distutils.

distutils.

distutils.

distutils.

distutils.command.bdist_packager
distutils.
distutils.
distutils.
distutils.
distutils.
distutils.

distutils.

command

command.bdist

command.bdist dumb

command.bdist msi

command.bdist_rpm

command.
command.build
command.build_clib
command.build_ext
command.build_py

command.

bdist wininst

the abstract base class
Command. This class is
subclassed by the
moadules in the
distutils.command
subpackage.

This subpackage
contains one module for
each standard Distutils
command.

Build a binary installer
for a package

Build a "dumb" installer
- a simple archive of
files

Build a binary
distribution as a
Windows MSI file

Abstract base class for
packagers

Build a binary
distribution as a Redhat
RPM and SRPM

Build a Windows
installer

Build all files of a
package

Build any C libraries in
a package

Build any extensions in
a package

Build the .py/.pyc files
of a package

build_scripts Build the scripts of a

package

distutils.

distutils.

distutils.

distutils.
distutils.

command.

command.

command.

command.
command.

check
clean
config

install
install data

distutils.command.install headers

distutils.command.install 1ib

distutils.command.install_scripts

distutils.command.register

distutils.

distutils.

distutils.
distutils.

distutils.

distutils.

distutils.

command.
core

cygwincc
debug

dep_util

dir_util

dist

sdist

ompiler

Check the metadata of
a package

Clean a package build
area

Perform package
configuration

Install a package

Install data files from a
package

Install C/C++ header
files from a package

Install library files from
a package

Install script files from a
package

Register a module with
the Python Package
Index

Build a source
distribution

The core Distutils
functionality

Provides the debug flag
for distutils

Utility functions for
simple dependency
checking

Utility functions for
operating on directories
and directory trees

Provides the
Distribution class, which
represents the module
distribution being

distutils.

distutils.

distutils.

distutils.

distutils.

distutils.

distutils.
distutils.

distutils.

distutils.

distutils.
distutils.

distutils.

doctest

errors

extension

fancy_getopt
file_util

filelist

log

msvccompiler
spawn

sysconfig

text file

unixccompiler

util

version

built/installed/distributed

Provides standard
distutils exceptions

Provides the Extension
class, used to describe
C/C++ extension
modules in setup
scripts

Ad(ditional getopt
functionality

Utility functions for
operating on single files

The FileList class, used
for poking about the file
system and building
lists of files.

A simple logging
mechanism, 282-style

Microsoft Compiler

Provides the spawn()
function

Low-level access to
configuration
information of the
Python interpreter.

provides the TextFile
class, a simple interface
to text files

UNIX C Compiler

Miscellaneous other
utility functions

implements classes that
represent module
version numbers.

Test pieces of code

dummy_threading

email

email.

email

email

email.

email

email

email

email.

email

email.

email

charset

.contentmanager

.encoders

errors

.generator

.header

.headerregistry

iterators

.message

mime

.parser

within docstrings.

Drop-in replacement for
the threading module.

Package supporting the
parsing, manipulating,
and generating email
messages.

Character Sets

Storing and Retrieving
Content from MIME
Parts

Encoders for email
message payloads.

The exception classes
used by the email
package.

Generate flat text email
messages from a
message structure.

Representing non-
ASCII headers

Automatic Parsing of
headers based on the
field name

Iterate over a message
object tree.

The base class
representing email
messages.

Build MIME messages.

Parse flat text email
messages to produce a
message object

email.policy

email.utils
encodings
encodings.idna
encodings.mbcs
encodings.utf_8_sig

ensurepip

enum

errno

f
faulthandler

fentl (Unix)
filecmp
fileinput

fnmatch

Structure.

Controlling the parsing
and generating of
messages

Miscellaneous email
package utilities.

Internationalized
Domain Names
implementation

Windows ANSI
codepage

UTF-8 codec with BOM
signature
Bootstrapping the "pip"
installer into an existing

Python installation or
virtual environment.

Implementation of an
enumeration class.

Standard errno system
symbols.

Dump the Python
traceback.

The fentl() and ioctl()
system calls.

Compare files
efficiently.

Loop over standard
input or a list of files.

Unix shell style
filename pattern

formatter

fpectl (Unix)

fractions

ftplib

functools

gc

getopt

getpass

gettext

glob

grp (Unix)

gzip

matching.

Deprecated: Generic
output formatter and
device interface.

Provide control for
floating point exception
handling.

Rational numbers.

FTP protocol client
(requires sockets).

Higher-order functions
and operations on
callable objects.

Interface to the cycle-
detecting garbage
collector.

Portable parser for
command line options;
support both short and
long option names.

Portable reading of
passwords and retrieval
of the userid.

Multilingual
internationalization
services.

Unix shell style
pathname pattern
expansion.

The group database
(getgrnam() and
friends).

Interfaces for gzip

hashlib

heapq

hmac

html
html.entities

html.parser

http

http.client

http.cookiejar

http.cookies

http.server

compression and
decompression using
file objects.

Secure hash and
message digest
algorithms.

Heap queue algorithm
(a.k.a. priority queue).
Keyed-Hashing for
Message Authentication
(HMAC) implementation

Helpers for
manipulating HTML.

Definitions of HTML
general entities.

A simple parser that
can handle HTML and
XHTML.

HTTP status codes and
messages

HTTP and HTTPS
protocol client (requires
sockets).

Classes for automatic
handling of HTTP
cookies.

Support for HTTP state
management (cookies).

HTTP server and
request handlers.

imaplib

imghdr

imp

importlib
importlib.abc
importlib.machinery
importlib.util

inspect

i0
ipaddress

itertools

j
json

json.tool

IMAPA4 protocol client
(requires sockets).

Determine the type of
image contained in a
file or byte stream.

Deprecated: Access
the implementation of
the import statement.

The implementation of
the import machinery.

Abstract base classes
related to import

Importers and path
hooks

Utility code for
importers

Extract information and
source code from live
objects.

Core tools for working
with streams.

IPv4/IPv6 manipulation
library.

Functions creating
iterators for efficient
looping.

Encode and decode the
JSON format.

A command line to
validate and pretty-print
JSON.

k
keyword

|
1lib2to3
linecache

locale

logging
logging.config
logging.handlers

lzma

m
macpath

maillbox

mailcap
marshal

math

Test whether a string is
a keyword in Python.

the 2to3 library

This module provides
random access to
individual lines from text
files.

Internationalization
services.

Flexible event logging
system for applications.

Configuration of the
logging module.

Handlers for the logging
module.

A Python wrapper for
the liblzma
compression library.

Mac OS 9 path
manipulation functions.

Manipulate mailboxes
in various formats

Mailcap file handling.

Convert Python objects
to streams of bytes and
back (with different
constraints).

Mathematical functions
(sin() etc.).

mimetypes

mmap

modulefinder

msilib (Windows)

msvcrt (Windows)

multiprocessing
multiprocessing.
multiprocessing.

multiprocessing.

multiprocessing.

multiprocessing.

n
netrc

nis (Unix)

nntplib

connection
dummy

managers

pool

sharedctypes

Mapping of filename
extensions to MIME
types.

Interface to memory-
mapped files for Unix
and Windows.

Find modules used by a
script.

Creation of Microsoft
Installer files, and CAB
files.

Miscellaneous useful
routines from the MS
VC++ runtime.

Process-based
parallelism.

API for dealing with
sockets.

Dumb wrapper around
threading.

Share data between
process with shared
objects.

Create pools of
processes.

Allocate ctypes objects
from shared memory.

Loading of .netrc files.

Interface to Sun's NIS
(Yellow Pages) library.

NNTP protocol client
(requires sockets).

numbers

o
operator

optparse

0S

0s.path

ossaudiodev (Linux, FreeBSD)

p
parser

pathlib

pdb

pickle

pickletools

Numeric abstract base
classes (Complex,
Real, Integral, etc.).

Functions
corresponding to the
standard operators.

Deprecated:
Command-line option
parsing library.
Miscellaneous
operating system
interfaces.
Operations on
pathnames.

Access to OSS-
compatible audio
devices.

Access parse trees for
Python source code.

Object-oriented
filesystem paths

The Python debugger
for interactive
interpreters.

Convert Python objects
to streams of bytes and
back.

Contains extensive
comments about the
pickle protocols and
pickle-machine

pipes (Unix)
pkgutil

platform

plistlib
poplib

posix (Unix)

pprint
profile
pstats

pty (Linux)

pwd (Unix)

py_compile

pyclbr

pydoc

opcodes, as well as
some useful functions.

A Python interface to
Unix shell pipelines.

Utilities for the import
system.

Retrieves as much
platform identifying data
as possible.

Generate and parse
Mac OS X plist files.

POPS3 protocol client
(requires sockets).

The most common
POSIX system calls
(normally used via
module o0s).

Data pretty printer.
Python source profiler.

Statistics object for use
with the profiler.

Pseudo-Terminal
Handling for Linux.

The password database
(getpwnam() and
friends).

Generate byte-code
files from Python
source files.

Supports information
extraction for a Python
class browser.

Documentation
generator and online
help system.

q
queue

quopri

r
random

re

readline (Unix)

reprlib

resource (Unix)

rlcompleter

runpy

sched

A synchronized queue
class.

Encode and decode
files using the MIME
quoted-printable
encoding.

Generate pseudo-
random numbers with
various common
distributions.

Regular expression
operations.

GNU readline support
for Python.

Alternate repr()
implementation with
size limits.

An interface to provide
resource usage
information on the
current process.

Python identifier
completion, suitable for
the GNU readline
library.

Locate and run Python
modules without
importing them first.

General purpose event

secrets

select
selectors
shelve

shlex

shutil

signal

site

smtpd

smtplib
sndhdr

socket

socketserver

spwd (Unix)

scheduler.

Generate secure
random numbers for
managing secrets.

Wait for I/O completion
on multiple streams.

High-level I/O
multiplexing.

Python object
persistence.

Simple lexical analysis
for Unix shell-like
languages.

High-level file
operations, including
copying.

Set handlers for
asynchronous events.

Module responsible for
site-specific
configuration.

A SMTP server
implementation in
Python.

SMTP protocol client
(requires sockets).

Determine type of a
sound file.

Low-level networking
interface.

A framework for
network servers.

The shadow password
database (getspnam()
and friends).

sqglite3

ssl

stat

statistics
string
stringprep
struct
subprocess

sunau

symbol

symtable

sys

sysconfig

syslog (Unix)

A DB-API 2.0
implementation using
SQLite 3.x.

TLS/SSL wrapper for
socket objects

Utilities for interpreting
the results of os.stat(),
os.Istat() and os.fstat().

mathematical statistics
functions

Common string
operations.

String preparation, as
per RFC 3453

Interpret bytes as
packed binary data.

Subprocess
management.

Provide an interface to
the Sun AU sound
format.

Constants representing
internal nodes of the
parse tree.

Interface to the
compiler's internal
symbol tables.

Access system-specific
parameters and
functions.

Python's configuration
information

An interface to the Unix
syslog library routines.

t
tabnanny

tarfile

telnetlib
tempfile

termios (Unix)
test

test.support

textwrap
threading

time

timeit

tkinter

tkinter.scrolledtext (Tk)

tkinter.tix

tkinter.ttk
token

Tool for detecting white
space related problems
in Python source files in
a directory tree.

Read and write tar-
format archive files.

Telnet client class.

Generate temporary
files and directories.

POSIX style tty control.

Regression tests
package containing the
testing suite for Python.

Support for Python's
regression test suite.

Text wrapping and filling

Thread-based
parallelism.

Time access and
conversions.

Measure the execution
time of small code
snippets.

Interface to Tcl/Tk for
graphical user
interfaces

Text widget with a
vertical scroll bar.

Tk Extension Widgets
for Tkinter

Tk themed widget set

Constants representing
terminal nodes of the

tokenize
trace
traceback
tracemalloc

tty (Unix)

turtle

turtledemo
types
typing

u
unicodedata
unittest

unittest.mock
urllib
urllib.error

urllib.parse

parse tree.

Lexical scanner for
Python source code.

Trace or track Python
Statement execution.

Print or retrieve a stack
traceback.

Trace memory
allocations.

Utility functions that
perform common
terminal control
operations.

An educational
framework for simple
graphics applications

A viewer for example
turtle scripts

Names for built-in
types.

Support for type hints
(see PEP 484).

Access the Unicode
Database.

Unit testing framework
for Python.

Mock object library.

Exception classes
raised by urllib.request.

Parse URLSs into or
assemble them from

urllib.request

urllib.response

urllib.robotparser

uu

uuid

venv

w
warnings

wave

weakref

webbrowser

winreg (Windows)

components.

Extensible library for
opening URLSs.

Response classes used
by urllib.

Load a robots.txt file
and answer questions
about fetchability of
other URLs.

Encode and decode
files in uuencode
format.

UUID objects
(universally unique
identifiers) according to
RFC 4122

Creation of virtual
environments.

Issue warning
messages and control
their disposition.

Provide an interface to
the WAV sound format.

Support for weak
references and weak
dictionaries.

Easy-to-use controller
for Web browsers.

Routines and objects
for manipulating the
Windows registry.

winsound (Windows)

wsgiref

wsgi

wsgi

wsgi

wsgi

wsgi

X
xdrlib

xml

xml.

xml

xml.

xml

xml

ref.handlers
ref.headers
ref.simple_server
ref.util

ref.validate

dom

.dom.minidom

dom.pulldom

.etree.ElementTree

.parsers.expat

Access to the sound-
playing machinery for
Windows.

WSGI Utilities and
Reference
Implementation.

WSGI server/gateway
base classes.

WSGI response header
tools.

A simple WSGI HTTP
server.

WSGI environment
utilities.

WSGI conformance
checker.

Encoders and decoders
for the External Data
Representation (XDR).

Package containing
XML processing
modules

Document Object
Model API for Python.

Minimal Document
Object Model (DOM)
implementation.

Support for building
partial DOM trees from
SAX events.

Implementation of the
ElementTree API.

An interface to the

xml.
xml.
xml.

xml.

xml.

xml.

xmlrpc

parsers.expat.errors
parsers.expat.model
sax

sax.handler

sax.saxutils

sax.xmlreader

xmlrpc.client

xmlrpc.server

Y4

zipapp

zipfile

zipimport

z1lib

Expat non-validating
XML parser.

Package containing
SAX2 base classes and
convenience functions.

Base classes for SAX
event handlers.

Convenience functions
and classes for use with
SAX.

Interface which SAX-
compliant XML parsers
must implement.

XML-RPC client
access.

Basic XML-RPC server
implementations.

Manage executable
python zip archives

Read and write ZIP-
format archive files.

support for importing
Python modules from
ZIP archives.

Low-level interface to
compression and
decompression routines
compatible with gzip.

@ Python » 3.6.3 Documentation » modules | index

© Copyright 2001-2017, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.
Last updated on Oct 03, 2017. Found a bug?

Created using Sphinx 1.6.3.

https://www.python.org/
https://www.python.org/psf/donations/
http://sphinx.pocoo.org/

@ Python » 3.6.3 Documentation » modules | index

https://www.python.org/

Python 3.6.3 documentation

Welcome! This is the documentation for Python 3.6.3.

Parts of the documentation:

| | Installing Python
What's new in Python,,~ o

’) n I "
36 ¢ or all "Whats new" documents installing from the Python Package Index

since 2.0 & other sources
Tutorial Distributing Python
start here MOdUleS
|_| b rary R e fe rence publishing modules for installation by
keep this under your pillow others

Extending and

Language Reference

describes syntax and language elements E m b ed d In g
tutorial for C/C++ programmers

Python Setup and
Usage

how to use Python on different platforms

Python/C API

reference for C/C++ programmers

Python HOWTOs FAQS

frequentl asked uestions with
in-depth documents on specific topics q y q (

answers!)

Indices and tables:

Global Module Index
quick access to all modules Search page
search this documentation

General Index

all functions, classes, terms Com P lete Table of
Contents
G l 0S Sary lists all sections and subsections

the most important terms explained

Meta information:

Reporting bugs History and License
of Python
About the Y
documentation Copyright
@ Python » 3.6.3 Documentation » modules | index

© Copyright 2001-2017, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.
Last updated on Oct 03, 2017. Found a bug?

Created using Sphinx 1.6.3.

https://www.python.org/
https://www.python.org/psf/donations/
http://sphinx.pocoo.org/

@ Python » 3.6.3 Documentation » What's New in Python » previous | next | modules | index

https://www.python.org/

What's New In Python 3.6

Elvis Pranskevichus <elvis@magic.io>, Yury Selivanov

Editors: <yury@magic.io>

This article explains the new features in Python 3.6, compared to 3.5.
Python 3.6 was released on December 23, 2016. For full details, see
the changelog.

See also: PEP 494 - Python 3.6 Release Schedule

mailto:elvis%40magic.io
mailto:yury%40magic.io
https://www.python.org/dev/peps/pep-0494

Summary — Release highlights

New syntax features:

PEP 498, formatted string literals.

PEP 515, underscores in numeric literals.
PEP 526, syntax for variable annotations.
PEP 525, asynchronous generators.

PEP 530: asynchronous comprehensions.

New library modules:

secrets: PEP 506 — Adding A Secrets Module To The Standard
Library.

CPython implementation improvements:

The dict type has been reimplemented to use a more compact
representation based on a proposal by Raymond Hettinger and
similar to the PyPy dict implementation. This resulted in
dictionaries using 20% to 25% less memory when compared to
Python 3.5.

Customization of class creation has been simplified with the new
protocol.

The class attribute definition order is now preserved.

The order of elements in **kwargs now corresponds to the order
in which keyword arguments were passed to the function.

DTrace and SystemTap probing support has been added.

The new PYTHONMALLOC environment variable can now be
used to debug the interpreter memory allocation and access
errors.

Significant improvements in the standard library:

https://mail.python.org/pipermail/python-dev/2012-December/123028.html
https://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html

The asyncio module has received new features, significant
usability and performance improvements, and a fair amount of
bug fixes. Starting with Python 3.6 the asyncio module is no
longer provisional and its APl is considered stable.

A new file system path protocol has been implemented to support
path-like objects. All standard library functions operating on paths
have been updated to work with the new protocol.

The datetime module has gained support for Local Time
Disambiguation.

The typing module received a number of improvements.

The tracemalloc module has been significantly reworked and
is now used to provide better output for ResourceWarning as
well as provide better diagnostics for memory allocation errors.
See the PYTHONMALLOC section for more information.

Security improvements:

The new secrets module has been added to simplify the
generation of cryptographically strong pseudo-random numbers
suitable for managing secrets such as account authentication,
tokens, and similar.

On Linux, os.urandom() now blocks until the system urandom

entropy pool is initialized to increase the security. See the PEP
524 for the rationale.
The hashlib and ss1 modules now support OpenSSL 1.1.0.

The default settings and feature set of the ss1 module have been
improved.

The hashlib module received support for the BLAKE2, SHA-3
and SHAKE hash algorithms and the scrypt() key derivation
function.

Windows improvements:

PEP 528 and PEP 529, Windows filesystem and console

https://www.python.org/dev/peps/pep-0524

encoding changed to UTF-8.

The py.exe launcher, when used interactively, no longer prefers
Python 2 over Python 3 when the user doesn’t specify a version
(via command line arguments or a config file). Handling of
shebang lines remains unchanged - “python” refers to Python 2 in
that case.

python.exe and pythonw.exe have been marked as long-
path aware, which means that the 260 character path limit may no
longer apply. See removing the MAX_PATH limitation for details.
A ._pth file can be added to force isolated mode and fully
specify all search paths to avoid registry and environment lookup.
See the documentation for more information.

A python36.zip file now works as a landmark to infer
PYTHONHOME. See the documentation for more information.

New Features
PEP 498: Formatted string literals

PEP 498 introduces a new kind of string literals: f-strings, or formatted
string literals.

Formatted string literals are prefixed with 'f' and are similar to the
format strings accepted by str.format(). They contain

replacement fields surrounded by curly braces. The replacement fields
are expressions, which are evaluated at run time, and then formatted
using the format () protocol:

>>> name = "Fred"

>>> f"He said his name is {name}."

'"He said his name is Fred.'

>>> width = 10

>>> precision = 4

>>> value = decimal.Decimal("12.34567")

>>> f'result: {value:{width}.{precision}}" # nestec
'result: 12.35"

d 1 i

See also:

PEP 498 - Literal String Interpolation.
PEP written and implemented by Eric V. Smith.

Feature documentation.

PEP 526: Syntax for variable annotations

PEP 484 introduced the standard for type annotations of function

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0484

parameters, a.k.a. type hints. This PEP adds syntax to Python for
annotating the types of variables including class variables and
instance variables:

primes: List[int] = []
captain: str # Note: no initial value!

class Starship:
stats: Dict[str, int] = {}

Just as for function annotations, the Python interpreter does not attach
any particular meaning to variable annotations and only stores them in
the __annotations___ attribute of a class or module.

In contrast to variable declarations in statically typed languages, the
goal of annotation syntax is to provide an easy way to specify
structured type metadata for third party tools and libraries via the
abstract syntax tree and the __annotations___ attribute.

See also:

PEP 526 - Syntax for variable annotations.

PEP written by Ryan Gonzalez, Philip House, Ivan Levkivskyi,
Lisa Roach, and Guido van Rossum. Implemented by Ivan
Levkivskyi.

Tools that use or will use the new syntax: mypy, pytype, PyCharm,
etc.

PEP 515: Underscores in Numeric Literals

PEP 515 adds the ability to use underscores in numeric literals for

https://www.python.org/dev/peps/pep-0526
http://github.com/python/mypy
http://github.com/google/pytype
https://www.python.org/dev/peps/pep-0515

improved readability. For example:

>>> 1_000_000_000_000_000
1000000000000000

>>> Ox_FF_FF_FF_FF
4294967295

Single underscores are allowed between digits and after any base
specifier. Leading, trailing, or multiple underscores in a row are not
allowed.

The string formatting language also now has support for the '_
option to signal the use of an underscore for a thousands separator for
floating point presentation types and for integer presentation type 'd'.
For integer presentation types 'b', 'o', 'x', and 'X', underscores
will be inserted every 4 digits:

>>> '{:_}'.format(1000000)

'l 000_000"

>>> '{:_x}'.format(OXFFFFFFFF)
'TRff_ffff'

See also:

PEP 515 - Underscores in Numeric Literals
PEP written by Georg Brandl and Serhiy Storchaka.

PEP 525: Asynchronous Generators

PEP 492 introduced support for native coroutines and async / await
syntax to Python 3.5. A notable limitation of the Python 3.5
implementation is that it was not possible to use await and yield in
the same function body. In Python 3.6 this restriction has been lifted,

https://www.python.org/dev/peps/pep-0515
https://www.python.org/dev/peps/pep-0492

making it possible to define asynchronous generators:

async def ticker(delay, to):
"""yield numbers from 0@ to *to* every *delay* Se
for 1 in range(to):
yield i
await asyncio.sleep(delay)
J 1 2

The new syntax allows for faster and more concise code.

See also:

PEP 525 - Asynchronous Generators
PEP written and implemented by Yury Selivanov.

PEP 530: Asynchronous Comprehensions

PEP 530 adds support for using async for in list, set, dict
comprehensions and generator expressions:

result = [1 async for i in aiter() if 1 % 2]

Additionally, await expressions are supported in all kinds of
comprehensions:

result = [await fun() for fun in funcs if await conc
d 1 i

See also:

PEP 530 - Asynchronous Comprehensions
PEP written and implemented by Yury Selivanov.

https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0530
https://www.python.org/dev/peps/pep-0530

PEP 487: Simpler customization of class creation

It is now possible to customize subclass creation without using a
metaclass. The new __init_subclass__ classmethod will be called

on the base class whenever a new subclass is created:

class PluginBase:
subclasses = []

def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
cls.subclasses.append(cls)

class Pluginli(PluginBase):
pass

class Plugin2(PluginBase):
pass

In order to allow zero-argument super () calls to work correctly from
__init_subclass__ () implementations, custom metaclasses must
ensure that the new __classcell__ namespace entry is propagated
to type.__new__ (as described in Creating the class object).

See also:

PEP 487 - Simpler customization of class creation
PEP written and implemented by Martin Teichmann.

Feature documentation

PEP 487: Descriptor Protocol Enhancements

https://www.python.org/dev/peps/pep-0487

PEP 487 extends the descriptor protocol to include the new optional
__set_name__ () method. Whenever a new class is defined, the

new method will be called on all descriptors included in the definition,
providing them with a reference to the class being defined and the
name given to the descriptor within the class namespace. In other
words, instances of descriptors can now know the attribute name of
the descriptor in the owner class:

class IntField:
def __get_ (self, instance, owner):
return instance. dict [self.name]

def __set_ (self, instance, value):
if not isinstance(value, int):
raise ValueError(f'expecting integer in
instance. dict_[self.name] = value

this 1s the new initializer:
def __ _set_name__ (self, owner, name):
self.name = name

class Model:
int_field = IntField()
1] 1 i

See also:

PEP 487 - Simpler customization of class creation
PEP written and implemented by Martin Teichmann.

Feature documentation

PEP 519: Adding a file system path protocol

https://www.python.org/dev/peps/pep-0487
https://www.python.org/dev/peps/pep-0487

File system paths have historically been represented as str or
bytes objects. This has led to people who write code which operate

on file system paths to assume that such objects are only one of those
two types (an int representing a file descriptor does not count as that
is not a file path). Unfortunately that assumption prevents alternative
object representations of file system paths like pathlib from working
with pre-existing code, including Python’s standard library.

To fix this situation, a new interface represented by os.PathLike has
been defined. By implementing the __fspath__ () method, an object
signals that it represents a path. An object can then provide a low-level
representation of a file system path as a str or bytes object. This
means an object is considered path-like if it implements
os.PathLike or is a str or bytes object which represents a file
system path. Code can use os.fspath(), os.fsdecode(), or
os.fsencode() to explicitly get a str and/or bytes representation
of a path-like object.

The built-in open() function has been updated to accept
os.PathLike objects, as have all relevant functions in the os and
os.path modules, and most other functions and classes in the
standard library. The os.DirEntry class and relevant classes in
pathlib have also been updated to implement os.PathLike.

The hope is that updating the fundamental functions for operating on
file system paths will lead to third-party code to implicitly support all
path-like objects without any code changes, or at least very minimal
ones (e.g. calling os.fspath() at the beginning of code before
operating on a path-like object).

Here are some examples of how the new interface allows for
pathlib.Path to be used more easily and transparently with pre-

existing code:

>>> import pathlib
>>> with open(pathlib.Path("README")) as f:
contents = f.read()

>>> import os.path

>>> os.path.splitext(pathlib.Path("some_file.txt"))
('some_file', '.txt'")

>>> os.path.join("/a/b", pathlib.Path("c"))
'/a/b/c'

>>> import os

>>> os.fspath(pathlib.Path("some_file.txt"))
'some_file.txt'

(Implemented by Brett Cannon, Ethan Furman, Dusty Phillips, and
Jelle Zijlstra.)

See also:

PEP 519 - Adding a file system path protocol
PEP written by Brett Cannon and Koos Zevenhoven.

PEP 495: Local Time Disambiguation

In most world locations, there have been and will be times when local
clocks are moved back. In those times, intervals are introduced in
which local clocks show the same time twice in the same day. In these
situations, the information displayed on a local clock (or stored in a
Python datetime instance) is insufficient to identify a particular moment
in time.

PEP 495 adds the new fold attribute to instances of
datetime.datetime and datetime.time classes to differentiate

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0495

between two moments in time for which local times are the same:

>>> u@ = datetime(2016, 11, 6, 4, tzinfo=timezone.ut
>>> for i1 in range(4):

u = ud + i*HOUR

t = u.astimezone(Eastern)

print(u.time(), 'UTC =', t.time(), t.tzname(

04:00:00 UTC = 00:00:00 EDT 0
05:00:00 UTC = 01:00:00 EDT 0
06:00:00 UTC = 01:00:00 EST 1
07:00:00 UTC = 02:00:00 EST 0
{ E— >

The values of the fold attribute have the value © for all instances

except those that represent the second (chronologically) moment in
time in an ambiguous case.

See also:

PEP 495 - Local Time Disambiguation
PEP written by Alexander Belopolsky and Tim Peters,
implementation by Alexander Belopolsky.

PEP 529: Change Windows filesystem encoding
to UTF-8

Representing filesystem paths is best performed with str (Unicode)
rather than bytes. However, there are some situations where using
bytes is sufficient and correct.

Prior to Python 3.6, data loss could result when using bytes paths on
Windows. With this change, using bytes to represent paths is now
supported on Windows, provided those bytes are encoded with the

https://www.python.org/dev/peps/pep-0495

encoding returned by sys.getfilesystemencoding(), which now
defaultsto 'utf-8".

Applications that do not use str to represent paths should use
os.fsencode() and os.fsdecode() to ensure their bytes are

correctly encoded. To revert to the previous behaviour, set
PYTHONLEGACYWINDOWSFSENCODING or call

sys._enablelegacywindowsfsencoding().

See PEP 529 for more information and discussion of code
modifications that may be required.

PEP 528: Change Windows console encoding to
UTF-8

The default console on Windows will now accept all Unicode
characters and provide correctly read str objects to Python code.
sys.stdin, sys.stdout and sys.stderr now default to utf-8

encoding.

This change only applies when using an interactive console, and not
when redirecting files or pipes. To revert to the previous behaviour for
interactive console use, set PYTHONLEGACYWINDOWSSTDIO.

See also:

PEP 528 - Change Windows console encoding to UTF-8
PEP written and implemented by Steve Dower.

PEP 520: Preserving Class Attribute Definition
Order

https://www.python.org/dev/peps/pep-0529
https://www.python.org/dev/peps/pep-0528

Attributes in a class definition body have a natural ordering: the same
order in which the names appear in the source. This order is now
preserved in the new class’s __dict__ attribute.

Also, the effective default class execution nhamespace (returned from
type. prepare__ ()) is now an insertion-order-preserving mapping.

See also:

PEP 520 - Preserving Class Attribute Definition Order
PEP written and implemented by Eric Snow.

PEP 468: Preserving Keyword Argument Order

**kwargs in a function signature is now guaranteed to be an
insertion-order-preserving mapping.

See also:

PEP 468 - Preserving Keyword Argument Order
PEP written and implemented by Eric Snow.

New dict implementation

The dict type now uses a “compact” representation based on a
proposal by Raymond Hettinger which was first implemented by PyPy.
The memory usage of the new dict() is between 20% and 25%
smaller compared to Python 3.5.

The order-preserving aspect of this new implementation is considered
an implementation detail and should not be relied upon (this may
change in the future, but it is desired to have this new dict

https://www.python.org/dev/peps/pep-0520
https://www.python.org/dev/peps/pep-0468
https://mail.python.org/pipermail/python-dev/2012-December/123028.html
https://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html

implementation in the language for a few releases before changing the
language spec to mandate order-preserving semantics for all current
and future Python implementations; this also helps preserve
backwards-compatibility with older versions of the language where
random iteration order is still in effect, e.g. Python 3.5).

(Contributed by INADA Naoki in bpo-27350. Idea originally suggested
by Raymond Hettinger.)

PEP 523: Adding a frame evaluation API to
CPython

While Python provides extensive support to customize how code
executes, one place it has not done so is in the evaluation of frame
objects. If you wanted some way to intercept frame evaluation in
Python there really wasn't any way without directly manipulating
function pointers for defined functions.

PEP 523 changes this by providing an API to make frame evaluation
pluggable at the C level. This will allow for tools such as debuggers
and JITs to intercept frame evaluation before the execution of Python
code begins. This enables the use of alternative evaluation
implementations for Python code, tracking frame evaluation, etc.

This API is not part of the limited C API and is marked as private to
signal that usage of this API is expected to be limited and only
applicable to very select, low-level use-cases. Semantics of the API
will change with Python as necessary.

See also:

PEP 523 - Adding a frame evaluation APl to CPython
PEP written by Brett Cannon and Dino Viehland.

https://bugs.python.org/issue27350
https://mail.python.org/pipermail/python-dev/2012-December/123028.html
https://www.python.org/dev/peps/pep-0523
https://www.python.org/dev/peps/pep-0523

PYTHONMALLOC environment variable

The new PYTHONMALLOC environment variable allows setting the
Python memory allocators and installing debug hooks.

It is now possible to install debug hooks on Python memory allocators
on Python compiled in release mode using PYTHONMALLOC=debug.

Effects of debug hooks:

e Newly allocated memory is filled with the byte ©xCB

e Freed memory is filled with the byte ©xDB

e Detect violations of the Python memory allocator API. For
example, PyObject_Free() called on a memory block
allocated by PyMem_Malloc().

e Detect writes before the start of a buffer (buffer underflows)

e Detect writes after the end of a buffer (buffer overflows)

e Check that the GIL is held when allocator functions of
PYMEM_DOMAIN_OBJ (ex: PyObject_Malloc()) and
PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) domains are
called.

Checking if the GIL is held is also a new feature of Python 3.6.

See the PyMem_SetupDebugHooks () function for debug hooks on
Python memory allocators.

It is now also possible to force the usage of the malloc() allocator of
the C library for all Python memory allocations using
PYTHONMALLOC=malloc. This is helpful when using external memory
debuggers like Valgrind on a Python compiled in release mode.

On error, the debug hooks on Python memory allocators now use the

tracemalloc module to get the traceback where a memory block
was allocated.

Example

of fatal error on buffer overflow using python3.6 -X

tracemalloc=5 (store 5 frames in traces):

Debug memory block at address p=0x7fbcd41666f8: API
4 bytes originally requested
The 7 pad bytes at p-7 are FORBIDDENBYTE, as exf
The 8 pad bytes at tail=0x7fbcd41666fc are not ¢

at tail+0: Ox02 *** OUCH
at tail+1: Oxfb
at tail+2: 0Oxfb
at tail+3: Oxfb
at tail+4: 0Oxfb
at tail+5: Oxfb
at tail+6: Oxfb
at tail+7: Oxfb

The block was made by call #1233329 to debug mal
Data at p: la 2b 30 00

Memory
File
File
File
File
File

block allocated at (most recent call first):
"test/test_bytes.py", line 323
"unittest/case.py", line 600
"unittest/case.py", line 648
"unittest/suite.py", line 122
"unittest/suite.py", line 84

Fatal Python error: bad trailing pad byte

Current thread 0x00007fbcdbd32700 (most recent call

File
File
File
File
File

"test/test_bytes.py", line 323 in test_hex
"unittest/case.py", line 600 in run
"unittest/case.py", line 648 in _ call_
"unittest/suite.py", line 122 in run
"unittest/suite.py", line 84 in __call__

File "unittest/suite.py", line 122 in run
File "unittest/suite.py", line 84 in __call__

j E— 2

(Contributed by Victor Stinner in bpo-26516 and bpo-26564.)

DTrace and SystemTap probing support

Python can now be built --with-dtrace which enables static
markers for the following events in the interpreter:

e function call/return
e garbage collection started/finished
¢ line of code executed.

This can be used to instrument running interpreters in production,
without the need to recompile specific debug builds or providing
application-specific profiling/debugging code.

More details in Instrumenting CPython with DTrace and SystemTap.

The current implementation is tested on Linux and macOS. Additional
markers may be added in the future.

(Contributed by tukasz Langa in bpo-21590, based on patches by
Jesus Cea Avion, David Malcolm, and Nikhil Benesch.)

https://bugs.python.org/issue26516
https://bugs.python.org/issue26564
https://bugs.python.org/issue21590

Other Language Changes

Some smaller changes made to the core Python language are:

e A global or nonlocal statement must now textually appear
before the first use of the affected name in the same scope.
Previously this was a SyntaxWarning.

e Itis now possible to set a special method to None to indicate that
the corresponding operation is not available. For example, if a
class sets _ iter_ () to None, the class is not iterable.
(Contributed by Andrew Barnert and lIvan Levkivskyi in bpo-
25958.)

e Long sequences of repeated traceback lines are now abbreviated
as "[Previous line repeated {count} more times]"
(see traceback for an example). (Contributed by Emanuel Barry in
bpo-26823.)

e Import now raises the new exception ModuleNotFoundError
(subclass of ImportError) when it cannot find a module. Code
that currently checks for ImportError (in try-except) will still work.
(Contributed by Eric Snow in bpo-15767.)

e Class methods relying on zero-argument super () will now work
correctly when called from metaclass methods during class
creation. (Contributed by Martin Teichmann in bpo-23722.)

https://bugs.python.org/issue25958
https://bugs.python.org/issue26823
https://bugs.python.org/issue15767
https://bugs.python.org/issue23722

New Modules
secrets

The main purpose of the new secrets module is to provide an
obvious way to reliably generate cryptographically strong pseudo-
random values suitable for managing secrets, such as account
authentication, tokens, and similar.

Warning: Note that the pseudo-random generators in the random
module should NOT be used for security purposes. Use secrets
on Python 3.6+ and os.urandom() on Python 3.5 and earlier.

See also:

PEP 506 — Adding A Secrets Module To The Standard Library
PEP written and implemented by Steven D’Aprano.

https://www.python.org/dev/peps/pep-0506

Improved Modules
array

Exhausted iterators of array.array will now stay exhausted even if
the iterated array is extended. This is consistent with the behavior of
other mutable sequences.

Contributed by Serhiy Storchaka in bpo-26492.

ast

The new ast.Constant AST node has been added. It can be used
by external AST optimizers for the purposes of constant folding.

Contributed by Victor Stinner in bpo-26146.

asyncio

Starting with Python 3.6 the asyncio module is no longer provisional
and its APl is considered stable.

Notable changes in the asyncio module since Python 3.5.0 (all
backported to 3.5.x due to the provisional status):

e The get_event_loop() function has been changed to always
return the currently running loop when called from couroutines
and callbacks. (Contributed by Yury Selivanov in bpo-28613.)

e The ensure_future() function and all functions that use it,

such as loop.run_until_complete(), now accept all kinds
of awaitable objects. (Contributed by Yury Selivanov.)
e New run_coroutine_threadsafe() function to submit

https://bugs.python.org/issue26492
https://bugs.python.org/issue26146
https://bugs.python.org/issue28613

coroutines to event loops from other threads. (Contributed by
Vincent Michel.)

New Transport.is_closing() method to check if the
transport is closing or closed. (Contributed by Yury Selivanov.)
The loop.create_server () method can now accept a list of
hosts. (Contributed by Yann Sionneau.)

New loop.create_future() method to create Future objects.
This allows alternative event loop implementations, such as
uvioop, to provide a faster asyncio.Future implementation.
(Contributed by Yury Selivanov in bpo-27041.)

New loop.get_exception_handler() method to get the
current exception handler. (Contributed by Yury Selivanov in bpo-
27040.)

New StreamReader.readuntil() method to read data from
the stream until a separator bytes sequence appears.
(Contributed by Mark Korenberg.)

The performance of StreamReader .readexactly() has been
improved. (Contributed by Mark Korenberg in bpo-28370.)

The loop.getaddrinfo() method is optimized to avoid calling
the system getaddrinfo function if the address is already
resolved. (Contributed by A. Jesse Jiryu Davis.)

The loop.stop() method has been changed to stop the loop
immediately after the current iteration. Any new callbacks
scheduled as a result of the last iteration will be discarded.
(Contributed by Guido van Rossum in bpo-25593.)
Future.set_exception will now raise TypeError when
passed an instance of the StopIteration exception.
(Contributed by Chris Angelico in bpo-26221.)

New loop.connect_accepted_socket () method to be used
by servers that accept connections outside of asyncio, but that
use asyncio to handle them. (Contributed by Jim Fulton in bpo-
27392.)

TCP_NODELAY flag is now set for all TCP transports by default.

https://github.com/MagicStack/uvloop
https://bugs.python.org/issue27041
https://bugs.python.org/issue27040
https://bugs.python.org/issue28370
https://bugs.python.org/issue25593
https://bugs.python.org/issue26221
https://bugs.python.org/issue27392

(Contributed by Yury Selivanov in bpo-27456.)

e New loop.shutdown_asyncgens() to properly close pending
asynchronous generators before closing the loop. (Contributed by
Yury Selivanov in bpo-28003.)

e Future and Task classes now have an optimized C

implementation which makes asyncio code up to 30% faster.
(Contributed by Yury Selivanov and INADA Naoki in bpo-26081
and bpo-28544.)

binascii

The b2a_base64() function now accepts an optional newline
keyword argument to control whether the newline character is
appended to the return value. (Contributed by Victor Stinner in bpo-
25357.)

cmath

The new cmath.tau (1) constant has been added. (Contributed by
Lisa Roach in bpo-12345, see PEP 628 for details.)

New constants: cmath.inf and cmath.nan to match math.inf
and math.nan, and also cmath.infj and cmath.nanj to match

the format used by complex repr. (Contributed by Mark Dickinson in
bpo-23229.)

collections

The new Collection abstract base class has been added to

represent sized iterable container classes. (Contributed by Ivan
Levkivskyi, docs by Neil Girdhar in bpo-27598.)

https://bugs.python.org/issue27456
https://bugs.python.org/issue28003
https://bugs.python.org/issue26081
https://bugs.python.org/issue28544
https://bugs.python.org/issue25357
https://bugs.python.org/issue12345
https://www.python.org/dev/peps/pep-0628
https://bugs.python.org/issue23229
https://bugs.python.org/issue27598

The new Reversible abstract base class represents iterable classes
that also provide the __reversed__ () method. (Contributed by Ivan
Levkivskyi in bpo-25987.)

The new AsyncGenerator abstract base class represents

asynchronous generators. (Contributed by Yury Selivanov in bpo-
28720.)

The namedtuple() function now accepts an optional keyword
argument module, which, when specified, is used for the __module_

attribute of the returned named tuple class. (Contributed by Raymond
Hettinger in bpo-17941.)

The verbose and rename arguments for namedtuple() are now
keyword-only. (Contributed by Raymond Hettinger in bpo-25628.)

Recursive collections.deque instances can now be pickled.
(Contributed by Serhiy Storchaka in bpo-26482.)

concurrent.futures

The ThreadPoolExecutor class constructor now accepts an

optional thread_name_prefix argument to make it possible to
customize the names of the threads created by the pool. (Contributed
by Gregory P. Smith in bpo-27664.)

contextlib

The contextlib.AbstractContextManager class has been
added to provide an abstract base class for context managers. It
provides a sensible default implementation for __ enter () which
returns self and leaves _ exit () an abstract method. A matching

https://bugs.python.org/issue25987
https://bugs.python.org/issue28720
https://bugs.python.org/issue17941
https://bugs.python.org/issue25628
https://bugs.python.org/issue26482
https://bugs.python.org/issue27664

class has been added to the typing module as
typing.ContextManager. (Contributed by Brett Cannon in bpo-
25609.)

datetime

The datetime and time classes have the new fold attribute used

to disambiguate local time when necessary. Many functions in the
datetime have been updated to support local time disambiguation.

See Local Time Disambiguation section for more information.
(Contributed by Alexander Belopolsky in bpo-24773.)

The datetime.strftime() and date.strftime() methods now
support ISO 8601 date directives %G, %u and %V. (Contributed by
Ashley Anderson in bpo-12006.)

The datetime.isoformat() function now accepts an optional
timespec argument that specifies the number of additional
components of the time value to include. (Contributed by Alessandro
Cucci and Alexander Belopolsky in bpo-19475.)

The datetime.combine() now accepts an optional tzinfo
argument. (Contributed by Alexander Belopolsky in bpo-27661.)

decimal

New Decimal.as_integer_ratio() method that returns a pair
(n, d) of integers that represent the given Decimal instance as a
fraction, in lowest terms and with a positive denominator:

>>> Decimal('-3.14").as_integer_ratio()
(-157, 50)

https://bugs.python.org/issue25609
https://bugs.python.org/issue24773
https://bugs.python.org/issue12006
https://bugs.python.org/issue19475
https://bugs.python.org/issue27661

(Contributed by Stefan Krah amd Mark Dickinson in bpo-25928.)

distutils

The default_format attribute has been removed from
distutils.command.sdist.sdist and the formats attribute
defaults to ['gztar']. Although not anticipated, any code relying on
the presence of default_format may need to be adapted. See
bpo-27819 for more details.

email

The new email API, enabled via the policy keyword to various
constructors, is no longer provisional. The email documentation has

been reorganized and rewritten to focus on the new API, while
retaining the old documentation for the legacy API. (Contributed by R.
David Murray in bpo-24277.)

The email.mime classes now all accept an optional policy keyword.
(Contributed by Berker Peksag in bpo-27331.)

The DecodedGenerator now supports the policy keyword.

There is a new policy attribute, message_factory, that controls
what class is used by default when the parser creates new message
objects. For the email.policy.compat32 policy this is Message,
for the new policies it is EmailMessage. (Contributed by R. David
Murray in bpo-20476.)

encodings

https://bugs.python.org/issue25928
https://bugs.python.org/issue27819
https://bugs.python.org/issue24277
https://bugs.python.org/issue27331
https://bugs.python.org/issue20476

On Windows, added the 'oem' encoding to use CP_OEMCP, and the
'ansi' alias for the existing 'mbcs' encoding, which uses the
CP_ACP code page. (Contributed by Steve Dower in bpo-27959.)

enum

Two new enumeration base classes have been added to the enum
module: Flag and IntFlags. Both are used to define constants that

can be combined using the bitwise operators. (Contributed by Ethan
Furman in bpo-23591.)

Many standard library modules have been updated to use the
IntFlags class for their constants.

The new enum.auto value can be used to assign values to enum
members automatically:

>>> from enum import Enum, auto
>>> class Color(Enum):

red = auto()

blue = auto()

green = auto()

>>> list(Color)

[<Color.red: 1>, <Color.blue: 2>, <Color.green: 3>]

faulthandler

On Windows, the faulthandler module now installs a handler for
Windows exceptions: see faulthandler.enable(). (Contributed
by Victor Stinner in bpo-23848.)

https://bugs.python.org/issue27959
https://bugs.python.org/issue23591
https://bugs.python.org/issue23848

fileinput

hook_encoded () now supports the errors argument. (Contributed by
Joseph Hackman in bpo-25788.)

hashlib

hashlib supports OpenSSL 1.1.0. The minimum recommend version
is 1.0.2. (Contributed by Christian Heimes in bpo-26470.)

BLAKE2 hash functions were added to the module. blake2b() and
blake2s() are always available and support the full feature set of

BLAKEZ2. (Contributed by Christian Heimes in bpo-26798 based on
code by Dmitry Chestnykh and Samuel Neves. Documentation written
by Dmitry Chestnykh.)

The SHA-3 hash functions sha3_224(), sha3_256(),
sha3_384(), sha3_512(), and SHAKE hash functions
shake_128() and shake_256() were added. (Contributed by
Christian Heimes in bpo-16113. Keccak Code Package by Guido

Bertoni, Joan Daemen, Michaél Peeters, Gilles Van Assche, and
Ronny Van Keer.)

The password-based key derivation function scrypt() is now

available with OpenSSL 1.1.0 and newer. (Contributed by Christian
Heimes in bpo-27928.)

http.client

HTTPConnection.request() and endheaders() both now
support chunked encoding request bodies. (Contributed by Demian

https://bugs.python.org/issue25788
https://bugs.python.org/issue26470
https://bugs.python.org/issue26798
https://bugs.python.org/issue16113
https://bugs.python.org/issue27928

Brecht and Rolf Krahl in bpo-12319.)

idlelib and IDLE

The idlelib package is being modernized and refactored to make IDLE
look and work better and to make the code easier to understand, test,
and improve. Part of making IDLE look better, especially on Linux and
Mac, is using ttk widgets, mostly in the dialogs. As a result, IDLE no
longer runs with tcl/tk 8.4. It now requires tcl/tk 8.5 or 8.6. We
recommend running the latest release of either.

‘Modernizing’ includes renaming and consolidation of idlelib modules.
The renaming of files with partial uppercase names is similar to the
renaming of, for instance, Tkinter and TkFont to tkinter and tkinter.font
in 3.0. As a result, imports of idlelib files that worked in 3.5 will usually
not work in 3.6. At least a module name change will be needed (see
idlelib/README.txt), sometimes more. (Name changes contributed by
Al Swiegart and Terry Reedy in bpo-24225. Most idlelib patches since
have been and will be part of the process.)

In compensation, the eventual result with be that some idlelib classes
will be easier to use, with better APIs and docstrings explaining them.
Additional useful information will be added to idlelib when available.

importlib

Import now raises the new exception ModuleNotFoundError
(subclass of ImportError) when it cannot find a module. Code that
current checks for ImportError (in try-except) will still work.
(Contributed by Eric Snow in bpo-15767.)

importlib.util.LazyLoader now calls create_module() on

https://bugs.python.org/issue12319
https://bugs.python.org/issue24225
https://bugs.python.org/issue15767

the wrapped loader, removing the restriction that
importlib.machinery.BuiltinImporter and
importlib.machinery.ExtensionFilelLoader couldn’t be used
with importlib.util.LazylLoader.

importlib.util.cache_from_source(),
importlib.util.source_from_cache(), and
importlib.util.spec_from_file_location() now accept a
path-like object.

Inspect

The inspect.signature() function now reports the implicit .0
parameters generated by the compiler for comprehension and
generator expression scopes as if they were positional-only
parameters called implicit®. (Contributed by Jelle Zijlstra in bpo-
19611.)

To reduce code churn when upgrading from Python 2.7 and the legacy
inspect.getargspec() APIl, the previously documented
deprecation of inspect.getfullargspec() has been reversed.
While this function is convenient for single/source Python 2/3 code
bases, the richer inspect.signature() interface remains the

recommended approach for new code. (Contributed by Nick Coghlan
in bpo-27172)

json
json.load() and json.loads() now support binary input.

Encoded JSON should be represented using either UTF-8, UTF-16, or
UTF-32. (Contributed by Serhiy Storchaka in bpo-17909.)

https://bugs.python.org/issue19611
https://bugs.python.org/issue27172
https://bugs.python.org/issue17909

logging

The new WatchedFileHandler.reopenIfNeeded() method has

been added to add the ability to check if the log file needs to be
reopened. (Contributed by Marian Horban in bpo-24884.)

math

The tau (1) constant has been added to the math and cmath
modules. (Contributed by Lisa Roach in bpo-12345, see PEP 628 for
details.)

multiprocessing

Proxy Objects returned by multiprocessing.Manager () can now
be nested. (Contributed by Davin Potts in bpo-6766.)

0S

See the summary of PEP 519 for details on how the os and os. path
modules now support path-like objects.

scandir () now supports bytes paths on Windows.

A new close() method allows explicitly closing a scandir()
iterator. The scandir () iterator now supports the context manager
protocol. If a scandir () iterator is neither exhausted nor explicitly
closed a ResourcewWarning will be emitted in its destructor.
(Contributed by Serhiy Storchaka in bpo-25994.)

On Linux, os.urandom() now blocks until the system urandom

https://bugs.python.org/issue24884
https://bugs.python.org/issue12345
https://www.python.org/dev/peps/pep-0628
https://bugs.python.org/issue6766
https://bugs.python.org/issue25994

entropy pool is initialized to increase the security. See the PEP 524 for
the rationale.

The Linux getrandom() syscall (get random bytes) is now exposed
as the new os.getrandom() function. (Contributed by Victor Stinner,
part of the PEP 524)

pathlib

pathlib now supports path-like objects. (Contributed by Brett
Cannon in bpo-27186.)

See the summary of PEP 519 for details.

pdb

The Pdb class constructor has a new optional readrc argument to
control whether . pdbrc files should be read.

pickle

Objects that need __new___ called with keyword arguments can now
be pickled using pickle protocols older than protocol version 4.
Protocol version 4 already supports this case. (Contributed by Serhiy
Storchaka in bpo-24164.)

pickletools

pickletools.dis() now outputs the implicit memo index for the
MEMOIZE opcode. (Contributed by Serhiy Storchaka in bpo-25382.)

https://www.python.org/dev/peps/pep-0524
https://www.python.org/dev/peps/pep-0524
https://bugs.python.org/issue27186
https://bugs.python.org/issue24164
https://bugs.python.org/issue25382

pydoc

The pydoc module has learned to respect the MANPAGER
environment variable. (Contributed by Matthias Klose in bpo-8637.)

help() and pydoc can now list named tuple fields in the order they

were defined rather than alphabetically. (Contributed by Raymond
Hettinger in bpo-24879.)

random

The new choices() function returns a list of elements of specified

size from the given population with optional weights. (Contributed by
Raymond Hettinger in bpo-18844.)

re

Added support of modifier spans in regular expressions. Examples:
"(?1:p)ython' matches 'python' and 'Python', but not
'"PYTHON'; '(?1)g(?-1:v)r' matches 'GvR' and 'gvr', but not
'GVR'. (Contributed by Serhiy Storchaka in bpo-433028.)

Match object groups can be accessed by __getitem__, which is
equivalent to group(). So mo['name'] is now equivalent to
mo.group("'name'). (Contributed by Eric Smith in bpo-24454.)

Match objects now support index-1like objects as group indices.
(Contributed by Jeroen Demeyer and Xiang Zhang in bpo-27177.)

readline

https://bugs.python.org/issue8637
https://bugs.python.org/issue24879
https://bugs.python.org/issue18844
https://bugs.python.org/issue433028
https://bugs.python.org/issue24454
https://bugs.python.org/issue27177

Added set_auto_history() to enable or disable automatic
addition of input to the history list. (Contributed by Tyler Crompton in
bpo-26870.)

rlcompleter
Private and special attribute names now are omitted unless the prefix
starts with underscores. A space or a colon is added after some

completed keywords. (Contributed by Serhiy Storchaka in bpo-25011
and bpo-25209.)

shlex
The shlex has much improved shell compatibility through the new

punctuation_chars argument to control which characters are treated as
punctuation. (Contributed by Vinay Sajip in bpo-1521950.)

site
When specifying paths to add to sys.path in a.pth file, you may now

specify file paths on top of directories (e.g. zip files). (Contributed by
Wolfgang Langner in bpo-26587).

sglite3

sgqlite3.Cursor.lastrowid now supports the REPLACE
statement. (Contributed by Alex LordThorsen in bpo-16864.)

socket

https://bugs.python.org/issue26870
https://bugs.python.org/issue25011
https://bugs.python.org/issue25209
https://bugs.python.org/issue1521950
https://bugs.python.org/issue26587
https://bugs.python.org/issue16864

The ioctl() function now supports the
SIO_LOOPBACK_FAST_PATH control code. (Contributed by Daniel
Stokes in bpo-26536.)

The getsockopt() constants SO_DOMAIN, SO_PROTOCOL,
SO_PEERSEC, and SO_PASSSEC are now supported. (Contributed by
Christian Heimes in bpo-26907.)

The setsockopt() now supports the setsockopt(level,
optname, None, optlen: int) form. (Contributed by Christian
Heimes in bpo-27744.)

The socket module now supports the address family AF_ALG to
interface with Linux Kernel crypto APl. ALG_*, SOL_ALG and
sendmsg_afalg() were added. (Contributed by Christian Heimes in
bpo-27744 with support from Victor Stinner.)

New Linux constants TCP_USER_TIMEOUT and TCP_CONGESTION
were added. (Contributed by Omar Sandoval, issue:26273).

socketserver

Servers based on the socketserver module, including those
defined in http.server, xmlrpc.server and
wsgiref.simple_server, now support the context manager
protocol. (Contributed by Aviv Palivoda in bpo-26404.)

The wfile attribute of StreamRequestHandler classes now
implements the i0.BufferedIOBase writable interface. In particular,
calling write() is now guaranteed to send the data in full.
(Contributed by Martin Panter in bpo-26721.)

https://bugs.python.org/issue26536
https://bugs.python.org/issue26907
https://bugs.python.org/issue27744
https://bugs.python.org/issue27744
https://bugs.python.org/issue26404
https://bugs.python.org/issue26721

ssl

ss1 supports OpenSSL 1.1.0. The minimum recommend version is
1.0.2. (Contributed by Christian Heimes in bpo-26470.)

3DES has been removed from the default cipher suites and ChaCha20
Poly1305 cipher suites have been added. (Contributed by Christian
Heimes in bpo-27850 and bpo-27766.)

SSLContext has better default configuration for options and ciphers.
(Contributed by Christian Heimes in bpo-28043.)

SSL session can be copied from one client-side connection to another
with the new SSLSession class. TLS session resumption can speed
up the initial handshake, reduce latency and improve performance
(Contributed by Christian Heimes in bpo-19500 based on a draft by
Alex Warhawk.)

The new get_ciphers() method can be used to get a list of
enabled ciphers in order of cipher priority.

All constants and flags have been converted to IntEnum and
IntFlags. (Contributed by Christian Heimes in bpo-28025.)

Server and client-side specific TLS protocols for SSLContext were
added. (Contributed by Christian Heimes in bpo-28085.)

statistics

A new harmonic_mean() function has been added. (Contributed by
Steven D’Aprano in bpo-27181.)

https://bugs.python.org/issue26470
https://bugs.python.org/issue27850
https://bugs.python.org/issue27766
https://bugs.python.org/issue28043
https://bugs.python.org/issue19500
https://bugs.python.org/issue28025
https://bugs.python.org/issue28085
https://bugs.python.org/issue27181

struct

struct now supports IEEE 754 half-precision floats via the 'e'

format specifier. (Contributed by Eli Stevens, Mark Dickinson in bpo-
11734.)

subprocess

subprocess.Popen destructor now emits a ResourceWarning
warning if the child process is still running. Use the context manager
protocol (with proc: ...) or explicitly call the wait() method to

read the exit status of the child process. (Contributed by Victor Stinner
in bpo-26741.)

The subprocess.Popen constructor and all functions that pass

arguments through to it now accept encoding and errors arguments.
Specifying either of these will enable text mode for the stdin, stdout
and stderr streams. (Contributed by Steve Dower in bpo-6135.)

Sys

The new getfilesystemencodeerrors() function returns the

name of the error mode used to convert between Unicode filenames
and bytes filenames. (Contributed by Steve Dower in bpo-27781.)

On Windows the return value of the getwindowsversion() function
now includes the platform_version field which contains the accurate
major version, minor version and build number of the current operating
system, rather than the version that is being emulated for the process
(Contributed by Steve Dower in bpo-27932.)

https://bugs.python.org/issue11734
https://bugs.python.org/issue26741
https://bugs.python.org/issue6135
https://bugs.python.org/issue27781
https://bugs.python.org/issue27932

telnetlib

Telnet is now a context manager (contributed by Stéphane Wirtel in
bpo-25485).

time

The struct_time attributes tm_gmtoff and tm_zone are now
available on all platforms.

timeit

The new Timer.autorange() convenience method has been
added to call Timer.timeit () repeatedly so that the total run time

is greater or equal to 200 milliseconds. (Contributed by Steven
D’Aprano in bpo-6422.)

timeit now warns when there is substantial (4x) variance between
best and worst times. (Contributed by Serhiy Storchaka in bpo-23552.)

tkinter

Added methods trace_add(), trace_remove() and
trace_info() in the tkinter.Variable class. They replace old
methods trace_variable(), trace(), trace_vdelete() and
trace_vinfo() that use obsolete Tcl commands and might not work

in future versions of Tcl. (Contributed by Serhiy Storchaka in bpo-
22115).

traceback

https://bugs.python.org/issue25485
https://bugs.python.org/issue6422
https://bugs.python.org/issue23552
https://bugs.python.org/issue22115

Both the traceback module and the interpreter’s builtin exception
display now abbreviate long sequences of repeated lines in tracebacks
as shown in the following example:

>>> def f(): f()
>>> ()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 1, in f
File "<stdin>", line 1, in f
File "<stdin>", line 1, in f
[Previous line repeated 995 more times]
RecursionError: maximum recursion depth exceeded

(Contributed by Emanuel Barry in bpo-26823.)

tracemalloc

The tracemalloc module now supports tracing memory allocations
in multiple different address spaces.

The new DomainFilter filter class has been added to filter block
traces by their address space (domain).

(Contributed by Victor Stinner in bpo-26588.)

typing

Since the typing module is provisional, all changes introduced in
Python 3.6 have also been backported to Python 3.5.x.

The typing module has a much improved support for generic type

https://bugs.python.org/issue26823
https://bugs.python.org/issue26588

aliases. For example Dict[str, Tuple[S, T]] is now a valid type
annotation. (Contributed by Guido van Rossum in Github #195.)

The typing.ContextManager class has been added for
representing contextlib.AbstractContextManager.
(Contributed by Brett Cannon in bpo-25609.)

The typing.Collection class has been added for representing
collections.abc.Collection. (Contributed by Ivan Levkivskyi in
bpo-27598.)

The typing.ClassVar type construct has been added to mark class

variables. As introduced in PEP 526, a variable annotation wrapped in
ClassVar indicates that a given attribute is intended to be used as a
class variable and should not be set on instances of that class.
(Contributed by Ivan Levkivskyi in Github #280.)

A new TYPE_CHECKING constant that is assumed to be True by the
static type chekers, but is False at runtime. (Contributed by Guido
van Rossum in Github #230.)

A new NewType() helper function has been added to create
lightweight distinct types for annotations:

from typing import NewType

UserId = NewType('UserId', int)
some_id = UserId(524313)

The static type checker will treat the new type as if it were a subclass
of the original type. (Contributed by Ivan Levkivskyi in Github #189.)

unicodedata

https://github.com/python/typing/pull/195
https://bugs.python.org/issue25609
https://bugs.python.org/issue27598
https://www.python.org/dev/peps/pep-0526
https://github.com/python/typing/issues/280
https://github.com/python/typing/issues/230
https://github.com/python/typing/issues/189

The unicodedata module now uses data from Unicode 9.0.0.
(Contributed by Benjamin Peterson.)

unittest.mock

The Mock class has the following improvements:

e Two new methods, Mock.assert_called() and
Mock.assert_called_once() to check if the mock object was

called. (Contributed by Amit Saha in bpo-26323.)
e The Mock.reset_mock() method now has two optional

keyword only arguments: return_value and side_effect.
(Contributed by Kushal Das in bpo-21271.)

urllib.request

If a HTTP request has a file or iterable body (other than a bytes object)
but no Content-Length header, rather than throwing an error,

AbstractHTTPHandler now falls back to use chunked transfer

encoding. (Contributed by Demian Brecht and Rolf Krahl in bpo-
12319.)

urllib.robotparser

RobotFileParser now supports the Crawl-delay and Request-
rate extensions. (Contributed by Nikolay Bogoychev in bpo-16099.)

venv

venv accepts a new parameter - -prompt. This parameter provides
an alternative prefix for the virtual environment. (Proposed by tukasz

http://unicode.org/versions/Unicode9.0.0/
https://bugs.python.org/issue26323
https://bugs.python.org/issue21271
https://bugs.python.org/issue12319
https://bugs.python.org/issue16099

Balcerzak and ported to 3.6 by Stéphane Wirtel in bpo-22829.)
warnings

A new optional source parameter has been added to the
warnings.warn_explicit() function: the destroyed object which
emitted a ResourceWarning. A source attribute has also been
added to warnings.WarningMessage (contributed by Victor Stinner
in bpo-26568 and bpo-26567).

When a ResourceWarning warning is logged, the tracemalloc

module is now used to try to retrieve the traceback where the
destroyed object was allocated.

Example with the script example.py:

import warnings

def func():

return open(_ file)
f = func()
f = None

Output of the command python3.6 -Wd -X tracemalloc=5
example.py:

example.py:7: ResourceWarning: unclosed file <_io.Te
f = None
Object allocated at (most recent call first):
File "example.py", lineno 4
return open(_ file)
File "example.py", lineno 6
f = func()
Kl — 1 i

https://bugs.python.org/issue22829
https://bugs.python.org/issue26568
https://bugs.python.org/issue26567

{] »]

The “Object allocated at” traceback is new and is only displayed if
tracemalloc is tracing Python memory allocations and if the

warnings module was already imported.

winreg

Added the 64-bit integer type REG_QWORD. (Contributed by Clement
Rouault in bpo-23026.)

winsound

Allowed keyword arguments to be passed to Beep, MessageBeep,
and PlaySound (bpo-27982).

xmlrpc.client

The xmlrpc.client module now supports unmarshalling additional

data types used by the Apache XML-RPC implementation for
numerics and None. (Contributed by Serhiy Storchaka in bpo-26885.)

zipfile

A new ZipInfo.from_file() class method allows making a
ZipInfo instance from a filesystem file. Anew ZipInfo.is_dir ()
method can be used to check if the ZipInfo instance represents a
directory. (Contributed by Thomas Kluyver in bpo-26039.)

The ZipFile.open() method can now be used to write data into a
ZIP file, as well as for extracting data. (Contributed by Thomas Kluyver

https://bugs.python.org/issue23026
https://bugs.python.org/issue27982
https://bugs.python.org/issue26885
https://bugs.python.org/issue26039

in bpo-26039.)
zlib

The compress() and decompress() functions now accept keyword
arguments. (Contributed by Aviv Palivoda in bpo-26243 and Xiang
Zhang in bpo-16764 respectively.)

https://bugs.python.org/issue26039
https://bugs.python.org/issue26243
https://bugs.python.org/issue16764

Optimizations

e The Python interpreter now uses a 16-bit wordcode instead of
bytecode which made a number of opcode optimizations possible.
(Contributed by Demur Rumed with input and reviews from Serhiy
Storchaka and Victor Stinner in bpo-26647 and bpo-28050.)

e The asyncio.Future class now has an optimized C
implementation. (Contributed by Yury Selivanov and INADA Naoki
in bpo-26081.)

e The asyncio.Task class now has an optimized C
implementation. (Contributed by Yury Selivanov in bpo-28544.)

e Various implementation improvements in the typing module
(such as caching of generic types) allow up to 30 times
performance improvements and reduced memory footprint.

e The ASCII decoder is now up to 60 times as fast for error
handlers surrogateescape, ignore and replace
(Contributed by Victor Stinner in bpo-24870).

e The ASCII and the Latinl encoders are now up to 3 times as fast
for the error handler surrogateescape (Contributed by Victor
Stinner in bpo-25227).

e The UTF-8 encoder is now up to 75 times as fast for error
handlers ignore, replace, surrogateescape,
surrogatepass (Contributed by Victor Stinner in bpo-25267).

e The UTF-8 decoder is now up to 15 times as fast for error
handlers ignore, replace and surrogateescape
(Contributed by Victor Stinner in bpo-25301).

e bytes % args is now up to 2 times faster. (Contributed by
Victor Stinner in bpo-25349).

e bytearray % args is now between 2.5 and 5 times faster.
(Contributed by Victor Stinner in bpo-25399).

e Optimize bytes.fromhex() and bytearray.fromhex():
they are now between 2x and 3.5x faster. (Contributed by Victor

https://bugs.python.org/issue26647
https://bugs.python.org/issue28050
https://bugs.python.org/issue26081
https://bugs.python.org/issue28544
https://bugs.python.org/issue24870
https://bugs.python.org/issue25227
https://bugs.python.org/issue25267
https://bugs.python.org/issue25301
https://bugs.python.org/issue25349
https://bugs.python.org/issue25399

Stinner in bpo-25401).

Optimize bytes.replace(b'', b'.") and
bytearray.replace(b'', b'."'"): up to 80% faster.
(Contributed by Josh Snider in bpo-26574).

Allocator functions of the PyMem_Malloc() domain
(PYMEM_DOMAIN_MEM) now use the pymalloc memory allocator
instead of malloc() function of the C library. The pymalloc
allocator is optimized for objects smaller or equal to 512 bytes
with a short lifetime, and use malloc() for larger memory
blocks. (Contributed by Victor Stinner in bpo-26249).
pickle.load() and pickle.loads() are now up to 10%
faster when deserializing many small objects (Contributed by
Victor Stinner in bpo-27056).

Passing keyword arguments to a function has an overhead in
comparison with passing positional arguments. Now in extension
functions implemented with using Argument Clinic this overhead
is significantly decreased. (Contributed by Serhiy Storchaka in
bpo-27574).

Optimized glob() and iglob() functions in the glob module;
they are now about 3-6 times faster. (Contributed by Serhiy
Storchaka in bpo-25596).

Optimized globbing in pathlib by using os.scandir(); it is
now about 1.5-4 times faster. (Contributed by Serhiy Storchaka in
bpo-26032).

xml.etree.ElementTree parsing, iteration and deepcopy
performance has been significantly improved. (Contributed by
Serhiy Storchaka in bpo-25638, bpo-25873, and bpo-25869.)
Creation of fractions.Fraction instances from floats and
decimals is now 2 to 3 times faster. (Contributed by Serhiy
Storchaka in bpo-25971.)

https://bugs.python.org/issue25401
https://bugs.python.org/issue26574
https://bugs.python.org/issue26249
https://bugs.python.org/issue27056
https://bugs.python.org/issue27574
https://bugs.python.org/issue25596
https://bugs.python.org/issue26032
https://bugs.python.org/issue25638
https://bugs.python.org/issue25873
https://bugs.python.org/issue25869
https://bugs.python.org/issue25971

Build and C API Changes

e Python now requires some C99 support in the toolchain to build.
Most notably, Python now uses standard integer types and
macros in place of custom macros like PY_LONG_LONG. For more
information, see PEP 7 and bpo-17884.

e Cross-compiling CPython with the Android NDK and the Android
APl level set to 21 (Android 5.0 Lollilop) or greater runs
successfully. While Android is not yet a supported platform, the
Python test suite runs on the Android emulator with only about 16
tests failures. See the Android meta-issue bpo-26865.

e The --enable-optimizations configure flag has been added.
Turning it on will activate expensive optimizations like PGO.
(Original patch by Alecsandru Patrascu of Intel in bpo-26359.)

e The GIL must now be held when allocator functions of
PYMEM_DOMAIN_OBJ (ex: PyObject_Malloc()) and
PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) domains are
called.

e New Py_FinalizeEx() API which indicates if flushing buffered
data failed. (Contributed by Martin Panter in bpo-5319.)

e PyArg_ParseTupleAndKeywords() now supports positional-
only parameters. Positional-only parameters are defined by empty
names. (Contributed by Serhiy Storchaka in bpo-26282).

e PyTraceback_Print method now abbreviates long sequences
of repeated lines as "[Previous line repeated {count}
more times]". (Contributed by Emanuel Barry in bpo-26823.)

e The new PyErr_SetImportErrorSubclass() function allows
for specifying a subclass of ImportError to raise. (Contributed
by Eric Snow in bpo-15767.)

e The new PyErr_ResourceWarning() function can be used to
generate a ResourceWarning providing the source of the
resource allocation. (Contributed by Victor Stinner in bpo-26567.)

https://www.python.org/dev/peps/pep-0007
https://bugs.python.org/issue17884
https://bugs.python.org/issue26865
https://bugs.python.org/issue26359
https://bugs.python.org/issue5319
https://bugs.python.org/issue26282
https://bugs.python.org/issue26823
https://bugs.python.org/issue15767
https://bugs.python.org/issue26567

e The new PyOS_FSPath() function returns the file system
representation of a path-like object. (Contributed by Brett Cannon
in bpo-27186.)

e The PyUnicode_FSConverter() and
PyUnicode_FSDecoder () functions will now accept path-like
objects.

https://bugs.python.org/issue27186

Other Improvements

e When --version (short form: -V) is supplied twice, Python
prints sys.version for detailed information.

$./python -wV

Python 3.6.0b4+ (3.6:223967b49e49+, Nov 21 2016,
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-80
gl 1 2

Deprecated
New Keywords

async and await are not recommended to be used as variable,
class, function or module names. Introduced by PEP 492 in Python
3.5, they will become proper keywords in Python 3.7. Starting in
Python 3.6, the use of async or await as names will generate a
DeprecationWarning.

Deprecated Python behavior

Raising the StopIteration exception inside a generator will now
generate a DeprecationWarning, and will trigger a
RuntimeError in Python 3.7. See PEP 479: Change Stoplteration
handling inside generators for details.

The __aiter__() method is now expected to return an
asynchronous iterator directly instead of returning an awaitable as
previously. Doing the former will trigger a DeprecationWarning.
Backward compatibility will be removed in Python 3.7. (Contributed by
Yury Selivanov in bpo-27243.)

A backslash-character pair that is not a valid escape sequence now
generates a DeprecationWarning. Although this will eventually
become a SyntaxError, that will not be for several Python releases.
(Contributed by Emanuel Barry in bpo-27364.)

When performing a relative import, falling back on __name__ and
__path__ from the «calling module when __spec__ or
__package__ are not defined now raises an ImportWarning.

https://www.python.org/dev/peps/pep-0492
https://bugs.python.org/issue27243
https://bugs.python.org/issue27364

(Contributed by Rose Ames in bpo-25791.)

Deprecated Python modules, functions and
methods

asynchat

The asynchat has been deprecated in favor of asyncio.
(Contributed by Mariatta in bpo-25002.)

asyncore

The asyncore has been deprecated in favor of asyncio.
(Contributed by Mariatta in bpo-25002.)

dbm

Unlike other dbm implementations, the dbm.dumb module creates
databases with the 'rw' mode and allows modifying the database
opened with the 'r' mode. This behavior is now deprecated and will
be removed in 3.8. (Contributed by Serhiy Storchaka in bpo-21708.)

distutils

The undocumented extra_path argument to the Distribution

constructor is now considered deprecated and will raise a warning if
set. Support for this parameter will be removed in a future Python
release. See bpo-27919 for details.

grp

The support of non-integer arguments in getgrgid() has been

https://bugs.python.org/issue25791
https://bugs.python.org/issue25002
https://bugs.python.org/issue25002
https://bugs.python.org/issue21708
https://bugs.python.org/issue27919

deprecated. (Contributed by Serhiy Storchaka in bpo-26129.)
importlib

The
importlib.machinery.SourceFileLoader.load_module()

and
importlib.machinery.SourcelessFilelLoader.load_module

methods are now deprecated. They were the only remaining
implementations of importlib.abc.Loader.load_module() in

importlib that had not been deprecated in previous versions of
Python in favour of importlib.abc.Loader.exec_module().

The importlib.machinery.WindowsRegistryFinder class is
now deprecated. As of 3.6.0, it is still added to sys.meta_path by
default (on Windows), but this may change in future releases.

0S

Undocumented support of general bytes-like objects as paths in os
functions, compile() and similar functions is now deprecated.
(Contributed by Serhiy Storchaka in bpo-25791 and bpo-26754.)

re

Support for inline flags (?letters) in the middle of the regular
expression has been deprecated and will be removed in a future
Python version. Flags at the start of a regular expression are still
allowed. (Contributed by Serhiy Storchaka in bpo-22493.)

ssl

https://bugs.python.org/issue26129
https://bugs.python.org/issue25791
https://bugs.python.org/issue26754
https://bugs.python.org/issue22493

OpenSSL 0.9.8, 1.0.0 and 1.0.1 are deprecated and no longer
supported. In the future the ss1 module will require at least OpenSSL

1.0.2 0r 1.1.0.

SSL-related arguments like certfile, keyfile and
check_hostname in ftplib, http.client, imaplib, poplib,
and smtplib have been deprecated in favor of context.
(Contributed by Christian Heimes in bpo-28022.)

A couple of protocols and functions of the ssl module are now

deprecated. Some features will no longer be available in future
versions of OpenSSL. Other features are deprecated in favor of a
different API. (Contributed by Christian Heimes in bpo-28022 and bpo-
26470.)

tkinter

The tkinter.tix module is now deprecated. tkinter users
should use tkinter . ttk instead.

venv

The pyvenv script has been deprecated in favour of python3 -m
venv. This prevents confusion as to what Python interpreter pyvenv

is connected to and thus what Python interpreter will be used by the
virtual environment. (Contributed by Brett Cannon in bpo-25154.)

Deprecated functions and types of the C API

Undocumented functions PyUnicode_AsEncodedObject(),
PyUnicode_AsDecodedObject(),

https://bugs.python.org/issue28022
https://bugs.python.org/issue28022
https://bugs.python.org/issue26470
https://bugs.python.org/issue25154

PyUnicode_AsEncodedUnicode() and
PyUnicode_AsDecodedUnicode() are deprecated now. Use the
generic codec based API instead.

Deprecated Build Options

The --with-system-ffi configure flag is now on by default on
non-macOS UNIX platforms. It may be disabled by using --
without-system-ffi, but using the flag is deprecated and will not
be accepted in Python 3.7. macOS is unaffected by this change. Note
that many OS distributors already use the --with-system-ffi flag
when building their system Python.

Removed

API| and Feature Removals

e Unknown escapes consisting of '\' and an ASCIl letter in

regular expressions will now cause an error. In replacement
templates for re.sub() they are still allowed, but deprecated.

The re.LOCALE flag can now only be used with binary patterns.

e inspect.getmoduleinfo() was removed (was deprecated
since CPython 3.3). inspect.getmodulename() should be
used for obtaining the module name for a given path. (Contributed
by Yury Selivanov in bpo-13248.)

e traceback.Ignore class and traceback.usage,
traceback.modname, traceback.fullmodname,
traceback.find_lines_from_code,
traceback.find_1lines, traceback.find_strings,
traceback.find_executable_lines methods were
removed from the traceback module. They were undocumented
methods deprecated since Python 3.2 and equivalent functionality
Is available from private methods.

e The tk_menuBar() and tk_bindForTraversal() dummy
methods in tkinter widget classes were removed
(corresponding Tk commands were obsolete since Tk 4.0).

e The open() method of the zipfile.ZipFile class no longer
supports the 'U' mode (was deprecated since Python 3.4). Use
i0.TextIOWrapper for reading compressed text files in

universal newlines mode.
e The undocumented IN, CDROM, DLFCN, TYPES, CDIO, and

STROPTS modules have been removed. They had been available
in the platform specific Lib/plat-*/ directories, but were
chronically out of date, inconsistently available across platforms,
and unmaintained. The script that created these modules is still

https://bugs.python.org/issue13248

available in the source distribution at Tools/scripts/h2py.py.
e The deprecated asynchat.fifo class has been removed.

https://github.com/python/cpython/tree/3.6/Tools/scripts/h2py.py

Porting to Python 3.6

This section lists previously described changes and other bugfixes that
may require changes to your code.

Changes in ‘python’ Command Behavior

e The output of a special Python build with defined
COUNT_ALLOCS, SHOW_ALLOC_COUNT or SHOW_TRACK_COUNT

macros is now off by default. It can be re-enabled using the -X
showalloccount option. It now outputs to stderr instead of
stdout. (Contributed by Serhiy Storchaka in bpo-23034.)

Changes in the Python API

e open() will no longer allow combining the 'U' mode flag with
'+'. (Contributed by Jeff Balogh and John O’Connor in bpo-
2091.)

e sglite3 no longer implicitly commits an open transaction before
DDL statements.

e On Linux, os.urandom() now blocks until the system urandom
entropy pool is initialized to increase the security.

e When importlib.abc.Loader.exec_module() is defined,
importlib.abc.Loader.create_module() must also be
defined.

e PyErr_SetImportError() now sets TypeError when its
msg argument is not set. Previously only NULL was returned.

https://bugs.python.org/issue23034
https://bugs.python.org/issue2091

e The format of the co_lnotab attribute of code objects changed
to support a negative line number delta. By default, Python does
not emit bytecode with a negative line number delta. Functions
using frame.f_lineno, PyFrame_GetLineNumber() or
PyCode_Addr2Line() are not affected. Functions directly
decoding co_lnotab should be updated to use a signed 8-bit
integer type for the line number delta, but this is only required to
support applications using a negative line number delta. See
Objects/lnotab_notes. txt for the co_lnotab format and

how to decode it, and see the PEP 511 for the rationale.

e The functions in the compileall module now return booleans
instead of 1 or @ to represent success or failure, respectively.

Thanks to booleans being a subclass of integers, this should only
be an issue if you were doing identity checks for 1 or 0. See bpo-
25768.

e Reading the port attribute of urllib.parse.urlsplit() and
urlparse() results now raises ValueError for out-of-range
values, rather than returning None. See bpo-20059.

e The imp module now raises a DeprecationWarning instead of
PendingDeprecationwWarning.

e The following modules have had missing APIs added to their
__all attributes to match the documented APIs: calendar,

cgi, csv, ElementTree, enum, fileinput, ftplib,
logging, mailbox, mimetypes, optparse, plistlib,
smtpd, subprocess, tarfile, threading and wave. This
means they will export new symbols when import * is used.
(Contributed by Joel Taddei and Jacek Kotodziej in bpo-23883.)

https://www.python.org/dev/peps/pep-0511
https://bugs.python.org/issue25768
https://bugs.python.org/issue20059
https://bugs.python.org/issue23883

e When performing a relative import, if __package__ does not
compare equal to __spec___.parent then ImportWarning is
raised. (Contributed by Brett Cannon in bpo-25791.)

e When a relative import is performed and no parent package is
known, then ImportError will be raised. Previously,
SystemError could be raised. (Contributed by Brett Cannon in
bpo-18018.)

e Servers based on the socketserver module, including those
defined in http.server, xmlrpc.server and
wsgiref.simple_server, now only catch exceptions derived
from Exception. Therefore if a request handler raises an
exception like SystemExit or KeyboardInterrupt,
handle_error () is no longer called, and the exception will stop

a single-threaded server. (Contributed by Martin Panter in bpo-
23430.)

e spwd.getspnam() now raises a PermissionError instead of
KeyError if the user doesn’t have privileges.

e The socket.socket.close() method now raises an
exception if an error (e.g. EBADF) was reported by the underlying
system call. (Contributed by Martin Panter in bpo-26685.)

e The decode data argument for the smtpd.SMTPChannel and
smtpd.SMTPServer constructors is now False by default. This
means that the argument passed to process_message() is
now a bytes object by default, and process_message() will be
passed keyword arguments. Code that has already been updated
in accordance with the deprecation warning generated by 3.5 will
not be affected.

https://bugs.python.org/issue25791
https://bugs.python.org/issue18018
https://bugs.python.org/issue23430
https://bugs.python.org/issue26685

e All optional arguments of the dump(), dumps(), load() and
loads() functions and JSONEncoder and JSONDecoder class
constructors in the json module are now keyword-only.
(Contributed by Serhiy Storchaka in bpo-18726.)

e Subclasses of type which don’t override type.__new__ may no
longer use the one-argument form to get the type of an object.

e As part of PEP 487, the handling of keyword arguments passed to
type (other than the metaclass hint, metaclass) is now
consistently delegated to object.__init_subclass__ ().
This means that type.__new_ () and type.__init_ ()
both now accept arbitrary keyword arguments, but
object.__init_subclass__ () (which is called from
type._new__()) wil reject them by default. Custom
metaclasses accepting additional keyword arguments will need to
adjust their calls to type.__new__ () (whether direct or via
super) accordingly.

e In distutils.command.sdist.sdist, the
default_format attribute has been removed and is no longer

honored. Instead, the gzipped tarfile format is the default on all
platforms and no platform-specific selection is made. In
environments where distributions are built on Windows and zip
distributions are required, configure the project with a setup.cfg
file containing the following:

[sdist]
formats=zip

This behavior has also been backported to earlier Python versions
by Setuptools 26.0.0.

https://bugs.python.org/issue18726
https://www.python.org/dev/peps/pep-0487

In the urllib.request module and the
http.client.HTTPConnection.request() method, if no

Content-Length header field has been specified and the request
body is a file object, it is now sent with HTTP 1.1 chunked
encoding. If a file object has to be sent to a HTTP 1.0 server, the
Content-Length value now has to be specified by the caller.
(Contributed by Demian Brecht and Rolf Krahl with tweaks from
Martin Panter in bpo-12319.)

The DictReader now returns rows of type OrderedDict.
(Contributed by Steve Holden in bpo-27842.)

The crypt.METHOD_CRYPT will no longer be added to
crypt.methods if unsupported by the platform. (Contributed by
Victor Stinner in bpo-25287.)

The verbose and rename arguments for namedtuple() are now
keyword-only. (Contributed by Raymond Hettinger in bpo-25628.)

On Linux, ctypes.util.find_library() now looks in
LD_LIBRARY_PATH for shared libraries. (Contributed by Vinay
Sajip in bpo-9998.)

The imaplib.IMAP4 class now handles flags containing the
"]' character in messages sent from the server to improve real-
world compatibility. (Contributed by Lita Cho in bpo-21815.)

The mmap.write() function now returns the number of bytes
written like other write methods. (Contributed by Jakub Stasiak in
bpo-26335.)

The pkgutil.iter_modules() and
pkgutil.walk_packages() functions now return

https://bugs.python.org/issue12319
https://bugs.python.org/issue27842
https://bugs.python.org/issue25287
https://bugs.python.org/issue25628
https://bugs.python.org/issue9998
https://bugs.python.org/issue21815
https://bugs.python.org/issue26335

ModuleInfo named tuples. (Contributed by Ramchandra Apte in
bpo-17211.)

e re.sub() now raises an error for invalid numerical group

references in replacement templates even if the pattern is not
found in the string. The error message for invalid group
references now includes the group index and the position of the
reference. (Contributed by SilentGhost, Serhiy Storchaka in bpo-
25953.)

e zipfile.ZipFile will now raise NotImplementedError for
unrecognized compression values. Previously a plain
RuntimeError was raised. Additionally, calling ZipFile
methods on a closed ZipFile or calling the write() method on a
ZipFile created with mode 'r' will raise a ValueError.
Previously, a RuntimeError was raised in those scenarios.

e when custom metaclasses are combined with zero-argument
super () or direct references from methods to the implicit
__class__ closure variable, the implicit __classcell _
namespace entry must now be passed up to type.__new__ for
initialisation. Failing to do so will result in a
DeprecationWarning in 3.6 and a RuntimewWarning in the
future.

Changes in the C API

e The PyMem_Malloc() allocator family now uses the pymalloc
allocator rather than the system malloc(). Applications calling
PyMem_Malloc() without holding the GIL can now crash. Set
the PYTHONMALLOC environment variable to debug to validate
the usage of memory allocators in your application. See bpo-

https://bugs.python.org/issue17211
https://bugs.python.org/issue25953
https://bugs.python.org/issue26249

26249.
e Py Exit() (and the main interpreter) now override the exit
status with 120 if flushing buffered data failed. See bpo-5319.

CPython bytecode changes

There have been several major changes to the bytecode in Python
3.6.

e The Python interpreter now uses a 16-bit wordcode instead of
bytecode. (Contributed by Demur Rumed with input and reviews
from Serhiy Storchaka and Victor Stinner in bpo-26647 and bpo-
28050.)

e The new FORMAT_VALUE and BUILD_STRING opcodes as part
of the formatted string literal implementation. (Contributed by Eric
Smith in bpo-25483 and Serhiy Storchaka in bpo-27078.)

e The new BUILD_CONST_KEY_MAP opcode to optimize the
creation of dictionaries with constant keys. (Contributed by Serhiy
Storchaka in bpo-27140.)

e The function call opcodes have been heavily reworked for better
performance and simpler implementation. The MAKE_FUNCTION,
CALL_FUNCTION, CALL_FUNCTION_KW and
BUILD_MAP_UNPACK_WITH_CALL opcodes have been modified,
the new CALL_FUNCTION_EX and
BUILD_TUPLE_UNPACK_WITH_CALL have been added, and
CALL_FUNCTION_VAR, CALL_FUNCTION_VAR_KW and
MAKE_CLOSURE opcodes have been removed. (Contributed by
Demur Rumed in bpo-27095, and Serhiy Storchaka in bpo-27213,
bpo-28257.)

e The new SETUP_ANNOTATIONS and STORE_ANNOTATION
opcodes have been added to support the new variable annotation
syntax. (Contributed by Ivan Levkivskyi in bpo-27985.)

https://bugs.python.org/issue5319
https://bugs.python.org/issue26647
https://bugs.python.org/issue28050
https://bugs.python.org/issue25483
https://bugs.python.org/issue27078
https://bugs.python.org/issue27140
https://bugs.python.org/issue27095
https://bugs.python.org/issue27213
https://bugs.python.org/issue28257
https://bugs.python.org/issue27985

Notable changes in Python 3.6.2

New make regen-all build target

To simplify cross-compilation, and to ensure that CPython can reliably
be compiled without requiring an existing version of Python to already
be available, the autotools-based build system no longer attempts to
implicitly recompile generated files based on file modification times.

Instead, a new make regen-all command has been added to force
regeneration of these files when desired (e.g. after an initial version of
Python has already been built based on the pregenerated versions).

More selective regeneration targets are also defined - see
Makefile.pre.in for details.

(Contributed by Victor Stinner in bpo-23404.)

New in version 3.6.2.

Removal of make touch build target

The make touch build target previously used to request implicit
regeneration of generated files by updating their modification times
has been removed.

It has been replaced by the new make regen-all target.
(Contributed by Victor Stinner in bpo-23404.)

Changed in version 3.6.2.

https://github.com/python/cpython/tree/3.6/Makefile.pre.in
https://bugs.python.org/issue23404
https://bugs.python.org/issue23404

@ Python » 3.6.3 Documentation » What's New in Python » previous | next | modules | index

© Copyright 2001-2017, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.
Last updated on Oct 03, 2017. Found a bug?

Created using Sphinx 1.6.3.

https://www.python.org/
https://www.python.org/psf/donations/
http://sphinx.pocoo.org/

@ Python » 3.6.3 Documentation » What's New in Python » previous | next | modules | index

https://www.python.org/

What's New In Python 3.5

Elvis Pranskevichus <elvis@magic.io>, Yury Selivanov

Editors: <yury@magic.io>

This article explains the new features in Python 3.5, compared to 3.4.
Python 3.5 was released on September 13, 2015. See the changelog
for a full list of changes.

See also: PEP 478 - Python 3.5 Release Schedule

mailto:elvis%40magic.io
mailto:yury%40magic.io
https://docs.python.org/3.5/whatsnew/changelog.html
https://www.python.org/dev/peps/pep-0478

Summary — Release highlights

New syntax features:

e PEP 492, coroutines with async and await syntax.
e PEP 465, a new matrix multiplication operator: a @ b.
e PEP 448, additional unpacking generalizations.

New library modules:

e typing: PEP 484 — Type Hints.
e zipapp: PEP 441 Improving Python ZIP Application Support.

New built-in features:

e bytes % args, bytearray % args: PEP 461 — Adding %
formatting to bytes and bytearray.

e New bytes.hex(), bytearray.hex() and
memoryview.hex() methods. (Contributed by Arnon Yaari in
bpo-9951.)

e memoryview now supports tuple indexing (including multi-
dimensional). (Contributed by Antoine Pitrou in bpo-23632.)

e Generators have a new gi_yieldfrom attribute, which returns
the object being iterated by yield from expressions.
(Contributed by Benno Leslie and Yury Selivanov in bpo-24450.)

e A new RecursionError exception is now raised when
maximum recursion depth is reached. (Contributed by Georg
Brandl in bpo-19235.)

CPython implementation improvements:

e When the LC_TYPE locale is the POSIX locale (C locale),
sys.stdin and sys.stdout now use the surrogateescape

https://bugs.python.org/issue9951
https://bugs.python.org/issue23632
https://bugs.python.org/issue24450
https://bugs.python.org/issue19235

error handler, instead of the strict error handler. (Contributed
by Victor Stinner in bpo-19977.)

.pyo files are no longer used and have been replaced by a more
flexible scheme that includes the optimization level explicitly in
.pyc name. (See PEP 488 overview.)

Builtin and extension modules are now initialized in a multi-phase
process, which is similar to how Python modules are loaded. (See
PEP 489 overview.)

Significant improvements in the standard library:

collections.OrderedDict is now implemented in C, which
makes it 4 to 100 times faster.
The ssl module gained support for Memory BIO, which

decouples SSL protocol handling from network 10.

The new os.scandir() function provides a better and
significantly faster way of directory traversal.
functools.lru_cache() has been mostly reimplemented in
C, yielding much better performance.

The new subprocess.run() function provides a streamlined

way to run subprocesses.
The traceback module has been significantly enhanced for

improved performance and developer convenience.

Security improvements:

SSLv3 is now disabled throughout the standard library. It can still
be enabled by instantiating a ss1.SSLContext manually. (See
bpo-22638 for more details; this change was backported to
CPython 3.4 and 2.7.)

HTTP cookie parsing is now stricter, in order to protect against
potential injection attacks. (Contributed by Antoine Pitrou in bpo-
22796.)

https://bugs.python.org/issue19977
https://bugs.python.org/issue22638
https://bugs.python.org/issue22796

Windows improvements:

e A new installer for Windows has replaced the old MSI. See Using
Python on Windows for more information.

e Windows builds now use Microsoft Visual C++ 14.0, and
extension modules should use the same.

Please read on for a comprehensive list of user-facing changes,
including many other smaller improvements, CPython optimizations,
deprecations, and potential porting issues.

New Features

PEP 492 - Coroutines with async and await syntax

PEP 492 greatly improves support for asynchronous programming in
Python by adding awaitable objects, coroutine functions,
asynchronous iteration, and asynchronous context managers.

Coroutine functions are declared using the new async def syntax:

>>> async def coro():
return 'spam'

Inside a coroutine function, the new await expression can be used to
suspend coroutine execution until the result is available. Any object
can be awaited, as long as it implements the awaitable protocol by
defining the __await__ () method.

PEP 492 also adds async for statement for convenient iteration
over asynchronous iterables.

An example of a rudimentary HTTP client written using the new
syntax:

import asyncio

async def http_get(domain):
reader, writer = await asyncio.open_connection(c

writer.write(b'\r\n'.join([
b'GET / HTTP/1.1"',
b'Host: %b' % domain.encode('latin-1'),
b'Connection: close’,
b", b!l

https://www.python.org/dev/peps/pep-0492

1))

async for line in reader:
print('>>>"', line)

writer.close()

loop = asyncio.get_event_loop()
try:
loop.run_until_complete(http_get('example.com'))
finally:
loop.close()
A e o

Similarly to asynchronous iteration, there is a new syntax for
asynchronous context managers. The following script:

import asyncio

async def coro(name, lock):
print('coro {}: waiting for lock'.format(name))
async with lock:
print('coro {}: holding the lock'.format(nan
await asyncio.sleep(1)
print('coro {}: releasing the lock'.format(n

loop asyncio.get_event_loop()
lock = asyncio.Lock()
coros = asyncio.gather(coro(1, lock), coro(2, lock))
try:
loop.run_until_complete(coros)
finally:
loop.close()
Rl] 2

will output:

coro 2: waiting for lock
coro 2: holding the lock
coro 1: waiting for lock
coro 2: releasing the lock
coro 1: holding the lock
coro 1: releasing the lock

Note that both async for and async with can only be used inside
a coroutine function declared with async def.

Coroutine functions are intended to be run inside a compatible event
loop, such as the asyncio loop.

Note:

Changed in version 3.5.2: Starting with CPython 3.5.2, __aiter___
can directly return asynchronous iterators. Returning an awaitable
object will result in a PendingDeprecationWarning.

See more details in the Asynchronous Iterators documentation
section.

See also:

PEP 492 - Coroutines with async and await syntax
PEP written and implemented by Yury Selivanov.

PEP 465 - A dedicated infix operator for matrix
multiplication

PEP 465 adds the @ infix operator for matrix multiplication. Currently,
no builtin Python types implement the new operator, however, it can be

https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0465

implemented by defining _ _matmul__ (), __rmatmul__ (), and
__imatmul__ () for reqgular, reflected, and in-place matrix
multiplication. The semantics of these methods is similar to that of
methods defining other infix arithmetic operators.

Matrix multiplication is a notably common operation in many fields of
mathematics, science, engineering, and the addition of @ allows
writing cleaner code:

S=(H@beta - r). T @ inv(H @ V@ H.T) @ (H @ beta
Rl 1 2

instead of:

S = dot((dot(H, beta) - r).T,
dot(inv(dot(dot(H, V), H.T)), dot(H, beta) -
Rl _ 1 i

NumPy 1.10 has support for the new operator:

>>> import numpy

>>> X = numpy.ones(3)
>>> X

array([1., 1., 1.])

>>> m = numpy.eye(3)

>>>

array([[1., 0., 0.],
[0'/ 1'/ O]/
[0., 0., 1.1])

>>> X @ m

array([1., 1., 1.])

See also:

PEP 465 - A dedicated infix operator for matrix multiplication
PEP written by Nathaniel J. Smith; implemented by Benjamin
Peterson.

PEP 448 - Additional Unpacking Generalizations

PEP 448 extends the allowed uses of the * iterable unpacking
operator and ** dictionary unpacking operator. It is now possible to
use an arbitrary number of unpackings in function calls:

>>> print(*[1], *[2], 3, *[4, 5])
12345

>>> def fn(a, b, c, d):
print(a, b, c, d)

>>> fn(**{'a': 1, 'c': 3}, **{'b': 2, 'd': 4})
12 34

Similarly, tuple, list, set, and dictionary displays allow multiple
unpackings (see Expression lists and Dictionary displays):

>>> *range(4), 4
(0, 1, 2, 3, 4)

>>> [*range(4), 4]
[0, 1, 2, 3, 4]

>>> {*range(4), 4, *(5, 6, 7)}
{6, 1, 2, 3, 4, 5, 6, 7}

https://www.python.org/dev/peps/pep-0465
https://www.python.org/dev/peps/pep-0448

>>> {lxl: 1’ **{lyl: 2}}
{'x': 1, 'y': 2}

See also:

PEP 448 - Additional Unpacking Generalizations
PEP written by Joshua Landau; implemented by Neil Girdhar,
Thomas Wouters, and Joshua Landau.

PEP 461 - percent formatting support for bytes
and bytearray

PEP 461 adds support for the % interpolation operator to bytes and
bytearray.

While interpolation is usually thought of as a string operation, there are
cases where interpolation on bytes or bytearrays makes sense,

and the work needed to make up for this missing functionality detracts
from the overall readability of the code. This issue is particularly
important when dealing with wire format protocols, which are often a
mixture of binary and ASCII compatible text.

Examples:

>>> b'Hello %b!' % b'World'
b'Hello world!'

>>> b'x=%1i y=%f"' % (1, 2.5)
b'x=1 y=2.500000'

Unicode is not allowed for %b, but it is accepted by %a (equivalent of
repr(obj).encode('ascii', 'backslashreplace')):

https://www.python.org/dev/peps/pep-0448
https://www.python.org/dev/peps/pep-0461

>>> p'Hello %b!'"' % 'World'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: %b requires bytes, or an object that impl

>>> pb'price: %a' % '10€'
b"price: '10\\u20ac'"
1 1 i

Note that %s and %r conversion types, although supported, should
only be used in codebases that need compatibility with Python 2.

See also:

PEP 461 - Adding % formatting to bytes and bytearray
PEP written by Ethan Furman; implemented by Neil
Schemenauer and Ethan Furman.

PEP 484 - Type Hints

Function annotation syntax has been a Python feature since version
3.0 (PEP 3107), however the semantics of annotations has been left
undefined.

Experience has shown that the majority of function annotation uses
were to provide type hints to function parameters and return values. It
became evident that it would be beneficial for Python users, if the
standard library included the base definitions and tools for type
annotations.

PEP 484 introduces a provisional module to provide these standard
definitions and tools, along with some conventions for situations where
annotations are not available.

https://www.python.org/dev/peps/pep-0461
https://www.python.org/dev/peps/pep-3107
https://www.python.org/dev/peps/pep-0484

For example, here is a simple function whose argument and return
type are declared in the annotations:

def greeting(name: str) -> str:
return 'Hello ' + name

While these annotations are available at runtime through the usual
__annotations___ attribute, no automatic type checking happens at
runtime. Instead, it is assumed that a separate off-line type checker
(e.g. mypy) will be used for on-demand source code analysis.

The type system supports unions, generic types, and a special type
named Any which is consistent with (i.e. assignable to and from) all

types.

See also:

e typing module documentation

e PEP 484 - Type Hints
PEP written by Guido van Rossum, Jukka Lehtosalo, and
t ukasz Langa; implemented by Guido van Rossum.

e PEP 483 - The Theory of Type Hints
PEP written by Guido van Rossum

PEP 471 - os.scandir() function — a better and
faster directory iterator

PEP 471 adds a new directory iteration function, os.scandir (), to
the standard library. Additionally, os.walk() is now implemented
using scandir, which makes it 3 to 5 times faster on POSIX systems
and 7 to 20 times faster on Windows systems. This is largely achieved

http://mypy-lang.org
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0483
https://www.python.org/dev/peps/pep-0471

by greatly reducing the number of calls to os.stat() required to
walk a directory tree.

Additionally, scandir returns an iterator, as opposed to returning a
list of file names, which improves memory efficiency when iterating
over very large directories.

The following example shows a simple use of os.scandir() to
display all the files (excluding directories) in the given path that don’t
start with '."'. The entry.is_file() call will generally not make
an additional system call:

for entry in os.scandir(path):
if not entry.name.startswith('.') and entry.is_f
print(entry.name)

j — o

See also:

PEP 471 - os.scandir() function — a better and faster directory
iterator

PEP written and implemented by Ben Hoyt with the help of Victor
Stinner.

PEP 475: Retry system calls failing with EINTR

An errno.EINTR error code is returned whenever a system call, that

is waiting for 1/O, is interrupted by a signal. Previously, Python would
raise InterruptedError in such cases. This meant that, when

writing a Python application, the developer had two choices:

1. Ignore the InterruptedError.
2. Handle the InterruptedError and attempt to restart the

https://www.python.org/dev/peps/pep-0471

interrupted system call at every call site.

The first option makes an application fail intermittently. The second
option adds a large amount of boilerplate that makes the code nearly
unreadable. Compare:

print("Hello World")

and:

while True:
try:
print("Hello World")
break
except InterruptedError:
continue

PEP 475 implements automatic retry of system calls on EINTR. This
removes the burden of dealing with EINTR or InterruptedError in
user code in most situations and makes Python programs, including
the standard library, more robust. Note that the system call is only
retried if the signal handler does not raise an exception.

Below is a list of functions which are now retried when interrupted by a
signal:

e open() and io.open();
e functions of the faulthandler module;

e 0S functions: fchdir (), fchmod (), fchown(),
fdatasync(), fstat(), fstatvfs(), fsync(),
ftruncate(), mkfifo(), mknod(), open(),
posix_fadvise(), posix_fallocate(), pread(),

pwrite(), read(), readv(), sendfile(), wait3(),
wait4(), wait(), waitid(), waitpid(), write(),

https://www.python.org/dev/peps/pep-0475

writev();

e special cases: os.close() and os.dup2() now ignore EINTR
errors; the syscall is not retried (see the PEP for the rationale);

e select functions: devpoll.poll(), epoll.poll(),
kqueue.control(), poll.poll(), select();

e methods of the socket class: accept(), connect() (except
for non-blocking sockets), recv(), recvfrom(), recvmsg(),
send(), sendall(), sendmsg(), sendto();

e signal.sigtimedwait() and signal.sigwaitinfo();

e time.sleep().

See also:

PEP 475 - Retry system calls failing with EINTR
PEP and implementation written by Charles-Francois Natali and
Victor Stinner, with the help of Antoine Pitrou (the French
connection).

PEP 479: Change Stoplteration handling inside
generators

The interaction of generators and StopIteration in Python 3.4 and
earlier was sometimes surprising, and could conceal obscure bugs.
Previously, StopIteration raised accidentally inside a generator

function was interpreted as the end of the iteration by the loop
construct driving the generator.

PEP 479 changes the behavior of generators: when a
StopIteration exception is raised inside a generator, it is replaced
with a RuntimeError before it exits the generator frame. The main
goal of this change is to ease debugging in the situation where an
unguarded next() call raises StopIteration and causes the

https://www.python.org/dev/peps/pep-0475
https://www.python.org/dev/peps/pep-0479

iteration controlled by the generator to terminate silently. This is
particularly pernicious in combination with the yield from construct.

This is a backwards incompatible change, so to enable the new
behavior, a _ future__ import is necessary:

>>> from __ future__ import generator_stop

>>> def gen():
next(iter([]))
yield

>>> next(gen())

Traceback (most recent call last):
File "<stdin>", line 2, in gen

StopIteration

The above exception was the direct cause of the foll

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: generator raised StopIteration
« 1]

Without a ___future__ import, a PendingDeprecationWarning
will be raised whenever a StopIteration exception is raised inside
a generator.

See also:

PEP 479 - Change Stoplteration handling inside generators
PEP written by Chris Angelico and Guido van Rossum.
Implemented by Chris Angelico, Yury Selivanov and Nick
Coghlan.

https://www.python.org/dev/peps/pep-0479

PEP 485: A function for testing approximate
equality

PEP 485 adds the math.isclose() and cmath.isclose()

functions which tell whether two values are approximately equal or
“close” to each other. Whether or not two values are considered close
is determined according to given absolute and relative tolerances.
Relative tolerance is the maximum allowed difference between
isclose arguments, relative to the larger absolute value:

>>> import math

>>> a = 5.0

>>> b = 4.99998

>>> math.isclose(a, b, rel_tol=1le-5)
True

>>> math.isclose(a, b, rel_tol=1e-6)
False

It is also possible to compare two values using absolute tolerance,
which must be a non-negative value:

>>> import math

>>> a = 5.0

>>> b = 4.99998

>>> math.isclose(a, b, abs_tol=0.00003)
True

>>> math.isclose(a, b, abs_tol=0.00001)
False

See also:

PEP 485 - A function for testing approximate equality
PEP written by Christopher Barker; implemented by Chris Barker

https://www.python.org/dev/peps/pep-0485
https://www.python.org/dev/peps/pep-0485

and Tal Einat.

PEP 486: Make the Python Launcher aware of
virtual environments

PEP 486 makes the Windows launcher (see PEP 397) aware of an
active virtual environment. When the default interpreter would be used
and the VIRTUAL_ENV environment variable is set, the interpreter in

the virtual environment will be used.

See also:

PEP 486 — Make the Python Launcher aware of virtual
environments

PEP written and implemented by Paul Moore.

PEP 488: Elimination of PYO files

PEP 488 does away with the concept of .pyo files. This means that
.pyc files represent both unoptimized and optimized bytecode. To
prevent the need to constantly regenerate bytecode files, .pyc files
now have an optional opt- tag in their name when the bytecode is
optimized. This has the side-effect of no more bytecode file name
clashes when running under either -0 or -00. Consequently,

bytecode files generated from -0, and -00 may now exist
simultaneously. importlib.util.cache_from_source() has an
updated API to help with this change.

See also:

PEP 488 - Elimination of PYO files

https://www.python.org/dev/peps/pep-0486
https://www.python.org/dev/peps/pep-0397
https://www.python.org/dev/peps/pep-0486
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488

PEP written and implemented by Brett Cannon.

PEP 489: Multi-phase extension module
Initialization

PEP 489 updates extension module initialization to take advantage of
the two step module loading mechanism introduced by PEP 451 in
Python 3.4.

This change brings the import semantics of extension modules that
opt-in to using the new mechanism much closer to those of Python
source and bytecode modules, including the ability to use any valid
identifier as a module name, rather than being restricted to ASCII.

See also:

PEP 489 - Multi-phase extension module initialization
PEP written by Petr Viktorin, Stefan Behnel, and Nick Coghlan;
implemented by Petr Viktorin.

https://www.python.org/dev/peps/pep-0489
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0489

Other Language Changes

Some smaller changes made to the core Python language are:

Added the "namereplace" error handlers. The
"backslashreplace" error handlers now work with decoding
and translating. (Contributed by Serhiy Storchaka in bpo-19676
and bpo-22286.)

The -b option now affects comparisons of bytes with int.
(Contributed by Serhiy Storchaka in bpo-23681.)

New Kazakh kz1048 and Tajik koi8_t codecs. (Contributed by
Serhiy Storchaka in bpo-22682 and bpo-22681.)

Property docstrings are now writable. This is especially useful for
collections.namedtuple() docstrings. (Contributed by
Berker Peksag in bpo-24064.)

Circular imports involving relative imports are now supported.
(Contributed by Brett Cannon and Antoine Pitrou in bpo-17636.)

https://bugs.python.org/issue19676
https://bugs.python.org/issue22286
https://bugs.python.org/issue23681
https://bugs.python.org/issue22682
https://bugs.python.org/issue22681
https://bugs.python.org/issue24064
https://bugs.python.org/issue17636

New Modules
typing

The new typing provisional module provides standard definitions

and tools for function type annotations. See Type Hints for more
information.

zipapp

The new zipapp module (specified in PEP 441) provides an API and
command line tool for creating executable Python Zip Applications,
which were introduced in Python 2.6 in bpo-1739468, but which were
not well publicized, either at the time or since.

With the new module, bundling your application is as simple as putting
all the files, including a __main___.py file, into a directory myapp and
running:

$ python -m zipapp myapp
$ python myapp.pyz

The module implementation has been contributed by Paul Moore in
bpo-23491.

See also: PEP 441 — Improving Python ZIP Application Support

https://www.python.org/dev/peps/pep-0441
https://bugs.python.org/issue1739468
https://bugs.python.org/issue23491
https://www.python.org/dev/peps/pep-0441

Improved Modules

argparse

The ArgumentParser class now allows disabling abbreviated usage
of long options by setting allow abbrev to False. (Contributed by
Jonathan Paugh, Steven Bethard, paul j3 and Daniel Eriksson in bpo-
14910.)

asyncio

Since the asyncio module is provisional, all changes introduced in
Python 3.5 have also been backported to Python 3.4.x.

Notable changes in the asyncio module since Python 3.4.0:

New debugging APIs: loop.set_debug() and
loop.get_debug() methods. (Contributed by Victor Stinner.)
The proactor event loop now supports SSL. (Contributed by
Antoine Pitrou and Victor Stinner in bpo-22560.)

A new loop.is_closed() method to check if the event loop is
closed. (Contributed by Victor Stinner in bpo-21326.)

A new loop.create_task() to conveniently create and
schedule a new Task for a coroutine. The create_task method
is also used by all asyncio functions that wrap coroutines into
tasks, such as asyncio.wait(), asyncio.gather (), etc.

(Contributed by Victor Stinner.)
A new transport.get_write_buffer_limits() method to

inquire for high- and low- water limits of the flow control.
(Contributed by Victor Stinner.)
The async() function is deprecated in favor of

ensure_future(). (Contributed by Yury Selivanov.)

https://bugs.python.org/issue14910
https://bugs.python.org/issue22560
https://bugs.python.org/issue21326

e New loop.set_task_factory() and
loop.get_task_factory() methods to customize the task
factory that loop.create_task() method uses. (Contributed
by Yury Selivanov.)

e New Queue.join() and Queue.task_done() queue
methods. (Contributed by Victor Stinner.)

e The JoinableQueue class was removed, in favor of the
asyncio.Queue class. (Contributed by Victor Stinner.)

Updates in 3.5.1:

e The ensure_future() function and all functions that use it,
such as loop.run_until_complete(), now accept all kinds
of awaitable objects. (Contributed by Yury Selivanov.)

e New run_coroutine_threadsafe() function to submit
coroutines to event loops from other threads. (Contributed by
Vincent Michel.)

e New Transport.is_closing() method to check if the
transport is closing or closed. (Contributed by Yury Selivanov.)

e The loop.create_server () method can now accept a list of
hosts. (Contributed by Yann Sionneau.)

Updates in 3.5.2:

e New loop.create_future() method to create Future objects.
This allows alternative event loop implementations, such as
uvloop, to provide a faster asyncio.Future implementation.
(Contributed by Yury Selivanov.)

e New loop.get_exception_handler() method to get the
current exception handler. (Contributed by Yury Selivanov.)

e New StreamReader.readuntil() method to read data from
the stream until a separator bytes sequence appears.
(Contributed by Mark Korenberg.)

e The loop.create_connection() and

https://github.com/MagicStack/uvloop

loop.create_server() methods are optimized to avoid
calling the system getaddrinfo function if the address is
already resolved. (Contributed by A. Jesse Jiryu Davis.)

e The loop.sock_connect(sock, address) no longer

requires the address to be resolved prior to the call. (Contributed
by A. Jesse Jiryu Davis.)

bz2

The BZzZ2Decompressor.decompress method now accepts an
optional max_length argument to limit the maximum size of
decompressed data. (Contributed by Nikolaus Rath in bpo-15955.)

ofo]

The FieldStorage class now supports the context manager
protocol. (Contributed by Berker Peksag in bpo-20289.)

cmath

A new function isclose() provides a way to test for approximate
equality. (Contributed by Chris Barker and Tal Einat in bpo-24270.)

code

The Interactivelnterpreter.showtraceback() method now

prints the full chained traceback, just like the interactive interpreter.
(Contributed by Claudiu Popa in bpo-17442.)

collections

https://bugs.python.org/issue15955
https://bugs.python.org/issue20289
https://bugs.python.org/issue24270
https://bugs.python.org/issue17442

The OrderedDict class is now implemented in C, which makes it 4
to 100 times faster. (Contributed by Eric Snow in bpo-16991.)

OrderedDict.items(), OrderedDict.keys(),
OrderedDict.values() views now support reversed() iteration.
(Contributed by Serhiy Storchaka in bpo-19505.)

The deque class now defines index(), insert(), and copy(),
and supports the + and * operators. This allows deques to be
recognized as a MutableSequence and improves their

substitutability for lists. (Contributed by Raymond Hettinger in bpo-
23704.)

Docstrings produced by namedtuple() can now be updated:

Point = namedtuple('Point', ['x', 'y'])
Point._ doc__ += ': Cartesian coodinate'
Point.x. doc_ 'abscissa'
Point.y._ doc_ 'ordinate'

(Contributed by Berker Peksag in bpo-24064.)

The UserString class now implements the __getnewargs__ (),
__rmod__ (), casefold(), format_map(), isprintable(), and
maketrans() methods to match the corresponding methods of str.
(Contributed by Joe Jevnik in bpo-22189.)

collections.abc

The Sequence.index() method now accepts start and stop
arguments to match the corresponding methods of tuple, 1ist, etc.
(Contributed by Devin Jeanpierre in bpo-23086.)

https://bugs.python.org/issue16991
https://bugs.python.org/issue19505
https://bugs.python.org/issue23704
https://bugs.python.org/issue24064
https://bugs.python.org/issue22189
https://bugs.python.org/issue23086

Anew Generator abstract base class. (Contributed by Stefan Behnel
in bpo-24018.)

New Awaitable, Coroutine, AsyncIterator, and
AsyncIterable abstract base classes. (Contributed by Yury
Selivanov in bpo-24184.)

For earlier Python versions, a backport of the new ABCs is available in
an external PyPI package.

compileall

A new compileall option, -j N, allows running N workers
simultaneously to perform parallel bytecode compilation. The
compile_dir () function has a corresponding workers parameter.
(Contributed by Claudiu Popa in bpo-16104.)

Another new option, -r, allows controlling the maximum recursion
level for subdirectories. (Contributed by Claudiu Popa in bpo-19628.)

The -q command line option can now be specified more than once, in
which case all output, including errors, will be suppressed. The
corresponding guiet parameter in compile_dir(),
compile_file(), and compile_path() can now accept an
integer value indicating the level of output suppression. (Contributed
by Thomas Kluyver in bpo-21338.)

concurrent.futures

The Executor.map() method now accepts a chunksize argument to

allow batching of tasks to improve performance when
ProcessPoolExecutor () is used. (Contributed by Dan O'Reilly in

https://bugs.python.org/issue24018
https://bugs.python.org/issue24184
https://pypi.python.org/pypi/backports_abc
https://bugs.python.org/issue16104
https://bugs.python.org/issue19628
https://bugs.python.org/issue21338

bpo-11271.)

The number of workers in the ThreadPoolExecutor constructor is

optional now. The default value is 5 times the number of CPUs.
(Contributed by Claudiu Popa in bpo-21527.)

configparser

configparser now provides a way to customize the conversion of
values by specifying a dictionary of converters in the ConfigParser
constructor, or by defining them as methods in ConfigParser

subclasses. Converters defined in a parser instance are inherited by
its section proxies.

Example:

>>> import configparser
>>> conv = {}
>>> conv['list'] = lambda v: [e.strip() for e in v.s
>>> cfg = configparser.ConfigParser(converters=conv)
>>> cfg.read_string("""
.. [s]
. list =abcdefg
L. llllll)
>>> cfg.get('s', 'list')
'abcdefqg'
>>> cfg.getlist('s', 'list')
[Iall 'b', 'C', 'd', |e|’ 'f', |g|]
>>> section = cfg['s']
>>> section.getlist('list')
[Iall 'b', 'C', 'd', |e|’ 'f', |g|]
Rl — 1 i

(Contributed by tukasz Langa in bpo-18159.)

https://bugs.python.org/issue11271
https://bugs.python.org/issue21527
https://bugs.python.org/issue18159

contextlib

The new redirect_stderr() context manager (similar to

redirect_stdout()) makes it easier for utility scripts to handle

inflexible APIs that write their output to sys.stderr and don't

provide any options to redirect it:

>>> import contextlib, io, logging

>>> f = 10.StringIO()

>>> with contextlib.redirect_stderr(f):
logging.warning('warning')

>>> f.getvalue()
'"WARNING: root:warning\n'

(Contributed by Berker Peksag in bpo-22389.)

CSV

The writerow() method now supports arbitrary iterables, not just
sequences. (Contributed by Serhiy Storchaka in bpo-23171.)

curses

The new update_lines_cols() function updates the LINES and
COLS environment variables. This is useful for detecting manual
screen resizing. (Contributed by Arnon Yaari in bpo-4254.)

dbm

dumb.open always creates a new database when the flag has the

https://bugs.python.org/issue22389
https://bugs.python.org/issue23171
https://bugs.python.org/issue4254

value "n". (Contributed by Claudiu Popa in bpo-18039.)

difflib

The charset of HTML documents generated by
HtmlDiff.make_file() can now be customized by using a new

charset keyword-only argument. The default charset of HTML
document changed from "IS0-8859-1" to "utf-8". (Contributed
by Berker Peksag in bpo-2052.)

The diff_bytes() function can now compare lists of byte strings.

This fixes a regression from Python 2. (Contributed by Terry J. Reedy
and Greg Ward in bpo-17445.)

distutils

Both the build and build_ext commands now accept a -j option

to enable parallel building of extension modules. (Contributed by
Antoine Pitrou in bpo-5309.)

The distutils module now supports Xz compression, and can be
enabled by passing xztar as an argument to bdist --format.
(Contributed by Serhiy Storchaka in bpo-16314.)

doctest

The DocTestSuite() function returns an empty
unittest.TestSuite if module contains no docstrings, instead of
raising ValueError. (Contributed by Glenn Jones in bpo-15916.)

email

https://bugs.python.org/issue18039
https://bugs.python.org/issue2052
https://bugs.python.org/issue17445
https://bugs.python.org/issue5309
https://bugs.python.org/issue16314
https://bugs.python.org/issue15916

A new policy option Policy.mangle_from_ controls whether or not
lines that start with "From " in email bodies are prefixed with a ">"
character by generators. The default is True for compat32 and
False for all other policies. (Contributed by Milan Oberkirch in bpo-
20098.)

A new Message.get_content_disposition() method provides

easy access to a canonical value for the Content-Disposition header.
(Contributed by Abhilash Raj in bpo-21083.)

A new policy option EmailPolicy.utf8 can be set to True to
encode email headers using the UTF-8 charset instead of using
encoded words. This allows Messages to be formatted according to
RFC 6532 and used with an SMTP server that supports the RFC 6531
SMTPUTF8 extension. (Contributed by R. David Murray in bpo-24211.)

The mime.text.MIMEText constructor now accepts a
charset.Charset instance. (Contributed by Claude Paroz and
Berker Peksag in bpo-16324.)

enum

The Enum callable has a new parameter start to specify the initial
number of enum values if only names are provided:

>>> Animal = enum.Enum('Animal', 'cat dog', start=1¢
>>> Animal.cat

<Animal.cat: 10>

>>> Animal.dog

<Animal.dog: 11>

{ S—

https://bugs.python.org/issue20098
https://bugs.python.org/issue21083
https://tools.ietf.org/html/rfc6532.html
https://tools.ietf.org/html/rfc6531.html
https://bugs.python.org/issue24211
https://bugs.python.org/issue16324

(Contributed by Ethan Furman in bpo-21706.)

faulthandler

The enable(), register(), dump_traceback() and
dump_traceback_later () functions now accept file descriptors in
addition to file-like objects. (Contributed by Wei Wu in bpo-23566.)

functools

Most of the lru_cache() machinery is now implemented in C,
making it significantly faster. (Contributed by Matt Joiner, Alexey
Kachayev, and Serhiy Storchaka in bpo-14373.)

glob

The iglob() and glob() functions now support recursive search in
subdirectories, using the "**'" pattern. (Contributed by Serhiy
Storchaka in bpo-13968.)

gzip

The mode argument of the GzipFile constructor now accepts "x" to
request exclusive creation. (Contributed by Tim Heaney in bpo-19222.)

heapq

Element comparison in merge() can now be customized by passing
a key function in a new optional key keyword argument, and a new
optional reverse keyword argument can be used to reverse element

https://bugs.python.org/issue21706
https://bugs.python.org/issue23566
https://bugs.python.org/issue14373
https://bugs.python.org/issue13968
https://bugs.python.org/issue19222

comparison:

>>> import heapq

>>> g = ['9', '777', '55555']

>>> b = ['88', '6666']

>>> list(heapqg.merge(a, b, key=len))

['9', '88', '777', '6666', '55555']

>>> list(heapq.merge(reversed(a), reversed(b), key=]
['55555', 'ee666', '777', '88', '9']

Rl 1 2

(Contributed by Raymond Hettinger in bpo-13742.)

http

A new HTTPStatus enum that defines a set of HTTP status codes,

reason phrases and long descriptions written in English. (Contributed
by Demian Brecht in bpo-21793.)

http.client

HTTPConnection.getresponse() now raises a
RemoteDisconnected exception when a remote server connection
Is closed unexpectedly. Additionally, if a ConnectionError (of which
RemoteDisconnected is a subclass) is raised, the client socket is
now closed automatically, and will reconnect on the next request:

import http.client
conn = http.client.HTTPConnection('www.python.org')
for retries in range(3):
try:
conn.request('GET"', '/")
resp = conn.getresponse()
except http.client.RemoteDisconnected:

https://bugs.python.org/issue13742
https://bugs.python.org/issue21793

pass

(Contributed by Martin Panter in bpo-3566.)

idlelib and IDLE

Since idlelib implements the IDLE shell and editor and is not intended
for import by other programs, it gets improvements with every release.
See Lib/idlelib/NEWS. txt for a cumulative list of changes since

3.4.0, as well as changes made in future 3.5.x releases. This file is
also available from the IDLE Help » About IDLE dialog.

imaplib

The IMAP4 class now supports the context manager protocol. When
used in a with statement, the IMAP4 LOGOUT command will be called

automatically at the end of the block. (Contributed by Tarek Ziadé and
Serhiy Storchaka in bpo-4972.)

The imaplib module now supports RFC 5161 (ENABLE Extension)
and RFC 6855 (UTF-8 Support) via the IMAP4.enable() method. A
new IMAP4.utf8_enabled attribute tracks whether or not RFC

6855 support is enabled. (Contributed by Milan Oberkirch, R. David
Murray, and Maciej Szulik in bpo-21800.)

The imaplib module now automatically encodes non-ASCIl string

usernames and passwords using UTF-8, as recommended by the
RFCs. (Contributed by Milan Oberkirch in bpo-21800.)

imghdr

https://bugs.python.org/issue3566
https://bugs.python.org/issue4972
https://tools.ietf.org/html/rfc5161.html
https://tools.ietf.org/html/rfc6855.html
https://tools.ietf.org/html/rfc6855.html
https://bugs.python.org/issue21800
https://bugs.python.org/issue21800

The what() function now recognizes the OpenEXR format

(contributed by Martin Vignali and Claudiu Popa in bpo-20295), and
the WebP format (contributed by Fabrice Aneche and Claudiu Popa in
bpo-20197.)

importlib

The util.LazylLoader class allows for lazy loading of modules in

applications where startup time is important. (Contributed by Brett
Cannon in bpo-17621.)

The abc.InspectLoader.source_to_code() method is now a
static method. This makes it easier to initialize a module object with
code compiled from a string by running exec(code,
module.__dict__). (Contributed by Brett Cannon in bpo-21156.)

The new util.module_from_spec() function is now the preferred

way to create a new module. As opposed to creating a
types.ModuleType instance directly, this new function will set the

various import-controlled attributes based on the passed-in spec
object. (Contributed by Brett Cannon in bpo-20383.)

Inspect

Both the Signature and Parameter classes are now picklable and

hashable. (Contributed by Yury Selivanov in bpo-20726 and bpo-
20334.)

A new BoundArguments.apply_defaults() method provides a
way to set default values for missing arguments:

>>> def foo(a, b='ham', *args): pass

http://www.openexr.com
https://bugs.python.org/issue20295
https://en.wikipedia.org/wiki/WebP
https://bugs.python.org/issue20197
https://bugs.python.org/issue17621
https://bugs.python.org/issue21156
https://bugs.python.org/issue20383
https://bugs.python.org/issue20726
https://bugs.python.org/issue20334

>>> ba = inspect.signature(foo).bind('spam')

>>> ba.apply_defaults()

>>> ba.arguments

OrderedDict([('a', 'spam'), ('b', 'ham'), ('args', (
I N .ﬂ

(Contributed by Yury Selivanov in bpo-24190.)

A new class method Signature.from_callable() makes
subclassing of Signature easier. (Contributed by Yury Selivanov and
Eric Snow in bpo-17373.)

The signature() function now accepts a follow_wrapped optional
keyword argument, which, when set to False, disables automatic

following of __wrapped___ links. (Contributed by Yury Selivanov in
bpo-20691.)

A set of new functions to inspect coroutine functions and coroutine
objects has been added: iscoroutine(),
iscoroutinefunction(), isawaitable(),
getcoroutinelocals(), and getcoroutinestate().

(Contributed by Yury Selivanov in bpo-24017 and bpo-24400.)

The stack(), trace(), getouterframes(), and
getinnerframes() functions now return a list of named tuples.
(Contributed by Daniel Shahaf in bpo-16808.)

0

A new BufferedIOBase.readintol() method, that uses at most
one call to the underlying raw stream’s RawIOBase.read() or
RawIOBase.readinto() methods. (Contributed by Nikolaus Rath in
bpo-20578.)

https://bugs.python.org/issue24190
https://bugs.python.org/issue17373
https://bugs.python.org/issue20691
https://bugs.python.org/issue24017
https://bugs.python.org/issue24400
https://bugs.python.org/issue16808
https://bugs.python.org/issue20578

Ipaddress

Both the IPv4Network and IPv6Network classes now accept an
(address, netmask) tuple argument, so as to easily construct
network objects from existing addresses:

>>> import ipaddress

>>> jpaddress.IPv4Network(('127.0.0.0', 8))
IPv4Network('127.0.0.0/8")

>>> jpaddress.IPv4Network(('127.0.0.0', '255.0.0.0"')
IPv4Network('127.0.0.0/8")

4 o gD

(Contributed by Peter Moody and Antoine Pitrou in bpo-16531.)

A new reverse_pointer attribute for the IPv4Network and
IPv6Network classes returns the name of the reverse DNS PTR
record:

>>> import ipaddress

>>> addr = ipaddress.IPv4Address('127.0.0.1")

>>> addr.reverse_pointer

'1.0.0.127.1in-addr.arpa'

>>> addr6 = ipaddress.IPv6Address('::1")

>>> addr6.reverse_pointer
'1.0.¢
Rl 1 2

(Contributed by Leon Weber in bpo-20480.)
json

The json.tool command line interface now preserves the order of
keys in JISON objects passed in input. The new - -sort-keys option

https://bugs.python.org/issue16531
https://bugs.python.org/issue20480

can be used to sort the keys alphabetically. (Contributed by Berker
Peksag in bpo-21650.)

JSON decoder now raises JSONDecodeError instead of
ValueError to provide better context information about the error.
(Contributed by Serhiy Storchaka in bpo-19361.)

linecache

A new lazycache() function can be used to capture information
about a non-file-based module to permit getting its lines later via
getline(). This avoids doing I/O until a line is actually needed,
without having to carry the module globals around indefinitely.
(Contributed by Robert Collins in bpo-17911.)

locale

Anew delocalize() function can be used to convert a string into a
normalized number string, taking the LC_NUMERIC settings into
account:

>>> import locale

>>> locale.setlocale(locale.LC_NUMERIC, 'de DE.UTF-&
'de_DE.UTF-8'

>>> locale.delocalize('1.234,56")

'1234.56"

>>> locale.setlocale(locale.LC_NUMERIC, 'en_ US.UTF-&
'en_US.UTF-8'

>>> locale.delocalize('1,234.56")

'1234.56"

{ S}

(Contributed by Cédric Krier in bpo-13918.)

https://bugs.python.org/issue21650
https://bugs.python.org/issue19361
https://bugs.python.org/issue17911
https://bugs.python.org/issue13918

logging

All logging methods (Logger log(), exception(), critical(),
debug(), etc.), now accept exception instances as an exc_info
argument, in addition to boolean values and exception tuples:

>>> import logging
>>> try:
1/0
except ZeroDivisionError as ex:
logging.error('exception', exc_info=ex)
ERROR: root:exception

(Contributed by Yury Selivanov in bpo-20537.)

The handlers.HTTPHandler class now accepts an optional
ssl.SSLContext instance to configure SSL settings used in an
HTTP connection. (Contributed by Alex Gaynor in bpo-22788.)

The handlers.QueuelListener class now takes a
respect_handler_level keyword argument which, if set to True, will
pass messages to handlers taking handler levels into account.
(Contributed by Vinay Sajip.)

lzma
The LZMADecompressor.decompress() method now accepts an

optional max_length argument to limit the maximum size of
decompressed data. (Contributed by Martin Panter in bpo-15955.)

math

https://bugs.python.org/issue20537
https://bugs.python.org/issue22788
https://bugs.python.org/issue15955

Two new constants have been added to the math module: inf and
nan. (Contributed by Mark Dickinson in bpo-23185.)

A new function isclose() provides a way to test for approximate
equality. (Contributed by Chris Barker and Tal Einat in bpo-24270.)

A new gcd() function has been added. The fractions.gcd()

function is now deprecated. (Contributed by Mark Dickinson and
Serhiy Storchaka in bpo-22486.)

multiprocessing

sharedctypes.synchronized() objects now support the context

manager protocol. (Contributed by Charles-Frangois Natali in bpo-
21565.)

operator

attrgetter(), itemgetter(), and methodcaller() objects

now support pickling. (Contributed by Josh Rosenberg and Serhiy
Storchaka in bpo-22955.)

New matmul() and dimatmul() functions to perform matrix
multiplication. (Contributed by Benjamin Peterson in bpo-21176.)

0S

The new scandir () function returning an iterator of DirEntry
objects has been added. If possible, scandir() extracts file

attributes while scanning a directory, removing the need to perform
subsequent system calls to determine file type or attributes, which may

https://bugs.python.org/issue23185
https://bugs.python.org/issue24270
https://bugs.python.org/issue22486
https://bugs.python.org/issue21565
https://bugs.python.org/issue22955
https://bugs.python.org/issue21176

significantly improve performance. (Contributed by Ben Hoyt with the
help of Victor Stinner in bpo-22524.)

On Windows, a new stat_result.st_file_attributes attribute
IS now available. It corresponds to the dwFileAttributes member
of the BY_HANDLE_FILE_INFORMATION structure returned by
GetFileInformationByHandle(). (Contributed by Ben Hoyt in
bpo-21719.)

The urandom() function now uses the getrandom() syscall on
Linux 3.17 or newer, and getentropy() on OpenBSD 5.6 and
newer, removing the need to use /dev/urandom and avoiding

failures due to potential file descriptor exhaustion. (Contributed by
Victor Stinner in bpo-22181.)

New get_blocking() and set_blocking() functions allow
getting and setting a file descriptor’s blocking mode (O_NONBLOCK.)
(Contributed by Victor Stinner in bpo-22054.)

The truncate() and ftruncate() functions are now supported on
Windows. (Contributed by Steve Dower in bpo-23668.)

There is a new os.path.commonpath() function returning the

longest common sub-path of each passed pathname. Unlike the
os.path.commonprefix() function, it always returns a valid path:

>>> os.path.commonprefix(['/usr/1lib', '/usr/local/l]
"/usr/1'

>>> os.path.commonpath(['/usr/1lib', '/usr/local/lib'
"/usr’

{ S 2]

(Contributed by Rafik Draoui and Serhiy Storchaka in bpo-10395.)

https://bugs.python.org/issue22524
https://bugs.python.org/issue21719
https://bugs.python.org/issue22181
https://bugs.python.org/issue22054
https://bugs.python.org/issue23668
https://bugs.python.org/issue10395

pathlib

The new Path.samefile() method can be used to check whether

the path points to the same file as another path, which can be either
another Path object, or a string:

>>> import pathlib

>>> pl = pathlib.Path('/etc/hosts')

>>> p2 = pathlib.Path('/etc/../etc/hosts')
>>> pl.samefile(p2)

True

(Contributed by Vajrasky Kok and Antoine Pitrou in bpo-19775.)

The Path.mkdir () method now accepts a new optional exist ok
argument to match mkdir -p and os.makedirs() functionality.
(Contributed by Berker Peksag in bpo-21539.)

There is a new Path.expanduser() method to expand ~ and
~user prefixes. (Contributed by Serhiy Storchaka and Claudiu Popa
in bpo-19776.)

A new Path.home() class method can be used to get a Path

instance representing the user’s home directory. (Contributed by Victor
Salgado and Mayank Tripathi in bpo-19777.)

New Path.write_text(), Path.read_text(),
Path.write_bytes(), Path.read_bytes() methods to simplify
read/write operations on files.

The following code snippet will create or rewrite existing file
~/spam42:;

https://bugs.python.org/issue19775
https://bugs.python.org/issue21539
https://bugs.python.org/issue19776
https://bugs.python.org/issue19777

>>> import pathlib

>>> p = pathlib.Path('~/spam42')

>>> p.expanduser().write_text('ham')
3

(Contributed by Christopher Welborn in bpo-20218.)

pickle

Nested objects, such as unbound methods or nested classes, can now
be pickled using pickle protocols older than protocol version 4.
Protocol version 4 already supports these cases. (Contributed by
Serhiy Storchaka in bpo-23611.)

poplib

A new POP3.utf8() command enables RFC 6856 (Internationalized

Email) support, if a POP server supports it. (Contributed by Milan
OberKirch in bpo-21804.)

re

References and conditional references to groups with fixed length are
now allowed in lookbehind assertions:

>>> import re

>>> pat = re.compile(r'(alb).(?<=\1)c'")

>>> pat.match('aac')

<_sre.SRE_Match object; span=(0, 3), match='aac'>
>>> pat.match('bbc')

<_sre.SRE_Match object; span=(0, 3), match="bbc'>

https://bugs.python.org/issue20218
https://bugs.python.org/issue23611
https://tools.ietf.org/html/rfc6856.html
https://bugs.python.org/issue21804

(Contributed by Serhiy Storchaka in bpo-9179.)

The number of capturing groups in regular expressions is no longer
limited to 100. (Contributed by Serhiy Storchaka in bpo-22437.)

The sub() and subn() functions now replace unmatched groups
with empty strings instead of raising an exception. (Contributed by
Serhiy Storchaka in bpo-1519638.)

The re.error exceptions have new attributes, msg, pattern, pos,
lineno, and colno, that provide better context information about the
error:

>>> re.compile("""
(?x)
.+

)

Traceback (most recent call last):

sre_constants.error: multiple repeat at position 16
« 1] 2

(Contributed by Serhiy Storchaka in bpo-22578.)

readline
A new append_history_file() function can be used to append

the specified number of trailing elements in history to the given file.
(Contributed by Bruno Cauet in bpo-22940.)

selectors

The new DevpollSelector supports efficient /dev/poll polling

https://bugs.python.org/issue9179
https://bugs.python.org/issue22437
https://bugs.python.org/issue1519638
https://bugs.python.org/issue22578
https://bugs.python.org/issue22940

on Solaris. (Contributed by Giampaolo Rodola’ in bpo-18931.)

shutil

The move() function now accepts a copy_ function argument,
allowing, for example, the copy() function to be used instead of the
default copy2() if there is a need to ignore file metadata when
moving. (Contributed by Claudiu Popa in bpo-19840.)

The make_archive() function now supports the xztar format.
(Contributed by Serhiy Storchaka in bpo-5411.)

signal

On Windows, the set_wakeup_fd() function now also supports
socket handles. (Contributed by Victor Stinner in bpo-22018.)

Various SIG* constants in the signal module have been converted
into Enums. This allows meaningful names to be printed during

debugging, instead of integer “magic numbers”. (Contributed by
Giampaolo Rodola’ in bpo-21076.)

smtpd

Both the SMTPServer and SMTPChannel classes now accept a
decode_data keyword argument to determine if the DATA portion of
the SMTP transaction is decoded using the "utf-8" codec or is
instead provided to the SMTPServer .process_message() method
as a byte string. The default is True for backward compatibility
reasons, but will change to False in Python 3.6. If decode_data is set
to False, the process_message method must be prepared to

https://bugs.python.org/issue18931
https://bugs.python.org/issue19840
https://bugs.python.org/issue5411
https://bugs.python.org/issue22018
https://bugs.python.org/issue21076

accept keyword arguments. (Contributed by Maciej Szulik in bpo-
19662.)

The SMTPServer class now advertises the 8BITMIME extension
(RFC 6152) if decode_data has been set True. If the client specifies
BODY=8BITMIME on the MAIL command, it is passed to
SMTPServer .process_message() via the mail_options keyword.
(Contributed by Milan Oberkirch and R. David Murray in bpo-21795.)

The SMTPServer class now also supports the SMTPUTF8 extension
(RFC 6531: Internationalized Email). If the client specified SMTPUTF8
BODY=8BITMIME on the MAIL command, they are passed to
SMTPServer .process_message () via the mail_options keyword. It
is the responsibility of the process_message method to correctly
handle the SMTPUTF8 data. (Contributed by Milan Oberkirch in bpo-
21725.)

It is now possible to provide, directly or via name resolution, IPv6
addresses in the SMTPServer constructor, and have it successfully
connect. (Contributed by Milan Oberkirch in bpo-14758.)

smtplib

A new SMTP.auth() method provides a convenient way to
implement custom authentication mechanisms. (Contributed by Milan
Oberkirch in bpo-15014.)

The SMTP.set_debuglevel() method now accepts an additional
debuglevel (2), which enables timestamps in debug messages.
(Contributed by Gavin Chappell and Maciej Szulik in bpo-16914.)

Both the SMTP.sendmail() and SMTP.send_message() methods

https://bugs.python.org/issue19662
https://tools.ietf.org/html/rfc6152.html
https://bugs.python.org/issue21795
https://tools.ietf.org/html/rfc6531.html
https://bugs.python.org/issue21725
https://bugs.python.org/issue14758
https://bugs.python.org/issue15014
https://bugs.python.org/issue16914

now support RFC 6531 (SMTPUTFS8). (Contributed by Milan Oberkirch
and R. David Murray in bpo-22027.)

sndhdr

The what() and whathdr() functions now return a
namedtuple (). (Contributed by Claudiu Popa in bpo-18615.)

socket

Functions with timeouts now use a monotonic clock, instead of a
system clock. (Contributed by Victor Stinner in bpo-22043.)

A new socket.sendfile() method allows sending a file over a
socket by using the high-performance os.sendfile() function on
UNIX, resulting in uploads being from 2 to 3 times faster than when
using plain socket.send(). (Contributed by Giampaolo Rodola’ in
bpo-17552.)

The socket.sendall() method no longer resets the socket timeout

every time bytes are received or sent. The socket timeout is now the
maximum total duration to send all data. (Contributed by Victor Stinner
in bpo-23853.)

The backlog argument of the socket.listen() method is now
optional. By default it is set to SOMAXCONN or to 128, whichever is
less. (Contributed by Charles-Francois Natali in bpo-21455.)

ssl
Memory BIO Support

https://tools.ietf.org/html/rfc6531.html
https://bugs.python.org/issue22027
https://bugs.python.org/issue18615
https://bugs.python.org/issue22043
https://bugs.python.org/issue17552
https://bugs.python.org/issue23853
https://bugs.python.org/issue21455

(Contributed by Geert Jansen in bpo-21965.)

The new SSLObject class has been added to provide SSL protocol
support for cases when the network 1/0 capabilities of SSLSocket are
not necessary or are suboptimal. SSLObject represents an SSL

protocol instance, but does not implement any network 1/O methods,
and instead provides a memory buffer interface. The new MemoryBIO

class can be used to pass data between Python and an SSL protocol
instance.

The memory BIO SSL support is primarily intended to be used in
frameworks implementing asynchronous 1/O for which SSLSocket'’s

readiness model (“select/poll”) is inefficient.

A new SSLContext.wrap_bio() method can be used to create a
new SSLObject instance.

Application-Layer Protocol Negotiation Support

(Contributed by Benjamin Peterson in bpo-20188.)

Where OpenSSL support is present, the ss1 module now implements
the Application-Layer Protocol Negotiation TLS extension as described
in RFC 7301.

The new SSLContext.set_alpn_protocols() can be used to

specify which protocols a socket should advertise during the TLS
handshake.

The new SSLSocket.selected_alpn_protocol() returns the
protocol that was selected during the TLS handshake. The HAS_ALPN
flag indicates whether ALPN support is present.

https://bugs.python.org/issue21965
https://bugs.python.org/issue20188
https://tools.ietf.org/html/rfc7301.html

Other Changes

There is a new SSLSocket.version() method to query the actual
protocol version in use. (Contributed by Antoine Pitrou in bpo-20421.)

The SSLSocket class now implements a SSLSocket.sendfile()
method. (Contributed by Giampaolo Rodola’ in bpo-17552.)

The SSLSocket.send() method now raises either the
ssl.SSLWantReadError or ssl.SSLWantWriteError exception
on a non-blocking socket if the operation would block. Previously, it
would return 0. (Contributed by Nikolaus Rath in bpo-20951.)

The cert_time_to_seconds() function now interprets the input
time as UTC and not as local time, per RFC 5280. Additionally, the
return value is always an int. (Contributed by Akira Li in bpo-19940.)

New SSLObject.shared_ciphers() and
SSLSocket.shared_ciphers() methods return the list of ciphers
sent by the client during the handshake. (Contributed by Benjamin
Peterson in bpo-23186.)

The SSLSocket .do_handshake(), SSLSocket.read(),
SSLSocket.shutdown(), and SSLSocket.write() methods of
the SSLSocket class no longer reset the socket timeout every time

bytes are received or sent. The socket timeout is now the maximum
total duration of the method. (Contributed by Victor Stinner in bpo-
23853.)

The match_hostname() function now supports matching of IP
addresses. (Contributed by Antoine Pitrou in bpo-23239.)

https://bugs.python.org/issue20421
https://bugs.python.org/issue17552
https://bugs.python.org/issue20951
https://tools.ietf.org/html/rfc5280.html
https://bugs.python.org/issue19940
https://bugs.python.org/issue23186
https://bugs.python.org/issue23853
https://bugs.python.org/issue23239

sglite3

The Row class now fully supports the sequence protocol, in particular
reversed() iteration and slice indexing. (Contributed by Claudiu

Popa in bpo-10203; by Lucas Sinclair, Jessica McKellar, and Serhiy
Storchaka in bpo-13583.)

subprocess

The new run() function has been added. It runs the specified
command and returns a CompletedProcess object, which describes
a finished process. The new API is more consistent and is the
recommended approach to invoking subprocesses in Python code that
does not need to maintain compatibility with earlier Python versions.
(Contributed by Thomas Kluyver in bpo-23342.)

Examples:

>>> subprocess.run(["1ls", "-1"]) # doesn't capture
CompletedProcess(args=['ls', '-1'], returncode=0)

>>> subprocess.run("exit 1", shell=True, check=True)
Traceback (most recent call last):

subprocess.CalledProcessError: Command 'exit 1' rett

>>> subprocess.run(["1ls", "-1", "/dev/null"], stdout
CompletedProcess(args=['ls', '-1', '/dev/null'], ret
stdout=b'crw-rw-rw- 1 root root 1, 3 Jan 23 16:23 /c
A] 2

Sys

https://bugs.python.org/issue10203
https://bugs.python.org/issue13583
https://bugs.python.org/issue23342

A new set_coroutine_wrapper () function allows setting a global
hook that will be called whenever a coroutine object is created by an
async def function. A corresponding get_coroutine_wrapper ()

can be used to obtain a currently set wrapper. Both functions are
provisional, and are intended for debugging purposes only.
(Contributed by Yury Selivanov in bpo-24017.)

A new is_finalizing() function can be used to check if the

Python interpreter is shutting down. (Contributed by Antoine Pitrou in
bpo-22696.)

sysconfig

The name of the user scripts directory on Windows now includes the
first two components of the Python version. (Contributed by Paul
Moore in bpo-23437.)

tarfile

The mode argument of the open() function now accepts "x" to

request exclusive creation. (Contributed by Berker Peksag in bpo-
21717.)

The TarFile.extractall() and TarFile.extract() methods
now take a keyword argument numeric_owner. If set to True, the
extracted files and directories will be owned by the numeric uid and
gid from the tarfile. If set to False (the default, and the behavior in
versions prior to 3.5), they will be owned by the named user and group

in the tarfile. (Contributed by Michael Vogt and Eric Smith in bpo-
23193.)

https://bugs.python.org/issue24017
https://bugs.python.org/issue22696
https://bugs.python.org/issue23437
https://bugs.python.org/issue21717
https://bugs.python.org/issue23193

The TarFile.list() now accepts an optional members keyword

argument that can be set to a subset of the list returned by
TarFile.getmembers(). (Contributed by Serhiy Storchaka in bpo-
21549.)

threading

Both the Lock.acquire() and RLock.acquire() methods now

use a monotonic clock for timeout management. (Contributed by Victor
Stinner in bpo-22043.)

time

The monotonic() function is now always available. (Contributed by
Victor Stinner in bpo-22043.)

timeit

A new command line option -u or - -unit=U can be used to specify
the time unit for the timer output. Supported options are usec, msec,
or sec. (Contributed by Julian Gindi in bpo-18983.)

The timeit () function has a new globals parameter for specifying

the namespace in which the code will be running. (Contributed by Ben
Roberts in bpo-2527.)

tkinter

The tkinter._fix module used for setting up the Tcl/Tk
environment on Windows has been replaced by a private function in

https://bugs.python.org/issue21549
https://bugs.python.org/issue22043
https://bugs.python.org/issue22043
https://bugs.python.org/issue18983
https://bugs.python.org/issue2527

the _tkinter module which makes no permanent changes to
environment variables. (Contributed by Zachary Ware in bpo-20035.)

traceback

New walk_stack() and walk_tb() functions to conveniently

traverse frame and traceback objects. (Contributed by Robert Collins
in bpo-17911.)

New lightweight classes: TracebackException, StackSummary,
and FrameSummary. (Contributed by Robert Collins in bpo-17911.)

Both the print_tb() and print_stack() functions now support

negative values for the limit argument. (Contributed by Dmitry Kazakov
in bpo-22619.)

types

A new coroutine() function to transform generator and
generator-1like objects into awaitables. (Contributed by Yury
Selivanov in bpo-24017.)

A new type called CoroutineType, which is used for coroutine
objects created by async def functions. (Contributed by Yury
Selivanov in bpo-24400.)

unicodedata

The unicodedata module now uses data from Unicode 8.0.0.

unittest

https://bugs.python.org/issue20035
https://bugs.python.org/issue17911
https://bugs.python.org/issue17911
https://bugs.python.org/issue22619
https://bugs.python.org/issue24017
https://bugs.python.org/issue24400
http://unicode.org/versions/Unicode8.0.0/

The TestLoader.loadTestsFromModule() method now accepts
a keyword-only argument pattern which is passed to load_tests as
the third argument. Found packages are now checked for
load_tests regardless of whether their path matches pattern,
because it is impossible for a package name to match the default
pattern. (Contributed by Robert Collins and Barry A. Warsaw in bpo-
16662.)

Unittest discovery errors now are exposed in the
TestLoader.errors attribute of the TestLoader instance.

(Contributed by Robert Collins in bpo-19746.)

A new command line option --locals to show local variables in
tracebacks. (Contributed by Robert Collins in bpo-22936.)

unittest.mock

The Mock class has the following improvements:

e The class constructor has a new unsafe parameter, which causes
mock objects to raise AttributeError on attribute names
starting with "assert". (Contributed by Kushal Das in bpo-
21238.)

e A new Mock.assert_not_called() method to check if the

mock object was called. (Contributed by Kushal Das in bpo-
21262.)

The MagicMock class now supports __ truediv__ (),
__divmod__() and __matmul__ () operators. (Contributed by

Johannes Baiter in bpo-20968, and Hakan Lovdahl in bpo-23581 and
bpo-23568.)

It is no longer necessary to explicitly pass create=True to the

https://bugs.python.org/issue16662
https://bugs.python.org/issue19746
https://bugs.python.org/issue22936
https://bugs.python.org/issue21238
https://bugs.python.org/issue21262
https://bugs.python.org/issue20968
https://bugs.python.org/issue23581
https://bugs.python.org/issue23568

patch() function when patching builtin names. (Contributed by
Kushal Das in bpo-17660.)

urllib

A new request.HTTPPasswordMgrwithPriorAuth class allows

HTTP Basic Authentication credentials to be managed so as to
eliminate unnecessary 401 response handling, or to unconditionally

send credentials on the first request in order to communicate with
servers that return a 404 response instead of a 401 if the

Authorization header is not sent. (Contributed by Matej Cepl in
bpo-19494 and Akshit Khurana in bpo-7159.)

A new quote_via argument for the parse.urlencode() function
provides a way to control the encoding of query parts if needed.
(Contributed by Samwyse and Arnon Yaari in bpo-13866.)

The request.urlopen() function accepts an ssl.SSLContext

object as a context argument, which will be used for the HTTPS
connection. (Contributed by Alex Gaynor in bpo-22366.)

The parse.urljoin() was updated to use the RFC 3986

semantics for the resolution of relative URLS, rather than RFC 1808
and RFC 2396. (Contributed by Demian Brecht and Senthil Kumaran
in bpo-22118.)

wsgiref
The headers argument of the headers.Headers class constructor is

now optional. (Contributed by Pablo Torres Navarrete and SilentGhost
in bpo-5800.)

https://bugs.python.org/issue17660
https://bugs.python.org/issue19494
https://bugs.python.org/issue7159
https://bugs.python.org/issue13866
https://bugs.python.org/issue22366
https://tools.ietf.org/html/rfc3986.html
https://tools.ietf.org/html/rfc1808.html
https://tools.ietf.org/html/rfc2396.html
https://bugs.python.org/issue22118
https://bugs.python.org/issue5800

xmlrpc

The client.ServerProxy class now supports the context manager
protocol. (Contributed by Claudiu Popa in bpo-20627.)

The client.ServerProxy constructor now accepts an optional
ssl.SSLContext instance. (Contributed by Alex Gaynor in bpo-
22960.)

xml.sax

SAX parsers now support a character stream of the
xmlreader.InputSource object. (Contributed by Serhiy Storchaka
in bpo-2175.)

parseString() now accepts a str instance. (Contributed by Serhiy
Storchaka in bpo-10590.)

zipfile

ZIP output can now be written to unseekable streams. (Contributed by
Serhiy Storchaka in bpo-23252.)

The mode argument of ZipFile.open() method now accepts "x"

to request exclusive creation. (Contributed by Serhiy Storchaka in bpo-
21717.)

https://bugs.python.org/issue20627
https://bugs.python.org/issue22960
https://bugs.python.org/issue2175
https://bugs.python.org/issue10590
https://bugs.python.org/issue23252
https://bugs.python.org/issue21717

Other module-level changes

Many functions in the mmap, ossaudiodev, socket, ssl, and
codecs modules now accept writable bytes-like objects. (Contributed
by Serhiy Storchaka in bpo-23001.)

https://bugs.python.org/issue23001

Optimizations

The os.walk() function has been sped up by 3 to 5 times on POSIX
systems, and by 7 to 20 times on Windows. This was done using the
new os.scandir () function, which exposes file information from the
underlying readdir or FindFirstFile/FindNextFile system
calls. (Contributed by Ben Hoyt with help from Victor Stinner in bpo-
23605.)

Construction of bytes(int) (filled by zero bytes) is faster and uses
less memory for large objects. calloc() is used instead of
malloc() to allocate memory for these objects. (Contributed by
Victor Stinner in bpo-21233.)

Some operations on ipaddress IPv4Network and IPv6Network
have been massively sped up, such as subnets(), supernet(),
summarize_address_range(), collapse_addresses(). The
speed up can range from 3 to 15 times. (Contributed by Antoine
Pitrou, Michel Albert, and Markus in bpo-21486, bpo-21487, bpo-
20826, bpo-23266.)

Pickling of ipaddress objects was optimized to produce significantly
smaller output. (Contributed by Serhiy Storchaka in bpo-23133.)

Many operations on io.BytesIO are now 50% to 100% faster.
(Contributed by Serhiy Storchaka in bpo-15381 and David Wilson in
bpo-22003.)

The marshal.dumps() function is now faster: 65-85% with versions
3 and 4, 20-25% with versions 0 to 2 on typical data, and up to 5
times in best cases. (Contributed by Serhiy Storchaka in bpo-20416

https://bugs.python.org/issue23605
https://bugs.python.org/issue21233
https://bugs.python.org/issue21486
https://bugs.python.org/issue21487
https://bugs.python.org/issue20826
https://bugs.python.org/issue23266
https://bugs.python.org/issue23133
https://bugs.python.org/issue15381
https://bugs.python.org/issue22003
https://bugs.python.org/issue20416

and bpo-23344.)

The UTF-32 encoder is now 3 to 7 times faster. (Contributed by Serhiy
Storchaka in bpo-15027.)

Regular expressions are now parsed up to 10% faster. (Contributed by
Serhiy Storchaka in bpo-19380.)

The json.dumps() function was optimized to run with
ensure_ascii=False as fast as with ensure_ascii=True.
(Contributed by Naoki Inada in bpo-23206.)

The PyObject_IsInstance() and PyObject_IsSubclass()
functions have been sped up in the common case that the second
argument has type as its metaclass. (Contributed Georg Brandl by in

bpo-22540.)

Method caching was slightly improved, yielding up to 5% performance
improvement in some benchmarks. (Contributed by Antoine Pitrou in
bpo-22847.)

Objects from the random module now use 50% less memory on 64-bit
builds. (Contributed by Serhiy Storchaka in bpo-23488.)

The property() getter calls are up to 25% faster. (Contributed by
Joe Jevnik in bpo-23910.)

Instantiation of fractions.Fraction is now up to 30% faster.
(Contributed by Stefan Behnel in bpo-22464.)

String methods find(), rfind(), split(), partition() and the
in string operator are now significantly faster for searching 1-
character substrings. (Contributed by Serhiy Storchaka in bpo-23573.)

https://bugs.python.org/issue23344
https://bugs.python.org/issue15027
https://bugs.python.org/issue19380
https://bugs.python.org/issue23206
https://bugs.python.org/issue22540
https://bugs.python.org/issue22847
https://bugs.python.org/issue23488
https://bugs.python.org/issue23910
https://bugs.python.org/issue22464
https://bugs.python.org/issue23573

Build and C API Changes

New calloc functions were added:

e PyMem_RawCalloc(),
e PyMem_Calloc(),
e PyObject_Calloc().

(Contributed by Victor Stinner in bpo-21233.)
New encoding/decoding helper functions:

e Py DecodelLocale() (replaced _Py_char2wchar()),
e Py EncodelLocale() (replaced _Py_wchar2char()).

(Contributed by Victor Stinner in bpo-18395.)

A new PyCodec_NameReplaceErrors() function to replace the
unicode encode error with \N{. ..} escapes. (Contributed by Serhiy
Storchaka in bpo-19676.)

A new PyErr_FormatV() function similar to PyErr_Format (), but
accepts a va_list argument. (Contributed by Antoine Pitrou in bpo-
18711.)

A new PyExc_RecursionError exception. (Contributed by Georg
Brandl in bpo-19235.)

New PyModule_FromDefAndSpec(),
PyModule_FrombDefAndSpec2(), and PyModule_ExecDef()

functions introduced by PEP 489 — multi-phase extension module
initialization. (Contributed by Petr Viktorin in bpo-24268.)

https://bugs.python.org/issue21233
https://bugs.python.org/issue18395
https://bugs.python.org/issue19676
https://bugs.python.org/issue18711
https://bugs.python.org/issue19235
https://www.python.org/dev/peps/pep-0489
https://bugs.python.org/issue24268

New PyNumber_MatrixMultiply() and
PyNumber_InPlaceMatrixMultiply() functions to perform

matrix multiplication. (Contributed by Benjamin Peterson in bpo-21176.
See also PEP 465 for details.)

The PyTypeObject.tp_finalize slot is now part of the stable
ABI.

Windows builds now require Microsoft Visual C++ 14.0, which is
available as part of Visual Studio 2015.

Extension modules now include a platform information tag in their
flename on some platforms (the tag is optional, and CPython will
import extensions without it, although if the tag is present and
mismatched, the extension won'’t be loaded):

e On Linux, extension module filenames end with .cpython-
<major><minor>m-<architecture>-<o0s>.pyd:

o <major> is the major number of the Python version; for
Python 3.5 this is 3.

o <minor> is the minor number of the Python version; for
Python 3.5 this is 5.

o <architecture> is the hardware architecture the
extension module was built to run on. It's most commonly
either 1386 for 32-bit Intel platforms or x86_64 for 64-bit
Intel (and AMD) platforms.

o <0s> is always linux-gnu, except for extensions built to
talk to the 32-bit ABI on 64-bit platforms, in which case it is
linux-gnu32 (and <architecture> will be x86_64).

e On Windows, extension module filenames end with
<debug>.cp<major><minor>-<platform>.pyd:

o <major> is the major number of the Python version; for
Python 3.5 this is 3.

https://bugs.python.org/issue21176
https://www.python.org/dev/peps/pep-0465
https://www.visualstudio.com/

o <minor> is the minor number of the Python version; for
Python 3.5 this is 5.

o <platform> is the platform the extension module was built
for, either win32 for Win32, win_amd64 for Win64,
win_ia64 for Windows Itanium 64, and win_arm for
Windows on ARM.

o If built in debug mode, <debug> will be _d, otherwise it will
be blank.

e On OS X platforms, extension module filenames now end with -
darwin.so.

e On all other platforms, extension module filenames are the same
as they were with Python 3.4.

Deprecated

New Keywords

async and await are not recommended to be used as variable,
class, function or module names. Introduced by PEP 492 in Python
3.5, they will become proper keywords in Python 3.7.

Deprecated Python Behavior

Raising the StopIteration exception inside a generator will now
generate a silent PendingDeprecationWarning, which will

become a non-silent deprecation warning in Python 3.6 and will trigger
a RuntimeError in Python 3.7. See PEP 479: Change Stoplteration

handling inside generators for details.

Unsupported Operating Systems

Windows XP is no longer supported by Microsoft, thus, per PEP 11,
CPython 3.5 is no longer officially supported on this OS.

Deprecated Python modules, functions and
methods

The formatter module has now graduated to full deprecation and is
still slated for removal in Python 3.6.

The asyncio.async() function is deprecated in favor of
ensure_future().

https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0011

The smtpd module has in the past always decoded the DATA portion
of email messages using the utf-8 codec. This can now be
controlled by the new decode data keyword to SMTPServer. The
default value is True, but this default is deprecated. Specify the

decode _data keyword with an appropriate value to avoid the
deprecation warning.

Directly assigning values to the key, value and coded_value of
http.cookies.Morsel objects is deprecated. Use the set()

method instead. In addition, the undocumented LegalChars parameter
of set () is deprecated, and is now ignored.

Passing a format string as keyword argument format_string to the
format() method of the string.Formatter class has been
deprecated. (Contributed by Serhiy Storchaka in bpo-23671.)

The platform.dist() and platform.linux_distribution()
functions are now deprecated. Linux distributions use too many
different ways of describing themselves, so the functionality is left to a
package. (Contributed by Vajrasky Kok and Berker Peksag in bpo-
1322.)

The previously undocumented from_function and from_builtin
methods of inspect.Signature are deprecated. Use the new
Signature.from_callable() method instead. (Contributed by
Yury Selivanov in bpo-24248.)

The inspect.getargspec() function is deprecated and scheduled
to be removed in Python 3.6. (See bpo-20438 for details.)

The inspect getfullargspec(), getcallargs(), and
formatargspec() functions are deprecated in favor of the

https://bugs.python.org/issue23671
https://bugs.python.org/issue1322
https://bugs.python.org/issue24248
https://bugs.python.org/issue20438

inspect.signature() API. (Contributed by Yury Selivanov in bpo-
20438.)

getargvalues() and formatargvalues() functions were
inadvertently marked as deprecated with the release of Python 3.5.0.

Use of re.LOCALE flag with str patterns or re.ASCII is now
deprecated. (Contributed by Serhiy Storchaka in bpo-22407.)

Use of unrecognized special sequences consisting of '\' and an
ASCII letter in regular expression patterns and replacement patterns
now raises a deprecation warning and will be forbidden in Python 3.6.
(Contributed by Serhiy Storchaka in bpo-23622.)

The undocumented and unofficial use_load_tests default argument of
the unittest.TestLoader.loadTestsFromModule() method
now is deprecated and ignored. (Contributed by Robert Collins and
Barry A. Warsaw in bpo-16662.)

https://bugs.python.org/issue20438
https://bugs.python.org/issue22407
https://bugs.python.org/issue23622
https://bugs.python.org/issue16662

Removed

API| and Feature Removals

The following obsolete and previously deprecated APIs and features
have been removed:

e The __version___ attribute has been dropped from the emalil
package. The email code hasn’t been shipped separately from the
stdlib for a long time, and the __version__ string was not
updated in the last few releases.

e The internal Netrc class in the ftplib module was deprecated
in 3.4, and has now been removed. (Contributed by Matt Chaput
in bpo-6623.)

e The concept of . pyo files has been removed.

e The JoinableQueue class in the provisional asyncio module was
deprecated in 3.4.4 and is now removed. (Contributed by A. Jesse
Jiryu Davis in bpo-23464.)

https://bugs.python.org/issue6623
https://bugs.python.org/issue23464

Porting to Python 3.5

This section lists previously described changes and other bugfixes that
may require changes to your code.

Changes in Python behavior

e Due to an oversight, earlier Python versions erroneously accepted
the following syntax:

f(1 for x in [1], *args)
f(1 for x in [1], **kwargs)

Python 3.5 now correctly raises a SyntaxError, as generator
expressions must be put in parentheses if not a sole argument to
a function.

Changes in the Python API

e PEP 475: System calls are now retried when interrupted by a
signal instead of raising InterruptedError if the Python signal
handler does not raise an exception.

e Before Python 3.5, a datetime.time object was considered to
be false if it represented midnight in UTC. This behavior was
considered obscure and error-prone and has been removed in
Python 3.5. See bpo-13936 for full details.

e The ssl.SSLSocket.send() method now raises either
ssl.SSLWantReadError or ssl.SSLWantWriteError on a
non-blocking socket if the operation would block. Previously, it
would return 0. (Contributed by Nikolaus Rath in bpo-20951.)

e The __name___ attribute of generators is now set from the

https://www.python.org/dev/peps/pep-0475
https://bugs.python.org/issue13936
https://bugs.python.org/issue20951

function name, instead of being set from the code name. Use
gen.gi_code.co_name to retrieve the code name. Generators
also have a new __qualname___ attribute, the qualified name,
which is now used for the representation of a generator
(repr(gen)). (Contributed by Victor Stinner in bpo-21205.)

The deprecated “strict” mode and argument of HTMLParser,
HTMLParser.error (), and the HTMLParserError exception

have been removed. (Contributed by Ezio Melotti in bpo-15114.)
The convert_charrefs argument of HTMLParser is now True by

default. (Contributed by Berker Peksag in bpo-21047.)

Although it is not formally part of the API, it is worth noting for
porting purposes (ie: fixing tests) that error messages that were
previously of the form “sometype’ does not support the buffer
protocol” are now of the form “a bytes-like object is required, not
‘sometype’”. (Contributed by Ezio Melotti in bpo-16518.)

If the current directory is set to a directory that no longer exists
then FileNotFoundError will no longer be raised and instead
find_spec() will return None without caching None in
sys.path_importer_cache, which is different than the typical
case (bpo-22834).

HTTP status code and messages from http.client and
http.server were refactored into a common HTTPStatus
enum. The values in http.client and http.server remain
available for backwards compatibility. (Contributed by Demian
Brecht in bpo-21793.)

When an import loader defines
importlib.machinery.Loader.exec_module() it is now
expected to also define create_module() (raises a
DeprecationwWarning now, will be an error in Python 3.6). If the
loader inherits from importlib.abc.Loader then there is
nothing to do, else simply define create_module() to return
None. (Contributed by Brett Cannon in bpo-23014.)

The re.split() function always ignored empty pattern

https://bugs.python.org/issue21205
https://bugs.python.org/issue15114
https://bugs.python.org/issue21047
https://bugs.python.org/issue16518
https://bugs.python.org/issue22834
https://bugs.python.org/issue21793
https://bugs.python.org/issue23014

matches, so the "x*" pattern worked the same as "x+", and the
"\b" pattern never worked. Now re.split() raises a warning
if the pattern could match an empty string. For compatibility, use
patterns that never match an empty string (e.g. "x+" instead of
"x*™"). Patterns that could only match an empty string (such as
"\b") now raise an error. (Contributed by Serhiy Storchaka in
bpo-22818.)

The http.cookies.Morsel dict-like interface has been made
self consistent: morsel comparison now takes the key and value
into account, copy() now results in a Morsel instance rather
than a dict, and update () will now raise an exception if any of
the keys in the update dictionary are invalid. In addition, the
undocumented LegalChars parameter of set() is deprecated
and is now ignored. (Contributed by Demian Brecht in bpo-2211.)
PEP 488 has removed . pyo files from Python and introduced the
optional opt- tag in .pyc file names. The
importlib.util.cache_from_source() has gained an
optimization parameter to help control the opt- tag. Because of
this, the debug_override parameter of the function is now
deprecated. .pyo files are also no longer supported as a file
argument to the Python interpreter and thus serve no purpose
when distributed on their own (i.e. sourcless code distribution).
Due to the fact that the magic number for bytecode has changed
in Python 3.5, all old .pyo files from previous versions of Python
are invalid regardless of this PEP.

The socket module now exports the CAN_RAW_FD_FRAMES
constant on linux 3.6 and greater.

The ssl.cert_time_to_seconds() function now interprets
the input time as UTC and not as local time, per RFC 5280.
Additionally, the return value is always an int. (Contributed by
Akira Li in bpo-19940.)

The pygettext.py Tool now uses the standard +NNNN format
for timezones in the POT-Creation-Date header.

https://bugs.python.org/issue22818
https://bugs.python.org/issue2211
https://www.python.org/dev/peps/pep-0488
https://tools.ietf.org/html/rfc5280.html
https://bugs.python.org/issue19940

e The smtplib module now uses sys.stderr instead of the
previous module-level stderr variable for debug output. If your
(test) program depends on patching the module-level variable to
capture the debug output, you will need to update it to capture
sys.stderr instead.

e The str.startswith() and str.endswith() methods no
longer return True when finding the empty string and the indexes
are completely out of range. (Contributed by Serhiy Storchaka in
bpo-24284.)

e The inspect.getdoc() function now returns documentation
strings inherited from base classes. Documentation strings no
longer need to be duplicated if the inherited documentation is
appropriate. To suppress an inherited string, an empty string must
be specified (or the documentation may be filled in). This change
affects the output of the pydoc module and the help() function.
(Contributed by Serhiy Storchaka in bpo-15582.)

e Nested functools.partial() calls are now flattened. If you
were relying on the previous behavior, you can now either add an
attribute to a functools.partial() object or you can create a
subclass of functools.partial(). (Contributed by Alexander
Belopolsky in bpo-7830.)

Changes in the C API

e The undocumented format member of the (non-public)
PyMemoryViewObject structure has been removed. All
extensions relying on the relevant parts in memoryobject.h
must be rebuilt.

e The PyMemAllocator structure was renamed to
PyMemAllocatorEx and a new calloc field was added.

e Removed non-documented macro PyObject_REPR which
leaked references. Use format character %R in

https://bugs.python.org/issue24284
https://bugs.python.org/issue15582
https://bugs.python.org/issue7830

PyUnicode_FromFormat () -like functions to format the repr ()

of the object. (Contributed by Serhiy Storchaka in bpo-22453.)

e Because the lack of the _ _module__ attribute breaks pickling
and introspection, a deprecation warning is now raised for builtin
types without the __module___ attribute. This would be an
AttributeError in the future. (Contributed by Serhiy Storchaka in

bpo-20204.)
e As part of the PEP 492 implementation, the tp_reserved slot of

PyTypeObject was replaced with a tp_as_async slot. Refer to
Coroutine Objects for new types, structures and functions.

@ Python » 3.6.3 Documentation » What's New in Python » previous | next | modules | index

© Copyright 2001-2017, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.
Last updated on Oct 03, 2017. Found a bug?

Created using Sphinx 1.6.3.

https://bugs.python.org/issue22453
https://bugs.python.org/issue20204
https://www.python.org/dev/peps/pep-0492
https://www.python.org/
https://www.python.org/psf/donations/
http://sphinx.pocoo.org/

@ Python » 3.6.3 Documentation » What's New in Python » previous | next | modules | index

https://www.python.org/

What's New In Python 3.4

Author: R. David Murray <rdmurray@bitdance.com> (Editor)
This article explains the new features in Python 3.4, compared to 3.3.

Python 3.4 was released on March 16, 2014. For full details, see the
changelog.

See also: PEP 429 — Python 3.4 Release Schedule

mailto:rdmurray%40bitdance.com
https://docs.python.org/3.4/whatsnew/changelog.html
https://www.python.org/dev/peps/pep-0429

Summary — Release Highlights

New syntax features:

No new syntax features were added in Python 3.4.

Other new features:

pip should always be available (PEP 453).

Newly created file descriptors are non-inheritable (PEP 446).
command line option for isolated mode (bpo-16499).
improvements in the handling of codecs that are not text
encodings (multiple issues).

A ModuleSpec Type for the Import System (PEP 451). (Affects
importer authors.)

The marshal format has been made more compact and efficient

(bpo-16475).

New library modules:

asyncio: New provisional API for asynchronous 10 (PEP 3156).
ensurepip: Bootstrapping the pip installer (PEP 453).

enum: Support for enumeration types (PEP 435).

pathlib: Object-oriented filesystem paths (PEP 428).
selectors: High-level and efficient I/O multiplexing, built upon
the select module primitives (part of PEP 3156).

statistics: A basic numerically stable statistics library (PEP
450).

tracemalloc: Trace Python memory allocations (PEP 454).

Significantly improved library modules:

Single-dispatch generic functions in functools (PEP 443).
New pickle protocol 4 (PEP 3154).

https://www.python.org/dev/peps/pep-0453
https://www.python.org/dev/peps/pep-0446
https://bugs.python.org/issue16499
https://www.python.org/dev/peps/pep-0451
https://bugs.python.org/issue16475
https://www.python.org/dev/peps/pep-3156
https://www.python.org/dev/peps/pep-0453
https://www.python.org/dev/peps/pep-0435
https://www.python.org/dev/peps/pep-0428
https://www.python.org/dev/peps/pep-3156
https://www.python.org/dev/peps/pep-0450
https://www.python.org/dev/peps/pep-0454
https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-3154

multiprocessing now has an option to avoid using os.fork on
Unix (bpo-8713).

email has a new submodule, contentmanager, and a new
Message subclass (EmailMessage) that simplify MIME handling
(bpo-18891).

The inspect and pydoc modules are now capable of correct
introspection of a much wider variety of callable objects, which
improves the output of the Python help() system.

The ipaddress module API has been declared stable

Security improvements:

Secure and interchangeable hash algorithm (PEP 456).

Make newly created file descriptors non-inheritable (PEP 446) to
avoid leaking file descriptors to child processes.

New command line option for isolated mode, (bpo-16499).
multiprocessing now has an option to avoid using os.fork on
Unix. spawn and forkserver are more secure because they avoid
sharing data with child processes.

multiprocessing child processes on Windows no longer
inherit all of the parent’s inheritable handles, only the necessary
ones.

A new hashlib.pbkdf2_hmac() function provides the
PKCS#5 password-based key derivation function 2.

TLSv1.1 and TLSv1.2 support for ssl.

Retrieving certificates from the Windows system cert store
support for ss1.

Server-side SNI (Server Name Indication) support for ss1.

The ssl1.SSLContext class has a lot of improvements.

All modules in the standard library that support SSL now support
server certificate verification, including hostname matching
(ssl.match_hostname()) and CRLs (Certificate Revocation
lists, see ss1.SSLContext.load_verify_locations()).

https://bugs.python.org/issue8713
https://bugs.python.org/issue18891
https://www.python.org/dev/peps/pep-0456
https://www.python.org/dev/peps/pep-0446
https://bugs.python.org/issue16499
https://en.wikipedia.org/wiki/PBKDF2

CPython implementation improvements:

e Safe object finalization (PEP 442).

e Leveraging PEP 442, in most cases module globals are no longer
set to None during finalization (bpo-18214).

e Configurable memory allocators (PEP 445).

e Argument Clinic (PEP 436).

Please read on for a comprehensive list of user-facing changes,
including many other smaller improvements, CPython optimizations,
deprecations, and potential porting issues.

https://www.python.org/dev/peps/pep-0442
https://www.python.org/dev/peps/pep-0442
https://bugs.python.org/issue18214
https://www.python.org/dev/peps/pep-0445
https://www.python.org/dev/peps/pep-0436

New Features

PEP 453: Explicit Bootstrapping of PIP in Python
Installations

Bootstrapping pip By Default

The new ensurepip module (defined in PEP 453) provides a
standard cross-platform mechanism to bootstrap the pip installer into
Python installations and virtual environments. The version of pip
included with Python 3.4.0 is pip 1.5.4, and future 3.4.x maintenance
releases will update the bundled version to the latest version of pip
that is available at the time of creating the release candidate.

By default, the commands pipX and pipX.Y will be installed on all
platforms (where X.Y stands for the version of the Python installation),
along with the pip Python package and its dependencies. On
Windows and in virtual environments on all platforms, the unversioned
pip command will also be installed. On other platforms, the system
wide unversioned pip command typically refers to the separately
installed Python 2 version.

The pyvenv command line utility and the venv module make use of
the ensurepip module to make pip readily available in virtual
environments. When using the command line utility, pip is installed by
default, while when using the venv module API installation of pip
must be requested explicitly.

For CPython source builds on POSIX systems, the make install
and make altinstall commands bootstrap pip by default. This
behaviour can be controlled through configure options, and overridden

https://www.python.org/dev/peps/pep-0453

through Makefile options.

On Windows and Mac OS X, the CPython installers now default to
installing pip along with CPython itself (users may opt out of installing
it during the installation process). Window users will need to opt in to
the automatic PATH modifications to have pip available from the
command line by default, otherwise it can still be accessed through the
Python launcher for Windows as py -m pip.

As discussed in the PEP, platform packagers may choose not to install
these commands by default, as long as, when invoked, they provide
clear and simple directions on how to install them on that platform
(usually using the system package manager).

Note: To avoid conflicts between parallel Python 2 and Python 3
installations, only the versioned pip3 and pip3.4 commands are
bootstrapped by default when ensurepip is invoked directly - the -
-default-pip option is needed to also request the unversioned
pip command. pyvenv and the Windows installer ensure that the
unqualified pip command is made available in those environments,
and pip can always be invoked via the -m switch rather than
directly to avoid ambiguity on systems with multiple Python
installations.

Documentation Changes

As part of this change, the Installing Python Modules and Distributing
Python Modules sections of the documentation have been completely
redesigned as short getting started and FAQ documents. Most
packaging documentation has now been moved out to the Python
Packaging Authority maintained Python Packaging User Guide and
the documentation of the individual projects.

https://www.python.org/dev/peps/pep-0453/#recommendations-for-downstream-distributors
https://packaging.python.org

However, as this migration is currently still incomplete, the legacy
versions of those guides remaining available as Installing Python
Modules (Legacy version) and Distributing Python Modules (Legacy
version).

See also:

PEP 453 - Explicit bootstrapping of pip in Python installations
PEP written by Donald Stufft and Nick Coghlan, implemented by
Donald Stufft, Nick Coghlan, Martin von Lowis and Ned Deily.

PEP 446: Newly Created File Descriptors Are
Non-Inheritable

PEP 446 makes newly created file descriptors non-inheritable. In
general, this is the behavior an application will want: when launching a
new process, having currently open files also open in the new process
can lead to all sorts of hard to find bugs, and potentially to security
issues.

However, there are occasions when inheritance is desired. To support
these cases, the following new functions and methods are available:

e 0s.get_inheritable(), os.set_inheritable()

e 0s.get_handle_inheritable(),
os.set_handle_inheritable()

e socket.socket.get_inheritable(),
socket.socket.set_inheritable()

See also:

PEP 446 - Make newly created file descriptors non-inheritable

https://www.python.org/dev/peps/pep-0453
https://www.python.org/dev/peps/pep-0446
https://www.python.org/dev/peps/pep-0446

PEP written and implemented by Victor Stinner.

Improvements to Codec Handling

Since it was first introduced, the codecs module has always been

intended to operate as a type-neutral dynamic encoding and decoding
system. However, its close coupling with the Python text model,
especially the type restricted convenience methods on the builtin str,
bytes and bytearray types, has historically obscured that fact.

As a key step in clarifying the situation, the codecs.encode() and
codecs.decode() convenience functions are now properly
documented in Python 2.7, 3.3 and 3.4. These functions have existed
in the codecs module (and have been covered by the regression test
suite) since Python 2.4, but were previously only discoverable through
runtime introspection.

Unlike the convenience methods on str, bytes and bytearray,
the codecs convenience functions support arbitrary codecs in both
Python 2 and Python 3, rather than being limited to Unicode text
encodings (in Python 3) or basestring <-> basestring
conversions (in Python 2).

In Python 3.4, the interpreter is able to identify the known non-text
encodings provided in the standard library and direct users towards
these general purpose convenience functions when appropriate:

>>> b"abcdef".decode("hex")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
LookupError: 'hex' is not a text encoding; use codec

>>> "hello".encode("rot13")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
LookupError: 'rotl3' is not a text encoding; use coc

>>> open("foo.txt", encoding="hex")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
LookupError: 'hex' is not a text encoding; use codec
Rl 1 2

In a related change, whenever it is feasible without breaking
backwards compatibility, exceptions raised during encoding and
decoding operations are wrapped in a chained exception of the same
type that mentions the name of the codec responsible for producing
the error:

>>> import codecs

>>> codecs.decode(b"abcdefgh", "hex")
Traceback (most recent call last):
File "/usr/lib/python3.4/encodings/hex_codec.py",
return (binascii.a2b_hex(input), len(input))
binascii.Error: Non-hexadecimal digit found

The above exception was the direct cause of the foll

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
binascii.Error: decoding with 'hex' codec failed (Er

>>> codecs.encode('"hello", "bz2")
Traceback (most recent call last):
File "/usr/lib/python3.4/encodings/bz2_codec.py",
return (bz2.compress(input), len(input))
File "/usr/lib/python3.4/bz2.py", line 498, in con

return comp.compress(data) + comp.flush()
TypeError: 'str' does not support the buffer interfe

The above exception was the direct cause of the foll

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: encoding with 'bz2' codec failed (TypeErr
d] i

Finally, as the examples above show, these improvements have
permitted the restoration of the convenience aliases for the non-
Unicode codecs that were themselves restored in Python 3.2. This
means that encoding binary data to and from its hexadecimal
representation (for example) can now be written as:

>>> from codecs import encode, decode
>>> encode(b"hello", "hex")
b'68656c6¢c6T

>>> decode(b"68656c6¢c6f", "hex")
b'hello'

The binary and text transforms provided in the standard library are
detailed in Binary Transforms and Text Transforms.

(Contributed by Nick Coghlan in bpo-7475, bpo-17827, bpo-17828 and
bpo-19619.)

PEP 451: A ModuleSpec Type for the Import
System

PEP 451 provides an encapsulation of the information about a module
that the import machinery will use to load it (that is, a module
specification). This helps simplify both the import implementation and

https://bugs.python.org/issue7475
https://bugs.python.org/issue17827
https://bugs.python.org/issue17828
https://bugs.python.org/issue19619
https://www.python.org/dev/peps/pep-0451

several import-related APIs. The change is also a stepping stone for
several future import-related improvements.

The public-facing changes from the PEP are entirely backward-
compatible. Furthermore, they should be transparent to everyone but
importer authors. Key finder and loader methods have been
deprecated, but they will continue working. New importers should use
the new methods described in the PEP. Existing importers should be
updated to implement the new methods. See the Deprecated section
for a list of methods that should be replaced and their replacements.

Other Language Changes

Some smaller changes made to the core Python language are:

e Unicode database updated to UCD version 6.3.

e min() and max() now accept a default keyword-only argument
that can be used to specify the value they return if the iterable
they are evaluating has no elements. (Contributed by Julian
Berman in bpo-18111.)

e Module objects are now weakref’able.

e Module _ file__ attributes (and related values) should now
always contain absolute paths by default, with the sole exception
of __main__.__file__ when a script has been executed
directly using a relative path. (Contributed by Brett Cannon in bpo-
18416.)

o All the UTF-* codecs (except UTF-7) now reject surrogates during
both encoding and decoding unless the surrogatepass error
handler is used, with the exception of the UTF-16 decoder (which
accepts valid surrogate pairs) and the UTF-16 encoder (which
produces them while encoding non-BMP characters). (Contributed
by Victor Stinner, Kang-Hao (Kenny) Lu and Serhiy Storchaka in
bpo-12892.)

https://mail.python.org/pipermail/python-dev/2013-November/130111.html
https://bugs.python.org/issue18111
https://bugs.python.org/issue18416
https://bugs.python.org/issue12892

New German EBCDIC codec cp273. (Contributed by Michael

Bierenfeld and Andrew Kuchling in bpo-1097797.)

New Ukrainian codec cp1125. (Contributed by Serhiy Storchaka
in bpo-19668.)

bytes.join() and bytearray.join() now accept arbitrary buffer
objects as arguments. (Contributed by Antoine Pitrou in bpo-
15958.)

The int constructor now accepts any object that has an
__index___ method for its base argument. (Contributed by Mark
Dickinson in bpo-16772.)

Frame objects now have a clear() method that clears all
references to local variables from the frame. (Contributed by
Antoine Pitrou in bpo-17934.)

memoryview is now registered as a Sequence, and supports the
reversed() builtin. (Contributed by Nick Coghlan and Claudiu
Popa in bpo-18690 and bpo-19078.)

Signatures reported by help() have been modified and
improved in several cases as a result of the introduction of
Argument Clinic and other changes to the inspect and pydoc
modules.

__length_hint__ () is now part of the formal language
specification (see PEP 424). (Contributed by Armin Ronacher in
bpo-16148.)

https://bugs.python.org/issue1097797
https://bugs.python.org/issue19668
https://bugs.python.org/issue15958
https://bugs.python.org/issue16772
https://bugs.python.org/issue17934
https://bugs.python.org/issue18690
https://bugs.python.org/issue19078
https://www.python.org/dev/peps/pep-0424
https://bugs.python.org/issue16148

New Modules
asyncio

The new asyncio module (defined in PEP 3156) provides a standard
pluggable event loop model for Python, providing solid asynchronous
IO support in the standard library, and making it easier for other event
loop implementations to interoperate with the standard library and
each other.

For Python 3.4, this module is considered a provisional API.

See also:

PEP 3156 — Asynchronous IO Support Rebooted: the “asyncio”
Module

PEP written and implementation led by Guido van Rossum.

ensurepip

The new ensurepip module is the primary infrastructure for the PEP

453 implementation. In the normal course of events end users will not
need to interact with this module, but it can be used to manually
bootstrap pip if the automated bootstrapping into an installation or
virtual environment was declined.

ensurepip includes a bundled copy of pip, up-to-date as of the first
release candidate of the release of CPython with which it ships (this
applies to both maintenance releases and feature releases).
ensurepip does not access the internet. If the installation has

Internet access, after ensurepip is run the bundled pip can be used

https://www.python.org/dev/peps/pep-3156
https://www.python.org/dev/peps/pep-3156
https://www.python.org/dev/peps/pep-0453

to upgrade pip to a more recent release than the bundled one. (Note
that such an upgraded version of pip is considered to be a separately
installed package and will not be removed if Python is uninstalled.)

The module is named ensurepip because if called when pip is
already installed, it does nothing. It also has an --upgrade option
that will cause it to install the bundled copy of pip if the existing
installed version of pip is older than the bundled copy.

enum

The new enum module (defined in PEP 435) provides a standard
implementation of enumeration types, allowing other modules (such as
socket) to provide more informative error messages and better

debugging support by replacing opaque integer constants with
backwards compatible enumeration values.

See also:

PEP 435 - Adding an Enum type to the Python standard library

PEP written by Barry Warsaw, Eli Bendersky and Ethan Furman,
implemented by Ethan Furman.

pathlib

The new pathlib module offers classes representing filesystem
paths with semantics appropriate for different operating systems. Path
classes are divided between pure paths, which provide purely
computational operations without 1/0O, and concrete paths, which
inherit from pure paths but also provide I/O operations.

https://www.python.org/dev/peps/pep-0435
https://www.python.org/dev/peps/pep-0435

For Python 3.4, this module is considered a provisional API.

See also:

PEP 428 - The pathlib module - object-oriented filesystem
paths

PEP written and implemented by Antoine Pitrou.

selectors

The new selectors module (created as part of implementing PEP
3156) allows high-level and efficient 1/O multiplexing, built upon the
select module primitives.

statistics

The new statistics module (defined in PEP 450) offers some core
statistics functionality directly in the standard library. This module
supports calculation of the mean, median, mode, variance and
standard deviation of a data series.

See also:

PEP 450 - Adding A Statistics Module To The Standard Library
PEP written and implemented by Steven D’Aprano

tracemalloc

The new tracemalloc module (defined in PEP 454) is a debug tool
to trace memory blocks allocated by Python. It provides the following
information:

https://www.python.org/dev/peps/pep-0428
https://www.python.org/dev/peps/pep-3156
https://www.python.org/dev/peps/pep-0450
https://www.python.org/dev/peps/pep-0450
https://www.python.org/dev/peps/pep-0454

e Trace where an object was allocated
e Statistics on allocated memory blocks per filename and per line

number: total size, number and average size of allocated memory
blocks

e Compute the differences between two snapshots to detect
memory leaks

See also:

PEP 454 - Add a new tracemalloc module to trace Python
memory allocations

PEP written and implemented by Victor Stinner

https://www.python.org/dev/peps/pep-0454

Improved Modules

abc

New function abc.get_cache_token() can be used to know when

to invalidate caches that are affected by changes in the object graph.
(Contributed by tukasz Langa in bpo-16832.)

New class ABC has ABCMeta as its meta class. Using ABC as a base

class has essentially the same effect as specifying
metaclass=abc.ABCMeta, but is simpler to type and easier to read.

(Contributed by Bruno Dupuis in bpo-16049.)
aifc

The getparams() method now returns a namedtuple rather than a
plain tuple. (Contributed by Claudiu Popa in bpo-17818.)

aifc.open() now supports the context management protocol: when
used in a with block, the close() method of the returned object will

be called automatically at the end of the block. (Contributed by Serhiy
Storchacha in bpo-16486.)

The writeframesraw() and writeframes() methods now accept
any bytes-like object. (Contributed by Serhiy Storchaka in bpo-8311.)

argparse

The FileType class now accepts encoding and errors arguments,
which are passed through to open(). (Contributed by Lucas Maystre
in bpo-11175.)

https://bugs.python.org/issue16832
https://bugs.python.org/issue16049
https://bugs.python.org/issue17818
https://bugs.python.org/issue16486
https://bugs.python.org/issue8311
https://bugs.python.org/issue11175

audioop

audioop now supports 24-bit samples. (Contributed by Serhiy
Storchaka in bpo-12866.)

New byteswap() function converts big-endian samples to little-
endian and vice versa. (Contributed by Serhiy Storchaka in bpo-
19641.)

All audioop functions now accept any bytes-like object. Strings are
not accepted: they didn’'t work before, now they raise an error right
away. (Contributed by Serhiy Storchaka in bpo-16685.)

base64

The encoding and decoding functions in base64 now accept any
bytes-like object in cases where it previously required a bytes or
bytearray instance. (Contributed by Nick Coghlan in bpo-17839.)

New functions a85encode(), a85decode(), b85encode(), and
b85decode() provide the ability to encode and decode binary data
from and to Ascii85 and the git/mercurial Base85 formats,
respectively. The a85 functions have options that can be used to
make them compatible with the variants of the Asci1i85 encoding,
including the Adobe variant. (Contributed by Martin Morrison, the
Mercurial project, Serhiy Storchaka, and Antoine Pitrou in bpo-17618.)

collections

The ChainMap.new_child() method now accepts an m argument
specifying the child map to add to the chain. This allows an existing

https://bugs.python.org/issue12866
https://bugs.python.org/issue19641
https://bugs.python.org/issue16685
https://bugs.python.org/issue17839
https://bugs.python.org/issue17618

mapping and/or a custom mapping type to be used for the child.
(Contributed by Vinay Sajip in bpo-16613.)

colorsys

The number of digits in the coefficients for the RGB — YIQ
conversions have been expanded so that they match the FCC NTSC
versions. The change in results should be less than 1% and may
better match results found elsewhere. (Contributed by Brian Landers
and Serhiy Storchaka in bpo-14323.)

contextlib

The new contextlib.suppress context manager helps to clarify

the intent of code that deliberately suppresses exceptions from a
single statement. (Contributed by Raymond Hettinger in bpo-15806
and Zero Piraeus in bpo-19266.)

The new contextlib.redirect_stdout() context manager
makes it easier for utility scripts to handle inflexible APIs that write
their output to sys.stdout and don’t provide any options to redirect
it. Using the context manager, the sys.stdout output can be
redirected to any other stream or, in conjunction with i0.StringIO,
to a string. The latter can be especially useful, for example, to capture
output from a function that was written to implement a command line
interface. It is recommended only for utility scripts because it affects
the global state of sys.stdout. (Contributed by Raymond Hettinger

in bpo-15805.)

The contextlib documentation has also been updated to include a
discussion of the differences between single use, reusable and

https://bugs.python.org/issue16613
https://bugs.python.org/issue14323
https://bugs.python.org/issue15806
https://bugs.python.org/issue19266
https://bugs.python.org/issue15805

reentrant context managers.

dbm

dbm.open() objects now support the context management protocol.
When used in a with statement, the close method of the database

object will be called automatically at the end of the block. (Contributed
by Claudiu Popa and Nick Coghlan in bpo-19282.)

dis

Functions show_code(), dis(), distb(), and disassemble()

now accept a keyword-only file argument that controls where they
write their output.

The dis module is now built around an Instruction class that

provides object oriented access to the details of each individual
bytecode operation.

A new method, get_instructions(), provides an iterator that

emits the Instruction stream for a given piece of Python code. Thus it
is now possible to write a program that inspects and manipulates a
bytecode object in ways different from those provided by the dis
module itself. For example:

>>> 1import dis

>>> for instr in dis.get_instructions(lambda x: x +
s print(instr.opname)

LOAD_FAST
LOAD_CONST
BINARY_ADD
RETURN_VALUE

{ —— T

https://bugs.python.org/issue19282

The various display tools in the dis module have been rewritten to
use these new components.

In addition, a new application-friendly class Bytecode provides an
object-oriented API for inspecting bytecode in both in human-readable
form and for iterating over instructions. The Bytecode constructor

takes the same arguments that get_instruction() does (plus an

optional current_offset), and the resulting object can be iterated to
produce Instruction objects. But it also has a dis method,

equivalent to calling dis on the constructor argument, but returned as
a multi-line string:

>>> pytecode = dis.Bytecode(lambda x: x + 1, current
>>> for instr in bytecode:
- print('{} ({})'.format(instr.opname, instr.c
LOAD_FAST (124)
LOAD_CONST (100)
BINARY_ADD (23)
RETURN_VALUE (83)
>>> pytecode.dis().splitlines()
[' 1 ® LOAD_FAST 0 (x)',
' -> 3 LOAD_CONST 1 (1),
: 6 BINARY_ADD',
: 7 RETURN_VALUE']

j E— o

Bytecode also has a class method, from_traceback(), that

provides the ability to manipulate a traceback (that s,
print(Bytecode.from_traceback(tb).dis()) is equivalent to
distb(tb)).

(Contributed by Nick Coghlan, Ryan Kelly and Thomas Kluyver in bpo-
11816 and Claudiu Popa in bpo-17916.)

https://bugs.python.org/issue11816
https://bugs.python.org/issue17916

New function stack_effect() computes the effect on the Python
stack of a given opcode and argument, information that is not
otherwise available. (Contributed by Larry Hastings in bpo-19722.)

doctest

A new option flag, FAIL_FAST, halts test running as soon as the first

failure is detected. (Contributed by R. David Murray and Daniel Urban
in bpo-16522.)

The doctest command line interface now uses argparse, and has
two new options, -0 and -f. -0 allows doctest options to be specified
on the command line, and -f is a shorthand for -o FAIL_FAST (to
parallel the similar option supported by the unittest CLI).
(Contributed by R. David Murray in bpo-11390.)

doctest will now find doctests in extension module __doc___ strings.
(Contributed by Zachary Ware in bpo-3158.)

email

as_string() now accepts a policy argument to override the default
policy of the message when generating a string representation of it.
This means that as_string can now be used in more circumstances,
instead of having to create and use a generator in order to pass
formatting parameters to its flatten method. (Contributed by R.
David Murray in bpo-18600.)

New method as_bytes() added to produce a bytes representation
of the message in a fashion similar to how as_string produces a
string representation. It does not accept the maxheaderlen argument,

https://bugs.python.org/issue19722
https://bugs.python.org/issue16522
https://bugs.python.org/issue11390
https://bugs.python.org/issue3158
https://bugs.python.org/issue18600

but does accept the unixfrom and policy arguments. The Message
__bytes__ () method calls it, meaning that bytes(mymsg) will now

produce the intuitive result: a bytes object containing the fully
formatted message. (Contributed by R. David Murray in bpo-18600.)

The Message.set_param() message now accepts a replace
keyword argument. When specified, the associated header will be
updated without changing its location in the list of headers. For
backward compatibility, the default is False. (Contributed by R. David
Murray in bpo-18891.)

A pair of new subclasses of Message have been added
(EmailMessage and MIMEPart), along with a new sub-module,
contentmanager and a new policy attribute content_manager.
All documentation is currently in the new module, which is being
added as part of email’'s new provisional API. These classes provide a
number of new methods that make extracting content from and
inserting content into email messages much easier. For details, see
the contentmanager documentation and the email: Examples.
These API additions complete the bulk of the work that was planned
as part of the email6é project. The currently provisional API is
scheduled to become final in Python 3.5 (possibly with a few minor
additions in the area of error handling). (Contributed by R. David
Murray in bpo-18891.)

filecmp

A new clear_cache() function provides the ability to clear the
filecmp comparison cache, which uses os.stat() information to

determine if the file has changed since the last compare. This can be
used, for example, if the file might have been changed and re-checked

https://bugs.python.org/issue18600
https://bugs.python.org/issue18891
https://bugs.python.org/issue18891

in less time than the resolution of a particular filesystem’'s file
modification time field. (Contributed by Mark Levitt in bpo-18149.)

New module attribute DEFAULT_IGNORES provides the list of
directories that are used as the default value for the ignore parameter
of the dircmp() function. (Contributed by Eli Bendersky in bpo-
15442.)

functools

The new partialmethod() descriptor brings partial argument
application to descriptors, just as partial() provides for normal

callables. The new descriptor also makes it easier to get arbitrary
callables (including partial() instances) to behave like normal

instance methods when included in a class definition. (Contributed by
Alon Horev and Nick Coghlan in bpo-4331.)

The new singledispatch() decorator brings support for single-
dispatch generic functions to the Python standard library. Where object
oriented programming focuses on grouping multiple operations on a
common set of data into a class, a generic function focuses on
grouping multiple implementations of an operation that allows it to
work with different kinds of data.

See also:

PEP 443 - Single-dispatch generic functions
PEP written and implemented by tukasz Langa.

total_ordering() now supports a return value of
NotImplemented from the underlying comparison function.
(Contributed by Katie Miller in bpo-10042.)

https://bugs.python.org/issue18149
https://bugs.python.org/issue15442
https://bugs.python.org/issue4331
https://www.python.org/dev/peps/pep-0443
https://bugs.python.org/issue10042

A pure-python version of the partial() function is now in the stdlib;
in CPython it is overridden by the C accelerated version, but it is
available for other implementations to use. (Contributed by Brian
Thorne in bpo-12428.)

gc

New function get_stats() returns a list of three per-generation
dictionaries containing the collections statistics since interpreter
startup. (Contributed by Antoine Pitrou in bpo-16351.)

glob

A new function escape() provides a way to escape special
characters in a filename so that they do not become part of the
globbing expansion but are instead matched literally. (Contributed by
Serhiy Storchaka in bpo-8402.)

hashlib

A new hashlib.pbkdf2_hmac() function provides the PKCS#5

password-based key derivation function 2. (Contributed by Christian
Heimes in bpo-18582.)

The name attribute of hashlib hash objects is now a formally
supported interface. It has always existed in CPython’'s hashlib
(although it did not return lower case names for all supported hashes),
but it was not a public interface and so some other Python
implementations have not previously supported it. (Contributed by
Jason R. Coombs in bpo-18532.)

https://bugs.python.org/issue12428
https://bugs.python.org/issue16351
https://bugs.python.org/issue8402
https://en.wikipedia.org/wiki/PBKDF2
https://bugs.python.org/issue18582
https://bugs.python.org/issue18532

hmac

hmac now accepts bytearray as well as bytes for the key
argument to the new() function, and the msg parameter to both the
new() function and the update() method now accepts any type
supported by the hashlib module. (Contributed by Jonas Borgstrom
in bpo-18240.)

The digestmod argument to the hmac.new() function may now be
any hash digest name recognized by hashlib. In addition, the
current behavior in which the value of digestmod defaults to MD5 is

deprecated: in a future version of Python there will be no default value.
(Contributed by Christian Heimes in bpo-17276.)

With the addition of block_size and name attributes (and the formal
documentation of the digest_size attribute), the hmac module now
conforms fully to the PEP 247 API. (Contributed by Christian Heimes
in bpo-18775.)

html

New function unescape() function converts HTML5 character

references to the corresponding Unicode characters. (Contributed by
Ezio Melotti in bpo-2927.)

HTMLParser accepts a new keyword argument convert_charrefs that,
when True, automatically converts all character references. For
backward-compatibility, its value defaults to False, but it will change
to True in a future version of Python, so you are invited to set it
explicitly and update your code to use this new feature. (Contributed
by Ezio Melotti in bpo-13633.)

https://bugs.python.org/issue18240
https://bugs.python.org/issue17276
https://www.python.org/dev/peps/pep-0247
https://bugs.python.org/issue18775
https://bugs.python.org/issue2927
https://bugs.python.org/issue13633

The strict argument of HTMLParser is now deprecated. (Contributed
by Ezio Melotti in bpo-15114.)

http

send_error () now accepts an optional additional explain parameter
which can be used to provide an extended error description, overriding
the hardcoded default if there is one. This extended error description
will be formatted using the error_message_format attribute and

sent as the body of the error response. (Contributed by Karl Cow in
bpo-12921.)

The http.server command line interface now has a -b/--bind

option that causes the server to listen on a specific address.
(Contributed by Malte Swart in bpo-17764.)

idlelib and IDLE

Since idlelib implements the IDLE shell and editor and is not intended
for import by other programs, it gets improvements with every release.
See Lib/idlelib/NEWS. txt for a cumulative list of changes since

3.3.0, as well as changes made in future 3.4.x releases. This file is
also available from the IDLE Help » About IDLE dialog.

importlib

The InspectLoader ABC defines a new method,
source_to_code() that accepts source data and a path and returns
a code object. The default implementation is equivalent to
compile(data, path, 'exec', dont_inherit=True).
(Contributed by Eric Snow and Brett Cannon in bpo-15627.)

https://bugs.python.org/issue15114
https://bugs.python.org/issue12921
https://bugs.python.org/issue17764
https://bugs.python.org/issue15627

InspectLoader also now has a default implementation for the
get_code() method. However, it will normally be desirable to

override the default implementation for performance reasons.
(Contributed by Brett Cannon in bpo-18072.)

The reload() function has been moved from imp to importlib as
part of the imp module deprecation. (Contributed by Berker Peksag in
bpo-18193.)

importlib.util now has a MAGIC_NUMBER attribute providing
access to the bytecode version number. This replaces the
get_magic() function in the deprecated imp module. (Contributed
by Brett Cannon in bpo-18192.)

New importlib.util functions cache_from_source() and
source_from_cache() replace the same-named functions in the
deprecated imp module. (Contributed by Brett Cannon in bpo-18194.)

The importlib bootstrap NamespacelLoader now conforms to the
InspectLoader ABC, which means that runpy and python -m

can now be used with namespace packages. (Contributed by Brett
Cannon in bpo-18058.)

importlib.util has a new function decode_source() that

decodes source from bytes using universal newline processing. This is
useful for implementing InspectLoader.get_source() methods.

importlib.machinery.ExtensionFileLoader now has a
get_filename() method. This was inadvertently omitted in the
original implementation. (Contributed by Eric Snow in bpo-19152.)

Inspect

https://bugs.python.org/issue18072
https://bugs.python.org/issue18193
https://bugs.python.org/issue18192
https://bugs.python.org/issue18194
https://bugs.python.org/issue18058
https://bugs.python.org/issue19152

The inspect module now offers a basic command line interface to

quickly display source code and other information for modules, classes
and functions. (Contributed by Claudiu Popa and Nick Coghlan in bpo-
18626.)

unwrap() makes it easy to unravel wrapper function chains created
by functools.wraps() (and any other API that sets the
__wrapped___ attribute on a wrapper function). (Contributed by Daniel
Urban, Aaron lles and Nick Coghlan in bpo-13266.)

As part of the implementation of the new enum module, the inspect
module now has substantially better support for custom __dir___

methods and dynamic class attributes provided through metaclasses.
(Contributed by Ethan Furman in bpo-18929 and bpo-19030.)

getfullargspec() and getargspec() now wuse the
signature() API This allows them to support a much broader
range of callables, including those with __signature___ attributes,
those with metadata provided by argument clinic,
functools.partial() objects and more. Note that, unlike
signature(), these functions still ignore __wrapped___ attributes,
and report the already bound first argument for bound methods, so it is
still necessary to update your code to use signature() directly if

those features are desired. (Contributed by Yury Selivanov in bpo-
17481.)

signature() now supports duck types of CPython functions, which

adds support for functions compiled with Cython. (Contributed by
Stefan Behnel and Yury Selivanov in bpo-17159.)

Ipaddress

https://bugs.python.org/issue18626
https://bugs.python.org/issue13266
https://bugs.python.org/issue18929
https://bugs.python.org/issue19030
https://bugs.python.org/issue17481
https://bugs.python.org/issue17159

ipaddress was added to the standard library in Python 3.3 as a

provisional API. With the release of Python 3.4, this qualification has
been removed: ipaddress is now considered a stable API, covered

by the normal standard library requirements to maintain backwards
compatibility.

A new 1is_global property is True if an address is globally
routeable. (Contributed by Peter Moody in bpo-17400.)

logging

The TimedRotatingFileHandler has a new atTime parameter

that can be used to specify the time of day when rollover should
happen. (Contributed by Ronald Oussoren in bpo-9556.)

SocketHandler and DatagramHandler now support Unix domain
sockets (by setting port to None). (Contributed by Vinay Sajip in
commit ce46195b56a9.)

fileConfig() now accepts a configparser.RawConfigParser
subclass instance for the fname parameter. This facilitates using a
configuration file when logging configuration is just a part of the overall
application configuration, or where the application modifies the
configuration before passing it to fileConfig(). (Contributed by
Vinay Sajip in bpo-16110.)

Logging configuration data received from a socket via the
logging.config.listen() function can now be validated before
being processed by supplying a verification function as the argument
to the new verify keyword argument. (Contributed by Vinay Sajip in
bpo-15452.)

https://bugs.python.org/issue17400
https://bugs.python.org/issue9556
https://bugs.python.org/issue16110
https://bugs.python.org/issue15452

marshal

The default marshal version has been bumped to 3. The code
implementing the new version restores the Python2 behavior of
recording only one copy of interned strings and preserving the
interning on deserialization, and extends this “one copy” ability to any
object type (including handling recursive references). This reduces
both the size of .pyc files and the amount of memory a module
occupies in memory when it is loaded from a .pyc (or .pyo) file.
(Contributed by Kristjan Valur Jonsson in bpo-16475, with additional
speedups by Antoine Pitrou in bpo-19219.)

mmap

mmap objects can now be weakrefed. (Contributed by Valerie
Lambert in bpo-4885.)

multiprocessing

On Unix two new start methods, spawn and forkserver, have been
added for starting processes using multiprocessing. These make
the mixing of processes with threads more robust, and the spawn

method matches the semantics that multiprocessing has always used
on Windows. New function get_all_start_methods() reports all

start methods available on the platform, get_start_method()
reports the current start method, and set_start_method() sets the
start method. (Contributed by Richard Oudkerk in bpo-8713.)

multiprocessing also now has the concept of a context, which
determines how child processes are created. New function

https://bugs.python.org/issue16475
https://bugs.python.org/issue19219
https://bugs.python.org/issue4885
https://bugs.python.org/issue8713

get_context () returns a context that uses a specified start method.
It has the same API as the multiprocessing module itself, so you
can use it to create Pools and other objects that will operate within

that context. This allows a framework and an application or different
parts of the same application to use multiprocessing without interfering
with each other. (Contributed by Richard Oudkerk in bpo-18999.)

Except when using the old fork start method, child processes no
longer inherit unneeded handles/file descriptors from their parents
(part of bpo-8713).

multiprocessing now relies on runpy (which implements the -m
switch) to initialise __main___ appropriately in child processes when
using the spawn or forkserver start methods. This resolves some
edge cases where combining multiprocessing, the -m command line
switch, and explicit relative imports could cause obscure failures in
child processes. (Contributed by Nick Coghlan in bpo-19946.)

operator

New function length_hint() provides an implementation of the
specification for how the __ length_hint__ () special method
should be used, as part of the PEP 424 formal specification of this
language feature. (Contributed by Armin Ronacher in bpo-16148.)

There is now a pure-python version of the operator module
available for reference and for use by alternate implementations of
Python. (Contributed by Zachary Ware in bpo-16694.)

0S

https://bugs.python.org/issue18999
https://bugs.python.org/issue8713
https://bugs.python.org/issue19946
https://www.python.org/dev/peps/pep-0424
https://bugs.python.org/issue16148
https://bugs.python.org/issue16694

There are new functions to get and set the inheritable flag of a file
descriptor (0s.get_inheritable(), os.set_inheritable()) or
a Windows handle (os.get_handle_inheritable(),
os.set_handle_inheritable()).

New function cpu_count () reports the number of CPUs available on
the platform on which Python is running (or None if the count can’t be
determined). The multiprocessing.cpu_count() function is now
implemented in terms of this function). (Contributed by Trent Nelson,
Yogesh Chaudhari, Victor Stinner, and Charles-Francois Natali in bpo-
17914.)

os.path.samestat() is now available on the Windows platform
(and the os.path.samefile() implementation is now shared
between Unix and Windows). (Contributed by Brian Curtin in bpo-
11939.)

os.path.ismount() now recognizes volumes mounted below a
drive root on Windows. (Contributed by Tim Golden in bpo-9035.)

os.open() supports two new flags on platforms that provide them,
O_PATH (un-opened file descriptor), and O_TMPFILE (unnamed
temporary file; as of 3.4.0 release available only on Linux systems with
a kernel version of 3.11 or newer that have uapi headers). (Contributed
by Christian Heimes in bpo-18673 and Benjamin Peterson,
respectively.)

pdb

pdb has been enhanced to handle generators, yield, and yield
from in a more useful fashion. This is especially helpful when
debugging asyncio based programs. (Contributed by Andrew

https://bugs.python.org/issue17914
https://bugs.python.org/issue11939
https://bugs.python.org/issue9035
https://bugs.python.org/issue18673

Svetlov and Xavier de Gaye in bpo-16596.)

The print command has been removed from pdb, restoring access
to the Python print() function from the pdb command line.
Python2’s pdb did not have a print command; instead, entering
print executed the print statement. In Python3 print was
mistakenly made an alias for the pdb p command. p, however, prints
the repr of its argument, not the str like the Python2 print
command did. Worse, the Python3 pdb print command shadowed
the Python3 print function, making it inaccessible at the pdb
prompt. (Contributed by Connor Osborn in bpo-18764.)

pickle

pickle now supports (but does not use by default) a new pickle
protocol, protocol 4. This new protocol addresses a number of issues
that were present in previous protocols, such as the serialization of
nested classes, very large strings and containers, and classes whose
new__ () method takes keyword-only arguments. It also provides

some efficiency improvements.

See also:

PEP 3154 - Pickle protocol 4
PEP written by Antoine Pitrou and implemented by Alexandre
Vassalotti.

plistlib

plistlib now has an API that is similar to the standard pattern for
stdlib serialization protocols, with new load(), dump(), loads(),

https://bugs.python.org/issue16596
https://bugs.python.org/issue18764
https://www.python.org/dev/peps/pep-3154

and dumps() functions. (The older API is now deprecated.) In
addition to the already supported XML plist format (FMT_XML), it also
now supports the binary plist format (FMT_BINARY). (Contributed by
Ronald Oussoren and others in bpo-14455.)

poplib

Two new methods have been added to poplib: capa(), which

returns the list of capabilities advertised by the POP server, and
stls(), which switches a clear-text POP3 session into an encrypted

POP3 session if the POP server supports it. (Contributed by Lorenzo
Catucci in bpo-4473.)

pprint

The pprint module’s PrettyPrinter class and its pformat(),
and pprint() functions have a new option, compact, that controls
how the output is formatted. Currently setting compact to True means

that sequences will be printed with as many sequence elements as will
fit within width on each (indented) line. (Contributed by Serhiy
Storchaka in bpo-19132.)

Long strings are now wrapped using Python’s normal line continuation
syntax. (Contributed by Antoine Pitrou in bpo-17150.)

pty

pty.spawn() now returns the status value from os.waitpid() on
the child process, instead of None. (Contributed by Gregory P. Smith.)

https://bugs.python.org/issue14455
https://bugs.python.org/issue4473
https://bugs.python.org/issue19132
https://bugs.python.org/issue17150

pydoc

The pydoc module is now based directly on the
inspect.signature() introspection API, allowing it to provide
signature information for a wider variety of callable objects. This
change also means that __wrapped___ attributes are now taken into
account when displaying help information. (Contributed by Larry
Hastings in bpo-19674.)

The pydoc module no longer displays the self parameter for already

bound methods. Instead, it aims to always display the exact current
signature of the supplied callable. (Contributed by Larry Hastings in
bpo-20710.)

In addition to the changes that have been made to pydoc directly, its
handling of custom _ dir__ methods and various descriptor

behaviours has also been improved substantially by the underlying
changes in the inspect module.

As the help() builtin is based on pydoc, the above changes also
affect the behaviour of help().

re

New fullmatch() function and regex.fullmatch() method
anchor the pattern at both ends of the string to match. This provides a
way to be explicit about the goal of the match, which avoids a class of
subtle bugs where $ characters get lost during code changes or the
addition of alternatives to an existing regular expression. (Contributed
by Matthew Barnett in bpo-16203.)

https://bugs.python.org/issue19674
https://bugs.python.org/issue20710
https://bugs.python.org/issue16203

The repr of regex objects now includes the pattern and the flags; the
repr of match objects now includes the start, end, and the part of the
string that matched. (Contributed by Hugo Lopes Tavares and Serhiy
Storchaka in bpo-13592 and bpo-17087.)

resource

New prlimit() function, available on Linux platforms with a kernel
version of 2.6.36 or later and glibc of 2.13 or later, provides the ability
to query or set the resource limits for processes other than the one
making the call. (Contributed by Christian Heimes in bpo-16595.)

On Linux kernel version 2.6.36 or later, there are also some new Linux
specific constants: RLIMIT_MSGQUEUE, RLIMIT_NICE,
RLIMIT_RTPRIO, RLIMIT_RTTIME, and RLIMIT_SIGPENDING.
(Contributed by Christian Heimes in bpo-19324.)

On FreeBSD version 9 and later, there some new FreeBSD specific
constants: RLIMIT_SBSIZE, RLIMIT_SWAP, and RLIMIT_NPTS.

(Contributed by Claudiu Popa in bpo-19343.)

select

epoll objects now support the context management protocol. When
used in a with statement, the close() method will be called

automatically at the end of the block. (Contributed by Serhiy Storchaka
in bpo-16488.)

devpoll objects now have fileno() and close() methods, as
well as a new attribute closed. (Contributed by Victor Stinner in bpo-
18794.)

https://bugs.python.org/issue13592
https://bugs.python.org/issue17087
https://bugs.python.org/issue16595
https://bugs.python.org/issue19324
https://bugs.python.org/issue19343
https://bugs.python.org/issue16488
https://bugs.python.org/issue18794

shelve

Shelf instances may now be used in with statements, and will be
automatically closed at the end of the with block. (Contributed by
Filip Gruszczynski in bpo-13896.)

shutil

copyfile() now raises a specific Error subclass,
SameFileError, when the source and destination are the same file,
which allows an application to take appropriate action on this specific
error. (Contributed by Atsuo Ishimoto and Hynek Schlawack in bpo-
1492704.)

smtpd

The SMTPServer and SMTPChannel classes now accept a map
keyword argument which, if specified, is passed in to
asynchat.async_chat as its map argument. This allows an

application to avoid affecting the global socket map. (Contributed by
Vinay Sajip in bpo-11959.)

smtplib
SMTPException is now a subclass of OSError, which allows both
socket level errors and SMTP protocol level errors to be caught in one

try/except statement by code that only cares whether or not an error
occurred. (Contributed by Ned Jackson Lovely in bpo-2118.)

socket

https://bugs.python.org/issue13896
https://bugs.python.org/issue1492704
https://bugs.python.org/issue11959
https://bugs.python.org/issue2118

The socket module now supports the CAN_BCM protocol on platforms
that support it. (Contributed by Brian Thorne in bpo-15359.)

Socket objects have new methods to get or set their inheritable flag,
get_inheritable() and set_inheritable().

The socket.AF_* and socket.SOCK_* constants are now
enumeration values using the new enum module. This allows

meaningful names to be printed during debugging, instead of integer
“magic numbers”.

The AF_LINK constant is now available on BSD and OSX.

inet_pton() and inet_ntop() are now supported on Windows.
(Contributed by Atsuo Ishimoto in bpo-7171.)

sglite3

A new boolean parameter to the connect() function, uri, can be
used to indicate that the database parameter is a uri (see the SQLite
URI documentation). (Contributed by poq in bpo-13773.)

ssl

PROTOCOL_TLSv1i_1 and PROTOCOL_TLSvl 2 (TLSvl.l and

TLSv1.2 support) have been added; support for these protocols is only
available if Python is linked with OpenSSL 1.0.1 or later. (Contributed
by Michele Orru and Antoine Pitrou in bpo-16692.)

New function create_default_context() provides a standard
way to obtain an SSLContext whose settings are intended to be a
reasonable balance between compatibility and security. These settings

https://bugs.python.org/issue15359
https://bugs.python.org/issue7171
https://www.sqlite.org/uri.html
https://bugs.python.org/issue13773
https://bugs.python.org/issue16692

are more stringent than the defaults provided by the SSLContext
constructor, and may be adjusted in the future, without prior
deprecation, if best-practice security requirements change. The new
recommended best practice for using stdlib libraries that support SSL
is to use create_default_context() to obtain an SSLContext
object, modify it if needed, and then pass it as the context argument of
the appropriate stdlib API. (Contributed by Christian Heimes in bpo-
19689.)

SSLContext method load_verify_locations() accepts a new

optional argument cadata, which can be used to provide PEM or DER
encoded certificates directly via strings or bytes, respectively.
(Contributed by Christian Heimes in bpo-18138.)

New function get_default_verify_paths() returns a named
tuple of the paths and environment variables that the
set_default_verify_paths() method uses to set OpenSSL’'s

default cafile and capath. This can be an aid in debugging default
verification issues. (Contributed by Christian Heimes in bpo-18143.)

SSLContext has a new method, cert_store_stats(), that
reports the number of loaded X.509 certs, X.509 CA certs, and
certificate revocation lists (crls), as well as a get_ca_certs()
method that returns a list of the loaded CA certificates. (Contributed by
Christian Heimes in bpo-18147.)

If OpenSSL 0.9.8 or later is available, SSLContext has a new
attribute verify_flags that can be used to control the certificate
verification process by setting it to some combination of the new
constants VERIFY_DEFAULT, VERIFY_CRL_CHECK_LEAF,
VERIFY_CRL_CHECK_CHAIN, or VERIFY_X509_STRICT. OpenSSL
does not do any CRL verification by default. (Contributed by Christien

https://bugs.python.org/issue19689
https://bugs.python.org/issue18138
https://bugs.python.org/issue18143
https://bugs.python.org/issue18147

Heimes in bpo-8813.)

New SSLContext method load_default_certs() loads a set of

default “certificate authority” (CA) certificates from default locations,
which vary according to the platform. It can be used to load both TLS
web server authentication certificates (purpose=SERVER_AUTH) for a

client to use to verify a server, and certificates for a server to use in
verifying client certificates (purpose=CLIENT_AUTH). (Contributed

by Christian Heimes in bpo-19292.)

Two new windows-only functions, enum_certificates() and
enum_crls() provide the ability to retrieve certificates, certificate
information, and CRLs from the Windows cert store. (Contributed by
Christian Heimes in bpo-17134.)

Support for server-side SNI (Server Name Indication) using the new
ssl.SSLContext.set_servername_callback() method.

(Contributed by Daniel Black in bpo-8109.)

The dictionary returned by SSLSocket.getpeercert() contains
additional X509v3 extension items: crlDistributionPoints,
calIssuers, and OCSP URIs. (Contributed by Christian Heimes in
bpo-18379.)

Stat

The stat module is now backed by a C implementation in _stat. A
C implementation is required as most of the values aren’t standardized
and are platform-dependent. (Contributed by Christian Heimes in bpo-
11016.)

The module supports new ST_MODE flags, S_IFDOOR, S_IFPORT,

https://bugs.python.org/issue8813
https://bugs.python.org/issue19292
https://bugs.python.org/issue17134
https://bugs.python.org/issue8109
https://bugs.python.org/issue18379
https://bugs.python.org/issue11016

and S_IFWHT. (Contributed by Christian Hiemes in bpo-11016.)

struct

New function iter_unpack and a new
struct.Struct.iter_unpack() method on compiled formats
provide streamed unpacking of a buffer containing repeated instances
of a given format of data. (Contributed by Antoine Pitrou in bpo-
17804.)

subprocess

check_output() now accepts an input argument that can be used
to provide the contents of stdin for the command that is run.
(Contributed by Zack Weinberg in bpo-16624.)

getstatus() and getstatusoutput() now work on Windows.

This change was actually inadvertently made in 3.3.4. (Contributed by
Tim Golden in bpo-10197.)

sSunau

The getparams() method now returns a namedtuple rather than a
plain tuple. (Contributed by Claudiu Popa in bpo-18901.)

sunau.open() now supports the context management protocol:
when used in a with block, the close method of the returned object

will be called automatically at the end of the block. (Contributed by
Serhiy Storchaka in bpo-18878.)

AU_write.setsampwidth() now supports 24 bit samples, thus

https://bugs.python.org/issue11016
https://bugs.python.org/issue17804
https://bugs.python.org/issue16624
https://bugs.python.org/issue10197
https://bugs.python.org/issue18901
https://bugs.python.org/issue18878

adding support for writing 24 sample using the module. (Contributed
by Serhiy Storchaka in bpo-19261.)

The writeframesraw() and writeframes() methods now accept
any bytes-like object. (Contributed by Serhiy Storchaka in bpo-8311.)

Sys

New function sys.getallocatedblocks() returns the current

number of blocks allocated by the interpreter. (In CPython with the
default --with-pymalloc setting, this is allocations made through

the PyObject_Malloc() APIL) This can be useful for tracking

memory leaks, especially if automated via a test suite. (Contributed by
Antoine Pitrou in bpo-13390.)

When the Python interpreter starts in interactive mode, it checks for an
__interactivehook___ attribute on the sys module. If the attribute

exists, its value is called with no arguments just before interactive
mode is started. The check is made after the PYTHONSTARTUP file is

read, so it can be set there. The site module sets it to a function that
enables tab completion and history saving (in ~/.python-history)
if the platform supports readline. If you do not want this (new)
behavior, you can override it in PYTHONSTARTUP, sitecustomize,
or usercustomize by deleting this attribute from sys (or setting it to
some other callable). (Contributed by Eric Araujo and Antoine Pitrou in
bpo-5845.)

tarfile

The tarfile module now supports a simple Command-Line
Interface when called as a script directly or via -m. This can be used to

https://bugs.python.org/issue19261
https://bugs.python.org/issue8311
https://bugs.python.org/issue13390
https://bugs.python.org/issue5845

create and extract tarfile archives. (Contributed by Berker Peksag in
bpo-13477.)

textwrap

The TextWrapper class has two new attributes/constructor
arguments: max_lines, which limits the number of lines in the output,
and placeholder, which is a string that will appear at the end of the

output if it has been truncated because of max_lines. Building on
these capabilities, a new convenience function shorten() collapses

all of the whitespace in the input to single spaces and produces a
single line of a given width that ends with the placeholder (by default,
[...]). (Contributed by Antoine Pitrou and Serhiy Storchaka in bpo-
18585 and bpo-18725.)

threading

The Thread object representing the main thread can be obtained
from the new main_thread() function. In normal conditions this will

be the thread from which the Python interpreter was started.
(Contributed by Andrew Svetlov in bpo-18882.)

traceback

A new traceback.clear_frames() function takes a traceback

object and clears the local variables in all of the frames it references,
reducing the amount of memory consumed. (Contributed by Andrew
Kuchling in bpo-1565525.)

types

https://bugs.python.org/issue13477
https://bugs.python.org/issue18585
https://bugs.python.org/issue18725
https://bugs.python.org/issue18882
https://bugs.python.org/issue1565525

A new DynamicClassAttribute() descriptor provides a way to

define an attribute that acts normally when looked up through an
instance object, but which is routed to the class __getattr__ when

looked up through the class. This allows one to have properties active
on a class, and have virtual attributes on the class with the same
name (see Enum for an example). (Contributed by Ethan Furman in
bpo-19030.)

urllib

urllib.request now supports data: URLs via the DataHandler
class. (Contributed by Mathias Panzenbéck in bpo-16423.)

The http method that will be used by a Request class can now be
specified by setting a method class attribute on the subclass.
(Contributed by Jason R Coombs in bpo-18978.)

Request objects are now reusable: if the full _url or data
attributes are modified, all relevant internal properties are updated.
This means, for example, that it is now possible to use the same
Request object in more than one OpenerDirector.open() call
with different data arguments, or to modify a Request’s url rather

than recomputing it from scratch. There is also a new
remove_header () method that can be used to remove headers from

a Request. (Contributed by Alexey Kachayev in bpo-16464, Daniel
Wozniak in bpo-17485, and Damien Brecht and Senthil Kumaran in
bpo-17272.)

HTTPError objects now have a headers attribute that provides

access to the HTTP response headers associated with the error.
(Contributed by Berker Peksag in bpo-15701.)

https://bugs.python.org/issue19030
https://bugs.python.org/issue16423
https://bugs.python.org/issue18978
https://bugs.python.org/issue16464
https://bugs.python.org/issue17485
https://bugs.python.org/issue17272
https://bugs.python.org/issue15701

unittest

The TestCase class has a new method, subTest (), that produces
a context manager whose with block becomes a “sub-test”. This
context manager allows a test method to dynamically generate
subtests by, say, calling the subTest context manager inside a loop.
A single test method can thereby produce an indefinite number of
separately-identified and separately-counted tests, all of which will run
even if one or more of them fail. For example:

class NumbersTest(unittest.TestCase):
def test_even(self):
for i in range(6):
with self.subTest(i=1i):
self.assertEqual(i % 2, 0)

will result in six subtests, each identified in the unittest verbose output
with a label consisting of the variable name 1 and a particular value for
that variable (1=0, i=1, etc). See Distinguishing test iterations using
subtests for the full version of this example. (Contributed by Antoine
Pitrou in bpo-16997.)

unittest.main() now accepts an iterable of test names for

defaultTest, where previously it only accepted a single test name as a
string. (Contributed by Jyrki Pulliainen in bpo-15132.)

If SkipTest is raised during test discovery (that is, at the module

level in the test file), it is now reported as a skip instead of an error.
(Contributed by Zach Ware in bpo-16935.)

discover () now sorts the discovered files to provide consistent test

ordering. (Contributed by Martin Melin and Jeff Ramnani in bpo-
16709.)

https://bugs.python.org/issue16997
https://bugs.python.org/issue15132
https://bugs.python.org/issue16935
https://bugs.python.org/issue16709

TestSuite now drops references to tests as soon as the test has
been run, if the test is successful. On Python interpreters that do
garbage collection, this allows the tests to be garbage collected if
nothing else is holding a reference to the test. It is possible to override
this behavior by creating a TestSuite subclass that defines a
custom _removeTestAtIndex method. (Contributed by Tom Wardill,
Matt McClure, and Andrew Svetlov in bpo-11798.)

A new test assertion context-manager, assertLogs(), will ensure
that a given block of code emits a log message using the logging
module. By default the message can come from any logger and have
a priority of INFO or higher, but both the logger name and an
alternative minimum logging level may be specified. The object
returned by the context manager can be queried for the LogRecords

and/or formatted messages that were logged. (Contributed by Antoine
Pitrou in bpo-18937.)

Test discovery now works with namespace packages (Contributed by
Claudiu Popa in bpo-17457.)

unittest.mock objects now inspect their specification signatures
when matching calls, which means an argument can now be matched
by either position or name, instead of only by position. (Contributed by
Antoine Pitrou in bpo-17015.)

mock_open() objects now have readline and readlines
methods. (Contributed by Toshio Kuratomi in bpo-17467.)

venv

venv now includes activation scripts for the csh and fish shells.

https://bugs.python.org/issue11798
https://bugs.python.org/issue18937
https://bugs.python.org/issue17457
https://bugs.python.org/issue17015
https://bugs.python.org/issue17467

(Contributed by Andrew Svetlov in bpo-15417.)

EnvBuilder and the create() convenience function take a new
keyword argument with_pip, which defaults to False, that controls
whether or not EnvBuilder ensures that pip is installed in the
virtual environment. (Contributed by Nick Coghlan in bpo-19552 as
part of the PEP 453 implementation.)

wave

The getparams() method now returns a namedtuple rather than a
plain tuple. (Contributed by Claudiu Popa in bpo-17487.)

wave.open() now supports the context management protocol.
(Contributed by Claudiu Popa in bpo-17616.)

wave can now write output to unseekable files. (Contributed by David
Jones, Guilherme Polo, and Serhiy Storchaka in bpo-5202.)

The writeframesraw() and writeframes() methods now accept
any bytes-like object. (Contributed by Serhiy Storchaka in bpo-8311.)

weakref

New WeakMethod class simulates weak references to bound
methods. (Contributed by Antoine Pitrou in bpo-14631.)

New finalize class makes it possible to register a callback to be
invoked when an object is garbage collected, without needing to
carefully manage the lifecycle of the weak reference itself.
(Contributed by Richard Oudkerk in bpo-15528.)

https://bugs.python.org/issue15417
https://bugs.python.org/issue19552
https://www.python.org/dev/peps/pep-0453
https://bugs.python.org/issue17487
https://bugs.python.org/issue17616
https://bugs.python.org/issue5202
https://bugs.python.org/issue8311
https://bugs.python.org/issue14631
https://bugs.python.org/issue15528

The callback, if any, associated with a ref is now exposed via the
__callback__ attribute. (Contributed by Mark Dickinson in bpo-
17643.)

xml.etree

A new parser, XMLPullParser, allows a non-blocking applications to
parse XML documents. An example can be seen at Pull API for non-
blocking parsing. (Contributed by Antoine Pitrou in bpo-17741.)

The xml.etree.ElementTree tostring() and
tostringlist() functions, and the ElementTree write()
method, now have a short_empty _elements keyword-only parameter
providing control over whether elements with no content are written in
abbreviated (<tag />) or expanded (<tag></tag>) form.
(Contributed by Ariel Poliak and Serhiy Storchaka in bpo-14377.)

zipfile

The writepy() method of the PyZipFile class has a new filterfunc

option that can be used to control which directories and files are added
to the archive. For example, this could be used to exclude test files
from the archive. (Contributed by Christian Tismer in bpo-19274.)

The allowZip64 parameter to ZipFile and Pyzipfile is now True
by default. (Contributed by William Mallard in bpo-17201.)

https://bugs.python.org/issue17643
https://bugs.python.org/issue17741
https://bugs.python.org/issue14377
https://bugs.python.org/issue19274
https://bugs.python.org/issue17201

CPython Implementation Changes

PEP 445: Customization of CPython Memory
Allocators

PEP 445 adds new C level interfaces to customize memory allocation
in the CPython interpreter.

See also:

PEP 445 - Add new APIs to customize Python memory
allocators

PEP written and implemented by Victor Stinner.

PEP 442: Safe Object Finalization

PEP 442 removes the current limitations and quirks of object
finalization in CPython. With it, objects with __del__ () methods, as
well as generators with finally clauses, can be finalized when they
are part of a reference cycle.

As part of this change, module globals are no longer forcibly set to
None during interpreter shutdown in most cases, instead relying on
the normal operation of the cyclic garbage collector. This avoids a
whole class of interpreter-shutdown-time errors, usually involving
__del__ methods, that have plagued Python since the cyclic GC was

first introduced.

See also:

PEP 442 - Safe object finalization

https://www.python.org/dev/peps/pep-0445
https://www.python.org/dev/peps/pep-0445
https://www.python.org/dev/peps/pep-0442
https://www.python.org/dev/peps/pep-0442

PEP written and implemented by Antoine Pitrou.

PEP 456: Secure and Interchangeable Hash
Algorithm

PEP 456 follows up on earlier security fix work done on Python’s hash
algorithm to address certain DOS attacks to which public facing APIs
backed by dictionary lookups may be subject. (See bpo-14621 for the
start of the current round of improvements.) The PEP unifies
CPython’s hash code to make it easier for a packager to substitute a
different hash algorithm, and switches Python’s default implementation
to a SipHash implementation on platforms that have a 64 bit data type.
Any performance differences in comparison with the older FNV
algorithm are trivial.

The PEP adds additional fields to the sys.hash_info struct

sequence to describe the hash algorithm in use by the currently
executing binary. Otherwise, the PEP does not alter any existing
CPython APls.

PEP 436: Argument Clinic

“Argument Clinic” (PEP 436) is now part of the CPython build process
and can be used to simplify the process of defining and maintaining
accurate signatures for builtins and standard library extension modules
implemented in C.

Some standard library extension modules have been converted to use
Argument Clinic in Python 3.4, and pydoc and inspect have been
updated accordingly.

It is expected that signature metadata for programmatic introspection

https://www.python.org/dev/peps/pep-0456
https://bugs.python.org/issue14621
https://www.python.org/dev/peps/pep-0436

will be added to additional callables implemented in C as part of
Python 3.4 maintenance releases.

Note: The Argument Clinic PEP is not fully up to date with the state
of the implementation. This has been deemed acceptable by the
release manager and core development team in this case, as
Argument Clinic will not be made available as a public API for third
party use in Python 3.4,

See also:

PEP 436 - The Argument Clinic DSL
PEP written and implemented by Larry Hastings.

Other Build and C API Changes

e The new PyType_GetSlot() function has been added to the
stable ABI, allowing retrieval of function pointers from named type
slots when using the limited API. (Contributed by Martin von Léwis
in bpo-17162.)

e The new Py_SetStandardStreameEncoding() pre-
initialization APl allows applications embedding the CPython
interpreter to reliably force a particular encoding and error handler
for the standard streams. (Contributed by Bastien Montagne and
Nick Coghlan in bpo-16129.)

e Most Python C APIs that don’t mutate string arguments are now
correctly marked as accepting const char * rather than char
*. (Contributed by Serhiy Storchaka in bpo-1772673.)

e A new shell version of python-config can be used even when
a python interpreter is not available (for example, in cross
compilation scenarios).

e PyUnicode_FromFormat() now supports width and precision

https://www.python.org/dev/peps/pep-0436
https://bugs.python.org/issue17162
https://bugs.python.org/issue16129
https://bugs.python.org/issue1772673

specifications for %s, %A, %U, %V, %S, and %R. (Contributed by Ysj
Ray and Victor Stinner in bpo-7330.)

e New function PyStructSequence_InitType2() supplements
the existing PyStructSequence_InitType() function. The
difference is that it returns © on success and -1 on failure.

e The CPython source can now be compiled using the address
sanity checking features of recent versions of GCC and clang: the
false alarms in the small object allocator have been silenced.
(Contributed by Dhiru Kholia in bpo-18596.)

e The Windows build now uses Address Space Layout
Randomization and Data Execution Prevention. (Contributed by
Christian Heimes in bpo-16632.)

e New function PyObject_LengthHint () is the C API equivalent
of operator.length_hint (). (Contributed by Armin Ronacher
in bpo-16148.)

Other Improvements

e The python command has a new option, -I, which causes it to
run in “isolated mode”, which means that sys.path contains
neither the script’s directory nor the user’'s site-packages
directory, and all PYTHON* environment variables are ignored (it
implies both -s and -E). Other restrictions may also be applied in
the future, with the goal being to isolate the execution of a script
from the user’s environment. This is appropriate, for example,
when Python is used to run a system script. On most POSIX
systems it can and should be used in the #! line of system
scripts. (Contributed by Christian Heimes in bpo-16499.)

e Tab-completion is now enabled by default in the interactive
interpreter on systems that support readline. History is also
enabled by default, and is written to (and read from) the file
~/ .python-history. (Contributed by Antoine Pitrou and Eric
Araujo in bpo-5845.)

https://bugs.python.org/issue7330
https://bugs.python.org/issue18596
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Data_Execution_Prevention
https://bugs.python.org/issue16632
https://bugs.python.org/issue16148
https://bugs.python.org/issue16499
https://bugs.python.org/issue5845

Invoking the Python interpreter with - -version now outputs the
version to standard output instead of standard error (bpo-18338).
Similar changes were made to argparse (bpo-18920) and other
modules that have script-like invocation capabilities (bpo-18922).
The CPython Windows installer now adds .py to the PATHEXT
variable when extensions are registered, allowing users to run a
python script at the windows command prompt by just typing its
name without the .py extension. (Contributed by Paul Moore in
bpo-18569.)

A new make target coverage-report will build python, run the test
suite, and generate an HTML coverage report for the C codebase
using gcov and Icov.

The -R option to the python regression test suite now also checks
for memory allocation leaks, using
sys.getallocatedblocks(). (Contributed by Antoine Pitrou
in bpo-13390.)

python -m now works with namespace packages.

The stat module is now implemented in C, which means it gets
the values for its constants from the C header files, instead of
having the values hard-coded in the python module as was
previously the case.

Loading multiple python modules from a single OS module (. so,
.d11) now works correctly (previously it silently returned the first
python module in the file). (Contributed by Véaclav Smilauer in
bpo-16421.)

A new opcode, LOAD_CLASSDEREF, has been added to fix a bug
in the loading of free variables in class bodies that could be
triggered by certain uses of _ prepare . (Contributed by
Benjamin Peterson in bpo-17853.)

A number of MemoryError-related crashes were identified and
fixed by Victor Stinner using his PEP 445-based pyfailmalloc
tool (bpo-18408, bpo-18520).

The pyvenv command now accepts a --copies option to use

https://bugs.python.org/issue18338
https://bugs.python.org/issue18920
https://bugs.python.org/issue18922
https://bugs.python.org/issue18569
https://devguide.python.org/coverage/#measuring-coverage-of-c-code-with-gcov-and-lcov
http://ltp.sourceforge.net/coverage/lcov.php
https://bugs.python.org/issue13390
https://bugs.python.org/issue16421
https://bugs.python.org/issue17853
https://www.python.org/dev/peps/pep-0445
https://bugs.python.org/issue18408
https://bugs.python.org/issue18520

copies rather than symlinks even on systems where symlinks are
the default. (Contributed by Vinay Sajip in bpo-18807.)

e The pyvenv command also accepts a --without-pip option
to suppress the otherwise-automatic bootstrapping of pip into the
virtual environment. (Contributed by Nick Coghlan in bpo-19552
as part of the PEP 453 implementation.)

e The encoding name is now optional in the value set for the
PYTHONIOENCODING environment variable. This makes it
possible to set just the error handler, without changing the default
encoding. (Contributed by Serhiy Storchaka in bpo-18818.)

e The bz2, 1zma, and gzip module open functions now support x
(exclusive creation) mode. (Contributed by Tim Heaney and
Vajrasky Kok in bpo-19201, bpo-19222, and bpo-19223.)

Significant Optimizations

e The UTF-32 decoder is now 3x to 4x faster. (Contributed by
Serhiy Storchaka in bpo-14625.)

e The cost of hash collisions for sets is now reduced. Each hash
table probe now checks a series of consecutive, adjacent
key/hash pairs before continuing to make random probes through
the hash table. This exploits cache locality to make collision
resolution less expensive. The collision resolution scheme can be
described as a hybrid of linear probing and open addressing. The
number of additional linear probes defaults to nine. This can be
changed at compile-time by defining LINEAR_PROBES to be any
value. Set LINEAR_PROBES=0 to turn-off linear probing entirely.
(Contributed by Raymond Hettinger in bpo-18771.)

e The interpreter starts about 30% faster. A couple of measures
lead to the speedup. The interpreter loads fewer modules on
startup, e.g. the re, collections and locale modules and
their dependencies are no longer imported by default. The
marshal module has been improved to load compiled Python code

https://bugs.python.org/issue18807
https://bugs.python.org/issue19552
https://www.python.org/dev/peps/pep-0453
https://bugs.python.org/issue18818
https://bugs.python.org/issue19201
https://bugs.python.org/issue19222
https://bugs.python.org/issue19223
https://bugs.python.org/issue14625
https://bugs.python.org/issue18771

faster. (Contributed by Antoine Pitrou, Christian Heimes and Victor
Stinner in bpo-19219, bpo-19218, bpo-19209, bpo-19205 and
bpo-9548.)

bz2.BZ2File is now as fast or faster than the Python2 version
for most cases. lzma.LZMAFile has also been optimized.
(Contributed by Serhiy Storchaka and Nadeem Vawda in bpo-
16034.)

random.getrandbits() is 20%-40% faster for small integers
(the most common use case). (Contributed by Serhiy Storchaka in
bpo-16674.)

By taking advantage of the new storage format for strings, pickling
of strings is now significantly faster. (Contributed by Victor Stinner
and Antoine Pitrou in bpo-15596.)

A performance issue in io.FileIO.readall() has been
solved. This particularly affects Windows, and significantly speeds
up the case of piping significant amounts of data through
subprocess. (Contributed by Richard Oudkerk in bpo-15758.)
html.escape() is now 10x faster. (Contributed by Matt Bryant
in bpo-18020.)

On Windows, the native VirtualAlloc is now used instead of
the CRT malloc in obmalloc. Artificial benchmarks show about
a 3% memory savings.

os.urandom() now uses a lazily-opened persistent file
descriptor so as to avoid using many file descriptors when run in
parallel from multiple threads. (Contributed by Antoine Pitrou in
bpo-18756.)

https://bugs.python.org/issue19219
https://bugs.python.org/issue19218
https://bugs.python.org/issue19209
https://bugs.python.org/issue19205
https://bugs.python.org/issue9548
https://bugs.python.org/issue16034
https://bugs.python.org/issue16674
https://bugs.python.org/issue15596
https://bugs.python.org/issue15758
https://bugs.python.org/issue18020
https://bugs.python.org/issue18756

Deprecated

This section covers various APIs and other features that have been
deprecated in Python 3.4, and will be removed in Python 3.5 or later.
In most (but not all) cases, using the deprecated APIs will produce a
DeprecationwWarning when the interpreter is run with deprecation
warnings enabled (for example, by using -Wd).

Deprecations in the Python API

e As mentioned in PEP 451. A ModuleSpec Type for the Import
System, a number of importlib methods and functions are

deprecated: importlib.find_loader() is replaced by
importlib.util.find_spec();

importlib.machinery.PathFinder.find_module() is
replaced by
importlib.machinery.PathFinder.find_spec();

importlib.abc.MetaPathFinder.find_module() is
replaced by

importlib.abc.MetaPathFinder.find_spec();
importlib.abc.PathEntryFinder.find_loader () and

find_module() are replaced by
importlib.abc.PathEntryFinder.find_spec(); all of the
xxxLoader ABC load_module methods

(importlib.abc.Loader.load_module(),
importlib.abc.InspectLoader.load_module(),
importlib.abc.FilelLoader.load_module(),
importlib.abc.SourcelLoader.load_module()) should no

longer be implemented, instead loaders should implement an
exec_module method

(importlib.abc.Loader.exec_module(),

importlib.abc.InspectLoader.exec_module()
importlib.abc.SourcelLoader.exec_module()) and let
the import system take ~care of the rest; and
importlib.abc.Loader.module_repr(),
importlib.util.module_for_loader(),
importlib.util.set_loader(), and
importlib.util.set_package() are no longer needed
because their functions are now handled automatically by the
import system.

The imp module is pending deprecation. To keep compatibility
with Python 2/3 code bases, the module’s removal is currently not
scheduled.

The formatter module is pending deprecation and is slated for
removal in Python 3.6.

MD5 as the default digestmod for the hmac.new() function is
deprecated. Python 3.6 will require an explicit digest name or
constructor as digestmod argument.

The internal Netrc class in the ftplib module has been

documented as deprecated in its docstring for quite some time. It
now emits a DeprecationwWarning and will be removed

completely in Python 3.5.

The undocumented endtime argument to
subprocess.Popen.wait() should not have been exposed
and is hopefully not in use; it is deprecated and will mostly likely
be removed in Python 3.5.

The strict argument of HTMLParser is deprecated.

The plistlib readPlist(), writePlist(),
readPlistFromBytes(), and writePlistToBytes()
functions are deprecated in favor of the corresponding new
functions load (), dump(), loads(), and dumps(). Data() is
deprecated in favor of just using the bytes constructor.

The sysconfig key SO is deprecated, it has been replaced by
EXT_SUFFIX.

e The U mode accepted by various open functions is deprecated.
In Python3 it does not do anything useful, and should be replaced
by appropriate uses of io.TextIOWrapper (if needed) and its
newline argument.

e The parser argument of
xml.etree.ElementTree.iterparse() has been
deprecated, as has the html argument of XMLParser(). To
prepare for the removal of the latter, all arguments to XMLParser
should be passed by keyword.

Deprecated Features

e Running IDLE with the -n flag (no subprocess) is deprecated.
However, the feature will not be removed until bpo-18823 is
resolved.

e The site module adding a “site-python” directory to sys.path, if it
exists, is deprecated (bpo-19375).

https://bugs.python.org/issue18823
https://bugs.python.org/issue19375

Removed

Operating Systems No Longer Supported

Support for the following operating systems has been removed from
the source and build tools:

e OS/2 (bpo-16135).

e Windows 2000 (changeset e52df05b496a).

e Windows systems where COMSPEC points to command . com (bpo-
14470).

e VMS (bpo-16136).

API| and Feature Removals

The following obsolete and previously deprecated APIs and features
have been removed:

e The unmaintained Misc/TextMate and Misc/vim directories
have been removed (see the devguide for suggestions on what to
use instead).

e The SO makefile macro is removed (it was replaced by the
SHLIB_SUFFIX and EXT_SUFFIX macros) (bpo-16754).

e The PyThreadState.tick_counter field has been removed,;
its value has been meaningless since Python 3.2, when the “new
GIL” was introduced (bpo-19199).

e PyLoader and PyPycLoader have been removed from
importlib. (Contributed by Taras Lyapun in bpo-15641.)

e The strict argument to HTTPConnection and
HTTPSConnection has been removed. HTTP 0.9-style “Simple
Responses” are no longer supported.

e The deprecated urllib.request.Request getter and setter

https://bugs.python.org/issue16135
https://bugs.python.org/issue14470
https://bugs.python.org/issue16136
https://devguide.python.org
https://bugs.python.org/issue16754
https://bugs.python.org/issue19199
https://bugs.python.org/issue15641

methods add_data, has_data, get_data, get_type,
get_host, get_selector, set_proxy,
get_origin_req_host, and is_unverifiable have been
removed (use direct attribute access instead).

e Support for loading the deprecated TYPE_INT64 has been
removed from marshal. (Contributed by Dan Riti in bpo-15480.)

e inspect.Signature: positional-only parameters are now
required to have a valid name.

e object.__format__ () no longer accepts non-empty format
strings, it now raises a TypeError instead. Using a non-empty
string has been deprecated since Python 3.2. This change has
been made to prevent a situation where previously working (but
incorrect) code would start failing if an object gained a __format__
method, which means that your code may now raise a
TypeError if you are using an 's' format code with objects that

do not have a __ format__ method that handles it. See bpo-7994
for background.

e difflib.SequenceMatcher.isbjunk() and
difflib.SequenceMatcher.isbpopular() were
deprecated in 3.2, and have now been removed: use X 1in
sm.bjunk and x in sm.bpopular, where sm is a
SequenceMatcher object (bpo-13248).

Code Cleanups

e The unused and undocumented internal Scanner class has been
removed from the pydoc module.

e The private and effectively unused _gestalt module has been
removed, along with the private platform functions
_mac_ver_lookup, _mac_ver_gstalt, and _bcd2str, which

would only have ever been called on badly broken OSX systems
(see bpo-18393).

https://bugs.python.org/issue15480
https://bugs.python.org/issue7994
https://bugs.python.org/issue13248
https://bugs.python.org/issue18393

e The hardcoded copies of certain stat constants that were
included in the tarfile module namespace have been
removed.

Porting to Python 3.4

This section lists previously described changes and other bugfixes that
may require changes to your code.

Changes in ‘python’ Command Behavior

e In a posix shell, setting the PATH environment variable to an
empty value is equivalent to not setting it at all. However, setting
PYTHONPATH to an empty value was not equivalent to not setting
it at all: setting PYTHONPATH to an empty value was equivalent to
setting it to ., which leads to confusion when reasoning by
analogy to how PATH works. The behavior now conforms to the
posix convention for PATH.

e The [X refs, Y blocks] output of a debug (--with-pydebug)
build of the CPython interpreter is now off by default. It can be re-
enabled using the -X showrefcount option. (Contributed by

Ezio Melotti in bpo-17323.)
e The python command and most stdlib scripts (as well as
argparse) now output --version information to stdout

instead of stderr (for issue list see Other Improvements above).

Changes in the Python API

e The ABCs defined in importlib.abc now either raise the
appropriate exception or return a default value instead of raising
NotImplementedError blindly. This will only affect code calling
super () and falling through all the way to the ABCs. For
compatibility, catch both NotImplementedError or the

appropriate exception as needed.
e The module type now Initializes the __ package__ and

https://bugs.python.org/issue17323

__loader___ attributes to None by default. To determine if these
attributes were set in a backwards-compatible fashion, use e.g.

getattr(module, '__loader__', None) is not None.
(bpo-17115.)
importlib.util.module_for_loader () now sets

__loader__ and __package__ unconditionally to properly
support reloading. If this is not desired then you will need to set

these attributes manually. You can use
importlib.util.module_to_load() for module
management.

Import now resets relevant attributes (e.g. __name__,
__loader__, _ _package__, _ _file__, __cached_)

unconditionally when reloading. Note that this restores a pre-3.3
behavior in that it means a module is re-found when re-loaded
(bp0-19413).

Frozen packages no longer set __path___ to a list containing the
package name, they now set it to an empty list. The previous
behavior could cause the import system to do the wrong thing on
submodule imports if there was also a directory with the same
name as the frozen package. The correct way to determine if a
module is a package or not is to use hasattr(module,
' __path__"') (bpo-18065).

Frozen modules no longer define a __file__ attribute. It's
semantically incorrect for frozen modules to set the attribute as
they are not loaded from any explicit location. If you must know
that a module comes from frozen code then you can see if the
module’s __spec___.location issetto 'frozen', check if the
loader IS a subclass of
importlib.machinery.FrozenImporter, or if Python 2
compatibility is necessary you can use imp.is_frozen().
py_compile.compile() now raises FileExistsError if the
file path it would write to is a symlink or a non-regular file. This is
to act as a warning that import will overwrite those files with a

https://bugs.python.org/issue17115
https://bugs.python.org/issue19413
https://bugs.python.org/issue18065

regular file regardless of what type of file path they were originally.
importlib.abc.SourcelLoader.get_source() no longer
raises ImportError when the source code being loaded
triggers a SyntaxError or UnicodeDecodeError. As
ImportError is meant to be raised only when source code

cannot be found but it should, it was felt to be over-
reaching/overloading of that meaning when the source code is
found but improperly structured. If you were catching ImportError
before and wish to continue to ignore syntax or decoding issues,
catch all three exceptions now.

functools.update_wrapper() and functools.wraps()

now correctly set the __wrapped___ attribute to the function being
wrapped, even if that function also had its __wrapped___ attribute
set. This means __wrapped___ attributes now correctly link a
stack of decorated functions rather than every _ wrapped_

attribute in the chain referring to the innermost function.
Introspection libraries that assumed the previous behaviour was
intentional can use inspect.unwrap() to access the first

function in the chain that has no __wrapped___ attribute.
inspect.getfullargspec() has been reimplemented on top
of inspect.signature() and hence handles a much wider

variety of callable objects than it did in the past. It is expected that
additional builtin and extension module callables will gain
signature metadata over the course of the Python 3.4 series.
Code that assumes that inspect.getfullargspec() will falil

on non-Python callables may need to be adjusted accordingly.
importlib.machinery.PathFinder now passes on the

current working directory to objects in sys.path_hooks for the
empty string. This results in sys.path_importer_cache never
containing . thus iterating through
sys.path_importer_cache based on sys.path will not find
all keys. A module’s __file__ when imported in the current
working directory will also now have an absolute path, including

when using -m with the interpreter (except for
__main__.__file__ when a script has been executed directly
using a relative path) (Contributed by Brett Cannon in bpo-18416).
is specified on the command-line) (bpo-18416).

The removal of the strict argument to HTTPConnection and
HTTPSConnection changes the meaning of the remaining
arguments if you are specifying them positionally rather than by
keyword. If you've been paying attention to deprecation warnings
your code should already be specifying any additional arguments
via keywords.

Strings between from __ future__ import ... statements
now always raise a SyntaxError. Previously if there was no
leading docstring, an interstitial string would sometimes be
ignored. This brings CPython into compliance with the language
spec; Jython and PyPy already were. (bpo-17434).
ssl.SSLSocket.getpeercert() and
ssl.SSLSocket.do_handshake() now raise an OSError
with ENOTCONN when the SSLSocket is not connected, instead
of the previous behavior of raising an AttributeError. In
addition, getpeercert() will raise a ValueError if the
handshake has not yet been done.

base64.b32decode() now raises a binascii.Error when
the input string contains non-b32-alphabet characters, instead of
a TypeError. This particular TypeError was missed when the
other TypeErrors were converted. (Contributed by Serhiy
Storchaka in bpo-18011.) Note: this change was also
inadvertently applied in Python 3.3.3.

The file attribute is now automatically closed when the creating
cgi.FieldStorage instance is garbage collected. If you were
puling the file object out separately from the
cgi.FieldStorage instance and not keeping the instance
alive, then you should either store the entire
cgi.FieldStorage instance or read the contents of the file

https://bugs.python.org/issue18416
https://bugs.python.org/issue18416
https://bugs.python.org/issue17434
https://bugs.python.org/issue18011

before the cgi.FieldStorage instance is garbage collected.
Calling read or write on a closed SSL socket now raises an
informative ValueError rather than the previous more
mysterious AttributeError (bpo-9177).

slice.indices() no longer produces an OverflowError for
huge values. As a consequence of this fix, slice.indices()
now raises a ValueError if given a negative length; previously it
returned nonsense values (bpo-14794).

The complex constructor, unlike the cmath functions, was
incorrectly accepting float values if an object's __complex___
special method returned one. This now raises a TypeError.
(bpo0-16290.)

The int constructor in 3.2 and 3.3 erroneously accepts float
values for the base parameter. It is unlikely anyone was doing
this, but if so, it will now raise a TypeError (bpo-16772).
Defaults for keyword-only arguments are now evaluated after
defaults for regular keyword arguments, instead of before.
Hopefully no one wrote any code that depends on the previous
buggy behavior (bpo-16967).

Stale thread states are now cleared after fork(). This may
cause some system resources to be released that previously were
incorrectly kept perpetually alive (for example, database
connections kept in thread-local storage). (bpo-17094.)

Parameter names in __annotations__ dicts are now mangled
properly, similarly to __ _kwdefaults__ . (Contributed by Yury
Selivanov in bpo-20625.)

hashlib.hash.name now always returns the identifier in lower
case. Previously some builtin hashes had uppercase names, but
now that it is a formal public interface the naming has been made
consistent (bpo-18532).

Because unittest.TestSuite now drops references to tests
after they are run, test harnesses that re-use a TestSuite to re-
run a set of tests may fail. Test suites should not be re-used in this

https://bugs.python.org/issue9177
https://bugs.python.org/issue14794
https://bugs.python.org/issue16290
https://bugs.python.org/issue16772
https://bugs.python.org/issue16967
https://bugs.python.org/issue17094
https://bugs.python.org/issue20625
https://bugs.python.org/issue18532

fashion since it means state is retained between test runs,
breaking the test isolation that unittest is designed to provide.

However, if the lack of isolation is considered acceptable, the old
behavior can be restored by creating a TestSuite subclass that

defines a _removeTestAtIndex method that does nothing (see
TestSuite.__iter__()) (bpo-11798).

unittest now uses argparse for command line parsing. There
are certain invalid command forms that used to work that are no
longer allowed; in theory this should not cause backward
compatibility issues since the disallowed command forms didn’t
make any sense and are unlikely to be in use.

The re.split(), re.findall(), and re.sub() functions,
and the group() and groups() methods of match objects now
always return a bytes object when the string to be matched is a
bytes-like object. Previously the return type matched the input
type, so if your code was depending on the return value being,
say, a bytearray, you will need to change your code.

audioop functions now raise an error immediately if passed
string input, instead of failing randomly later on (bpo-16685).

The new convert _charrefs argument to HTMLParser currently
defaults to False for backward compatibility, but will eventually
be changed to default to True. It is recommended that you add
this keyword, with the appropriate value, to any HTMLParser
calls in your code (bpo-13633).

Since the digestmod argument to the hmac . new() function will in
the future have no default, all calls to hmac.new() should be
changed to explicitly specify a digestmod (bpo-17276).

Calling sysconfig.get_config_var() with the SO key, or
lookingg SO up in the results of a call to
sysconfig.get_config_vars() Iis deprecated. This key
should be replaced by EXT_SUFFIX or SHLIB_SUFFIX,
depending on the context (bpo-19555).

Any calls to open functions that specify U should be modified. U

https://bugs.python.org/issue11798
https://bugs.python.org/issue16685
https://bugs.python.org/issue13633
https://bugs.python.org/issue17276
https://bugs.python.org/issue19555

is ineffective in Python3 and will eventually raise an error if used.
Depending on the function, the equivalent of its old Python2
behavior can be achieved using either a newline argument, or if
necessary by wrapping the stream in TextIOWrapper to use its
newline argument (bpo-15204).

e If you use pyvenv in a script and desire that pip not be installed,
you must add - -without-pip to your command invocation.

e The default behavior of json.dump() and json.dumps()
when an indent is specified has changed: it no longer produces
trailing spaces after the item separating commas at the ends of
lines. This will matter only if you have tests that are doing white-
space-sensitive comparisons of such output (bpo-16333).

e doctest now looks for doctests in extension module __doc___
strings, so if your doctest test discovery includes extension
modules that have things that look like doctests in them you may
see test failures you've never seen before when running your
tests (bpo-3158).

e The collections.abc module has been slightly refactored as
part of the Python startup improvements. As a consequence of
this, it is no longer the case that importing collections
automatically imports collections.abc. If your program
depended on the (undocumented) implicit import, you will need to
add an explicit import collections.abc (bpo-20784).

Changes in the C API

e PyEval_EvalFrameEx(), PyObject_Repr(), and
PyObject_Str (), along with some other internal C APIs, now
include a debugging assertion that ensures they are not used in
situations where they may silently discard a currently active
exception. In cases where discarding the active exception is
expected and desired (for example, because it has already been
saved locally with PyErr_Fetch() or is being deliberately

https://bugs.python.org/issue15204
https://bugs.python.org/issue16333
https://bugs.python.org/issue3158
https://bugs.python.org/issue20784

replaced with a different exception), an explicit PyErr_Clear ()
call will be needed to avoid triggering the assertion when invoking
these operations (directly or indirectly) and running against a
version of Python that is compiled with assertions enabled.
PyErr_SetImportError() now sets TypeError when its
msg argument is not set. Previously only NULL was returned with
no exception set.

The result of the Py0OS_ReadlineFunctionPointer callback
must now be a string allocated by PyMem_RawMalloc() or
PyMem_RawRealloc(), or NULL if an error occurred, instead of
a string allocated by PyMem_Malloc() or PyMem_Realloc()
(bpo-16742)

PyThread_set_key_value() now always set the value. In
Python 3.3, the function did nothing if the key already exists (if the
current value is a non-NULL pointer).

The f_tstate (thread state) field of the PyFrameObject

structure has been removed to fix a bug: see bpo-14432 for the
rationale.

https://bugs.python.org/issue16742
https://bugs.python.org/issue14432

Changed in 3.4.3

PEP 476: Enabling certificate verification by
default for stdlib http clients

http.client and modules which use it, such as urllib.request
and xmlrpc.client, will now verify that the server presents a
certificate which is signed by a CA in the platform trust store and
whose hostname matches the hostname being requested by default,
significantly improving security for many applications.

For applications which require the old previous behavior, they can
pass an alternate context:

import urllib.request
import ssl

This disables all verification
context = ssl._create_unverified_context()

This allows using a specific certificate for the F
to be in the trust store
context = ssl.create_default_context(cafile="/path/t

urllib.request.urlopen("https://invalid-cert", conte
Kl E— 0

@ Python » 3.6.3 Documentation » What's New in Python » previous | next | modules | index

© Copyright 2001-2017, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.
Last updated on Oct 03, 2017. Found a bug?

Created using Sphinx 1.6.3.

https://www.python.org/
https://www.python.org/psf/donations/
http://sphinx.pocoo.org/

@ Python » 3.6.3 Documentation » What's New in Python » previous | next | modules | index

https://www.python.org/

What's New In Python 3.3

This article explains the new features in Python 3.3, compared to 3.2.
Python 3.3 was released on September 29, 2012. For full details, see
the changelog.

See also: PEP 398 - Python 3.3 Release Schedule

https://docs.python.org/3.3/whatsnew/changelog.html
https://www.python.org/dev/peps/pep-0398

Summary — Release highlights

New syntax features:

e New yield from expression for generator delegation.
e The u'unicode' syntax is accepted again for str objects.

New library modules:

e faulthandler (helps debugging low-level crashes)
e ipaddress (high-level objects representing IP addresses and

masks)
e lzma (compress data using the XZ / LZMA algorithm)

e unittest.mock (replace parts of your system under test with

mock objects)
e venv (Python virtual environments, as in the popular

virtualenv package)
New built-in features:
e Reworked I/O exception hierarchy.
Implementation improvements:

e Rewritten import machinery based on importlib.

e More compact unicode strings.
e More compact attribute dictionaries.

Significantly Improved Library Modules:

e C Accelerator for the decimal module.
¢ Better unicode handling in the email module (provisional).

Security improvements:

e Hash randomization is switched on by default.

Please read on for a comprehensive list of user-facing changes.

PEP 405: Virtual Environments

Virtual environments help create separate Python setups while sharing
a system-wide base install, for ease of maintenance. Virtual
environments have their own set of private site packages (i.e. locally-
installed libraries), and are optionally segregated from the system-wide
site packages. Their concept and implementation are inspired by the
popular virtualenv third-party package, but benefit from tighter

integration with the interpreter core.

This PEP adds the venv module for programmatic access, and the
pyvenv script for command-line access and administration. The
Python interpreter checks for a pyvenv.cfg, file whose existence
signals the base of a virtual environment'’s directory tree.

See also:

PEP 405 - Python Virtual Environments
PEP written by Carl Meyer; implementation by Carl Meyer and
Vinay Sajip

https://www.python.org/dev/peps/pep-0405

PEP 420: Implicit Namespace Packages

Native support for package directories that don’'t require
__init___.py marker files and can automatically span multiple path

segments (inspired by various third party approaches to namespace
packages, as described in PEP 420)

See also:

PEP 420 - Implicit Namespace Packages
PEP written by Eric V. Smith; implementation by Eric V. Smith
and Barry Warsaw

https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0420

PEP 3118: New memoryview
Implementation and buffer protocol
documentation

The implementation of PEP 3118 has been significantly improved.

The new memoryview implementation comprehensively fixes all
ownership and lifetime issues of dynamically allocated fields in the
Py_buffer struct that led to multiple crash reports. Additionally, several
functions that crashed or returned incorrect results for non-contiguous
or multi-dimensional input have been fixed.

The memoryview object now has a PEP-3118 compliant
getbufferproc() that checks the consumer’s request type. Many new
features have been added, most of them work in full generality for non-
contiguous arrays and arrays with suboffsets.

The documentation has been updated, clearly spelling out
responsibilities for both exporters and consumers. Buffer request flags
are grouped into basic and compound flags. The memory layout of
non-contiguous and multi-dimensional NumPy-style arrays is
explained.

Features

e All native single character format specifiers in struct module
syntax (optionally prefixed with ‘@’) are now supported.

e With some restrictions, the cast() method allows changing of
format and shape of C-contiguous arrays.

e Multi-dimensional list representations are supported for any array

type.

https://www.python.org/dev/peps/pep-3118

e Multi-dimensional comparisons are supported for any array type.

e One-dimensional memoryviews of hashable (read-only) types with
formats B, b or ¢ are now hashable. (Contributed by Antoine
Pitrou in bpo-13411.)

e Arbitrary slicing of any 1-D arrays type is supported. For example,
it is now possible to reverse a memoryview in O(1) by using a
negative step.

APl changes

e The maximum number of dimensions is officially limited to 64.

e The representation of empty shape, strides and suboffsets is now
an empty tuple instead of None.

e Accessing a memoryview element with format ‘B’ (unsigned bytes)
now returns an integer (in accordance with the struct module
syntax). For returning a bytes object the view must be cast to ‘c’
first.

e memoryview comparisons now use the logical structure of the
operands and compare all array elements by value. All format
strings in struct module syntax are supported. Views with
unrecognised format strings are still permitted, but will always
compare as unequal, regardless of view contents.

e For further changes see Build and C API Changes and Porting C
code.

(Contributed by Stefan Krah in bpo-10181.)

See also: PEP 3118 - Revising the Buffer Protocol

https://bugs.python.org/issue13411
https://bugs.python.org/issue10181
https://www.python.org/dev/peps/pep-3118

PEP 393: Flexible String Representation

The Unicode string type is changed to support multiple internal
representations, depending on the character with the largest Unicode
ordinal (1, 2, or 4 bytes) in the represented string. This allows a space-
efficient representation in common cases, but gives access to full
UCS-4 on all systems. For compatibility with existing APIs, several
representations may exist in parallel; over time, this compatibility
should be phased out.

On the Python side, there should be no downside to this change.

On the C API side, PEP 393 is fully backward compatible. The legacy
API should remain available at least five years. Applications using the
legacy API will not fully benefit of the memory reduction, or - worse -
may use a bit more memory, because Python may have to maintain
two versions of each string (in the legacy format and in the new
efficient storage).

Functionality

Changes introduced by PEP 393 are the following:

e Python now always supports the full range of Unicode code
points, including non-BMP ones (i.e. from U+0000 to U+10FFFF).
The distinction between narrow and wide builds no longer exists
and Python now behaves like a wide build, even under Windows.

e With the death of narrow builds, the problems specific to narrow
builds have also been fixed, for example:

o len() now always returns 1 for non-BMP characters, so
len('\UGO1OFFFF') == 1;
o surrogate pairs are not recombined in string literals, so

https://www.python.org/dev/peps/pep-0393

"\uDBFF\uUDFFF' != '"\UGO10FFFF';

o indexing or slicing non-BMP characters returns the expected
value, so '"\UOO1OFFFF'[0] now returns '\UOO1OFFFF'
and not '\uDBFF';

o all other functions in the standard library now correctly handle
non-BMP code points.

e The value of sys.maxunicode is now always 1114111
(OX10FFFF in hexadecimal). The PyUnicode_GetMax()
function still returns either OXFFFF or Ox10FFFF for backward
compatibility, and it should not be used with the new Unicode API
(see bpo-13054).

e The ./configure flag --with-wide-unicode has been
removed.

Performance and resource usage

The storag